WorldWideScience

Sample records for archaeal rna pseudouridine

  1. tRNA binding, positioning, and modification by the pseudouridine synthase Pus10.

    Science.gov (United States)

    Kamalampeta, Rajashekhar; Keffer-Wilkes, Laura C; Kothe, Ute

    2013-10-23

    Pus10 is the most recently identified pseudouridine synthase found in archaea and higher eukaryotes. It modifies uridine 55 in the TΨC arm of tRNAs. Here, we report the first quantitative biochemical analysis of tRNA binding and pseudouridine formation by Pyrococcus furiosus Pus10. The affinity of Pus10 for both substrate and product tRNA is high (Kd of 30nM), and product formation occurs with a Km of 400nM and a kcat of 0.9s(-1). Site-directed mutagenesis was used to demonstrate that the thumb loop in the catalytic domain is important for efficient catalysis; we propose that the thumb loop positions the tRNA within the active site. Furthermore, a new catalytic arginine residue was identified (arginine 208), which is likely responsible for triggering flipping of the target uridine into the active site of Pus10. Lastly, our data support the proposal that the THUMP-containing domain, found in the N-terminus of Pus10, contributes to binding of tRNA. Together, our findings are consistent with the hypothesis that tRNA binding by Pus10 occurs through an induced-fit mechanism, which is a prerequisite for efficient pseudouridine formation. PMID:23743107

  2. Attempted prebiotic synthesis of pseudouridine

    Science.gov (United States)

    Dworkin, J. P.; Miller, S. L. (Principal Investigator)

    1997-01-01

    Pseudouridine is a modified base found in all tRNA and rRNA. Hence, it is reasonable to think that pseudouridine was important in the early evolution, if not the origin, of life. Since uracil reacts rapidly with formaldehyde and other aldehydes at the C-5 position, it is plausible that pseudouridine could be synthesized in a similar way by the reaction of the C-5 of uracil with the C-1 of ribose. The determining factor is whether the ribose could react with the uracil faster than ribose decomposes. However, both rates are determined by the amount of free aldehyde in the ribose. Various plausible prebiotic reactions were investigated and none showed pseudouridine above the detection limit (prebiotic conditions. Unless efficient non-biological catalysts for any of these reactions exist, pseudouridine would not have been synthesized to any significant extent without the use of biologically produced enzymes.

  3. Pseudouridines in U2 snRNA stimulate the ATPase activity of Prp5 during spliceosome assembly.

    Science.gov (United States)

    Wu, Guowei; Adachi, Hironori; Ge, Junhui; Stephenson, David; Query, Charles C; Yu, Yi-Tao

    2016-03-15

    Pseudouridine (Ψ) is the most abundant internal modification identified in RNA, and yet little is understood of its effects on downstream reactions. Yeast U2 snRNA contains three conserved Ψs (Ψ35, Ψ42, and Ψ44) in the branch site recognition region (BSRR), which base pairs with the pre-mRNA branch site during splicing. Here, we show that blocks to pseudouridylation at these positions reduce the efficiency of pre-mRNA splicing, leading to growth-deficient phenotypes. Restoration of pseudouridylation at these positions using designer snoRNAs results in near complete rescue of splicing and cell growth. These Ψs interact genetically with Prp5, an RNA-dependent ATPase involved in monitoring the U2 BSRR-branch site base-pairing interaction. Biochemical analysis indicates that Prp5 has reduced affinity for U2 snRNA that lacks Ψ42 and Ψ44 and that Prp5 ATPase activity is reduced when stimulated by U2 lacking Ψ42 or Ψ44 relative to wild type, resulting in inefficient spliceosome assembly. Furthermore, in vivo DMS probing analysis reveals that pseudouridylated U2, compared to U2 lacking Ψ42 and Ψ44, adopts a slightly different structure in the branch site recognition region. Taken together, our results indicate that the Ψs in U2 snRNA contribute to pre-mRNA splicing by directly altering the binding/ATPase activity of Prp5. PMID:26873591

  4. Transfection of pseudouridine-modified mRNA encoding CPD-photolyase leads to repair of DNA damage in human keratinocytes: a new approach with future therapeutic potential

    Science.gov (United States)

    Boros, Gábor; Miko, Edit; Muramatsu, Hiromi; Weissman, Drew; Emri, Eszter; Rózsa, Dávid; Nagy, Georgina; Juhász, Attila; Juhász, István; van der Horst, Gijsbertus; Horkay, Irén; Remenyik, Éva; Karikó, Katalin; Emri, Gabriella

    2013-01-01

    UVB irradiation induces harmful photochemical reactions, including formation of cyclobutane pyrimidine dimers (CPDs) in DNA. Accumulation of unrepaired CPD lesions causes inflammation, premature ageing and skin cancer. Photolyases are DNA repair enzymes that can rapidly restore DNA integrity in a light-dependent process called photoreactivation, but these enzymes are absent in humans. Here, we present a novel mRNA-based gene therapy method that directs synthesis of a marsupial, Potorous tridactylus, CPD-photolyase in cultured human keratinocytes. Pseudouridine was incorporated during in vitro transcription to make the mRNA non-immunogenic and highly translatable. Keratinocytes transfected with lipofectamine-complexed mRNA expressed photolyase in the nuclei for at least 2 days. Exposing photolyase mRNA-transfected cells to UVB irradiation resulted in significantly less CPD in those cells that were also treated with photoreactivating light, which is required for photolyase activity. The functional photolyase also diminished other UVB-mediated effects, including induction of IL-6 and inhibition of cell proliferation. These results demonstrate that pseudouridine-containing photolyase mRNA is a powerful tool to repair UVB-induced DNA lesions. The pseudouridine-modified mRNA approach has a strong potential to discern cellular effects of CPD in UV-related cell biological studies. The mRNA-based transient expression of proteins offers a number of opportunities for future application in medicine. PMID:24211294

  5. Attempted prebiotic synthesis of pseudouridine

    Science.gov (United States)

    Dworkin, J. P.; Miller, S. L. (Principal Investigator)

    1997-01-01

    Pseudouridine is a modified base found in all tRNA and rRNA. Hence, it is reasonable to think that pseudouridine was important in the early evolution, if not the origin, of life. Since uracil reacts rapidly with formaldehyde and other aldehydes at the C-5 position, it is plausible that pseudouridine could be synthesized in a similar way by the reaction of the C-5 of uracil with the C-1 of ribose. The determining factor is whether the ribose could react with the uracil faster than ribose decomposes. However, both rates are determined by the amount of free aldehyde in the ribose. Various plausible prebiotic reactions were investigated and none showed pseudouridine above the detection limit (products could be observed. Thus the rate of addition of ribose to uracil is much slower than the decomposition of ribose under any reasonable prebiotic conditions. Unless efficient non-biological catalysts for any of these reactions exist, pseudouridine would not have been synthesized to any significant extent without the use of biologically produced enzymes.

  6. Ribonucleoproteins in Archaeal Pre-rRNA Processing and Modification

    Directory of Open Access Journals (Sweden)

    W. S. Vincent Yip

    2013-01-01

    Full Text Available Given that ribosomes are one of the most important cellular macromolecular machines, it is not surprising that there is intensive research in ribosome biogenesis. Ribosome biogenesis is a complex process. The maturation of ribosomal RNAs (rRNAs requires not only the precise cleaving and folding of the pre-rRNA but also extensive nucleotide modifications. At the heart of the processing and modifications of pre-rRNAs in Archaea and Eukarya are ribonucleoprotein (RNP machines. They are called small RNPs (sRNPs, in Archaea, and small nucleolar RNPs (snoRNPs, in Eukarya. Studies on ribosome biogenesis originally focused on eukaryotic systems. However, recent studies on archaeal sRNPs have provided important insights into the functions of these RNPs. This paper will introduce archaeal rRNA gene organization and pre-rRNA processing, with a particular focus on the discovery of the archaeal sRNP components, their functions in nucleotide modification, and their structures.

  7. Archaeal rRNA operons, intron splicing and homing endonucleases, RNA polymerase operons and phylogeny

    DEFF Research Database (Denmark)

    Garrett, Roger Antony; Aagaard, Claus Sindbjerg; Andersen, Morten; Dalgaard, Jacob; Lykke-Andersen, Jens; Phan, Hoa T.N.; Trevisanato, Siro; Østergaard, Laust; Larsen, Niels; Leffers, Henrik

    1994-01-01

    Over the past decade our laboratory has had a strong interest in defining the phylogenetic status of the archaea. This has involved determining and analysing the sequences of operons of both rRNAs and RNA polymerases and it led to the discovery of the first archaeal rRNA intron. What follows is a...

  8. Pseudouridines in spliceosomal snRNAs

    Institute of Scientific and Technical Information of China (English)

    Andrew T. Yu; Junhui Ge; Yi-Tao Yu

    2011-01-01

    Spliceosomal RNAs are a family of small nuclear RNAs (snRNAs) that are essential for pre-mRNA splicing.All vertebrate spliceosomal snRNAs are extensively pseudouridylated after transcription.Pseudouridines in spliceosomal snRNAs are generally clustered in regions that are functionally important during splicing.Many of these modified nucleotides are conserved across species lines.Recent studies have demonstrated that spliceosomal snRNA pseudouridylation is catalyzed by two different mechanisms:an RNA-dependent mechanism and an RNA-independent mechanism.The functions of the pseudouridines in spliceosomal snRNAs (U2 snRNA in particular) have also been extensively studied.Experimental data indicate that virtually all pseudouridines in U2 snRNA are functionally important.Besides the currently known pseudouridines (constitutive modifications),recent work has also indicated that pseudouridylation can be induced at novel positions under stress conditions,thus strongly suggesting that pseudouridylation is also a regulatory modification.

  9. RNA-Based Assessment of Diversity and Composition of Active Archaeal Communities in the German Bight

    Directory of Open Access Journals (Sweden)

    Bernd Wemheuer

    2012-01-01

    Full Text Available Archaea play an important role in various biogeochemical cycles. They are known extremophiles inhabiting environments such as thermal springs or hydrothermal vents. Recent studies have revealed a significant abundance of Archaea in moderate environments, for example, temperate sea water. Nevertheless, the composition and ecosystem function of these marine archaeal communities is largely unknown. To assess diversity and composition of active archaeal communities in the German Bight, seven marine water samples were taken and studied by RNA-based analysis of ribosomal 16S rRNA. For this purpose, total RNA was extracted from the samples and converted to cDNA. Archaeal community structures were investigated by pyrosequencing-based analysis of 16S rRNA amplicons generated from cDNA. To our knowledge, this is the first study combining next-generation sequencing and metatranscriptomics to study archaeal communities in marine habitats. The pyrosequencing-derived dataset comprised 62,045 archaeal 16S rRNA sequences. We identified Halobacteria as the predominant archaeal group across all samples with increased abundance in algal blooms. Thermoplasmatales (Euryarchaeota and the Marine Group I (Thaumarchaeota were identified in minor abundances. It is indicated that archaeal community patterns were influenced by environmental conditions.

  10. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Alexander F Lovejoy

    Full Text Available We developed a novel technique, called pseudouridine site identification sequencing (PSI-seq, for the transcriptome-wide mapping of pseudouridylation sites with single-base resolution from cellular RNAs based on the induced termination of reverse transcription specifically at pseudouridines following CMCT treatment. PSI-seq analysis of RNA samples from S. cerevisiae correctly detected all of the 43 known pseudouridines in yeast 18S and 25S ribosomal RNA with high specificity. Moreover, application of PSI-seq to the yeast transcriptome revealed the presence of site-specific pseudouridylation within dozens of mRNAs, including RPL11a, TEF1, and other genes implicated in translation. To identify the mechanisms responsible for mRNA pseudouridylation, we genetically deleted candidate pseudouridine synthase (Pus enzymes and reconstituted their activities in vitro. These experiments demonstrated that the Pus1 enzyme was necessary and sufficient for pseudouridylation of RPL11a mRNA, whereas Pus4 modified TEF1 mRNA, and Pus6 pseudouridylated KAR2 mRNA. Finally, we determined that modification of RPL11a at Ψ -68 was observed in RNA from the related yeast S. mikitae, and Ψ -239 in TEF1 mRNA was maintained in S. mikitae as well as S. pombe, indicating that these pseudouridylations are ancient, evolutionarily conserved RNA modifications. This work establishes that site-specific pseudouridylation of eukaryotic mRNAs is a genetically programmed RNA modification that naturally occurs in multiple yeast transcripts via distinct mechanisms, suggesting that mRNA pseudouridylation may provide an important novel regulatory function. The approach and strategies that we report here should be generally applicable to the discovery of pseudouridylation, or other RNA modifications, in diverse biological contexts.

  11. An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions

    DEFF Research Database (Denmark)

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Hausmann, Corinne D;

    2011-01-01

    Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translation...... the catalytic efficiency of serine attachment to tRNA, but had no effect on the activity of MtArgRS. Further, the most pronounced improvements in the aminoacylation activity of MtSerRS induced by MtArgRS were observed under conditions of elevated temperature and osmolarity. These data indicate that......, although the precise biological role remains largely unknown. To gain further insights into archaeal MSCs, possible protein-protein interactions with the atypical Methanothermobacter thermautotrophicus seryl-tRNA synthetase (MtSerRS) were investigated. Yeast two-hybrid analysis revealed arginyl-tRNA...

  12. Pseudouridine-deficient transfer RNAs from Escherichia coli B and their use as substrates for pseudouridine synthetase.

    Science.gov (United States)

    Kwong, L K; Moore, V G; Kaiser, I I

    1977-09-25

    Transfer RNAs isolated from Escherichia coli B grown in the presence of 2-thiouracil are deficient in pseudouridine. Much of this deficiency is from the T psi C region, which has only about 50% of its normal pseudouridine content. The other modified nucleoside from this region, ribothymidine, is reduced by only about 10%. Studies showed that 2-thiouracil is incoproated into the RNA of E. coli during growth in the presence of the analog. This incorporation appears to result from the replacement of uracil, occur in a random manner, and involve all RNA species. The extent of incorporation varies from 1 to 3 mol %, depending upon the preparation and RNA species examined. Electrophoresis on polyacrylamide gels and chromatography on Sephadex G-75 and reverse phase (Systen 5) columns of normal and 2-thiouracil-containing tRNAs revealed no profile differences. No accumulation of any precursor tRNA in the thiopyrimidine-treated cells is found. A partial recovery of the pseudouridine content of 2-thiouracil-containing tRNAs can be achieved in vivo by removal of the 2-thiouracil from the culture media. These transfer RNAs have also been used as substrates to study the properties of a partially purified preparation of pseudouridine synthetase II invitro and should be useful as substrates in the further purification of this enzyme. PMID:330528

  13. Diversity of putative archaeal RNA viruses in metagenomic datasets of a yellowstone acidic hot spring.

    OpenAIRE

    Hongming WANG; Yu, Yongxin; Liu, Taigang; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-01-01

    Two genomic fragments (5,662 and 1,269 nt in size, GenBank accession no. JQ756122 and JQ756123, respectively) of novel, positive-strand RNA viruses that infect archaea were first discovered in an acidic hot spring in Yellowstone National Park (Bolduc et al., 2012). To investigate the diversity of these newly identified putative archaeal RNA viruses, global metagenomic datasets were searched for sequences that were significantly similar to those of the viruses. A total of 3,757 associated read...

  14. Crystal structure of the S. solfataricus archaeal exosome reveals conformational flexibility in the RNA-binding ring.

    Directory of Open Access Journals (Sweden)

    Changrui Lu

    Full Text Available BACKGROUND: The exosome complex is an essential RNA 3'-end processing and degradation machinery. In archaeal organisms, the exosome consists of a catalytic ring and an RNA-binding ring, both of which were previously reported to assume three-fold symmetry. METHODOLOGY/PRINCIPAL FINDINGS: Here we report an asymmetric 2.9 A Sulfolobus solfataricus archaeal exosome structure in which the three-fold symmetry is broken due to combined rigid body and thermal motions mainly within the RNA-binding ring. Since increased conformational flexibility was also observed in the RNA-binding ring of the related bacterial PNPase, we speculate that this may reflect an evolutionarily conserved mechanism to accommodate diverse RNA substrates for degradation. CONCLUSION/SIGNIFICANCE: This study clearly shows the dynamic structures within the RNA-binding domains, which provides additional insights on mechanism of asymmetric RNA binding and processing.

  15. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS

    Science.gov (United States)

    Nagy, Julia; Grohmann, Dina; Cheung, Alan C. M.; Schulz, Sarah; Smollett, Katherine; Werner, Finn; Michaelis, Jens

    2015-01-01

    The molecular architecture of RNAP II-like transcription initiation complexes remains opaque due to its conformational flexibility and size. Here we report the three-dimensional architecture of the complete open complex (OC) composed of the promoter DNA, TATA box-binding protein (TBP), transcription factor B (TFB), transcription factor E (TFE) and the 12-subunit RNA polymerase (RNAP) from Methanocaldococcus jannaschii. By combining single-molecule Förster resonance energy transfer and the Bayesian parameter estimation-based Nano-Positioning System analysis, we model the entire archaeal OC, which elucidates the path of the non-template DNA (ntDNA) strand and interaction sites of the transcription factors with the RNAP. Compared with models of the eukaryotic OC, the TATA DNA region with TBP and TFB is positioned closer to the surface of the RNAP, likely providing the mechanism by which DNA melting can occur in a minimal factor configuration, without the dedicated translocase/helicase encoding factor TFIIH.

  16. Variability in abundance of the Bacterial and Archaeal 16S rRNA and amoA genes in water columns of northern South China Sea

    Science.gov (United States)

    Liu, H.; Yang, C.; Chen, S.; Xie, W.; Wang, P.; Zhang, C. L.

    2014-12-01

    Recent advances in marine microbial ecology have shown that ammonia-oxidizing Archaea (AOA) are more abundant than ammonia-oxidizing bacteria (AOB), although total Bacteria are more abundant than total Archaea in marine environments. This study aimed to examine the spatial distribution and abundance of planktonic archaeal and bacterial 16S rRNA- and amoA genes in the northern South China Sea. Water samples were collected at different depths at six stations (maximum depth ranging from 1800 m to 3200 m)with four stations (B2, B3, B6, B7) located along a transect from the northeastern continental slope to the Bashi Strait and the other two (D3, D5) located southwest of this transect. Quantitative PCR of the 16S rRNA- and amoA genes was used to estimate the abundances of total Archaea, total Bacteria, and AOA and AOB, respectively. At the B series stations, the abundance of bacterial 16S rRNA gene was twofold to 36fold higher than that of the archaeal 16S rRNA gene while fivefold lower to sixfold higher at the two D stations, with both genes showing peak values slightly below sea surface (5-75 m depths) at all stations. The archaeal amoA gene had similar variations with the archaeal 16S rRNA gene, but was 1-4 orders of magnitude lower than the archaeal 16S rRNA gene at all stations. Bacterial amoA gene was below the detection at all stations. Our results also show the difference in depth profiles among these stations, which may be caused by the difference in water movement between these regions. The non-detection of bacterial amoA gene indicates that ammonia-oxidizing Archaea are the dominant group of microorganisms in nitrification of the South China Sea, which is consistent with observations in other oceans.

  17. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity

    OpenAIRE

    Charpentier, Emmanuelle; Richter, Hagen; van der Oost, John; White, Malcolm F

    2015-01-01

    CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences acquired from invading mobile genomes is transcribed as a precursor crRNA (pre-crRNA) molecule. This pre-crRNA undergoes one or two maturation steps to generate the mature crRNAs that guide CRISPR-as...

  18. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs.

    Directory of Open Access Journals (Sweden)

    Sarit Edelheit

    2013-06-01

    Full Text Available The presence of 5-methylcytidine (m(5C in tRNA and rRNA molecules of a wide variety of organisms was first observed more than 40 years ago. However, detection of this modification was limited to specific, abundant, RNA species, due to the usage of low-throughput methods. To obtain a high resolution, systematic, and comprehensive transcriptome-wide overview of m(5C across the three domains of life, we used bisulfite treatment on total RNA from both gram positive (B. subtilis and gram negative (E. coli bacteria, an archaeon (S. solfataricus and a eukaryote (S. cerevisiae, followed by massively parallel sequencing. We were able to recover most previously documented m(5C sites on rRNA in the four organisms, and identified several novel sites in yeast and archaeal rRNAs. Our analyses also allowed quantification of methylated m(5C positions in 64 tRNAs in yeast and archaea, revealing stoichiometric differences between the methylation patterns of these organisms. Molecules of tRNAs in which m(5C was absent were also discovered. Intriguingly, we detected m(5C sites within archaeal mRNAs, and identified a consensus motif of AUCGANGU that directs methylation in S. solfataricus. Our results, which were validated using m(5C-specific RNA immunoprecipitation, provide the first evidence for mRNA modifications in archaea, suggesting that this mode of post-transcriptional regulation extends beyond the eukaryotic domain.

  19. Functional interaction of yeast and human TATA-binding proteins with an archaeal RNA polymerase and promoter.

    OpenAIRE

    Wettach, J; Gohl, H P; Tschochner, H; Thomm, M

    1995-01-01

    TATA boxes are common structural features of eucaryal class II and archaeal promoters. In addition, a gene encoding a polypeptide with sequence similarity to eucaryal TATA-binding protein (TBP) has recently been detected in Archaea, but its relationship to the archaeal transcription factors A (aTFA) and B (aTFB) was unclear. Here, we demonstrate that yeast and human TBP can substitute for aTFB in a Methanococcus-derived archaeal cell-free transcription system. Template-commitment studies show...

  20. The influence of different land uses on the structure of archaeal communities in Amazonian anthrosols based on 16S rRNA and amoA genes.

    Science.gov (United States)

    Taketani, Rodrigo Gouvêa; Tsai, Siu Mui

    2010-05-01

    Soil from the Amazonian region is usually regarded as unsuitable for agriculture because of its low organic matter content and low pH; however, this region also contains extremely rich soil, the Terra Preta Anthrosol. A diverse archaeal community usually inhabits acidic soils, such as those found in the Amazon. Therefore, we hypothesized that this community should be sensitive to changes in the environment. Here, the archaeal community composition of Terra Preta and adjacent soil was examined in four different sites in the Brazilian Amazon under different anthropic activities. The canonical correspondence analysis of terminal restriction fragment length polymorphisms has shown that the archaeal community structure was mostly influenced by soil attributes that differentiate the Terra Preta from the adjacent soil (i.e., pH, sulfur, and organic matter). Archaeal 16S rRNA gene clone libraries indicated that the two most abundant genera in both soils were Candidatus nitrosphaera and Canditatus nitrosocaldus. An ammonia monoxygenase gene (amoA) clone library analysis indicated that, within each site, there was no significant difference between the clone libraries of Terra Preta and adjacent soils. However, these clone libraries indicated there were significant differences between sites. Quantitative PCR has shown that Terra Preta soils subjected to agriculture displayed a higher number of amoA gene copy numbers than in adjacent soils. On the other hand, soils that were not subjected to agriculture did not display significant differences on amoA gene copy numbers between Terra Preta and adjacent soils. Taken together, our findings indicate that the overall archaeal community structure in these Amazonian soils is determined by the soil type and the current land use. PMID:20204349

  1. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity

    NARCIS (Netherlands)

    Charpentier, Emmanuelle; Richter, Hagen; Oost, van der John; White, Malcolm F.

    2015-01-01

    CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences

  2. An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference

    DEFF Research Database (Denmark)

    Peng, Wenfang; Feng, Mingxia; Feng, Xu;

    2015-01-01

    CRISPR-Cas systems provide a small RNA-based mechanism to defend against invasive genetic elements in archaea and bacteria. To investigate the in vivo mechanism of RNA interference by two type III-B systems (Cmr-α and Cmr-β) in Sulfolobus islandicus, a genetic assay was developed using plasmids...... carrying an artificial mini-CRISPR (AC) locus with a single spacer. After pAC plasmids were introduced into different strains, Northern analyses confirmed that mature crRNAs were produced from the plasmid-borne CRISPR loci, which then guided gene silencing to target gene expression. Spacer mutagenesis....... islandicus Cmr-α mediated transcription-dependent DNA interference, the Cmr-α constitutes the first CRISPR system exhibiting dual targeting of RNA and DNA....

  3. Crystallization and preliminary X-ray diffraction analysis of an archaeal tRNA-modification enzyme, TiaS, complexed with tRNAIle2 and ATP

    International Nuclear Information System (INIS)

    A. fulgidus TiaS was cocrystallized with tRNAIle2 and ATP and X-ray diffraction data were collected to 2.9 Å resolution using a synchrotron-radiation source. The cytidine at the first anticodon position of archaeal tRNAIle2, which decodes the isoleucine AUA codon, is modified to 2-agmatinylcytidine (agm2C) to guarantee the fidelity of protein biosynthesis. This post-transcriptional modification is catalyzed by tRNAIle-agm2C synthetase (TiaS) using ATP and agmatine as substrates. Archaeoglobus fulgidus TiaS was overexpressed in Escherichia coli cells and purified. tRNAIle2 was prepared by in vitro transcription with T7 RNA polymerase. TiaS was cocrystallized with both tRNAIle2 and ATP by the vapour-diffusion method. The crystals of the TiaS–tRNAIle2–ATP complex diffracted to 2.9 Å resolution using synchrotron radiation at the Photon Factory. The crystals belonged to the primitive hexagonal space group P3221, with unit-cell parameters a = b = 131.1, c = 86.6 Å. The asymmetric unit is expected to contain one TiaS–tRNAIle2–ATP complex, with a Matthews coefficient of 2.8 Å3 Da−1 and a solvent content of 61%

  4. Archaeal extrachromosomal genetic elements

    DEFF Research Database (Denmark)

    Wang, Haina; Peng, Nan; Shah, Shiraz Ali;

    2015-01-01

    viruses and plasmids. In particular, it has been suggested that ECE-host interactions have shaped the coevolution of ECEs and their archaeal hosts. Furthermore, archaeal hosts have developed defense systems, including the innate restriction-modification (R-M) system and the adaptive CRISPR (clustered...

  5. Specificity shifts in the rRNA and tRNA nucleotide targets of archaeal and bacterial m5U methyltransferases

    DEFF Research Database (Denmark)

    Auxilien, Sylvie; Rasmussen, Anette; Rose, Simon;

    2011-01-01

    Methyltransferase enzymes that use S-adenosylmethionine as a cofactor to catalyze 5-methyl uridine (m(5)U) formation in tRNAs and rRNAs are widespread in Bacteria and Eukaryota, but are restricted to the Thermococcales and Nanoarchaeota groups amongst the Archaea. The RNA m(5)U methyltransferases...... appear to have arisen in Bacteria and were then dispersed by horizontal transfer of an rlmD-type gene to the Archaea and Eukaryota. The bacterium Escherichia coli has three gene paralogs and these encode the methyltransferases TrmA that targets m(5)U54 in tRNAs, RlmC (formerly RumB) that modifies m(5)U......, however, neither of the two P. abyssi enzymes displays RlmD-like activity in vitro. PAB0719 acts in a TrmA-like manner to catalyze m(5)U54 methylation in P. abyssi tRNAs, and here we show that PAB0760 possesses RlmC-like activity and specifically methylates the nucleotide equivalent to U747 in P. abyssi...

  6. Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp

    Science.gov (United States)

    d’Orval, Béatrice Clouet; Bortolin, Marie-Line; Gaspin, Christine; Bachellerie, Jean-Pierre

    2001-01-01

    Following a search of the Pyrococcus genomes for homologs of eukaryotic methylation guide small nucleolar RNAs, we have experimentally identified in Pyrococcus abyssi four novel box C/D small RNAs predicted to direct 2′-O-ribose methylations onto the first position of the anticodon in tRNALeu(CAA), tRNALeu(UAA), elongator tRNAMet and tRNATrp, respectively. Remarkably, one of them corresponds to the intron of its presumptive target, pre-tRNATrp. This intron is predicted to direct in cis two distinct ribose methylations within the unspliced tRNA precursor, not only onto the first position of the anticodon in the 5′ exon but also onto position 39 (universal tRNA numbering) in the 3′ exon. The two intramolecular RNA duplexes expected to direct methylation, which both span an exon–intron junction in pre-tRNATrp, are phylogenetically conserved in euryarchaeotes. We have experimentally confirmed the predicted guide function of the box C/D intron in halophile Haloferax volcanii by mutagenesis analysis, using an in vitro splicing/RNA modification assay in which the two cognate ribose methylations of pre-tRNATrp are faithfully reproduced. Euryarchaeal pre-tRNATrp should provide a unique system to further investigate the molecular mechanisms of RNA-guided ribose methylation and gain new insights into the origin and evolution of the complex family of archaeal and eukaryotic box C/D small RNAs. PMID:11713301

  7. Archaeal DNA replication.

    Science.gov (United States)

    Kelman, Lori M; Kelman, Zvi

    2014-01-01

    DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed. PMID:25421597

  8. Environmental shaping of sponge associated archaeal communities.

    Directory of Open Access Journals (Sweden)

    Aline S Turque

    Full Text Available BACKGROUND: Archaea are ubiquitous symbionts of marine sponges but their ecological roles and the influence of environmental factors on these associations are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We compared the diversity and composition of archaea associated with seawater and with the sponges Hymeniacidon heliophila, Paraleucilla magna and Petromica citrina in two distinct environments: Guanabara Bay, a highly impacted estuary in Rio de Janeiro, Brazil, and the nearby Cagarras Archipelago. For this we used metagenomic analyses of 16S rRNA and ammonia monooxygenase (amoA gene libraries. Hymeniacidon heliophila was more abundant inside the bay, while P. magna was more abundant outside and P. citrina was only recorded at the Cagarras Archipelago. Principal Component Analysis plots (PCA generated using pairwise unweighted UniFrac distances showed that the archaeal community structure of inner bay seawater and sponges was different from that of coastal Cagarras Archipelago. Rarefaction analyses showed that inner bay archaeaoplankton were more diverse than those from the Cagarras Archipelago. Only members of Crenarchaeota were found in sponge libraries, while in seawater both Crenarchaeota and Euryarchaeota were observed. Although most amoA archaeal genes detected in this study seem to be novel, some clones were affiliated to known ammonia oxidizers such as Nitrosopumilus maritimus and Cenarchaeum symbiosum. CONCLUSION/SIGNIFICANCE: The composition and diversity of archaeal communities associated with pollution-tolerant sponge species can change in a range of few kilometers, probably influenced by eutrophication. The presence of archaeal amoA genes in Porifera suggests that Archaea are involved in the nitrogen cycle within the sponge holobiont, possibly increasing its resistance to anthropogenic impacts. The higher diversity of Crenarchaeota in the polluted area suggests that some marine sponges are able to change the composition

  9. The archaeal TFIIE homologue facilitates transcription initiation by enhancing TATA-box recognition

    NARCIS (Netherlands)

    Bell, S.D.; Brinkman, A.B.; Oost, van der J.; Jackson, S.P.

    2001-01-01

    Transcription from many archaeal promoters can be reconstituted in vitro using recombinant TATA-box binding protein (TBP) and transcription factor B (TFB)—homologues of eukaryal TBP and TFIIB—together with purified RNA polymerase (RNAP). However, all archaeal genomes sequenced to date reveal the pre

  10. Transcription by Methanothermobacter thermautotrophicus RNA Polymerase In Vitro Releases Archaeal Transcription Factor B but Not TATA-Box Binding Protein from the Template DNA

    OpenAIRE

    Xie, Yunwei; Reeve, John N.

    2004-01-01

    Transcription initiation in Archaea requires the assembly of a preinitiation complex containing the TATA- box binding protein (TBP), transcription factor B (TFB), and RNA polymerase (RNAP). The results reported establish the fate of Methanothermobacter thermautotrophicus TBP and TFB following transcription initiation by M. thermautotrophicus RNAP in vitro. TFB is released after initiation, during extension of the transcript from 4 to 24 nucleotides, but TBP remains bound to the template DNA. ...

  11. Archaeal CRISPR-based immune systems

    DEFF Research Database (Denmark)

    Garrett, Roger A; Vestergaard, Gisle Alberg; Shah, Shiraz Ali

    2011-01-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-based immune systems are essentially modular with three primary functions: the excision and integration of new spacers, the processing of CRISPR transcripts to yield mature CRISPR RNAs (crRNAs), and the targeting and cleavage of...... foreign nucleic acid. The primary target appears to be the DNA of foreign genetic elements, but the CRISPR/Cmr system that is widespread amongst archaea also specifically targets and cleaves RNA in vitro. The archaeal CRISPR systems tend to be both diverse and complex. Here we examine evidence for...... CRISPR loci and the evidence for intergenomic exchange of CRISPR systems....

  12. Archaeal virus-host interactions

    OpenAIRE

    Quax, T.E.F.

    2013-01-01

      The work presented in this thesis provides novel insights in several aspects of the molecular biology of archaea, bacteria and their viruses. Three fundamentally different groups of viruses are associated with the three domains of life. Archaeal viruses are characterized by a particularly high morphological and genetic diversity. Some archaeal viruses, such as Sulfolobus islandicus rod-shaped virus 2 (SIRV2), have quite remarkable infection cycles. As described in Chapter 1, infection ...

  13. Archaeal viruses of the sulfolobales

    DEFF Research Database (Denmark)

    Erdmann, Susanne; Garrett, Roger Antony

    2015-01-01

    Infection of archaea with phylogenetically diverse single viruses, performed in different laboratories, has failed to activate spacer acquisition into host CRISPR loci. The first successful uptake of archaeal de novo spacers was observed on infection of Sulfolobus solfataricus P2 with an environm......Infection of archaea with phylogenetically diverse single viruses, performed in different laboratories, has failed to activate spacer acquisition into host CRISPR loci. The first successful uptake of archaeal de novo spacers was observed on infection of Sulfolobus solfataricus P2 with an...... CRISPR loci of Sulfolobus species from a second coinfecting conjugative plasmid or virus (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012; Erdmann et al. Mol Microbiol 91:900-917, 2014). Here we describe, firstly, the isolation of archaeal virus mixtures from terrestrial hot springs and the...

  14. Response of Archaeal Communities in Beach Sediments to Spilled Oil and Bioremediation

    OpenAIRE

    Röling, Wilfred F. M.; Couto de Brito, Ivana R.; Swannell, Richard P. J.; Head, Ian M.

    2004-01-01

    While the contribution of Bacteria to bioremediation of oil-contaminated shorelines is well established, the response of Archaea to spilled oil and bioremediation treatments is unknown. The relationship between archaeal community structure and oil spill bioremediation was examined in laboratory microcosms and in a bioremediation field trial. 16S rRNA gene-based PCR and denaturing gradient gel analysis revealed that the archaeal community in oil-free laboratory microcosms was stable for 26 day...

  15. Archaeal virus-host interactions

    NARCIS (Netherlands)

    Quax, T.E.F.

    2013-01-01

      The work presented in this thesis provides novel insights in several aspects of the molecular biology of archaea, bacteria and their viruses. Three fundamentally different groups of viruses are associated with the three domains of life. Archaeal viruses are characterized by a particularly

  16. Bacterial and archaeal communities in Lake Nyos (Cameroon, Central Africa)

    OpenAIRE

    Tiodjio, Rosine E.; Sakatoku, Akihiro; Nakamura, Akihiro; Tanaka, Daisuke; Fantong, Wilson Y.; Tchakam, Kamtchueng B.; Tanyileke, Gregory; Ohba, Takeshi; Hell, Victor J.; Kusakabe, Minoru; Nakamura, Shogo; Ueda, Akira

    2014-01-01

    The aim of this study was to assess the microbial diversity associated with Lake Nyos, a lake with an unusual chemistry in Cameroon. Water samples were collected during the dry season on March 2013. Bacterial and archaeal communities were profiled using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) approach of the 16S rRNA gene. The results indicate a stratification of both communities along the water column. Altogether, the physico-chemical data and microbial s...

  17. Sequence Analysis and Comparative Study of the Protein Subunits of Archaeal RNase P

    Directory of Open Access Journals (Sweden)

    Manoj P. Samanta

    2016-04-01

    Full Text Available RNase P, a ribozyme-based ribonucleoprotein (RNP complex that catalyzes tRNA 5′-maturation, is ubiquitous in all domains of life, but the evolution of its protein components (RNase P proteins, RPPs is not well understood. Archaeal RPPs may provide clues on how the complex evolved from an ancient ribozyme to an RNP with multiple archaeal and eukaryotic (homologous RPPs, which are unrelated to the single bacterial RPP. Here, we analyzed the sequence and structure of archaeal RPPs from over 600 available genomes. All five RPPs are found in eight archaeal phyla, suggesting that these RPPs arose early in archaeal evolutionary history. The putative ancestral genomic loci of archaeal RPPs include genes encoding several members of ribosome, exosome, and proteasome complexes, which may indicate coevolution/coordinate regulation of RNase P with other core cellular machineries. Despite being ancient, RPPs generally lack sequence conservation compared to other universal proteins. By analyzing the relative frequency of residues at every position in the context of the high-resolution structures of each of the RPPs (either alone or as functional binary complexes, we suggest residues for mutational analysis that may help uncover structure-function relationships in RPPs.

  18. Sequence Analysis and Comparative Study of the Protein Subunits of Archaeal RNase P.

    Science.gov (United States)

    Samanta, Manoj P; Lai, Stella M; Daniels, Charles J; Gopalan, Venkat

    2016-01-01

    RNase P, a ribozyme-based ribonucleoprotein (RNP) complex that catalyzes tRNA 5'-maturation, is ubiquitous in all domains of life, but the evolution of its protein components (RNase P proteins, RPPs) is not well understood. Archaeal RPPs may provide clues on how the complex evolved from an ancient ribozyme to an RNP with multiple archaeal and eukaryotic (homologous) RPPs, which are unrelated to the single bacterial RPP. Here, we analyzed the sequence and structure of archaeal RPPs from over 600 available genomes. All five RPPs are found in eight archaeal phyla, suggesting that these RPPs arose early in archaeal evolutionary history. The putative ancestral genomic loci of archaeal RPPs include genes encoding several members of ribosome, exosome, and proteasome complexes, which may indicate coevolution/coordinate regulation of RNase P with other core cellular machineries. Despite being ancient, RPPs generally lack sequence conservation compared to other universal proteins. By analyzing the relative frequency of residues at every position in the context of the high-resolution structures of each of the RPPs (either alone or as functional binary complexes), we suggest residues for mutational analysis that may help uncover structure-function relationships in RPPs. PMID:27104580

  19. Sequence Analysis and Comparative Study of the Protein Subunits of Archaeal RNase P

    Science.gov (United States)

    Samanta, Manoj P.; Lai, Stella M.; Daniels, Charles J.; Gopalan, Venkat

    2016-01-01

    RNase P, a ribozyme-based ribonucleoprotein (RNP) complex that catalyzes tRNA 5′-maturation, is ubiquitous in all domains of life, but the evolution of its protein components (RNase P proteins, RPPs) is not well understood. Archaeal RPPs may provide clues on how the complex evolved from an ancient ribozyme to an RNP with multiple archaeal and eukaryotic (homologous) RPPs, which are unrelated to the single bacterial RPP. Here, we analyzed the sequence and structure of archaeal RPPs from over 600 available genomes. All five RPPs are found in eight archaeal phyla, suggesting that these RPPs arose early in archaeal evolutionary history. The putative ancestral genomic loci of archaeal RPPs include genes encoding several members of ribosome, exosome, and proteasome complexes, which may indicate coevolution/coordinate regulation of RNase P with other core cellular machineries. Despite being ancient, RPPs generally lack sequence conservation compared to other universal proteins. By analyzing the relative frequency of residues at every position in the context of the high-resolution structures of each of the RPPs (either alone or as functional binary complexes), we suggest residues for mutational analysis that may help uncover structure-function relationships in RPPs. PMID:27104580

  20. Phylogenetic Diversity of Archaea and the Archaeal Ammonia Monooxygenase Gene in Uranium Mining-Impacted Locations in Bulgaria

    Directory of Open Access Journals (Sweden)

    Galina Radeva

    2014-01-01

    Full Text Available Uranium mining and milling activities adversely affect the microbial populations of impacted sites. The negative effects of uranium on soil bacteria and fungi are well studied, but little is known about the effects of radionuclides and heavy metals on archaea. The composition and diversity of archaeal communities inhabiting the waste pile of the Sliven uranium mine and the soil of the Buhovo uranium mine were investigated using 16S rRNA gene retrieval. A total of 355 archaeal clones were selected, and their 16S rDNA inserts were analysed by restriction fragment length polymorphism (RFLP discriminating 14 different RFLP types. All evaluated archaeal 16S rRNA gene sequences belong to the 1.1b/Nitrososphaera cluster of Crenarchaeota. The composition of the archaeal community is distinct for each site of interest and dependent on environmental characteristics, including pollution levels. Since the members of 1.1b/Nitrososphaera cluster have been implicated in the nitrogen cycle, the archaeal communities from these sites were probed for the presence of the ammonia monooxygenase gene (amoA. Our data indicate that amoA gene sequences are distributed in a similar manner as in Crenarchaeota, suggesting that archaeal nitrification processes in uranium mining-impacted locations are under the control of the same key factors controlling archaeal diversity.

  1. Identification of archaeal proteins that affect the exosome function in vitro

    Directory of Open Access Journals (Sweden)

    Palhano Fernando L

    2010-05-01

    Full Text Available Abstract Background The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors. Results Here, we show that the proteins PaSBDS and PaNip7, which bind preferentially to poly-A and AU-rich RNAs, respectively, affect the Pyrococcus abyssi exosome activity in vitro. PaSBDS inhibits slightly degradation of a poly-rA substrate, while PaNip7 strongly inhibits the degradation of poly-A and poly-AU by the exosome. The exosome inhibition by PaNip7 appears to depend at least partially on its interaction with RNA, since mutants of PaNip7 that no longer bind RNA, inhibit the exosome less strongly. We also show that FITC-labeled PaNip7 associates with the exosome in the absence of substrate RNA. Conclusions Given the high structural homology between the archaeal and eukaryotic proteins, the effect of archaeal Nip7 and SBDS on the exosome provides a model for an evolutionarily conserved exosome control mechanism.

  2. New bioinformatic tools for analysis of nucleotide modifications in eukaryotic rRNA

    OpenAIRE

    Piekna-Przybylska, Dorota; Decatur, Wayne A.; Fournier, Maurille J.

    2007-01-01

    This report presents a valuable new bioinformatics package for research on rRNA nucleotide modifications in the ribosome, especially those created by small nucleolar RNA:protein complexes (snoRNPs). The interactive service, which is not available elsewhere, enables a user to visualize the positions of pseudouridines, 2′-O-methylations, and base methylations in three-dimensional space in the ribosome and also in linear and secondary structure formats of ribosomal RNA. Our tools provide additio...

  3. Metagenomic analysis of bacterial and archaeal assemblages in the soil-mousse surrounding a geothermal spring.

    Science.gov (United States)

    Bhatia, Sonu; Batra, Navneet; Pathak, Ashish; Joshi, Amit; Souza, Leila; Almeida, Paulo; Chauhan, Ashvini

    2015-09-01

    The soil-mousse surrounding a geothermal spring was analyzed for bacterial and archaeal diversity using 16S rRNA gene amplicon metagenomic sequencing which revealed the presence of 18 bacterial phyla distributed across 109 families and 219 genera. Firmicutes, Actinobacteria, and the Deinococcus-Thermus group were the predominant bacterial assemblages with Crenarchaeota and Thaumarchaeota as the main archaeal assemblages in this largely understudied geothermal habitat. Several metagenome sequences remained taxonomically unassigned suggesting the presence of a repertoire of hitherto undescribed microbes in this geothermal soil-mousse econiche. PMID:26484255

  4. Archaeal Enzymes and Applications in Industrial Biocatalysts

    Directory of Open Access Journals (Sweden)

    Jennifer A. Littlechild

    2015-01-01

    Full Text Available Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  5. A Meta-Analysis of the Bacterial and Archaeal Diversity Observed in Wetland Soils

    Directory of Open Access Journals (Sweden)

    Xiaofei Lv

    2014-01-01

    Full Text Available This study examined the bacterial and archaeal diversity from a worldwide range of wetlands soils and sediments using a meta-analysis approach. All available 16S rRNA gene sequences recovered from wetlands in public databases were retrieved. In November 2012, a total of 12677 bacterial and 1747 archaeal sequences were collected in GenBank. All the bacterial sequences were assigned into 6383 operational taxonomic units (OTUs 0.03, representing 31 known bacterial phyla, predominant with Proteobacteria (2791 OTUs, Bacteroidetes (868 OTUs, Acidobacteria (731 OTUs, Firmicutes (540 OTUs, and Actinobacteria (418 OTUs. The genus Flavobacterium (11.6% of bacterial sequences was the dominate bacteria in wetlands, followed by Gp1, Nitrosospira, and Nitrosomonas. Archaeal sequences were assigned to 521 OTUs from phyla Euryarchaeota and Crenarchaeota. The dominating archaeal genera were Fervidicoccus and Methanosaeta. Rarefaction analysis indicated that approximately 40% of bacterial and 83% of archaeal diversity in wetland soils and sediments have been presented. Our results should be significant for well-understanding the microbial diversity involved in worldwide wetlands.

  6. Temporal Dynamics of Active Prokaryotic Nitrifiers and Archaeal Communities from River to Sea

    OpenAIRE

    Hugoni, Mylène; Agogué, Hélène; Taib, Najwa; Domaizon, Isabelle; Moné, Anne; Pierre E Galand; Bronner, Gisèle; Debroas, Didier; Mary, Isabelle

    2015-01-01

    International audience To test if different niches for potential nitrifiers exist in estuarine systems, we assessed by pyrosequencing the diversity of archaeal gene transcript markers for taxonomy (16S ribosomal RNA (rRNA)) during an entire year along a salinity gradient in surface waters of the Charente estuary (Atlantic coast, France). We further investigated the potential for estuarine prokaryotes to oxidize ammonia and hydrolyze urea by quantifying thaumarchaeal amoA and ureC and bacte...

  7. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards* #

    OpenAIRE

    Wang, Hua; Yang, Shao-hui; Yang, Jing-ping; Lv, Ya-min; Zhao, Xing; Pang, Ji-liang

    2014-01-01

    It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profili...

  8. Characterization of Olkiluoto bacterial and archaeal communities by 454 pyrosequencing

    International Nuclear Information System (INIS)

    Recent advancement in sequencing technologies, 'Next Generation Sequencing', such as FLX 454 pyrosequencing has made it possible to obtain large amounts of sequence data where previously only few sequences could be obtained. This technique is especially useful for the study of community composition of uncultured microbial populations in environmental samples. In this project, the FLX 454 pyrosequencing technique was used to obtain up to 20 000 16S rRNA sequences or 10 000 mRNA sequences from each sample for identification of the microbial species composition as well as for comparison of the microbial communities between different samples. This project focused on the characterization of active microbial communities in the groundwater at the final disposal site of high radioactive wastes in Olkiluoto by FLX 454 pyrosequencing of the bacterial and archaeal ribosomal RNA as well as of the mRNA transcripts of the dsrB gene and mcrA gene of sulphate reducing bacteria and methanogenic archaea, respectively. Specific emphasis was put on studying the relationship of active and latent sulphate reducers and methanogens by qPCR due to their important roles in deep geobiochemical processes connected to copper corrosion. Seven packered boreholes were sampled anaerobically in Olkiluoto during 2009-2010. Groundwater was pumped from specific depths and the microbial cells werecollected by filtration on a membrane. Active microbial communities were studied based on RNA extracted from the membranes and translated to copy DNA, followed by sequencing by 454 Tag pyrosequencing. A total of 27 different bacterial and 17 archaeal taxonomic groups were detected

  9. Characterization of Olkiluoto bacterial and archaeal communities by 454 pyrosequencing

    Energy Technology Data Exchange (ETDEWEB)

    Bomberg, M.; Nyyssoenen, M.; Itaevaara, M. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-06-15

    Recent advancement in sequencing technologies, 'Next Generation Sequencing', such as FLX 454 pyrosequencing has made it possible to obtain large amounts of sequence data where previously only few sequences could be obtained. This technique is especially useful for the study of community composition of uncultured microbial populations in environmental samples. In this project, the FLX 454 pyrosequencing technique was used to obtain up to 20 000 16S rRNA sequences or 10 000 mRNA sequences from each sample for identification of the microbial species composition as well as for comparison of the microbial communities between different samples. This project focused on the characterization of active microbial communities in the groundwater at the final disposal site of high radioactive wastes in Olkiluoto by FLX 454 pyrosequencing of the bacterial and archaeal ribosomal RNA as well as of the mRNA transcripts of the dsrB gene and mcrA gene of sulphate reducing bacteria and methanogenic archaea, respectively. Specific emphasis was put on studying the relationship of active and latent sulphate reducers and methanogens by qPCR due to their important roles in deep geobiochemical processes connected to copper corrosion. Seven packered boreholes were sampled anaerobically in Olkiluoto during 2009-2010. Groundwater was pumped from specific depths and the microbial cells werecollected by filtration on a membrane. Active microbial communities were studied based on RNA extracted from the membranes and translated to copy DNA, followed by sequencing by 454 Tag pyrosequencing. A total of 27 different bacterial and 17 archaeal taxonomic groups were detected.

  10. Archaeal communities in boreal forest tree rhizospheres respond to changing soil temperatures.

    Science.gov (United States)

    Bomberg, Malin; Münster, Uwe; Pumpanen, Jukka; Ilvesniemi, Hannu; Heinonsalo, Jussi

    2011-07-01

    Temperature has generally great effects on both the activity and composition of microbial communities in different soils. We tested the impact of soil temperature and three different boreal forest tree species on the archaeal populations in the bulk soil, rhizosphere, and mycorrhizosphere. Scots pine, silver birch, and Norway spruce seedlings were grown in forest humus microcosms at three different temperatures, 7-11.5°C (night-day temperature), 12-16°C, and 16-22°C, of which 12-16°C represents the typical mid-summer soil temperature in Finnish forests. RNA and DNA were extracted from indigenous ectomycorrhiza, non-mycorrhizal long roots, and boreal forest humus and tested for the presence of archaea by nested PCR of the archaeal 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE) profiling and sequencing. Methanogenic Euryarchaeota belonging to Methanolobus sp. and Methanosaeta sp. were detected on the roots and mycorrhiza. The most commonly detected archaeal 16S rRNA gene sequences belonged to group I.1c Crenarchaeota, which are typically found in boreal and alpine forest soils. Interestingly, also one sequence belonging to group I.1b Crenarchaeota was detected from Scots pine mycorrhiza although sequences of this group are usually found in agricultural and forest soils in temperate areas. Tree- and temperature-related shifts in the archaeal population structure were observed. A clear decrease in crenarchaeotal DGGE band number was seen with increasing temperature, and correspondingly, the number of euryarchaeotal DGGE bands, mostly methanogens, increased. The greatest diversity of archaeal DGGE bands was detected in Scots pine roots and mycorrhizas. No archaea were detected from humus samples from microcosms without tree seedling, indicating that the archaea found in the mycorrhizosphere and root systems were dependent on the plant host. The detection of archaeal 16S rRNA gene sequences from both RNA and DNA extractions show that the

  11. Direct Modulation of RNA Polymerase Core Functions by Basal Transcription Factors

    OpenAIRE

    Werner, Finn; Weinzierl, Robert O. J.

    2005-01-01

    Archaeal RNA polymerases (RNAPs) are recruited to promoters through the joint action of three basal transcription factors: TATA-binding protein, TFB (archaeal homolog of TFIIB), and TFE (archaeal homolog of TFIIE). Our results demonstrate several new insights into the mechanisms of TFB and TFE during the transcription cycle. (i) The N-terminal Zn ribbon of TFB displays a surprising degree of redundancy for the recruitment of RNAP during transcription initiation in the archaeal system. (ii) Th...

  12. Protein Adaptations in Archaeal Extremophiles

    Directory of Open Access Journals (Sweden)

    Christopher J. Reed

    2013-01-01

    Full Text Available Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.

  13. Bacterial and Archaeal Diversity From the Eastern Lau Spreading Center

    Science.gov (United States)

    Reysenbach, A.; Banta, A.; Kelly, S.; Kirshstein, J.; Voytek, M.

    2005-12-01

    Due to the diversity of venting styles, geological settings and variations in fluid geochemistry, the Valu Fa Ridge and Eastern Lau Spreading Center (ELSC) provide a unique opportunity to explore the effects geological and geochemical variables on patterns of microbial phylogenetic and metabolic diversity. High temperature sulfides, diffuse flow fluids and microbial mats were collected from six active vent fields on the Valu Fa Ridge and Eastern Lau Spreading Center during the R/V Melville cruise TUIM05MV. All samples were subsampled for molecular and microbial culturing purposes. The archaeal and bacterial 16S rRNA genes were amplified by PCR from a selection of samples. Additionally, the presence of Aquificales and an unidentified lineage, the DHVE archaeal group, was explored using PCR primers specific for these groups. A selection of DNAs were also screened for functional genes that are diagnostic for certain pathways, viz, aclB (reductive TCA cycle), mcrA (methanogenesis), nirS and nirK (nitrite reduction), amoA (ammonia oxidation). Culturing of thermophiles, both acidophiles and neutrophiles, was initiated. Over 20 hydrogen oxidizing (hydrogen and oxygen) or nitrate reducing (hydrogen and nitrate) chemolithoautotrophs were isolated as colonies and grow at 70 degrees C. All are related to Persephonella hydrogenophila, with the exception of 2 cultures that perhaps represent new species of Hydrogenivirga and Aquifex. Preliminary analysis of patterns of Aquificales diversity using both culturing and molecular approaches suggest that the distributions of this group alone are very different from that observed at other hydrothermal sites such as along the East Pacific Rise or Central Indian Ridge. As yet, the most commonly isolated Aquificales, P. marina, has not been detected in enrichment cultures from ELSC, and the diversity of Aquificales-related sequences is much greater than detected from sites along the EPR. It is therefore also likely, that patterns of

  14. Seasonal Effects in a Lake Sediment Archaeal Community of the Brazilian Savanna

    Directory of Open Access Journals (Sweden)

    Thiago Rodrigues

    2014-01-01

    Full Text Available The Cerrado is a biome that corresponds to 24% of Brazil’s territory. Only recently microbial communities of this biome have been investigated. Here we describe for the first time the diversity of archaeal communities from freshwater lake sediments of the Cerrado in the dry season and in the transition period between the dry and rainy seasons, when the first rains occur. Gene libraries were constructed, using Archaea-specific primers for the 16S rRNA and amoA genes. Analysis revealed marked differences between the archaeal communities found in the two seasons. I.1a and I.1c Thaumarchaeota were found in greater numbers in the transition period, while MCG Archaea was dominant on the dry season. Methanogens were only found in the dry season. Analysis of 16S rRNA sequences revealed lower diversity on the transition period. We detected archaeal amoA sequences in both seasons, but there were more OTUs during the dry season. These sequences were within the same cluster as Nitrosotalea devanaterra’s amoA gene. The principal coordinate analysis (PCoA test revealed significant differences between samples from different seasons. These results provide information on archaeal diversity in freshwater lake sediments of the Cerrado and indicates that rain is likely a factor that impacts these communities.

  15. Archaeal Nitrification in Hot Springs

    Science.gov (United States)

    Richter, A.; Daims, H.; Reigstad, L.; Wanek, W.; Wagner, M.; Schleper, C.

    2006-12-01

    Biological nitrification, i.e. the aerobic conversion of ammonia to nitrate via nitrite, is a major component of the global nitrogen cycle. Until recently, it was thought that the ability to aerobically oxidize ammonia was confined to bacteria of the phylum Proteobacteria. However, it has recently been shown that Archaea of the phylum Crenarchaeota are also capable of ammonia oxidation. As many Crenarchaeota are thermophilic or hyperthermophilic, and at least some of them are capable of ammonia oxidation we speculated on the existence of (hyper)thermophilic ammonia-oxidizing archaea (AOA). Using PCR primers specifically targeting the archaeal ammonia monooxygenase (amoA) gene, we were indeed able to confirm the presence of such organisms in several hot springs in Reykjadalur, Iceland. These hot springs exhibited temperatures well above 80 °C and pH values ranging from 2.0 to 4.5. To proof that nitrification actually took place under these extreme conditions, we measured gross nitrification rates by the isotope pool dilution method; we added 15N-labelled nitrate to the mud and followed the dilution of the label by nitrate production from ammonium either in situ (incubation in the hot spring) or under controlled conditions in the laboratory (at 80 °C). The nitrification rates in the hot springs ranged from 0.79 to 2.22 mg nitrate-N per L of mud and day. Controls, in which microorganisms were killed before the incubations, demonstrated that the nitrification was of biological origin. Addition of ammonium increased the gross nitrification rate approximately 3-fold, indicating that the nitrification was ammonium limited under the conditions used. Collectively, our study provides evidence that (1) AOA are present in hot springs and (2) that they are actively nitrifying. These findings have major implications for our understanding of nitrogen cycling of hot environments.

  16. Insight into the mechanisms and functions of spliceosomal snRNA pseudouridylation

    Institute of Scientific and Technical Information of China (English)

    Hironori; Adachi; Yi-Tao; Yu

    2014-01-01

    Pseudouridines(Ψs) are the most abundant and highly conserved modified nucleotides found in various stable RNAs of all organisms. Most Ψs are clustered in regions that are functionally important for pre-m RNA splicing. Ψ has an extra hydrogen bond donor that endows RNA molecules with distinct properties that contribute significantly to RNA-mediated cellular processes. Experimental data indicate that spliceosomal sn RNA pseudouridylation can be catalyzed by both RNA-dependent and RNA-independent mechanisms. Recent work has also demonstrated that pseudouridylation can be induced at novel positions under stress conditions, suggesting a regulatory role for Ψ.

  17. Archaeal Abundance across a pH Gradient in an Arable Soil and Its Relationship to Bacterial and Fungal Growth Rates

    OpenAIRE

    Bengtson, Per; Sterngren, Anna E.; Rousk, Johannes

    2012-01-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abund...

  18. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    International Nuclear Information System (INIS)

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Å resolution.

  19. Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean

    Science.gov (United States)

    Lincoln, Sara A.; Wai, Brenner; Eppley, John M.; Church, Matthew J.; Summons, Roger E.; DeLong, Edward F.

    2014-01-01

    Archaea are ubiquitous in marine plankton, and fossil forms of archaeal tetraether membrane lipids in sedimentary rocks document their participation in marine biogeochemical cycles for >100 million years. Ribosomal RNA surveys have identified four major clades of planktonic archaea but, to date, tetraether lipids have been characterized in only one, the Marine Group I Thaumarchaeota. The membrane lipid composition of the other planktonic archaeal groups—all uncultured Euryarchaeota—is currently unknown. Using integrated nucleic acid and lipid analyses, we found that Marine Group II Euryarchaeota (MG-II) contributed significantly to the tetraether lipid pool in the North Pacific Subtropical Gyre at shallow to intermediate depths. Our data strongly suggested that MG-II also synthesize crenarchaeol, a tetraether lipid previously considered to be a unique biomarker for Thaumarchaeota. Metagenomic datasets spanning 5 y indicated that depth stratification of planktonic archaeal groups was a stable feature in the North Pacific Subtropical Gyre. The consistent prevalence of MG-II at depths where the bulk of exported organic matter originates, together with their ubiquitous distribution over diverse oceanic provinces, suggests that this clade is a significant source of tetraether lipids to marine sediments. Our results are relevant to archaeal lipid biomarker applications in the modern oceans and the interpretation of these compounds in the geologic record. PMID:24946804

  20. Events during Initiation of Archaeal Transcription: Open Complex Formation and DNA-Protein Interactions

    OpenAIRE

    Hausner, Winfried; Thomm, Michael

    2001-01-01

    Transcription in Archaea is initiated by association of a TATA box binding protein (TBP) with a TATA box. This interaction is stabilized by the binding of the transcription factor IIB (TFIIB) orthologue TFB. We show here that the RNA polymerase of the archaeon Methanococcus, in contrast to polymerase II, does not require hydrolysis of the β-γ bond of ATP for initiation of transcription and open complex formation on linearized DNA. Permanganate probing revealed that the archaeal open complex s...

  1. The σ enigma: Bacterial σ factors, archaeal TFB and eukaryotic TFIIB are homologs

    OpenAIRE

    Burton, Samuel P; Burton, Zachary F.

    2014-01-01

    Structural comparisons of initiating RNA polymerase complexes and structure-based amino acid sequence alignments of general transcription initiation factors (eukaryotic TFIIB, archaeal TFB and bacterial σ factors) show that these proteins are homologs. TFIIB and TFB each have two-five-helix cyclin-like repeats (CLRs) that include a C-terminal helix-turn-helix (HTH) motif (CLR/HTH domains). Four homologous HTH motifs are present in bacterial σ factors that are relics of CLR/HTH domains. Sequen...

  2. A site-specific endonuclease encoded by a typical archaeal intron

    DEFF Research Database (Denmark)

    Dalgaard, Jacob; Garrett, Roger Antony; Belfort, Malene

    1993-01-01

    The protein encoded by the archaeal intron in the 23S rRNA gene of the hyperthermophile Desulfurococcus mobilis is a double-strand DNase that, like group I intron homing endonucleases, is capable of cleaving an intronless allele of the gene. This enzyme, I-Dmo I, is unusual among the intron endon...... of endonucleases and intron core elements and are consistent with the invasive potential of endonuclease genes....

  3. Temporal Dynamics of Active Prokaryotic Nitrifiers and Archaeal Communities from River to Sea.

    Science.gov (United States)

    Hugoni, Mylène; Agogué, Hélène; Taib, Najwa; Domaizon, Isabelle; Moné, Anne; Galand, Pierre E; Bronner, Gisèle; Debroas, Didier; Mary, Isabelle

    2015-08-01

    To test if different niches for potential nitrifiers exist in estuarine systems, we assessed by pyrosequencing the diversity of archaeal gene transcript markers for taxonomy (16S ribosomal RNA (rRNA)) during an entire year along a salinity gradient in surface waters of the Charente estuary (Atlantic coast, France). We further investigated the potential for estuarine prokaryotes to oxidize ammonia and hydrolyze urea by quantifying thaumarchaeal amoA and ureC and bacterial amoA transcripts. Our results showed a succession of different nitrifiers from river to sea with bacterial amoA transcripts dominating in the freshwater station while archaeal transcripts were predominant in the marine station. The 16S rRNA sequence analysis revealed that Thaumarchaeota marine group I (MGI) were the most abundant overall but other archaeal groups like Methanosaeta were also potentially active in winter (December-March) and Euryarchaeota marine group II (MGII) were dominant in seawater in summer (April-August). Each station also contained different Thaumarchaeota MGI phylogenetic clusters, and the clusters' microdiversity was associated to specific environmental conditions suggesting the presence of ecotypes adapted to distinct ecological niches. The amoA and ureC transcript dynamics further indicated that some of the Thaumarchaeota MGI subclusters were involved in ammonia oxidation through the hydrolysis of urea. Our findings show that ammonia-oxidizing Archaea and Bacteria were adapted to contrasted conditions and that the Thaumarchaeota MGI diversity probably corresponds to distinct metabolisms or life strategies. PMID:25851445

  4. Stratified active archaeal communities in the sediments of Jiulong River Estuary, China

    Directory of Open Access Journals (Sweden)

    Qianqian eLi

    2012-08-01

    Full Text Available Here the composition of total and active archaeal communities in a sediment core of Jiulong River estuary at Fujian Province, Southern China was reported. Profiles of CH4 and SO42- concentrations from the sediment core indicated the existence of a sulfate-methane transition zone (SMTZ in which sulfate reduction-coupled anaerobic oxidation of methane occurs. Accordingly, three sediment layers (16-18.5 cm, 71-73.5 cm, 161-163.5 cm from the 1.2 m sediment core were sectioned and named top, middle and bottom, respectively. Total DNA and RNA of each layer were extracted and used for clone libraries and sequence analysis of 16S rRNA genes, the reverse transcription (RT-PCR products of 16S rRNA and methyl CoM reductase alpha subunit (mcrA genes. Phylogenetic analysis indicated that archaeal communities of the three layers were dominated by the Miscellaneous Crenarchaeotal Group (MCG whose ecological functions were still unknown. The MCG could be further divided into seven subgroups, named MCG-A, B, C, D, E, F and G. MCG-A and MCG-G were the most active groups in the estuarine sediments. Known anaerobic methanotrophic archaea (ANMEs were only found as minor components in these estuarine archaeal communities. This study, together with the studies of deep subsurface sediments, would be a very good start point to target and compare the specific active archaeal groups and their roles in the dark, deep subsurface sediment environments.

  5. Differential response of archaeal groups to land use change in an acidic red soil.

    Science.gov (United States)

    Shen, Ju-Pei; Cao, Peng; Hu, Hang-Wei; He, Ji-Zheng

    2013-09-01

    Land use management, one of the most important aspects of anthropogenic disturbance to terrestrial ecosystems, has exerted overriding impacts on soil biogeochemical cycling and inhabitant microorganisms. However, the knowledge concerning response of different archaeal groups to long-term land use changes is still limited in terrestrial environments. Here we used quantitative polymerase chain reaction (qPCR) and denaturing gradient gel electrophoresis (DGGE) approaches to investigate the response of archaeal communities to four different land use practices, i.e. cropland, pine forest, restoration land and degradation land. qPCR analyses showed that expression of the archaeal amoA gene responds more sensitively to changes of land use. In particular, we observed, occurring at significantly lower numbers of archaeal amoA genes in degradation land samples, while the abundance of total archaea and Group 1.1c based on 16S rRNA gene copy numbers remained constant among the different treatments examined. Soil nitrate content is significantly correlated with archaeal amoA gene abundance, but not their bacterial counterparts. The percentage of archaea among total prokaryote communities increases with increasing depth, but has no significant relationship with total carbon, total nitrogen or pH. Soil pH was significantly correlated with total bacterial abundance. Based on results from PCR-DGGE, three land use practices (i.e. cropland, pine forest, restoration land) showed distinct dominant bands, which were mostly affiliated with Group 1.1a. Degradation land, however, was dominated by sequences belonging to Group 1.1c. Results from this study suggest that community structure of ammonia oxidizing archaea were significantly impacted by land use practices. PMID:23774250

  6. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge.

    Science.gov (United States)

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-01-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents. PMID:27169490

  7. Spatiotemporal dynamics of bacterial and archaeal communities in household biogas digesters from tropical and subtropical regions of Yunnan Province, China.

    Science.gov (United States)

    Tian, Guangliang; Li, Qiumin; Dong, Minghua; Wu, Yan; Yang, Bin; Zhang, Lijuan; Li, Yingjuan; Yin, Fang; Zhao, Xingling; Wang, Yongxia; Xiao, Wei; Cui, Xiaolong; Zhang, Wudi

    2016-06-01

    A combination of 16S rRNA gene PCR-based techniques and the determination of abiotic factors were used to study community composition, richness, and evenness and the correlation between biotic and abiotic factors in 19 household biogas digesters in tropical and subtropical regions of Yunnan Province, China. The results revealed that both bacterial and archaeal community composition differed between regions and archaeal community composition was more affected by season than bacterial; regardless of sampling location, the dominant bacterial phyla included Chloroflexi, Bacteroidetes, Firmicutes, and Proteobacteria, and the most dominant archaeal phylum was Euryarchaeota; in digesters from both regions, Chloroflexi as the first or second most dominant bacteria accounted for 21.50-26.10 % of bacterial library sequences, and the phylum Crenarchaeota as the second most dominant archaea accounted for 17.65-19.77 % of archaeal library sequences; the species Methanosaeta concilii as the most dominant archaeal species accounted for 67.80-72.80 % of the sequences. This study found that most of the abundant microbial communities in 19 biogas digesters are similar, and this result will provide enlightenment for finding the universal nature in rural biogas digesters at tropical and subtropical regions in China. PMID:26916266

  8. Changes in archaeal abundance and community structure along a salinity gradient in the lower Pearl River and its estuary

    Science.gov (United States)

    Zhang, C.; Wang, J.; Xie, W.; Wang, P.; Wei, Y.; Chen, S.; Zhou, X.

    2013-12-01

    Archaea occur in a wide range of habitats and across broad environmental gradients. At the global scale, salinity is known to be a major driving force for archaeal species diversity. The goal of this study was to examine changes in abundance and diversity of archaeal community DNA and membrane lipids in the water column along a salinity gradient in the lower Pearl River and estuary in the context of water/gas chemistry (pH, nitrate/nitrite, ammonia, methane, carbon dioxide). The pH increased and nitrate/nitrite and ammonia decreased from the lower Pearl River to the estuary. Methane and carbon dioxide fluxes were high in the lower Pearl River and decreased sharply in the estuary and toward the open ocean. The archaeal lipid profile exhibited abrupt changes from dominance of GDGT-0 (a glycerol diakly glycerol tetraether with zero cyclopentyl ring, which is commonly present in methanogens) to dominance of crenarchaeol (a specific biomarker for Thaumarchaeota) with increasing salinity from zero in the lower Pearl River to >0.5% in the estuary. Quantification of the 16S rRNA gene abundance using qPCR revealed a switch from bacteria-dominance to archaea-dominance and the ratio of archaeal nirK/bacterial-amoA genes had a peak value in the estuary, suggesting enhanced activity of ammonia oxidation by archaea. Pyrosequencing of archaeal 16S rRNA, amoA and nirK genes exhibited systematic variation defined by habitat types. Our current studies employ rate measurements of carbon fixation, ammonia oxidation, and nitrate reduction using isotope labeling approaches, which will allow us to link changes in archaeal community structure and ecological function.

  9. Niche specialization of terrestrial archaeal ammonia oxidizers

    OpenAIRE

    Gubry-Rangin, Cécile; Hai, Brigitte; Quince, Christopher; Engel, Marion; Thomson, Bruce C.; James, Phillip; Schloter, Michael; Robert I. Griffiths; Prosser, James I.; Nicol, Graeme W.

    2011-01-01

    Soil pH is a major determinant of microbial ecosystem processes and potentially a major driver of evolution, adaptation, and diversity of ammonia oxidizers, which control soil nitrification. Archaea are major components of soil microbial communities and contribute significantly to ammonia oxidation in some soils. To determine whether pH drives evolutionary adaptation and community structure of soil archaeal ammonia oxidizers, sequences of amoA, a key functional gene of ammonia oxidation, were...

  10. Biosynthesis of archaeal membrane ether lipids.

    Science.gov (United States)

    Jain, Samta; Caforio, Antonella; Driessen, Arnold J M

    2014-01-01

    A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA). In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol) and the tetraether (or caldarchaeol) lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria. PMID:25505460

  11. Free Energy Simulations of a GTPase: GTP and GDP Binding to Archaeal Initiation Factor 2

    OpenAIRE

    Satpati, Priyadarshi; Clavaguéra, Carine; Ohanessian, Gilles; Simonson, Thomas

    2011-01-01

    Archaeal initiation factor 2 (aIF2) is a protein involved in the initiation of protein biosynthesis. In its GTP-bound, “ON” conformation, aIF2 binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, “OFF” conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and its dependence on the ON or OFF conformational state of aIF2, molecular dynamics free energy simulations (MDFE) are a tool of choice. However, the validity of the computed free ene...

  12. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of

  13. Geochemical Approach to Archaeal Ecology: δ13C of GDGTs

    Science.gov (United States)

    Lichtin, S.; Warren, C.; Pearson, A.; Pagani, M.

    2015-12-01

    Over the last decade and a half, glycerol dialkyl glycerol tetraethers (GDGTs) have increasingly been used to reconstruct environmental temperatures; proxies like TEX86 that correlate the relative abundance of these archaeal cell membrane lipids to sea surface temperature are omnipresent in paleoclimatology literature. While it has become common to make claims about past temperatures using GDGTs, our present understanding of the organisms that synthesize the compounds is still quite limited. The generally accepted theory states that microorganisms like the Thaumarchaeota modify the structure of membrane lipids to increase intermolecular interactions, strengthening the membrane at higher temperatures. Yet to date, culture experiments have been largely restricted to a single species, Nitrosopumilus maritimes, and recent studies on oceanic archaeal rRNA have revealed that these biomarkers are produced in diverse, heterogeneous, and site-specific communities. This brings up questions as to whether different subclasses of GDGTs, and all subsequent proxies, represent adaptation within a single organismal group or a shift in community composition. To investigate whether GDGTs with different chain structures, from the simple isoprenoidal GDGT-0 to Crenarchaeol with its many cyclopentane groups, are sourced from archaea with similar or disparate metabolic pathways—and if that information is inherited in GDGTs trapped in marine sediments—this study examines the stable carbon isotope values (δ13C) of GDGTs extracted from the uppermost meters of sediment in the Orca Basin, Gulf of Mexico, using spooling-wire microcombustion isotope-ratio mass spectrometer (SWiM-IRMS), tackling a fundamental assumption of the TEX86 proxy that influences the way we perceive the veracity of existing temperature records.

  14. Drivers of archaeal ammonia-oxidizing communities in soil

    Directory of Open Access Journals (Sweden)

    KaterynaZhalnina

    2012-06-01

    Full Text Available Soil ammonia-oxidizing archaea (AOA are highly abundant and play an important role in the nitrogen cycle. In addition, AOA have a significant impact on soil quality. AOA may cause nitrogen loss from soils, and the nitrate produced by AOA can lead to ground and surface water contamination, water eutrophication, and soil subsidence. The ammonia-oxidizing archaea discovered to date are classified in the phylum Thaumarchaeota. Only a few archaeal genomes are available in databases. As a result, AOA genes are not well annotated, and it is difficult to mine and identify archaeal genes within metagenomic libraries. Nevertheless, 16S rRNA and comparative analysis of ammonia monooxygenase sequences show that soils can vary greatly in the relative abundance of AOA. In some soils, AOA can comprise more than 10% of the total prokaryotic community. In other soils, AOA comprise less than 0.5% of the community. Many approaches have been used to measure the abundance and diversity of this group including DGGE, T-RFLP, q-PCR, and DNA sequencing. AOA have been studied across different soil types and various ecosystems from the Antarctic dry valleys to the tropical forests of South America to the soils near Mount Everest. Different studies have identified multiple soil factors that trigger the abundance of AOA. These factors include pH, concentration of available ammonia, organic matter content, moisture content, nitrogen content, clay content, as well as other triggers. Land use management appears to have a major effect on the abundance of AOA in soil, which may be the result of nitrogen fertilizer used in agricultural soils. This review summarizes the published results on this topic and suggests future work that will increase our understanding of how soil management and edaphoclimatic factors influence AOA.

  15. TBP Domain Symmetry in Basal and Activated Archaeal Transcription

    OpenAIRE

    Ouhammouch, Mohamed; Hausner, Winfried; Geiduschek, E Peter

    2008-01-01

    The TATA-box binding protein (TBP) is the platform for assembly of archaeal and eukaryotic transcription preinitiation complexes. Ancestral gene duplication and fusion events have produced the saddle-shaped TBP molecule, with its two direct-repeat subdomains and pseudo-two-fold symmetry. Collectively, eukaryotic TBPs have diverged from their present-day archaeal counterparts, which remain highly symmetrical. The similarity of the N- and C-halves of archaeal TBPs is especially pronounced in th...

  16. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

    Science.gov (United States)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen

    2016-04-01

    The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.

  17. Structure and lability of archaeal dehydroquinase

    International Nuclear Information System (INIS)

    The structure and thermal melting data for dehydroquinase from A. fulgidus are reported. The protein melts in vitro well below the organism’s growth temperature. Multiple sequence alignments of type I 3-dehydroquinate dehydratases (DQs; EC 4.2.1.10) show that archaeal DQs have shorter helical regions than bacterial orthologs of known structure. To investigate this feature and its relation to thermostability, the structure of the Archaeoglobus fulgidus (Af) DQ dimer was determined at 2.33 Å resolution and its denaturation temperature was measured in vitro by circular dichroism (CD) and differential scanning calorimetry (DSC). This structure, a P212121 crystal form with two 45 kDa dimers in the asymmetric unit, is the first structural representative of an archaeal DQ. Denaturation occurs at 343 ± 3 K at both low and high ionic strength and at 349 K in the presence of the substrate analog tartrate. Since the growth optimum of the organism is 356 K, this implies that the protein maintains its folded state through the participation of additional factors in vivo. The (βα)8 fold is compared with those of two previously determined type I DQ structures, both bacterial (Salmonella and Staphylococcus), which had sequence identities of ∼30% with AfDQ. Although the overall folds are the same, there are many differences in secondary structure and ionic features; the archaeal protein has over twice as many salt links per residue. The archaeal DQ is smaller than its bacterial counterparts and lower in regular secondary structure, with its eight helices being an average of one turn shorter. In particular, two of the eight normally helical regions (the exterior of the barrel) are mostly nonhelical in AfDQ, each having only a single turn of 310-helix flanked by β-strand and coil. These ‘protohelices’ are unique among evolutionarily close members of the (βα)8-fold superfamily. Structural features that may contribute to stability, in particular ionic factors, are

  18. Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage

    Directory of Open Access Journals (Sweden)

    Björn eBreidenbach

    2015-01-01

    Full Text Available We studied the resident (16S rDNA and the active (16S rRNA members of soil archaeal and bacterial communities during rice plant development by sampling three growth stages (vegetative, reproductive and maturity under field conditions. Additionally, the microbial community was investigated in two non-flooded fields (unplanted, cultivated with upland maize in order to monitor the reaction of the microbial communities to non-flooded, dry conditions. The abundance of Bacteria and Archaea was monitored by quantitative PCR showing an increase in 16S rDNA during reproductive stage and stable 16S rRNA copies throughout the growth season. Community profiling by T-RFLP indicated a relatively stable composition during rice plant growth whereas pyrosequencing revealed minor changes in relative abundance of a few bacterial groups. Comparison of the two non-flooded fields with flooded rice fields showed that the community composition of the Bacteria was slightly different, while that of the Archaea was almost the same. Only the relative abundance of Methanosarcinaceae and Soil Crenarchaeotic Group increased in non-flooded versus flooded soil. The abundance of bacterial and archaeal 16S rDNA copies was highest in flooded rice fields, followed by non-flooded maize and unplanted fields. However, the abundance of ribosomal RNA (active microbes was similar indicating maintenance of a high level of ribosomal RNA under the non-flooded conditions, which were unfavorable for anaerobic bacteria and methanogenic archaea. This maintenance possibly serves as preparedness for activity when conditions improve. In summary, the analyses showed that the bacterial and archaeal communities inhabiting Philippine rice field soil were relatively stable over the season but reacted upon change in field management.

  19. Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm.

    Science.gov (United States)

    Tupinambá, Daiva Domenech; Cantão, Maurício Egídio; Costa, Ohana Yonara Assis; Bergmann, Jessica Carvalho; Kruger, Ricardo Henrique; Kyaw, Cynthia Maria; Barreto, Cristine Chaves; Quirino, Betania Ferraz

    2016-01-01

    This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied. PMID:27006640

  20. Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm

    Science.gov (United States)

    Tupinambá, Daiva Domenech; Cantão, Maurício Egídio; Costa, Ohana Yonara Assis; Bergmann, Jessica Carvalho; Kruger, Ricardo Henrique; Kyaw, Cynthia Maria; Barreto, Cristine Chaves; Quirino, Betania Ferraz

    2016-01-01

    This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied. PMID:27006640

  1. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins

    Directory of Open Access Journals (Sweden)

    Gayani N. P. Dedduwa-Mudalige

    2015-09-01

    Full Text Available Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.

  2. Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China

    Science.gov (United States)

    Gao, Peike; Tian, Huimei; Wang, Yansen; Li, Yanshu; Li, Yan; Xie, Jinxia; Zeng, Bing; Zhou, Jiefang; Li, Guoqiang; Ma, Ting

    2016-02-01

    To investigate the spatial distribution of microbial communities and their drivers in petroleum reservoir environments, we performed pyrosequencing of microbial partial 16S rRNA, derived from 20 geographically separated water-flooding reservoirs, and two reservoirs that had not been flooded, in China. The results indicated that distinct underground microbial communities inhabited the different reservoirs. Compared with the bacteria, archaeal alpha-diversity was not strongly correlated with the environmental variables. The variation of the bacterial and archaeal community compositions was affected synthetically, by the mining patterns, spatial isolation, reservoir temperature, salinity and pH of the formation brine. The environmental factors explained 64.22% and 78.26% of the total variance for the bacterial and archaeal communities, respectively. Despite the diverse community compositions, shared populations (48 bacterial and 18 archaeal genera) were found and were dominant in most of the oilfields. Potential indigenous microorganisms, including Carboxydibrachium, Thermosinus, and Neptunomonas, were only detected in a reservoir that had not been flooded with water. This study indicates that: 1) the environmental variation drives distinct microbial communities in different reservoirs; 2) compared with the archaea, the bacterial communities were highly heterogeneous within and among the reservoirs; and 3) despite the community variation, some microorganisms are dominant in multiple petroleum reservoirs.

  3. Effect of Tree Species and Mycorrhizal Colonization on the Archaeal Population of Boreal Forest Rhizospheres▿

    OpenAIRE

    Bomberg, Malin; Timonen, Sari

    2008-01-01

    Group 1.1c Crenarchaeota are the predominating archaeal group in acidic boreal forest soils. In this study, we show that the detection frequency of 1.1c crenarchaeotal 16S rRNA genes in the rhizospheres of the boreal forest trees increased following colonization by the ectomycorrhizal fungus Paxillus involutus. This effect was very clear in the fine roots of Pinus sylvestris, Picea abies, and Betula pendula, the most common forest trees in Finland. The nonmycorrhizal fine roots had a clearly ...

  4. Archaeal diversity in a Fe-As rich acid mine drainage at Carnoules (France)

    OpenAIRE

    Bruneel, Odile; Pascault, N.; Egal, M; Bancon-Montigny, C.; Goni-urriza, M. S.; Elbaz Poulichet, F.; Personne, J. C.; Duran, R.

    2008-01-01

    The acid waters (pH = 2.73-3.4) that originate from the Carnoules mine tailings (France) are known for their very high concentrations of As (up to 10,000 mg l(-1)) and Fe (up to 20,000 mg l(-1)). To analyze the composition of the archaeal community, (their temporal variation inside the tailing and spatial variations all along the Reigous Creek, which drains the site), seven 16S rRNA gene libraries were constructed. Clone analysis revealed that all the sequences were affiliated to the phylum E...

  5. Seasonal Effects in a Lake Sediment Archaeal Community of the Brazilian Savanna

    OpenAIRE

    Thiago Rodrigues; Elisa Catão; Mercedes M. C. Bustamante; Quirino, Betania F.; Kruger, Ricardo H; Kyaw, Cynthia M

    2014-01-01

    The Cerrado is a biome that corresponds to 24% of Brazil’s territory. Only recently microbial communities of this biome have been investigated. Here we describe for the first time the diversity of archaeal communities from freshwater lake sediments of the Cerrado in the dry season and in the transition period between the dry and rainy seasons, when the first rains occur. Gene libraries were constructed, using Archaea-specific primers for the 16S rRNA and amoA genes. Analysis revealed marked ...

  6. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the arctic mid-ocean spreading ridge

    Directory of Open Access Journals (Sweden)

    Steffen LethJørgensen

    2013-10-01

    Full Text Available In marine sediments archaea often constitute a considerable part of the microbial community, of which the Deep Sea Archaeal Group (DSAG is one of the most predominant. Despite their high abundance no members from this archaeal group have so far been characterized and thus their metabolism is unknown. Here we show that the relative abundance of DSAG marker genes can be correlated with geochemical parameters, allowing prediction of both the potential electron donors and acceptors of these organisms. We estimated the abundance of 16S rRNA genes from Archaea, Bacteria and DSAG in 52 sediment horizons from two cores collected at the slow-spreading Arctic Mid-Ocean Ridge, using qPCR. The results indicate that members of the DSAG make up the entire archaeal population in certain horizons and constitute up to ~ 50% of the total microbial community. The quantitative data were correlated to 30 different geophysical and geochemical parameters obtained from the same sediment horizons. We observed a significant correlation between the relative abundance of DSAG 16S rRNA genes and the content of organic carbon (p < 0.0001. Further, significant co-variation with iron oxide, and dissolved iron and manganese (all p < 0.0000, indicated a direct or indirect link to iron and manganese cycling. Neither of these parameters correlated with the relative abundance of archaeal or bacterial 16S rRNA genes, nor did any other major electron donor or acceptor measured. Phylogenetic analysis of DSAG 16S rRNA gene sequences reveals three monophyletic lineages with no apparent habitat-specific distribution. In this study we support the hypothesis that members of the DSAG are tightly linked to the content of organic carbon and directly or indirectly involved in the cycling of iron and/or manganese compounds. Further, we provide a molecular tool to assess their abundance in environmental samples and enrichment cultures.

  7. Seasonal Changes of Freshwater Ammonia-Oxidizing Archaeal Assemblages and Nitrogen Species in Oligotrophic Alpine Lakes▿ †

    OpenAIRE

    Auguet, Jean-Christophe; Nomokonova, Natalya; Camarero, Lluis; Casamayor, Emilio O.

    2011-01-01

    The annual changes in the composition and abundance of ammonia-oxidizing archaea (AOA) were analyzed monthly in surface waters of three high mountain lakes within the Limnological Observatory of the Pyrenees (LOOP; northeast Spain) using both 16S rRNA and functional (ammonia monooxygenase gene, amoA) gene sequencing as well as quantitative PCR amplification. The set of biological data was related to changes in nitrogen species and to other relevant environmental variables. The whole archaeal ...

  8. Archaeal transformation of metals in the environment.

    Science.gov (United States)

    Bini, Elisabetta

    2010-07-01

    We are becoming increasingly aware of the role played by archaea in the biogeochemical cycling of the elements. Metabolism of metals is linked to fundamental metabolic functions, including nitrogen fixation, energy production, and cellular processes based on oxidoreductions. Comparative genomic analyses have shown that genes for metabolism, resistance, and detoxification of metals are widespread throughout the archaeal domain. Archaea share with other organisms strategies allowing them to utilize essential metals and maintain metal ions within a physiological range, although comparative proteomics show, in a few cases, preferences for specific genetic traits related to metals. A more in-depth understanding of the physiology of acidophilic archaea might lead to the development of new strategies for the bioremediation of metal-polluted sites and other applications, such as biomining. PMID:20455933

  9. Hyperthermophilic Archaeal Viruses as Novel Nanoplatforms

    DEFF Research Database (Denmark)

    Uldahl, Kristine Buch

    applications, Chapter I presents an in depth investigation of the hyperthermophilic archaeal virus SMV. Decisive steps in the viral life-cycle are studied with focus on the early stages of infection. TEM observations suggest that SMV1 virions enter into host cells via a fusion entry mechanism, involving three...... increase therapeutic benefit and minimize adverse effects. Virus-based nanoplatforms take advantage of the natural circulatory and targeting properties of viruses, to design therapeutics that specifically target tissues of interest in vivo. Plant-based viruses and bacteriophages are typically considered...... distinct stages; attachment, alignment, and fusion. Upon infection, the intracellular replication cycle lasts 8 h at which point the virus particles are released as spindle-shaped tailless particles. Chapter II builds on the replication and purification methods in Chapter I to study the interaction between...

  10. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

    Science.gov (United States)

    Frade, Pedro R.; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J.

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity. PMID:26788724

  11. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    Directory of Open Access Journals (Sweden)

    Pedro R Frade

    Full Text Available Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%. About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater, host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.

  12. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    Science.gov (United States)

    Frade, Pedro R; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity. PMID:26788724

  13. Reconstitution of RNA exosomes from human and Saccharomyces cerevisiae: Cloning, expression, purification, and activity assays

    OpenAIRE

    Greimann, Jaclyn C.; Lima, Christopher D.

    2008-01-01

    Eukaryotic RNA exosomes participate in 3′-5′ processing and degradation of RNA in the nucleus and cytoplasm. RNA exosomes are multi-subunit complexes composed of at least nine distinct proteins which form the exosome core. While the eukaryotic exosome core shares structural and sequence similarity to phosphorolytic archaeal exosomes and bacterial PNPase, the eukaryotic exosome core has diverged from its archaeal and bacterial cousins and appears devoid of phosphorolytic activity. In yeast, th...

  14. A Method for Identification of Selenoprotein Genes in Archaeal Genomes

    Institute of Scientific and Technical Information of China (English)

    Mingfeng Li; Yanzhao Huang; Yi Xiao

    2009-01-01

    The genetic codon UGA has a dual function: serving as a terminator and encoding selenocysteine. However, most popular gene annotation programs only take it as a stop signal, resulting in misannotation or completely missing selenoprotein genes. We developed a computational method named Asec-Prediction that is specific for the prediction of archaeal selenoprotein genes. To evaluate its effectiveness, we first applied it to 14 archaeal genomes with previously known selenoprotein genes, and Asec-Prediction identified all reported selenoprotein genes without redundant results. When we applied it to 12 archaeal genomes that had not been researched for selenoprotein genes, Asec-Prediction detected a novel selenoprotein gene in Methanosarcina acetivorans. Further evidence was also collected to support that the predicted gene should be a real selenoprotein gene. The result shows that Asec-Prediction is effective for the prediction of archaeal selenoprotein genes.

  15. Similarities and Contrasts in the Archaeal Community of Two Japanese Mountains: Mt. Norikura Compared to Mt. Fuji.

    Science.gov (United States)

    Singh, Dharmesh; Takahashi, Koichi; Park, Jungok; Adams, Jonathan M

    2016-02-01

    The community ecology, abundance, and diversity patterns of soil archaea are poorly understood-despite the fact that they are a major branch of life that is ubiquitous and important in nitrogen cycling in terrestrial ecosystems. We set out to investigate the elevational patterns of archaeal ecology, and how these compare with other groups of organisms. Many studies of different groups of organisms (plants, birds, etc.) have shown a series of distinct communities with elevation, and often a diversity maximum in mid-elevations. We investigated the soil archaeal communities on Mt. Norikura, Japan, using 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene. There was a strong mid-elevation maximum in diversity, and a mid-elevation maximum in abundance of soil archaea 16S rRNA and amoA genes. These diversity and abundance maximums could not be correlated with any identifiable soil parameter, nor plant diversity. Discrete, predictable communities of archaea occurred at each elevational level, also not explicable in terms of pH or major nutrients. When we compared the archaeal community and diversity patterns with those found in an earlier study of Mt Fuji, both mountains showed mid-elevation maximums in diversity and abundance of archaea, possibly a result of some common environmental factor such as soil disturbance frequency. However, they showed distinct sets of archaeal communities at similar elevational sampling points. Presumably, the difference reflects their distinct geology (Norikura being andesitic, while Fuji is basaltic) and the resulting combinations of soil chemistry and environmental conditions, although no explanatory variable was found. Clearly, many soil archaea have strongly defined niches and will only occur in a narrow subset of the range of possible climate and soil conditions. The findings of a mid-elevation diversity maximum on Norikura provides a further instance of how widespread this unexplained pattern is in nature, in a wide variety of

  16. Archaeal community in a human-disturbed watershed in southeast China: diversity, distribution, and responses to environmental changes.

    Science.gov (United States)

    Hu, Anyi; Wang, Hongjie; Li, Jiangwei; Liu, Jing; Chen, Nengwang; Yu, Chang-Ping

    2016-05-01

    The response of freshwater bacterial community to anthropogenic disturbance has been well documented, yet the studies of freshwater archaeal community are rare, especially in lotic environments. Here, we investigated planktonic and benthic archaeal communities in a human-perturbed watershed (Jiulong River Watershed, JRW) of southeast China by using Illumina 16S ribosomal RNA gene amplicon sequencing. The results of taxonomic assignments indicated that SAGMGC-1, Methanobacteriaceae, Methanospirillaceae, and Methanoregulaceae were the four most abundant families in surface waters, accounting for 12.65, 23.21, 18.58 and 10.97 % of planktonic communities, whereas Nitrososphaeraceae and Miscellaneous Crenarchaeotic Group occupied more than 49 % of benthic communities. The compositions of archaeal communities and populations in waters and sediments were significantly different from each other. Remarkably, the detection frequencies of families Methanobacteriaceae and Methanospirillaceae, and genera Methanobrevibacter and Methanosphaera in planktonic communities correlated strongly with bacterial fecal indicator, suggesting some parts of methanogenic Archaea may come from fecal contamination. Because soluble reactive phosphorus (SRP) and the ratio of dissolved inorganic nitrogen to SRP instead of nitrogen nutrients showed significant correlation with several planktonic Nitrosopumilus- and Nitrosotalea-like OTUs, Thaumarchaeota may play an unexplored role in biogeochemical cycling of river phosphorus. Multivariate statistical analyses revealed that the variation of α-diversity of planktonic archaeal community was best explained by water temperature, whereas nutrient concentrations and stoichiometry were the significant drivers of β-diversity of planktonic and benthic communities. Taken together, these results demonstrate that the structure of archaeal communities in the JRW is sensitive to anthropogenic disturbances caused by riparian human activities. PMID:26810199

  17. Structure and Cell Biology of Archaeal Virus STIV

    OpenAIRE

    Fu, Chi-yu; Johnson, John E.

    2012-01-01

    Recent investigations of archaeal viruses have revealed novel features of their structures and life cycles when compared to eukaryotic and bacterial viruses, yet there are structure-based unifying themes suggesting common ancestral relationships among dsDNA viruses in the three kingdoms of life. Sulfolobus solfataricus and the infecting virus Sulfolobus turreted icosahedral virus (STIV) is one of the well-established model systems to study archaeal virus replication and viral-host interaction...

  18. The archaeal Sec-dependent protein translocation pathway.

    OpenAIRE

    Bolhuis, Albert

    2004-01-01

    Over the past three decades, transport of proteins across cellular membranes has been studied extensively in various model systems. One of the major transport routes, the so-called Sec pathway, is conserved in all domains of life. Very little is known about this pathway in the third domain of life, archaea. The core components of the archaeal, bacterial and eucaryal Sec machinery are similar, although the archaeal components appear more closely related to their eucaryal counterparts. Interest...

  19. Ecological structuring of bacterial and archaeal taxa in surface ocean waters.

    Science.gov (United States)

    Yilmaz, Pelin; Iversen, Morten H; Hankeln, Wolfgang; Kottmann, Renzo; Quast, Christian; Glöckner, Frank O

    2012-08-01

    The Global Ocean Sampling (GOS) expedition is currently the largest and geographically most comprehensive metagenomic dataset, including samples from the Atlantic, Pacific, and Indian Oceans. This study makes use of the wide range of environmental conditions and habitats encompassed within the GOS sites in order to investigate the ecological structuring of bacterial and archaeal taxon ranks. Community structures based on taxonomically classified 16S ribosomal RNA (rRNA) gene fragments at phylum, class, order, family, and genus rank levels were examined using multivariate statistical analysis, and the results were inspected in the context of oceanographic environmental variables and structured habitat classifications. At all taxon rank levels, community structures of neritic, oceanic, estuarine biomes, as well as other exotic biomes (salt marsh, lake, mangrove), were readily distinguishable from each other. A strong structuring of the communities with chlorophyll a concentration and a weaker yet significant structuring with temperature and salinity were observed. Furthermore, there were significant correlations between community structures and habitat classification. These results were used for further investigation of one-to-one relationships between taxa and environment and provided indications for ecological preferences shaped by primary production for both cultured and uncultured bacterial and archaeal clades. PMID:22416918

  20. Co-expression and co-purification of archaeal and eukaryal box C/D RNPs.

    Directory of Open Access Journals (Sweden)

    Yu Peng

    Full Text Available Box C/D ribonucleoprotein particles (RNPs are 2'-O-methylation enzymes required for maturation of ribosomal and small nuclear RNA. Previous biochemical and structural studies of the box C/D RNPs were limited by the unavailability of purified intact RNPs. We developed a bacterial co-expression strategy based on the combined use of a multi-gene expression system and a tRNA-scaffold construct that allowed the expression and purification of homogeneous archaeal and human box C/D RNPs. While the co-expressed and co-purified archaeal box C/D RNP was found to be fully active in a 2'-O-methylation assay, the intact human U14 box C/D RNP showed no detectable catalytic activity, consistent with the earlier findings that assembly of eukaryotic box C/D RNPs is nonspontaneous and requires additional protein factors. Our systems provide a means for further biochemical and structural characterization of box C/D RNPs and their assembly factors.

  1. Cellular Dynamics of RNA Modification

    Science.gov (United States)

    Yi, Chengqi; Pan, Tao

    2011-01-01

    Conspectus Decades of research have identified over 100 types of ribonucleosides that are post-transcriptionally modified. Many modified nucleosides are conserved in bacteria, archeae and eukaryotes, while some modified nucleosides are unique to each branch of life. However, the cellular and functional dynamics of RNA modifications remains largely unexplored, mostly due to the lack of functional hypotheses and experimental methods for quantification and large scale analysis. Just as many well characterized protein and DNA modifications, many RNA modifications are not essential for life. Instead, increasingly more evidence indicates that RNA modifications can play regulatory roles in cells, especially in response to stress conditions. In this Account, we review some known examples of RNA modifications that are dynamically controlled in cells and introduce some contemporary technologies and methods that enhance the studies of cellular dynamics of RNA modifications. Examples of RNA modifications discussed in this Account include (Figure 1): (1) 4-thio uridine (s4U) which can act as a cellular sensor of near UV-light; (2) queuosine (Q) which is a potential biomarker for malignancy; (3) N6-methyl adenine (m6A) which is the prevalent modification in eukaryotic mRNAs; and (4) pseudouridine (ψ) which are inducible by nutrient deprivation. Two recent technical advances that stimulated the studies of cellular dynamics of modified ribonucleosides are also described. First, a genome-wide method combines primer extension and microarray to study N1-methyl adenine (m1A) hypomodification in human tRNA. Second, a quantitative mass spectrometric method investigates dynamic changes of a wide range of tRNA modifications under stress conditions in yeast. In addition, we discuss potential mechanisms that control dynamic regulation of RNA modifications, and hypotheses for discovering potential RNA de-modification enzymes. We conclude the Account by highlighting the need to develop new

  2. Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload

    International Nuclear Information System (INIS)

    Highlights: ► Two types of methanogens are necessary to respond successfully to perturbation. ► Diversity of methanogens correlates with the VFA concentration and methane yield. ► Aggregates indicate tight spatial relationship between minerals and microorganisms. - Abstract: Microbial community diversity in two thermophilic laboratory-scale and three full-scale anaerobic co-digesters was analysed by genetic profiling based on PCR-amplified partial 16S rRNA genes. In parallel operated laboratory reactors a stepwise increase of the organic loading rate (OLR) resulted in a decrease of methane production and an accumulation of volatile fatty acids (VFAs). However, almost threefold different OLRs were necessary to inhibit the gas production in the reactors. During stable reactor performance, no significant differences in the bacterial community structures were detected, except for in the archaeal communities. Sequencing of archaeal PCR products revealed a dominance of the acetoclastic methanogen Methanosarcina thermophila, while hydrogenotrophic methanogens were of minor importance and differed additionally in their abundance between reactors. As a consequence of the perturbation, changes in bacterial and archaeal populations were observed. After organic overload, hydrogenotrophic methanogens (Methanospirillum hungatei and Methanoculleus receptaculi) became more dominant, especially in the reactor attributed by a higher OLR capacity. In addition, aggregates composed of mineral and organic layers formed during organic overload and indicated tight spatial relationships between minerals and microbial processes that may support de-acidification processes in over-acidified sludge. Comparative analyses of mesophilic stationary phase full-scale reactors additionally indicated a correlation between the diversity of methanogens and the VFA concentration combined with the methane yield. This study demonstrates that the coexistence of two types of methanogens, i

  3. Bacterial and Archaeal Diversity in the Gastrointestinal Tract of the North American Beaver (Castor canadensis)

    Science.gov (United States)

    Gruninger, Robert J.; McAllister, Tim A.; Forster, Robert J.

    2016-01-01

    The North American Beaver (Castor canadensis) is the second largest living rodent and an iconic symbol of Canada. The beaver is a semi-aquatic browser whose diet consists of lignocellulose from a variety of plants. The beaver is a hindgut fermenter and has an enlarged ceacum that houses a complex microbiome. There have been few studies examining the microbial diversity in gastrointestinal tract of hindgut fermenting herbivores. To examine the bacterial and archaeal communities inhabiting the gastrointestinal tract of the beaver, the microbiome of the ceacum and feaces was examined using culture-independent methods. DNA from the microbial community of the ceacum and feaces of 4 adult beavers was extracted, and the16S rRNA gene was sequenced using either bacterial or archaeal specific primers. A total of 1447 and 1435 unique bacterial OTUs were sequenced from the ceacum and feaces, respectively. On average, the majority of OTUs within the ceacum were classified as Bacteroidetes (49.2%) and Firmicutes (47.6%). The feaces was also dominated by OTUs from Bacteroidetes (36.8%) and Firmicutes (58.9%). The composition of bacterial community was not significantly different among animals. The composition of the ceacal and feacal microbiome differed, but this difference is due to changes in the abundance of closely related OTUs, not because of major differences in the taxonomic composition of the communities. Within these communities, known degraders of lignocellulose were identified. In contrast, to the bacterial microbiome, the archaeal community was dominated by a single species of methanogen, Methanosphaera stadtmanae. The data presented here provide the first insight into the microbial community within the hindgut of the beaver. PMID:27227334

  4. Land-use systems affect Archaeal community structure and functional diversity in western Amazon soils

    Directory of Open Access Journals (Sweden)

    Acácio Aparecido Navarrete

    2011-10-01

    Full Text Available The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure and ammonia-oxidizing Archaea (richness and community composition were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009 from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old, agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA of Archaea (306 sequences, the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366, followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715, crops (H' = 1.4613; D = 0.3309 and secondary forest (H' = 0.8633; D = 0.5405. All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 % previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.

  5. Methanobacterium thermoautotrophicum RNA Polymerase and Transcription In Vitro

    OpenAIRE

    Darcy, Trevor J.; Hausner, Winfried; Awery, Donald E.; Edwards, Aled M.; Thomm, Michael; Reeve, John N.

    1999-01-01

    RNA polymerase (RNAP) purified from Methanobacterium thermoautotrophicum ΔH has been shown to initiate transcription accurately in vitro from the hmtB archaeal histone promoter with either native or recombinant forms of the M. thermoautotrophicum TATA-binding protein and transcription factor TFB. Efforts to obtain transcription initiation from hydrogen-regulated methane gene promoters were, however, unsuccessful. Two previously unrecognized archaeal RNAP subunits have been identified, and com...

  6. Environmental and Genetic Influences of Archaeal Lipid Distribution in Natural and Artificial Marine Environments

    Science.gov (United States)

    Warren, C.; Pagani, M.

    2012-12-01

    TEX86 is a proxy of sea surface temperature based on refractory glycerol dibiphytanyl glycerol tetraethers (GDGT) in the cell membranes of low-temperature dwelling (non-hyperthermophilic) Archaea. The degree to which environmental signals other than temperature influence the distribution of GDGT compounds is poorly understood. Few representatives of the Thaumarchaeota — the clade to which the dominant GDGT production has been attributed — have been described or isolated in pure culture, and the role of genetic lineage in the synthesis and distribution of GDGTs is unknown. For this project we collected water, filter and substrate samples from tank systems in non-profit and commercial aquariums around the United States. This analysis compares GDGT core lipids and intact polar lipid distributions with Archaeal genetic sequence data processed using rRNA and 454 Pyrosequencing. Environmental attributes (such as dissolved oxygen concentration, salinity, organic density, etc.) specific to each tank are also compared to lipid analyses and the presence of specific lineages within select tank systems. Our preliminary results demonstrate that archaeal GDGTs are present and abundant within a range of environmental conditions, including artificial saline and brackish waters derived from municipal sources. Comparisons of existing TEX86 calibration values with known temperatures suggest that residuals vary based on non-temperature parameters. Branched compounds are absent in most aquarium systems, but dominate in systems prepared with municipal water.

  7. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Chang, Ho-Won; Kim, Kyoung-Ho; Nam, Young-Do; Roh, Seong Woon; Kim, Min-Soo; Jeon, Che Ok; Oh, Hee-Mock; Bae, Jin-Woo

    2008-08-15

    Kimchi is a traditional Korean food that is fermented from vegetables such as Chinese cabbage and radish. Many bacteria are involved in kimchi fermentation and lactic acid bacteria are known to perform significant roles. Although kimchi fermentation presents a range of environmental conditions that could support many different archaea and yeasts, their molecular diversity within this process has not been studied. Here, we use PCR-denaturing gradient gel electrophoresis (DGGE) targeting the 16S and 26S rRNA genes, to characterize bacterial, archaeal and yeast dynamics during various types of kimchi fermentation. The DGGE analysis of archaea expressed a change of DGGE banding patterns during kimchi fermentation, however, no significant change was observed in the yeast DGGE banding patterns during kimchi fermentation. No significant difference was indicated in the archaeal DGGE profile among different types of kimchi. In the case of yeasts, the clusters linked to the manufacturing corporation. Haloarchaea such as Halococcus spp., Natronococcus spp., Natrialba spp. and Haloterrigena spp., were detected as the predominant archaea and Lodderomyces spp., Trichosporon spp., Candida spp., Saccharomyces spp., Pichia spp., Sporisorium spp. and Kluyveromyces spp. were the most common yeasts. PMID:18562030

  8. Riboregulation of bacterial and archaeal transposition.

    Science.gov (United States)

    Ellis, Michael J; Haniford, David B

    2016-05-01

    The coexistence of transposons with their hosts depends largely on transposition levels being tightly regulated to limit the mutagenic burden associated with frequent transposition. For 'DNA-based' (class II) bacterial transposons there is growing evidence that regulation through small noncoding RNAs and/or the RNA-binding protein Hfq are prominent mechanisms of defense against transposition. Recent transcriptomics analyses have identified many new cases of antisense RNAs (asRNA) that potentially could regulate the expression of transposon-encoded genes giving the impression that asRNA regulation of DNA-based transposons is much more frequent than previously thought. Hfq is a highly conserved bacterial protein that plays a central role in posttranscriptional gene regulation and stress response pathways in many bacteria. Three different mechanisms for Hfq-directed control of bacterial transposons have been identified to date highlighting the versatility of this protein as a regulator of bacterial transposons. There is also evidence emerging that some DNA-based transposons encode RNAs that could regulate expression of host genes. In the case of IS200, which appears to have lost its ability to transpose, contributing a regulatory RNA to its host could account for the persistence of this mobile element in a wide range of bacterial species. It remains to be seen how prevalent these transposon-encoded RNA regulators are, but given the relatively large amount of intragenic transcription in bacterial genomes, it would not be surprising if new examples are forthcoming. WIREs RNA 2016, 7:382-398. doi: 10.1002/wrna.1341 For further resources related to this article, please visit the WIREs website. PMID:26846462

  9. Familial relationships in hyperthermo- and acidophilic archaeal viruses

    DEFF Research Database (Denmark)

    Happonen, Lotta Johanna; Redder, Peter; Peng, Xu;

    2010-01-01

    Archaea often live in extreme, harsh environments such as acidic hot springs and hypersaline waters. To date, only two icosahedrally symmetric, membrane-containing archaeal viruses, SH1 and Sulfolobus turreted icosahedral virus (STIV), have been described in detail. We report the sequence and thr...

  10. A Survey of Protein Structures from Archaeal Viruses

    Directory of Open Access Journals (Sweden)

    Nikki Dellas

    2013-01-01

    Full Text Available Viruses that infect the third domain of life, Archaea, are a newly emerging field of interest. To date, all characterized archaeal viruses infect archaea that thrive in extreme conditions, such as halophilic, hyperthermophilic, and methanogenic environments. Viruses in general, especially those replicating in extreme environments, contain highly mosaic genomes with open reading frames (ORFs whose sequences are often dissimilar to all other known ORFs. It has been estimated that approximately 85% of virally encoded ORFs do not match known sequences in the nucleic acid databases, and this percentage is even higher for archaeal viruses (typically 90%–100%. This statistic suggests that either virus genomes represent a larger segment of sequence space and/or that viruses encode genes of novel fold and/or function. Because the overall three-dimensional fold of a protein evolves more slowly than its sequence, efforts have been geared toward structural characterization of proteins encoded by archaeal viruses in order to gain insight into their potential functions. In this short review, we provide multiple examples where structural characterization of archaeal viral proteins has indeed provided significant functional and evolutionary insight.

  11. The σ enigma: bacterial σ factors, archaeal TFB and eukaryotic TFIIB are homologs.

    Science.gov (United States)

    Burton, Samuel P; Burton, Zachary F

    2014-01-01

    Structural comparisons of initiating RNA polymerase complexes and structure-based amino acid sequence alignments of general transcription initiation factors (eukaryotic TFIIB, archaeal TFB and bacterial σ factors) show that these proteins are homologs. TFIIB and TFB each have two-five-helix cyclin-like repeats (CLRs) that include a C-terminal helix-turn-helix (HTH) motif (CLR/HTH domains). Four homologous HTH motifs are present in bacterial σ factors that are relics of CLR/HTH domains. Sequence similarities clarify models for σ factor and TFB/TFIIB evolution and function and suggest models for promoter evolution. Commitment to alternate modes for transcription initiation appears to be a major driver of the divergence of bacteria and archaea. PMID:25483602

  12. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park

    OpenAIRE

    Kara Bowen De León; Robin eGerlach; Peyton, Brent M.; Matthew W Fields

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park, Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatur...

  13. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park

    Science.gov (United States)

    Bowen De León, Kara; Gerlach, Robin; Peyton, Brent M.; Fields, Matthew W.

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts. PMID:24282404

  14. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park

    Directory of Open Access Journals (Sweden)

    Kara Bowen De León

    2013-11-01

    Full Text Available The Heart Lake Geyser Basin (HLGB is remotely located at the base of Mount Sheridan in southern Yellowstone National Park, Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5 hot springs with varying temperatures (44°C, 63°C, 75°C. The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44°C and 63°C springs and a hyperthermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts.

  15. Distribution of Archaeal and Bacterial communities in a subtropical reservoir

    Directory of Open Access Journals (Sweden)

    Laís Américo Soares

    2015-12-01

    Full Text Available Abstract Aim: Microbial communities play a central role in environmental process such as organic matter mineralization and the nutrient cycling process in aquatic ecosystems. Despite their ecological importance, variability of the structure of archaeal and bacterial communities in freshwater remains understudied. Methods In the present study we investigated the richness and density of archaea and bacteria in the water column and sediments of the Itupararanga Reservoir. We also evaluated the relationship between the communities and the biotic and abiotic characteristics. Samples were taken at five depths in the water column next to the dam and three depths next to the reservoir entrance. Results PCR-DGGE evaluation of the archaeal and bacterial communities showed that both were present in the water column, even in oxygenated conditions. Conclusions The density of the bacteria (qPCR was greater than that of the archaea, a result of the higher metabolic plasticity of bacteria compared with archaea.

  16. Global analysis of viral infection in an archaeal model system

    Directory of Open Access Journals (Sweden)

    JosephSteffens

    2012-12-01

    Full Text Available The origin and evolutionary relationship of viruses is poorly understood. This makes archaeal virus-host of particular interest because the hosts generally root near the base of phylogenetic trees, while some of the viruses have clear structural similarities to those that infect prokaryotic and eukaryotic cells. Despite the advantageous position for use in evolutionary studies, little is known about archaeal viruses or how they interact with their hosts, compared to viruses of bacteria and eukaryotes. In addition, many archaeal viruses have been isolated from extreme environments and present a unique opportunity for elucidating factors that are important for existence at the extremes.. In this article we focus on virus-host interactions using a proteomics approach to study Sulfolobus Turreted Icosahedral Virus (STIV infection of Sulfolobus solfataricus P2. Using cultures grown from the ATCC cell stock, a single cycle of STIV infection was sampled 6 times over a 72 hr period. More than 700 proteins were identified throughout the course of the experiments. Seventy one host proteins were found to change by nearly two-fold (p<0.05 with 40 becoming more abundant and 31 less abundant. The modulated proteins represent 30 different cell pathways and 14 COG groups. 2D gel analysis showed that changes in post translational modifications were a common feature of the affected proteins. The results from these studies showed that the prokaryotic antiviral adaptive immune system CRISPR associated proteins (CAS proteins were regulated in response to the virus infection. It was found that regulated proteins come from mRNAs with a shorter than average half-life. In addition, activity-based protein profiling (ABPP profiling on 2D gels showed caspase, hydrolase and tyrosine phosphatase enzyme activity labeling at the protein isoform level. Together, this data provides a more detailed global view of archaeal cellular responses to viral infection, demonstrates the

  17. Archaeal promoter architecture and mechanism of gene activation

    DEFF Research Database (Denmark)

    Peng, Nan; Ao, Xiang; Liang, Yun Xiang;

    2011-01-01

    Sulfolobus solfataricus and Sulfolobus islandicus contain several genes exhibiting D-arabinose-inducible expression and these systems are ideal for studying mechanisms of archaeal gene expression. At sequence level, only two highly conserved cis elements are present on the promoters: a regulatory...... mechanisms include TFB (transcription factor B) recruitment by the ara-box-binding factor to activate gene expression and modulation of TFB recruitment efficiency to yield differential gene expression....

  18. Structure of Mth11/Mth Rpp29, an essential protein subunit of archaeal and eukaryotic RNase P.

    Science.gov (United States)

    Boomershine, William P; McElroy, Craig A; Tsai, Hsin-Yue; Wilson, Ross C; Gopalan, Venkat; Foster, Mark P

    2003-12-23

    We have determined the solution structure of Mth11 (Mth Rpp29), an essential subunit of the RNase P enzyme from the archaebacterium Methanothermobacter thermoautotrophicus (Mth). RNase P is a ubiquitous ribonucleoprotein enzyme primarily responsible for cleaving the 5' leader sequence during maturation of tRNAs in all three domains of life. In eubacteria, this enzyme is made up of two subunits: a large RNA ( approximately 120 kDa) responsible for mediating catalysis, and a small protein cofactor ( approximately 15 kDa) that modulates substrate recognition and is required for efficient in vivo catalysis. In contrast, multiple proteins are associated with eukaryotic and archaeal RNase P, and these proteins exhibit no recognizable homology to the conserved bacterial protein subunit. In reconstitution experiments with recombinantly expressed and purified protein subunits, we found that Mth Rpp29, a homolog of the Rpp29 protein subunit from eukaryotic RNase P, is an essential protein component of the archaeal holoenzyme. Consistent with its role in mediating protein-RNA interactions, we report that Mth Rpp29 is a member of the oligonucleotide/oligosaccharide binding fold family. In addition to a structured beta-barrel core, it possesses unstructured N- and C-terminal extensions bearing several highly conserved amino acid residues. To identify possible RNA contacts in the protein-RNA complex, we examined the interaction of the 11-kDa protein with the full 100-kDa Mth RNA subunit by using NMR chemical shift perturbation. Our findings represent a critical step toward a structural model of the RNase P holoenzyme from archaebacteria and higher organisms. PMID:14673079

  19. TBP domain symmetry in basal and activated archaeal transcription.

    Science.gov (United States)

    Ouhammouch, Mohamed; Hausner, Winfried; Geiduschek, E Peter

    2009-01-01

    The TATA box binding protein (TBP) is the platform for assembly of archaeal and eukaryotic transcription preinitiation complexes. Ancestral gene duplication and fusion events have produced the saddle-shaped TBP molecule, with its two direct-repeat subdomains and pseudo-two-fold symmetry. Collectively, eukaryotic TBPs have diverged from their present-day archaeal counterparts, which remain highly symmetrical. The similarity of the N- and C-halves of archaeal TBPs is especially pronounced in the Methanococcales and Thermoplasmatales, including complete conservation of their N- and C-terminal stirrups; along with helix H'1, the C-terminal stirrup of TBP forms the main interface with TFB/TFIIB. Here, we show that, in stark contrast to its eukaryotic counterparts, multiple substitutions in the C-terminal stirrup of Methanocaldococcus jannaschii (Mja) TBP do not completely abrogate basal transcription. Using DNA affinity cleavage, we show that, by assembling TFB through its conserved N-terminal stirrup, Mja TBP is in effect ambidextrous with regard to basal transcription. In contrast, substitutions in either its N- or the C-terminal stirrup abrogate activated transcription in response to the Lrp-family transcriptional activator Ptr2. PMID:19007415

  20. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    Directory of Open Access Journals (Sweden)

    Yendi E. Navarro-Noya

    2015-01-01

    Full Text Available In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5, indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances clearly clustered the communities by pH.

  1. Identification and characterization of SNJ2, the first temperate pleolipovirus integrating into the genome of the SNJ1-lysogenic archaeal strain.

    Science.gov (United States)

    Liu, Ying; Wang, Jiao; Liu, Yang; Wang, Yuchen; Zhang, Ziqian; Oksanen, Hanna M; Bamford, Dennis H; Chen, Xiangdong

    2015-12-01

    Proviral regions have been identified in the genomes of many haloarchaea, but only a few archaeal halophilic temperate viruses have been studied. Here, we report a new virus, SNJ2, originating from archaeal strain Natrinema sp. J7-1. We demonstrate that this temperate virus coexists with SNJ1 virus and is dependent on SNJ1 for efficient production. Here, we show that SNJ1 is an icosahedral membrane-containing virus, whereas SNJ2 is a pleomorphic one. Instead of producing progeny virions and forming plaques, SNJ2 integrates into the host tRNA(Met) gene. The virion contains a discontinuous, circular, double-stranded DNA genome of 16 992 bp, in which both nicks and single-stranded regions are present preceded by a 'GCCCA' motif. Among 25 putative SNJ2 open reading frames (ORFs), five of them form a cluster of conserved ORFs homologous to archaeal pleolipoviruses isolated from hypersaline environments. Two structural protein encoding genes in the conserved cluster were verified in SNJ2. Furthermore, SNJ2-like proviruses containing the conserved gene cluster were identified in the chromosomes of archaea belonging to 10 different genera. Comparison of SNJ2 and these proviruses suggests that they employ a similar integration strategy into a tRNA gene. PMID:26331239

  2. Contrasting spatial patterns and ecological attributes of soil bacterial and archaeal taxa across a landscape.

    Science.gov (United States)

    Constancias, Florentin; Saby, Nicolas P A; Terrat, Sébastien; Dequiedt, Samuel; Horrigue, Wallid; Nowak, Virginie; Guillemin, Jean-Philippe; Biju-Duval, Luc; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel

    2015-06-01

    Even though recent studies have clarified the influence and hierarchy of environmental filters on bacterial community structure, those constraining bacterial populations variations remain unclear. In consequence, our ability to understand to ecological attributes of soil bacteria and to predict microbial community response to environmental stress is therefore limited. Here, we characterized the bacterial community composition and the various bacterial taxonomic groups constituting the community across an agricultural landscape of 12 km(2) , by using a 215 × 215 m systematic grid representing 278 sites to precisely decipher their spatial distribution and drivers at this scale. The bacterial and Archaeal community composition was characterized by applying 16S rRNA gene pyrosequencing directly to soil DNA from samples. Geostatistics tools were used to reveal the heterogeneous distribution of bacterial composition at this scale. Soil physical parameters and land management explained a significant amount of variation, suggesting that environmental selection is the major process shaping bacterial composition. All taxa systematically displayed also a heterogeneous and particular distribution patterns. Different relative influences of soil characteristics, land use and space were observed, depending on the taxa, implying that selection and spatial processes might be differentially but not exclusively involved for each bacterial phylum. Soil pH was a major factor determining the distribution of most of the bacterial taxa and especially the most important factor explaining the spatial patterns of α-Proteobacteria and Planctomycetes. Soil texture, organic carbon content and quality were more specific to a few number of taxa (e.g., β-Proteobacteria and Chlorobi). Land management also influenced the distribution of bacterial taxa across the landscape and revealed different type of response to cropping intensity (positive, negative, neutral or hump-backed relationships

  3. Microbial community structure analysis of a benzoate-degrading halophilic archaeal enrichment.

    Science.gov (United States)

    Dalvi, Sonal; Youssef, Noha H; Fathepure, Babu Z

    2016-05-01

    A benzoate-degrading archaeal enrichment was developed using sediment samples from Rozel Point at Great Salt Lake, UT. The enrichment degraded benzoate as the sole carbon source at salinity ranging from 2.0 to 5.0 M NaCl with highest rate of degradation observed at 4.0 M. The enrichment was also tested for its ability to grow on other aromatic compounds such as 4-hydroxybenzoic acid (4-HBA), gentisic acid, protocatechuic acid (PCA), catechol, benzene and toluene as the sole sources of carbon and energy. Of these, the culture only utilized 4-HBA as the carbon source. To determine the initial steps in benzoate degradation pathway, a survey of ring-oxidizing and ring-cleaving genes was performed using degenerate PCR primers. Results showed the presence of 4-hydroxybenzoate 3-monooxygenase (4-HBMO) and protocatechuate 3, 4-dioxygenase (3,4-PCA) genes suggesting that the archaeal enrichment might degrade benzoate to 4-HBA that is further converted to PCA by 4-HBMO and, thus, formed PCA would undergo ring-cleavage by 3,4-PCA to form intermediates that enter the Krebs cycle. Small subunit rRNA gene-based diversity survey revealed that the enrichment consisted entirely of class Halobacteria members belonging to the genera Halopenitus, Halosarcina, Natronomonas, Halosimplex, Halorubrum, Salinarchaeum and Haloterrigena. Of these, Halopenitus was the dominant group accounting for almost 91 % of the total sequences suggesting their potential role in degrading oxygenated aromatic compounds at extreme salinity. PMID:26995683

  4. Distribution and Diversity of Archaeal Ammonia Monooxygenase Genes Associated with Corals▿ †

    OpenAIRE

    Beman, J. Michael; Roberts, Kathryn J.; Wegley, Linda; Rohwer, Forest; Francis, Christopher A.

    2007-01-01

    Corals are known to harbor diverse microbial communities of Bacteria and Archaea, yet the ecological role of these microorganisms remains largely unknown. Here we report putative ammonia monooxygenase subunit A (amoA) genes of archaeal origin associated with corals. Multiple DNA samples drawn from nine coral species and four different reef locations were PCR screened for archaeal and bacterial amoA genes, and archaeal amoA gene sequences were obtained from five different species of coral coll...

  5. Substrate tRNA Recognition Mechanism of a Multisite-specific tRNA Methyltransferase, Aquifex aeolicus Trm1, Based on the X-ray Crystal Structure*

    OpenAIRE

    Awai, Takako; Ochi, Anna; Ihsanawati,; Sengoku, Toru; Hirata, Akira; Bessho, Yoshitaka; Yokoyama, Shigeyuki; Hori, Hiroyuki

    2011-01-01

    Archaeal and eukaryotic tRNA (N2,N2-guanine)-dimethyltransferase (Trm1) produces N2,N2-dimethylguanine at position 26 in tRNA. In contrast, Trm1 from Aquifex aeolicus, a hyper-thermophilic eubacterium, modifies G27 as well as G26. Here, a gel mobility shift assay revealed that the T-arm in tRNA is the binding site of A. aeolicus Trm1. To address the multisite specificity, we performed an x-ray crystal structure study. The overall structure of A. aeolicus Trm1 is similar to that of archaeal Tr...

  6. Investigation of bacterial and archaeal communities: novel protocols using modern sequencing by Illumina MiSeq and traditional DGGE-cloning.

    Science.gov (United States)

    Kraková, Lucia; Šoltys, Katarína; Budiš, Jaroslav; Grivalský, Tomáš; Ďuriš, František; Pangallo, Domenico; Szemes, Tomáš

    2016-09-01

    Different protocols based on Illumina high-throughput DNA sequencing and denaturing gradient gel electrophoresis (DGGE)-cloning were developed and applied for investigating hot spring related samples. The study was focused on three target genes: archaeal and bacterial 16S rRNA and mcrA of methanogenic microflora. Shorter read lengths of the currently most popular technology of sequencing by Illumina do not allow analysis of the complete 16S rRNA region, or of longer gene fragments, as was the case of Sanger sequencing. Here, we demonstrate that there is no need for special indexed or tailed primer sets dedicated to short variable regions of 16S rRNA since the presented approach allows the analysis of complete bacterial 16S rRNA amplicons (V1-V9) and longer archaeal 16S rRNA and mcrA sequences. Sample augmented with transposon is represented by a set of approximately 300 bp long fragments that can be easily sequenced by Illumina MiSeq. Furthermore, a low proportion of chimeric sequences was observed. DGGE-cloning based strategies were performed combining semi-nested PCR, DGGE and clone library construction. Comparing both investigation methods, a certain degree of complementarity was observed confirming that the DGGE-cloning approach is not obsolete. Novel protocols were created for several types of laboratories, utilizing the traditional DGGE technique or using the most modern Illumina sequencing. PMID:27338271

  7. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands

    Directory of Open Access Journals (Sweden)

    Nathan eBasiliko

    2013-07-01

    Full Text Available Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide and methane production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between mined and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and methane or carbon dioxide production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought

  8. Archaeal enrichment in the hypoxic zone in the northern Gulf of Mexico.

    Science.gov (United States)

    Gillies, Lauren E; Thrash, J Cameron; deRada, Sergio; Rabalais, Nancy N; Mason, Olivia U

    2015-10-01

    Areas of low oxygen have spread exponentially over the past 40 years, and are cited as a key stressor on coastal ecosystems. The world's second largest coastal hypoxic (≤ 2 mg of O2 l(-1)) zone occurs annually in the northern Gulf of Mexico. The net effect of hypoxia is the diversion of energy flow away from higher trophic levels to microorganisms. This energy shunt is consequential to the overall productivity of hypoxic water masses and the ecosystem as a whole. In this study, water column samples were collected at 39 sites in the nGOM, 21 of which were hypoxic. Analysis of the microbial community along a hypoxic to oxic dissolved oxygen gradient revealed that the relative abundance (iTag) of Thaumarchaeota species 16S rRNA genes (> 40% of the microbial community in some hypoxic samples), the absolute abundance (quantitative polymerase chain reaction; qPCR) of Thaumarchaeota 16S rRNA genes and archaeal ammonia-monooxygenase gene copy number (qPCR) were significantly higher in hypoxic samples. Spatial interpolation of the microbial and chemical data revealed a continuous, shelfwide band of low dissolved oxygen waters that were dominated by Thaumarchaeota (and Euryarchaeota), amoA genes and high concentrations of phosphate in the nGOM, thus implicating physicochemical forcing on microbial abundance. PMID:25818237

  9. Expanding networks of RNA virus evolution

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2012-06-01

    Full Text Available Abstract In a recent BMC Evolutionary Biology article, Huiquan Liu and colleagues report two new genomes of double-stranded RNA (dsRNA viruses from fungi and use these as a springboard to perform an extensive phylogenomic analysis of dsRNA viruses. The results support the old scenario of polyphyletic origin of dsRNA viruses from different groups of positive-strand RNA viruses and additionally reveal extensive horizontal gene transfer between diverse viruses consistent with the network-like rather than tree-like mode of viral evolution. Together with the unexpected discoveries of the first putative archaeal RNA virus and a RNA-DNA virus hybrid, this work shows that RNA viral genomics has major surprises to deliver. See research article: http://www.biomedcentral.com/1471-2148/12/91

  10. Factors affecting Archaeal Lipid Compositions of the Sulfolobus Species

    Science.gov (United States)

    He, L.; Han, J.; Wei, Y.; Lin, L.; Wei, Y.; Zhang, C.

    2010-12-01

    Temperature is the best known variable affecting the distribution of the archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) in marine and freshwater systems. Other variables such as pH, ionic strength, or bicarbonate concentration may also affect archaeal GDGTs in terrestrial systems. Studies of pure cultures can help us pinpoint the specific effects these variables may have on archaeal lipid distribution in natural environments. In this study, three Sulfolobus species (HG4, HB5-2, HB9-6) isolated from Tengchong hot springs (pH 2-3, temperature 73-90°C) in China were used to investigate the effects of temperature, pH, substrate, and type of strain on the composition of GDGTs. Results showed that increase in temperature had negative effects on the relative contents of GDGT-0 (no cyclopentyl rings), GDGT-1 (one cyclopentyl ring), GDGT-2 and GDGT-3 but positive effects on GDGT-4, GDGT-4', GDGT-5 and GDGT-5'. Increase in pH, on the other hand, had negative effects on GDGT-0, GDGT-1, GDGT-4', GDGT-5 and GDGT-5', and positive effects on GDGT-3 and GDGT-4. GDGT-2 remained relatively constant with changing pH. When the HG4 was grown on different substrates, GDGT-5 was five time more abundant in sucrose-grown cultures than in yeast extract- or sulfur- grown cultures, suggesting that carbohydrates may stimulate the production of GDGT-5. For all three species, the ring index (average number of rings) of GDGTs correlated positively with incubation temperature. In HG4, ring index was much lower at optimal pH (3.5) than at other pH values. Ring index of HB5-2 or HB9-6 is higher than that of HG4, suggesting that speciation may affect the degree of cyclization of GDGT of the Sulfolobus. These results indicate that individual archaeal lipids respond differently to changes in environmental variables, which may be also species specific.

  11. Modelling the evolution of the archaeal tryptophan synthase

    Directory of Open Access Journals (Sweden)

    Merkl Rainer

    2007-04-01

    Full Text Available Abstract Background Microorganisms and plants are able to produce tryptophan. Enzymes catalysing the last seven steps of tryptophan biosynthesis are encoded in the canonical trp operon. Among the trp genes are most frequently trpA and trpB, which code for the alpha and beta subunit of tryptophan synthase. In several prokaryotic genomes, two variants of trpB (named trpB1 or trpB2 occur in different combinations. The evolutionary history of these trpB genes is under debate. Results In order to study the evolution of trp genes, completely sequenced archaeal and bacterial genomes containing trpB were analysed. Phylogenetic trees indicated that TrpB sequences constitute four distinct groups; their composition is in agreement with the location of respective genes. The first group consisted exclusively of trpB1 genes most of which belonged to trp operons. Groups two to four contained trpB2 genes. The largest group (trpB2_o contained trpB2 genes all located outside of operons. Most of these genes originated from species possessing an operon-based trpB1 in addition. Groups three and four pertain to trpB2 genes of those genomes containing exclusively one or two trpB2 genes, but no trpB1. One group (trpB2_i consisted of trpB2 genes located inside, the other (trpB2_a of trpB2 genes located outside the trp operon. TrpA and TrpB form a heterodimer and cooperate biochemically. In order to characterise trpB variants and stages of TrpA/TrpB cooperation in silico, several approaches were combined. Phylogenetic trees were constructed for all trp genes; their structure was assessed via bootstrapping. Alternative models of trpB evolution were evaluated with parsimony arguments. The four groups of trpB variants were correlated with archaeal speciation. Several stages of TrpA/TrpB cooperation were identified and trpB variants were characterised. Most plausibly, trpB2 represents the predecessor of the modern trpB gene, and trpB1 evolved in an ancestral bacterium

  12. Archaeal ammonia oxidizers respond to soil factors at smaller spatial scales than the overall archaeal community does in a high Arctic polar oasis.

    Science.gov (United States)

    Banerjee, Samiran; Kennedy, Nabla; Richardson, Alan E; Egger, Keith N; Siciliano, Steven D

    2016-06-01

    Archaea are ubiquitous and highly abundant in Arctic soils. Because of their oligotrophic nature, archaea play an important role in biogeochemical processes in nutrient-limited Arctic soils. With the existing knowledge of high archaeal abundance and functional potential in Arctic soils, this study employed terminal restriction fragment length polymorphism (t-RFLP) profiling and geostatistical analysis to explore spatial dependency and edaphic determinants of the overall archaeal (ARC) and ammonia-oxidizing archaeal (AOA) communities in a high Arctic polar oasis soil. ARC communities were spatially dependent at the 2-5 m scale (P diversity indices of both ARC and AOA communities showed high spatial dependency along the landscape and resembled scaling of edaphic factors. The spatial link between archaeal community structure and soil resources found in this study has implications for predictive understanding of archaea-driven processes in polar oases. PMID:27045904

  13. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets

    NARCIS (Netherlands)

    Biswas, A.; Gagnon, J.N.; Brouns, S.J.J.; Fineran, P.C.; Brown, C.M.

    2013-01-01

    The bacterial and archaeal CRISPR/Cas adaptive immune system targets specific protospacer nucleotide sequences in invading organisms. This requires base pairing between processed CRISPR RNA and the target protospacer. For type I and II CRISPR/Cas systems, protospacer adjacent motifs (PAM) are essent

  14. Energy for two: New archaeal lineages and the origin of mitochondria.

    Science.gov (United States)

    Martin, William F; Neukirchen, Sinje; Zimorski, Verena; Gould, Sven B; Sousa, Filipa L

    2016-09-01

    Metagenomics bears upon all aspects of microbiology, including our understanding of mitochondrial and eukaryote origin. Recently, ribosomal protein phylogenies show the eukaryote host lineage - the archaeal lineage that acquired the mitochondrion - to branch within the archaea. Metagenomic studies are now uncovering new archaeal lineages that branch more closely to the host than any cultivated archaea do. But how do they grow? Carbon and energy metabolism as pieced together from metagenome assemblies of these new archaeal lineages, such as the Deep Sea Archaeal Group (including Lokiarchaeota) and Bathyarchaeota, do not match the physiology of any cultivated microbes. Understanding how these new lineages live in their environment is important, and might hold clues about how mitochondria arose and how the eukaryotic lineage got started. Here we look at these exciting new metagenomic studies, what they say about archaeal physiology in modern environments, how they impact views on host-mitochondrion physiological interactions at eukaryote origin. PMID:27339178

  15. Structure and cell biology of archaeal virus STIV.

    Science.gov (United States)

    Fu, Chi-yu; Johnson, Johnson E

    2012-04-01

    Recent investigations of archaeal viruses have revealed novel features of their structures and life cycles when compared to eukaryotic and bacterial viruses, yet there are structure-based unifying themes suggesting common ancestral relationships among dsDNA viruses in the three kingdoms of life. Sulfolobus solfataricus and the infecting virus Sulfolobus turreted icosahedral virus (STIV) is one of the well-established model systems to study archaeal virus replication and viral-host interactions. Reliable laboratory conditions to propagate STIV and available genetic tools allowed structural characterization of the virus and viral components that lead to the proposal of common capsid ancestry with PRD1 (bacteriophage), Adenovirus (eukaryotic virus) and PBCV (chlorellavirus). Microarray and proteomics approaches systematically analyzed viral replication and the corresponding host responses. Cellular cryo-electron tomography and thin-section EM studies uncovered the assembly and maturation pathway of STIV and revealed dramatic cellular ultra-structure changes upon infection. The viral-induced pyramid-like protrusions on cell surfaces represent a novel viral release mechanism and previously uncharacterized functions in viral replication. PMID:22482708

  16. Methanobacterium Dominates Biocathodic Archaeal Communities in Methanogenic Microbial Electrolysis Cells

    KAUST Repository

    Siegert, Michael

    2015-07-06

    © 2015 American Chemical Society. Methane is the primary end product from cathodic current in microbial electrolysis cells (MECs) in the absence of methanogenic inhibitors, but little is known about the archaeal communities that develop in these systems. MECs containing cathodes made from different materials (carbon brushes, or plain graphite blocks or blocks coated with carbon black and platinum, stainless steel, nickel, ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide) were inoculated with anaerobic digester sludge and acclimated at a set potential of -600 mV (versus a standard hydrogen electrode). The archaeal communities on all cathodes, except those coated with platinum, were predominated by Methanobacterium (median 97% of archaea). Cathodes with platinum contained mainly archaea most similar to Methanobrevibacter. Neither of these methanogens were abundant (<0.1% of archaea) in the inoculum, and therefore their high abundance on the cathode resulted from selective enrichment. In contrast, bacterial communities on the cathode were more diverse, containing primarily δ-Proteobacteria (41% of bacteria). The lack of a consistent bacterial genus on the cathodes indicated that there was no similarly selective enrichment of bacteria on the cathode. These results suggest that the genus Methanobacterium was primarily responsible for methane production in MECs when cathodes lack efficient catalysts for hydrogen gas evolution. (Figure Presented).

  17. Accurate placement of substrate RNA by Gar1 in H/ACA RNA-guided pseudouridylation.

    Science.gov (United States)

    Wang, Peng; Yang, Lijiang; Gao, Yi Qin; Zhao, Xin Sheng

    2015-09-01

    H/ACA RNA-guided ribonucleoprotein particle (RNP), the most complicated RNA pseudouridylase so far known, uses H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, L7Ae and Gar1) for pseudouridylation. Although it was shown that Gar1 not only facilitates the product release, but also enhances the catalytic activity, the chemical role that Gar1 plays in this complicated machinery is largely unknown. Kinetics measurement on Pyrococcus furiosus RNPs at different temperatures making use of fluorescence anisotropy showed that Gar1 reduces the catalytic barrier through affecting the activation entropy instead of enthalpy. Site-directed mutagenesis combined with molecular dynamics simulations demonstrated that V149 in the thumb loop of Cbf5 is critical in placing the target uridine to the right position toward catalytic D85 of Cbf5. The enzyme elegantly aligns the position of uridine in the catalytic site with the help of Gar1. In addition, conversion of uridine to pseudouridine results in a rigid syn configuration of the target nucleotide in the active site and causes Gar1 to pull out the thumb. Both factors guarantee the efficient release of the product. PMID:26206671

  18. Rapid fold and structure determination of the archaeal translation elongation factor 1β from Methanobacterium thermoautotrophicum

    International Nuclear Information System (INIS)

    The tertiary fold of the elongation factor, aEF-1β, from Methanobacterium thermoautotrophicum was determined in a high-throughput fashion using a minimal set of NMR experiments. NMR secondary structure prediction, deuterium exchange experiments and the analysis of chemical shift perturbations were combined to identify the protein fold as an alpha-beta sandwich typical of many RNA binding proteins including EF-G. Following resolution of the tertiary fold, a high resolution structure of aEF-1β was determined using heteronuclear and homonuclear NMR experiments and a semi-automated NOESY assignment strategy. Analysis of the aEF-1β structure revealed close similarity to its human analogue, eEF-1β. In agreement with studies on EF-Ts and human EF-1β, a functional mechanism for nucleotide exchange is proposed wherein Phe46 on an exposed loop acts as a lever to eject GDP from the associated elongation factor G-protein, aEF-1α. aEF-1β was also found to bind calcium in the groove between helix α2 and strand β4. This novel feature was not observed previously and may serve a structural function related to protein stability or may play a functional role in archaeal protein translation

  19. Magnetic Au Nanoparticles on Archaeal S-Layer Ghosts as Templates

    Directory of Open Access Journals (Sweden)

    Sonja Selenska-Pobell

    2011-10-01

    Full Text Available Cell‐ghosts representing empty cells of the archaeon Sulfolobus acidocaldarius, consisting only of their highly ordered and unusually stable outermost proteinaceous surface layer (S‐layer, were used as templates for Au nanoparticles fabrication. The properties of these archaeal Au nanoparticles differ significantly from those produced earlier by us onto bacterial S‐layer sheets. The archaeal Au nanoparticles, with a size of about 2.5 nm, consist exclusively of metallic Au(0, while those produced on the bacterial S‐layer had a size of about 4 nm and represented a mixture of Au(0 and Au(III in the ratio of 40 to 60 %. The most impressive feature of the archaeal Au nanoparticles is that they are strongly paramagnetic, in contrast to the bacterial ones and also to bulk gold. SQUID magnetometry and XMCD measurements demonstrated that the archaeal Au nanoparticles possess a rather large magnetic moment of about 0.1 µB/atom. HR‐ TEM‐EDX analysis revealed that the archaeal Au nanoparticles are linked to the sulfur atoms of the thiol groups of the amino acid cysteine, characteristic only for archaeal S‐layers. This is the first study demonstrating the formation of such unusually strong magnetic Au nanoparticles on a non‐modified archaeal S‐layer.

  20. Solution Structure of Pfu RPP21, a Component of the Archaeal RNase P Holoenzyme, and Interactions with its RPP29 Protein Partner

    OpenAIRE

    Amero, Carlos D; Boomershine, William P.; Xu, Yiren; Foster, Mark

    2008-01-01

    RNase P is the ubiquitous ribonucleoprotein metalloenzyme responsible for cleaving the 5′-leader sequence of precursor tRNAs during their maturation. While the RNA subunit is catalytically active on its own at high monovalent and divalent ion concentration, four proteins subunits are associated with archaeal RNase P activity in vivo: RPP21, RPP29, RPP30 and POP5. These proteins have been shown to function in pairs: RPP21-RPP29 and POP5-RPP30. We have determined the solution structure of RPP21...

  1. Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba.

    Science.gov (United States)

    Bayer, Kristina; Schmitt, Susanne; Hentschel, Ute

    2008-11-01

    The potential for nitrification in the Mediterranean sponge Aplysina aerophoba was assessed using a combined physiological and molecular approach. Nitrate excretion rates in whole sponges reached values of up to 344 nmol g(-1) dry weight (wt) h(-1) (unstimulated) and 1325 nmol g(-1) dry wt h(-1) (stimulated). Addition of nitrapyrin, a nitrification-specific inhibitor, effectively inhibited nitrate excretion. Ammonium was taken up by sponges in spring and excreted in fall, the sponges thus serving as either an ammonium sink or ammonium source. Nitrosospira cluster 1 and Crenarchaeota group I.1A 16S rRNA and amoA genes were recovered from A. aerophoba and other sponges from different world's oceans. The archaeal 16S rRNA genes formed a sponge-specific subcluster, indicating that their representatives are members of the stable microbial community of sponges. On the other hand, clustering was not evident for Nitrosospira rRNA genes which is consistent with their presence in sediment and seawater samples. The presence of both Nitrosospira cluster 1 and crenarchaeal group 1 phylotypes in sponge tissue was confirmed using fluorescently labelled 16S rRNA gene probes. This study contributes to an ongoing effort to link microbial diversity with metabolic functions in the phylogenetically diverse, elusive and so far uncultivated microbial communities of marine sponges. PMID:18363713

  2. A re-evaluation of the archaeal membrane lipid biosynthetic pathway.

    Science.gov (United States)

    Villanueva, Laura; Damsté, Jaap S Sinninghe; Schouten, Stefan

    2014-06-01

    Archaea produce unique membrane lipids in which isoprenoid alkyl chains are bound to glycerol moieties via ether linkages. As cultured representatives of the Archaea have become increasingly available throughout the past decade, archaeal genomic and membrane lipid-composition data have also become available. In this Analysis article, we compare the amino acid sequences of the key enzymes of the archaeal ether-lipid biosynthesis pathway and critically evaluate past studies on the biochemical functions of these enzymes. We propose an alternative archaeal lipid biosynthetic pathway that is based on a 'multiple-key, multiple-lock' mechanism. PMID:24801941

  3. Label-free analysis of mRNA capping efficiency using RNase H probes and LC-MS.

    Science.gov (United States)

    Beverly, Michael; Dell, Amy; Parmar, Parul; Houghton, Leslie

    2016-07-01

    A label-free method for determining the 5'-end cap identity and orientation of a messenger RNA (mRNA) is described. Biotin-tagged probes that were complementary to the 5' end of target mRNA were used with RNase H to cleave the 5' end of the mRNA. The cleaved end sequence was isolated using streptavidin-coated magnetic beads and then analyzed by LC-MS. Quantitative and qualitative information on the 5' cap was determined from the unique mass of the isolated cleaved sequence. This approach, combined with the use of 5' RNA pyrophosphohydrolase, was also used to ascertain the orientation of the 5' cap. The assay showed low-picomole sensitivity for detecting capping reaction impurities. Uncapped triphosphate mRNA, spiked into 100 pmol of capped mRNA, could be detected over the tested range of 0.5 to 25 % with a linear response. The capping efficiency of several vaccinia-capped mRNA preparations was determined to be between 88 and 98 % depending on the modification type and length of the mRNA. mRNA of 2.2K and 9K nucleotides in length and containing the modified nucleotides pseudouridine and 5-methylcytidine were all successfully analyzed, demonstrating the utility of the technique to study mRNA capping. Graphical abstract mRNA 5' end analysis with RNAse H cleavage and capture probe. PMID:27193635

  4. Archaeal promoter architecture and mechanism of gene activation.

    Science.gov (United States)

    Peng, Nan; Ao, Xiang; Liang, Yun Xiang; She, Qunxin

    2011-01-01

    Sulfolobus solfataricus and Sulfolobus islandicus contain several genes exhibiting D-arabinose-inducible expression and these systems are ideal for studying mechanisms of archaeal gene expression. At sequence level, only two highly conserved cis elements are present on the promoters: a regulatory element named ara box directing arabinose-inducible expression and the basal promoter element TATA, serving as the binding site for the TATA-binding protein. Strikingly, these promoters possess a modular structure that allows an essentially inactive basal promoter to be strongly activated. The invoked mechanisms include TFB (transcription factor B) recruitment by the ara-box-binding factor to activate gene expression and modulation of TFB recruitment efficiency to yield differential gene expression. PMID:21265754

  5. Useful scars: Physics of the capsids of archaeal viruses

    Science.gov (United States)

    Perotti, L. E.; Dharmavaram, S.; Klug, W. S.; Marian, J.; Rudnick, J.; Bruinsma, R. F.

    2016-07-01

    We propose a physical model for the capsids of tailed archaeal viruses as viscoelastic membranes under tension. The fluidity is generated by thermal motion of scarlike structures that are an intrinsic feature of the ground state of large particle arrays covering surfaces with nonzero Gauss curvature. The tension is generated by a combination of the osmotic pressure of the enclosed genome and an extension force generated by filamentous structure formation that drives the formation of the tails. In continuum theory, the capsid has the shape of a surface of constant mean curvature: an unduloid. Particle arrays covering unduloids are shown to exhibit pronounced subdiffusive and diffusive single-particle transport at temperatures that are well below the melting temperature of defect-free particle arrays on a surface with zero Gauss curvature.

  6. Structural and Functional Characterization of an Archaeal Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated Complex for Antiviral Defense (CASCADE)

    DEFF Research Database (Denmark)

    Lintner, Nathanael G; Kerou, Melina; Brumfield, Susan K;

    2011-01-01

    In response to viral infection, many prokaryotes incorporate fragments of virus-derived DNA into loci called clustered regularly interspaced short palindromic repeats (CRISPRs). The loci are then transcribed, and the processed CRISPR transcripts are used to target invading viral DNA and RNA. The...... Escherichia coli "CRISPR-associated complex for antiviral defense" (CASCADE) is central in targeting invading DNA. Here we report the structural and functional characterization of an archaeal CASCADE (aCASCADE) from Sulfolobus solfataricus. Tagged Csa2 (Cas7) expressed in S. solfataricus co-purifies with Cas5......a-, Cas6-, Csa5-, and Cas6-processed CRISPR-RNA (crRNA). Csa2, the dominant protein in aCASCADE, forms a stable complex with Cas5a. Transmission electron microscopy reveals a helical complex of variable length, perhaps due to substoichiometric amounts of other CASCADE components. A recombinant Csa2...

  7. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia

    Science.gov (United States)

    Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by py...

  8. The essence of being extremophilic : the role of the unique archaeal membrane lipids

    NARCIS (Netherlands)

    Vossenberg, Jack L.C.M. van de; Driessen, Arnold J.M.; Konings, Wil N.

    1998-01-01

    In extreme environments, mainly Archaea are encountered. The archaeal cytoplasmic membrane contains unique ether lipids that cannot easily be degraded, are temperature- and mechanically resistant, and highly salt tolerant. Moreover, thermophilic and extreme acidophilic Archaea possess membrane-spann

  9. Effect of soil properties and hydrology on Archaeal community composition in three temperate grasslands on peat

    DEFF Research Database (Denmark)

    Görres, Carolyn-Monika; Conrad, Ralf; Petersen, Søren O

    2013-01-01

    Grasslands established on drained peat soils are regarded as negligible methane (CH4) sources; however, they can still exhibit considerable soil CH4 dynamics. We investigated archaeal community composition in two different fen peat soils and one bog peat soil under permanent grassland in Denmark....... We used terminal restriction fragment length polymorphism (T-RFLP) fingerprinting and clone libraries to characterize the soils' archaeal community composition to gain a better understanding of relationships between peat properties and land use, respectively, and CH4 dynamics. Samples were taken...... at three different depths and at four different seasons. Archaeal community composition varied considerably between the three peatlands and, to a certain degree, also with peat depth, but seemed to be quite stable at individual sampling depths throughout the year. Archaeal community composition was mainly...

  10. YbeA is the m3Psi methyltransferase RlmH that targets nucleotide 1915 in 23S rRNA

    DEFF Research Database (Denmark)

    Purta, Elzbieta; Kaminska, Katarzyna H; Kasprzak, Joanna M;

    2008-01-01

    Pseudouridines in the stable RNAs of Bacteria are seldom subjected to further modification. There are 11 pseudouridine (Psi) sites in Escherichia coli rRNA, and further modification is found only at Psi1915 in 23S rRNA, where the N-3 position of the base becomes methylated. Here, we report the...... identity of the E. coli methyltransferase that specifically catalyzes methyl group addition to form m(3)Psi1915. Analyses of E. coli rRNAs using MALDI mass spectrometry showed that inactivation of the ybeA gene leads to loss of methylation at nucleotide Psi1915. Methylation is restored by complementing the...... knockout strain with a plasmid-encoded copy of ybeA. Homologs of the ybeA gene, and thus presumably the ensuing methylation at nucleotide m(3)Psi1915, are present in most bacterial lineages but are essentially absent in the Archaea and Eukaryota. Loss of ybeA function in E. coli causes a slight slowing of...

  11. Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR

    KAUST Repository

    Bayer, Kristina

    2014-07-09

    In spite of considerable insights into the microbial diversity of marine sponges, quantitative information on microbial abundances and community composition remains scarce. Here, we established qPCR assays for the specific quantification of four bacterial phyla of representative sponge symbionts as well as the kingdoms Eubacteria and Archaea. We could show that the 16S rRNA gene numbers of Archaea, Chloroflexi, and the candidate phylum Poribacteria were 4-6 orders of magnitude higher in high microbial abundance (HMA) than in low microbial abundance (LMA) sponges and that actinobacterial 16S rRNA gene numbers were 1-2 orders higher in HMA over LMA sponges, while those for Cyanobacteria were stable between HMA and LMA sponges. Fluorescence in situ hybridization of Aplysina aerophoba tissue sections confirmed the numerical dominance of Chloroflexi, which was followed by Poribacteria. Archaeal and actinobacterial cells were detected in much lower numbers. By use of fluorescence-activated cell sorting as a primer- and probe-independent approach, the dominance of Chloroflexi, Proteobacteria, and Poribacteria in A. aerophoba was confirmed. Our study provides new quantitative insights into the microbiology of sponges and contributes to a better understanding of the HMA/LMA dichotomy. The authors quantified sponge symbionts in eight sponge species from three different locations by real time PCR targetting 16S rRNA genes. Additionally, FISH was performed and diversity and abundance of singularized microbial symbionts from Aplysina aerophoba was determined for a comprehensive quantification work. © 2014 Federation of European Microbiological Societies.

  12. Methanogenic pathway and archaeal communities in three different anoxic soils amended with rice straw and maize straw

    Directory of Open Access Journals (Sweden)

    RalfConrad

    2012-01-01

    Full Text Available Addition of straw is common practice in rice agriculture, but its effect on the path of microbial CH4 production and the microbial community involved is not well known. Since straw from rice (C3 plant and maize plants (C4 plant exhibit different δ13C values, we compared the effect of these straw types using anoxic rice field soils from Italy and China, and also a soil from Thailand that had previously not been flooded. The temporal patterns of production of CH4 and its major substrates H2 and acetate, were slightly different between rice straw and maize straw. Addition of methyl fluoride, an inhibitor of aceticlastic methanogenesis, resulted in partial inhibition of acetate consumption and CH4 production. The δ13C of the accumulated CH4 and acetate reflected the different δ13C values of rice straw versus maize straw. However, the relative contribution of hydrogenotrophic methanogenesis to total CH4 production exhibited a similar temporal change when scaled to CH4 production irrespectively of whether rice straw or maize straw was applied. The composition of the methanogenic archaeal communities was characterized by terminal restriction fragment length polymorphism (T-RFLP analysis and was quantified by quantitative PCR (qPCR targeting archaeal 16S rRNA genes or methanogenic mcrA genes.. The size of the methanogenic communities generally increased during incubation with straw, but the straw type had little effect. Instead, differences were found between the soils, with Methanosarcinaceae and Methanobacteriales dominating straw decomposition in Italian soil, Methanosarcinaceae, Methanocellales, and Methanobacteriale in China soil, and Methanosarcinaceae and Methanocellales in Thailand soil. The experiments showed that methanogenic degradation in different soils involved different methanogenic population dynamics. However, the path of CH4 production was hardly different between degradation of rice straw versus maize straw and was also similar for

  13. Soil bacterial and archaeal communities of the Stringer Creek Watershed in relation to soil moisture, chemistry, and gas fluxes

    Science.gov (United States)

    Jones, R. T.; Du, Z.; Riveros-Iregui, D.; Dore, J. E.; Emanuel, R. E.; McGlynn, B. L.; McDermott, T.; Li, X.

    2013-12-01

    The Stringer Creek watershed within the Tenderfoot Creek Experimental Forest (Montana) is a highly instrumented watershed with long-term hydrologic and gas flux measurements, and is an ideal study system to incorporate microbiological characterizations into landscape scale hydrological and biogeochemical studies. As a first attempt to determine how hydrological processes, soil chemistry, and gas fluxes are correlated with bacterial and archaeal lineages in soil, we collected soil samples across the watershed (July 9 - 11, 2012) and used barcoded high-throughput DNA sequencing to characterize the bacterial and archaeal communities. Soils were collected adjacent to gas well sites at 5 cm, 20 cm, and 50 cm depths, corresponding to the depths of the wells. Gas measurements included CO2, CH4, O2, and N2O; soil measurements included water content, % carbon, and % nitrogen. We analyzed 775,000 16S rRNA gene sequences from 28 soil samples. Relative abundances of certain microbial lineages or groups (e.g. methanotrophs, methanogens, Acidobacteria, Bacteroidetes, Firmicutes, Proteobacteria, etc.) varied significantly with CO2, CH4, and O2 concentrations. Furthermore, beta-diversity analyses showed that microbial community composition was significantly governed by water content, % nitrogen, and % carbon; community composition also significantly varied with CO2, CH4, and O2 concentrations. Together, our results suggest that soil environmental factors such as water content, % carbon, and % nitrogen affect microbial community composition, and that microbial community composition correlates with CO2, O2, and CH4 concentrations. Future work will focus on characterizing microbial communities across the entire summer season as soil conditions drastically change from fully saturated to very dry.

  14. Buccal swabbing as a noninvasive method to determine bacterial, archaeal, and eukaryotic microbial community structures in the rumen.

    Science.gov (United States)

    Kittelmann, Sandra; Kirk, Michelle R; Jonker, Arjan; McCulloch, Alan; Janssen, Peter H

    2015-11-01

    Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants. PMID:26276109

  15. Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables.

    Science.gov (United States)

    Xie, Wei; Zhang, Chuanlun L; Wang, Jinxiang; Chen, Yufei; Zhu, Yuanqing; de la Torre, José R; Dong, Hailiang; Hartnett, Hilairy E; Hedlund, Brian P; Klotz, Martin G

    2015-05-01

    Archaea can respond to changes in the environment by altering the composition of their membrane lipids, for example, by modification of the abundance and composition of glycerol dialkyl glycerol tetraethers (GDGTs). Here, we investigated the abundance and proportions of polar GDGTs (P-GDGTs) and core GDGTs (C-GDGTs) sampled in different seasons from Tengchong hot springs (Yunnan, China), which encompassed a pH range of 2.5-10.1 and a temperature range of 43.7-93.6°C. The phylogenetic composition of the archaeal community (reanalysed from published work) divided the Archaea in spring sediment samples into three major groups that corresponded with spring pH: acidic, circumneutral and alkaline. Cluster analysis showed correlation between spring pH and the composition of P- and C-GDGTs and archaeal 16S rRNA genes, indicating an intimate link between resident Archaea and the distribution of P- and C-GDGTs in Tengchong hot springs. The distribution of GDGTs in Tengchong springs was also significantly affected by temperature; however, the relationship was weaker than with pH. Analysis of published datasets including samples from Tibet, Yellowstone and the US Great Basin hot springs revealed a similar relationship between pH and GDGT content. Specifically, low pH springs had higher concentrations of GDGTs with high numbers of cyclopentyl rings than neutral and alkaline springs, which is consistent with the predominance of high cyclopentyl ring-characterized Sulfolobales and Thermoplasmatales present in some of the low pH springs. Our study suggests that the resident Archaea in these hot springs are acclimated if not adapted to low pH by their genetic capacity to effect the packing density of their membranes by increasing cyclopentyl rings in GDGTs at the rank of community. PMID:25142282

  16. Archaeal diversity and the extent of iron and manganese pyritization in sediments from a tropical mangrove creek (Cardoso Island, Brazil)

    Science.gov (United States)

    Otero, X. L.; Lucheta, A. R.; Ferreira, T. O.; Huerta-Díaz, M. A.; Lambais, M. R.

    2014-06-01

    Even though several studies on the geochemical processes occurring in mangrove soils and sediments have been performed, information on the diversity of Archaea and their functional roles in these ecosystems, especially in subsurface environments, is scarce. In this study, we have analyzed the depth distribution of Archaea and their possible relationships with the geochemical transformations of Fe and Mn in a sediment core from a tropical mangrove creek, using 16S rRNA gene profiling and sequential extraction of different forms of Fe and Mn. A significant shift in the archaeal community structure was observed in the lower layers (90-100 cm), coinciding with a clear decrease in total organic carbon (TOC) content and an increase in the percentage of sand. The comparison of the archaeal communities showed a dominance of methanogenic Euryarchaeota in the upper layers (0-20 cm), whereas Crenarchaeota was the most abundant taxon in the lower layers. The dominance of methanogenic Euryarchaeota in the upper layer of the sediment suggests the occurrence of methanogenesis in anoxic microenvironments. The concentrations of Fe-oxyhydroxides in the profile were very low, and showed positive correlation with the concentrations of pyrite and degrees of Fe and Mn pyritization. Additionally, a partial decoupling of pyrite formation from organic matter concentration was observed, suggesting excessive Fe pyritization. This overpyritization of Fe can be explained either by the anoxic oxidation of methane by sulfate and/or by detrital pyrite tidal transportation from the surrounding mangrove soils. The higher pyritization levels observed in deeper layers of the creek sediment were also in agreement with its Pleistocenic origin.

  17. Analysis of Bacterial and Archaeal Communities along a High-Molecular-Weight Polyacrylamide Transportation Pipeline System in an Oil Field

    Directory of Open Access Journals (Sweden)

    Cai-Yun Li

    2015-04-01

    Full Text Available Viscosity loss of high-molecular-weight partially hydrolyzed polyacrylamide (HPAM solution was observed in a water injection pipeline before being injected into subterranean oil wells. In order to investigate the possible involvement of microorganisms in HPAM viscosity loss, both bacterial and archaeal community compositions of four samples collected from different points of the transportation pipeline were analyzed using PCR-amplification of the 16S rRNA gene and clone library construction method together with the analysis of physicochemical properties of HPAM solution and environmental factors. Further, the relationship between environmental factors and HPAM properties with microorganisms were delineated by canonical correspondence analysis (CCA. Diverse bacterial and archaeal groups were detected in the four samples. The microbial community of initial solution S1 gathered from the make-up tank is similar to solution S2 gathered from the first filter, and that of solution S3 obtained between the first and the second filter is similar to that of solution S4 obtained between the second filter and the injection well. Members of the genus Acinetobacter sp. were detected with high abundance in S3 and S4 in which HPAM viscosity was considerably reduced, suggesting that they likely played a considerable role in HPAM viscosity loss. This study presents information on microbial community diversity in the HPAM transportation pipeline and the possible involvement of microorganisms in HPAM viscosity loss and biodegradation. The results will help to understand the microbial community contribution made to viscosity change and are beneficial for providing information for microbial control in oil fields.

  18. tRNA binding properties of eukaryotic translation initiation factor 2 from Encephalitozoon cuniculi.

    Science.gov (United States)

    Naveau, Marie; Lazennec-Schurdevin, Christine; Panvert, Michel; Mechulam, Yves; Schmitt, Emmanuelle

    2010-10-12

    A critical consequence of the initiation of translation is the setting of the reading frame for mRNA decoding. In eukaryotic and archaeal cells, heterotrimeric initiation factor e/aIF2, in its GTP form, specifically binds Met-tRNA(i)(Met) throughout the translation initiation process. After start codon recognition, the factor, in its GDP-bound form, loses affinity for Met-tRNA(i)(Met) and eventually dissociates from the initiation complex. The role of each aIF2 subunit in tRNA binding has been extensively studied in archaeal systems. The isolated archaeal γ subunit is able to bind tRNA, but the α subunit is required for strong binding. Until now, difficulties during purification have hampered the study of the role of each of the three subunits of eukaryotic eIF2 in specific binding of the initiator tRNA. Here, we have produced the three subunits of eIF2 from Encephalitozoon cuniculi, isolated or assembled into heterodimers or into the full heterotrimer. Using assays following protection of Met-tRNA(i)(Met) against deacylation, we show that the eukaryotic γ subunit is able to bind by itself the initiator tRNA. However, the two peripheral α and β subunits are required for strong binding and contribute equally to tRNA binding affinity. The core domains of α and β probably act indirectly by stabilizing the tRNA binding site on the γ subunit. These results, together with those previously obtained with archaeal aIF2 and yeast eIF2, show species-specific distributions of the roles of the peripheral subunits of e/aIF2 in tRNA binding. PMID:20822097

  19. Temperature increases from 55 to 75 C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure

    Energy Technology Data Exchange (ETDEWEB)

    Rademacher, Antje [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. Bioverfahrenstechnik; Technische Univ. Berlin (Germany). Inst. fuer Technischen Umweltschutz; Nolte, Christine; Schoenberg, Mandy; Klocke, Michael [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. Bioverfahrenstechnik

    2012-10-15

    Agricultural biogas plants were operated in most cases below their optimal performance. An increase in the fermentation temperature and a spatial separation of hydrolysis/acetogenesis and methanogenesis are known strategies in improving and stabilizing biogas production. In this study, the dynamic variability of the bacterial and archaeal community was monitored within a two-phase leach bed biogas reactor supplied with rye silage and straw during a stepwise temperature increase from 55 to 75 C within the leach bed reactor (LBR), using TRFLP analyses. To identify the terminal restriction fragments that were obtained, bacterial and archaeal 16S rRNA gene libraries were constructed. Above 65 C, the bacterial community structure changed from being Clostridiales-dominated toward being dominated by members of the Bacteroidales, Clostridiales, and Thermotogales orders. Simultaneously, several changes occurred, including a decrease in the total cell count, degradation rate, and biogas yield along with alterations in the intermediate production. A bioaugmentation with compost at 70 C led to slight improvements in the reactor performance; these did not persist at 75 C. However, the archaeal community within the downstream anaerobic filter reactor (AF), operated constantly at 55 C, altered by the temperature increase in the LBR. At an LBR temperature of 55 C, members of the Methanobacteriales order were prevalent in the AF, whereas at higher LBR temperatures Methanosarcinales prevailed. Altogether, the best performance of this two-phase reactor was achieved at an LBR temperature of below 65 C, which indicates that this temperature range has a favorable effect on the microbial community responsible for the production of biogas. (orig.)

  20. Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR.

    Science.gov (United States)

    Bayer, Kristina; Kamke, Janine; Hentschel, Ute

    2014-09-01

    In spite of considerable insights into the microbial diversity of marine sponges, quantitative information on microbial abundances and community composition remains scarce. Here, we established qPCR assays for the specific quantification of four bacterial phyla of representative sponge symbionts as well as the kingdoms Eubacteria and Archaea. We could show that the 16S rRNA gene numbers of Archaea, Chloroflexi, and the candidate phylum Poribacteria were 4-6 orders of magnitude higher in high microbial abundance (HMA) than in low microbial abundance (LMA) sponges and that actinobacterial 16S rRNA gene numbers were 1-2 orders higher in HMA over LMA sponges, while those for Cyanobacteria were stable between HMA and LMA sponges. Fluorescence in situ hybridization of Aplysina aerophoba tissue sections confirmed the numerical dominance of Chloroflexi, which was followed by Poribacteria. Archaeal and actinobacterial cells were detected in much lower numbers. By use of fluorescence-activated cell sorting as a primer- and probe-independent approach, the dominance of Chloroflexi, Proteobacteria, and Poribacteria in A. aerophoba was confirmed. Our study provides new quantitative insights into the microbiology of sponges and contributes to a better understanding of the HMA/LMA dichotomy. PMID:24942664

  1. Human settlement as driver of bacterial, but not of archaeal, ammonia oxidizers abundance and community structure in tropical stream sediments

    Directory of Open Access Journals (Sweden)

    Mariana De Paula Reis

    2015-08-01

    Full Text Available Ammonia-oxidizing archaea (AOA and bacteria (AOB are a diverse and functionally important group in the nitrogen cycle. Nevertheless, AOA and AOB communities driving this process remain uncharacterized in tropical freshwater sediment. Here, the effect of human settlement on the AOA and AOB diversity and abundance have been assessed by phylogenetic and quantitative PCR analyses, using archaeal and bacterial amoA and 16S rRNA genes. Overall, each environment contained specific clades of amoA and 16S rRNA genes sequences, suggesting that selective pressures lead to AOA and AOB inhabiting distinct ecological niches. Human settlement activities, as derived from increased metal and mineral nitrogen contents, appear to cause a response among the AOB community, with Nitrosomonas taking advantage over Nitrosospira in impacted environments. We also observed a dominance of AOB over AOA in mining-impacted sediments, suggesting that AOB might be the primary drivers of ammonia oxidation in these sediments. In addition, ammonia concentrations demonstrated to be the driver for the abundance of AOA, with an inversely proportional correlation between them. Our findings also revealed the presence of novel ecotypes of Thaumarchaeota, such as those related to the obligate acidophilic Nitrosotalea devanaterra at ammonia-rich places of circumneutral pH. These data add significant new information regarding AOA and AOB from tropical freshwater sediments, albeit future studies would be required to provide additional insights into the niche differentiation among these microorganisms.

  2. Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic.

    Science.gov (United States)

    Cameron, Karen A; Hodson, Andrew J; Osborn, A Mark

    2012-11-01

    The cryosphere presents some of the most challenging conditions for life on earth. Nevertheless, (micro)biota survive in a range of niches in glacial systems, including water-filled depressions on glacial surfaces termed cryoconite holes (centimetre to metre in diameter and up to 0.5 m deep) that contain dark granular material (cryoconite). In this study, the structure of bacterial and eukaryotic cryoconite communities from ten different locations in the Arctic and Antarctica was compared using T-RFLP analysis of rRNA genes. Community structure varied with geography, with greatest differences seen between communities from the Arctic and the Antarctic. DNA sequencing of rRNA genes revealed considerable diversity, with individual cryoconite hole communities containing between six and eight bacterial phyla and five and eight eukaryotic 'first-rank' taxa and including both bacterial and eukaryotic photoautotrophs. Bacterial Firmicutes and Deltaproteobacteria and Epsilonproteobacteria, eukaryotic Rhizaria, Haptophyta, Choanomonada and Centroheliozoa, and archaea were identified for the first time in cryoconite ecosystems. Archaea were only found within Antarctic locations, with the majority of sequences (77%) related to members of the Thaumarchaeota. In conclusion, this research has revealed that Antarctic and Arctic cryoconite holes harbour geographically distinct highly diverse communities and has identified hitherto unknown bacterial, eukaryotic and archaeal taxa, therein. PMID:22168226

  3. Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways.

    Science.gov (United States)

    Gietl, Andreas; Holzmeister, Phil; Blombach, Fabian; Schulz, Sarah; von Voithenberg, Lena Voith; Lamb, Don C; Werner, Finn; Tinnefeld, Philip; Grohmann, Dina

    2014-06-01

    During transcription initiation, the promoter DNA is recognized and bent by the basal transcription factor TATA-binding protein (TBP). Subsequent association of transcription factor B (TFB) with the TBP-DNA complex is followed by the recruitment of the ribonucleic acid polymerase resulting in the formation of the pre-initiation complex. TBP and TFB/TF(II)B are highly conserved in structure and function among the eukaryotic-archaeal domain but intriguingly have to operate under vastly different conditions. Employing single-pair fluorescence resonance energy transfer, we monitored DNA bending by eukaryotic and archaeal TBPs in the absence and presence of TFB in real-time. We observed that the lifetime of the TBP-DNA interaction differs significantly between the archaeal and eukaryotic system. We show that the eukaryotic DNA-TBP interaction is characterized by a linear, stepwise bending mechanism with an intermediate state distinguished by a distinct bending angle. TF(II)B specifically stabilizes the fully bent TBP-promoter DNA complex and we identify this step as a regulatory checkpoint. In contrast, the archaeal TBP-DNA interaction is extremely dynamic and TBP from the archaeal organism Sulfolobus acidocaldarius strictly requires TFB for DNA bending. Thus, we demonstrate that transcription initiation follows diverse pathways on the way to the formation of the pre-initiation complex. PMID:24744242

  4. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

    NARCIS (Netherlands)

    Frade, P.R.; Roll, K.; Bergauer, K.; Herndl, G.

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associatedwith the surface mucus layer of corals have rarely taken place. It has thereforeremained enigmatic whether mucus-associated archaeal and bacterial communities exhibita similar specificity towards coral hosts a

  5. Free energy simulations of a GTPase: GTP and GDP binding to archaeal initiation factor 2.

    Science.gov (United States)

    Satpati, Priyadarshi; Clavaguéra, Carine; Ohanessian, Gilles; Simonson, Thomas

    2011-05-26

    Archaeal initiation factor 2 (aIF2) is a protein involved in the initiation of protein biosynthesis. In its GTP-bound, "ON" conformation, aIF2 binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, "OFF" conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and its dependence on the ON or OFF conformational state of aIF2, molecular dynamics free energy simulations (MDFE) are a tool of choice. However, the validity of the computed free energies depends on the simulation model, including the force field and the boundary conditions, and on the extent of conformational sampling in the simulations. aIF2 and other GTPases present specific difficulties; in particular, the nucleotide ligand coordinates a divalent Mg(2+) ion, which can polarize the electronic distribution of its environment. Thus, a force field with an explicit treatment of electronic polarizability could be necessary, rather than a simpler, fixed charge force field. Here, we begin by comparing a fixed charge force field to quantum chemical calculations and experiment for Mg(2+):phosphate binding in solution, with the force field giving large errors. Next, we consider GTP and GDP bound to aIF2 and we compare two fixed charge force fields to the recent, polarizable, AMOEBA force field, extended here in a simple, approximate manner to include GTP. We focus on a quantity that approximates the free energy to change GTP into GDP. Despite the errors seen for Mg(2+):phosphate binding in solution, we observe a substantial cancellation of errors when we compare the free energy change in the protein to that in solution, or when we compare the protein ON and OFF states. Finally, we have used the fixed charge force field to perform MDFE simulations and alchemically transform GTP into GDP in the protein and in solution. With a total of about 200 ns of molecular dynamics, we obtain good convergence and a reasonable statistical uncertainty, comparable to the force

  6. Liquid but Durable: Molecular Dynamics Simulations Explain the Unique Properties of Archaeal-Like Membranes

    Science.gov (United States)

    Chugunov, Anton O.; Volynsky, Pavel E.; Krylov, Nikolay A.; Boldyrev, Ivan A.; Efremov, Roman G.

    2014-12-01

    Archaeal plasma membranes appear to be extremely durable and almost impermeable to water and ions, in contrast to the membranes of Bacteria and Eucaryota. Additionally, they remain liquid within a temperature range of 0-100°C. These are the properties that have most likely determined the evolutionary fate of Archaea, and it may be possible for bionanotechnology to adopt these from nature. In this work, we use molecular dynamics simulations to assess at the atomistic level the structure and dynamics of a series of model archaeal membranes with lipids that have tetraether chemical nature and ``branched'' hydrophobic tails. We conclude that the branched structure defines dense packing and low water permeability of archaeal-like membranes, while at the same time ensuring a liquid-crystalline state, which is vital for living cells. This makes tetraether lipid systems promising in bionanotechnology and material science, namely for design of new and unique membrane nanosystems.

  7. Solution Structure of Pfu RPP21, a Component of the Archaeal RNase P Holoenzyme, and Interactions with its RPP29 Protein Partner

    Science.gov (United States)

    Amero, Carlos D; Boomershine, William P; Xu, Yiren; Foster, Mark

    2009-01-01

    RNase P is the ubiquitous ribonucleoprotein metalloenzyme responsible for cleaving the 5′-leader sequence of precursor tRNAs during their maturation. While the RNA subunit is catalytically active on its own at high monovalent and divalent ion concentration, four proteins subunits are associated with archaeal RNase P activity in vivo: RPP21, RPP29, RPP30 and POP5. These proteins have been shown to function in pairs: RPP21-RPP29 and POP5-RPP30. We have determined the solution structure of RPP21 from the hyperthermophilic archaeon Pyrococcus furiosus (Pfu) using conventional and paramagnetic NMR techniques. Pfu RPP21 in solution consists of an unstructured N-terminus, two alpha helices, a zinc binding motif, and an unstructured C-terminus. Moreover, we have used chemical shift perturbations to characterize the interaction of RPP21 with Pfu RPP29. The data show that the primary contact with RPP29 is localized to the two helices of RPP21. This information represents a fundamental step towards understanding structure-function relationships of the archaeal RNase P holoenzyme. PMID:18922021

  8. Solution structure of Pyrococcus furiosus RPP21, a component of the archaeal RNase P holoenzyme, and interactions with its RPP29 protein partner.

    Science.gov (United States)

    Amero, Carlos D; Boomershine, William P; Xu, Yiren; Foster, Mark

    2008-11-11

    RNase P is the ubiquitous ribonucleoprotein metalloenzyme responsible for cleaving the 5'-leader sequence of precursor tRNAs during their maturation. While the RNA subunit is catalytically active on its own at high monovalent and divalent ion concentrations, four protein subunits are associated with archaeal RNase P activity in vivo: RPP21, RPP29, RPP30, and POP5. These proteins have been shown to function in pairs: RPP21-RPP29 and POP5-RPP30. We have determined the solution structure of RPP21 from the hyperthermophilic archaeon Pyrococcus furiosus ( Pfu) using conventional and paramagnetic NMR techniques. Pfu RPP21 in solution consists of an unstructured N-terminus, two alpha-helices, a zinc binding motif, and an unstructured C-terminus. Moreover, we have used chemical shift perturbations to characterize the interaction of RPP21 with RPP29. The data show that the primary contact with RPP29 is localized to the two helices of RPP21. This information represents a fundamental step toward understanding structure-function relationships of the archaeal RNase P holoenzyme. PMID:18922021

  9. Effects of Diets Supplemented with Ensiled Mulberry Leaves and Sun-Dried Mulberry Fruit Pomace on the Ruminal Bacterial and Archaeal Community Composition of Finishing Steers

    Science.gov (United States)

    Niu, Yuhong; Meng, Qingxiang; Li, Shengli; Ren, Liping; Zhou, Bo; Schonewille, Thomas; Zhou, Zhenming

    2016-01-01

    This study investigated the effects of ensiled mulberry leaves (EML) and sun-dried mulberry fruit pomace (SMFP) on the ruminal bacterial and archaeal community composition of finishing steers. Corn grain- and cotton meal-based concentrate was partially replaced with EML or SMFP. The diets had similar crude protein (CP), neutral detergent fiber (NDF), and metabolizable energy. Following the feeding trial, the steers were slaughtered and ruminal liquid samples were collected to study the ruminal microbiome. Extraction of DNA, amplification of the V4 region of the 16S rRNA gene, and Illumina MiSeq pyrosequencing were performed for each sample. Following sequence de-noising, chimera checking, and quality trimming, an average of 209,610 sequences were generated per sample. Quantitative real-time PCR was performed to examine the selected bacterial species in the rumen. Our results showed that the predominant phyla were Bacteroidetes (43.90%), Firmicutes (39.06%), Proteobacteria (4.31%), and Tenericutes (2.04%), and the predominant genera included Prevotella (13.82%), Ruminococcus (2.51%), Butyrivibrio (2.38%), and Succiniclasticum (2.26%). Compared to the control group, EML and SMFP groups had a higher abundance of total bacteria (p supplementation had no significant effects on the ruminal bacterial or archaeal community composition of finishing steers. PMID:27258373

  10. Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase

    Directory of Open Access Journals (Sweden)

    Dugas Sandra L

    2003-07-01

    Full Text Available Abstract Background The ars gene system provides arsenic resistance for a variety of microorganisms and can be chromosomal or plasmid-borne. The arsC gene, which codes for an arsenate reductase is essential for arsenate resistance and transforms arsenate into arsenite, which is extruded from the cell. A survey of GenBank shows that arsC appears to be phylogenetically widespread both in organisms with known arsenic resistance and those organisms that have been sequenced as part of whole genome projects. Results Phylogenetic analysis of aligned arsC sequences shows broad similarities to the established 16S rRNA phylogeny, with separation of bacterial, archaeal, and subsequently eukaryotic arsC genes. However, inconsistencies between arsC and 16S rRNA are apparent for some taxa. Cyanobacteria and some of the γ-Proteobacteria appear to possess arsC genes that are similar to those of Low GC Gram-positive Bacteria, and other isolated taxa possess arsC genes that would not be expected based on known evolutionary relationships. There is no clear separation of plasmid-borne and chromosomal arsC genes, although a number of the Enterobacteriales (γ-Proteobacteria possess similar plasmid-encoded arsC sequences. Conclusion The overall phylogeny of the arsenate reductases suggests a single, early origin of the arsC gene and subsequent sequence divergence to give the distinct arsC classes that exist today. Discrepancies between 16S rRNA and arsC phylogenies support the role of horizontal gene transfer (HGT in the evolution of arsenate reductases, with a number of instances of HGT early in bacterial arsC evolution. Plasmid-borne arsC genes are not monophyletic suggesting multiple cases of chromosomal-plasmid exchange and subsequent HGT. Overall, arsC phylogeny is complex and is likely the result of a number of evolutionary mechanisms.

  11. Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separation

    Directory of Open Access Journals (Sweden)

    Roy Edward Price

    2013-07-01

    Full Text Available Phase separation is a ubiquitous process in seafloor hydrothermal vents, creating a large range of salinities. Toxic elements (e.g., arsenic partition into the vapor phase, and thus can be enriched in both high and low salinity fluids. However, investigations of microbial diversity at sites associated with phase separation are rare. We evaluated prokaryotic diversity in arsenic-rich shallow-sea vents off Milos Island (Greece by comparative analysis of 16S rRNA clone sequences from two vent sites with similar pH and temperature but marked differences in salinity. Clone sequences were also obtained for aioA-like functional genes (AFGs. Bacteria in the surface sediments (0 to 1.5 cm at the high salinity site consisted of mainly Epsilonproteobacteria (Arcobacter sp., which transitioned to almost exclusively Firmicutes (Bacillus sp. at ~10 cm depth. However, the low salinity site consisted of Bacteroidetes (Flavobacteria in the surface and Epsilonproteobacteria (Arcobacter sp. at ~10 cm depth. Archaea in the high salinity surface sediments were dominated by the orders Archaeoglobales and Thermococcales, transitioning to Thermoproteales and Desulfurococcales (Staphylothermus sp. in the deeper sediments. In contrast, the low salinity site was dominated by Thermoplasmatales in the surface and Thermoproteales at depth. Similarities in gas and redox chemistry suggest that salinity and/or arsenic concentrations may select for microbial communities that can tolerate these parameters. Many of the archaeal 16S rRNA sequences contained inserts, possibly introns, including members of the Euryarchaeota. Clones containing AFGs affiliated with either Alpha- or Betaproteobacteria, although most were only distantly related to published representatives. Most clones (89% originated from the deeper layer of the low salinity, highest arsenic site. This is the only sample with overlap in 16S rRNA data, suggesting arsenotrophy as an important metabolism in similar

  12. The X-ray Crystal Structure of RNA Polymerase from Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Hirata,A.; Klein, B.; Murakami, K.

    2008-01-01

    The transcription apparatus in Archaea can be described as a simplified version of its eukaryotic RNA polymerase (RNAP) II counterpart, comprising an RNAPII-like enzyme as well as two general transcription factors, the TATA-binding protein (TBP) and the eukaryotic TFIIB orthologue TFB. It has been widely understood that precise comparisons of cellular RNAP crystal structures could reveal structural elements common to all enzymes and that these insights would be useful in analysing components of each enzyme that enable it to perform domain-specific gene expression. However, the structure of archaeal RNAP has been limited to individual subunits3, 4. Here we report the first crystal structure of the archaeal RNAP from Sulfolobus solfataricus at 3.4 Angstroms resolution, completing the suite of multi-subunit RNAP structures from all three domains of life. We also report the high-resolution (at 1.76 Angstroms ) crystal structure of the D/L subcomplex of archaeal RNAP and provide the first experimental evidence of any RNAP possessing an iron-sulphur (Fe-S) cluster, which may play a structural role in a key subunit of RNAP assembly. The striking structural similarity between archaeal RNAP and eukaryotic RNAPII highlights the simpler archaeal RNAP as an ideal model system for dissecting the molecular basis of eukaryotic transcription.

  13. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Hopmans, E.C.

    2004-01-01

    Recently we proposed a new organic sea surface temperature proxy, TEX86, based on the distribution of archaeal tetraether lipids. Here, we have examined the effect of oxic degradation and maturity on this new temperature proxy. Our results show that oxic degradation does not appear to affect the TEX

  14. CrAgDb--a database of annotated chaperone repertoire in archaeal genomes.

    Science.gov (United States)

    Rani, Shikha; Srivastava, Abhishikha; Kumar, Manish; Goel, Manisha

    2016-03-01

    Chaperones are a diverse class of ubiquitous proteins that assist other cellular proteins in folding correctly and maintaining their native structure. Many different chaperones cooperate to constitute the 'proteostasis' machinery in the cells. It has been proposed earlier that archaeal organisms could be ideal model systems for deciphering the basic functioning of the 'protein folding machinery' in higher eukaryotes. Several chaperone families have been characterized in archaea over the years but mostly one protein at a time, making it difficult to decipher the composition and mechanistics of the protein folding system as a whole. In order to deal with these lacunae, we have developed a database of all archaeal chaperone proteins, CrAgDb (Chaperone repertoire in Archaeal genomes). The data have been presented in a systematic way with intuitive browse and search facilities for easy retrieval of information. Access to these curated datasets should expedite large-scale analysis of archaeal chaperone networks and significantly advance our understanding of operation and regulation of the protein folding machinery in archaea. Researchers could then translate this knowledge to comprehend the more complex protein folding pathways in eukaryotic systems. The database is freely available at http://14.139.227.92/mkumar/cragdb/. PMID:26862144

  15. Archaeal communities associated with roots of the common reed (Phragmites australis) in Beijing Cuihu Wetland.

    Science.gov (United States)

    Liu, Yin; Li, Hong; Liu, Qun Fang; Li, Yan Hong

    2015-05-01

    The richness, phylogeny and composition of archaeal community associated with the roots of common reed (Phragmites australis) growing in the Beijing Cuihu Wetland, China was investigated using a 16S rDNA library. In total, 235 individual sequences were collected, and a phylogenetic analysis revealed that 69.4 and 11.5 % of clones were affiliated with the Euryarchaeota and the Crenarchaeota, respectively. In Euryarchaeota, the archaeal community was dominated by species in following genera: Methanobacterium in the order Methanobacteriales (60.7 %); Methanoregula and Methanospirillum in the order Methanomicrobiales (20.2 %), and Methanomethylovorans, Methanosarcina and Methanosaeta in the order Methanosarcinales (17.2 %). Of 27 sequences assigned to uncultured Crenarchaeota, 22 were grouped into Group 1.3, and five grouped into Group 1.1b. Hence, the archaeal communities associated with reed roots are largely involved in methane production, and, to a lesser extent, in ammonia oxidization. Quantification of the archaeal amoA gene indicated that ammonia oxidizing archaea were more numerous in the rhizosphere soil than in the root tissue or surrounding water. A total of 19.1 % of the sequences were unclassified, suggesting that many unidentified archaea are probably involved in the reed wetland ecosystem. PMID:25739566

  16. High Oxygen Concentration Increases the Abundance and Activity of Bacterial Rather than Archaeal Nitrifiers in Rice Field Soil.

    Science.gov (United States)

    Ke, Xiubin; Lu, Wei; Conrad, Ralf

    2015-11-01

    Oxygen is considered as a limiting factor for nitrification in rice paddy soil. However, little is known about how the nitrifying microbial community responds to different oxygen concentrations at community and transcript level. In this study, soil and roots were harvested from 50-day-old rice microcosms and were incubated for up to 45 days under two oxygen concentrations: 2 % O(2) and 20 % O(2) (ambient air). Nitrification rates were measured from the accumulation of nitrite plus nitrate. The population dynamics of bacterial (AOB) and archaeal (AOA) ammonia oxidizers was determined from the abundance (using quantitative PCR (qPCR)) and composition (using terminal restriction fragment length polymorphism and cloning/sequencing) of their amoA genes, that of nitrite oxidizers (NOB) by quantifying the nxrA gene of Nitrobacter spp. and the 16S rRNA gene of Nitrospira spp. The activity of the nitrifiers was determined by quantifying the copy numbers of amoA and nxrA transcripts (using RT-qPCR). Different oxygen concentrations did not affect the community compositions of AOB, AOA, and NOB, which however were different between surface soil, bottom soil, and rice roots. However, nitrification rates were higher under ambient air than 2 % O(2), and abundance and transcript activities of AOB, but not of AOA, were also higher. Abundance and transcript copy numbers of Nitrobacter were also higher at ambient air. These results indicate that AOB and NOB, but not AOA, were sensitive to oxygen availability. PMID:26054702

  17. Mutation of the gene encoding the ribonuclease P RNA in the hyperthermophilic archaeon Thermococcus kodakarensis causes decreased growth rate and impaired processing of tRNA precursors.

    Science.gov (United States)

    Ueda, Toshifumi; Ishino, Sonoko; Suematsu, Kotaro; Nakashima, Takashi; Kakuta, Yoshimitsu; Kawarabayasi, Yutaka; Ishino, Yoshizumi; Kimura, Makoto

    2015-12-25

    Ribonuclease P (RNase P) catalyzes the processing of 5' leader sequences of tRNA precursors in all three phylogenetic domains. RNase P also plays an essential role in non-tRNA biogenesis in bacterial and eukaryotic cells. For archaeal RNase Ps, additional functions, however, remain poorly understood. To gain insight into the biological function of archaeal RNase Ps in vivo, we prepared archaeal mutants KUWΔP3, KUWΔP8, and KUWΔP16, in which the gene segments encoding stem-loops containing helices, respectively, P3, P8 and P16 in RNase P RNA (TkopRNA) of the hyperthermophilic archaeon Thermococcus kodakarensis were deleted. Phenotypic analysis showed that KUWΔP3 and KUWΔP16 grew slowly compared with wild-type T. kodakarensis KUW1, while KUWΔP8 displayed no difference from T. kodakarensis KUW1. RNase P isolated using an affinity-tag from KUWΔP3 had reduced pre-tRNA cleavage activity compared with that from T. kodakarensis KUW1. Moreover, quantitative RT-PCR (qRT-PCR) and Northern blots analyses of KUWΔP3 showed greater accumulation of unprocessed transcripts for pre-tRNAs than that of T. kodakarensis KUW1. The current study represents the first attempt to prepare mutant T. kodakarensis with impaired RNase P for functional investigation. Comparative whole-transcriptome analysis of T. kodakarensis KUW1 and KUWΔP3 should allow for the comprehensive identification of RNA substrates for archaeal RNase Ps. PMID:26551464

  18. RNA-Based Investigation of Ammonia-Oxidizing Archaea in Hot Springs of Yunnan Province, China ▿ †

    OpenAIRE

    Jiang, Hongchen; Huang, Qiuyuan; DONG, HAILIANG; WANG, Peng; Wang, Fengping; Li, Wenjun; Zhang, Chuanlun

    2010-01-01

    Using RNA-based techniques and hot spring samples collected from Yunnan Province, China, we show that the amoA gene of aerobic ammonia-oxidizing archaea can be transcribed at temperatures higher than 74°C and up to 94°C, suggesting that archaeal nitrification can potentially occur at near boiling temperatures.

  19. Detection of RNA nucleoside modifications with the uridine-specific ribonuclease MC1 from Momordica charantia.

    Science.gov (United States)

    Addepalli, Balasubrahmanym; Lesner, Nicholas P; Limbach, Patrick A

    2015-10-01

    A codon-optimized recombinant ribonuclease, MC1 is characterized for its uridine-specific cleavage ability to map nucleoside modifications in RNA. The published MC1 amino acid sequence, as noted in a previous study, was used as a template to construct a synthetic gene with a natural codon bias favoring expression in Escherichia coli. Following optimization of various expression conditions, the active recombinant ribonuclease was successfully purified as a C-terminal His-tag fusion protein from E. coli [Rosetta 2(DE3)] cells. The isolated protein was tested for its ribonuclease activity against oligoribonucleotides and commercially available E. coli tRNA(Tyr I). Analysis of MC1 digestion products by ion-pairing reverse phase liquid-chromatography coupled with mass spectrometry (IP-RP-LC-MS) revealed enzymatic cleavage of RNA at the 5'-termini of uridine and pseudouridine, but cleavage was absent if the uridine was chemically modified or preceded by a nucleoside with a bulky modification. Furthermore, the utility of this enzyme to generate complementary digestion products to other common endonucleases, such as RNase T1, which enables the unambiguous mapping of modified residues in RNA is demonstrated. PMID:26221047

  20. Diversity and Habitat Niche Modeling of Candidate Archaeal Phylum Aigarchaeota

    Science.gov (United States)

    Alba, T. W.; Goertz, G.; Williams, A. J.; Cole, J. K.; Murugapiran, S. K.; Dodsworth, J. A.; Hedlund, B. P.

    2013-12-01

    ';Aigarchaeota' (formerly known as pSL4 and Hot Water Crenarchaeotic Group I (HWCGI)) is a candidate phylum of Archaea known only by 16S rRNA gene fragments from cultivation-independent microbial surveys and a single composite genome from Candidatus ';Caldiarchaeum subterraneum', an inhabitant of a subterranean gold mine in Japan. Sequences reported in various publications are found exclusively in geothermal settings, but a comprehensive assessment has not yet been performed. We mined public databases for 16S rRNA gene sequences related to known ';Aigarchaeota' and used a combination of approaches to rigorously define the phylogenetic boundaries of the phylum. The analyses supported the proposed relationship between ';Aigarchaeota', Thaumarchaeota, Crenarchaeota, and Korarchaeota in the so-called 'TACK superphylum' and identified ~200 16S rRNA genes and gene fragments belonging to ';Aigarchaeota', including those recovered from terrestrial geothermal systems on several continents (North America, Asia, Africa, Europe, and Oceania) and marine geothermal and subsurface samples in both the Atlantic and Pacific. ';Aigarchaeota' belonged to at least three family- to order-level groups and at least seven genus-level groups. All genus-level groups were recovered from geographically distant locations, suggesting a global distribution within amenable habitats. ';Aigarchaeota'-specific primers for the polymerase chain reaction (PCR) amplification of 16S rRNA genes were designed using SP-Designer and reviewed using the Ribosomal Database Project Probe Match tool. The primers will be used to determine the presence and abundance of ';Aigarchaeota' in a wide variety of samples from terrestrial geothermal systems in the western U.S. and Asia. These phylogenetic data, along with a large geochemical database, will be analyzed using multivariate statistics to develop biogeographic and habitat niche models for ';Aigarchaeota'. This study offers the first coherent view of the

  1. Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes

    OpenAIRE

    Makarova, Kira S.; Wolf, Yuri I; Forterre, Patrick; Prangishvili, David; Krupovic, Mart; Koonin, Eugene V

    2014-01-01

    Microbial genomes encompass a sizable fraction of poorly characterized, narrowly spread fast-evolving genes. Using sensitive methods for sequences comparison and protein structure prediction, we performed a detailed comparative analysis of clusters of such genes, which we denote “dark matter islands”, in archaeal genomes. The dark matter islands comprise up to 20 % of archaeal genomes and show remarkable heterogeneity and diversity. Nevertheless, three classes of entities are common in these ...

  2. A pseudouridylation switch in rRNA is implicated in ribosome function during the life cycle of Trypanosoma brucei.

    Science.gov (United States)

    Chikne, Vaibhav; Doniger, Tirza; Rajan, K Shanmugha; Bartok, Osnat; Eliaz, Dror; Cohen-Chalamish, Smadar; Tschudi, Christian; Unger, Ron; Hashem, Yaser; Kadener, Sebastian; Michaeli, Shulamit

    2016-01-01

    The protozoan parasite Trypanosoma brucei, which causes devastating diseases in humans and animals in sub-Saharan Africa, undergoes a complex life cycle between the mammalian host and the blood-feeding tsetse fly vector. However, little is known about how the parasite performs most molecular functions in such different environments. Here, we provide evidence for the intriguing possibility that pseudouridylation of rRNA plays an important role in the capacity of the parasite to transit between the insect midgut and the mammalian bloodstream. Briefly, we mapped pseudouridines (Ψ) on rRNA by Ψ-seq in procyclic form (PCF) and bloodstream form (BSF) trypanosomes. We detected 68 Ψs on rRNA, which are guided by H/ACA small nucleolar RNAs (snoRNA). The small RNome of both life cycle stages was determined by HiSeq and 83 H/ACAs were identified. We observed an elevation of 21 Ψs modifications in BSF as a result of increased levels of the guiding snoRNAs. Overexpression of snoRNAs guiding modification on H69 provided a slight growth advantage to PCF parasites at 30 °C. Interestingly, these modifications are predicted to significantly alter the secondary structure of the large subunit (LSU) rRNA suggesting that hypermodified positions may contribute to the adaption of ribosome function during cycling between the two hosts. PMID:27142987

  3. The Vertical Distribution of Sediment Archaeal Community in the “Black Bloom” Disturbing Zhushan Bay of Lake Taihu

    Science.gov (United States)

    Fan, Xianfang; Xing, Peng

    2016-01-01

    Using the Illumina sequencing technology, we investigated the vertical distribution of archaeal community in the sediment of Zhushan Bay of Lake Taihu, where the black bloom frequently occurred in summer. Overall, the Miscellaneous Crenarchaeotal Group (MCG), Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), and Methanobacterium dominated the archaeal community. However, we observed significant difference in composition of archaeal community among different depths of the sediment. DHVEG-6 dominated in the surface layer (0–3 cm) sediment. Methanobacterium was the dominating archaeal taxa in the L2 (3–6 cm) and L3 (6–10) sediment. MCG was most abundant in the L4 (10–15 cm) and L5 (15–20 cm) sediment. Besides, DHVEG-6 was significantly affected by the concentration of total phosphorus (TP). And loss on ignition (LOI) was an important environmental factor for Methanobacterium. As the typical archaeal taxa in the surface layer sediment, DHVEG-6 and Methanobacterium might be more adapted to abundant substrate supply from cyanobacterial blooms and take active part in the biomass transformation. We propose that DHVEG-6 and Methanobacterium could be the key archaeal taxa correlated with the “black bloom” formation in Zhushan Bay. PMID:26884723

  4. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics.

    Science.gov (United States)

    Evans, Paul N; Parks, Donovan H; Chadwick, Grayson L; Robbins, Steven J; Orphan, Victoria J; Golding, Suzanne D; Tyson, Gene W

    2015-10-23

    Methanogenic and methanotrophic archaea play important roles in the global flux of methane. Culture-independent approaches are providing deeper insight into the diversity and evolution of methane-metabolizing microorganisms, but, until now, no compelling evidence has existed for methane metabolism in archaea outside the phylum Euryarchaeota. We performed metagenomic sequencing of a deep aquifer, recovering two near-complete genomes belonging to the archaeal phylum Bathyarchaeota (formerly known as the Miscellaneous Crenarchaeotal Group). These genomes contain divergent homologs of the genes necessary for methane metabolism, including those that encode the methyl-coenzyme M reductase (MCR) complex. Additional non-euryarchaeotal MCR-encoding genes identified in a range of environments suggest that unrecognized archaeal lineages may also contribute to global methane cycling. These findings indicate that methane metabolism arose before the last common ancestor of the Euryarchaeota and Bathyarchaeota. PMID:26494757

  5. Gene Acquisitions from Bacteria at the Origins of Major Archaeal Clades Are Vastly Overestimated

    Science.gov (United States)

    Groussin, Mathieu; Boussau, Bastien; Szöllõsi, Gergely; Eme, Laura; Gouy, Manolo; Brochier-Armanet, Céline; Daubin, Vincent

    2016-01-01

    In a recent article, Nelson-Sathi et al. (NS) report that the origins of major archaeal lineages (MAL) correspond to massive group-specific gene acquisitions via HGT from bacteria (Nelson-Sathi et al. 2015. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517(7532):77-80.). If correct, this would have fundamental implications for the process of diversification in microbes. However, a reexamination of these data and results shows that the methodology used by NS systematically inflates the number of genes acquired at the root of each MAL, and incorrectly assumes bacterial origins for these genes. A reanalysis of their data with appropriate phylogenetic models accounting for the dynamics of gene gain and loss between lineages supports the continuous acquisition of genes over long periods in the evolution of Archaea. PMID:26541173

  6. Expression, purification and crystallization of an archaeal-type phosphoenolpyruvate carboxylase

    International Nuclear Information System (INIS)

    The expression, purification, crystallization and preliminary diffraction analysis of an archaeal-type phosphoenolpyruvate carboxylase are described. Complete highly redundant X-ray data have been measured from a crystal diffracting to 3.13 Å resolution. An archaeal-type phosphoenolpyruvate carboxylase (PepcA) from Clostridium perfringens has been expressed in Escherichia coli in a soluble form with an amino-terminal His tag. The recombinant protein is enzymatically active and two crystal forms have been obtained. Complete diffraction data extending to 3.13 Å resolution have been measured from a crystal soaked in KAu(CN)2, using radiation at a wavelength just above the Au LIII edge. The asymmetric unit contains two tetramers of PepcA

  7. Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways

    OpenAIRE

    Gietl, Andreas; Holzmeister, Phil; Blombach, Fabian; Schulz, Sarah; von Voithenberg, Lena Voith; Lamb, Don C; Werner, Finn; Tinnefeld, Philip; Grohmann, Dina

    2014-01-01

    During transcription initiation, the promoter DNA is recognized and bent by the basal transcription factor TATA-binding protein (TBP). Subsequent association of transcription factor B (TFB) with the TBP–DNA complex is followed by the recruitment of the ribonucleic acid polymerase resulting in the formation of the pre-initiation complex. TBP and TFB/TF(II)B are highly conserved in structure and function among the eukaryotic-archaeal domain but intriguingly have to operate under vastly differen...

  8. Activation of archaeal transcription mediated by recruitment of transcription factor B.

    Science.gov (United States)

    Ochs, Simon M; Thumann, Sybille; Richau, Renate; Weirauch, Matt T; Lowe, Todd M; Thomm, Michael; Hausner, Winfried

    2012-05-25

    Archaeal promoters consist of a TATA box and a purine-rich adjacent upstream sequence (transcription factor B (TFB)-responsive element (BRE)), which are bound by the transcription factors TATA box-binding protein (TBP) and TFB. Currently, only a few activators of archaeal transcription have been experimentally characterized. The best studied activator, Ptr2, mediates activation by recruitment of TBP. Here, we present a detailed biochemical analysis of an archaeal transcriptional activator, PF1088, which was identified in Pyrococcus furiosus by a bioinformatic approach. Operon predictions suggested that an upstream gene, pf1089, is polycistronically transcribed with pf1088. We demonstrate that PF1088 stimulates in vitro transcription by up to 7-fold when the pf1089 promoter is used as a template. By DNase I and hydroxyl radical footprinting experiments, we show that the binding site of PF1088 is located directly upstream of the BRE of pf1089. Mutational analysis indicated that activation requires the presence of the binding site for PF1088. Furthermore, we show that activation of transcription by PF1088 is dependent upon the presence of an imperfect BRE and is abolished when the pf1089 BRE is replaced with a BRE from a strong archaeal promoter. Gel shift experiments showed that TFB recruitment to the pf1089 operon is stimulated by PF1088, and TFB seems to stabilize PF1088 operator binding even in the absence of TBP. Taken together, these results represent the first biochemical evidence for a transcriptional activator working as a TFB recruitment factor in Archaea, for which the designation TFB-RF1 is suggested. PMID:22496454

  9. Archaeal Transcription: Function of an Alternative Transcription Factor B from Pyrococcus furiosus▿

    OpenAIRE

    Micorescu, Michael; Grünberg, Sebastian; Franke, Andreas; Cramer, Patrick; Thomm, Michael; Bartlett, Michael

    2007-01-01

    The genome of the hyperthermophile archaeon Pyrococcus furiosus encodes two transcription factor B (TFB) paralogs, one of which (TFB1) was previously characterized in transcription initiation. The second TFB (TFB2) is unusual in that it lacks recognizable homology to the archaeal TFB/eukaryotic TFIIB B-finger motif. TFB2 functions poorly in promoter-dependent transcription initiation, but photochemical cross-linking experiments indicated that the orientation and occupancy of transcription com...

  10. Factors Controlling the Distribution of Archaeal Tetraethers in Terrestrial Hot Springs▿

    OpenAIRE

    Pearson, Ann; Pi, Yundan; Zhao, Weidong; Li, Wenjun; Li, Yiliang; Inskeep, William; Perevalova, Anna; Romanek, Christopher; Li, Shuguang; Zhang, Chuanlun L.

    2008-01-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, i...

  11. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    Science.gov (United States)

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production. PMID:24837280

  12. Fossilization and degradation of archaeal intact polar tetraether lipids in deeply buried marine sediments (Peru Margin)

    OpenAIRE

    Lengger, S. K.; Hopmans, E.C.; Sinninghe Damsté, J.S.; Schouten, S.

    2014-01-01

    Glycerol dibiphytanyl glycerol tetraether (GDGT) lipids are part of the cellular membranes of Thaumarchaeota, an archaeal phylum composed of aerobic ammonia oxidizers, and are used in the paleotemperature proxy TEX86. GDGTs in live cells possess polar head groups and are called intact polar lipids (IPL-GDGTs). Their transformation to core lipids (CL) by cleavage of the head group was assumed to proceed rapidly after cell death, but it has been suggested that some of these IPL-GDGTs can, just ...

  13. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest

    OpenAIRE

    Rasche, Frank; Knapp, Daniela; Kaiser, Christina; Koranda, Marianne; Kitzler, Barbara; Zechmeister-Boltenstern, Sophie; Richter, Andreas; Sessitsch, Angela

    2010-01-01

    It was hypothesized that seasonality and resource availability altered through tree girdling were major determinants of the phylogenetic composition of the archaeal and bacterial community in a temperate beech forest soil. During a 2-year field experiment, involving girdling of beech trees to intercept the transfer of easily available carbon (C) from the canopy to roots, members of the dominant phylogenetic microbial phyla residing in top soils under girdled versus untreated control trees wer...

  14. Significance of archaeal nitrification in hypoxic waters of the Baltic Sea

    OpenAIRE

    Berg, Carlo; Vandieken, Verona; Thamdrup, Bo; Jürgens, Klaus

    2014-01-01

    Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread, and their abundance in many terrestrial and aquatic ecosystems suggests a prominent role in nitrification. AOA also occur in high numbers in oxygen-deficient marine environments, such as the pelagic redox gradients of the central Baltic Sea; however, data on archaeal nitrification rates are scarce and little is known about the factors, for example sulfide, that regulate nitrification in this system. In the present wo...

  15. Abundance and Composition of Epiphytic Bacterial and Archaeal Ammonia Oxidizers of Marine Red and Brown Macroalgae

    OpenAIRE

    Trias, R. (Rosalía); García-Lledó A. (Arantzazu); Sánchez, N.; López-Jurado, J. L.; Hallin, S. (Sara); Bañeras, Ll. (Lluís)

    2012-01-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are important for nitrogen cycling in marine ecosystems. Little is known about the diversity and abundance of these organisms on the surface of marine macroalgae, despite the algae’s potential importance to create surfaces and local oxygen-rich environments supporting ammonia oxidation at depths with low dissolved oxygen levels. We determined the abundance and composition of the epiphytic bacterial and archaeal ammonia-oxidizing communities o...

  16. Global Occurrence of Archaeal amoA Genes in Terrestrial Hot Springs▿

    OpenAIRE

    Zhang, Chuanlun L.; Ye, Qi; Huang, Zhiyong; Li, Wenjun; Chen, Jinquan; Song, Zhaoqi; Zhao, Weidong; Bagwell, Christopher; Inskeep, William P.; Ross, Christian; Gao, Lei; Wiegel, Juergen; Romanek, Christopher S.; Shock, Everett L.; Hedlund, Brian P.

    2008-01-01

    Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86°C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) ...

  17. RNA genetics

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, E. (Instituto de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Canto Blanco, Madrid (ES)); Holland, J.J. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Biology); Ahlquist, P. (Wisconsin Univ., Madison, WI (USA). Dept. of Plant Pathology)

    1988-01-01

    This book contains the proceedings on RNA genetics: Retroviruses, Viroids, and RNA recombination, Volume 2. Topics covered include: Replication of retrovirus genomes, Hepatitis B virus replication, and Evolution of RNA viruses.

  18. The Korarchaeota: Archaeal orphans representing an ancestral lineage of life

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, James G.; Kunin, Victor; Anderson, Iain; Barry, Kerrie; Goltsman, Eugene; Lapidus, Alla; Hedlund, Brian; Hugenholtz, Phil; Kyrpides, Nikos; Graham, David; Keller, Martin; Wanner, Gerhard; Richardson, Paul; Stetter, Karl O.

    2007-05-01

    Based on conserved cellular properties, all life on Earth can be grouped into different phyla which belong to the primary domains Bacteria, Archaea, and Eukarya. However, tracing back their evolutionary relationships has been impeded by horizontal gene transfer and gene loss. Within the Archaea, the kingdoms Crenarchaeota and Euryarchaeota exhibit a profound divergence. In order to elucidate the evolution of these two major kingdoms, representatives of more deeply diverged lineages would be required. Based on their environmental small subunit ribosomal (ss RNA) sequences, the Korarchaeota had been originally suggested to have an ancestral relationship to all known Archaea although this assessment has been refuted. Here we describe the cultivation and initial characterization of the first member of the Korarchaeota, highly unusual, ultrathin filamentous cells about 0.16 {micro}m in diameter. A complete genome sequence obtained from enrichment cultures revealed an unprecedented combination of signature genes which were thought to be characteristic of either the Crenarchaeota, Euryarchaeota, or Eukarya. Cell division appears to be mediated through a FtsZ-dependent mechanism which is highly conserved throughout the Bacteria and Euryarchaeota. An rpb8 subunit of the DNA-dependent RNA polymerase was identified which is absent from other Archaea and has been described as a eukaryotic signature gene. In addition, the representative organism possesses a ribosome structure typical for members of the Crenarchaeota. Based on its gene complement, this lineage likely diverged near the separation of the two major kingdoms of Archaea. Further investigations of these unique organisms may shed additional light onto the evolution of extant life.

  19. The Primary Results of Analyses on The Archaeal and Bacterial Diversity of Active Cave Environments Settled in Limestones at Southern Turkey

    Science.gov (United States)

    Tok, Ezgi; Kurt, Halil; Tunga Akarsubasi, A.

    2016-04-01

    The microbial diversity of cave sediments which are obtained from three different caves named Insuyu, Balatini and Altınbeşik located at Southern Turkey has been investigated using molecular methods for biomineralization . The total number of 22 samples were taken in duplicates from the critical zones of the caves at where the water activity is observed all year round. Microbial communities were monitored by 16S rRNA gene based PCR-DGGE (Polymerase Chain Reaction - Denaturating Gradient Gel Electrophoresis) methodology. DNA were extracted from the samples by The PowerSoil® DNA Isolation Kit (MO BIO Laboratories inc., CA) with the modifications on the producer's protocol. The synthetic DNA molecule poly-dIdC was used to increase the yield of PCR amplification via blocking the reaction between CaCO3 and DNA molecules. Thereafter samples were amplified by using both Archaeal and Bacterial universal primers (ref). Subsequently, archaeal and bacterial diversities in cave sediments, were investigated to be able to compare with respect to their similarities by using DGGE. DGGE patterns were analysed with BioNumerics software 5.1. Similarity matrix and dendograms of the DGGE profiles were generated based on the Dice correlation coefficient (band-based) and unweighted pair-group method with arithmetic mean (UPGMA). The structural diversity of the microbial community was examined by the Shannon index of general diversity (H). Similtaneously, geochemical analyses of the sediment samples were performed within the scope of this study. Total organic carbon (TOC), x-ray diffraction spectroscopy (XRD) and x-ray fluorescence spectroscopy (XRF) analysis of sediments were also implemented. The extensive results will be obtained at the next stages of the study currently carried on.

  20. Characterization of an archaeal two-component system that regulates methanogenesis in Methanosaeta harundinacea.

    Directory of Open Access Journals (Sweden)

    Jie Li

    Full Text Available Two-component signal transduction systems (TCSs are a major mechanism used by bacteria in response to environmental changes. Although many sequenced archaeal genomes encode TCSs, they remain poorly understood. Previously, we reported that a methanogenic archaeon, Methanosaeta harundinacea, encodes FilI, which synthesizes carboxyl-acyl homoserine lactones, to regulate transitions of cellular morphology and carbon metabolic fluxes. Here, we report that filI, the cotranscribed filR2, and the adjacent filR1 constitute an archaeal TCS. FilI possesses a cytoplasmic kinase domain (histidine kinase A and histidine kinase-like ATPase and its cognate response regulator. FilR1 carries a receiver (REC domain coupled with an ArsR-related domain with potential DNA-binding ability, while FilR2 carries only a REC domain. In a phosphorelay assay, FilI was autophosphorylated and specifically transferred the phosphoryl group to FilR1 and FilR2, confirming that the three formed a cognate TCS. Through chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR using an anti-FilR1 antibody, FilR1 was shown to form in vivo associations with its own promoter and the promoter of the filI-filR2 operon, demonstrating a regulatory pattern common among TCSs. ChIP-qPCR also detected FilR1 associations with key genes involved in acetoclastic methanogenesis, acs4 and acs1. Electrophoretic mobility shift assays confirmed the in vitro tight binding of FilR1 to its own promoter and those of filI-filR2, acs4, and mtrABC. This also proves the DNA-binding ability of the ArsR-related domain, which is found primarily in Archaea. The archaeal promoters of acs4, filI, acs1, and mtrABC also initiated FilR1-modulated expression in an Escherichia coli lux reporter system, suggesting that FilR1 can up-regulate both archaeal and bacterial transcription. In conclusion, this work identifies an archaeal FilI/FilRs TCS that regulates the methanogenesis of M. harundinacea.

  1. Functional analysis of archaeal MBF1 by complementation studies in yeast

    Directory of Open Access Journals (Sweden)

    Siebers Bettina

    2011-03-01

    Full Text Available Abstract Background Multiprotein-bridging factor 1 (MBF1 is a transcriptional co-activator that bridges a sequence-specific activator (basic-leucine zipper (bZIP like proteins (e.g. Gcn4 in yeast or steroid/nuclear-hormone receptor family (e.g. FTZ-F1 in insect and the TATA-box binding protein (TBP in Eukaryotes. MBF1 is absent in Bacteria, but is well- conserved in Eukaryotes and Archaea and harbors a C-terminal Cro-like Helix Turn Helix (HTH domain, which is the only highly conserved, classical HTH domain that is vertically inherited in all Eukaryotes and Archaea. The main structural difference between archaeal MBF1 (aMBF1 and eukaryotic MBF1 is the presence of a Zn ribbon motif in aMBF1. In addition MBF1 interacting activators are absent in the archaeal domain. To study the function and therefore the evolutionary conservation of MBF1 and its single domains complementation studies in yeast (mbf1Δ as well as domain swap experiments between aMBF1 and yMbf1 were performed. Results In contrast to previous reports for eukaryotic MBF1 (i.e. Arabidopsis thaliana, insect and human the two archaeal MBF1 orthologs, TMBF1 from the hyperthermophile Thermoproteus tenax and MMBF1 from the mesophile Methanosarcina mazei were not functional for complementation of an Saccharomyces cerevisiae mutant lacking Mbf1 (mbf1Δ. Of twelve chimeric proteins representing different combinations of the N-terminal, core domain, and the C-terminal extension from yeast and aMBF1, only the chimeric MBF1 comprising the yeast N-terminal and core domain fused to the archaeal C-terminal part was able to restore full wild-type activity of MBF1. However, as reported previously for Bombyx mori, the C-terminal part of yeast Mbf1 was shown to be not essential for function. In addition phylogenetic analyses revealed a common distribution of MBF1 in all Archaea with available genome sequence, except of two of the three Thaumarchaeota; Cenarchaeum symbiosum A and Nitrosopumilus maritimus

  2. Application of proton NMR spectroscopy to measurement of whole-body RNA degradation rates: effects of surgical stress in human patients.

    Science.gov (United States)

    Marway, J S; Anderson, G J; Miell, J P; Ross, R; Grimble, G K; Bonner, A B; Gibbons, W A; Peters, T J; Preedy, V R

    1996-08-30

    The urinary catabolites, N2,N2-dimethylguanosine (DMG), pseudouridine (PSU) and 7-methylguanine (m7-Gua) are formed from post-transcriptional methylation of RNA bases and are not reincorporated into RNA upon its degradation. Their quantitative urinary excretion may be used to determine rates of whole body degradation of individual RNA species since DMG occurs exclusively in tRNA, PSU occurs in rRNA and tRNA and m7-Gua occurs in all RNA species. Conventional HPLC analysis has several drawbacks since pre-analytical steps may involve selective losses and, under certain conditions, other urinary analytes may co-elute. In the present paper, we report analysis of these compounds by high-field 1H-nuclear magnetic resonance (1H-NMR) spectroscopy. Urinary concentrations of these metabolites were found to be in agreement with previously published HPLC and ELISA determinations. However, NMR analysis required minimal sample preparation (other than lyophilisation and reconstitution) and was capable of the simultaneous determination of other relevant analytes such as creatinine. This technique was therefore applied to urine samples from patients who had undergone surgical stress and insulin-like growth factor-1 (IGF-I) therapy. Surgical stress increased the excretion of DMG and m7-Gua. Degradation rates for tRNA and mRNA were also higher in surgically stressed subjects when compared with controls but degradation rates of rRNA decreased by approx. 30%. However, injection of IGF-I (40 micrograms/kg s.c.) had no significant effect on the excretion of these nucleosides. These data indicated that IGF-I therapy has no marked effects on RNA turnover following trauma. We suggest that this technique can be applied to study of RNA metabolism in any surgical or medical condition. Furthermore, since only 0.6 ml of urine is required, studies in neonates seem to be feasible. PMID:8853560

  3. Crystallization and preliminary X-ray crystallographic analysis of bacterial tRNA(Sec) in complex with seryl-tRNA synthetase.

    Science.gov (United States)

    Itoh, Yuzuru; Sekine, Shun Ichi; Yokoyama, Shigeyuki

    2012-06-01

    Selenocysteine (Sec) is translationally incorporated into proteins in response to the UGA codon. The tRNA specific to Sec (tRNA(Sec)) is first ligated with serine by seryl-tRNA synthetase (SerRS). To elucidate the tertiary structure of bacterial tRNA(Sec) and its specific interaction with SerRS, the bacterial tRNA(Sec) from Aquifex aeolicus was crystallized as the heterologous complex with the archaeal SerRS from Methanopyrus kandleri. Although X-ray diffraction by crystals of tRNA(Sec) in complex with wild-type SerRS was rather poor (to 5.7 Å resolution), the resolution was improved by introducing point mutations targeting the crystal-packing interface. Heavy-atom labelling also contributed to resolution improvement. A 3.2 Å resolution diffraction data set for phase determination was obtained from a K(2)Pt(CN)(4)-soaked crystal. PMID:22684069

  4. Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs.

    Science.gov (United States)

    Pearson, Ann; Pi, Yundan; Zhao, Weidong; Li, WenJun; Li, Yiliang; Inskeep, William; Perevalova, Anna; Romanek, Christopher; Li, Shuguang; Zhang, Chuanlun L

    2008-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87 degrees C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenarchaeol and GDGT-4 (four cyclopentane rings, m/z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX(86) paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued development of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleoclimate studies. PMID:18390673

  5. Factors Controlling the Distribution of Archaeal Tetraethers in Terrestrial Hot Springs▿

    Science.gov (United States)

    Pearson, Ann; Pi, Yundan; Zhao, Weidong; Li, WenJun; Li, Yiliang; Inskeep, William; Perevalova, Anna; Romanek, Christopher; Li, Shuguang; Zhang, Chuanlun L.

    2008-01-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87°C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenarchaeol and GDGT-4 (four cyclopentane rings, m/z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX86 paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued development of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleoclimate studies. PMID:18390673

  6. Archaeal Distribution in Moonmilk Deposits from Alpine Caves and Their Ecophysiological Potential.

    Science.gov (United States)

    Reitschuler, Christoph; Spötl, Christoph; Hofmann, Katrin; Wagner, Andreas O; Illmer, Paul

    2016-04-01

    (Alpine) caves are, in general, windows into the Earth's subsurface. Frequently occurring structures in caves such as moonmilk (secondary calcite deposits) offer the opportunity to study intraterrestrial microbial communities, adapted to oligotrophic and cold conditions. This is an important research field regarding the dimensions of subsurface systems and cold regions on Earth. On a methodological level, moonmilk deposits from 11 caves in the Austrian Alps were collected aseptically and investigated using a molecular (qPCR and DGGE sequencing-based) methodology in order to study the occurrence, abundance, and diversity of the prevailing native Archaea community. Furthermore, these Archaea were enriched in complex media and studied regarding their physiology, with a media selection targeting different physiological requirements, e.g. methanogenesis and ammonia oxidation. The investigation of the environmental samples showed that all moonmilk deposits were characterized by the presence of the same few habitat-specific archaeal species, showing high abundances and constituting about 50 % of the total microbial communities. The largest fraction of these Archaea was ammonia-oxidizing Thaumarchaeota, while another abundant group was very distantly related to extremophilic Euryarchaeota (Moonmilk Archaea). The archaeal community showed a depth- and oxygen-dependent stratification. Archaea were much more abundant (around 80 %), compared to bacteria, in the actively forming surface part of moonmilk deposits, decreasing to about 5 % down to the bedrock. Via extensive cultivation efforts, it was possible to enrich the enigmatic Moonmilk Archaea and also AOA significantly above the level of bacteria. The most expedient prerequisites for cultivating Moonmilk Archaea were a cold temperature, oligotrophic conditions, short incubation times, a moonmilk surface inoculum, the application of erythromycin, and anaerobic (microaerophilic) conditions. On a physiological level, it

  7. Identification of Cyclobutane Pyrimidine Dimer-Responsive Genes Using UVB-Irradiated Human Keratinocytes Transfected with In Vitro-Synthesized Photolyase mRNA

    Science.gov (United States)

    Boros, Gábor; Miko, Edit; Muramatsu, Hiromi; Weissman, Drew; Emri, Eszter; van der Horst, Gijsbertus T. J.; Szegedi, Andrea; Horkay, Irén; Emri, Gabriella; Karikó, Katalin; Remenyik, Éva

    2015-01-01

    Major biological effects of UVB are attributed to cyclobutane pyrimidine dimers (CPDs), the most common photolesions formed on DNA. To investigate the contribution of CPDs to UVB-induced changes of gene expression, a model system was established by transfecting keratinocytes with pseudouridine-modified mRNA (Ψ-mRNA) encoding CPD-photolyase. Microarray analyses of this model system demonstrated that more than 50% of the gene expression altered by UVB was mediated by CPD photolesions. Functional classification of the gene targets revealed strong effects of CPDs on the regulation of the cell cycle and transcriptional machineries. To confirm the microarray data, cell cycle-regulatory genes, CCNE1 and CDKN2B that were induced exclusively by CPDs were selected for further investigation. Following UVB irradiation, expression of these genes increased significantly at both mRNA and protein levels, but not in cells transfected with CPD-photolyase Ψ-mRNA and exposed to photoreactivating light. Treatment of cells with inhibitors of c-Jun N-terminal kinase (JNK) blocked the UVB-dependent upregulation of both genes suggesting a role for JNK in relaying the signal of UVB-induced CPDs into transcriptional responses. Thus, photolyase mRNA-based experimental platform demonstrates CPD-dependent and -independent events of UVB-induced cellular responses, and, as such, has the potential to identify novel molecular targets for treatment of UVB-mediated skin diseases. PMID:26121660

  8. Identification of Cyclobutane Pyrimidine Dimer-Responsive Genes Using UVB-Irradiated Human Keratinocytes Transfected with In Vitro-Synthesized Photolyase mRNA.

    Directory of Open Access Journals (Sweden)

    Gábor Boros

    Full Text Available Major biological effects of UVB are attributed to cyclobutane pyrimidine dimers (CPDs, the most common photolesions formed on DNA. To investigate the contribution of CPDs to UVB-induced changes of gene expression, a model system was established by transfecting keratinocytes with pseudouridine-modified mRNA (Ψ-mRNA encoding CPD-photolyase. Microarray analyses of this model system demonstrated that more than 50% of the gene expression altered by UVB was mediated by CPD photolesions. Functional classification of the gene targets revealed strong effects of CPDs on the regulation of the cell cycle and transcriptional machineries. To confirm the microarray data, cell cycle-regulatory genes, CCNE1 and CDKN2B that were induced exclusively by CPDs were selected for further investigation. Following UVB irradiation, expression of these genes increased significantly at both mRNA and protein levels, but not in cells transfected with CPD-photolyase Ψ-mRNA and exposed to photoreactivating light. Treatment of cells with inhibitors of c-Jun N-terminal kinase (JNK blocked the UVB-dependent upregulation of both genes suggesting a role for JNK in relaying the signal of UVB-induced CPDs into transcriptional responses. Thus, photolyase mRNA-based experimental platform demonstrates CPD-dependent and -independent events of UVB-induced cellular responses, and, as such, has the potential to identify novel molecular targets for treatment of UVB-mediated skin diseases.

  9. A reported archaeal mechanosensitive channel is a structural homolog of MarR-like transcriptional regulators

    OpenAIRE

    Liu, Zhenfeng; Walton, Troy A; Rees, Douglas C.

    2010-01-01

    Several archaeal mechanosensitive (MS) channels have been reported, including one from Thermoplasma volcanium designated MscTV. Here, we report the crystal structure of MscTV at 1.6-Å resolution. Unexpectedly, MscTV was found to be a water-soluble protein exhibiting a winged helix-turn-helix (wHTH) motif, which is the signature of the MarR (multiple antibiotic resistance regulator) family of transcriptional regulators. A cell-based osmotic downshock functional assay demonstrated that MscTV wa...

  10. Phylogenomic Dating-The Relative Antiquity of Archaeal Metabolic and Physiological Traits

    Science.gov (United States)

    Blank, Carrine E.

    2009-03-01

    Ancestral trait reconstruction was used to identify the relative ancestry of metabolic and physiological traits in the archaeal domain of life. First, well-resolved phylogenetic trees were inferred with multiple gene sequences obtained from whole genome sequences. Next, metabolic and physiological traits were coded into characters, and ancestral state reconstruction was used to identify ancient and derived traits. Traits inferred to be ancient included sulfur reduction, methanogenesis, and hydrogen oxidation. By using the articulation of the “oxygen age constraint,” several other traits were inferred to have arisen at or after 2.32 Ga: aerobic respiration, nitrate reduction, sulfate reduction, thiosulfate reduction, sulfur oxidation, and sulfide oxidation. Complex organic metabolism appeared to be nearly as ancient as autotrophy. Hyperthermophily was ancestral, while hyperacidophily and extreme halophily likely arose after 2.32 Ga. The ancestral euryarchaeote was inferred to have been a hyperthermophilic marine methanogen that lived in a deep-sea hydrothermal vent. In contrast, the ancestral crenarchaeote was most likely a hyperthermophilic sulfur reducer that lived in a slightly acidic terrestrial environment, perhaps a fumarole. Cross-colonization of these habitats may not have occurred until after 2.32 Ga, which suggests that both archaeal lineages exhibited niche specialization on early Earth for a protracted period of time.

  11. Archaeal Life on Tangkuban Perahu- Sampling and Culture Growth in Indonesian Laboratories

    Directory of Open Access Journals (Sweden)

    SRI HANDAYANI

    2012-09-01

    Full Text Available The aim of the expedition to Tangkuban Perahu, West Java was to obtain archaeal samples from the solfatara fields located in Domas crater. This was one of the places, where scientists from the University of Regensburg Germany had formerly isolated Indonesian archaea, especially Thermoplasma and Sulfolobus species but not fully characterized. We collected five samples from mud holes with temperatures from 57 to 88 oC and pH of 1.5-2. A portion of each sample was grown at the University of Regensburg in modified Allen’s medium at 80 oC. From four out of five samples enrichment cultures were obtained, autotrophically on elemental sulphur and heterotrophically on sulfur and yeast extract; electron micrographs are presented. In the laboratories of Universitas Indonesia the isolates were cultured at 55-60 oC in order to grow tetraetherlipid synthesizing archaea, both Thermoplasmatales and Sulfolobales. Here, we succeeded to culture the same type of archaeal cells, which had been cultured in Regensburg, probably a Sulfolobus species and in Freundt’s medium, Thermoplasma species. The harvested cells are documented by phase contrast microscope equipped with a digital camera. Our next steps will be to further characterize genetically the cultured cells from Tangkuban Perahu isolates.

  12. Overexpression, purification and crystallization of an archaeal DNA ligase from Pyrococcus furiosus

    International Nuclear Information System (INIS)

    Crystals of the archaeal DNA ligase from Pyrococcus furiosus were obtained using 6.6%(v/v) ethanol as a precipitant and diffracted X-rays to 1.7 Å resolution. DNA ligases seal single-strand breaks in double-stranded DNA and their function is essential to maintain the integrity of the genome during various aspects of DNA metabolism, such as replication, excision repair and recombination. DNA-strand breaks are frequently generated as reaction intermediates in these events and the sealing of these breaks depends solely on the proper function of DNA ligase. Crystals of the archaeal DNA ligase from Pyrococcus furiosus were obtained using 6.6%(v/v) ethanol as a precipitant and diffracted X-rays to 1.7 Å resolution. They belong to the monoclinic space group P21, with unit-cell parameters a = 61.1, b = 88.3, c = 63.4 Å, β = 108.9°. The asymmetric unit contains one ligase molecule

  13. Bacterial and archaeal community structures in the Arctic deep-sea sediment

    Institute of Scientific and Technical Information of China (English)

    LI Yan; LIU Qun; LI Chaolun; DONG Yi; ZHANG Wenyan; ZHANG Wuchang; XIAO Tian

    2015-01-01

    Microbial community structures in the Arctic deep-sea sedimentary ecosystem are determined by organic matter input, energy availability, and other environmental factors. However, global warming and earlier ice-cover melting are affecting the microbial diversity. To characterize the Arctic deep-sea sediment microbial diversity and its rela-tionship with environmental factors, we applied Roche 454 sequencing of 16S rDNA amplicons from Arctic deep-sea sediment sample. Both bacterial and archaeal communities’ richness, compositions and structures as well as tax-onomic and phylogenetic affiliations of identified clades were characterized. Phylotypes relating to sulfur reduction and chemoorganotrophic lifestyle are major groups in the bacterial groups;while the archaeal community is domi-nated by phylotypes most closely related to the ammonia-oxidizing Thaumarchaeota (96.66%) and methanogenic Euryarchaeota (3.21%). This study describes the microbial diversity in the Arctic deep marine sediment (>3 500 m) near the North Pole and would lay foundation for future functional analysis on microbial metabolic processes and pathways predictions in similar environments.

  14. Archaeal membrane-associated proteases: insights on Haloferax volcanii and other haloarchaea

    Directory of Open Access Journals (Sweden)

    Maria Ines Giménez

    2015-02-01

    Full Text Available The function of membrane proteases range from general house-keeping to regulation of cellular processes. Although the biological role of these enzymes in archaea is poorly understood, some of them are implicated in the biogenesis of the archaeal cell envelope and surface structures. The membrane-bound ATP-dependent Lon protease is essential for cell viability and affects membrane carotenoid content in Haloferax volcanii. At least two different proteases are needed in this archaeon to accomplish the posttranslational modifications of the S-layer glycoprotein. The rhomboid protease RhoII is involved in the N-glycosylation of the S-layer protein with a sulfoquinovose-containing oligosaccharide while archaeosortase ArtA mediates the proteolytic processing coupled-lipid modification of this glycoprotein facilitating its attachment to the archaeal cell surface. Interestingly, two different signal peptidase I homologs exist in H. volcanii, Sec11a and Sec11b, which likely play distinct physiological roles. Type IV prepilin peptidase PibD processes flagellin/pilin precursors, being essential for the biogenesis and function of the archaellum and other cell surface structures in H. volcanii.

  15. Geographic distribution of archaeal ammonia oxidizing ecotypes in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Eva eSintes

    2016-02-01

    Full Text Available In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo, exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of archaeal ammonia oxidizers (AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization.

  16. Bacterial and archaeal dynamics in phylogeny and function in the North Atlantic deep waters

    Science.gov (United States)

    Herndl, G. J.; Brink, M.; Agogue, H.

    2009-04-01

    The diversity and specific functional aspects linked to the N cycle of the bacterio- and archaeoplankton were investigated in the major deep water masses of the North Atlantic following the main driver of the thermohaline circulation, the North Atlantic Deep Water, from 65°N to 5°S. The phylogenetic composition of Bacteria and Archaea is not only depth-dependent but, specific water masses harbor specific prokaryotic communities. The specific composition of these communities in a particular water mass is maintained even over large distances. The distribution of archaeal and bacterial amoA genes were also determined. Archaeal amoA copy numbers decreased drastically with depth especially in the eastern subtropical Atlantic. This coincides with the lower nutrient concentration of the deep waters in the southern parts of the North Atlantic and the older age of the deep-water masses there. These data demonstrate that the diversity and potential nitrification activity are closely linked to the hydrology and chemical characteristics of the major water masses in the North Atlantic.

  17. Archaeal Genome Guardians Give Insights into Eukaryotic DNA Replication and Damage Response Proteins

    Directory of Open Access Journals (Sweden)

    David S. Shin

    2014-01-01

    Full Text Available As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine.

  18. [Bacterial and archaeal diversity in surface sediment from the south slope of the South China Sea].

    Science.gov (United States)

    Li, Tao; Wang, Peng; Wang, Pinxian

    2008-03-01

    Diversity of bacteria and archaea was studied in deep marine sediments by PCR amplification and sequence analysis of 16S rDNA. Sample analysed was from IMAGES (International Marine Past Global Change Study) 147 at site of the south slope of the South China Sea. DNA was amplified from samples at the surface layer of core MD05-2896. Phylogenetic analysis of clone libraries showed a wide variety of uncultured bacteria and archeae. The most abundant bacterial sequences (phylotypes) corresponded to the Proteobacteria, followed by the Planctomycete, Acidobacteria and candidate division OP10. Phylotypes ascribing to Deferrobacteres, Verrucomicrobia, Spirochaetes and candidate division clades of OP3, OP11, OP8 and TM6 were also identified. Archaeal 16S rDNA sequences were within phylums of Crenarchaeota and Euryarchaeota, respectively. The majority of archaeal phylotypes were Marine Benthic Group B (MBGB), Marine Crenarchaeotic Group I (MG I), Marine Benthic Group D (MBGD) and South African Gold Mine Euryarchaeotic Group (SAGMEG). Additional sequences grouped with the C3, Methanobacteriales and Novel Euryarchaeotic Group (NEG). These results indicate that bacteria and archaea are abundant and diversified in surface environment of subseafloor sediments. PMID:18479058

  19. Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea-Dominated Yellowstone Hot Springs

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Bolduc; Daniel P. Shaughnessy; Yuri I. Wolf; Eugene V. Koonin; Francisco F. Roberto; Mark Young

    2012-05-01

    There are no known RNA viruses that infect Archaea. Filling this gap in our knowledge of viruses will enhance our understanding of the relationships between RNA viruses from the three domains of cellular life and, in particular, could shed light on the origin of the enormous diversity of RNA viruses infecting eukaryotes. We describe here the identification of novel RNA viral genome segments from high-temperature acidic hot springs in Yellowstone National Park in the United States. These hot springs harbor low-complexity cellular communities dominated by several species of hyperthermophilic Archaea. A viral metagenomics approach was taken to assemble segments of these RNA virus genomes from viral populations isolated directly from hot spring samples. Analysis of these RNA metagenomes demonstrated unique gene content that is not generally related to known RNA viruses of Bacteria and Eukarya. However, genes for RNA-dependent RNA polymerase (RdRp), a hallmark of positive-strand RNA viruses, were identified in two contigs. One of these contigs is approximately 5,600 nucleotides in length and encodes a polyprotein that also contains a region homologous to the capsid protein of nodaviruses, tetraviruses, and birnaviruses. Phylogenetic analyses of the RdRps encoded in these contigs indicate that the putative archaeal viruses form a unique group that is distinct from the RdRps of RNA viruses of Eukarya and Bacteria. Collectively, our findings suggest the existence of novel positive-strand RNA viruses that probably replicate in hyperthermophilic archaeal hosts and are highly divergent from RNA viruses that infect eukaryotes and even more distant from known bacterial RNA viruses. These positive-strand RNA viruses might be direct ancestors of RNA viruses of eukaryotes.

  20. Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea: implications for TEX86 paleothermometry

    NARCIS (Netherlands)

    Wuchter, C.; Schouten, S.; Wakeham, S.G.; Sinninghe Damsté, J.S.

    2006-01-01

    The newly introduced temperature proxy, the tetraether index of archaeal lipids with 86 carbon atoms (TEX86), is based on the number of cyclopentane moieties in the glycerol dialkyl glycerol tetraether (GDGT) lipids of marine Crenarchaeota. The composition of sedimentary GDGTs used for TEX86 paleoth

  1. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean

    NARCIS (Netherlands)

    Sintes, Eva; Bergauer, Kristin; De Corte, Daniele; Yokokawa, Taichi; Herndl, Gerhard J.

    2013-01-01

    Mesophilic ammonia-oxidizing Archaea (AOA) are abundant in a diverse range of marine environments, including the deep ocean, as revealed by the quantification of the archaeal amoA gene encoding the alpha-subunit of the ammonia monooxygenase. Using two different amoA primer sets, two distinct ecotype

  2. Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures

    DEFF Research Database (Denmark)

    Häring, Monika; Vestergaard, Gisle Alberg; Brügger, Kim; Rachel, Reinhard; Garrett, Roger A; Prangishvili, David

    2005-01-01

    A novel filamentous virus, AFV2, from the hyperthermophilic archaeal genus Acidianus shows structural similarity to lipothrixviruses but differs from them in its unusual terminal and core structures. The double-stranded DNA genome contains 31,787 bp and carries eight open reading frames homologous...

  3. TAF1B is a TFIIB-like component of the basal transcription machinery for RNA polymerase I.

    Science.gov (United States)

    Naidu, Srivatsava; Friedrich, J Karsten; Russell, Jackie; Zomerdijk, Joost C B M

    2011-09-16

    Transcription by eukaryotic RNA polymerases (Pols) II and III and archaeal Pol requires structurally related general transcription factors TFIIB, Brf1, and TFB, respectively, which are essential for polymerase recruitment and initiation events. A TFIIB-like protein was not evident in the Pol I basal transcription machinery. We report that TAF1B, a subunit of human Pol I basal transcription factor SL1, is structurally related to TFIIB/TFIIB-like proteins, through predicted amino-terminal zinc ribbon and cyclin-like fold domains. SL1, essential for Pol I recruitment to the ribosomal RNA gene promoter, also has an essential postpolymerase recruitment role, operating through TAF1B. Therefore, a TFIIB-related protein is implicated in preinitiation complex assembly and postpolymerase recruitment events in Pol I transcription, underscoring the parallels between eukaryotic Pol I, II, and III and archaeal transcription machineries. PMID:21921199

  4. Archaeal diversity in deep-sea hydrothermal sediments from the East Pacific Rise%东太平洋海隆深海热液区沉积物古菌多样性分析

    Institute of Scientific and Technical Information of China (English)

    刘青; 谢运标; 陈逍遥; 周梅先

    2014-01-01

    Archaeal diversity of deep-sea hydrothermal sediments from 3 sites on the East Pacific Rise was investiga-ted and analyzed with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).Phyloge-netic analyses revealed that a total of 296 random 16S rRNA gene clones were assigned to Thaumarchaeota (47.64%),Euryarchaeota (44.93%),Crenarchaeota (6.77%)and unclassified Archaea (0.68%).Among them,the genus Nitrosopumilus belonging to the phylum Thaumarchaeota and the class Thermoplasmata belonging to the phylum Euryarchaeota were the dominant groups,representing 35.47% and 27.03% of archaeal clones,re-spectively.In addition,some archaeal 16S rRNA gene sequences were affiliated with deep-sea hydrothermal vent Euryarchaeota 3,5 and 6 (DHVE3,DHVE5 and DHVE6),and Marine Benthic Group B and G (MBGB and MB-GE ).Archaeal communities in sediments from 3 sites on East Pacific Rise were clearly distinct from each other.97 archaeal clones from S5-TVG1 site were divided to Thaumarchaeota (49.48%),Euryarchaeota (49.48%)and Crenarchaeota (1.03%).103 archaeal clones from S14-TVG10 site belonged to Thaumarchaeota(84.47%)and Euryarchaeota (15.53%).96 archaeal clones from S16-TVG12 site were assigned to Euryarchaeota(71.88%), Crenarchaeota (19.79%),Thaumarchaeota (6.25%)and unclassified Archaea (2.08%).Our results indicate that Archaea is abundant and there are a lot of novel archaeal groups in deep-sea hydrothermal sediments from 3 sites on the East Pacific Rise,and the distinct community structure and diversity of Archaea in deep-sea hydrother-mal sediments suggested that the sampling area was influenced by hydrothermalism.%采用PCR-RFLP方法对东太平洋海隆深海热液区3个站位沉积物中的古菌多样性进行了初步研究.结果显示,从古菌16S rRNA基因文库中随机挑取的296个阳性克隆分属奇古菌门(Thaumar-chaeota,47.64%)、广古菌门(Euryarchaeota,44.93%)、泉古菌门(Crenarchaeota,6.77

  5. The evolutionary history of protein fold families and proteomes confirms that the archaeal ancestor is more ancient than the ancestors of other superkingdoms

    Directory of Open Access Journals (Sweden)

    Kim Kyung Mo

    2012-01-01

    associated with corresponding FFs along the timeline reveals that primordial metabolic domains evolved earlier than informational domains involved in translation and transcription, supporting the metabolism-first hypothesis rather than the RNA world scenario. In addition, phylogenomic trees of proteomes reconstructed from FFs appearing in each of the five phases of the protein world show that trees reconstructed from ancient domain structures were consistently rooted in archaeal lineages, supporting the proposal that the archaeal ancestor is more ancient than the ancestors of other superkingdoms.

  6. Structure-Based Engineering of Lithium-Transport Capacity in an Archaeal Sodium-Calcium Exchanger.

    Science.gov (United States)

    Refaeli, Bosmat; Giladi, Moshe; Hiller, Reuben; Khananshvili, Daniel

    2016-03-29

    Members of the Ca(2+)/cation exchanger superfamily (Ca(2+)/CA) share structural similarities (including highly conserved ion-coordinating residues) while exhibiting differential selectivity for Ca(2+), Na(+), H(+), K(+), and Li(+). The archaeal Na(+)/Ca(2+) exchanger (NCX_Mj) and its mammalian orthologs are highly selective for Na(+), whereas the mitochondrial ortholog (NCLX) can transport either Li(+) or Na(+) in exchange with Ca(2+). Here, structure-based replacement of ion-coordinating residues in NCX_Mj resulted in a capacity for transporting either Na(+) or Li(+), similar to the case for NCLX. This engineered protein may serve as a model for elucidating the mechanisms underlying ion selectivity and ion-coupled alternating access in NCX and similar proteins. PMID:26958982

  7. Biological Membranes in Extreme Conditions: Simulations of Anionic Archaeal Tetraether Lipid Membranes

    Science.gov (United States)

    Pineda De Castro, Luis Felipe; Dopson, Mark

    2016-01-01

    In contrast to the majority of organisms that have cells bound by di-ester phospholipids, archaeal membranes consist of di- and tetraether phospholipids. Originating from organisms that withstand harsh conditions (e.g., low pH and a wide range of temperatures) such membranes have physical properties that make them attractive materials for biological research and biotechnological applications. We developed force-field parameters based on the widely used Generalized Amber Force Field (GAFF) to enable the study of anionic tetraether membranes of the model archaean Sulfolobus acidocaldarius by computer simulations. The simulations reveal that the physical properties of these unique membranes depend on the number of cyclopentane rings included in each lipid unit, and on the size of cations that are used to ensure charge neutrality. This suggests that the biophysical properties of Sulfolobus acidocaldarius cells depend not only on the compositions of their membranes but also on the media in which they grow. PMID:27167213

  8. Biological Membranes in Extreme Conditions: Simulations of Anionic Archaeal Tetraether Lipid Membranes.

    Directory of Open Access Journals (Sweden)

    Luis Felipe Pineda De Castro

    Full Text Available In contrast to the majority of organisms that have cells bound by di-ester phospholipids, archaeal membranes consist of di- and tetraether phospholipids. Originating from organisms that withstand harsh conditions (e.g., low pH and a wide range of temperatures such membranes have physical properties that make them attractive materials for biological research and biotechnological applications. We developed force-field parameters based on the widely used Generalized Amber Force Field (GAFF to enable the study of anionic tetraether membranes of the model archaean Sulfolobus acidocaldarius by computer simulations. The simulations reveal that the physical properties of these unique membranes depend on the number of cyclopentane rings included in each lipid unit, and on the size of cations that are used to ensure charge neutrality. This suggests that the biophysical properties of Sulfolobus acidocaldarius cells depend not only on the compositions of their membranes but also on the media in which they grow.

  9. Structure of the acidianus filamentous virus 3 and comparative genomics of related archaeal lipothrixviruses

    DEFF Research Database (Denmark)

    Vestergaard, Gisle Alberg; Aramayo, Ricardo; Basta, Tamara;

    2008-01-01

    Four novel filamentous viruses with double-stranded DNA genomes, namely, Acidianus filamentous virus 3 (AFV3), AFV6, AFV7, and AFV8, have been characterized from the hyperthermophilic archaeal genus Acidianus, and they are assigned to the Betalipothrixvirus genus of the family Lipothrixviridae. The...... structures of the approximately 2-mum-long virions are similar, and one of them, AFV3, was studied in detail. It consists of a cylindrical envelope containing globular subunits arranged in a helical formation that is unique for any known double-stranded DNA virus. The envelope is 3.1 nm thick and encases an...... high level of conservation in both gene content and gene order over large regions, with this similarity extending partly to the earlier described betalipothrixvirus Sulfolobus islandicus filamentous virus. A few predicted gene products of each virus, in addition to the structural proteins, could be...

  10. Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life

    DEFF Research Database (Denmark)

    Prangishvili, D.; Garrett, R. A.; Koonin, E.

    2006-01-01

    the proteins of crenarchaeal viruses and between viral proteins and those from cellular life forms and allowed functional predictions for some of these conserved genes. A small pool of genes is shared by overlapping subsets of crenarchaeal viruses, in a general analogy with the metagenome structure of...... accord with this distinction, the sequenced genomes of euryarchaeal viruses encode many proteins homologous to bacteriophage capsid proteins. In contrast, initial analysis of the crenarchaeal viral genomes revealed no relationships with bacteriophages and, generally, very few proteins with detectable...... homologs. Here we describe a re-analysis of the proteins encoded by archaeal viruses, with an emphasis on comparative genomics of the unique viruses of Crenarchaeota. Detailed examination of conserved domains and motifs uncovered a significant number of previously unnoticed homologous relationships among...

  11. MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes

    Directory of Open Access Journals (Sweden)

    Yang Yi-Fan

    2007-03-01

    Full Text Available Abstract Background Despite a remarkable success in the computational prediction of genes in Bacteria and Archaea, a lack of comprehensive understanding of prokaryotic gene structures prevents from further elucidation of differences among genomes. It continues to be interesting to develop new ab initio algorithms which not only accurately predict genes, but also facilitate comparative studies of prokaryotic genomes. Results This paper describes a new prokaryotic genefinding algorithm based on a comprehensive statistical model of protein coding Open Reading Frames (ORFs and Translation Initiation Sites (TISs. The former is based on a linguistic "Entropy Density Profile" (EDP model of coding DNA sequence and the latter comprises several relevant features related to the translation initiation. They are combined to form a so-called Multivariate Entropy Distance (MED algorithm, MED 2.0, that incorporates several strategies in the iterative program. The iterations enable us to develop a non-supervised learning process and to obtain a set of genome-specific parameters for the gene structure, before making the prediction of genes. Conclusion Results of extensive tests show that MED 2.0 achieves a competitive high performance in the gene prediction for both 5' and 3' end matches, compared to the current best prokaryotic gene finders. The advantage of the MED 2.0 is particularly evident for GC-rich genomes and archaeal genomes. Furthermore, the genome-specific parameters given by MED 2.0 match with the current understanding of prokaryotic genomes and may serve as tools for comparative genomic studies. In particular, MED 2.0 is shown to reveal divergent translation initiation mechanisms in archaeal genomes while making a more accurate prediction of TISs compared to the existing gene finders and the current GenBank annotation.

  12. Tertiary structure of bacterial selenocysteine tRNA.

    Science.gov (United States)

    Itoh, Yuzuru; Sekine, Shun-ichi; Suetsugu, Shiro; Yokoyama, Shigeyuki

    2013-07-01

    Selenocysteine (Sec) is translationally incorporated into proteins in response to the UGA codon. The tRNA specific to Sec (tRNA(Sec)) is first ligated with serine by seryl-tRNA synthetase (SerRS). In the present study, we determined the 3.1 Å crystal structure of the tRNA(Sec) from the bacterium Aquifex aeolicus, in complex with the heterologous SerRS from the archaeon Methanopyrus kandleri. The bacterial tRNA(Sec) assumes the L-shaped structure, from which the long extra arm protrudes. Although the D-arm conformation and the extra-arm orientation are similar to those of eukaryal/archaeal tRNA(Sec)s, A. aeolicus tRNA(Sec) has unique base triples, G14:C21:U8 and C15:G20a:G48, which occupy the positions corresponding to the U8:A14 and R15:Y48 tertiary base pairs of canonical tRNAs. Methanopyrus kandleri SerRS exhibited serine ligation activity toward A. aeolicus tRNA(Sec) in vitro. The SerRS N-terminal domain interacts with the extra-arm stem and the outer corner of tRNA(Sec). Similar interactions exist in the reported tRNA(Ser) and SerRS complex structure from the bacterium Thermus thermophilus. Although the catalytic C-terminal domain of M. kandleri SerRS lacks interactions with A. aeolicus tRNA(Sec) in the present complex structure, the conformational flexibility of SerRS is likely to allow the CCA terminal region of tRNA(Sec) to enter the SerRS catalytic site. PMID:23649835

  13. In vitro base modification of Escherichia coli glutamate 2 transfer-RNA and phenylalanine transfer-RNA gene transcripts

    International Nuclear Information System (INIS)

    Plasmids were constructed that contain an E. Coli tRNA2Glu or tRNAPhe gene in a system transcribable by T7 or SP6 RNA polymerase. Selectively 32P-labeled transcripts of these plasmids were used to study tRNA base modification in vitro in crude extracts by nearest neighbor analysis. The synthesis of 5-methyl-aminomethyl-2-thiouridine (mnm5s2U) was studied. Complete synthesis of mnm5s22U is not observed. Instead, 2-thiouridine (s2U) is synthesized. Synthesis requires ATP, cysteine, Mg+, and monovalent cation concentrations below 50 mM. The reaction has a pH optimum above 7.0. Sulfide ion will substitute for cysteine in the reaction but sulfate, sulfite, methionine, homocysteine, and β-mercaptopyruvate will not. Extracts from E. coli strains carrying either the asuE or asuF mutations have reduced s2U synthetic activity which supports in vivo evidence that the wild type genes are involved in 2-thiolation of uridine. The enzyme is shown to be unstable both upon storage at -80 degree C and during the modification reaction. A method was developed to study the synthesis of any one of four pseudouridines ψ found at different positions of the tRNA cloverleaf. Synthesis of ψ is observed at three of the four positions-positions 32, 39, and 55. The asuC mutation is shown to affect ψ synthesis only at position 39 confirming that it is an allele of hisT and that the hisT mutations do not affect ψ synthesis at position 32 in E. coli. Synthesis of ψ32, ψ39, and ψ55 does not require any prior modification. Synthesis of dihydrouridine, 7-methylguanosine, and 3(3-amino-3-carboxypropyl)uridine is also observed. Synthesis of 2-methyladenosine and ψ 13 is not seen. Removal of part of the aminoacyl stem reduces synthesis of all modifications examined by 3' fold or more

  14. Phylogenetic Diversity and Spatial Distribution of the Microbial Community Associated with the Caribbean Deep-water Sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA Gene Analysis

    OpenAIRE

    Meyer, Birte; Kuever, Jan

    2008-01-01

    Denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S rRNA, aprA, and amoA genes demonstrated that a phylogenetically diverse and complex microbial community was associated with the Caribbean deep-water sponge Polymastia cf. corticata Ridley and Dendy, 1887. From the 38 archaeal and bacterial 16S rRNA phylotypes identified, 53% branched into the sponge-specific, monophyletic sequence clusters determined by previous studies (considering predominantly shallow-water sponge species...

  15. Visualization and quantification of archaeal and bacterial metabolically active cells in soil using fluorescence in situ hybridization method

    Science.gov (United States)

    Semenov, Mikhail; Manucharova, Natalia; Stepanov, Alexey

    2015-04-01

    The method of in situ hybridization using fluorescent labeled 16S rRNA-targeted oligonucleotide probes (FISH - fluorescence in situ hybridization) combines identification and quantification of groups of microorganisms at different phylogenetic levels, from domain to species. The FISH method enables to study the soil microbial community in situ, avoiding plating on nutrient media, and allows to identify and quantify living, metabolically active cells of Bacteria and Archaea. The full procedure consists of the following steps: desorption of the cells from the soil particles, fixation of cells, coating a fixed sample on the glass slide, hybridization with the specific probes and, finally, microscopic observation and cell counting. For the FISH analysis of Bacteria and Archaea, the paraformaldehyde-fixed samples were hybridized with Cy3-labeled Archaea-specific probe(Arc915) and 6-carboxyfluorescein (FAM)-labeled Bacteria-specific probe(EUB338). When a molecular probe is incorporated into a cell, it can hybridize solely with a complementary rRNA sequence. The hybridization can be visualized under the fluorescent microscope and counted. The application of FISH will be demonstrated by the abundance of metabolically active cells of Archaea and Bacteria depending on soil properties, depth and land use. The research was carried out at field and natural ecosystems of European part of Russia. Samples were collected within the soil profiles (3-6 horizons) of Chernozem and Kastanozem with distinct land use. Quantification of metabolically active cells in virgin and arable Chernozem revealed that the abundance of Archaea in topsoil of virgin Chernozem was doubled as compared with arable soil, but it leveled off in the deeper horizons. Plowing of Chernozem decreased an amount of archaeal and bacterial active cells simultaneously, however, Bacteria were more resistant to agrogenic impact than Archaea. In Kastanozem, a significant change in the abundance of metabolically active

  16. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

    OpenAIRE

    Frade, Pedro R.; Katharina Roll; Kristin Bergauer; Herndl, Gerhard J.

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and ...

  17. Archaeal and bacterial tetraether lipids in tropical ponds with contrasted salinity (Guadeloupe, French West Indies): Implications for tetraether-based environmental proxies

    OpenAIRE

    Huguet, Arnaud; Grossi, Vincent; Belmahdi, Imène; Fosse, Céline; Derenne, Sylvie

    2015-01-01

    International audience The occurrence and distribution of archaeal and bacterial glycerol dialkyl glycerol tetraether lipids (GDGTs) in continental saline environments have been rarely investigated. Here, the abundance and distribution of archaeal isoprenoid GDGTs (iGDGTs) and archaeol, and of bacterial branched GDGTs (brGDGTs) in four tropical water ponds of contrasting salinity in two islands from the French Western Indies, Grande-Terre and La Désirade, have been determined. The sediment...

  18. The Cm56 tRNA modification in archaea is catalyzed either by a specific 2′-O-methylase, or a C/D sRNP

    Science.gov (United States)

    RENALIER, MARIE-HÉLÈNE; JOSEPH, NICOLE; GASPIN, CHRISTINE; THEBAULT, PATRICIA; MOUGIN, ANNIE

    2005-01-01

    We identified the first archaeal tRNA ribose 2′-O-methylase, aTrm56, belonging to the Cluster of Orthologous Groups (COG) 1303 that contains archaeal genes only. The corresponding protein exhibits a SPOUT S-adenosylmethionine (AdoMet)-dependent methyltransferase domain found in bacterial and yeast G18 tRNA 2′-O-methylases (SpoU, Trm3). We cloned the Pyrococcus abyssi PAB1040 gene belonging to this COG, expressed and purified the corresponding protein, and showed that in vitro, it specifically catalyzes the AdoMet-dependent 2′-O-ribose methylation of C at position 56 in tRNA transcripts. This tRNA methylation is present only in archaea, and the gene for this enzyme is present in all the archaeal genomes sequenced up to now, except in the crenarchaeon Pyrobaculum aerophilum. In this archaea, the C56 2′-O-methylation is provided by a C/D sRNP. Our work is the first demonstration that, within the same kingdom, two different mechanisms are used to modify the same nucleoside in tRNAs. PMID:15987815

  19. Responses of bacterial and archaeal communities to nitrate stimulation after oil pollution in mangrove sediment revealed by Illumina sequencing.

    Science.gov (United States)

    Wang, Lei; Huang, Xu; Zheng, Tian-Ling

    2016-08-15

    This study aimed to investigate microbial responses to nitrate stimulation in oiled mangrove mesocosm. Both supplementary oil and nitrate changed the water and sediment chemical properties contributing to the shift of microbial communities. Denitrifying genes nirS and nirK were increased several times by the interaction of oil spiking and nitrate addition. Bacterial chao1 was reduced by oil spiking and further by nitrate stimulation, whereas archaeal chao1 was only inhibited by oil pollution on early time. Sampling depth explained most of variation and significantly impacted bacterial and archaeal communities, while oil pollution only significantly impacted bacterial communities (pexplaining less variation, nitrate addition coupled with oil spiking enhanced the growth of hydrocarbon degraders in mangrove. The findings demonstrate the impacts of environmental factors and their interactions in shaping microbial communities during nitrate stimulation. Our study suggests introducing genera Desulfotignum and Marinobacter into oiled mangrove for bioaugmentation. PMID:27262497

  20. Non-extremophilic 'extremophiles' - Archaeal dominance in the subsurface and their implication for life

    Science.gov (United States)

    Reitschuler, Christoph; Lins, Philipp; Illmer, Paul

    2014-05-01

    Archaea - besides bacteria and eukaryota constituting the third big domain of life - were so far regarded as typical inhabitants of extreme environments, as indicated by the name (Archaeon, Greek: 'original', 'primal'). Previous research and cultivation successes were basically carried out in habitats characterized by extreme temperature, pH and salinity regimes. Such extreme conditions, as expected at the beginning of the Earth's evolution, are occasionally also prevalent on extraterrestrial planets and moons and make the Archaeal domain a key group to be studied concerning life's evolution and the most likely pioneer organisms to colonize environments that are regarded as hostile. However, in recent years it became obvious that Archaea, in particular non-extremophilic species, can be found almost ubiquitously in marine, freshwater, terrestrial and also subsurface habitats and occasionally outnumber other microbial domains and hold key positions in globally relevant energy and nutrient cycles. Besides extreme environments - the big question remains how to define a parameter as extreme - subsurface and cave environments present a window to the past, where adaptions to early life's conditions can be studied and how microbiomes may be structured in a habitat that represents a refugium on extraterrestrial celestial bodies, were surface conditions might be at first sight too extreme for life. The lower part of the alpine Hundsalm cave in Tyrol (Austria) offered a unique opportunity to study an almost pristine cave habitat, which is separated from the touristic part of the ice cave. The main focus of our research was laid on the microbial communities that were supposed to be in connection with secondary carbonate precipitations ('moonmilk'). For the ascertainment of these so far poorly evaluated structures a multiple approach assessment was chosen to generate a virtually complete picture of these subsurface microbiomes. Thereby, a combination of different cultivation

  1. Archaeal and bacterial community dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Garcia-Ruiz, Maria Jesus; Rodriguez-Sanchez, Alejandro; Osorio, Francisco; Gonzalez-Lopez, Jesus

    2016-07-01

    Two-stage technologies have been developed for anaerobic digestion of waste-activated sludge. In this study, the archaeal and bacterial community structure dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester treating urban sewage sludge have been studied by the means of high-throughput sequencing techniques and physicochemical parameters such as pH, dried sludge, volatile dried sludge, acid concentration, alkalinity, and biogas generation. The coupled analyses of archaeal and bacterial communities and physicochemical parameters showed a direct relationship between archaeal and bacterial populations and bioprocess performance during start-up and working operation of a two-stage anaerobic digester. Moreover, results demonstrated that archaeal and bacterial community structure was affected by changes in the acid/alkalinity ratio in the bioprocess. Thus, a predominance of the acetoclastic methanogen Methanosaeta was observed in the methanogenic bioreactor at high-value acid/alkaline ratio, while a predominance of Methanomassilicoccaeceae archaea and Methanoculleus genus was observed in the methanogenic bioreactor at low-value acid/alkaline ratio. Biodiversity tag-iTag sequencing studies showed that methanogenic archaea can be also detected in the acidogenic bioreactor, although its biological activity was decreased after 4 months of operation as supported by physicochemical analyses. Also, studies of the VFA producers and VFA consumers microbial populations showed as these microbiota were directly affected by the physicochemical parameters generated in the bioreactors. We suggest that the results obtained in our study could be useful for future implementations of two-stage anaerobic digestion processes at both bench- and full-scale. PMID:26940050

  2. Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea: implications for TEX86 paleothermometry

    OpenAIRE

    Wuchter, C.; Schouten, S.; Wakeham, S.G.; Sinninghe Damsté, J.S.

    2006-01-01

    The newly introduced temperature proxy, the tetraether index of archaeal lipids with 86 carbon atoms (TEX86), is based on the number of cyclopentane moieties in the glycerol dialkyl glycerol tetraether (GDGT) lipids of marine Crenarchaeota. The composition of sedimentary GDGTs used for TEX86 paleothermometry is thought to reflect sea surface temperature (SST). However, marine Crenarchaeota occur ubiquitously in the world oceans over the entire depth range and not just in surface waters. We an...

  3. tRNAfeature: An algorithm for tRNA features to identify tRNA genes in DNA sequences.

    Science.gov (United States)

    Yang, Cheng-Hong; Lin, Yu-Da; Chuang, Li-Yeh

    2016-09-01

    The identification of transfer RNAs (tRNAs) is critical for a detailed understanding of the evolution of biological organisms and viruses. However, some tRNAs are difficult to recognize due to their unusual sub-structures and may result in the detection of the wrong anticodon. Therefore, the detection of unusual sub-structures of tRNA genes remains an important challenge. In this study, we propose a method to identify tRNA genes based on tRNA features. tRNAfeature attempts to refold the sequence with single-stranded regions longer than those found in the canonical and conventional structural models for tRNA. We predicted a set of 53926 archaeal, eubacterial and eukaryotic tRNA genes annotated in tRNADB-CE and scanned the tRNA genes in whole genome sequencing. The results indicate that tRNAfeature is more powerful than other existing methods for identifying tRNAs. PMID:27291467

  4. Insights into archaeal evolution and symbiosis from the genomes of a Nanoarchaeon and its crenarchaeal host from Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Podar, Mircea [ORNL; Graham, David E [ORNL; Reysenbach, Anna-Louise [Portland State University; Koonin, Eugene [National Center for Biotechnology Information; Wolf, Yuri [National Center for Biotechnology Information; Makarova, Kira S. [National Center for Biotechnology Information

    2013-01-01

    A hyperthemophilic member of the Nanoarchaeota from Obsidian Pool, a thermal feature in Yellowstone National Park was characterized using single cell isolation and sequencing, together with its putative host, a Sulfolobales archaeon. This first representative of a non-marine Nanoarchaeota (Nst1) resembles Nanoarchaeum equitans by lacking most biosynthetic capabilities, the two forming a deep-branching archaeal lineage. However, the Nst1 genome is over 20% larger, encodes a complete gluconeogenesis pathway and a full complement of archaeal flagellum proteins. Comparison of the two genomes suggests that the marine and terrestrial Nanoarchaeota lineages share a common ancestor that was already a symbiont of another archaeon. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. The two distinct Nanoarchaeota-host genomic data sets offer insights into the evolution of archaeal symbiosis and parasitism and will further enable studies of the cellular and molecular mechanisms of these relationships.

  5. Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry

    Directory of Open Access Journals (Sweden)

    William P. Inskeep

    2013-05-01

    Full Text Available Geothermal habitats in Yellowstone National Park (YNP provide an unparalled opportunity to understand the environmental factors that control the distribution of archaea in thermal habitats. Here we describe, analyze and synthesize metagenomic and geochemical data collected from seven high-temperature sites that contain microbial communities dominated by archaea relative to bacteria. The specific objectives of the study were to use metagenome sequencing to determine the structure and functional capacity of thermophilic archaeal-dominated microbial communities across a pH range from 2.5 to 6.4 and to discuss specific examples where the metabolic potential correlated with measured environmental parameters and geochemical processes occurring in situ. Random shotgun metagenome sequence (~40-45 Mbase Sanger sequencing per site was obtained from environmental DNA extracted from high-temperature sediments and/or microbial mats and subjected to numerous phylogenetic and functional analyses. Analysis of individual sequences (e.g., MEGAN and G+C content and assemblies from each habitat type revealed the presence of dominant archaeal populations in all environments, 10 of whose genomes were largely reconstructed from the sequence data. Analysis of protein family occurrence, particularly of those involved in energy conservation, electron transport and autotrophic metabolism, revealed significant differences in metabolic strategies across sites consistent with differences in major geochemical attributes (e.g., sulfide, oxygen, pH. These observations provide an ecological basis for understanding the distribution of indigenous archaeal lineages across high temperature systems of YNP.

  6. Divergent responses of methanogenic archaeal communities in two rice cultivars to elevated ground-level O3.

    Science.gov (United States)

    Zhang, Jianwei; Tang, Haoye; Zhu, Jianguo; Lin, Xiangui; Feng, Youzhi

    2016-06-01

    Inhibitive effect of elevated ground-level ozone (O3) on paddy methane (CH4) emission varies with rice cultivars. However, little information is available on its microbial mechanism. For this purpose, the responses of methane-metabolizing microorganisms, methanogenic archaea and methanotrophic bacteria to O3 pollution were investigated in the O3-tolerant (YD6) and the O3-sensitive (IIY084) cultivars at two rice growth stages in Free Air Concentration Elevation of O3 (O3-FACE) system of China. It was found that O3 pollution didn't change the abundances of Type I and Type II methanotrophic bacteria at two rice stages. For methanogenic archaea, their abundances in both cultivars were decreased by O3 pollution at the tillering stage. Furthermore, a greater negative influence on methanogenic archaeal community was observed on IIY084 than on YD6: at tillering stage, the alpha diversity indices of methanogenic archaeal community in IIY084 was decreased to a greater extent than in YD6; IIY084 shifted methanogenic archaeal community composition and decreased the abundances and the diversities of Methanosarcinaceae and Methanosaetaceae as well as the abundance of Methanomicrobiales, while the diversity of Methanocellaceae were increased in YD6. These findings indicate that the variations in the responses of paddy CH4 emission to O3 pollution between cultivars could result from the divergent responses of their methanogenic archaea. PMID:26895536

  7. Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes

    Directory of Open Access Journals (Sweden)

    Tim Soderberg

    2005-01-01

    Full Text Available A phylogenetic analysis of the genes encoding enzymes in the pentose phosphate pathway (PPP, the ribulose monophosphate (RuMP pathway, and the chorismate pathway of aromatic amino acid biosynthesis, employing data from 13 complete archaeal genomes, provides a potential explanation for the enigmatic phylogenetic patterns of the PPP genes in archaea. Genomic and biochemical evidence suggests that three archaeal species (Methanocaldococcus jannaschii, Thermoplasma acidophilum and Thermoplasma volcanium produce ribose-5-phosphate via the nonoxidative PPP (NOPPP, whereas nine species apparently lack an NOPPP but may employ a reverse RuMP pathway for pentose synthesis. One species (Halobacterium sp. NRC-1 lacks both the NOPPP and the RuMP pathway but may possess a modified oxidative PPP (OPPP, the details of which are not yet known. The presence of transketolase in several archaeal species that are missing the other two NOPPP genes can be explained by the existence of differing requirements for erythrose-4-phosphate (E4P among archaea: six species use transketolase to make E4P as a precursor to aromatic amino acids, six species apparently have an alternate biosynthetic pathway and may not require the ability to make E4P, and one species (Pyrococcus horikoshii probably does not synthesize aromatic amino acids at all.

  8. Identification of GH15 Family Thermophilic Archaeal Trehalases That Function within a Narrow Acidic-pH Range.

    Science.gov (United States)

    Sakaguchi, Masayoshi; Shimodaira, Satoru; Ishida, Shin-Nosuke; Amemiya, Miko; Honda, Shotaro; Sugahara, Yasusato; Oyama, Fumitaka; Kawakita, Masao

    2015-08-01

    Two glucoamylase-like genes, TVN1315 and Ta0286, from the archaea Thermoplasma volcanium and T. acidophilum, respectively, were expressed in Escherichia coli. The gene products, TVN1315 and Ta0286, were identified as archaeal trehalases. These trehalases belong to the CAZy database family GH15, although they have putative (α/α)6 barrel catalytic domain structures similar to those of GH37 and GH65 family trehalases from other organisms. These newly identified trehalases function within a narrow range of acidic pH values (pH 3.2 to 4.0) and at high temperatures (50 to 60°C), and these enzymes display Km values for trehalose higher than those observed for typical trehalases. These enzymes were inhibited by validamycin A; however, the inhibition constants (Ki) were higher than those of other trehalases. Three TVN1315 mutants, corresponding to E408Q, E571Q, and E408Q/E571Q mutations, showed reduced activity, suggesting that these two glutamic acid residues are involved in trehalase catalysis in a manner similar to that of glucoamylase. To date, TVN1315 and Ta0286 are the first archaeal trehalases to be identified, and this is the first report of the heterologous expression of GH15 family trehalases. The identification of these trehalases could extend our understanding of the relationships between the structure and function of GH15 family enzymes as well as glycoside hydrolase family enzymes; additionally, these enzymes provide insight into archaeal trehalose metabolism. PMID:25979886

  9. Comparative analysis ofCas6b processing and CRISPR RNA stability.

    Science.gov (United States)

    Richter, Hagen; Lange, Sita J; Backofen, Rolf; Randau, Lennart

    2013-05-01

    The prokaryotic antiviral defense systems CRISP R (clustered regularly interspaced short palindromic repeats)/Cas (CRISP Rassociated) employs short crRNAs (CRISP R RNAs) to target invading viral nucleic acids. A short spacer sequence of these crRNAs can be derived from a viral genome and recognizes a reoccurring attack of a virus via base complementarity. We analyzed the effect of spacer sequences on the maturation of crRNAs of the subtype I-B Methanococcus maripaludis C5 CRISP R cluster. The responsible endonuclease, termed Cas6b, bound non-hydrolyzable repeat RNA as a dimer and mature crRNA as a monomer. Comparative analysis of Cas6b processing of individual spacer-repeat-spacer RNA substrates and crRNA stability revealed the potential influence of spacer sequence and length on these parameters. Correlation of these observations with the variable abundance of crRNAs visualized by deep-sequencing analyses is discussed. Finally, insertion of spacer and repeat sequences with archaeal poly-T termination signals is suggested to be prevented in archaeal CRISP R/Cas systems. PMID:23392318

  10. Phylogeny and Taxonomy of Archaea: A Comparison of the Whole-Genome-Based CVTree Approach with 16S rRNA Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Guanghong Zuo

    2015-03-01

    Full Text Available A tripartite comparison of Archaea phylogeny and taxonomy at and above the rank order is reported: (1 the whole-genome-based and alignment-free CVTree using 179 genomes; (2 the 16S rRNA analysis exemplified by the All-Species Living Tree with 366 archaeal sequences; and (3 the Second Edition of Bergey’s Manual of Systematic Bacteriology complemented by some current literature. A high degree of agreement is reached at these ranks. From the newly proposed archaeal phyla, Korarchaeota, Thaumarchaeota, Nanoarchaeota and Aigarchaeota, to the recent suggestion to divide the class Halobacteria into three orders, all gain substantial support from CVTree. In addition, the CVTree helped to determine the taxonomic position of some newly sequenced genomes without proper lineage information. A few discrepancies between the CVTree and the 16S rRNA approaches call for further investigation.

  11. Archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1b

    DEFF Research Database (Denmark)

    Kuypers, M.M.M.; Blokker, P.; Hopmans, E.C.;

    2002-01-01

    The sources for both soluble and insoluble organic matter of the early Albian (∼112 Myr) oceanic anoxic event (OAE) 1b black shales of the Ocean Drilling Program (ODP) site 1049C (North Atlantic Ocean off the coast of Florida) and the Ravel section of the Southeast France Basin (SEFB) were...... C/C ratios was used to estimate that up to ∼40% of the organic matter of the SEFB and up to ∼80% of the organic matter of ODP site 1049C preserved in the black shales is derived from archaea. Furthermore, it is shown that, even though there are apparent similarities (high organic carbon (OC) content......, distinct lamination, C-enrichment of OC) between the black shales of OAE1b and the Cenomanian/Turonian (∼94 Myr) OAE, the origin of the organic matter (archaeal versus phytoplanktonic) and causes for C-enrichment of OC are completely different. © 2002 Elsevier Science B.V. All rights reserved....

  12. Cooperative adsorption of critical metal ions using archaeal poly-γ-glutamate.

    Science.gov (United States)

    Hakumai, Yuichi; Oike, Shota; Shibata, Yuka; Ashiuchi, Makoto

    2016-06-01

    Antimony, beryllium, chromium, cobalt (Co), gallium (Ga), germanium, indium (In), lithium, niobium, tantalum, the platinoids, the rare-earth elements (including dysprosium, Dy), and tungsten are generally regarded to be critical (rare) metals, and the ions of some of these metals are stabilized in acidic solutions. We examined the adsorption capacities of three water-soluble functional polymers, namely archaeal poly-γ-glutamate (L-PGA), polyacrylate (PAC), and polyvinyl alcohol (PVA), for six valuable metal ions (Co(2+), Ni(2+), Mn(2+), Ga(3+), In(3+), and Dy(3+)). All three polymers showed apparently little or no capacity for divalent cations, whereas L-PGA and PAC showed the potential to adsorb trivalent cations, implying the beneficial valence-dependent selectivity of anionic polyelectrolytes with multiple carboxylates for metal ions. PVA did not adsorb metal ions, indicating that the crucial role played by carboxyl groups in the adsorption of crucial metal ions cannot be replaced by hydroxyl groups under the conditions. In addition, equilibrium studies using the non-ideal competitive adsorption model indicated that the potential for L-PGA to be used for the removal (or collection) of water-soluble critical metal ions (e.g., Ga(3+), In(3+), and Dy(3+)) was far superior to that of any other industrially-versatile PAC materials. PMID:27013333

  13. Geographic Distribution of Archaeal Ammonia Oxidizing Ecotypes in the Atlantic Ocean

    Science.gov (United States)

    Sintes, Eva; De Corte, Daniele; Haberleitner, Elisabeth; Herndl, Gerhard J.

    2016-01-01

    In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA) vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo), exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS) between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization. PMID:26903961

  14. Structure and Evolution of the Archaeal Lipid Synthesis Enzyme sn-Glycerol-1-phosphate Dehydrogenase.

    Science.gov (United States)

    Carbone, Vincenzo; Schofield, Linley R; Zhang, Yanli; Sang, Carrie; Dey, Debjit; Hannus, Ingegerd M; Martin, William F; Sutherland-Smith, Andrew J; Ronimus, Ron S

    2015-08-28

    One of the most critical events in the origins of cellular life was the development of lipid membranes. Archaea use isoprenoid chains linked via ether bonds to sn-glycerol 1-phosphate (G1P), whereas bacteria and eukaryotes use fatty acids attached via ester bonds to enantiomeric sn-glycerol 3-phosphate. NAD(P)H-dependent G1P dehydrogenase (G1PDH) forms G1P and has been proposed to have played a crucial role in the speciation of the Archaea. We present here, to our knowledge, the first structures of archaeal G1PDH from the hyperthermophilic methanogen Methanocaldococcus jannaschii with bound substrate dihydroxyacetone phosphate, product G1P, NADPH, and Zn(2+) cofactor. We also biochemically characterized the enzyme with respect to pH optimum, cation specificity, and kinetic parameters for dihydroxyacetone phosphate and NAD(P)H. The structures provide key evidence for the reaction mechanism in the stereospecific addition for the NAD(P)H-based pro-R hydrogen transfer and the coordination of the Zn(2+) cofactor during catalysis. Structure-based phylogenetic analyses also provide insight into the origins of G1PDH. PMID:26175150

  15. Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance.

    Science.gov (United States)

    Thion, Cécile E; Poirel, Jessica D; Cornulier, Thomas; De Vries, Franciska T; Bardgett, Richard D; Prosser, James I

    2016-07-01

    The influence of plants on archaeal (AOA) and bacterial (AOB) ammonia oxidisers (AO) is poorly understood. Higher microbial activity in the rhizosphere, including organic nitrogen (N) mineralisation, may stimulate both groups, while ammonia uptake by plants may favour AOA, considered to prefer lower ammonia concentration. We therefore hypothesised (i) higher AOA and AOB abundances in the rhizosphere than bulk soil and (ii) that AOA are favoured over AOB in the rhizosphere of plants with an exploitative strategy and high N demand, especially (iii) during early growth, when plant N uptake is higher. These hypotheses were tested by growing 20 grassland plants, covering a spectrum of resource-use strategies, and determining AOA and AOB amoA gene abundances, rhizosphere and bulk soil characteristics and plant functional traits. Joint Bayesian mixed models indicated no increase in AO in the rhizosphere, but revealed that AOA were more abundant in the rhizosphere of exploitative plants, mostly grasses, and less abundant under conservative plants. In contrast, AOB abundance in the rhizosphere and bulk soil depended on pH, rather than plant traits. These findings provide a mechanistic basis for plant-ammonia oxidiser interactions and for links between plant functional traits and ammonia oxidiser ecology. PMID:27130939

  16. Geographic Distribution of Archaeal Ammonia Oxidizing Ecotypes in the Atlantic Ocean.

    Science.gov (United States)

    Sintes, Eva; De Corte, Daniele; Haberleitner, Elisabeth; Herndl, Gerhard J

    2016-01-01

    In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA) vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo), exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS) between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization. PMID:26903961

  17. Comparison of bacterial and archaeal communities in depth-resolved zones in an LNAPL body.

    Science.gov (United States)

    Irianni-Renno, Maria; Akhbari, Daria; Olson, Mitchell R; Byrne, Adam P; Lefèvre, Emilie; Zimbron, Julio; Lyverse, Mark; Sale, Thomas C; De Long, Susan K

    2016-04-01

    Advances in our understanding of the microbial ecology at sites impacted by light non-aqueous phase liquids (LNAPLs) are needed to drive development of optimized bioremediation technologies, support longevity models, and develop culture-independent molecular tools. In this study, depth-resolved characterization of geochemical parameters and microbial communities was conducted for a shallow hydrocarbon-impacted aquifer. Four distinct zones were identified based on microbial community structure and geochemical data: (i) an aerobic, low-contaminant mass zone at the top of the vadose zone; (ii) a moderate to high-contaminant mass, low-oxygen to anaerobic transition zone in the middle of the vadose zone; (iii) an anaerobic, high-contaminant mass zone spanning the bottom of the vadose zone and saturated zone; and (iv) an anaerobic, low-contaminant mass zone below the LNAPL body. Evidence suggested that hydrocarbon degradation is mediated by syntrophic fermenters and methanogens in zone III. Upward flux of methane likely contributes to promoting anaerobic conditions in zone II by limiting downward flux of oxygen as methane and oxygen fronts converge at the top of this zone. Observed sulfate gradients and microbial communities suggested that sulfate reduction and methanogenesis both contribute to hydrocarbon degradation in zone IV. Pyrosequencing revealed that Syntrophus- and Methanosaeta-related species dominate bacterial and archaeal communities, respectively, in the LNAPL body below the water table. Observed phylotypes were linked with in situ anaerobic hydrocarbon degradation in LNAPL-impacted soils. PMID:26691516

  18. RNA oxidation

    DEFF Research Database (Denmark)

    Kjaer, L. K.; Cejvanovic, V.; Henriken, T.;

    2015-01-01

    .9 significant hazard ratio for death compared with the quartile with the lowest 8oxoGuo excretion when adjusted for age, sex, BMI, smoker status, s-HbA1c, urine protein excretion and s-cholesterol. We conclude that it is now established that RNA oxidation is an independent risk factor for death in type 2...

  19. Seasonal and Spatial Variability in Lake Michigan Sediment Small-Subunit rRNA Concentrations

    OpenAIRE

    MacGregor, Barbara J.; Moser, Duane P.; Baker, Brett J.; Alm, Elizabeth W.; Maurer, Max; Nealson, Kenneth H.; Stahl, David A.

    2001-01-01

    We have used molecular biological methods to study the distribution of microbial small-subunit rRNAs (SSU rRNAs), in relation to chemical profiles, in offshore Lake Michigan sediments. The sampling site is at a depth of 100 m, with temperatures of 2 to 4°C year-round. RNA extracted from sediment was probed with radiolabeled oligonucleotides targeting bacterial, archaeal, and eukaryotic SSU rRNAs, as well as with a universal probe. The coverage of these probes in relation to the present sequen...

  20. Crystal structure of the flagellar accessory protein FlaH of Methanocaldococcus jannaschii suggests a regulatory role in archaeal flagellum assembly.

    Science.gov (United States)

    Meshcheryakov, Vladimir A; Wolf, Matthias

    2016-06-01

    Archaeal flagella are unique structures that share functional similarity with bacterial flagella, but are structurally related to bacterial type IV pili. The flagellar accessory protein FlaH is one of the conserved components of the archaeal motility system. However, its function is not clearly understood. Here, we present the 2.2 Å resolution crystal structure of FlaH from the hyperthermophilic archaeon, Methanocaldococcus jannaschii. The protein has a characteristic RecA-like fold, which has been found previously both in archaea and bacteria. We show that FlaH binds to immobilized ATP-however, it lacks ATPase activity. Surface plasmon resonance analysis demonstrates that ATP affects the interaction between FlaH and the archaeal motor protein FlaI. In the presence of ATP, the FlaH-FlaI interaction becomes significantly weaker. A database search revealed similarity between FlaH and several DNA-binding proteins of the RecA superfamily. The closest structural homologs of FlaH are KaiC-like proteins, which are archaeal homologs of the circadian clock protein KaiC from cyanobacteria. We propose that one of the functions of FlaH may be the regulation of archaeal motor complex assembly. PMID:27060465

  1. Diversity of Archaeal Consortia in an Arsenic-Rich Hydrothermal System

    Science.gov (United States)

    Franks, M.; Bennett, P.; Omelon, C.; Engel, A.

    2008-12-01

    Characterizing microbial communities within their geochemical environment is essential to understanding microbial distribution and microbial adaptations to extreme physical and chemical conditions. The hydrothermal waters at El Tatio geyser field demonstrate extreme conditions, with water at local boiling (85°C), arsenic concentrations at 0.5 mM, and inorganic carbon concentrations as low as 0.02mM. Yet many of El Tatio's hundred plus hydrothermal features are associated with extensive microbial mat communities. Recent work has shown phylogenetic variation in the communities that correlates to variations in water chemistry between features. MPN analysis indicates variations in metabolic function between hydrothermal features, such as the ability of the community to fix nitrogen, and the presence of methanogens within the community. Methanogenic archaea, which are typical of hydrothermal environments, are found in very few of the sampled hydrothermal features at El Tatio. MPN enumeration shows that nonspecific microbial mat samples from sites with dissolved methane contain 106 cells of methanogenic archaea per gram while non-specific samples from sites lacking dissolved methane contain 100 cells per gram or less. An acetylene assay showed evidence for nitrogen fixation in a sample associated with methanogenesis, but microbial transformation of acetylene to ethylene did not occur in non-methanogenic sites. More specific sampling of microbial mats indicates that methanogenic archaea are dominated by microorganisms within the genus Methanospirillum and Methanobrevibacter. These microbes are associated with a number of unclassified archaea in the class Thermoplasmata Halobacteriales, and unclassifiec Crenarchaeota. In addition, preliminary results include an unclassified Thaumarchaeota clone, a member of the recently proposed third archaeal phylum Thaumarchaeota. Nonspecific microbial mat sample from a non- methanogenic site included only Crenarchaeal clones within the

  2. Tracing the Archaeal Origins of Eukaryotic Membrane-Trafficking System Building Blocks.

    Science.gov (United States)

    Klinger, Christen M; Spang, Anja; Dacks, Joel B; Ettema, Thijs J G

    2016-06-01

    In contrast to prokaryotes, eukaryotic cells are characterized by a complex set of internal membrane-bound compartments. A subset of these, and the protein machineries that move material between them, define the membrane-trafficking system (MTS), the emergence of which represents a landmark in eukaryotic evolution. Unlike mitochondria and plastids, MTS organelles have autogenous origins. Much of the MTS machinery is composed of building blocks, including small GTPase, coiled-coil, beta-propeller + alpha-solenoid, and longin domains. Despite the identification of prokaryotic proteins containing these domains, only few represent direct orthologues, leaving the origins and early evolution of the MTS poorly understood. Here, we present an in-depth analysis of MTS building block homologues in the composite genome of Lokiarchaeum, the recently discovered archaeal sister clade of eukaryotes, yielding several key insights. We identify two previously unreported Eukaryotic Signature Proteins; orthologues of the Gtr/Rag family GTPases, involved in target of rapamycin complex signaling, and of the RLC7 dynein component. We could not identify golgin or SNARE (coiled-coil) or beta-propeller + alpha-solenoid orthologues, nor typical MTS domain fusions, suggesting that these either were lost from Lokiarchaeum or emerged later in eukaryotic evolution. Furthermore, our phylogenetic analyses of lokiarchaeal GTPases support a split into Ras-like and Arf-like superfamilies, with different prokaryotic antecedents, before the advent of eukaryotes. While no GTPase activating proteins or exchange factors were identified, we show that Lokiarchaeum encodes numerous roadblock domain proteins and putative longin domain proteins, confirming the latter's origin from Archaea. Altogether, our study provides new insights into the emergence and early evolution of the eukaryotic membrane-trafficking system. PMID:26893300

  3. CoBaltDB: Complete bacterial and archaeal orfeomes subcellular localization database and associated resources

    Directory of Open Access Journals (Sweden)

    Lucchetti-Miganeh Céline

    2010-03-01

    Full Text Available Abstract Background The functions of proteins are strongly related to their localization in cell compartments (for example the cytoplasm or membranes but the experimental determination of the sub-cellular localization of proteomes is laborious and expensive. A fast and low-cost alternative approach is in silico prediction, based on features of the protein primary sequences. However, biologists are confronted with a very large number of computational tools that use different methods that address various localization features with diverse specificities and sensitivities. As a result, exploiting these computer resources to predict protein localization accurately involves querying all tools and comparing every prediction output; this is a painstaking task. Therefore, we developed a comprehensive database, called CoBaltDB, that gathers all prediction outputs concerning complete prokaryotic proteomes. Description The current version of CoBaltDB integrates the results of 43 localization predictors for 784 complete bacterial and archaeal proteomes (2.548.292 proteins in total. CoBaltDB supplies a simple user-friendly interface for retrieving and exploring relevant information about predicted features (such as signal peptide cleavage sites and transmembrane segments. Data are organized into three work-sets ("specialized tools", "meta-tools" and "additional tools". The database can be queried using the organism name, a locus tag or a list of locus tags and may be browsed using numerous graphical and text displays. Conclusions With its new functionalities, CoBaltDB is a novel powerful platform that provides easy access to the results of multiple localization tools and support for predicting prokaryotic protein localizations with higher confidence than previously possible. CoBaltDB is available at http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software/cobalten.

  4. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean

    OpenAIRE

    Sintes, Eva; Bergauer, Kristin; de Corte, Daniele; Yokokawa, Taichi; Herndl, Gerhard J.

    2013-01-01

    Mesophilic ammonia-oxidizing Archaea (AOA) are abundant in a diverse range of marine environments, including the deep ocean, as revealed by the quantification of the archaeal amoA gene encoding the alpha-subunit of the ammonia monooxygenase. Using two different amoA primer sets, two distinct ecotypes of marine Crenarchaeota Group I (MCGI) were detected in the waters of the tropical Atlantic and the coastal Arctic. The HAC-AOA ecotype (high ammonia concentration AOA) was ≍ 8000 times and 15 ti...

  5. Temperature and pH dependence of DNA ejection from archaeal lemon-shaped virus His1.

    Science.gov (United States)

    Hanhijärvi, K J; Ziedaite, G; Hæggström, E; Bamford, D H

    2016-07-01

    The archaeal virus His1 isolated from a hypersaline environment infects an extremely halophilic archaeon Haloarcula hispanica. His1 features a lemon-shaped capsid, which is so far found only in archaeal viruses. This unique capsid can withstand high salt concentrations, and can transform into a helical tube, which in turn is resistant to extremely harsh conditions. Hypersaline environments exhibit a wide range of temperatures and pH conditions, which present an extra challenge to their inhabitants. We investigated the influence of pH and temperature on DNA ejection from His1 virus using single-molecule fluorescence experiments. The observed number of ejecting viruses is constant in pH 5 to 9, while the ejection process is suppressed at pH below 5. Similarly, the number of ejections within 15-42 °C shows only a minor increase around 25-37 °C. The maximum velocity of single ejected DNA increases with temperature, in qualitative agreement with the continuum model of dsDNA ejection. PMID:26820561

  6. Comparative Analysis of 16S rRNA and amoA Genes from Archaea Selected with Organic and Inorganic Amendments in Enrichment Culture

    OpenAIRE

    Xu, Mouzhong; Schnorr, Jon; Keibler, Brandon; Holly M Simon

    2012-01-01

    We took advantage of a plant-root enrichment culture system to characterize mesophilic soil archaea selected through the use of organic and inorganic amendments. Comparative analysis of 16S rRNA and amoA genes indicated that specific archaeal clades were selected under different conditions. Three amoA sequence clades were identified, while for a fourth group, identified by 16S rRNA gene analysis alone and referred to as the “root” clade, we detected no corresponding amoA gene. The amoA-contai...

  7. Community Structure of Denitrifiers, Bacteria, and Archaea along Redox Gradients in Pacific Northwest Marine Sediments by Terminal Restriction Fragment Length Polymorphism Analysis of Amplified Nitrite Reductase (nirS) and 16S rRNA Genes

    OpenAIRE

    Braker, Gesche; Ayala-del-Río, Héctor L.; Devol, Allan H.; Fesefeldt, Andreas; Tiedje, James M.

    2001-01-01

    Steep vertical gradients of oxidants (O2 and NO3−) in Puget Sound and Washington continental margin sediments indicate that aerobic respiration and denitrification occur within the top few millimeters to centimeters. To systematically explore the underlying communities of denitrifiers, Bacteria, and Archaea along redox gradients at distant geographic locations, nitrite reductase (nirS) genes and bacterial and archaeal 16S rRNA genes (rDNAs) were PCR amplified and analyzed by terminal restrict...

  8. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards%不同肥料处理下茶园土壤细菌和古菌群落的时间变化研究

    Institute of Scientific and Technical Information of China (English)

    Hua WANG; Shao-hui YANG; Jing-ping YANG; Ya-min LV; Xing ZHAO; Ji-liang PANG

    2014-01-01

    研究目的:研究化学肥料和有机肥处理条件下,茶园酸性土壤细菌和古菌群落结构,以及氮素转化相关功能酶基因丰度的时间变化规律。  创新要点:研究肥料、土壤温度及土壤含水量对茶园酸性土壤细菌和古菌群落结构,以及氮素转化相关功能酶基因丰度的影响。  研究方法:应用末端限制性片段长度多态性(T-RFLP)技术分析茶园酸性土壤中细菌和古菌群落结构随时间的变化规律,应用荧光定量聚合酶链式反应(PCR)技术,研究茶园酸性土壤细菌、古菌、硝化作用功能酶基因(细菌和古菌amoA基因)和细菌反硝化作用功能酶基因(narG、nirK、nirS和nosZ基因)丰度的时间变化规律。  重要结论:茶园土壤细菌和古菌群落结构受到肥料的影响,并随着取样时间有显著的变化。细菌、古菌和古菌的amoA基因的丰度在7月份最小,而细菌的amoA基因和反硝化作用功能酶基因(除nirK基因)的丰度在9月份最小。有机肥处理增加了细菌、古菌和氮素转化相关功能酶基因的丰度,但化学肥料的施用对菌群及功能酶基因丰度的影响较小。土壤温度显著影响了土壤细菌和古菌的群落结构。土壤含水量与细菌反硝化作用功能酶基因有显著的相关性。土壤有机碳含量与细菌、古菌及功能酶基因丰度之间有显著的相关性。%It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total

  9. Effect of supplementing coconut or krabok oil, rich in medium-chain fatty acids on ruminal fermentation, protozoa and archaeal population of bulls

    NARCIS (Netherlands)

    Panyakaew, P.; Boon, N.; Goel, G.; Yuangklang, C.; Schonewille, J.T.; Hendriks, W.H.; Fievez, V.

    2013-01-01

    Medium-chain fatty acids (MCFA), for example, capric acid (C10:0), myristic (C14:0) and lauric (C12:0) acid, have been suggested to decrease rumen archaeal abundance and protozoal numbers. This study aimed to compare the effect of MCFA, either supplied through krabok (KO) or coconut (CO) oil, on rum

  10. Geranylgeranyl reductase and ferredoxin from Methanosarcina acetivorans are required for the synthesis of fully reduced archaeal membrane lipid in Escherichia coli cells.

    Science.gov (United States)

    Isobe, Keisuke; Ogawa, Takuya; Hirose, Kana; Yokoi, Takeru; Yoshimura, Tohru; Hemmi, Hisashi

    2014-01-01

    Archaea produce membrane lipids that typically possess fully saturated isoprenoid hydrocarbon chains attached to the glycerol moiety via ether bonds. They are functionally similar to, but structurally and biosynthetically distinct from, the fatty acid-based membrane lipids of bacteria and eukaryotes. It is believed that the characteristic lipid structure helps archaea survive under severe conditions such as extremely low or high pH, high salt concentrations, and/or high temperatures. We detail here the first successful production of an intact archaeal membrane lipid, which has fully saturated isoprenoid chains, in bacterial cells. The introduction of six phospholipid biosynthetic genes from a methanogenic archaeon, Methanosarcina acetivorans, in Escherichia coli enabled the host bacterium to synthesize the archaeal lipid, i.e., diphytanylglyceryl phosphoglycerol, while a glycerol modification of the phosphate group was probably catalyzed by endogenous E. coli enzymes. Reduction of the isoprenoid chains occurred only when archaeal ferredoxin was expressed with geranylgeranyl reductase, suggesting the role of ferredoxin as a specific electron donor for the reductase. This report is the first identification of a physiological reducer for archaeal geranylgeranyl reductase. On the other hand, geranylgeranyl reductase from the thermoacidophilic archaeon Sulfolobus acidocaldarius could, by itself, replace both its orthologue and ferredoxin from M. acetivorans, which indicated that an endogenous redox system of E. coli reduced the enzyme. PMID:24214941

  11. Functional implication of archaeal homologues of human RNase P protein pair Pop5 and Rpp30.

    Science.gov (United States)

    Hamasaki, Masato; Hazeyama, Kohsuke; Iwasaki, Fumihiko; Ueda, Toshifumi; Nakashima, Takashi; Kakuta, Yoshimitsu; Kimura, Makoto

    2016-01-01

    PhoPop5 and PhoRpp30 in the hyperthermophilic archaeon Pyrococcus horikoshii, homologues of human ribonuclease P (RNase P) proteins hPop5 and Rpp30, respectively, fold into a heterotetramer [PhoRpp30-(PhoPop5)2-PhoRpp30], which plays a crucial role in the activation of RNase P RNA (PhopRNA). Here, we examined the functional implication of PhoPop5 and PhoRpp30 in the tetramer. Surface plasmon resonance (SPR) analysis revealed that the tetramer strongly interacts with an oligonucleotide including the nucleotide sequence of a stem-loop SL3 in PhopRNA. In contrast, PhoPop5 had markedly reduced affinity to SL3, whereas PhoRpp30 had little affinity to SL3. SPR studies of PhoPop5 mutants further revealed that the C-terminal helix (α4) in PhoPop5 functions as a molecular recognition element for SL3. Moreover, gel filtration indicated that PhoRpp30 exists as a monomer, whereas PhoPop5 is an oligomer in solution, suggesting that PhoRpp30 assists PhoPop5 in attaining a functionally active conformation by shielding hydrophobic surfaces of PhoPop5. These results, together with available data, allow us to generate a structural and mechanistic model for the PhopRNA activation by PhoPop5 and PhoRpp30, in which the two C-terminal helices (α4) of PhoPop5 in the tetramer whose formation is assisted by PhoRpp30 act as binding elements and bridge SL3 and SL16 in PhopRNA. PMID:26152732

  12. Extracellular RNA Communication (ExRNA)

    Data.gov (United States)

    Federal Laboratory Consortium — Until recently, scientists believed RNA worked mostly inside the cell that produced it. Some types of RNA help translate genes into proteins that are necessary for...

  13. Combinatorics of RNA-RNA interaction

    DEFF Research Database (Denmark)

    Li, Thomas J X; Reidys, Christian

    2012-01-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure...

  14. Plasmodium Apicoplast Gln-tRNA Gln Biosynthesis Utilizes a Unique GatAB Amidotransferase Essential for Erythrocytic Stage Parasites

    KAUST Repository

    Mailu, Boniface M.

    2015-08-28

    © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. The malaria parasite Plasmodium falciparum apicoplast indirect aminoacylation pathway utilizes a non-discriminating glutamyl-tRNA synthetase to synthesize Glu-tRNAGln and a glutaminyl-tRNA amidotransferase to convert Glu-tRNAGln to Gln-tRNAGln. Here, we show that Plasmodium falciparum and other apicomplexans possess a unique heterodimeric glutamyltRNA amidotransferase consisting of GatA and GatB subunits (GatAB). We localized the P. falciparum GatA and GatB subunits to the apicoplast in blood stage parasites and demonstrated that recombinant GatAB converts Glu-tRNAGln to Gln-tRNAGln in vitro. We demonstrate that the apicoplast GatAB-catalyzed reaction is essential to the parasite blood stages because we could not delete the Plasmodium berghei gene encoding GatA in blood stage parasites in vivo. A phylogenetic analysis placed the split between Plasmodium GatB, archaeal GatE, and bacterial GatB prior to the phylogenetic divide between bacteria and archaea. Moreover, Plasmodium GatA also appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, although GatAB is found in Plasmodium, it emerged prior to the phylogenetic separation of archaea and bacteria.

  15. Preliminary crystallography confirms that the archaeal DNA-binding and tryptophan-sensing regulator TrpY is a dimer.

    Science.gov (United States)

    Cafasso, Jacquelyn; Manjasetty, Babu A; Karr, Elizabeth A; Sandman, Kathleen; Chance, Mark R; Reeve, John N

    2010-11-01

    TrpY regulates the transcription of the metabolically expensive tryptophan-biosynthetic operon in the thermophilic archaeon Methanothermobacter thermautotrophicus. TrpY was crystallized using the hanging-drop method with ammonium sulfate as the precipitant. The crystals belonged to the tetragonal space group P4(3)2(1)2 or P4(1)2(1)2, with unit-cell parameters a = b = 87, c = 147 Å, and diffracted to 2.9 Å resolution. The possible packing of molecules within the cell based on the values of the Matthews coefficient (V(M)) and analysis of the self-rotation function are consistent with the asymmetric unit being a dimer. Determining the structure of TrpY in detail will provide insight into the mechanisms of DNA binding, tryptophan sensing and transcription regulation at high temperature by this novel archaeal protein. PMID:21045304

  16. Preliminary Crystallography Confirms that the Archaeal DNA-binding and Tryptophan-sensing Regulator TrpY is a Dimer

    Energy Technology Data Exchange (ETDEWEB)

    J Cafasso; B Manjasetty; E Karr; K Sandman; M Chance; J Reeve

    2011-12-31

    TrpY regulates the transcription of the metabolically expensive tryptophan-biosynthetic operon in the thermophilic archaeon Methanothermobacter thermautotrophicus. TrpY was crystallized using the hanging-drop method with ammonium sulfate as the precipitant. The crystals belonged to the tetragonal space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 87, c = 147 {angstrom}, and diffracted to 2.9 {angstrom} resolution. The possible packing of molecules within the cell based on the values of the Matthews coefficient (V{sub M}) and analysis of the self-rotation function are consistent with the asymmetric unit being a dimer. Determining the structure of TrpY in detail will provide insight into the mechanisms of DNA binding, tryptophan sensing and transcription regulation at high temperature by this novel archaeal protein.

  17. A shift in the archaeal nitrifier community in response to natural and anthropogenic disturbances in the northern Gulf of Mexico.

    Science.gov (United States)

    Newell, Silvia E; Eveillard, Damien; McCarthy, Mark J; Gardner, Wayne S; Liu, Zhanfei; Ward, Bess B

    2014-02-01

    The Gulf of Mexico is affected by hurricanes and suffers seasonal hypoxia. The Deepwater Horizon oil spill impacted every trophic level in the coastal region. Despite their importance in bioremediation and biogeochemical cycles, it is difficult to predict the responses of microbial communities to physical and anthropogenic disturbances. Here, we quantify sediment ammonia-oxidizing archaeal (AOA) community diversity, resistance and resilience, and important geochemical factors after major hurricanes and the oil spill. Dominant AOA archetypes correlated with different geochemical factors, suggesting that different AOA are constrained by distinct parameters. Diversity was lowest after the hurricanes, showing weak resistance to physical disturbances. However, diversity was highest during the oil spill and coincided with a community shift, suggesting a new alternative stable state sustained for at least 1 year. The new AOA community was not significantly different from that at the spill site 1 year after the spill. This sustained shift in nitrifier community structure may be a result of oil exposure. PMID:24596268

  18. Phylogenetic and Functional Analysis of Metagenome Sequence from High-Temperature Archaeal Habitats Demonstrate Linkages between Metabolic Potential and Geochemistry

    DEFF Research Database (Denmark)

    Inskeep, William P; Jay, Zackary J; Herrgard, Markus;

    2013-01-01

    Geothermal habitats in Yellowstone National Park (YNP) provide an unparalleled opportunity to understand the environmental factors that control the distribution of archaea in thermal habitats. Here we describe, analyze, and synthesize metagenomic and geochemical data collected from seven high......-temperature sites that contain microbial communities dominated by archaea relative to bacteria. The specific objectives of the study were to use metagenome sequencing to determine the structure and functional capacity of thermophilic archaeal-dominated microbial communities across a pH range from 2.5 to 6.......4 and to discuss specific examples where the metabolic potential correlated with measured environmental parameters and geochemical processes occurring in situ. Random shotgun metagenome sequence (∼40-45 Mb Sanger sequencing per site) was obtained from environmental DNA extracted from high-temperature sediments and...

  19. Structural and genomic properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the reproductive cycle

    DEFF Research Database (Denmark)

    Prangishvili, David; Vestergaard, Gisle Alberg; Häring, Monika;

    2006-01-01

    a crenarchaeal virus, infection with ATV results either in viral replication and subsequent cell lysis or in conversion of the infected cell to a lysogen. The lysogenic cycle involves integration of the viral genome into the host chromosome, probably facilitated by the virus-encoded integrase and......A novel virus, ATV, of the hyperthermophilic archaeal genus Acidianus has the unique property of undergoing a major morphological development outside of, and independently of, the host cell. Virions are extruded from host cells as lemon-shaped tail-less particles, after which they develop long...... periodic structure. Tail development produces a one half reduction in the volume of the virion, concurrent with a slight expansion of the virion surface. The circular, double-stranded DNA genome contains 62,730 bp and is exceptional for a crenarchaeal virus in that it carries four putative transposable...

  20. A dimeric Rep protein initiates replication of a linear archaeal virus genome: implications for the Rep mechanism and viral replication

    DEFF Research Database (Denmark)

    Oke, Muse; Kerou, Melina; Liu, Huanting;

    2011-01-01

    The Rudiviridae are a family of rod-shaped archaeal viruses with covalently closed, linear double-stranded DNA (dsDNA) genomes. Their replication mechanisms remain obscure, although parallels have been drawn to the Poxviridae and other large cytoplasmic eukaryotic viruses. Here we report that a...... active-site tyrosine and the 5' end of the DNA, releasing a 3' DNA end as a primer for DNA synthesis. The enzyme can also catalyze the joining reaction that is necessary to reseal the DNA hairpin and terminate replication. The dimeric structure points to a simple mechanism through which two closely...... positioned active sites, each with a single tyrosine residue, work in tandem to catalyze DNA nicking and joining. We propose a novel mechanism for rudivirus DNA replication, incorporating the first known example of a Rep protein that is not linked to RCR. The implications for Rep protein function and viral...

  1. CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci

    DEFF Research Database (Denmark)

    Alkhnbashi, Omer S.; Costa, Fabrizio; Shah, Shiraz Ali;

    2014-01-01

    Motivation: The discovery of CRISPR-Cas systems almost 20 years ago rapidly changed our perception of the bacterial and archaeal immune systems. CRISPR loci consist of several repetitive DNA sequences called repeats, inter-spaced by stretches of variable length sequences called spacers. This CRISPR...... array is transcribed and processed into multiple mature RNA species (crRNAs). A single crRNA is integrated into an interference complex, together with CRISPR-associated (Cas) proteins, to bind and degrade invading nucleic acids. Although existing bioinformatics tools can recognize CRISPR loci by their...... characteristic repeat-spacer architecture, they generally output CRISPR arrays of ambiguous orientation and thus do not determine the strand from which crRNAs are processed. Knowledge of the correct orientation is crucial for many tasks, including the classification of CRISPR conservation, the detection of...

  2. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments

    OpenAIRE

    Victoria J Orphan; House, Christopher H.; Hinrichs, Kai-Uwe; McKeegan, Kevin D.; DeLong, Edward F.

    2002-01-01

    No microorganism capable of anaerobic growth on methane as the sole carbon source has yet been cultivated. Consequently, information about these microbes has been inferred from geochemical and microbiological observations of field samples. Stable isotope analysis of lipid biomarkers and rRNA gene surveys have implicated specific microbes in the anaerobic oxidation of methane (AOM). Here we use combined fluorescent in situ hybridization and secondary ion mass spectrometry analyses, to identify...

  3. Spatial distribution of archaeal and bacterial ammonia oxidizers in the littoral buffer zone of a nitrogen-rich lake

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Guibing Zhu; Lei Ye; Xiaojuan Feng; Huub J. M. Op den Camp; Chengqing Yin

    2012-01-01

    The spatial distribution and diversity of archaeal and bacterial ammonia oxidizers (AOA and AOB) were evaluated targeting amoA genes in the gradient of a littoral buffer zone which has been identified as a hot spot for N cycling.Here we found high spatial heterogeneity in the nitrification rate and abundance of ammonia oxidizers in the five sampling sites.The bacterial amoA gene was numerically dominant in most of the surface soil but decreased dramatically in deep layers.Higher nitrification potentials were detected in two sites near the land/water interface at 4.4-6.1 μg NO2--N/(g dry weight soil.hr),while only 1.0-1.7 μg NO2- -N/(gdry weight soil·hr) was measured at other sites.The potential nitrification rates were proportional to the amoA gene abundance for AOB,hut with no significant correlation with AOA.The NH4+ concentration was the most determinative parameter for the abundance of AOB and potential nitrification rates in this study.Higher richness in the surface layer was found in the analysis of biodiversity.Phylogenetic analysis revealed that most of the bacterial amoA sequences in surface soil were affiliated with the genus of Nitrosopira while the archaeal sequences were almost equally affiliated with Candidatus ‘Nitrososphaera gargensis' and Candidatus ‘Nitrosoealdus yellowstonii'.The spatial distribution of AOA and AOB indicated that bacteria may play a more important role in nitrification in the littoral buffer zone of a N-rich lake.

  4. Crystallization and preliminary X-ray crystallographic analysis of bacterial tRNASec in complex with seryl-tRNA synthetase

    International Nuclear Information System (INIS)

    Bacterial selenocysteine tRNA was crystallized as the heterologous complex with archaeal seryl-tRNA synthetase. X-ray diffraction was improved by introducing point mutations and heavy-atom labeling, and a 3.2 Å diffraction data set for phase determination was obtained from a platinum-labeled crystal. Selenocysteine (Sec) is translationally incorporated into proteins in response to the UGA codon. The tRNA specific to Sec (tRNASec) is first ligated with serine by seryl-tRNA synthetase (SerRS). To elucidate the tertiary structure of bacterial tRNASec and its specific interaction with SerRS, the bacterial tRNASec from Aquifex aeolicus was crystallized as the heterologous complex with the archaeal SerRS from Methanopyrus kandleri. Although X-ray diffraction by crystals of tRNASec in complex with wild-type SerRS was rather poor (to 5.7 Å resolution), the resolution was improved by introducing point mutations targeting the crystal-packing interface. Heavy-atom labelling also contributed to resolution improvement. A 3.2 Å resolution diffraction data set for phase determination was obtained from a K2Pt(CN)4-soaked crystal

  5. Analyzing MiRNA-LncRNA Interactions.

    Science.gov (United States)

    Paraskevopoulou, Maria D; Hatzigeorgiou, Artemis G

    2016-01-01

    Long noncoding RNAs (lncRNAs) are noncoding transcripts usually longer than 200 nts that have recently emerged as one of the largest and significantly diverse RNA families. The biological role and functions of lncRNAs are still mostly uncharacterized. Their target-mimetic, sponge/decoy function on microRNAs was recently uncovered. miRNAs are a class of noncoding RNA species (~22 nts) that play a central role in posttranscriptional regulation of protein coding genes by mRNA cleavage, direct translational repression and/or mRNA destabilization. LncRNAs can act as miRNA sponges, reducing their regulatory effect on mRNAs. This function introduces an extra layer of complexity in the miRNA-target interaction network. This chapter focuses on the study of miRNA-lncRNA interactions with either in silico or experimentally supported analyses. The proposed methodologies can be appropriately adapted in order to become the backbone of advanced multistep functional miRNA analyses. PMID:26721498

  6. Promoter recognition in archaea is mediated by transcription factors: identification of transcription factor aTFB from Methanococcus thermolithotrophicus as archaeal TATA-binding protein.

    OpenAIRE

    Gohl, H P; Gröndahl, B; Thomm, M

    1995-01-01

    At least two transcription factors, aTFB and aTFA, are required for accurate and faithful in vitro transcription of homologous templates in cell-free extracts from the methanogenic Archaeon Methanococcus thermolithotrophicus. We have recently shown that the function of aTFB can be replaced by eucaryal TATA-binding proteins. Here we demonstrate using template commitment experiments that promoter recognition in an Archaeon is mediated by transcription factors. The archaeal TATA box was identifi...

  7. Spatial Variations in Archaeal Lipids of Surface Water and Core-Top Sediments in the South China Sea and Their Implications for Paleoclimate Studies▿†

    OpenAIRE

    Wei, Yuli; Wang, Jinxiang; Liu, Jie; Dong, Liang; Li, Li; Wang, Hui; Wang, Peng; Zhao, Meixun; Zhang, Chuanlun L.

    2011-01-01

    The South China Sea (SCS) is the largest marginal sea of the western Pacific Ocean, yet little is known about archaeal distributions and TEX86-based temperatures in this unique oceanic setting. Here we report findings of abundances in both core lipids (CL) and intact polar lipids (IPL) of Archaea from surface water (CL only) and core-top sediments from different regions of the SCS. TEX86-derived temperatures were also calculated for these samples. The surface water had extremely low abundance...

  8. Diversity and Abundance of Ammonia-Oxidizing Archaeal Nitrite Reductase (nirK) Genes in Estuarine Sediments of San Francisco Bay

    Science.gov (United States)

    Reji, L.; Lee, J. A.; Damashek, J.; Francis, C. A.

    2013-12-01

    Nitrification, the microbially-mediated aerobic oxidation of ammonia to nitrate via nitrite, is an integral component of the global biogeochemical nitrogen cycle. The first and rate-limiting step of nitrification, ammonia oxidation, is carried out by two distinct microbial groups: ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Molecular ecological studies targeting the amoA gene have revealed the abundance and ubiquity of AOA in terrestrial as well as aquatic environments. In addition to the ammonia oxidation machinery that includes the amoA gene, AOA also encode a gene for copper-containing nitrite reductase (nirK). The distribution patterns and functional role of nirK in AOA remain mostly unknown; proposed functions include the indirect involvement in ammonia oxidation through the production of nitric oxide during nitrite reduction, and (2) nitrite detoxification. In the present study, the diversity and abundance of archaeal nirK genes in estuarine sediments were investigated using quantitative polymerase chain reaction, cloning and sequencing approaches. In sediment samples collected from the San Francisco Bay estuary, two archaeal nirK variants (AnirKa and AnirKb) were amplified using specific primer sets. Overall, AnirKa was observed to be significantly more abundant than AnirKb in the sediment samples, with variation in relative abundance spanning two to three orders of magnitude between sampling sites. Phylogenetic analysis revealed a number of unique archaeal nirK sequence types, as well as many that clustered with sequences from previous estuarine studies and cultured AOA isolates, such as Nitrosopumilus maritimus. This study yielded new insights into the diversity and abundance of archaeal nirK genes in estuarine sediments, and highlights the importance of further investigating the physiological role of this gene in AOA, as well as its suitability as a marker gene for studying AOA in the environment.

  9. Bacterial and archaeal diversity in an iron-rich coastal hydrothermal field in Yamagawa, Kagoshima, Japan

    DEFF Research Database (Denmark)

    Kawaichi, Satoshi; Ito, Norihiro; Yoshida, Takashi;

    2013-01-01

    . The environmental settings of the coastal hydrothermal field were similar in some degree to those of deep-sea hydrothermal environments because of its emission of H2, CO2, and sulfide from the bottom of the hot spot. The results of clone analyses based on the 16S rRNA gene led us to speculate the...... presence of a chemo-synthetic microbial ecosystem, where chemolithoautotrophic thermophiles, primarily the bacterial order Aquificales, function as primary producers using H2 or sulfur compounds as their energy source and CO2 as their carbon source, and the organic compounds synthesized by them support the...... can also function as primary producing or nitrogen-fixing bacteria....

  10. 古菌细胞膜脂在古菌群落组成及其对环境响应研究中的应用%Applications of archaeal membrane lipids in investigating archaeal community composition and its responses to environmental factors

    Institute of Scientific and Technical Information of China (English)

    曹鹏; 沈菊培; 贺纪正

    2012-01-01

    Archaea, as the third life form distinct from bacteria and eukaryota, widely distribute in various kinds of habitats, and play important roles in the biogeochemical cycles of carbon and nitrogen and in ecosystem functioning. As the biomarker of archaea, archaeal membrane lipids can be used to investigate the archaeal community composition and its responses to the environment. This paper introduced the structural characteristics of archaeal membrane lipids and the differences in the membrane lipids composition among different archaeal communities, and discussed the feasibility of using archeal membrane lipids in depicting archaeal community composition. The abundance of archaeal membrane lipids in the environment could be used to characterize the biomass of archaea, and the related results could complement and ascertain each other with the DNA-based bio-molecular approaches on the accuracy, analysis efficiency, and cost. Based on the description of the difficulties and importance of using archaeal membrane lipids to analyze the composition and abundance of archaeal communities, and by linking to the environmental factors such as temperature and pH that affected the archaeal community composition, the relationships between archaea and their habitats were further expatiated, and the evolution process of archaeal communities and its application prospects in the studies of geochemistry and geological events were analyzed.%古菌作为区别于细菌和真核生物的第3种生命形式广泛分布于各种生境,与碳、氮等元素的生物地球化学循环密切相关,在整个生态系统中具有重要作用.古菌细胞膜脂作为古菌重要的生物标志物,在其群落组成和对环境变化响应的研究中具有重要指示作用.本文介绍了古菌细胞膜脂的结构特征及不同古菌类群间细胞膜脂结构差异,用以表征古菌群落的组成特征.环境中细胞膜脂丰度可反映古菌生物量,并可与基于DNA的分子生物学

  11. RNA structures regulating nidovirus RNA synthesis

    NARCIS (Netherlands)

    Born, Erwin van den

    2006-01-01

    Viruses depend on their host cell for the production of their progeny. The genetic information that is required to regulate this process is contained in the viral genome. In the case of plus-stranded RNA viruses, like nidoviruses, the RNA genome is directly involved in translation (resulting in the

  12. Novel archaeal macrocyclic diether core membrane lipids in a methane-derived carbonate crust from a mud volcano in the Sorokin Trough, NE Black Sea

    Directory of Open Access Journals (Sweden)

    Alina Stadnitskaia

    2003-01-01

    Full Text Available A methane-derived carbonate crust was collected from the recently discovered NIOZ mud volcano in the Sorokin Trough, NE Black Sea during the 11th Training-through-Research cruise of the R/V Professor Logachev. Among several specific bacterial and archaeal membrane lipids present in this crust, two novel macrocyclic diphytanyl glycerol diethers, containing one or two cyclopentane rings, were detected. Their structures were tentatively identified based on the interpretation of mass spectra, comparison with previously reported mass spectral data, and a hydrogenation experiment. This macrocyclic type of archaeal core membrane diether lipid has so far been identified only in the deep-sea hydrothermal vent methanogen Methanococcus jannaschii. Here, we provide the first evidence that these macrocyclic diethers can also contain internal cyclopentane rings. The molecular structure of the novel diethers resembles that of dibiphytanyl tetraethers in which biphytane chains, containing one and two pentacyclic rings, also occur. Such tetraethers were abundant in the crust. Compound-specific isotope measurements revealed δ13C values of –104 to –111‰ for these new archaeal lipids, indicating that they are derived from methanotrophic archaea acting within anaerobic methane-oxidizing consortia, which subsequently induce authigenic carbonate formation.

  13. A Gateway platform for functional genomics in Haloferax volcanii: deletion of three tRNA modification genes

    Directory of Open Access Journals (Sweden)

    Basma El Yacoubi

    2009-01-01

    Full Text Available In part due to the existence of simple methods for its cultivation and genetic manipulation, Haloferax volcanii is a major archaeal model organism. It is the only archaeon for which the whole set of post-transcriptionally modified tRNAs has been sequenced, allowing for an in silico prediction of all RNA modification genes present in the organism. One approach to check these predictions experimentally is via the construction of targeted gene deletion mutants. Toward this goal, an integrative “Gateway vector” that allows gene deletion in H. volcanii uracil auxotrophs was constructed. The vector was used to delete three predicted tRNA modification genes: HVO_2001 (encoding an archaeal transglycosyl tranferase or arcTGT, which is involved in archeosine biosynthesis; HVO_2348 (encoding a newly discovered GTP cyclohydrolase I, which catalyzes the first step common to archaeosine and folate biosynthesis; and HVO_2736 (encoding a member of the COG1444 family, which is involved in N4-acetylcytidine (ac4C formation. Preliminary phenotypic analysis of the deletion mutants was conducted, and confirmed all three predictions.

  14. Structural Aspects of Phenylalanylation and Quality Control in Three Major Forms of Phenylalanyl-tRNA Synthetase

    Directory of Open Access Journals (Sweden)

    Liron Klipcan

    2010-01-01

    Full Text Available Aminoacyl-tRNA synthetases (aaRSs are a canonical set of enzymes that specifically attach corresponding amino acids to their cognate transfer RNAs in the cytoplasm, mitochondria, and nucleus. The aaRSs display great differences in primary sequence, subunit size, and quaternary structure. Existence of three types of phenylalanyl-tRNA synthetase (PheRS—bacterial (αβ2, eukaryotic/archaeal cytosolic (αβ2, and mitochondrial α—is a prominent example of structural diversity within the aaRSs family. Although archaeal/eukaryotic and bacterial PheRSs share common topology of the core domains and the B3/B4 interface, where editing activity of heterotetrameric PheRSs is localized, the detailed investigation of the three-dimensional structures from three kingdoms revealed significant variations in the local design of their synthetic and editing sites. Moreover, as might be expected from structural data eubacterial, Thermus thermophilus and human cytoplasmic PheRSs acquire different patterns of tRNAPhe anticodon recognition.

  15. Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling.

    Directory of Open Access Journals (Sweden)

    Stinus Lindgreen

    2014-10-01

    Full Text Available Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling.

  16. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A., E-mail: merritt@u.washington.edu [Medical Structural Genomics of Pathogenic Protozoa, (United States); University of Washington, Seattle, WA 98195 (United States)

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  17. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    International Nuclear Information System (INIS)

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine

  18. Phylogenetic diversity of archaeal 16S rRNA and ammonia monooxygenase genes from tropical estuarine sediments on the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, S.K.; Verma, P.; Ramaiah, N.; Anil, A.C.; Shouche, Y.S.

    -oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ. Microbiol. 10, 3002-3016. 22. Nasnolkar, C.M., Shirodkar, P.V., Singbal, S.Y.S., 1996. Studies on organic carbon, nitrogen and phosphorous in the sediments of Mandovi Estuary, Goa. Indian J...

  19. RNA modifications by oxidation

    DEFF Research Database (Denmark)

    Poulsen, Henrik E; Specht, Elisabeth; Broedbaek, Kasper;

    2012-01-01

    to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation......, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas...... other RNA molecules show virtually no oxidation. The iron-storage disease hemochromatosis exhibits the most prominent general increase in RNA oxidation ever observed. Oxidation of RNA primarily leads to strand breaks and to oxidative base modifications. Oxidized mRNA is recognized by the ribosomes...

  20. Pyrosequencing reveals the influence of elevated atmospheric CO2 on the composition of archaeal communities in the rhizosphere of C3 and C4 crops

    Science.gov (United States)

    Nelson, D. M.; Cann, I. K.; Mackie, R. I.

    2008-12-01

    The projected increase in atmospheric CO2 concentrations throughout the 21st century is likely to increase aboveground and belowground plant productivity and cause changes in the quantity and quality of plant root exudates, although plants using C4 photosynthesis are likely to be only affected during times of drought (Leakey et al., 2006, Plant Physiology, 140, 779). Evidence is emerging from molecular tools that these changes may influence the abundance and composition of soil microbial communities that regulate key soil processes, such as nitrogen cycling (Lesaulnier et al., 2008, Environmental Microbiology, 10, 926). However, most molecular tools are not well-suited for comparing multiple samples at great sequencing depth, which is critical when considering soil microbial communities of high diversity. To overcome these limitations we used pyrosequencing and quantitative PCR (qPCR) of two genes (the V3 region of 16S rDNA and the amoA gene) to examine intra- and inter-treatment variability in the abundance and composition of microbial communities in the rhizosphere of soybean (C3) and maize (C4) grown in field conditions under ambient (~380 ppm) and elevated (~550 ppm) CO2 using FACE (free-air concentration enrichment) technology during the 2006 growing season in central Illinois. We specifically focused on archaeal communities because of their key role in nitrification (Leininger et al., 2006, Nature, 442, 806). The majority (>97%) of recovered sequences were from members of the phylum Crenarchaeota. Principle component analysis of sequence results from the V3 and amoA genes indicated significant (p<0.05) differences in the composition of rhizosphere archaeal communities between ambient and elevated CO2 beneath soybean, but not maize. qPCR suggested no significant difference in the abundance of archaea between treatments for soybean and maize. The lack of response of archaeal community composition beneath maize to elevated CO2 is consistent with relatively high

  1. Irreducibility in RNA structures

    OpenAIRE

    Jin, Emma Y.; Reidys, Christian M.

    2009-01-01

    In this paper we study irreducibility in RNA structures. By RNA structure we mean RNA secondary as well as RNA pseudoknot structures. In our analysis we shall contrast random and minimum free energy (mfe) configurations. We compute various distributions: of the numbers of irreducible substructures, their locations and sizes, parameterized in terms of the maximal number of mutually crossing arcs, $k-1$, and the minimal size of stacks $\\sigma$. In particular, we analyze the size of the largest ...

  2. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius.

    Science.gov (United States)

    Reimann, Julia; Esser, Dominik; Orell, Alvaro; Amman, Fabian; Pham, Trong Khoa; Noirel, Josselin; Lindås, Ann-Christin; Bernander, Rolf; Wright, Phillip C; Siebers, Bettina; Albers, Sonja-Verena

    2013-12-01

    In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius. PMID:24078887

  3. Archaeal Diversity in Biofilm Technologies Applied to Treat Urban and Industrial Wastewater: Recent Advances and Future Prospects

    Directory of Open Access Journals (Sweden)

    Jesús González-López

    2013-09-01

    Full Text Available Biological wastewater treatment (WWT frequently relies on biofilms for the removal of anthropogenic contaminants. The use of inert carrier materials to support biofilm development is often required, although under certain operating conditions microorganisms yield structures called granules, dense aggregates of self-immobilized cells with the characteristics of biofilms maintained in suspension. Molecular techniques have been successfully applied in recent years to identify the prokaryotic communities inhabiting biofilms in WWT plants. Although methanogenic Archaea are widely acknowledged as key players for the degradation of organic matter in anaerobic bioreactors, other biotechnological functions fulfilled by Archaea are less explored, and research on their significance and potential for WWT is largely needed. In addition, the occurrence of biofilms in WWT plants can sometimes be a source of operational problems. This is the case for membrane bioreactors (MBR, an advanced technology that combines conventional biological treatment with membrane filtration, which is strongly limited by biofouling, defined as the undesirable accumulation of microbial biofilms and other materials on membrane surfaces. The prevalence and spatial distribution of archaeal communities in biofilm-based WWT as well as their role in biofouling are reviewed here, in order to illustrate the significance of this prokaryotic cellular lineage in engineered environments devoted to WWT.

  4. S-layers at second glance? Altiarchaeal grappling hooks (hami resemble archaeal S-layer proteins in structure and sequence

    Directory of Open Access Journals (Sweden)

    Alexandra Kristin Perras

    2015-06-01

    Full Text Available The uncultivated Ca. Altiarchaeum hamiconexum (formerly known as SM1 Euryarchaeon carries highly specialized nano-grappling hooks (hami on its cell surface. Until now little is known about the major protein forming these structured fibrous cell surface appendages, the genes involved or membrane anchoring of these filaments. These aspects were analyzed in depth in this study using environmental transcriptomics combined with imaging methods. Since a laboratory culture of this archaeon is not yet available, natural biofilm samples with high Ca. A. hamiconexum abundance were used for the entire analyses. The filamentous surface appendages spanned both membranes of the cell, which are composed of glycosyl-archaeol. The hami consisted of multiple copies of the same protein, the corresponding gene of which was identified via metagenome-mapped transcriptome analysis. The hamus subunit proteins, which are likely to self-assemble due to their predicted beta sheet topology, revealed no similiarity to known microbial flagella-, archaella-, fimbriae- or pili-proteins, but a high similarity to known S-layer proteins of the archaeal phylum at their N-terminal region (47-44% identity. Our results provide new insights into the structure of the unique hami and their major protein and indicate their divergent evolution with S-layer proteins.

  5. Preliminary crystallography confirms that the archaeal DNA-binding and tryptophan-sensing regulator TrpY is a dimer

    International Nuclear Information System (INIS)

    TrpY was crystallized using the hanging-drop method with ammonium sulfate as the precipitant. The crystals belonged to the tetragonal space group P43212 or P41212, with unit-cell parameters a = b = 87, c = 147 Å, and diffracted to 2.9 Å resolution. TrpY regulates the transcription of the metabolically expensive tryptophan-biosynthetic operon in the thermophilic archaeon Methanothermobacter thermautotrophicus. TrpY was crystallized using the hanging-drop method with ammonium sulfate as the precipitant. The crystals belonged to the tetragonal space group P43212 or P41212, with unit-cell parameters a = b = 87, c = 147 Å, and diffracted to 2.9 Å resolution. The possible packing of molecules within the cell based on the values of the Matthews coefficient (VM) and analysis of the self-rotation function are consistent with the asymmetric unit being a dimer. Determining the structure of TrpY in detail will provide insight into the mechanisms of DNA binding, tryptophan sensing and transcription regulation at high temperature by this novel archaeal protein

  6. Temporal and Spatial Coexistence of Archaeal and Bacterial amoA Genes and Gene Transcripts in Lake Lucerne

    Directory of Open Access Journals (Sweden)

    Elisabeth W. Vissers

    2013-01-01

    Full Text Available Despite their crucial role in the nitrogen cycle, freshwater ecosystems are relatively rarely studied for active ammonia oxidizers (AO. This study of Lake Lucerne determined the abundance of both amoA genes and gene transcripts of ammonia-oxidizing archaea (AOA and bacteria (AOB over a period of 16 months, shedding more light on the role of both AO in a deep, alpine lake environment. At the surface, at 42 m water depth, and in the water layer immediately above the sediment, AOA generally outnumbered AOB. However, in the surface water during summer stratification, when both AO were low in abundance, AOB were more numerous than AOA. Temporal distribution patterns of AOA and AOB were comparable. Higher abundances of amoA gene transcripts were observed at the onset and end of summer stratification. In summer, archaeal amoA genes and transcripts correlated negatively with temperature and conductivity. Concentrations of ammonium and oxygen did not vary enough to explain the amoA gene and transcript dynamics. The observed herbivorous zooplankton may have caused a hidden flux of mineralized ammonium and a change in abundance of genes and transcripts. At the surface, AO might have been repressed during summer stratification due to nutrient limitation caused by active phytoplankton.

  7. Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea

    KAUST Repository

    Mwirichia, Romano

    2016-01-13

    The candidate Division MSBL1 (Mediterranean Sea Brine Lakes 1) comprises a monophyletic group of uncultured archaea found in different hypersaline environments. Previous studies propose methanogenesis as the main metabolism. Here, we describe a metabolic reconstruction of MSBL1 based on 32 single-cell amplified genomes from Brine Pools of the Red Sea (Atlantis II, Discovery, Nereus, Erba and Kebrit). Phylogeny based on rRNA genes as well as conserved single copy genes delineates the group as a putative novel lineage of archaea. Our analysis shows that MSBL1 may ferment glucose via the Embden–Meyerhof–Parnas pathway. However, in the absence of organic carbon, carbon dioxide may be fixed via the ribulose bisphosphate carboxylase, Wood-Ljungdahl pathway or reductive TCA cycle. Therefore, based on the occurrence of genes for glycolysis, absence of the core genes found in genomes of all sequenced methanogens and the phylogenetic position, we hypothesize that the MSBL1 are not methanogens, but probably sugar-fermenting organisms capable of autotrophic growth. Such a mixotrophic lifestyle would confer survival advantage (or possibly provide a unique narrow niche) when glucose and other fermentable sugars are not available.

  8. Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea

    Science.gov (United States)

    Mwirichia, Romano; Alam, Intikhab; Rashid, Mamoon; Vinu, Manikandan; Ba-Alawi, Wail; Anthony Kamau, Allan; Kamanda Ngugi, David; Göker, Markus; Klenk, Hans-Peter; Bajic, Vladimir; Stingl, Ulrich

    2016-01-01

    The candidate Division MSBL1 (Mediterranean Sea Brine Lakes 1) comprises a monophyletic group of uncultured archaea found in different hypersaline environments. Previous studies propose methanogenesis as the main metabolism. Here, we describe a metabolic reconstruction of MSBL1 based on 32 single-cell amplified genomes from Brine Pools of the Red Sea (Atlantis II, Discovery, Nereus, Erba and Kebrit). Phylogeny based on rRNA genes as well as conserved single copy genes delineates the group as a putative novel lineage of archaea. Our analysis shows that MSBL1 may ferment glucose via the Embden-Meyerhof-Parnas pathway. However, in the absence of organic carbon, carbon dioxide may be fixed via the ribulose bisphosphate carboxylase, Wood-Ljungdahl pathway or reductive TCA cycle. Therefore, based on the occurrence of genes for glycolysis, absence of the core genes found in genomes of all sequenced methanogens and the phylogenetic position, we hypothesize that the MSBL1 are not methanogens, but probably sugar-fermenting organisms capable of autotrophic growth. Such a mixotrophic lifestyle would confer survival advantage (or possibly provide a unique narrow niche) when glucose and other fermentable sugars are not available.

  9. Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle

    Science.gov (United States)

    Wallace, R. John; Rooke, John A.; Duthie, Carol-Anne; Hyslop, Jimmy J.; Ross, David W.; McKain, Nest; de Souza, Shirley Motta; Snelling, Timothy J.; Waterhouse, Anthony; Roehe, Rainer

    2014-07-01

    Methane produced from 35 Aberdeen-Angus and 33 Limousin cross steers was measured in respiration chambers. Each group was split to receive either a medium- or high-concentrate diet. Ruminal digesta samples were subsequently removed to investigate correlations between methane emissions and the rumen microbial community, as measured by qPCR of 16S or 18S rRNA genes. Diet had the greatest influence on methane emissions. The high-concentrate diet resulted in lower methane emissions (P < 0.001) than the medium-concentrate diet. Methane was correlated, irrespective of breed, with the abundance of archaea (R = 0.39), bacteria (-0.47), protozoa (0.45), Bacteroidetes (-0.37) and Clostridium Cluster XIVa (-0.35). The archaea:bacteria ratio provided a stronger correlation (0.49). A similar correlation was found with digesta samples taken 2-3 weeks later at slaughter. This finding could help enable greenhouse gas emissions of large animal cohorts to be predicted from samples taken conveniently in the abattoir.

  10. Working with RNA

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    Working with RNA is not a special discipline in molecular biology. However, RNA is chemically and structurally different from DNA and a few simple work rules have to be implemented to maintain the integrity of the RNA. Alkaline pH, high temperatures, and heavy metal ions should be avoided when...

  11. Psiscan: a computational approach to identify H/ACA-like and AGA-like non-coding RNA in trypanosomatid genomes

    Directory of Open Access Journals (Sweden)

    Ziporen Yaara

    2008-11-01

    Full Text Available Abstract Background Detection of non coding RNA (ncRNA molecules is a major bioinformatics challenge. This challenge is particularly difficult when attempting to detect H/ACA molecules which are involved in converting uridine to pseudouridine on rRNA in trypanosomes, because these organisms have unique H/ACA molecules (termed H/ACA-like that lack several of the features that characterize H/ACA molecules in most other organisms. Results We present here a computational tool called Psiscan, which was designed to detect H/ACA-like molecules in trypanosomes. We started by analyzing known H/ACA-like molecules and characterized their crucial elements both computationally and experimentally. Next, we set up constraints based on this analysis and additional phylogenic and functional data to rapidly scan three trypanosome genomes (T. brucei, T. cruzi and L. major for sequences that observe these constraints and are conserved among the species. In the next step, we used minimal energy calculation to select the molecules that are predicted to fold into a lowest energy structure that is consistent with the constraints. In the final computational step, we used a Support Vector Machine that was trained on known H/ACA-like molecules as positive examples and on negative examples of molecules that were identified by the computational analyses but were shown experimentally not to be H/ACA-like molecules. The leading candidate molecules predicted by the SVM model were then subjected to experimental validation. Conclusion The experimental validation showed 11 molecules to be expressed (4 out of 25 in the intermediate stage and 7 out of 19 in the final validation after the machine learning stage. Five of these 11 molecules were further shown to be bona fide H/ACA-like molecules. As snoRNA in trypanosomes are organized in clusters, the new H/ACA-like molecules could be used as starting points to manually search for additional molecules in their neighbourhood. All

  12. Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase – engineering a thermostable ATP independent enzyme

    Directory of Open Access Journals (Sweden)

    Zhelkovsky Alexander M

    2012-07-01

    Full Text Available Abstract Background RNA ligases are essential reagents for many methods in molecular biology including NextGen RNA sequencing. To prevent ligation of RNA to itself, ATP independent mutant ligases, defective in self-adenylation, are often used in combination with activated pre-adenylated linkers. It is important that these ligases not have de-adenylation activity, which can result in activation of RNA and formation of background ligation products. An additional useful feature is for the ligase to be active at elevated temperatures. This has the advantage or reducing preferences caused by structures of single-stranded substrates and linkers. Results To create an RNA ligase with these desirable properties we performed mutational analysis of the archaeal thermophilic RNA ligase from Methanobacterium thermoautotrophicum. We identified amino acids essential for ATP binding and reactivity but dispensable for phosphodiester bond formation with 5’ pre-adenylated donor substrate. The motif V lysine mutant (K246A showed reduced activity in the first two steps of ligation reaction. The mutant has full ligation activity with pre-adenylated substrates but retained the undesirable activity of deadenylation, which is the reverse of step 2 adenylation. A second mutant, an alanine substitution for the catalytic lysine in motif I (K97A abolished activity in the first two steps of the ligation reaction, but preserved wild type ligation activity in step 3. The activity of the K97A mutant is similar with either pre-adenylated RNA or single-stranded DNA (ssDNA as donor substrates but we observed two-fold preference for RNA as an acceptor substrate compared to ssDNA with an identical sequence. In contrast, truncated T4 RNA ligase 2, the commercial enzyme used in these applications, is significantly more active using pre-adenylated RNA as a donor compared to pre-adenylated ssDNA. However, the T4 RNA ligases are ineffective in ligating ssDNA acceptors. Conclusions

  13. Fast Prediction of RNA-RNA Interaction

    Science.gov (United States)

    Salari, Raheleh; Backofen, Rolf; Sahinalp, S. Cenk

    Regulatory antisense RNAs are a class of ncRNAs that regulate gene expression by prohibiting the translation of an mRNA by establishing stable interactions with a target sequence. There is great demand for efficient computational methods to predict the specific interaction between an ncRNA and its target mRNA(s). There are a number of algorithms in the literature which can predict a variety of such interactions - unfortunately at a very high computational cost. Although some existing target prediction approaches are much faster, they are specialized for interactions with a single binding site.

  14. Combinatorics of RNA-RNA interaction.

    Science.gov (United States)

    Li, Thomas J X; Reidys, Christian M

    2012-02-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called "zigzag" configuration. This paper presents the combinatorics of RNA interaction structures including their generating function, singularity analysis as well as explicit recurrence relations. In particular, our results imply simple asymptotic formulas for the number of joint structures. PMID:21541694

  15. Combinatorics of RNA-RNA interaction

    CERN Document Server

    Li, Thomas J X

    2010-01-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called ``zig-zag'' configuration. This paper presents the combinatorics of RNA interaction structures including their generating function, singularity analysis as well as explicit recurrence relations. In particular, our results imply simple asymptotic formulas for the number of joint structures.

  16. Methods for RNA Analysis

    DEFF Research Database (Denmark)

    Olivarius, Signe

    While increasing evidence appoints diverse types of RNA as key players in the regulatory networks underlying cellular differentiation and metabolism, the potential functions of thousands of conserved RNA structures encoded in mammalian genomes remain to be determined. Since the functions of most...... RNAs rely on interactions with proteins, the establishment of protein-binding profiles is essential for the characterization of RNAs. Aiming to facilitate RNA analysis, this thesis introduces proteomics- as well as transcriptomics-based methods for the functional characterization of RNA. First, RNA......-protein pulldown combined with mass spectrometry analysis is applied for in vivo as well as in vitro identification of RNA-binding proteins, the latter succeeding in verifying known RNA-protein interactions. Secondly, acknowledging the significance of flexible promoter usage for the diversification of the...

  17. Fast prediction of RNA-RNA interaction

    Directory of Open Access Journals (Sweden)

    Backofen Rolf

    2010-01-01

    Full Text Available Abstract Background Regulatory antisense RNAs are a class of ncRNAs that regulate gene expression by prohibiting the translation of an mRNA by establishing stable interactions with a target sequence. There is great demand for efficient computational methods to predict the specific interaction between an ncRNA and its target mRNA(s. There are a number of algorithms in the literature which can predict a variety of such interactions - unfortunately at a very high computational cost. Although some existing target prediction approaches are much faster, they are specialized for interactions with a single binding site. Methods In this paper we present a novel algorithm to accurately predict the minimum free energy structure of RNA-RNA interaction under the most general type of interactions studied in the literature. Moreover, we introduce a fast heuristic method to predict the specific (multiple binding sites of two interacting RNAs. Results We verify the performance of our algorithms for joint structure and binding site prediction on a set of known interacting RNA pairs. Experimental results show our algorithms are highly accurate and outperform all competitive approaches.

  18. RNA Viruses Infecting Pest Insects

    Science.gov (United States)

    RNA viruses are viruses whose genetic material is ribonucleic acid (RNA). RNA viruses may be double or single-stranded based on the type of RNA they contain. Single-stranded RNA viruses can be further grouped into negative sense or positive-sense viruses according to the polarity of their RNA. Fur...

  19. Archaeal Ammonia Oxidizers and Total Production of N2O and CH4 in Arctic Polar Desert Soils

    Science.gov (United States)

    Brummell, Martin; Robert, Stan; Bodrossy, Levente; Abell, Guy; Siciliano, Steven

    2014-05-01

    Ammonia-oxidizing Archaea are abundant in Arctic desert soils and appear to be responsible for the majority of ammonia oxidation activity in these cold and dry ecosystems. We used DNA microarrays to characterize the microbial community consisting of ammonia-oxidizing Archaea and methane-oxidizing Bacteria in three polar deserts from Ellesmere Island, Canada. Patterns of net greenhouse gas production, including production and consumption of CO2, CH4, and N2O were compared with community relative richness and abundance in a structural equation model that tested causal hypotheses relating edaphic factors to the biological community and net gas production. We extracted and amplified DNA sequences from soils collected at three polar deserts on Ellesmere Island in the Canadian high Arctic, and characterized the community structure using DNA microarrays. The functional genes Archaeal AmoA and pMMO were used to compare patterns of biological community structure to the observed patterns of net greenhouse gas production from those soils, as measured in situ. Edaphic factors including water content, bulk density, pH, and nutrient levels such as nitrate, ammonia, and extractable organic carbon were also measured for each soil sample, resulting in a highly multivariate dataset. Both concentration and net production of the three greenhouse gases were correlated, suggesting underlying causal factors. Edaphic factors such as soil moisture and pH had important, direct effects on the community composition of both functional groups of microorganisms, and pH further had a direct effect on N2O production. The structural relationship between the examined microbial communities and net production of both N2O and CH4 was strong and consistent between varying model structures and matrices, providing high confidence that this model relationship accurately reflects processes occurring in Arctic desert soils.

  20. Spatial Variations in Archaeal Lipids of Surface Water and Core-Top Sediments in the South China Sea: Implications for Paleoclimate Studies

    Science.gov (United States)

    Wei, Y.; Wang, J.; Liu, J.; Dong, L.; Li, L.; Wang, H.; Wang, P.; Zhao, M.; Zhang, C.

    2011-12-01

    The South China Sea (SCS) is the largest marginal sea of the western Pacific Ocean; yet, little is known about archaeal distributions and TEX86-based temperatures in this unique oceanic setting. Here we report findings of abundances in both core lipids (CL) and intact polar lipids (IPL) of Archaea from surface water (CL only) and core-top sediments from different regions of the SCS. TEX86-derived temperatures were also calculated for these samples. The surface water had extremely low abundances of CL (average 0.05±0.13 ng/L; n = 75) with higher values present in regions where upwelling is known to occur. The core-top sediments had CL values of 0.1 to 0.9 g/g, which are in the low end of CL concentrations reported for other marine sediments and may reflect the oligotrophic nature of the open SCS. The IPL of Archaea accounted for 6-36.4% of total lipids (CL+IPL), indicating that the majority of archaeal lipids in core-top sediments were derived from nonliving cells. The TEX86-based temperatures of surface water were overall lower than satellite-based sea surface temperatures or CTD-measured in situ temperatures. The core-top sediment samples, however, had TEX86 temperatures very close to the mean annual sea surface temperatures except for samples with water depth shallower than 100 m. Our results demonstrated low and heterogeneous distributions of archaeal lipids in surface water and core-top sediments of the SCS, which may reflect the local or regional differences in productivity of Archaea. While TEX86-based temperatures for core-top marine sediments at deep water depths (>100 m) generally reflected mean annual sea surface temperatures, TEX86 temperatures in surface water varied basin wide and underestimated sea surface temperatures in most locations for the season when surface water samples were collected.

  1. Spatial Variations in Archaeal Lipids of Surface Water and Core-Top Sediments in the South China Sea and Their Implications for Paleoclimate Studies▿†

    Science.gov (United States)

    Wei, Yuli; Wang, Jinxiang; Liu, Jie; Dong, Liang; Li, Li; Wang, Hui; Wang, Peng; Zhao, Meixun; Zhang, Chuanlun L.

    2011-01-01

    The South China Sea (SCS) is the largest marginal sea of the western Pacific Ocean, yet little is known about archaeal distributions and TEX86-based temperatures in this unique oceanic setting. Here we report findings of abundances in both core lipids (CL) and intact polar lipids (IPL) of Archaea from surface water (CL only) and core-top sediments from different regions of the SCS. TEX86-derived temperatures were also calculated for these samples. The surface water had extremely low abundances of CL (average of 0.05 ± 0.13 ng/liter; n = 75), with higher values present in regions where upwelling is known to occur. The core-top sediments had CL values of 0.1 to 0.9 μg/g, which are on the low end of CL concentrations reported for other marine sediments and may reflect the oligotrophic nature of the open SCS. The IPL of Archaea accounted for 6 to 36.4% of total lipids (CL plus IPL), indicating that the majority of archaeal lipids in core-top sediments were derived from nonliving cells. The TEX86-based temperatures of surface water were overall lower than satellite-based sea surface temperatures or CTD-measured in situ temperatures. The core-top sediment samples, however, had TEX86 temperatures very close to the mean annual sea surface temperatures, except for samples with water depths of less than 100 m. Our results demonstrated low and heterogeneous distributions of archaeal lipids in surface water and core-top sediments of the SCS, which may reflect local or regional differences in productivity of Archaea. While TEX86-based temperatures for core-top marine sediments at deep water depths (>100 m) generally reflected mean annual sea surface temperatures, TEX86 temperatures in surface water varied basin wide and underestimated sea surface temperatures in most locations for the season when surface water samples were collected. PMID:21890672

  2. RNA-dependent RNA polymerases of plants

    OpenAIRE

    Fraenkel-Conrat, H

    1983-01-01

    The existence of RNA-dependent RNA polymerases (EC 2.7.7.48) in plants has been definitely proven by their isolation in pure form from cucumber and tobacco in our laboratory and from cowpea at Wageningen. These enzymes are single-chain proteins of 100-130 kilodaltons. They show clear physical and biochemical differences characteristic for a given plant species, even when their amounts in the plants were greatly increased prior to isolation by infection with the same virus. The role of these e...

  3. RNA decay by messenger RNA interferases

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Mikkel; Overgaard, Martin; Winther, Kristoffer Skovbo; Gerdes, Kenn

    2008-01-01

    Two abundant toxin-antitoxin (TA) gene families, relBE and mazEF, encode mRNA cleaving enzymes whose ectopic overexpression abruptly inhibits translation and thereby induces a bacteriostatic condition. Here we describe and discuss protocols for the overproduction, purification, and analysis of mRNA...... cleaving enzymes such as RelE of Escherichia coli and the corresponding antitoxin RelB. In particular, we describe a set of plasmid vectors useful for the detailed analysis of cleavage sites in model mRNAs....

  4. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets.

    Science.gov (United States)

    Biswas, Ambarish; Gagnon, Joshua N; Brouns, Stan J J; Fineran, Peter C; Brown, Chris M

    2013-05-01

    The bacterial and archaeal CRISPR/Cas adaptive immune system targets specific protospacer nucleotide sequences in invading organisms. This requires base pairing between processed CRISPR RNA and the target protospacer. For type I and II CRISPR/Cas systems, protospacer adjacent motifs (PAM) are essential for target recognition, and for type III, mismatches in the flanking sequences are important in the antiviral response. In this study, we examine the properties of each class of CRISPR. We use this information to provide a tool (CRISPRTarget) that predicts the most likely targets of CRISPR RNAs (http://bioanalysis.otago.ac.nz/CRISPRTarget). This can be used to discover targets in newly sequenced genomic or metagenomic data. To test its utility, we discover features and targets of well-characterized Streptococcus thermophilus and Sulfolobus solfataricus type II and III CRISPR/Cas systems. Finally, in Pectobacterium species, we identify new CRISPR targets and propose a model of temperate phage exposure and subsequent inhibition by the type I CRISPR/Cas systems. PMID:23492433

  5. Topology of RNA-RNA interaction structures

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Huang, Fenix Wenda; Penner, Robert;

    2012-01-01

    Abstract The topological filtration of interacting RNA complexes is studied, and the role is analyzed of certain diagrams called irreducible shadows, which form suitable building blocks for more general structures. We prove that, for two interacting RNAs, called interaction structures, there exist...

  6. TaxCollector: Modifying Current 16S rRNA Databases for the Rapid Classification at Six Taxonomic Levels

    Directory of Open Access Journals (Sweden)

    Eric W. Triplett

    2010-07-01

    Full Text Available The high level of conservation of 16S ribosomal RNA gene (16S rRNA in all Prokaryotes makes this gene an ideal tool for the rapid identification and classification of these microorganisms. Databases such as the Ribosomal Database Project II (RDP-II and the Greengenes Project offer access to sets of ribosomal RNA sequence databases useful in identification of microbes in a culture-independent analysis of microbial communities. However, these databases do not contain all of the taxonomic levels attached to the published names of the bacterial and archaeal sequences. TaxCollector is a set of scripts developed in Python language that attaches taxonomic information to all 16S rRNA sequences in the RDP-II and Greengenes databases. These modified databases are referred to as TaxCollector databases, which when used in conjunction with BLAST allow for rapid classification of sequences from any environmental or clinical source at six different taxonomic levels, from domain to species. The TaxCollector database prepared from the RDP-II database is an important component of a new 16S rRNA pipeline called PANGEA. The usefulness of TaxCollector databases is demonstrated with two very different datasets obtained using samples from a clinical setting and an agricultural soil. The six TaxCollector scripts are freely available on http://taxcollector.sourceforge.net and on http://www.microgator.org.

  7. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    Directory of Open Access Journals (Sweden)

    M. S. Alam

    2013-08-01

    Full Text Available The function of ammonia-oxidizing archaea (AOA and bacteria (AOB depends on the major energy-generating compounds (i.e., ammonia and oxygen. The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization, whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force

  8. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    Science.gov (United States)

    Alam, M. S.; Ren, G. D.; Lu, L.; Zheng, Y.; Peng, X. H.; Jia, Z. J.

    2013-08-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the major energy-generating compounds (i.e., ammonia and oxygen). The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA) genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization), whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force driving the

  9. Crystallization and preliminary X-ray diffraction studies of hyperthermophilic archaeal Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus P1

    International Nuclear Information System (INIS)

    A hyperthermophilic archaeal Rieske-type [2Fe–2S] ferredoxin (ARF) from S. solfataricus P1 has been crystallized as a recombinant protein with a vector-derived long N-terminal extension region. The P43212 crystals of recombinant ARF diffracted to 1.85 Å resolution using synchrotron radiation. The hyperthermophilic archaeal Rieske-type [2Fe–2S] ferredoxin (ARF) from Sulfolobus solfataricus P1 contains a low-potential Rieske-type [2Fe–2S] cluster that has served as a tractable model for ligand-substitution studies on this protein family. Recombinant ARF harbouring a pET30a vector-derived N-terminal extension region plus a hexahistidine tag has been heterologously overproduced in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using 0.05 M sodium acetate, 0.05 M HEPES, 2 M ammonium sulfate pH 5.5. The crystals diffracted to 1.85 Å resolution and belonged to the tetragonal space group P43212, with unit-cell parameters a = 60.72, c = 83.31 Å. The asymmetric unit contains one protein molecule

  10. Abundance and Diversity of Bacterial, Archaeal, and Fungal Communities Along an Altitudinal Gradient in Alpine Forest Soils: What Are the Driving Factors?

    Science.gov (United States)

    Siles, José A; Margesin, Rosa

    2016-07-01

    Shifts in soil microbial communities over altitudinal gradients and the driving factors are poorly studied. Their elucidation is indispensable to gain a comprehensive understanding of the response of ecosystems to global climate change. Here, we investigated soil archaeal, bacterial, and fungal communities at four Alpine forest sites representing a climosequence, over an altitudinal gradient from 545 to 2000 m above sea level (asl), regarding abundance and diversity by using qPCR and Illumina sequencing, respectively. Archaeal community was dominated by Thaumarchaeota, and no significant shifts were detected in abundance or community composition with altitude. The relative bacterial abundance increased at higher altitudes, which was related to increasing levels of soil organic matter and nutrients with altitude. Shifts in bacterial richness and diversity as well as community structure (comprised basically of Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes) significantly correlated with several environmental and soil chemical factors, especially soil pH. The site at the lowest altitude harbored the highest bacterial richness and diversity, although richness/diversity community properties did not show a monotonic decrease along the gradient. The relative size of fungal community also increased with altitude and its composition comprised Ascomycota, Basidiomycota, and Zygomycota. Changes in fungal richness/diversity and community structure were mainly governed by pH and C/N, respectively. The variation of the predominant bacterial and fungal classes over the altitudinal gradient was the result of the environmental and soil chemical factors prevailing at each site. PMID:26961712

  11. Plant RNA binding proteins for control of RNA virus infection

    OpenAIRE

    Huh, Sung Un; Paek, Kyung-Hee

    2013-01-01

    Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific b...

  12. Ab initio RNA folding

    International Nuclear Information System (INIS)

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding. (topical review)

  13. Ab initio RNA folding

    Science.gov (United States)

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-01

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  14. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    Messenger RNA (mRNA) localization is a mechanism by which polarized cells can regulate protein synthesis to specific subcellular compartments in a spatial and temporal manner, and plays a pivotal role in multiple physiological processes from embryonic development to cell differentiation and...... cell protrusions of both cell types. Moreover, the NGS analysis revealed that the mRNA of the intermediate filament proteins nestin and glial fibrilary acidic protein (GFAP) significantlyaccumulatedin astrocyte protrusions, which was examined in closer detail. Fluorescence in situ hybridization (FISH...

  15. Generation of siRNA Nanosheets for Efficient RNA Interference

    Science.gov (United States)

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-04-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.

  16. Shapes of interacting RNA complexes

    DEFF Research Database (Denmark)

    Fu, Benjamin Mingming; Reidys, Christian

    2014-01-01

    Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops.This shape-projection preserves the topological core of the RNA complex and for fixed topological...... genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows to compute the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform...... sampling algorithm for shapes of RNA complexes of fixed topological genus....

  17. Electronic fingerprinting of RNA.

    OpenAIRE

    Gegenheimer, P

    1988-01-01

    Software has been developed to assist RNA fingerprinting analysis. One program generates, from a DNA sequence data file, the oligonucleotides resulting from digestion of an RNA transcript labeled with any specified nucleotide(s). Oligonucleotides are sorted according to their position on the fingerprint. Expected molar yields and products of secondary redigestion are also indicated. A second program facilitates calculation of experimental molar yields of oligonucleotides.

  18. mRNA turnover rate limits siRNA and microRNA efficacy

    OpenAIRE

    Larsson, Erik; Sander, Chris; Marks, Debora

    2010-01-01

    What determines how strongly an mRNA responds to a microRNA or an siRNA? We know that properties of the sequence match between the small RNA and the mRNA are crucial. However, large-scale validations of siRNA efficacies have shown that certain transcripts remain recalcitrant to perturbation even after repeated redesign of the siRNA (Krueger et al, 2007). Weak response to RNAi may thus be an inherent property of the mRNA, but the underlying factors have proven difficult to uncover. siRNAs indu...

  19. Analysis of the Resistance Mechanism of a Benzoxaborole Inhibitor Reveals Insight into the Leucyl-tRNA Synthetase Editing Mechanism.

    Science.gov (United States)

    Zhao, Hanchao; Palencia, Andres; Seiradake, Elena; Ghaemi, Zhaleh; Cusack, Stephen; Luthey-Schulten, Zaida; Martinis, Susan

    2015-10-16

    A new class of antimicrobial benzoxaborole compounds was identified as a potent inhibitor of leucyl-tRNA synthetase (LeuRS) and therefore of protein synthesis. In a novel mechanism, AN2690 (5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole) blocks fungal cytoplasmic LeuRS by covalently trapping tRNA(Leu) in the editing site of the enzyme's CP1 domain. However, some resistant mutation sites are located outside of the CP1 hydrolytic editing active site. Thus, their mode of action that undermines drug inhibition was not understood. A combination of X-ray crystallography, molecular dynamics, metadynamics, biochemical experiments, and mutational analysis of a distal benzoxaborole-resistant mutant uncovered a eukaryote-specific tyrosine "switch" that is critical to tRNA-dependent post-transfer editing. The tyrosine "switch" has three states that shift between interactions with a lysine and the 3'-hydroxyl of the tRNA terminus, to inhibit or promote post-transfer editing. The oxaborole's mechanism of action capitalizes upon one of these editing active site states. This tunable editing mechanism in eukaryotic and archaeal LeuRSs is proposed to facilitate precise quality control of aminoacylation fidelity. These mechanistic distinctions could also be capitalized upon for development of the benzoxaboroles as a broad spectrum antibacterial. PMID:26172575

  20. Topology of RNA-RNA interaction structures

    CERN Document Server

    Andersen, Jørgen E; Penner, Robert C; Reidys, Christian M

    2011-01-01

    The topological filtration of interacting RNA complexes is studied and the role is analyzed of certain diagrams called irreducible shadows, which form suitable building blocks for more general structures. We prove that for two interacting RNAs, called interaction structures, there exist for fixed genus only finitely many irreducible shadows. This implies that for fixed genus there are only finitely many classes of interaction structures. In particular the simplest case of genus zero already provides the formalism for certain types of structures that occur in nature and are not covered by other filtrations. This case of genus zero interaction structures is already of practical interest, is studied here in detail and found to be expressed by a multiple context-free grammar extending the usual one for RNA secondary structures. We show that in $O(n^6)$ time and $O(n^4)$ space complexity, this grammar for genus zero interaction structures provides not only minimum free energy solutions but also the complete partit...

  1. Crystallization and preliminary X-ray analysis of PH1010 from Pyrococcus horikoshii OT3, a member of the archaeal DUF54 family of proteins

    International Nuclear Information System (INIS)

    PH1010, a DUF54-family protein from the hyperthermophilic archaeon P. horikoshii OT3, was crystallized and X-ray diffraction data were collected to 1.90 Å resolution. PH1010 from Pyrococcus horikoshii OT3, a member of the archaeal DUF54 family of proteins, was expressed, purified and crystallized. Crystallization was performed by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystal diffracted X-rays to 1.90 Å resolution using a synchrotron-radiation source. The space group of the crystal was determined to be P212121, with unit-cell parameters a = 46.9, b = 49.5, c = 132.7 Å. The crystal contained two PH1010 molecules in the asymmetric unit (VM = 2.4 Å3 Da−1) and had a solvent content of 48%

  2. Mechanisms for the export of archaeal lipids down the water column in the upwelling area off Cape Blanc, North-West Africa

    Science.gov (United States)

    Ebersbach, Friederike; Goldenstein, Nadine; Iversen, Morten; Mollenhauer, Gesine; Hinrichs, Kai-Uwe

    2016-04-01

    Transport mechanisms of microbial membrane lipids from surface waters to the seafloor are poorly understood. In particular, pelagic archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) from planktonic archaea are frequently used for reconstruction of ancient sea surface temperatures (Schouten et al. 2013). Because planktonic archaea are too small and neutrally buoyant to sink independently, transport vehicles for efficient export of fossil archaeal biomarkers to the sediment are required. The surface ocean is coupled with the deep ocean through biogenic sinking particles, a process known as the biological pump (Volk and Hoffert 1985). Two different pathways for particle formation, mainly taking place in the mesopelagic zone, are distinguished: Direct aggregation of phytoplankton blooms or grazing, resulting in phyto-detrital aggregates or reprocessed faecal material, respectively. Grazing and packaging into sinking particles is a possible export mechanism for GDGTs (Huguet et al. 2006). Moreover, it is assumed that phyto-detrital aggregates also play an important role in transporting GDGTs to the deep (Mollenhauer et al. 2015), but processes behind this pathway remain unclear. However, there are only few studies that link GDGT signals in sinking particles to the composition of the exported particulate matter (e.g. Yamamoto et al., 2012; Mollenhauer et al. 2015). Here we investigate sinking particles and suspended particulate matter (SPM) from spring blooms in 2012 and 2013 in the upwelling region in the Atlantic Ocean off Cape Blanc, Mauritania. We compare for the first time material from free-floating sediment traps (100, 200 and 400 m; purely sinking particles) with sinking particles and SPM from size fractionated in-situ pump (ISP) filters (several depths between 40 and 2350 m). This setup allows to relate the signal from archaeal lipids to (i) the flux of particulate organic carbon and the particle assemblages as revealed by the characterisation of

  3. Cattle impact on composition of archaeal, bacterial, and fungal communities by comparative fingerprinting of total and extracellular DNA

    Czech Academy of Sciences Publication Activity Database

    Chroňáková, Alica; Ascher, J.; Jirout, Jiří; Ceccherini, M.T.; Elhottová, Dana; Pietramellara, G.; Šimek, Miloslav

    2013-01-01

    Roč. 49, č. 3 (2013), s. 351-361. ISSN 0178-2762 R&D Projects: GA ČR GA526/09/1570; GA ČR GAP504/10/2077; GA MŠk LC06066 Institutional support: RVO:60077344 Keywords : SSU rRNA gene-DGGE * soil microbial community * cattle impact Subject RIV: EE - Microbiology, Virology Impact factor: 3.396, year: 2013

  4. Co-occurrence patterns for abundant marine archaeal and bacterial lineages in the deep chlorophyll maximum of coastal California

    OpenAIRE

    Beman, J. Michael; Steele, Joshua A; Fuhrman, Jed A.

    2011-01-01

    Microorganisms remineralize and respire half of marine primary production, yet the niches occupied by specific microbial groups, and how these different groups may interact, are poorly understood. In this study, we identify co-occurrence patterns for marine Archaea and specific bacterial groups in the chlorophyll maximum of the Southern California Bight. Quantitative PCR time series of marine group 1 (MG1) Crenarchaeota 16S rRNA genes varied substantially over time but were well-correlated (r...

  5. Yeast nuclear RNA processing

    Institute of Scientific and Technical Information of China (English)

    Jade; Bernstein; Eric; A; Toth

    2012-01-01

    Nuclear RNA processing requires dynamic and intricately regulated machinery composed of multiple enzymes and their cofactors.In this review,we summarize recent experiments using Saccharomyces cerevisiae as a model system that have yielded important insights regarding the conversion of pre-RNAs to functional RNAs,and the elimination of aberrant RNAs and unneeded intermediates from the nuclear RNA pool.Much progress has been made recently in describing the 3D structure of many elements of the nuclear degradation machinery and its cofactors.Similarly,the regulatory mechanisms that govern RNA processing are gradually coming into focus.Such advances invariably generate many new questions,which we highlight in this review.

  6. Alignments of RNA structures.

    Science.gov (United States)

    Blin, Guillaume; Denise, Alain; Dulucq, Serge; Herrbach, Claire; Touzet, Hélène

    2010-01-01

    We describe a theoretical unifying framework to express the comparison of RNA structures, which we call alignment hierarchy. This framework relies on the definition of common supersequences for arc-annotated sequences and encompasses the main existing models for RNA structure comparison based on trees and arc-annotated sequences with a variety of edit operations. It also gives rise to edit models that have not been studied yet. We provide a thorough analysis of the alignment hierarchy, including a new polynomial-time algorithm and an NP-completeness proof. The polynomial-time algorithm involves biologically relevant edit operations such as pairing or unpairing nucleotides. It has been implemented in a software, called gardenia, which is available at the Web server http://bioinfo.lifl.fr/RNA/gardenia. PMID:20431150

  7. Structure and Mutational Analysis of the Archaeal GTP:AdoCbi-P Guanylyltransferase (CobY) from Methanocaldococcus jannaschii: Insights into GTP Binding and Dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Newmister, Sean A.; Otte, Michele M.; Escalante-Semerena, Jorge C.; Rayment, Ivan (UW)

    2012-02-08

    In archaea and bacteria, the late steps in adenosylcobalamin (AdoCbl) biosynthesis are collectively known as the nucleotide loop assembly (NLA) pathway. In the archaeal and bacterial NLA pathways, two different guanylyltransferases catalyze the activation of the corrinoid. Structural and functional studies of the bifunctional bacterial guanylyltransferase that catalyze both ATP-dependent corrinoid phosphorylation and GTP-dependent guanylylation are available, but similar studies of the monofunctional archaeal enzyme that catalyzes only GTP-dependent guanylylation are not. Herein, the three-dimensional crystal structure of the guanylyltransferase (CobY) enzyme from the archaeon Methanocaldococcus jannaschii (MjCobY) in complex with GTP is reported. The model identifies the location of the active site. An extensive mutational analysis was performed, and the functionality of the variant proteins was assessed in vivo and in vitro. Substitutions of residues Gly8, Gly153, or Asn177 resulted in {ge}94% loss of catalytic activity; thus, variant proteins failed to support AdoCbl synthesis in vivo. Results from isothermal titration calorimetry experiments showed that MjCobY{sup G153D} had 10-fold higher affinity for GTP than MjCobY{sup WT} but failed to bind the corrinoid substrate. Results from Western blot analyses suggested that the above-mentioned substitutions render the protein unstable and prone to degradation; possible explanations for the observed instability of the variants are discussed within the framework of the three-dimensional crystal structure of MjCobY{sup G153D} in complex with GTP. The fold of MjCobY is strikingly similar to that of the N-terminal domain of Mycobacterium tuberculosis GlmU (MtbGlmU), a bifunctional acetyltransferase/uridyltransferase that catalyzes the formation of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc).

  8. Exploring the biotechnologial applications in the archaeal domain Explorando as aplicações biotecnológicas do domínio archaea

    Directory of Open Access Journals (Sweden)

    S.M.C. Alquéres

    2007-09-01

    Full Text Available Archaea represent a considerable fraction of the prokaryotic world in marine and terrestrial ecosystems, indicating that organisms from this domain might have a large impact on global energy cycles. The extremophilic nature of many archaea has stimulated intense efforts to understand the physiological adaptations for living in extreme environments. Their unusual properties make them a potentially valuable resource in the development of novel biotechnological processes and industrial applications as new pharmaceuticals, cosmetics, nutritional supplements, molecular probes, enzymes, and fine chemicals. In the present mini-review, we show and discuss some exclusive characteristics of Archaea domain and the current knowledge about the biotechnological uses of the archaeal enzymes. The topics are: archaeal characteristics, phylogenetic division, biotechnological applications, isolation and cultivation of new microbes, achievements in genomics, and metagenomic.As arqueas representam uma considerável fração dos procariotos nos ecossistemas marinhos e terrestes, indicando que estes organismos devem possuir um grande impacto nos ciclos energéticos. A natureza extremofílica de muitas arqueas tem estimulado intensos esforços para compreender sua adaptação fisiológica a ambientes extremos. Suas propriedades incomus as tornam uma fonte valiosa no desenvolvimento de novos processos biotecnológicos e aplicações industriais como novos fármacos, cosméticos, suplementos nutricionais, sondas moleculares, enzimas e reagentes. Na presente mini-revisão, mostramos e discutimos algumas de suas características exclusivas correlacionando-as com seu potencial biotecnológico e aplicação industrial. Os tópicos são: características das arqueas, divisão filogenética, aplicações biotecnológicas, isolamento e cultivo de novos microrganismos, genoma e metagenoma.

  9. 海南东寨港红树林不同植被土壤微生物群落结构比较%Comparison of bacterial and archaeal community of mangrove soil under different vegetation in Dongzhaigang,Hainan Island

    Institute of Scientific and Technical Information of China (English)

    任健; 阎冰; 洪葵

    2012-01-01

    [Objective] We compared bacterial and archaeal diversity and community structure of mangrove soil under different vegetation, and to reveal better understanding of microbial resources. [Methods] Bacterial and arehaeal 16S rRNA gene libraries were constructed and analyzed for soils under Kandelia candel trees. Sonneratia apetala trees, and naked tideland, in Dongzhaigang Mangrove National Nature Reserve of Hainan Island. Template DNA was directly extracted from soil samples. PCR were amplified using primers 27F/1492R (bacterial) and Arch21F/Arch958R (archaeal). [ Results ] A total of 16 phyla dominated by Proteobacteria and Chloroflexi were detected in bacterial libraries, and 6 groups of Crenarchaeota and 7 groups of Euryarchaeota, predominated by Marine Benthic Group C and Marine Benthic Group D, respectively were found in archaeal libraries. 5hannon-Wiener index (H') and Srhaul estimator indicated that soil microbial diversity under the introduced species Sonneratia apetala was much lower than indigenous species Kandelia candel, even lower than naked tidal flat sediment near mangrove. Distinct differences in microbial community structure under different vegetation were observed. Soil microbial community structure under Kandelia candel was much similar with that of naked tideland. [ Conclusion ] Mangrove soil contained rich population of bacteria and archaea; there existed distinct differences in mangrove soil microbial community structure and diversity among different vegetation.%[目的]比较不同植被下红树林土壤细菌和古菌的多样性及群落结构,认识红树林土壤微生物资源多样性.[方法]直接提取红树林土壤总DNA,采用细菌通用引物27F/1492R和古菌通用引物Arch21 F/Arch958R进行PCR扩增,构建细菌和古菌16S rRNA基因文库,对海南东寨港自然保护区秋茄林、无瓣海桑林和无红树林裸滩土壤的细菌和古菌多样性和群落结构进行分析和比较.[结果]3种土壤样品的细菌类

  10. Sensing of RNA viruses

    DEFF Research Database (Denmark)

    Jensen, Søren; Thomsen, Allan Randrup

    2012-01-01

    Our knowledge regarding the contribution of the innate immune system in recognizing and subsequently initiating a host response to an invasion of RNA virus has been rapidly growing over the last decade. Descriptions of the receptors involved and the molecular mechanisms they employ to sense viral...... pathogen-associated molecular patterns have emerged in great detail. This review presents an overview of our current knowledge regarding the receptors used to detect RNA virus invasion, the molecular structures these receptors sense, and the involved downstream signaling pathways....

  11. Strategies underlying RNA silencing suppression by negative strand RNA viruses

    OpenAIRE

    Hemmes, J.C.

    2007-01-01

    The research described in this thesis focused on the strategies of negative strand RNA viruses to counteract antiviral RNA silencing. In plants and insects, RNA silencing has been shown to act as a sequence specific antiviral defence mechanism that is characterised by the processing of double stranded (ds)RNA ‘trigger’ molecules into small interfering RNAs (siRNAs) by enzymes of the Dicer family. The siRNA molecules are essential components of the RNA induced silencing complex (RISC), which u...

  12. Branched RNA: A New Architecture for RNA Interference

    Directory of Open Access Journals (Sweden)

    Anna Aviñó

    2011-01-01

    Full Text Available Branched RNAs with two and four strands were synthesized. These structures were used to obtain branched siRNA. The branched siRNA duplexes had similar inhibitory capacity as those of unmodified siRNA duplexes, as deduced from gene silencing experiments of the TNF-α protein. Branched RNAs are considered novel structures for siRNA technology, and they provide an innovative tool for specific gene inhibition. As the method described here is compatible with most RNA modifications described to date, these compounds may be further functionalized to obtain more potent siRNA derivatives and can be attached to suitable delivery systems.

  13. Studying RNA-protein interactions in vivo by RNA immunoprecipitation

    DEFF Research Database (Denmark)

    Selth, Luke A; Close, Pierre; Svejstrup, Jesper Q

    The crucial roles played by RNA-binding proteins in all aspects of RNA metabolism, particularly in the regulation of transcription, have become increasingly evident. Moreover, other factors that do not directly interact with RNA molecules can nevertheless function proximally to RNA polymerases and...... have significant effects on gene expression. RNA immunoprecipitation (RIP) is a powerful technique used to detect direct and indirect interactions between individual proteins and specific RNA molecules in vivo. Here, we describe RIP methods for both yeast and mammalian cells....

  14. The RNA interference revolution

    Directory of Open Access Journals (Sweden)

    G. Lenz

    2005-12-01

    Full Text Available The discovery of double-stranded RNA-mediated gene silencing has rapidly led to its use as a method of choice for blocking a gene, and has turned it into one of the most discussed topics in cell biology. Although still in its infancy, the field of RNA interference has already produced a vast array of results, mainly in Caenorhabditis elegans, but recently also in mammalian systems. Micro-RNAs are short hairpins of RNA capable of blocking translation, which are transcribed from genomic DNA and are implicated in several aspects from development to cell signaling. The present review discusses the main methods used for gene silencing in cell culture and animal models, including the selection of target sequences, delivery methods and strategies for a successful silencing. Expected developments are briefly discussed, ranging from reverse genetics to therapeutics. Thus, the development of the new paradigm of RNA-mediated gene silencing has produced two important advances: knowledge of a basic cellular mechanism present in the majority of eukaryotic cells and access to a potent and specific new method for gene silencing.

  15. Analysis of dsDNA and RNA viromes in methanogenic digesters reveals novel viral genetic diversity.

    Science.gov (United States)

    Calusinska, Magdalena; Marynowska, Martyna; Goux, Xavier; Lentzen, Esther; Delfosse, Philippe

    2016-04-01

    Although viruses are not the key players of the anaerobic digestion process, they may affect the dynamics of bacterial and archaeal populations involved in biogas production. Until now viruses have received very little attention in this specific habitat; therefore, as a first step towards their characterization, we optimized a virus filtration protocol from anaerobic sludge. Afterwards, to assess dsDNA and RNA viral diversity in sludge samples from nine different reactors fed either with waste water, agricultural residues or solid municipal waste plus agro-food residues, we performed metagenomic analyses. As a result we showed that, while the dsDNA viromes (21 assigned families in total) were dominated by dsDNA phages of the order Caudovirales, RNA viruses (14 assigned families in total) were less diverse and were for the main part plant-infecting viruses. Interestingly, less than 2% of annotated contigs were assigned as putative human and animal pathogens. Our study greatly extends the existing view of viral genetic diversity in methanogenic reactors and shows that these viral assemblages are distinct not only among the reactor types but also from nearly 30 other environments already studied, including the human gut, fermented food, deep sea sediments and other aquatic habitats. PMID:26568175

  16. Structure of Mth11/Mth Rpp29, an essential protein subunit of archaeal and eukaryotic RNase P

    OpenAIRE

    Boomershine, William P.; McElroy, Craig A.; Tsai, Hsin-Yue; Wilson, Ross C.; Gopalan, Venkat; Foster, Mark P.

    2003-01-01

    We have determined the solution structure of Mth11 (Mth Rpp29), an essential subunit of the RNase P enzyme from the archaebacterium Methanothermobacter thermoautotrophicus (Mth). RNase P is a ubiquitous ribonucleoprotein enzyme primarily responsible for cleaving the 5′ leader sequence during maturation of tRNAs in all three domains of life. In eubacteria, this enzyme is made up of two subunits: a large RNA (≈120 kDa) responsible for mediating catalysis, and a small protein cofactor (≈15 kDa) ...

  17. Messenger RNA (mRNA) nanoparticle tumour vaccination

    Science.gov (United States)

    Phua, Kyle K. L.; Nair, Smita K.; Leong, Kam W.

    2014-06-01

    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA's biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research.

  18. Natural RNA circles function as efficient microRNA sponges

    DEFF Research Database (Denmark)

    Hansen, Thomas Birkballe; Jensen, Trine I; Clausen, Bettina Hjelm;

    2013-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so-called comp......MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so......-called competing endogenous RNA in humans and target mimicry in plants. We previously identified a highly expressed circular RNA (circRNA) in human and mouse brain. Here we show that this circRNA acts as a miR-7 sponge; we term this circular transcript ciRS-7 (circular RNA sponge for miR-7). ciRS-7 contains more......R-138 sponge, suggesting that miRNA sponge effects achieved by circRNA formation are a general phenomenon. This study serves as the first, to our knowledge, functional analysis of a naturally expressed circRNA....

  19. Strategies underlying RNA silencing suppression by negative strand RNA viruses

    NARCIS (Netherlands)

    Hemmes, J.C.

    2007-01-01

    The research described in this thesis focused on the strategies of negative strand RNA viruses to counteract antiviral RNA silencing. In plants and insects, RNA silencing has been shown to act as a sequence specific antiviral defence mechanism that is characterised by the processing of double strand

  20. A closely related group of RNA-dependent RNA polymerases from double-stranded RNA viruses.

    OpenAIRE

    Bruenn, J A

    1993-01-01

    Probably one of the first proteinaceous enzymes was an RNA-dependent RNA polymerase (RDRP). Although there are several conserved motifs present in the RDRPs of most positive and double-stranded RNA (dsRNA) viruses, the RDRPs of the dsRNA viruses show no detectable sequence similarity outside the conserved motifs. There is now, however, a group of dsRNA viruses of lower eucaryotes whose RDRPs are detectably similar. The origin of this sequence similarity appears to be common descent from one o...

  1. lncRNA-RNA Interactions across the Human Transcriptome

    Science.gov (United States)

    Szcześniak, Michał Wojciech; Makałowska, Izabela

    2016-01-01

    Long non-coding RNAs (lncRNAs) represent a numerous class of non-protein coding transcripts longer than 200 nucleotides. There is possibility that a fraction of lncRNAs are not functional and represent mere transcriptional noise but a growing body of evidence shows they are engaged in a plethora of molecular functions and contribute considerably to the observed diversification of eukaryotic transcriptomes and proteomes. Still, however, only ca. 1% of lncRNAs have well established functions and much remains to be done towards decipherment of their biological roles. One of the least studied aspects of lncRNAs biology is their engagement in gene expression regulation through RNA-RNA interactions. By hybridizing with mate RNA molecules, lncRNAs could potentially participate in modulation of pre-mRNA splicing, RNA editing, mRNA stability control, translation activation, or abrogation of miRNA-induced repression. Here, we implemented a similarity-search based method for transcriptome-wide identification of RNA-RNA interactions, which enabled us to find 18,871,097 lncRNA-RNA base-pairings in human. Further analyses showed that the interactions could be involved in processing, stability control and functions of 57,303 transcripts. An extensive use of RNA-Seq data provided support for approximately one third of the interactions, at least in terms of the two RNA components being co-expressed. The results suggest that lncRNA-RNA interactions are broadly used to regulate and diversify the human transcriptome. PMID:26930590

  2. Ancient Origin of the U2 Small Nuclear RNA Gene-Targeting Non-LTR Retrotransposons Utopia.

    Science.gov (United States)

    Kojima, Kenji K; Jurka, Jerzy

    2015-01-01

    Most non-long terminal repeat (non-LTR) retrotransposons encoding a restriction-like endonuclease show target-specific integration into repetitive sequences such as ribosomal RNA genes and microsatellites. However, only a few target-specific lineages of non-LTR retrotransposons are distributed widely and no lineage is found across the eukaryotic kingdoms. Here we report the most widely distributed lineage of target sequence-specific non-LTR retrotransposons, designated Utopia. Utopia is found in three supergroups of eukaryotes: Amoebozoa, SAR, and Opisthokonta. Utopia is inserted into a specific site of U2 small nuclear RNA genes with different strength of specificity for each family. Utopia families from oomycetes and wasps show strong target specificity while only a small number of Utopia copies from reptiles are flanked with U2 snRNA genes. Oomycete Utopia families contain an "archaeal" RNase H domain upstream of reverse transcriptase (RT), which likely originated from a plant RNase H gene. Analysis of Utopia from oomycetes indicates that multiple lineages of Utopia have been maintained inside of U2 genes with few copy numbers. Phylogenetic analysis of RT suggests the monophyly of Utopia, and it likely dates back to the early evolution of eukaryotes. PMID:26556480

  3. RNA thermodynamic structural entropy

    OpenAIRE

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute th...

  4. RNA Interference in livestock

    OpenAIRE

    Merkl, Claudia

    2010-01-01

    RNA Interference (RNAi) allows experimental reduction of gene expression, providing a tool for the investigation of gene function, disease therapy and the generation of animal models for human diseases. RNAi offers an opportunity to carry out precise genetic manipulations in a wide variety of species. This thesis describes the use of RNAi to downregulate two porcine genes, the whey protein Beta-Lactoglobulin (BLG) and the tumor suppressor protein p53. BLG is a major component in porcine and r...

  5. The Functions of RNA-Dependent RNA Polymerases in Arabidopsis

    OpenAIRE

    Willmann, Matthew R.; Endres, Matthew W.; Cook, Rebecca T.; Gregory, Brian D.

    2011-01-01

    One recently identified mechanism that regulates mRNA abundance is RNA silencing, and pioneering work in Arabidopsis thaliana and other genetic model organisms helped define this process. RNA silencing pathways are triggered by either self-complementary fold-back structures or the production of double-stranded RNA (dsRNA) that gives rise to small RNAs (smRNAs) known as microRNAs (miRNAs) or small-interfering RNAs (siRNAs). These smRNAs direct sequence-specific regulation of various gene trans...

  6. MicroRNA from tuberculosis RNA: A bioinformatics study

    OpenAIRE

    Wiwanitkit, Somsri; Wiwanitkit, Viroj

    2012-01-01

    The role of microRNA in the pathogenesis of pulmonary tuberculosis is the interesting topic in chest medicine at present. Recently, it was proposed that the microRNA can be a useful biomarker for monitoring of pulmonary tuberculosis and might be the important part in pathogenesis of disease. Here, the authors perform a bioinformatics study to assess the microRNA within known tuberculosis RNA. The microRNA part can be detected and this can be important key information in further study of the p...

  7. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    Science.gov (United States)

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes. PMID:24250115

  8. Genetic relatedness of orbiviruses by RNA-RNA blot hybridization

    International Nuclear Information System (INIS)

    RNA-RNA blot hybridization was developed in order to identify type-specific genes among double-stranded (ds) RNA viruses, to assess the genetic relatedness of dsRNA viruses and to classify new strains. Viral dsRNA segments were electrophoresed through 10% polyacrylamide gels, transferred to membranes, and hybridized to [5'32P]-pCp labeled genomic RNA from a related strain. Hybridization was performed at 520C, 50% formamide, 5X SSC. Under these conditions heterologous RNA species must share ≥ 74% sequence homology in order to form stable dsRNA hybrids. Cognate genes of nine members of the Palyam serogroup of orbiviruses were identified and their sequence relatedness to the prototype. Palyam virus, was determined. Reciprocal blot hybridizations were performed using radiolabeled genomic RNA of all members of the Palyam serogroup. Unique and variant genes were identified by lack of cross-homology or by weak homology between segments. Since genes 2 and 6 exhibited the highest degree of sequence variability, response to the vertebrate immune system may be a major cause of sequence divergence among members of a single serogroup. Changuinola serogroup isolates were compared by dot-blot hybridization, while Colorado tick fever (CTF) serogroup isolates were compared by the RNA-RNA blot hybridization procedure described for reovirus and Palyam serogroup isolates. Preliminary blot hybridization data were also obtained on the relatedness of members of different Orbivirus serogroups

  9. Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics.

    Science.gov (United States)

    Lee, Soo Hyeon; Kang, Yoon Young; Jang, Hyo-Eun; Mok, Hyejung

    2016-09-01

    Recent promising clinical results of RNA therapeutics have drawn big attention of academia and industries to RNA therapeutics and their carrier systems. To improve their feasibility in clinics, systemic evaluations of currently available carrier systems under clinical trials and preclinical studies are needed. In this review, we focus on recent noticeable preclinical studies and clinical results regarding siRNA-based conjugates for clinical translations. Advantages and drawbacks of siRNA-based conjugates are discussed, compared to particle-based delivery systems. Then, representative siRNA-based conjugates with aptamers, peptides, carbohydrates, lipids, polymers, and nanostructured materials are introduced. To improve feasibility of siRNA conjugates in preclinical studies, several considerations for the rational design of siRNA conjugates in terms of cleavability, immune responses, multivalent conjugations, and mechanism of action are also presented. Lastly, we discuss lessons from previous preclinical and clinical studies related to siRNA conjugates and perspectives of their clinical applications. PMID:26514375

  10. RNA Silencing in Aspergillus nidulans Is Independent of RNA-Dependent RNA Polymerases

    OpenAIRE

    Hammond, T. M.; Keller, N P

    2005-01-01

    The versatility of RNA-dependent RNA polymerases (RDRPs) in eukaryotic gene silencing is perhaps best illustrated in the kingdom Fungi. Biochemical and genetic studies of Schizosaccharomyces pombe and Neurospora crassa show that these types of enzymes are involved in a number of fundamental gene-silencing processes, including heterochromatin regulation and RNA silencing in S. pombe and meiotic silencing and RNA silencing in N. crassa. Here we show that Aspergillus nidulans, another model fung...

  11. Global Mapping of Human RNA-RNA Interactions.

    Science.gov (United States)

    Sharma, Eesha; Sterne-Weiler, Tim; O'Hanlon, Dave; Blencowe, Benjamin J

    2016-05-19

    The majority of the human genome is transcribed into non-coding (nc)RNAs that lack known biological functions or else are only partially characterized. Numerous characterized ncRNAs function via base pairing with target RNA sequences to direct their biological activities, which include critical roles in RNA processing, modification, turnover, and translation. To define roles for ncRNAs, we have developed a method enabling the global-scale mapping of RNA-RNA duplexes crosslinked in vivo, "LIGation of interacting RNA followed by high-throughput sequencing" (LIGR-seq). Applying this method in human cells reveals a remarkable landscape of RNA-RNA interactions involving all major classes of ncRNA and mRNA. LIGR-seq data reveal unexpected interactions between small nucleolar (sno)RNAs and mRNAs, including those involving the orphan C/D box snoRNA, SNORD83B, that control steady-state levels of its target mRNAs. LIGR-seq thus represents a powerful approach for illuminating the functions of the myriad of uncharacterized RNAs that act via base-pairing interactions. PMID:27184080

  12. Transfer RNA and human disease.

    Science.gov (United States)

    Abbott, Jamie A; Francklyn, Christopher S; Robey-Bond, Susan M

    2014-01-01

    Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are "hotspots" for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease. PMID:24917879

  13. RNA Thermodynamic Structural Entropy.

    Directory of Open Access Journals (Sweden)

    Juan Antonio Garcia-Martin

    Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  14. RNA interference in Lepidoptera

    DEFF Research Database (Denmark)

    Terenius, Ole; Papanicolaou, Alexie; Garbutt, Jennie S.;

    2011-01-01

    Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive...... in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as...

  15. Relating the Diversity, Abundance, and Activity of Ammonia-Oxidizing Archaeal Communities to Nitrification Rates in the Coastal Ocean

    Science.gov (United States)

    Tolar, B. B.; Smith, J. M.; Chavez, F.; Francis, C.

    2015-12-01

    Ammonia oxidation, the rate-limiting first step of nitrification, is an important link between reduced (ammonia) and oxidized (nitrate) nitrogen, and controls the relative distribution of these forms of inorganic nitrogen. This process is catalyzed via the ammonia monooxygenase enzyme of both ammonia-oxidizing Bacteria (AOB) and Archaea (AOA); the α subunit of this enzyme is encoded by the amoA gene and has been used as the molecular marker to detect this process. In the ocean, AOA are typically 10-1000 times more and are likely more active than AOB, and thus are key players in the marine nitrogen cycle. Monterey Bay is a dynamic site to study nitrification, as seasonal upwelling brings deep water and nutrients into surface waters, which can promote phytoplankton blooms and impact biogeochemical processes such as the nitrogen cycle. We have sampled two sites within Monterey Bay bimonthly for two years as part of the ongoing Monterey Bay Time Series (MBTS) to quantify AOA genes, transcripts, and nitrification rates. Two ecotypes of AOA are routinely found in Monterey Bay - the 'shallow' water column A (WCA) and 'deep' water column B (WCB) clades, which are thought to have distinct physiological properties and can be distinguished based on the amoA gene sequence. Previous work has shown a strong relationship between nitrification rates in Monterey Bay with the abundance of WCA amoA genes and transcripts. Additionally, we found a correlation between the relative abundance of Marine Group I (MGI) Thaumarchaeota 16S rRNA reads (as % of total) and the absolute abundance of AOA amoA genes (determined via qPCR) in Monterey Bay and the California Current System. AOA 16S rRNA gene abundances in turn correlated significantly with changes in nitrification rate with depth, while the relative abundance of genes and transcripts binned to a single AOA (Nitrosopumilus maritimus) was not significantly correlated to nitrification rate. Further analysis of the sequenced AOA

  16. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E. [National Magnetic Resonance Facility at Madison (United States); Eghbalnia, Hamid R., E-mail: eghbalhd@uc.edu [University of Cincinnati, Department of Molecular and Cellular Physiology (United States)

    2012-04-15

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ({sup 1}H-{sup 15}N 2D HMQC) and proton-proton nuclear Overhauser enhancement spectroscopy ({sup 1}H-{sup 1}H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino

  17. RNA SURVEILLANCE– AN EMERGING ROLE FOR RNA REGULATORY NETWORKS IN AGING

    OpenAIRE

    Montano, Monty; Long, Kimberly

    2010-01-01

    In this review, we describe recent advances in the field of RNA regulatory biology and relate these advances to aging science. We introduce a new term, RNA surveillance, an RNA regulatory process that is conserved in metazoans, and describe how RNA surveillance represents molecular cross-talk between two emerging RNA regulatory systems – RNA interference and RNA editing. We discuss how RNA surveillance mechanisms influence mRNA and microRNA expression and activity during lifespan. Additionall...

  18. Alfalfa mosaic virus coat protein bridges RNA and RNA-dependent RNA polymerase in vitro.

    Science.gov (United States)

    Reichert, Vienna L; Choi, Mehee; Petrillo, Jessica E; Gehrke, Lee

    2007-07-20

    Alfalfa mosaic virus (AMV) RNA replication requires the viral coat protein (CP). AMV CP is an integral component of the viral replicase; moreover, it binds to the viral RNA 3'-termini and induces the formation of multiple new base pairs that organize the RNA conformation. The results described here suggest that AMV coat protein binding defines template selection by organizing the 3'-terminal RNA conformation and by positioning the RNA-dependent RNA polymerase (RdRp) at the initiation site for minus strand synthesis. RNA-protein interactions were analyzed by using a modified Northwestern blotting protocol that included both viral coat protein and labeled RNA in the probe solution ("far-Northwestern blotting"). We observed that labeled RNA alone bound the replicase proteins poorly; however, complex formation was enhanced significantly in the presence of AMV CP. The RNA-replicase bridging function of the AMV CP may represent a mechanism for accurate de novo initiation in the absence of canonical 3' transfer RNA signals. PMID:17400272

  19. Switching off small RNA regulation with trap-mRNA

    DEFF Research Database (Denmark)

    Overgaard, Martin; Johansen, Jesper; Møller-Jensen, Jakob; Valentin-Hansen, Poul

    2009-01-01

    Small non-coding regulatory RNAs in bacteria have been shown predominantly to be tightly regulated at the level of transcription initiation, and sRNAs that function by an antisense mechanism on trans-encoded target mRNAs have been shown or predicted to act stoichiometrically. Here we show that Mic......M, which silences the expression of an outer membrane protein, YbfM under most growth conditions, does not become destabilized by target mRNA overexpression, indicating that the small RNA regulator acts catalytically. Furthermore, our regulatory studies suggested that control of micM expression is unlikely...... to operate at the level of transcription initiation. By employing a highly sensitive genetic screen we uncovered a novel RNA-based regulatory principle in which induction of a trap-mRNA leads to selective degradation of a small regulatory RNA molecule, thereby abolishing the sRNA-based silencing of...

  20. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants

    Science.gov (United States)

    Holman, Devin B.; Hao, Xiying; Topp, Edward; Yang, Hee Eun; Alexander, Trevor W.

    2016-01-01

    Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers’ grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills. PMID:27300323

  1. Bacterial and Archaeal Communities Variability Associated with Upwelling and Anthropogenic Pressures in the Protection Area of Arraial do Cabo (Cabo Frio region - RJ).

    Science.gov (United States)

    Coelho-Souza, Sergio A; Araújo, Fábio V; Cury, Juliano C; Jesus, Hugo E; Pereira, Gilberto C; Guimarães, Jean R D; Peixoto, Raquel S; Dávila, Alberto M R; Rosado, Alexandre S

    2015-09-01

    Upwelling systems contain a high diversity of pelagic microorganisms and their composition and activity are defined by factors like temperature and nutrient concentration. Denaturing gradient gel electrophoresis (DGGE) technique was used to verify the spatial and temporal genetic variability of Bacteria and Archaea in two stations of the Arraial do Cabo coastal region, one under upwelling pressure and another under anthropogenic pressure. In addition, biotic and abiotic variables were measured in surface and deep waters from three other stations between these stations. Six samplings were done during a year and adequately represented the degrees of upwelling and anthropogenic pressures to the system. Principal Component Analysis (PCA) showed negative correlations between the concentrations of ammonia and phosphorous with prokaryotic secondary production and the total heterotrophic bacteria. PCA also showed negative correlation between temperature and the abundance of prokaryotic cells. Bacterial and archaeal compositions were changeable as were the oceanographic conditions, and upwelling had a regional pressure while anthropogenic pressure was punctual. We suggest that the measurement of prokaryotic secondary production was associated with both Bacteria and Archaea activities, and that substrate availability and temperature determine nutrients cycling. PMID:26375020

  2. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants.

    Directory of Open Access Journals (Sweden)

    Devin B Holman

    Full Text Available Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers' grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills.

  3. Exploring Archaeal Communities And Genomes Across Five Deep-Sea Brine Lakes Of The Red Sea With A Focus On Methanogens

    KAUST Repository

    Guan, Yue

    2015-12-15

    The deep-sea hypersaline lakes in the Red Sea are among the most challenging, extreme, and unusual environments on the planet Earth. Despite their harshness to life, they are inhabited by diverse and novel members of prokaryotes. Methanogenesis was proposed as one of the main metabolic pathways that drive microbial colonization in similar habitats. However, not much is known about the identities of the methane-producing microbes in the Red Sea, let alone the way in which they could adapt to such poly extreme environments. Combining a range of microbial community assessment, cultivation and omics (genomics, transcriptomics, and single amplified genomics) approaches, this dissertation seeks to fill these gaps in our knowledge by studying archaeal composition, particularly methanogens, their genomic capacities and transcriptomic characteristics in order to elucidate their diversity, function, and adaptation to the deep-sea brines of the Red Sea. Although typical methanogens are not abundant in the samples collected from brine pool habitats of the Red Sea, the pilot cultivation experiment has revealed novel halophilic methanogenic species of the domain Archaea. Their physiological traits as well as their genomic and transcriptomic features unveil an interesting genetic and functional adaptive capacity that allows them to thrive in the unique deep-sea hypersaline environments in the Red Sea.

  4. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants.

    Science.gov (United States)

    Holman, Devin B; Hao, Xiying; Topp, Edward; Yang, Hee Eun; Alexander, Trevor W

    2016-01-01

    Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers' grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills. PMID:27300323

  5. Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs.

    Science.gov (United States)

    Gudbergsdóttir, Sóley Ruth; Menzel, Peter; Krogh, Anders; Young, Mark; Peng, Xu

    2016-03-01

    Limited by culture-dependent methods the number of viruses identified from thermophilic Archaea and Bacteria is still very small. In this study we retrieved viral sequences from six hot spring metagenomes isolated worldwide, revealing a wide distribution of four archaeal viral families, Ampullaviridae, Bicaudaviridae, Lipothrixviridae and Rudiviridae. Importantly, we identified 10 complete or near complete viral genomes allowing, for the first time, an assessment of genome conservation and evolution of the Ampullaviridae family as well as Sulfolobus Monocaudavirus 1 (SMV1)-related viruses. Among the novel genomes, one belongs to a putative thermophilic virus infecting the bacterium Hydrogenobaculum, for which no virus has been reported in the literature. Moreover, a high viral diversity was observed in the metagenomes, especially among the Lipothrixviridae, as indicated by the large number of unique contigs and the lack of a completely assembled genome for this family. This is further supported by the large number of novel genes in the complete and partial genomes showing no sequence similarities to public databases. CRISPR analysis revealed hundreds of novel CRISPR loci and thousands of novel CRISPR spacers from each metagenome, reinforcing the notion of high viral diversity in the thermal environment. PMID:26439881

  6. Investigation of Archaeal and Bacterial community structure of five different small drinking water networks with special regard to the nitrifying microorganisms.

    Science.gov (United States)

    Nagymáté, Zsuzsanna; Homonnay, Zalán G; Márialigeti, Károly

    2016-01-01

    Total microbial community structure, and particularly nitrifying communities inhabiting five different small drinking water networks characterized with different water physical and chemical parameters was investigated, using cultivation-based methods and sequence aided Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis. Ammonium ion, originated from well water, was only partially oxidized via nitrite to nitrate in the drinking water distribution systems. Nitrification occurred at low ammonium ion concentration (27-46μM), relatively high pH (7.6-8.2) and over a wide range of dissolved oxygen concentrations (0.4-9.0mgL(-1)). The nitrifying communities of the distribution systems were characterized by variable most probable numbers (2×10(2)-7.1×10(4) MPN L(-1)) and probably originated from the non-treated well water. The sequence aided T-RFLP method revealed that ammonia-oxidizing microorganisms and nitrite-oxidizing Bacteria (Nitrosomonas oligotropha, Nitrosopumilus maritimus, and Nitrospira moscoviensis, 'Candidatus Nitrospira defluvii') were present in different ratios in the total microbial communities of the distinct parts of the water network systems. The nitrate generated by nitrification was partly utilized by nitrate-reducing (and denitrifying) Bacteria, present in low MPN and characterized by sequence aided T-RFLP as Comamonas sp. and Pseudomonas spp. Different environmental factors, like pH, chemical oxygen demand, calculated total inorganic nitrogen content (moreover nitrite and nitrate concentration), temperature had important effect on the total bacterial and archaeal community distribution. PMID:27296965

  7. Safety evaluation of an alpha-amylase enzyme preparation derived from the archaeal order Thermococcales as expressed in Pseudomonas fluorescens biovar I.

    Science.gov (United States)

    Landry, Timothy D; Chew, Lawrence; Davis, John W; Frawley, Nile; Foley, Holly H; Stelman, Steven J; Thomas, Johnson; Wolt, Jeffrey; Hanselman, David S

    2003-02-01

    BD5088 alpha-amylase derived from archaeal sources has characteristics of pH and temperature tolerance that are well suited to hydrolysis of starch in food processing applications. The production microorganism recipient strain, Pseudomonas fluorescens biovar I, strain MB101, was avirulent after oral administration to mice and does not represent an infectious threat to humans. Repeated dose gavage studies with BD5088 enzyme preparation, up to 13 weeks in duration, showed no systemic toxicity due to the oral route with an NOAEL of 890 mg/kg/day as Total Organic Solids. Some irritation occurred in the respiratory tract, which was considered to be a consequence of reflux and aspiration of test material that contained lipopolysaccharide from the Pseudomonas production strain. A 2-week dietary study (0 and 310 mg/kg/day) confirmed that there were no respiratory tract effects related to oral ingestion. There was no genotoxic activity based on Ames, mouse lymphoma, mouse micronucleus, and rat lymphocyte chromosomal aberration tests. There was no evidence of allergenic potential based on a comparison of the primary sequence of BD5088 with sequences in an allergen database. The enzyme was labile to pepsin digestion. Based on these data, BD5088 alpha-amylase preparation may be considered safe for use in food production such as corn wet milling. PMID:12662916

  8. Temperate membrane-containing halophilic archaeal virus SNJ1 has a circular dsDNA genome identical to that of plasmid pHH205.

    Science.gov (United States)

    Zhang, Ziqian; Liu, Ying; Wang, Shuai; Yang, Di; Cheng, Yichen; Hu, Jiani; Chen, Jin; Mei, Yunjun; Shen, Ping; Bamford, Dennis H; Chen, Xiangdong

    2012-12-20

    A temperate haloarchaeal virus, SNJ1, was induced from the lysogenic host, Natrinema sp. J7-1, with mitomycin C, and the virus produced plaques on lawns of Natrinema sp. J7-2. Optimization of the induction conditions allowed us to increase the titer from ~10(4) PFU/ml to ~10(11) PFU/ml. Single-step growth curves exhibited a burst size of ~100 PFU/cell. The genome of SNJ1 was observed to be a circular, double-stranded DNA (dsDNA) molecule (16,341 bp). Surprisingly, the sequence of SNJ1 was identical to that of a previously described plasmid, pHH205, indicating that this plasmid is the provirus of SNJ1. Several structural protein-encoding genes were identified in the viral genome. In addition, the comparison of putative packaging ATPase sequences from bacterial, archaeal and eukaryotic viruses, as well as the presence of lipid constituents from the host phospholipid pool, strongly suggest that SNJ1 belongs to the PRD1-type lineage of dsDNA viruses, which have an internal membrane. PMID:22784791

  9. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analyses of threonyl-tRNA synthetase editing domain from Aeropyrum pernix

    International Nuclear Information System (INIS)

    The editing domain of threonyl-tRNA synthetase from the archaeon Aeropyrum pernix has been overexpressed, purified and crystallized. The crystal diffracted to a resolution of 1.66 Å. The proofreading function of aminoacyl-tRNA synthetases is crucial in maintaining the fidelity of protein synthesis. Most archaeal threonyl-tRNA synthetases (ThrRSs) possess a unique proofreading domain unrelated to their eukaryotic/bacterial counterpart. The crystal structure of this domain from the archaeon Pyrococcus abysii in complex with its cognate and noncognate substrate analogues had given insights into its catalytic and discriminatory mechanisms. To probe further into the mechanistic and evolutionary aspects of this domain, work has been extended to another archaeon Aeropyrum pernix. The organism possesses two proteins corresponding to threonyl-tRNA synthetase, i.e. ThrRS1 and ThrRS2, encoded by two different genes, thrS1 and thrS2, respectively. ThrRS1 is responsible for aminoacylation and ThrRS2 for proofreading activity. Here the purification, crystallization and preliminary X-ray crystallographic investigation of the N-terminal proofreading domain of ThrRS2 from A. pernix is reported. The crystals belong to either the P41212 or P43212 space group and consist of one monomer per asymmetric unit

  10. Isolation of 'Candidatus Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration.

    Science.gov (United States)

    Lehtovirta-Morley, Laura E; Ross, Jenna; Hink, Linda; Weber, Eva B; Gubry-Rangin, Cécile; Thion, Cécile; Prosser, James I; Nicol, Graeme W

    2016-05-01

    Studies of the distribution of ammonia oxidising archaea (AOA) and bacteria (AOB) suggest distinct ecological niches characterised by ammonia concentration and pH, arising through differences in substrate affinity and ammonia tolerance. AOA form five distinct phylogenetic clades, one of which, the 'Nitrososphaera sister cluster', has no cultivated isolate. A representative of this cluster, named 'Candidatus Nitrosocosmicus franklandus', was isolated from a pH 7.5 arable soil and we propose a new cluster name:'Nitrosocosmicus' While phylogenetic analysis of amoA genes indicates its association with the Nitrososphaera sister cluster, analysis of 16S rRNA genes provided no support for a relative branching that is consistent with a 'sister cluster', indicating placement within a lineage of the order Nitrososphaerales 'Ca.N. franklandus' is capable of ureolytic growth and its tolerances to nitrite and ammonia are higher than in other AOA and similar to those of typical soil AOB. Similarity of other growth characteristics of 'Ca.N. franklandus' with those of typical soil AOB isolates reduces support for niche differentiation between soil AOA and AOB and suggests that AOA have a wider physiological diversity than previously suspected. In particular, the high ammonia tolerance of 'Ca.N. franklandus' suggests potential contributions to nitrification in fertilised soils. PMID:26976843

  11. Archaeal amoA and ureC genes and their transcriptional activity in the Arctic Ocean

    Science.gov (United States)

    Pedneault, Estelle; Galand, Pierre E.; Potvin, Marianne; Tremblay, Jean-Éric; Lovejoy, Connie

    2014-04-01

    Thaumarchaeota and the gene encoding for a subunit of ammonia monooxygenase (amoA) are ubiquitous in Polar Seas, and some Thaumarchaeota also have a gene coding for ureC, diagnostic for urease. Using quantitative PCR we investigated the occurrence of genes and transcripts of ureC and amoA in Arctic samples from winter, spring and summer. AmoA genes, ureC genes and amoA transcripts were always present, but ureC transcripts were rarely detected. Over a 48 h light manipulation experiment amoA transcripts persisted under light and dark conditions, but not ureC transcripts. In addition, maxima for amoA transcript were nearer the surface compared to amoA genes. Clone libraries using DNA template recovered shallow and deep amoA clades but only the shallow clade was recovered from cDNA (from RNA). These results imply environmental control of amoA expression with direct or indirect light effects, and rare ureC expression despite its widespread occurrence in the Arctic Ocean.

  12. Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration

    Science.gov (United States)

    Lehtovirta-Morley, Laura E.; Ross, Jenna; Hink, Linda; Weber, Eva B.; Gubry-Rangin, Cécile; Thion, Cécile; Prosser, James I.; Nicol, Graeme W.

    2016-01-01

    Studies of the distribution of ammonia oxidising archaea (AOA) and bacteria (AOB) suggest distinct ecological niches characterised by ammonia concentration and pH, arising through differences in substrate affinity and ammonia tolerance. AOA form five distinct phylogenetic clades, one of which, the ‘Nitrososphaera sister cluster’, has no cultivated isolate. A representative of this cluster, named ‘Candidatus Nitrosocosmicus franklandus’, was isolated from a pH 7.5 arable soil and we propose a new cluster name: ‘Nitrosocosmicus’. While phylogenetic analysis of amoA genes indicates its association with the Nitrososphaera sister cluster, analysis of 16S rRNA genes provided no support for a relative branching that is consistent with a ‘sister cluster’, indicating placement within a lineage of the order Nitrososphaerales. ‘Ca. N. franklandus’ is capable of ureolytic growth and its tolerances to nitrite and ammonia are higher than in other AOA and similar to those of typical soil AOB. Similarity of other growth characteristics of ‘Ca. N. franklandus’ with those of typical soil AOB isolates reduces support for niche differentiation between soil AOA and AOB and suggests that AOA have a wider physiological diversity than previously suspected. In particular, the high ammonia tolerance of ‘Ca. N. franklandus’ suggests potential contributions to nitrification in fertilised soils. PMID:26976843

  13. Metabolic traits of an uncultured archaeal lineage--MSBL1--from brine pools of the Red Sea.

    Science.gov (United States)

    Mwirichia, Romano; Alam, Intikhab; Rashid, Mamoon; Vinu, Manikandan; Ba-Alawi, Wail; Anthony Kamau, Allan; Kamanda Ngugi, David; Göker, Markus; Klenk, Hans-Peter; Bajic, Vladimir; Stingl, Ulrich

    2016-01-01

    The candidate Division MSBL1 (Mediterranean Sea Brine Lakes 1) comprises a monophyletic group of uncultured archaea found in different hypersaline environments. Previous studies propose methanogenesis as the main metabolism. Here, we describe a metabolic reconstruction of MSBL1 based on 32 single-cell amplified genomes from Brine Pools of the Red Sea (Atlantis II, Discovery, Nereus, Erba and Kebrit). Phylogeny based on rRNA genes as well as conserved single copy genes delineates the group as a putative novel lineage of archaea. Our analysis shows that MSBL1 may ferment glucose via the Embden-Meyerhof-Parnas pathway. However, in the absence of organic carbon, carbon dioxide may be fixed via the ribulose bisphosphate carboxylase, Wood-Ljungdahl pathway or reductive TCA cycle. Therefore, based on the occurrence of genes for glycolysis, absence of the core genes found in genomes of all sequenced methanogens and the phylogenetic position, we hypothesize that the MSBL1 are not methanogens, but probably sugar-fermenting organisms capable of autotrophic growth. Such a mixotrophic lifestyle would confer survival advantage (or possibly provide a unique narrow niche) when glucose and other fermentable sugars are not available. PMID:26758088

  14. RNA regulons and the RNA-protein interaction network

    OpenAIRE

    Imig, J.; Kanitz, A.; Gerber, AP

    2012-01-01

    The development of genome-wide analysis tools has prompted global investigation of the gene expression program, revealing highly coordinated control mechanisms that ensure proper spatiotemporal activity of a cell's macromolecular components. With respect to the regulation of RNA transcripts, the concept of RNA regulons, which – by analogy with DNA regulons in bacteria – refers to the coordinated control of functionally related RNA molecules, has emerged as a unifying theory that describes the...

  15. RNA-RNA interaction prediction based on multiple sequence alignments

    CERN Document Server

    Li, Andrew X; Qin, Jing; Reidys, Christian M

    2010-01-01

    Recently, $O(N^6)$ time and $O(N^4)$ space dynamic programming algorithms have become available that compute the partition function of RNA-RNA interaction complexes for pairs of RNA sequences. These algorithms and the biological requirement of more reliable interactions motivate to utilize the additional information contained in multiple sequence alignments and to generalize the above framework to the partition function and base pairing probabilities for multiple sequence alignments.

  16. Distribution of archaeal and bacterial glycerol dialkyl glycerol tetraethers in tropical sediments from Guadeloupe (French West Indies): implications for application of the MBT/CBT and TEX86 proxies

    Science.gov (United States)

    Huguet, A.; Belmahdi, I.; Fosse, C.; Grossi, V.; Derenne, S.

    2012-04-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are lipids of high molecular weight present in membranes of Archaea and some bacteria. Archaeal membranes are composed predominantly of isoprenoid GDGTs, with acyclic or ring-containg biphytanyl chains. The amount of isoprenoid GDGTs with cyclopentyl moieties was shown to increase with water temperature and variations in surface water temperature can be determined via the TEX86 proxy. Recently, another type of GDGTs, with branched instead of isoprenoid alkyl chains, has been discovered in peat and was observed to occur ubiquitously in soils and in aquatic environments. Branched GDGTs were suggested to be produced in soils by still unknown bacteria. The degree of methylation of branched GDGTs, expressed in the MBT, was shown to depend on air temperature and to a lesser extent on soil pH, whereas the relative abundance of cyclopentyl rings of branched GDGTs, expressed in the CBT, was related to soil pH. The MBT/CBT proxies are increasingly used as paleoclimate proxies. The aim of this study was to investigate the distribution of GDGTs in tropical sediments from Guadeloupe (French West Indies). Surficial sediment samples were collected in four coastal water ponds: two located in Grande-Terre and two in a smaller island named La Désirade, 10 km east from Grande-Terre. GDGTs either present as core lipids (CLs; presumed of fossil origin) or derived from intact polar lipids (IPLs; markers for living cells) were analysed. A large part of archaeal GDGTs was present as IPLs (40-50% of total extractable archaeal GDGTs) in all sites. The proportion of IPL GDGTs of bacterial origin with respect to the total pool (CLs +IPLs) was 25-30% in the sediments from La Désirade and ~ 50% in the upper sediment layers from Grande-Terre. Interestingly, the distribution of archaeal and bacterial GDGTs differed between the four sites, as shown by the higher values of the TEX86 and MBT in sediments from La Désirade (TEX86~0.80; MBT~0

  17. RNA-Dependent RNA Polymerase 6 Is Required for Efficient hpRNA-Induced Gene Silencing in Plants

    OpenAIRE

    Harmoko, Rikno; Fanata, Wahyu Indra Duwi; Yoo, Jae Yong; Ko, Ki Seong; Rim, Yeong Gil; Uddin, Mohammad Nazim; Siswoyo, Tri Agus; Lee, Seung Sik; Kim, Dool Yi; Lee, Sang Yeol; Lee, Kyun Oh

    2013-01-01

    In plants, transgenes with inverted repeats are used to induce efficient RNA silencing, which is also frequently induced by highly transcribed sense transgenes. RNA silencing induced by sense transgenes is dependent on RNA-dependent RNA polymerase 6 (RDR6), which converts single-stranded (ss) RNA into double-stranded (ds) RNA. By contrast, it has been proposed that RNA silencing induced by self-complementary hairpin RNA (hpRNA) does not require RDR6, because the hpRNA can directly fold back o...

  18. RNA interference and antiviral therapy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    RNA interference (RNAi) is an evolutionally conserved gene silencing mechanism present in a variety of eukaryotic species. RNAi uses short double-stranded RNA (dsRNA) to trigger degradation or translation repression of homologous RNA targets in a sequence-specific manner. This system can be induced effectively in vitro and in vivo by direct application of small interfering RNAs (siRNAs), or by expression of short hairpin RNA (shRNA) with non-viral and viral vectors. To date, RNAi has been extensively used as a novel and effective tool for functional genomic studies, and has displayed great potential in treating human diseases, including human genetic and acquired disorders such as cancer and viral infections. In the present review, we focus on the recent development in the use of RNAi in the prevention and treatment of viral infections. The mechanisms,strategies, hurdles and prospects of employing RNAi in the pharmaceutical industry are also discussed.

  19. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors

    KAUST Repository

    Chehab, Noura A.

    2013-06-18

    A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m 2), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities. © 2013 Springer-Verlag Berlin Heidelberg.

  20. Spatial Interaction of Archaeal Ammonia-Oxidizers and Nitrite-Oxidizing Bacteria in an Unfertilized Grassland Soil

    Science.gov (United States)

    Stempfhuber, Barbara; Richter-Heitmann, Tim; Regan, Kathleen M.; Kölbl, Angelika; Wüst, Pia K.; Marhan, Sven; Sikorski, Johannes; Overmann, Jörg; Friedrich, Michael W.; Kandeler, Ellen; Schloter, Michael

    2016-01-01

    Interrelated successive transformation steps of nitrification are performed by distinct microbial groups – the ammonia-oxidizers, comprising ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizers such as Nitrobacter and Nitrospira, which are the dominant genera in the investigated soils. Hence, not only their presence and activity in the investigated habitat is required for nitrification, but also their temporal and spatial interactions. To demonstrate the interdependence of both groups and to address factors promoting putative niche differentiation within each group, temporal and spatial changes in nitrifying organisms were monitored in an unfertilized grassland site over an entire vegetation period at the plot scale of 10 m2. Nitrifying organisms were assessed by measuring the abundance of marker genes (amoA for AOA and AOB, nxrA for Nitrobacter, 16S rRNA gene for Nitrospira) selected for the respective sub-processes. A positive correlation between numerically dominant AOA and Nitrospira, and their co-occurrence at the same spatial scale in August and October, suggests that the nitrification process is predominantly performed by these groups and is restricted to a limited timeframe. Amongst nitrite-oxidizers, niche differentiation was evident in observed seasonally varying patterns of co-occurrence and spatial separation. While their distributions were most likely driven by substrate concentrations, oxygen availability may also have played a role under substrate-limited conditions. Phylogenetic analysis revealed temporal shifts in Nitrospira community composition with an increasing relative abundance of OTU03 assigned to sublineage V from August onward, indicating its important role in nitrite oxidation. PMID:26834718

  1. Spatial interaction of archaeal ammonia-oxidizers and nitrite-oxidizing bacteria in an unfertilized grassland soil

    Directory of Open Access Journals (Sweden)

    Barbara eStempfhuber

    2016-01-01

    Full Text Available Interrelated successive transformation steps of nitrification are performed by distinct microbial groups – the ammonia-oxidizers, comprising ammonia-oxidizing archaea (AOA and bacteria (AOB, and nitrite-oxidizers such as Nitrobacter and Nitrospira, which are the dominant genera in the investigated soils. Hence, not only their presence and activity in the investigated habitat is required for nitrification, but also their temporal and spatial interactions. To demonstrate the interdependence of both groups and to address factors promoting putative niche differentiation within each group, temporal and spatial changes in nitrifying organisms were monitored in an unfertilized grassland site over an entire vegetation period at the plot scale of 10 m². Nitrifying organisms were assessed by measuring the abundance of marker genes (amoA for AOA and AOB, nxrA for Nitrobacter, 16S rRNA gene for Nitrospira selected for the respective sub-processes. A positive correlation between numerically dominant AOA and Nitrospira, and their co-occurrence at the same spatial scale in August and October, suggests that the nitrification process is predominantly performed by these groups and is restricted to a limited timeframe. Amongst nitrite-oxidizers, niche differentiation was evident in observed seasonally varying patterns of co-occurrence and spatial separation. While their distributions were most likely driven by substrate concentrations, oxygen availability may also have played a role under substrate-limited conditions. Phylogenetic analysis revealed temporal shifts in Nitrospira community composition with an increasing relative abundance of OTU03 assigned to sublineage V from August onwards, indicating its important role in nitrite oxidation.

  2. Seasonal changes in bacterial and archaeal gene expression patterns across salinity gradients in the Columbia River coastal margin.

    Directory of Open Access Journals (Sweden)

    Maria W Smith

    Full Text Available Through their metabolic activities, microbial populations mediate the impact of high gradient regions on ecological function and productivity of the highly dynamic Columbia River coastal margin (CRCM. A 2226-probe oligonucleotide DNA microarray was developed to investigate expression patterns for microbial genes involved in nitrogen and carbon metabolism in the CRCM. Initial experiments with the environmental microarrays were directed toward validation of the platform and yielded high reproducibility in multiple tests. Bioinformatic and experimental validation also indicated that >85% of the microarray probes were specific for their corresponding target genes and for a few homologs within the same microbial family. The validated probe set was used to query gene expression responses by microbial assemblages to environmental variability. Sixty-four samples from the river, estuary, plume, and adjacent ocean were collected in different seasons and analyzed to correlate the measured variability in chemical, physical and biological water parameters to differences in global gene expression profiles. The method produced robust seasonal profiles corresponding to pre-freshet spring (April and late summer (August. Overall relative gene expression was high in both seasons and was consistent with high microbial abundance measured by total RNA, heterotrophic bacterial production, and chlorophyll a. Both seasonal patterns involved large numbers of genes that were highly expressed relative to background, yet each produced very different gene expression profiles. April patterns revealed high differential gene expression in the coastal margin samples (estuary, plume and adjacent ocean relative to freshwater, while little differential gene expression was observed along the river-to-ocean transition in August. Microbial gene expression profiles appeared to relate, in part, to seasonal differences in nutrient availability and potential resource competition

  3. Semiautomated improvement of RNA alignments

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Lind-Thomsen, Allan; Knudsen, Bjarne;

    2007-01-01

    We have developed a semiautomated RNA sequence editor (SARSE) that integrates tools for analyzing RNA alignments. The editor highlights different properties of the alignment by color, and its integrated analysis tools prevent the introduction of errors when doing alignment editing. SARSE readily...... the SARSE editor makes it a flexible tool to improve all RNA alignments with relatively little human intervention. Online documentation and software are available at (http://sarse.ku.dk)....

  4. RNA nanoparticles come of age

    Institute of Scientific and Technical Information of China (English)

    John J.Rossi

    2011-01-01

    @@ RNA has multiple functions in nature, including informa- tional transfer (mRNA) Ill, adaptor function (tRNAs) [2], guide functions (snRNAs, snoRNAs) [3,4]catalytic func- tion (ribozymes and the large ribosomal RNA) [5-7], and environmental sensing (riboswitehes) [8].In contrast, DNA only serves as an information storage molecule, and proteins serve as structural and enzymatic molecules.

  5. Bifurcations in the interplay of messenger RNA, protein and nonprotein coding RNA

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Vladimir P [Department of Applied Physics, Chalmers University of Technology, S-412 96 Goeteborg (Sweden); Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation)], E-mail: zhdanov@catalysis.ru

    2008-07-18

    The interplay of messenger RNA (mRNA), protein, produced via translation of this RNA, and nonprotein coding RNA (ncRNA) may include regulation of the ncRNA production by protein and (i) ncRNA-protein association resulting in suppression of the protein regulatory activity or (ii) ncRNA-mRNA association resulting in degradation of the miRNA-mRNA complex. The kinetic models describing these two scenarios are found to predict bistability provided that protein suppresses the ncRNA formation.

  6. Bifurcations in the interplay of messenger RNA, protein and nonprotein coding RNA

    International Nuclear Information System (INIS)

    The interplay of messenger RNA (mRNA), protein, produced via translation of this RNA, and nonprotein coding RNA (ncRNA) may include regulation of the ncRNA production by protein and (i) ncRNA-protein association resulting in suppression of the protein regulatory activity or (ii) ncRNA-mRNA association resulting in degradation of the miRNA-mRNA complex. The kinetic models describing these two scenarios are found to predict bistability provided that protein suppresses the ncRNA formation

  7. Bifurcations in the interplay of messenger RNA, protein and nonprotein coding RNA

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2008-07-01

    The interplay of messenger RNA (mRNA), protein, produced via translation of this RNA, and nonprotein coding RNA (ncRNA) may include regulation of the ncRNA production by protein and (i) ncRNA-protein association resulting in suppression of the protein regulatory activity or (ii) ncRNA-mRNA association resulting in degradation of the miRNA-mRNA complex. The kinetic models describing these two scenarios are found to predict bistability provided that protein suppresses the ncRNA formation.

  8. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES

    Science.gov (United States)

    This book chapter offers an overview of the use of ribosomal RNA sequences. A history of the technology traces the evolution of techniques to measure bacterial phylogenetic relationships and recent advances in obtaining rRNA sequence information. The manual also describes procedu...

  9. Catalysis and prebiotic RNA synthesis

    Science.gov (United States)

    Ferris, James P.

    1993-01-01

    The essential role of catalysis for the origins of life is discussed. The status of the prebiotic synthesis of 2',5'- and 3'5'-linked oligomers of RNA is reviewed. Examples of the role of metal ion and mineral catalysis in RNA oligomer formation are discussed.

  10. RNA er jo bare matematik!

    DEFF Research Database (Denmark)

    Blaavand, Jakob Lindblad

    2011-01-01

    Hvordan kan man kurere sygdomme med matematiske geometriske strukturer? Det kan man i princippet, hvis de geometriske figurer er RNA-molekyler, og sygdommen skyldes syge gener.......Hvordan kan man kurere sygdomme med matematiske geometriske strukturer? Det kan man i princippet, hvis de geometriske figurer er RNA-molekyler, og sygdommen skyldes syge gener....

  11. RNA Structural Alignments, Part I

    DEFF Research Database (Denmark)

    Havgaard, Jakob Hull; Gorodkin, Jan

    Simultaneous alignment and secondary structure prediction of RNA sequences is often referred to as "RNA structural alignment." A class of the methods for structural alignment is based on the principles proposed by Sankoff more than 25 years ago. The Sankoff algorithm simultaneously folds and aligns...

  12. Epigenetic microRNA Regulation

    DEFF Research Database (Denmark)

    Wiklund, Erik Digman

    2011-01-01

    and confirming transcriptional start sites can be difficult. Epigenetics, gene regulatory and DNA modification mechanisms not involving a change to the primary sequence, have been implied in the regulation of a number of miRNA loci. Both epigenetic and miRNA signatures are broadly altered in cancer......, and are thought to play essential roles in cancer etiology and progression. Here, we aimed to identify epigenetic miRNA deregulation in bladder and oral carcinoma, and to develop a robust approach to epigenetic miRNA prediction and detection. In addition, non-canonical epigenetic functions directed by a nuclear...... miRNA were investigated. In summary, we report that the miR-200 family and miR-205 are coordinately epigenetically regulated in a variety of cell lines, tumors and normal tissues. MiR-200c expression is correlated with bladder cancer disease progression, and miR-375 levels in oral rinse can...

  13. Phenotypic MicroRNA Microarrays

    Directory of Open Access Journals (Sweden)

    Veronica Soloveva

    2013-04-01

    Full Text Available Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the biology of selected cellular models. After reverse-transfection of microRNAs and siRNA, the cellular phenotype generated by microRNAs regulated NF-κB expression comparably to the siRNA. The ability to print microRNA molecules for reverse transfection into cells is opening up the wide horizon for the phenotypic high content screening of microRNA libraries using cellular disease models.

  14. The Effect of Dietary Replacement of Ordinary Rice with Red Yeast Rice on Nutrient Utilization, Enteric Methane Emission and Rumen Archaeal Diversity in Goats

    Science.gov (United States)

    Wang, L. Z.; Zhou, M. L.; Wang, J. W.; Wu, D.; Yan, T.

    2016-01-01

    Twenty castrated Boer crossbred goats were used in the present study with two treatments to examine the effect of dietary replacement of ordinary rice with red yeast rice on nutrient utilization, enteric methane emission and ruminal archaea structure and composition. Two treatment diets contained (DM basis) 70.0% of forage, 21.8% of concentrates and 8.2% of either ordinary rice (control) or red yeast rice (RYR). Nutrient utilization was measured and enteric methane emissions were determined in respiration chambers. Results showed that RYR had significantly lower digestibility of N and organic matter compared to control group. However, feeding red yeast rice did not affect N retention as g/d or a proportion of N intake, and reduced heat production as MJ/d or as a proportion of metabolizable energy intake, thus leading to a higher proportion of metabolizable energy intake to be retained in body tissue. RYR also had significantly lower methane emissions either as g/d, or as a proportion of feed intake. Although feeding red yeast rice had no negative effect on any rumen fermentation variables, it decreased serum contents of total cholesterol, triglycerides, HDL-cholesterol and LDL-cholesterol. In the present study, 75616 archaeal sequences were generated and clustered into 2364 Operational Taxonomic Units. At the genus level, the predominant archaea in the rumen of goats was Methanobrevibacter, which was significantly inhibited with the supplementation of red yeast rice. In conclusion, red yeast rice is a potential feed ingredient for mitigation of enteric methane emissions of goats. However, caution should be taken when it is used because it may inhibit the digestibility of some nutrients. Further studies are required to evaluate its potential with different diets and animal species, as well as its effects on animal health and food safety. PMID:27467559

  15. Evaluation of Biogas Production Performance and Archaeal Microbial Dynamics of Corn Straw during Anaerobic Co-Digestion with Cattle Manure Liquid.

    Science.gov (United States)

    Zhang, Benyue; Zhao, Hongyan; Yu, Hairu; Chen, Di; Li, Xue; Wang, Weidong; Piao, Renzhe; Cui, Zongjun

    2016-04-28

    The rational utilization of crop straw as a raw material for natural gas production is of economic significance. In order to increase the efficiency of biogas production from agricultural straw, seasonal restrictions must be overcome. Therefore, the potential for biogas production via anaerobic straw digestion was assessed by exposing fresh, silage, and dry yellow corn straw to cow dung liquid extract as a nitrogen source. The characteristics of anaerobic corn straw digestion were comprehensively evaluated by measuring the pH, gas production, chemical oxygen demand, methane production, and volatile fatty acid content, as well as applying a modified Gompertz model and high-throughput sequencing technology to the resident microbial community. The efficiency of biogas production from fresh straw (433.8 ml/g) was higher than that of production from straw silage and dry yellow straw (46.55 ml/g and 68.75 ml/g, respectively). The cumulative biogas production from fresh straw, silage straw, and dry yellow straw was 365 l(-1) g(-1) VS, 322 l(-1) g-1 VS, and 304 l(-1) g(-1) VS, respectively, whereas cumulative methane production was 1,426.33%, 1,351.35%, and 1,286.14%, respectively, and potential biogas production was 470.06 ml(-1) g(-1) VS, 461.73 ml(-1) g(-1) VS, and 451.76 ml(-1) g(-1) VS, respectively. Microbial community analysis showed that the corn straw was mainly metabolized by acetate-utilizing methanogens, with Methanosaeta as the dominant archaeal community. These findings provide important guidance to the biogas industry and farmers with respect to rational and efficient utilization of crop straw resources as material for biogas production. PMID:26718471

  16. The RNA synthesis machinery of negative-stranded RNA viruses

    Energy Technology Data Exchange (ETDEWEB)

    Ortín, Juan, E-mail: jortin@cnb.csic.es [Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias (ISCIII), Madrid (Spain); Martín-Benito, Jaime, E-mail: jmartinb@cnb.csic.es [Department of Macromolecular Structures, Centro Nacional de Biotecnología (CSIC), Madrid (Spain)

    2015-05-15

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes.

  17. The RNA synthesis machinery of negative-stranded RNA viruses

    International Nuclear Information System (INIS)

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes

  18. The RNA WikiProject: community annotation of RNA families.

    Science.gov (United States)

    Daub, Jennifer; Gardner, Paul P; Tate, John; Ramsköld, Daniel; Manske, Magnus; Scott, William G; Weinberg, Zasha; Griffiths-Jones, Sam; Bateman, Alex

    2008-12-01

    The online encyclopedia Wikipedia has become one of the most important online references in the world and has a substantial and growing scientific content. A search of Google with many RNA-related keywords identifies a Wikipedia article as the top hit. We believe that the RNA community has an important and timely opportunity to maximize the content and quality of RNA information in Wikipedia. To this end, we have formed the RNA WikiProject (http://en.wikipedia.org/wiki/Wikipedia:WikiProject_RNA) as part of the larger Molecular and Cellular Biology WikiProject. We have created over 600 new Wikipedia articles describing families of noncoding RNAs based on the Rfam database, and invite the community to update, edit, and correct these articles. The Rfam database now redistributes this Wikipedia content as the primary textual annotation of its RNA families. Users can, therefore, for the first time, directly edit the content of one of the major RNA databases. We believe that this Wikipedia/Rfam link acts as a functioning model for incorporating community annotation into molecular biology databases. PMID:18945806

  19. Deciphering the RNA landscape by RNAome sequencing

    NARCIS (Netherlands)

    K.W.J. Derks (Kasper); B. Misovic (Branislav); M.C.G.N. van den hout (Mirjam); C. Kockx (Christel); C.P. Gomez (Cesar Payan); R.W.W. Brouwer; H. Vrieling (Harry); J.H.J. Hoeijmakers (Jan); W.F.J. van IJcken (Wilfred); J. Pothof (Joris)

    2015-01-01

    textabstractCurrent RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a sin

  20. The influence of vegetation restoration on soil archaeal communities in Fuyun earthquake fault zone of Xinjiang%新疆富蕴地震断裂带植被恢复对土壤古菌群落的影响

    Institute of Scientific and Technical Information of China (English)

    林青; 曾军; 张涛; 马晶; 王重; 娄恺

    2013-01-01

    Strong earthquake could cause a variety of secondary geological disasters, and severely damage ecological environment. After earthquake, the vulnerable and sensitive ecosystems are going through a series of vegetation restoration and soil succession. Of this, vegetation recovery was regarded as the core of reconstruction of ecological restoration. However, the current research mainly focused on the investigation, recovery and reconstruction of the ecosystem damage from a macro perspective. Research in regard to the relationship between vegetation and soil microbial was rarely reported. Fuyun earthquake fault zone is located in Fuyun county of Altay in Xinjiang, which was caused by a serious earthquake of 8 scales on August 11, 1931 and formed a 176 km long rift. It was one of the rare earthquake fault zones in the world. The aim of this study therefore was to investigate the effect of secondary plants on soil archaeal communities in the secondary barren of Fuyun seismic fault zone in Xinjiang. In a 300×30m range (collapse region was long and narrow) , 8 different plants were selected as dominant plant species after investigation. They were Salix vistita, Salix rectijulis, Eremopyrum orientate, Seriphidium nitrosum, Geranium sibiricum, Spiraea media, Galium verum and Rosa spinosissima. The rhizosphere soils collected from the 8 different plants were studied by testing soil chemical properties ( mainly include soil organic matter, pH, total nitrogen, available nitrogen, available phosphorus and available potassium) and soil archaeal community structures were surveyed by employing Terminal restriction fragment length polymorphism (T-RFLP ). Unplanted soil in the same depth served as control. The results showed that the soil in study site was alkaline (pH = 8. 28-8. 51). The soil nutrient contents in Eremopyrum orientate's rhizosphere were generally higher compared with other plant. There were great differences in soil nutrient content among samples, but the overall

  1. Structure-function analysis of human TYW2 enzyme required for the biosynthesis of a highly modified Wybutosine (yW base in phenylalanine-tRNA.

    Directory of Open Access Journals (Sweden)

    Virginia Rodriguez

    Full Text Available Posttranscriptional modifications are critical for structure and function of tRNAs. Wybutosine (yW and its derivatives are hyper-modified guanosines found at the position 37 of eukaryotic and archaeal tRNA(Phe. TYW2 is an enzyme that catalyzes α-amino-α-carboxypropyl transfer activity at the third step of yW biogenesis. Using complementation of a ΔTYW2 strain, we demonstrate here that human TYW2 (hTYW2 is active in yeast and can synthesize the yW of yeast tRNA(Phe. Structure-guided analysis identified several conserved residues in hTYW2 that interact with S-adenosyl-methionine (AdoMet, and mutation studies revealed that K225 and E265 are critical residues for the enzymatic activity. We previously reported that the human TYW2 is overexpressed in breast cancer. However, no difference in the tRNA(Phe modification status was observed in either normal mouse tissue or a mouse tumor model that overexpresses Tyw2, indicating that hTYW2 may have a role in tumorigenesis unrelated to yW biogenesis.

  2. RNA Sociology: Group Behavioral Motifs of RNA Consortia

    Directory of Open Access Journals (Sweden)

    Guenther Witzany

    2014-11-01

    Full Text Available RNA sociology investigates the behavioral motifs of RNA consortia from the social science perspective. Besides the self-folding of RNAs into single stem loop structures, group building of such stem loops results in a variety of essential agents that are highly active in regulatory processes in cellular and non-cellular life. RNA stem loop self-folding and group building do not depend solely on sequence syntax; more important are their contextual (functional needs. Also, evolutionary processes seem to occur through RNA stem loop consortia that may act as a complement. This means the whole entity functions only if all participating parts are coordinated, although the complementary building parts originally evolved for different functions. If complementary groups, such as rRNAs and tRNAs, are placed together in selective pressure contexts, new evolutionary features may emerge. Evolution initiated by competent agents in natural genome editing clearly contrasts with statistical error replication narratives.

  3. Funktionelle Charakterisierung von RNA abhängigen RNA Polymerasen aus Dictyostelium discoideum

    OpenAIRE

    Wiegand, Stephan

    2012-01-01

    Zellulär kodierte RNA abhängige RNA Polymerasen (RNA-dependent RNA polymerases, RdRPs) katalysieren die Synthese eines RNA Strangs komplementär zu einer einzelsträngigen RNA Matrize. RdRPs sind in vielen eukaryotischen Organismen in RNA-vermittelte Genregulationsprozesse involviert und in einigen Organismen notwendig für einen funktionierenden RNA Interferenz (RNAi) Mechanismus (zusammengefasst in Maida and Masutomi, 2011). Vor Beginn dieser Arbeit konnten im Genom von Dictyostelium discoideu...

  4. Screening of Modified RNA duplexes

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bramsen, Jesper Bertram; Kjems, Jørgen;

    Because of sequence specific gene targeting activity siRNAs are regarded as promising active compounds in gene medicine. But one serious problem with delivering siRNAs as treatment is the now well-established non-specific activities of some RNA duplexes. Cellular reactions towards double stranded...... protection against a fish pathogenic virus. This protection corresponded with an interferon response in the fish. Here we use this fish model to screen siRNAs containing various chemical modifications of the RNA backbone for their antiviral activity, the overall aim being identification of an siRNA form with...

  5. Hepatitis Delta Virus RNA Replication

    Directory of Open Access Journals (Sweden)

    Chung-Hsin Tseng

    2009-11-01

    Full Text Available Hepatitis delta virus (HDV is a distant relative of plant viroids in the animal world. Similar to plant viroids, HDV replicates its circular RNA genome using a double rolling-circle mechanism. Nevertheless, the production of hepatitis delta antigen (HDAg, which is indispensible for HDV replication, is a unique feature distinct from plant viroids, which do not encode any protein. Here the HDV RNA replication cycle is reviewed, with emphasis on the function of HDAg in modulating RNA replication and the nature of the enzyme involved.

  6. Pumilio-based RNA in vivo imaging.

    Science.gov (United States)

    Tilsner, Jens

    2015-01-01

    Subcellular, sequence-specific detection of RNA in vivo is a powerful tool to study the macromolecular transport that occurs through plasmodesmata. The RNA-binding domain of Pumilio proteins can be engineered to bind RNA sequences of choice and fused to fluorescent proteins for RNA imaging. This chapter describes the construction of a Pumilio-based imaging system to track the RNA of Tobacco mosaic virus in vivo, and practical aspects of RNA live-cell imaging. PMID:25287212

  7. Pumilio-based RNA in vivo imaging

    OpenAIRE

    Tilsner, Jens

    2015-01-01

    Subcellular, sequence-specific detection of RNA in vivo is a powerful tool to study the macromolecular transport that occurs through plasmodesmata. The RNA-binding domain of Pumilio proteins can be engineered to bind RNA sequences of choice and fused to fluorescent proteins for RNA imaging. This chapter describes the construction of a Pumilio-based imaging system to track the RNA of Tobacco mosaic virus in vivo, and practical aspects of RNA live-cell imaging.

  8. Mechanistic analysis of RNA synthesis by RNA-dependent RNA polymerase from two promoters reveals similarities to DNA-dependent RNA polymerase.

    OpenAIRE

    Adkins, S; Stawicki, S S; Faurote, G; Siegel, R W; Kao, C. C.

    1998-01-01

    The brome mosaic virus (BMV) RNA-dependent RNA polymerase (RdRp) directs template-specific synthesis of (-)-strand genomic and (+)-strand subgenomic RNAs in vitro. Although the requirements for (-)-strand RNA synthesis have been characterized previously, the mechanism of subgenomic RNA synthesis has not. Mutational analysis of the subgenomic promoter revealed that the +1 cytidylate and the +2 adenylate are important for RNA synthesis. Unlike (-)-strand RNA synthesis, which required only a hig...

  9. Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data: Multiple Myeloma as a Case

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhang

    2015-01-01

    Full Text Available Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it is important to identify subtype specific miRNA-mRNA modules. In this study, we integrated the Ping-Pong algorithm and multiobjective genetic algorithm to identify subtype specific miRNA-mRNA functional regulatory modules (MFRMs through integrative analysis of three biological data sets: GO biological processes, miRNA target information, and matched miRNA and mRNA expression data. We applied our method on a heterogeneous disease, multiple myeloma (MM, to identify MM subtype specific MFRMs. The constructed miRNA-mRNA regulatory networks provide modular outlook at subtype specific miRNA-mRNA interactions. Furthermore, clustering analysis demonstrated that heterogeneous MFRMs were able to separate corresponding MM subtypes. These subtype specific MFRMs may aid in the further elucidation of the pathogenesis of each subtype and may serve to guide MM subtype diagnosis and treatment.

  10. Shapes of RNA pseudoknot structures

    CERN Document Server

    Reidys, Christian M

    2009-01-01

    In this paper we study $\\mathcal{I}_k$- and $\\mathcal{J}_k$-shapes of $k$-noncrossing, $\\sigma$-canonical RNA structures. These shapes, if induced by RNA secondary structures coincide with the $\\pi$- and $\\pi'$-shapes introduced by \\cite{Giegerich:04ashape}. Using a novel approach we compute the generating functions of $\\mathcal{I}_k$- and $\\mathcal{J}_k$-shapes as well as the generating functions of all $\\mathcal{I}_k$- and $\\mathcal{J}_k$-shapes induced by $k$-noncrossing, $\\sigma$-canonical RNA structures for fixed $n$. By means of singularity analysis of the generating functions, we derive explicit asymptotic expressions and can prove that $\\mathcal{I}_k$- and $\\mathcal{J}_k$-shapes lead to a meaningful categorization of RNA pseudoknot structures.

  11. GPU accelerated Rna folding algorithm

    OpenAIRE

    Rizk, Guillaume; Lavenier, Dominique

    2009-01-01

    Many bioinformatics studies require the analysis of RNA or DNA structures. More specifically, extensive work is done to elaborate efficient algorithms able to predict the 2-D folding structures of RNA or DNA sequences. However, the high computational complexity of the algorithms, combined with the rapid increase of genomic data, triggers the need of faster methods. Current approaches focus on parallelizing these algorithms on multiprocessor systems or on clusters, yielding to good performance...

  12. The Annotation of RNA Motifs

    Directory of Open Access Journals (Sweden)

    Eric Westhof

    2006-04-01

    Full Text Available The recent deluge of new RNA structures, including complete atomic-resolution views of both subunits of the ribosome, has on the one hand literally overwhelmed our individual abilities to comprehend the diversity of RNA structure, and on the other hand presented us with new opportunities for comprehensive use of RNA sequences for comparative genetic, evolutionary and phylogenetic studies. Two concepts are key to understanding RNA structure: hierarchical organization of global structure and isostericity of local interactions. Global structure changes extremely slowly, as it relies on conserved long-range tertiary interactions. Tertiary RNA–RNA and quaternary RNA–protein interactions are mediated by RNA motifs, defined as recurrent and ordered arrays of non-Watson–Crick base-pairs. A single RNA motif comprises a family of sequences, all of which can fold into the same three-dimensional structure and can mediate the same interaction(s. The chemistry and geometry of base pairing constrain the evolution of motifs in such a way that random mutations that occur within motifs are accepted or rejected insofar as they can mediate a similar ordered array of interactions. The steps involved in the analysis and annotation of RNA motifs in 3D structures are: (a decomposition of each motif into non-Watson–Crick base-pairs; (b geometric classification of each basepair; (c identification of isosteric substitutions for each basepair by comparison to isostericity matrices; (d alignment of homologous sequences using the isostericity matrices to identify corresponding positions in the crystal structure; (e acceptance or rejection of the null hypothesis that the motif is conserved.

  13. RNA silencing in plants by the expression of siRNA duplexes

    OpenAIRE

    Lu, Shanfa; Shi, Rui; Tsao, Cheng-Chung; Yi, Xiaoping; Li, Laigeng; Chiang, Vincent L.

    2004-01-01

    In animal cells, stable RNA silencing can be achieved by vector-based small interfering RNA (siRNA) expression system, in which Pol III RNA gene promoters are used to drive the expression of short hairpin RNA, however, this has not been demonstrated in plants. Whether Pol III RNA gene promoter is capable of driving siRNA expression in plants is unknown. Here, we report that RNA silencing was achieved in plants through stable expression of short hairpin RNA, which was driven by Pol III RNA gen...

  14. Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment

    Science.gov (United States)

    Elling, Felix J.; Könneke, Martin; Lipp, Julius S.; Becker, Kevin W.; Gagen, Emma J.; Hinrichs, Kai-Uwe

    2014-09-01

    The characteristic glycerol dibiphytanyl glycerol tetraether membrane lipids (GDGTs) of marine ammonia-oxidizing archaea (AOA) are widely used as biomarkers for studying their occurrence and distribution in marine environments and for reconstructing past sea surface temperatures using the TEX86 index. Despite an increasing use of GDGT biomarkers in microbial ecology and paleoceanography, the physiological and environmental factors influencing lipid composition in AOA, in particular the cyclization of GDGTs, remain unconstrained. We investigated the effect of metabolic state on the composition of intact polar and core lipids and the resulting TEX86 paleothermometer in pure cultures of the marine AOA Nitrosopumilus maritimus as a function of growth phase. The cellular lipid content ranged from 0.9 to 1.9 fg cell-1 and increased during growth but was lower in the stationary phases, indicating changes in average cell size in response to metabolic status. The relative abundances of monoglycosidic GDGTs increased from 27% in early growth phase to 60% in late stationary phase, while monohydroxylated GDGTs increased only slightly. The proportions of characteristic hexose-phosphohexose GDGTs were up to 7-fold higher during growth than in stationary phase, suggesting that they are valuable biomarkers for the metabolically active fraction of AOA assemblages in the environment. Methoxy archaeol was identified as novel, genuine archaeal lipid of yet unknown function; it is one of the most abundant single compounds in the lipidome of N. maritimus. TEX86 values of individual intact GDGTs and total GDGTs differed substantially, were generally lower during early and late growth phases than in stationary phase, and did not reflect growth temperature. Consequently, our results strongly suggest that biosynthesis is at least partially responsible for the systematic offsets in TEX86 values between different intact polar GDGT classes observed previously in environmental samples

  15. Kinetic oscillations in the expression of messenger RNA, regulatory protein, and nonprotein coding RNA

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2008-06-01

    The interplay of messenger RNA (mRNA), protein, produced via translation of this RNA, and nonprotein coding RNA (ncRNA) may include regulation of the ncRNA production by protein and (i) ncRNA-mRNA association or (ii) ncRNA-protein association resulting in degradation of the corresponding complex. The kinetic models, describing these two scenarios and taking into account that the association of ncRNA with a target occurs after ncRNA conversion from the initial form to the final form (e.g., from a long RNA to microRNA), are found to predict oscillations provided that the rate of ncRNA formation increases with increasing protein population.

  16. Isolation of Microarray-Grade Total RNA, MicroRNA, and DNA from a Single PAXgene Blood RNA Tube

    DEFF Research Database (Denmark)

    Kruhøffer, Mogens; Andersen, Lars Dyrskjøt; Voss, Thorsten;

    2007-01-01

    We have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood and......RNA was tested using spotted locked nucleic acid-based microarrays. We conclude that the yield and quality of total RNA, microRNA, and DNA from a single PAXgene blood RNA tube is sufficient for downstream microarray analysis....

  17. Packaging shRNA retroviruses.

    Science.gov (United States)

    Chang, Kenneth; Marran, Krista; Valentine, Amy; Hannon, Gregory J

    2013-08-01

    To silence a mammalian gene by RNAi using an encoded trigger, a short-hairpin RNA (shRNA) is integrated into the host cell genome as a stable transgene. Target cells are infected with viral plasmid containing shRNA inserted into the vector backbone. Before infection, the plasmid is transfected into a packaging cell line, which provides the trans-acting factors necessary for virus production. These include, minimally, capsid proteins and reverse transcriptase, but they can also include other regulatory factors (e.g., tat for some lentiviral vectors). It is critical to choose the correct packaging cell system for the viral backbone to be used. The packaging cell also defines the host range of the virus, depending on the envelope protein that it expresses. Ecotropic viruses are limited to rodent hosts, whereas amphotropic viruses have a broader host range that also includes humans. Often, investigators will express a nonretroviral envelope, such as vesicular stomatitus virus (VSV) glycoprotein, to enhance virus stability and host range and to enable viruses to be concentrated following production. Although viruses carrying shRNAs are packaged almost identically to viruses carrying protein-encoding genes, one twist is worth noting. shRNAs are efficiently cleaved by the host RNAi biogenesis machinery, which can reduce the level of viral genomic RNAs and consequently viral titers. Therefore, titers can be enhanced by cotransfecting the viral plasmid with a small interfering RNA (siRNA) that targets DGCR-8/Pasha, which is a core microRNA (miRNA) biogenesis component. siRNAs against Drosha can also be used. PMID:23906912

  18. Descripción del ARN de transferencia mitocondrial para Serina (UCN de Lutzomyia columbiana (Diptera, Psychodidae Description of the mitochondrial serine transfer RNA (UCN of Lutzomyia columbiana (Diptera, Psychodidae

    Directory of Open Access Journals (Sweden)

    Alveiro Pérez-Doria

    2008-01-01

    putative secondary structure of the mitochondrial serine transfer RNA that recognizes the codon UCN of Lu. columbiana (tRNA Ser. DNA was extracted, amplified and sequenced from six individuals collected in human biting activity. The secondary structure of the tRNA Ser was inferred using the program tRNAscan-SE 1.21. The tRNA Ser gene length was 67 pair of bases (pb, and a single haplotype was detected among the six specimens sequenced. In the inferred secondary structure of the tRNA Ser of Lu. columbiana, the acceptor arm consisted of 7 bp, the dihydrouridine (DHU arm of 3 pb, the anticodon arm of 5 pb, and the ribothymidine-pseudouridine-cytosine (TøC arm of 5 pb. Similarity, the estimated size of the loops was 5 nucleotides in the DHU, 7 in the anticodon, 4 in the variable, and 7 in the TøC. Lu. columbiana differs from other Lutzomyia and Phlebotomus species sequenced to date by the presence of guanine in the nucleotide position 64, which induce a non-canonical base pair conformation type uracil-guanine in the acceptor arm. More studies are necessary to confirm the usefulness of the tRNA Ser as a suitable molecular tool for sand fly species identification.

  19. Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase.

    OpenAIRE

    Van Der Werf, S.; Bradley, J; Wimmer, E; Studier, F W; Dunn, J J

    1986-01-01

    Plasmids containing the entire cDNA sequence of poliovirus type 1 (Mahoney strain) under control of a promoter for T7 RNA polymerase have been constructed. Purified T7 RNA polymerase efficiently transcribes the entire poliovirus cDNA in either direction to produce full-length poliovirus RNA [(+)RNA] or its complement [(-)RNA]. The (+)RNA produced initially had 60 nucleotides on the 5' side of the poliovirus RNA sequence, including a string of 18 consecutive guanine residues generated in the o...

  20. Predicting RNA Structure Using Mutual Information

    DEFF Research Database (Denmark)

    Freyhult, E.; Moulton, V.; Gardner, P. P.

    2005-01-01

    Background: With the ever-increasing number of sequenced RNAs and the establishment of new RNA databases, such as the Comparative RNA Web Site and Rfam, there is a growing need for accurately and automatically predicting RNA structures from multiple alignments. Since RNA secondary structure is of...

  1. RSRE: RNA structural robustness evaluator.

    Science.gov (United States)

    Shu, Wenjie; Bo, Xiaochen; Zheng, Zhiqiang; Wang, Shengqi

    2007-07-01

    Biological robustness, defined as the ability to maintain stable functioning in the face of various perturbations, is an important and fundamental topic in current biology, and has become a focus of numerous studies in recent years. Although structural robustness has been explored in several types of RNA molecules, the origins of robustness are still controversial. Computational analysis results are needed to make up for the lack of evidence of robustness in natural biological systems. The RNA structural robustness evaluator (RSRE) web server presented here provides a freely available online tool to quantitatively evaluate the structural robustness of RNA based on the widely accepted definition of neutrality. Several classical structure comparison methods are employed; five randomization methods are implemented to generate control sequences; sub-optimal predicted structures can be optionally utilized to mitigate the uncertainty of secondary structure prediction. With a user-friendly interface, the web application is easy to use. Intuitive illustrations are provided along with the original computational results to facilitate analysis. The RSRE will be helpful in the wide exploration of RNA structural robustness and will catalyze our understanding of RNA evolution. The RSRE web server is freely available at http://biosrv1.bmi.ac.cn/RSRE/ or http://biotech.bmi.ac.cn/RSRE/. PMID:17567615

  2. Biogenesis, delivery, and function of extracellular RNA

    Directory of Open Access Journals (Sweden)

    James G. Patton

    2015-08-01

    Full Text Available The Extracellular RNA (exRNA Communication Consortium was launched by the National Institutes of Health to focus on the extent to which RNA might function in a non-cell-autonomous manner. With the availability of increasingly sensitive tools, small amounts of RNA can be detected in serum, plasma, and other bodily fluids. The exact mechanism(s by which RNA can be secreted from cells and the mechanisms for the delivery and uptake by recipient cells remain to be determined. This review will summarize current knowledge about the biogenesis and delivery of exRNA and outline projects seeking to understand the functional impact of exRNA.

  3. Inducible Systemic RNA Silencing in Caenorhabditis elegans

    OpenAIRE

    Timmons, Lisa; Tabara, Hiroaki; Mello, Craig C.; Fire, Andrew Z.

    2003-01-01

    Introduction of double-stranded RNA (dsRNA) can elicit a gene-specific RNA interference response in a variety of organisms and cell types. In many cases, this response has a systemic character in that silencing of gene expression is observed in cells distal from the site of dsRNA delivery. The molecular mechanisms underlying the mobile nature of RNA silencing are unknown. For example, although cellular entry of dsRNA is possible, cellular exit of dsRNA from normal anim...

  4. RNA-Based Vaccines in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Megan A. McNamara

    2015-01-01

    Full Text Available RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  5. RNA folding during transcription by Escherichia coli RNA polymerase analyzed by RNA self-cleavage

    International Nuclear Information System (INIS)

    The authors have used a self-cleaving RNA molecule related to a subsequence of plant viroids (a hammerhead) to study the length-dependent folding of RNA produced during transcription by Escherichia coli RNA polymerase. Transcript elongation is arrested at defined positions using chain-terminating ribonucleoside triphosphate analogues (3'-deoxyNTP's or 3'-O-methylNTP's). When the transcript can form the hammerhead structure it self-cleaves to give a truncated product. The experiment yields an RNA sequencing ladder which terminates at the length at which cleavage becomes possible; the sequencing ladder is compared to those generated by using a noncleaving transcript or by using [α-thio]ATP in place of ATP. They have shown that 15-18 nucleotides (nt) of RNA past the cleavage point must be synthesized before the transcript can self-cleave within a ternary complex, whereas RNA freed from the complex by heating can cleave with only 3 or more nt present beyond the cleavage point. There are sequence-dependent as well as length-dependent effects. The results suggest that 12 ± 1 nt are sequestered within the ternary complex and are consistent with the presence of a DNA-RNA hybrid within the transcription bubble, as proposed by others. The results indicate that the hammerhead structure does not disrupt the hybrid. Self-cleaving of the transcript offers a simple structural probe for studying less well-characterized transcription complexes. The relevance of the results to models for transcription termination is discussed

  6. RNA folding during transcription by Escherichia coli RNA polymerase analyzed by RNA self-cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Monforte, J.A.; Kahn, J.D.; Hearst, J.E. (Univ. of California, Berkeley (USA) Lawrence Berkeley Lab., CA (USA))

    1990-08-28

    The authors have used a self-cleaving RNA molecule related to a subsequence of plant viroids (a hammerhead) to study the length-dependent folding of RNA produced during transcription by Escherichia coli RNA polymerase. Transcript elongation is arrested at defined positions using chain-terminating ribonucleoside triphosphate analogues (3{prime}-deoxyNTP's or 3{prime}-O-methylNTP's). When the transcript can form the hammerhead structure it self-cleaves to give a truncated product. The experiment yields an RNA sequencing ladder which terminates at the length at which cleavage becomes possible; the sequencing ladder is compared to those generated by using a noncleaving transcript or by using ({alpha}-thio)ATP in place of ATP. They have shown that 15-18 nucleotides (nt) of RNA past the cleavage point must be synthesized before the transcript can self-cleave within a ternary complex, whereas RNA freed from the complex by heating can cleave with only 3 or more nt present beyond the cleavage point. There are sequence-dependent as well as length-dependent effects. The results suggest that 12 {plus minus} 1 nt are sequestered within the ternary complex and are consistent with the presence of a DNA-RNA hybrid within the transcription bubble, as proposed by others. The results indicate that the hammerhead structure does not disrupt the hybrid. Self-cleaving of the transcript offers a simple structural probe for studying less well-characterized transcription complexes. The relevance of the results to models for transcription termination is discussed.

  7. MicroRNA Regulation of Lipid Metabolism

    OpenAIRE

    Flowers, Elena; Froelicher, Erika Sivarajan; Aouizerat, Bradley E.

    2012-01-01

    MicroRNA are structural components of an epigenetic mechanism of post-transcriptional regulation of messenger RNA translation. Recently, there is significant interest in the application of microRNA as a blood-based biomarker of underlying physiologic conditions, and the therapeutic administration of microRNA inhibitors and mimics. The purpose of this review is to describe the current body of knowledge on microRNA regulation of genes involved in lipid metabolism, and to introduce the role of m...

  8. A Regulatory RNA Inducing Transgenerationally Inherited Phenotypes

    DEFF Research Database (Denmark)

    Jensen, Lea Møller

    variation in Arabidopsis enables different regulatory networks and mechanisms to shape the phenotypic characteristics. The thesis describes the identification of regulatory RNA encoded by an enzyme encoding gene. The RNA regulates by inducing transgenerationally inherited phenotypes. The function of the RNA...... is dependent on the genetic background illustrating that polymorphisms are found in either interactors or target genes of the RNA. Furthermore, the RNA provides a mechanistic link between accumulation of glucosinolate and onset of flowering....

  9. Modulation of RNA function by aminoglycoside antibiotics.

    OpenAIRE

    Schroeder, R; Waldsich, C; Wank, H

    2000-01-01

    One of the most important families of antibiotics are the aminoglycosides, including drugs such as neomycin B, paromomycin, gentamicin and streptomycin. With the discovery of the catalytic potential of RNA, these antibiotics became very popular due to their RNA-binding capacity. They serve for the analysis of RNA function as well as for the study of RNA as a potential therapeutic target. Improvements in RNA structure determination recently provided first insights into the decoding site of the...

  10. A 22-nt artificial microRNA mediates widespread RNA silencing in Arabidopsis

    OpenAIRE

    McHale, Marcus; Eamens, Andrew L.; Finnegan, E Jean; Waterhouse, Peter M

    2013-01-01

    It is known that 22-nucleotide (nt) microRNAs (miRNAs) derived from asymmetric duplexes trigger phased small-interfering RNA (phasiRNA) production from complementary targets. Here we investigate the efficacy of 22-nt artificial miRNA (amiRNA)-mediated RNA silencing relative to conventional hairpin RNA (hpRNA) and 21-nt amiRNA-mediated RNA silencing. CHALCONE SYNTHASE (CHS) was selected as a target in Arabidopsis thaliana due to the obvious and non-lethal loss of anthocyanin accumulation upon ...

  11. Borate Minerals and RNA Stability

    Directory of Open Access Journals (Sweden)

    Ernesto Di Mauro

    2010-08-01

    Full Text Available The abiotic origin of genetic polymers faces two major problems: a prebiotically plausible polymerization mechanism and the maintenance of their polymerized state outside a cellular environment. The stabilizing action of borate on ribose having been reported, we have explored the possibility that borate minerals stabilize RNA. We observe that borate itself does not stabilize RNA. The analysis of a large panel of minerals tested in various physical-chemical conditions shows that in general no protection on RNA backbone is exerted, with the interesting exception of ludwigite (Mg2Fe3+BO5. Stability is a fundamental property of nucleic polymers and borate is an abundant component of the planet, hence the prebiotic interest of this analysis.

  12. Protein Adaptations in Archaeal Extremophiles

    OpenAIRE

    Reed, Christopher J; Hunter Lewis; Eric Trejo; Vern Winston; Caryn Evilia

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophil...

  13. Archaeal nitrification in the ocean

    OpenAIRE

    Wuchter, C.; Abbas, B.; M J L Coolen; Herfort, L.; van Bleijswijk, J.; Timmers, P.; Strous, M.; E. Teira; Herndl, G. J.; Middelburg, J. J.; Schouten, S; Sinninghe Damsté, J.S.

    2006-01-01

    Marine Crenarchaeota are the most abundant single group of prokaryotes in the ocean, but their physiology and role in marine biogeochemical cycles are unknown. Recently, a member of this clade was isolated from a sea aquarium and shown to be capable of nitrification, tentatively suggesting that Crenarchaeota may play a role in the oceanic nitrogen cycle. We enriched a crenarchaeote from North Sea water and showed that its abundance, and not that of bacteria, correlates with ammonium oxidation...

  14. Archaeal nitrification in the ocean

    NARCIS (Netherlands)

    Wuchter, C.; Abbas, B.; Coolen, M.J.L.; Herfort, L.; Bleijswijk, J. van; Timmers, P.; Strous, M.; Teira, E.; Herndl, G.J.; Middelburg, J.J.; Schouten, S.; Sinninghe Damsté, J.S.

    2006-01-01

    Marine Crenarchaeota are the most abundant single group of prokaryotes in the ocean, but their physiology and role in marine biogeochemical cycles are unknown. Recently, a member of this clade was isolated from a sea aquarium and shown to be capable of nitrification, tentatively suggesting that Cren

  15. RNA-dependent RNA polymerases from cowpea mosaic virus-infected cowpea leaves

    NARCIS (Netherlands)

    Dorssers, L.C.J.

    1983-01-01

    The aim of the research described in this thesis was the purification and identification of the RNA-dependent RNA polymerase engaged in replicating viral RNA in cowpea mosaic virus (CPMV)- infected cowpea leaves.Previously, an RNA-dependent RNA polymerase produced upon infection of Vigna unguiculata

  16. MicroRNA and cancer

    DEFF Research Database (Denmark)

    Jansson, Martin D; Lund, Anders H

    2012-01-01

    biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we...... summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA...

  17. Cryo-EM structure of the archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution

    DEFF Research Database (Denmark)

    Greber, Basil J; Boehringer, Daniel; Godinic-Mikulcic, Vlatka;

    2012-01-01

    Translation of mRNA into proteins by the ribosome is universally conserved in all cellular life. The composition and complexity of the translation machinery differ markedly between the three domains of life. Organisms from the domain Archaea show an intermediate level of complexity, sharing several...

  18. Circular RNA expands its territory.

    Science.gov (United States)

    Bao, Chunyang; Lyu, Dongbin; Huang, Shenglin

    2016-03-01

    Circular RNAs (circRNAs) represent a novel class of widespread non-coding RNAs in eukaryotes. They are unusually stable RNA molecules with cell type-specific expression patterns, and are predominantly present in the cytoplasm. We recently demonstrated the existence of abundant circRNAs in exosomes and suggest a potential application of exosomal circRNAs for cancer detection. PMID:27308606

  19. Avian influenza virus RNA extraction

    Science.gov (United States)

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  20. Comparative analysis of 16S rRNA and amoA genes from archaea selected with organic and inorganic amendments in enrichment culture.

    Science.gov (United States)

    Xu, Mouzhong; Schnorr, Jon; Keibler, Brandon; Simon, Holly M

    2012-04-01

    We took advantage of a plant-root enrichment culture system to characterize mesophilic soil archaea selected through the use of organic and inorganic amendments. Comparative analysis of 16S rRNA and amoA genes indicated that specific archaeal clades were selected under different conditions. Three amoA sequence clades were identified, while for a fourth group, identified by 16S rRNA gene analysis alone and referred to as the "root" clade, we detected no corresponding amoA gene. The amoA-containing archaea were present in media with either organic or inorganic amendments, whereas archaea representing the root clade were present only when organic amendment was used. Analysis of amoA gene abundance and expression, together with nitrification-coupled growth assays, indicated potential growth by autotrophic ammonia oxidation for members of two group 1.1b clades. Increased abundance of one of these clades, however, also occurred upon the addition of organic amendment. Finally, although amoA-containing group 1.1a archaea were present in enrichments, we detected neither expression of amoA genes nor evidence for nitrification-coupled growth of these organisms. These data support a model of a diverse metabolic community in mesophilic soil archaea that is just beginning to be characterized. PMID:22267662

  1. GenBank blastx search result: AK104146 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104146 006-207-D01 AY548459.1 Fremyella diplosiphon clone 3098E8 30S ribosomal su... L17, and putative RNA polymerase alpha subunit genes, complete cds.|BCT BCT 6e-41 +3 ... ...bunit S9, 50S ribosomal subunit L13, putative t-RNA pseudouridine synthase I, putative 50S ribosomal subunit

  2. GenBank blastx search result: AK104434 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104434 006-208-D02 AY548459.1 Fremyella diplosiphon clone 3098E8 30S ribosomal su... L17, and putative RNA polymerase alpha subunit genes, complete cds.|BCT BCT 3e-23 +3 ... ...bunit S9, 50S ribosomal subunit L13, putative t-RNA pseudouridine synthase I, putative 50S ribosomal subunit

  3. GenBank blastx search result: AK119189 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119189 001-039-H01 AY548459.1 Fremyella diplosiphon clone 3098E8 30S ribosomal su... L17, and putative RNA polymerase alpha subunit genes, complete cds.|BCT BCT 6e-41 +3 ... ...bunit S9, 50S ribosomal subunit L13, putative t-RNA pseudouridine synthase I, putative 50S ribosomal subunit

  4. GenBank blastx search result: AK104198 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104198 006-304-A06 AY548459.1 Fremyella diplosiphon clone 3098E8 30S ribosomal su... L17, and putative RNA polymerase alpha subunit genes, complete cds.|BCT BCT 1e-26 +1 ... ...bunit S9, 50S ribosomal subunit L13, putative t-RNA pseudouridine synthase I, putative 50S ribosomal subunit

  5. RNA-DNA Differences Are Generated in Human Cells within Seconds After RNA Exits Pol II

    OpenAIRE

    Isabel X. Wang; Leighton J. Core; Hojoong Kwak; Lauren Brady; Alan Bruzel; Lee McDaniel; Allison L. Richards; Ming Wu; Christopher Grunseich; John T. Lis; Vivian G. Cheung

    2014-01-01

    RNA sequences are expected to be identical to their corresponding DNA sequences. Here, we found all 12 types of RNA-DNA sequence differences (RDDs) in nascent RNA. Our results show that RDDs begin to occur in RNA chains about 55 nucleotides from the RNA polymerase II (Pol II) active site. These RDDs occur so soon after transcription that they are incompatible with known deaminase-mediated RNA editing mechanisms. Moreover, the 55-nucleotide delay in appearance indicates they do not arise durin...

  6. Overview of MicroRNA Biology

    OpenAIRE

    Mott, Justin L.; Mohr, Ashley M

    2015-01-01

    In considering an overview of microRNA biology, it is useful to consider microRNAs as a part of cellular communication. At the simplest level, microRNAs act to decrease the expression of mRNAs that contain stretches of sequence complementary to the microRNA. This function can be likened to the function of endogenous or synthetic short interfering RNA (siRNA). However, microRNA function is more complicated and nuanced than this ‘on-off’ model would suggest. Further, many microRNA targets are t...

  7. MicroRNA mimicry blocks pulmonary fibrosis

    OpenAIRE

    Montgomery, Rusty L.; Yu, Guoying; Latimer, Paul A.; Stack, Christianna; Robinson, Kathryn; Dalby, Christina M; Kaminski, Naftali; van Rooij, Eva

    2014-01-01

    Over the last decade, great enthusiasm has evolved for microRNA (miRNA) therapeutics. Part of the excitement stems from the fact that a miRNA often regulates numerous related mRNAs. As such, modulation of a single miRNA allows for parallel regulation of multiple genes involved in a particular disease. While many studies have shown therapeutic efficacy using miRNA inhibitors, efforts to restore or increase the function of a miRNA have been lagging behind. The miR-29 family has gained a lot of ...

  8. Comparison of Whole Blood RNA Preservation Tubes and Novel Generation RNA Extraction Kits for Analysis of mRNA and MiRNA Profiles

    OpenAIRE

    Häntzsch, Madlen; Tolios, Alexander; Beutner, Frank; Nagel, Dorothea; Thiery, Joachim; Teupser, Daniel; Holdt, Lesca M.

    2014-01-01

    Background Whole blood expression profiling is frequently performed using PAXgene (Qiagen) or Tempus (Life Technologies) tubes. Here, we compare 6 novel generation RNA isolation protocols with respect to RNA quantity, quality and recovery of mRNA and miRNA. Methods 3 PAXgene and 3 Tempus Tubes were collected from participants of the LIFE study with (n = 12) and without (n = 35) acute myocardial infarction (AMI). RNA was extracted with 4 manual protocols from Qiagen (PAXgene Blood miRNA Kit), ...

  9. Viral RNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis

    International Nuclear Information System (INIS)

    mRNA synthesis from nonsegmented negative-strand RNA virus (NNV) genomes is unique in that the genome RNA is embedded in an N protein assembly (the nucleocapsid) and the viral RNA polymerase does not dissociate from the template after release of each mRNA, but rather scans the genome RNA for the next gene-start site. A revised model for NNV RNA synthesis is presented, in which RNA polymerase scanning plays a prominent role. Polymerase scanning of the template is known to occur as the viral transcriptase negotiates gene junctions without falling off the template

  10. NusG Is a Sequence-specific RNA Polymerase Pause Factor That Binds to the Non-template DNA within the Paused Transcription Bubble.

    Science.gov (United States)

    Yakhnin, Alexander V; Murakami, Katsuhiko S; Babitzke, Paul

    2016-03-01

    NusG, referred to as Spt5 in archaeal and eukaryotic organisms, is the only transcription factor conserved in all three domains of life. This general transcription elongation factor binds to RNA polymerase (RNAP) soon after transcription initiation and dissociation of the RNA polymerase σ factor. Escherichia coli NusG increases transcription processivity by suppressing RNAP pausing, whereas Bacillus subtilis NusG dramatically stimulates pausing at two sites in the untranslated leader of the trpEDCFBA operon. These two regulatory pause sites participate in transcription attenuation and translational control mechanisms, respectively. Here we report that B. subtilis NusG makes sequence-specific contacts with a T-rich sequence in the non-template DNA (ntDNA) strand within the paused transcription bubble. NusG protects T residues of the recognition sequence from permanganate oxidation, and these T residues increase the affinity of NusG to the elongation complex. Binding of NusG to RNAP does not require interaction with RNA. These results indicate that bound NusG prevents forward movement of RNA polymerase by simultaneously contacting RNAP and the ntDNA strand. Mutational studies indicate that amino acid residues of two short regions within the NusG N-terminal domain are primarily responsible for recognition of the trp operon pause signals. Structural modeling indicates that these two regions are adjacent to each another in the protein. We propose that recognition of specific sequences in the ntDNA and stimulation of RNAP pausing is a conserved function of NusG-like transcription factors. PMID:26742846

  11. Structural characterization of mRNA-tRNA translocation intermediates.

    Science.gov (United States)

    Agirrezabala, Xabier; Liao, Hstau Y; Schreiner, Eduard; Fu, Jie; Ortiz-Meoz, Rodrigo F; Schulten, Klaus; Green, Rachel; Frank, Joachim

    2012-04-17

    Cryo-EM analysis of a wild-type Escherichia coli pretranslocational sample has revealed the presence of previously unseen intermediate substates of the bacterial ribosome during the first phase of translocation, characterized by intermediate intersubunit rotations, L1 stalk positions, and tRNA configurations. Furthermore, we describe the domain rearrangements in quantitative terms, which has allowed us to characterize the processivity and coordination of the conformational reorganization of the ribosome, along with the associated changes in tRNA ribosome-binding configuration. The results are consistent with the view of the ribosome as a molecular machine employing Brownian motion to reach a functionally productive state via a series of substates with incremental changes in conformation. PMID:22467828

  12. iDoRNA: An Interacting Domain-based Tool for Designing RNA-RNA Interaction Systems

    Directory of Open Access Journals (Sweden)

    Jittrawan Thaiprasit

    2016-03-01

    Full Text Available RNA-RNA interactions play a crucial role in gene regulation in living organisms. They have gained increasing interest in the field of synthetic biology because of their potential applications in medicine and biotechnology. However, few novel regulators based on RNA-RNA interactions with desired structures and functions have been developed due to the challenges of developing design tools. Recently, we proposed a novel tool, called iDoDe, for designing RNA-RNA interacting sequences by first decomposing RNA structures into interacting domains and then designing each domain using a stochastic algorithm. However, iDoDe did not provide an optimal solution because it still lacks a mechanism to optimize the design. In this work, we have further developed the tool by incorporating a genetic algorithm (GA to find an RNA solution with maximized structural similarity and minimized hybridized RNA energy, and renamed the tool iDoRNA. A set of suitable parameters for the genetic algorithm were determined and found to be a weighting factor of 0.7, a crossover rate of 0.9, a mutation rate of 0.1, and the number of individuals per population set to 8. We demonstrated the performance of iDoRNA in comparison with iDoDe by using six RNA-RNA interaction models. It was found that iDoRNA could efficiently generate all models of interacting RNAs with far more accuracy and required far less computational time than iDoDe. Moreover, we compared the design performance of our tool against existing design tools using forty-four RNA-RNA interaction models. The results showed that the performance of iDoRNA is better than RiboMaker when considering the ensemble defect, the fitness score and computation time usage. However, it appears that iDoRNA is outperformed by NUPACK and RNAiFold 2.0 when considering the ensemble defect. Nevertheless, iDoRNA can still be an useful alternative tool for designing novel RNA-RNA interactions in synthetic biology research. The source code of iDoRNA

  13. Structural characterization of mRNA-tRNA translocation intermediates

    OpenAIRE

    Agirrezabala, Xabier; Liao, Hstau Y.; Schreiner, Eduard; Fu, Jie; Ortiz-Meoz, Rodrigo F.; Schulten, Klaus; Green, Rachel; Frank, Joachim

    2012-01-01

    Cryo-EM analysis of a wild-type Escherichia coli pretranslocational sample has revealed the presence of previously unseen intermediate substates of the bacterial ribosome during the first phase of translocation, characterized by intermediate intersubunit rotations, L1 stalk positions, and tRNA configurations. Furthermore, we describe the domain rearrangements in quantitative terms, which has allowed us to characterize the processivity and coordination of the conformational reorganization of t...

  14. The mechanism of pRNA-mediated release of RNA polymerase from Bacillus subtilis 6S-1 RNA

    OpenAIRE

    Beckmann, Benedikt

    2010-01-01

    Adaptation of the transcriptome to nutrient limitation and resupply is a fundamental process in bacteria, particularly in natural habitats. Bacterial 6S RNA, an ubiquitous and growth phasedependent regulator of transcription, binds to RNA polymerase (RNAP) and inhibits transcription during stationary growth. Upon nutrient resupply, RNAP acts as an RNA-dependent RNA polymerase by transcribing large amounts of short RNAs (pRNAs) fro...

  15. Double-Stranded RNA Binding May Be a General Plant RNA Viral Strategy To Suppress RNA Silencing

    OpenAIRE

    Mérai, Zsuzsanna; Kerényi, Zoltán; Kertész, Sándor; Magna, Melinda; Lakatos, Lóránt; Silhavy, Dániel

    2006-01-01

    In plants, RNA silencing (RNA interference) is an efficient antiviral system, and therefore successful virus infection requires suppression of silencing. Although many viral silencing suppressors have been identified, the molecular basis of silencing suppression is poorly understood. It is proposed that various suppressors inhibit RNA silencing by targeting different steps. However, as double-stranded RNAs (dsRNAs) play key roles in silencing, it was speculated that dsRNA binding might be a g...

  16. Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases.

    OpenAIRE

    Bruenn, J A

    1991-01-01

    The sequences of 50 RNA-dependent RNA polymerases (RDRPs) from 43 positive strand and 7 double strand RNA (dsRNA) viruses have been compared. The alignment permitted calculation of distances among the 50 viruses and a resultant dendrogram based on every amino acid, rather than just those amino acids in the conserved motifs. Remarkably, a large subgroup of these viruses, including vertebrate, plant, and insect viruses, forms a single cluster whose only common characteristic is exploitation of ...

  17. siRNA and RNAi optimization.

    Science.gov (United States)

    Alagia, Adele; Eritja, Ramon

    2016-05-01

    The discovery and examination of the posttranscriptional gene regulatory mechanism known as RNA interference (RNAi) contributed to the identification of small interfering RNA (siRNA) and the comprehension of its enormous potential for clinical purposes. Theoretically, the ability of specific target gene downregulation makes the RNAi pathway an appealing solution for several diseases. Despite numerous hurdles resulting from the inherent properties of siRNA molecule and proper delivery to the target tissue, more than 50 RNA-based drugs are currently under clinical testing. In this work, we analyze the recent literature in the optimization of siRNA molecules. In detail, we focused on describing the most recent advances of siRNA field aimed at optimize siRNA pharmacokinetic properties. Special attention has been given in describing the impact of RNA modifications in the potential off-target effects (OTEs) such as saturation of the RNAi machinery, passenger strand-mediated silencing, immunostimulation, and miRNA-like OTEs as well as to recent developments on the delivery issue. The novel delivery systems and modified siRNA provide significant steps toward the development of reliable siRNA molecules for therapeutic use. WIREs RNA 2016, 7:316-329. doi: 10.1002/wrna.1337 For further resources related to this article, please visit the WIREs website. PMID:26840434

  18. Amino acid modifications on tRNA

    Institute of Scientific and Technical Information of China (English)

    Jing Yuan; Kelly Sheppard; Dieter S(o)ll

    2008-01-01

    The accurate formation of cognate aminoacyl-transfer RNAs (aa-tRNAs) is essential for the fidelity of translation.Most amino acids are esterified onto their cognate tRNA isoacceptors directly by aa.tRNA synthetases.However,in the case of four amino acids (Gin,Asn,Cys and Sec),aminoacyl-tRNAs are made through indirect pathways in many organisms across all three domains of life.The process begins with the charging ofnoncognate amino acids to tRNAs by a specialized synthetase in the case of Cys-tRNAcys formation or by synthetases with relaxed specificity,such as the non-discriminating glutamyl-tRNA,non-discriminating aspartyl-tRNA and seryl-tRNA synthetases.The resulting misacylated tRNAs are then converted to cognate pairs through transformation of the amino acids on the tRNA,which is catalyzed by a group of tRNA-dependent modifying enzymes,such as tRNA-dependent amidotransferases,Sep-tRNA:Cys-tRNA synthase,O-phosphoseryi-tRNA kinase and Sep-tRNA:Sec-tRNA synthase.The majority of these indirect pathways are widely spread in all domains of life and thought to be part of the evolutionary process.

  19. Theoretical Search for RNA Folding Nuclei

    Directory of Open Access Journals (Sweden)

    Leonid B. Pereyaslavets

    2015-11-01

    Full Text Available The functions of RNA molecules are defined by their spatial structure, whose folding is regulated by numerous factors making RNA very similar to proteins. Prediction of RNA folding nuclei gives the possibility to take a fresh look at the problems of the multiple folding pathways of RNA molecules and RNA stability. The algorithm previously developed for prediction of protein folding nuclei has been successfully applied to ~150 various RNA structures: hairpins, tRNAs, structures with pseudoknots, and the large structured P4-P6 domain of the Tetrahymena group I intron RNA. The calculated Φ-values for tRNA structures agree with the experimental data obtained earlier. According to the experiment the nucleotides of the D and T hairpin loops are the last to be involved in the tRNA tertiary structure. Such agreement allowed us to do a prediction for an example of large structured RNA, the P4-P6 RNA domain. One of the advantages of our method is that it allows us to make predictions about the folding nucleus for nontrivial RNA motifs: pseudoknots and tRNA.

  20. Application of Live-Cell RNA Imaging Techniques to the Study of Retroviral RNA Trafficking

    Directory of Open Access Journals (Sweden)

    Darrin V. Bann

    2012-06-01

    Full Text Available Retroviruses produce full-length RNA that serves both as a genomic RNA (gRNA, which is encapsidated into virus particles, and as an mRNA, which directs the synthesis of viral structural proteins. However, we are only beginning to understand the cellular and viral factors that influence trafficking of retroviral RNA and the selection of the RNA for encapsidation or translation. Live cell imaging studies of retroviral RNA trafficking have provided important insight into many aspects of the retrovirus life cycle including transcription dynamics, nuclear export of viral RNA, translational regulation, membrane targeting, and condensation of the gRNA during virion assembly. Here, we review cutting-edge techniques to visualize single RNA molecules in live cells and discuss the application of these systems to studying retroviral RNA trafficking.

  1. How the RNA isolation method can affect microRNA microarray results

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Litman, Thomas;

    2011-01-01

    RNA microarray analysis on porcine brain tissue. One method is a phenol-guanidine isothiocyanate-based procedure that permits isolation of total RNA. The second method, miRVana™ microRNA isolation, is column based and recovers the small RNA fraction alone. We found that microarray analyses give different results...... that depend on the RNA fraction used, in particular because some microRNAs appear very sensitive to the RNA isolation method. We conclude that precautions need to be taken when comparing microarray studies based on RNA isolated with different methods.......The quality of RNA is crucial in gene expression experiments. RNA degradation interferes in the measurement of gene expression, and in this context, microRNA quantification can lead to an incorrect estimation. In the present study, two different RNA isolation methods were used to perform micro...

  2. Inverse Folding of RNA Pseudoknot Structures

    CERN Document Server

    Gao, James Z M; Reidys, Christian M

    2010-01-01

    Background: RNA exhibits a variety of structural configurations. Here we consider a structure to be tantamount to the noncrossing Watson-Crick and \\pairGU-base pairings (secondary structure) and additional cross-serial base pairs. These interactions are called pseudoknots and are observed across the whole spectrum of RNA functionalities. In the context of studying natural RNA structures, searching for new ribozymes and designing artificial RNA, it is of interest to find RNA sequences folding into a specific structure and to analyze their induced neutral networks. Since the established inverse folding algorithms, {\\tt RNAinverse}, {\\tt RNA-SSD} as well as {\\tt INFO-RNA} are limited to RNA secondary structures, we present in this paper the inverse folding algorithm {\\tt Inv} which can deal with 3-noncrossing, canonical pseudoknot structures. Results: In this paper we present the inverse folding algorithm {\\tt Inv}. We give a detailed analysis of {\\tt Inv}, including pseudocodes. We show that {\\tt Inv} allows to...

  3. Concepts and introduction to RNA bioinformatics

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Hofacker, Ivo L.; Ruzzo, Walter L.

    2014-01-01

    RNA bioinformatics and computational RNA biology have emerged from implementing methods for predicting the secondary structure of single sequences. The field has evolved to exploit multiple sequences to take evolutionary information into account, such as compensating (and structure preserving) base...

  4. Total Cellular RNA Modulates Protein Activity.

    Science.gov (United States)

    Majumder, Subhabrata; DeMott, Christopher M; Reverdatto, Sergey; Burz, David S; Shekhtman, Alexander

    2016-08-16

    RNA constitutes up to 20% of a cell's dry weight, corresponding to ∼20 mg/mL. This high concentration of RNA facilitates low-affinity protein-RNA quinary interactions, which may play an important role in facilitating and regulating biological processes. In the yeast Pichia pastoris, the level of ubiquitin-RNA colocalization increases when cells are grown in the presence of dextrose and methanol instead of methanol as the sole carbon source. Total RNA isolated from cells grown in methanol increases β-galactosidase activity relative to that seen with RNA isolated from cells grown in the presence of dextrose and methanol. Because the total cellular RNA content changes with growth medium, protein-RNA quinary interactions can alter in-cell protein biochemistry and may play an important role in cell adaptation, critical to many physiological and pathological states. PMID:27456029

  5. Double-stranded RNA resists condensation

    OpenAIRE

    Li, Li; Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois

    2011-01-01

    Much attention has focused on DNA condensation because of its fundamental biological importance. The recent discovery of new roles for RNA duplexes demands efficient packaging of dsRNA for therapeutics. Here we report measurements of short DNA and RNA duplexes in the presence of trivalent ions. Under conditions where UV spectroscopy indicates condensation of DNA duplexes into (insoluble) precipitates, RNA duplexes remain soluble. SAXS results suggest that the differing surface topologies of R...

  6. RNA Binding Specificity of Drosophila Muscleblind†

    OpenAIRE

    Goers, Emily S.; Voelker, Rodger B.; Gates, Devika P.; Berglund, J. Andrew

    2008-01-01

    Members of the muscleblind family of RNA binding proteins found in Drosophila and mammals are key players in both the human disease myotonic dystrophy and the regulation of alternative splicing. Recently, the mammalian muscleblind-like protein, MBNL1, has been shown to have interesting RNA binding properties with both endogenous and disease-related RNA targets. Here we report the characterization of RNA binding properties of the Drosophila muscleblind protein Mbl. Mutagenesis of double-strand...

  7. RNA sequencing: advances, challenges and opportunities

    OpenAIRE

    Ozsolak, Fatih; Milos, Patrice M.

    2010-01-01

    In the few years since its initial application, massively parallel cDNA sequencing, or RNA-seq, has allowed many advances in the characterization and quantification of transcriptomes. Recently, several developments in RNA-seq methods have provided an even more complete characterization of RNA transcripts. These developments include improvements in transcription start site mapping, strand-specific measurements, gene fusion detection, small RNA characterization and detection of alternative spli...

  8. RNA-Seq for Plant Pathogenic Bacteria

    OpenAIRE

    Kimbrel, Jeffrey A.; Yanming Di; Cumbie, Jason S.; Chang, Jeff H.

    2011-01-01

    The throughput and single-base resolution of RNA-Sequencing (RNA-Seq) have contributed to a dramatic change in transcriptomic-based inquiries and resulted in many new insights into the complexities of bacterial transcriptomes. RNA-Seq could contribute to similar advances in our understanding of plant pathogenic bacteria but it is still a technology under development with limitations and unknowns that need to be considered. Here, we review some new developments for RNA-Seq and highlight recent...

  9. Engineering RNA sequence specificity of Pumilio repeats

    OpenAIRE

    Cheong, Cheom-Gil; Hall, Traci M. Tanaka

    2006-01-01

    Puf proteins bind RNA sequence specifically and regulate translation and stability of target mRNAs. A “code” for RNA recognition has been deduced from crystal structures of the Puf protein, human Pumilio1, where each of eight repeats binds an RNA base via a combination of three side chains at conserved positions. Here, we report the creation of seven soluble mutant proteins with predictably altered sequence specificity, including one that binds tightly to adenosine-uracil-rich element RNA. Th...

  10. Aging - RNA in Development and Disease

    OpenAIRE

    Cookson, Mark R.

    2011-01-01

    Given that RNA is involved in virtually all biological processes, it is perhaps not surprising that several RNA binding proteins are associated with aging and with different age related disorders. Other chapters in this volume will discuss some specific examples of diseases where RNA plays a role that are also associated with aging, such as cancer and inflammation, so here I will discuss some general aspects of how RNA changes with the aging process. I will also discuss some specific examples...

  11. Optimal alphabets for an RNA world.

    OpenAIRE

    Gardner, Paul P.; Holland, Barbara R; Moulton, Vincent; Hendy, Mike; Penny, David

    2003-01-01

    Experiments have shown that the canonical AUCG genetic alphabet is not the only possible nucleotide alphabet. In this work we address the question 'is the canonical alphabet optimal?' We make the assumption that the genetic alphabet was determined in the RNA world. Computational tools are used to infer the RNA secondary structure (shape) from a given RNA sequence, and statistics from RNA shapes are gathered with respect to alphabet size. Then, simulations based upon the replication and select...

  12. RNA recombination in animal and plant viruses.

    OpenAIRE

    Lai, M M

    1992-01-01

    An increasing number of animal and plant viruses have been shown to undergo RNA-RNA recombination, which is defined as the exchange of genetic information between nonsegmented RNAs. Only some of these viruses have been shown to undergo recombination in experimental infection of tissue culture, animals, and plants. However, a survey of viral RNA structure and sequences suggests that many RNA viruses were derived form homologous or nonhomologous recombination between viruses or between viruses ...

  13. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2006-03-01

    Full Text Available Abstract Background All archaeal and many bacterial genomes contain Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR and variable arrays of the CRISPR-associated (cas genes that have been previously implicated in a novel form of DNA repair on the basis of comparative analysis of their protein product sequences. However, the proximity of CRISPR and cas genes strongly suggests that they have related functions which is hard to reconcile with the repair hypothesis. Results The protein sequences of the numerous cas gene products were classified into ~25 distinct protein families; several new functional and structural predictions are described. Comparative-genomic analysis of CRISPR and cas genes leads to the hypothesis that the CRISPR-Cas system (CASS is a mechanism of defense against invading phages and plasmids that functions analogously to the eukaryotic RNA interference (RNAi systems. Specific functional analogies are drawn between several components of CASS and proteins involved in eukaryotic RNAi, including the double-stranded RNA-specific helicase-nuclease (dicer, the endonuclease cleaving target mRNAs (slicer, and the RNA-dependent RNA polymerase. However, none of the CASS components is orthologous to its apparent eukaryotic functional counterpart. It is proposed that unique inserts of CRISPR, some of which are homologous to fragments of bacteriophage and plasmid genes, function as prokaryotic siRNAs (psiRNA, by base-pairing with the target mRNAs and promoting their degradation or translation shutdown. Specific hypothetical schemes are developed for the functioning of the predicted prokaryotic siRNA system and for the formation of new CRISPR units with unique inserts encoding psiRNA conferring immunity to the respective newly encountered phages or plasmids. The unique inserts in CRISPR show virtually no similarity even between closely related bacterial strains which suggests their rapid turnover, on evolutionary scale

  14. Prediction for RNA planar pseudoknots

    Institute of Scientific and Technical Information of China (English)

    Li Hengwu; Zhu Daming; Liu Zhendong; Li Hong

    2007-01-01

    Based on m-stems and semi-extensible structure, a model is presented to represent RNA planar pseudoknots, and corresponding dynamic programming algorithm is designed and implemented to predict arbitrary planar pseudoknots and simple non-planar pseudoknots with O(n4) time and O(n3) space. The algorithm folds total 245 sequences in the Pseudobase database, and the test results indicate that the algorithm has good accuracy, sensitivity and specificity.

  15. Riboswitches and the RNA World

    OpenAIRE

    Breaker, Ronald R.

    2012-01-01

    Riboswitches are structured noncoding RNA domains that selectively bind metabolites and control gene expression (Mandal and Breaker 2004a; Coppins et al. 2007; Roth and Breaker 2009). Nearly all examples of the known riboswitches reside in noncoding regions of messenger RNAs where they control transcription or translation. Newfound classes of riboswitches are being reported at a rate of about three per year (Ames and Breaker 2009), and these have been shown to selectively respond to fundament...

  16. Studium transgenní RNA

    Czech Academy of Sciences Publication Activity Database

    Fojtová, Miloslava

    2003-01-01

    Roč. 68, č. 3 (2003), s. 166-171. ISSN 0366-0486. [Metodické dny /3./. Milovy, 20.10.2003-24.10.2003] R&D Projects: GA ČR GP521/01/P042; GA ČR GA521/01/0037 Institutional research plan: CEZ:AV0Z5004920 Keywords : transgenes expression * RNA * nuclear run on Subject RIV: BO - Biophysics

  17. Cellular Dynamics of RNA Modification

    OpenAIRE

    Yi, Chengqi; Pan, Tao

    2011-01-01

    Decades of research have identified over 100 types of ribonucleosides that are post-transcriptionally modified. Many modified nucleosides are conserved in bacteria, archeae and eukaryotes, while some modified nucleosides are unique to each branch of life. However, the cellular and functional dynamics of RNA modifications remains largely unexplored, mostly due to the lack of functional hypotheses and experimental methods for quantification and large scale analysis. Just as many well characteri...

  18. Human tRNALys3UUU Is Pre-Structured by Natural Modifications for Cognate and Wobble Codon Binding through Keto-Enol Tautomerism

    Energy Technology Data Exchange (ETDEWEB)

    Vendeix, Franck A.P.; Murphy, IV, Frank V.; Cantara, William A.; Leszczy,; #324; ska, Gra; #380; yna,; Gustilo, Estella M.; Sproat, Brian; Malkiewicz, Andrzej; Agris, Paul F. [Cornell; (NCSU); (Poland); (Integrated DNA); (SUNYA)

    2013-09-27

    Human tRNALys3UUU (htRNALys3UUU) decodes the lysine codons AAA and AAG during translation and also plays a crucial role as the primer for HIV-1 (human immunodeficiency virus type 1) reverse transcription. The posttranscriptional modifications 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34), 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A37), and pseudouridine39) in the tRNA's anticodon domain are critical for ribosomal binding and HIV-1 reverse transcription. To understand the importance of modified nucleoside contributions, we determined the structure and function of this tRNA's anticodon stem and loop (ASL) domain with these modifications at positions 34, 37, and 39, respectively (hASLLys3UUU-mcm5s2U34;ms2t6A3739). Ribosome binding assays in vitro revealed that the hASLLys3UUU-mcm5s2U34;ms2t6A3739 bound AAA and AAG codons, whereas binding of the unmodified ASLLys3UUU was barely detectable. The UV hyperchromicity, the circular dichroism, and the structural analyses indicated that Ψ39 enhanced the thermodynamic stability of the ASL through base stacking while ms2t6A37 restrained the anticodon to adopt an open loop conformation that is required for ribosomal binding. The NMR-restrained molecular-dynamics-derived solution structure revealed that the modifications provided an open, ordered loop for codon binding. The crystal structures of the hASLLys3UUU-mcm5s2U34;ms2t6A3739 bound to the 30S ribosomal subunit with each codon in the A site showed that the

  19. Discovery of Nuclear DNA-like RNA (dRNA, hnRNA) and Ribonucleoproteins Particles Containing hnRNA.

    Science.gov (United States)

    Georgiev, G P

    2016-01-01

    On August 9-11, 2014, Cold Spring Harbor (USA) hosted a special symposium dedicated to the discovery of messenger or informational RNA and the main events in the subsequent studies of its synthesis, regulation of synthesis, maturation, and transport. The existence of mRNA in bacteria was first suggested in 1961 by Jacob and Monod, based on genetic studies [1]. The same year, Brenner et al. confirmed the hypothesis [2]. Our laboratory played a key role in the discovery of messenger RNA in eukaryotes, as well as in the discovery of the nuclear ribonucleoproteins that contain it and in the elucidation of their structural organization. Therefore, I was invited to represent Russia at the Symposium and deliver a speech on these topics. However, my visa had only been issued after the end of the Symposium, and, therefore, the presentation was delivered by my former colleague G.N. Yenikolopov, who works at Cold Spring Harbor Laboratory. The transcript of the lecture is presented below. PMID:27099780

  20. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design.

    Science.gov (United States)

    Krol, Jacek; Sobczak, Krzysztof; Wilczynska, Urszula; Drath, Maria; Jasinska, Anna; Kaczynska, Danuta; Krzyzosiak, Wlodzimierz J

    2004-10-01

    We have established the structures of 10 human microRNA (miRNA) precursors using biochemical methods. Eight of these structures turned out to be different from those that were computer-predicted. The differences localized in the terminal loop region and at the opposite side of the precursor hairpin stem. We have analyzed the features of these structures from the perspectives of miRNA biogenesis and active strand selection. We demonstrated the different thermodynamic stability profiles for pre-miRNA hairpins harboring miRNAs at their 5'- and 3'-sides and discussed their functional implications. Our results showed that miRNA prediction based on predicted precursor structures may give ambiguous results, and the success rate is significantly higher for the experimentally determined structures. On the other hand, the differences between the predicted and experimentally determined structures did not affect the stability of termini produced through "conceptual dicing." This result confirms the value of thermodynamic analysis based on mfold as a predictor of strand section by RNAi-induced silencing complex (RISC). PMID:15292246