WorldWideScience

Sample records for arc sprayed aluminum

  1. The Properties of Arc-Sprayed Aluminum Coatings on Armor-Grade Steel

    Directory of Open Access Journals (Sweden)

    Marcin Adamiak

    2018-02-01

    Full Text Available This article presents the results of an examination of the properties of arc-sprayed aluminum on alloyed armor-grade steel. Thermal arc spraying was conducted with a EuTronic Arc Spray 4 wire arc sprayer. Aluminum wire 1.6 mm in diameter was used to produce dense, abrasion- and erosion-resistant coatings approx. 1.0 mm thick with and without nickel/5% aluminum-buffered subcoating. Aluminum coatings were characterized in accordance with ASTM G 65-00 abrasion resistance test, ASTM G 76-95 erosion resistance tests, ASTM C 633-01 adhesion strength, HV0.1 hardness tests and metallographic analyses. Results demonstrate properties of arc-sprayed aluminum and aluminum-nickel material coatings that are especially promising in industrial applications where erosion-, abrasion- and corrosion-resistant coating properties are required.

  2. Wire-Arc-Sprayed Aluminum Protects Steel Against Corrosion

    Science.gov (United States)

    Zimmerman, Frank R.; Poorman, Richard; Sanders, Heather L.; Mckechnie, Timothy N.; Bonds, James W., Jr.; Daniel, Ronald L., Jr.

    1995-01-01

    Aluminum coatings wire-arc sprayed onto steel substrates found effective in protecting substrates against corrosion. Coatings also satisfy stringent requirements for adhesion and flexibility, both at room temperature and at temperatures as low as liquid hydrogen. Developed as alternatives to corrosion-inhibiting primers and paints required by law to be phased out because they contain and emit such toxic substances as chromium and volatile organic compounds.

  3. Replacement of corrosion protection chromate primers and paints used in cryogenic applications on the Space Shuttle with wire arc sprayed aluminum coatings

    Science.gov (United States)

    Daniel, R. L.; Sanders, H. L.; Zimmerman, F. R.

    1995-01-01

    With the advent of new environmental laws restricting volatile organic compounds and hexavalent chrome emissions, 'environmentally safe' thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against corrosion pitting and stress corrosion cracking induced by the cryogenic operating environment. The wire are sprayed aluminum coating has been found to have good potential to provide corrosion protection for flight hardware in cryogenic applications. The coating development, adhesion test, corrosion test and cryogenic flexibility test results will be presented.

  4. Quality Designed Twin Wire Arc Spraying of Aluminum Bores

    Science.gov (United States)

    König, Johannes; Lahres, Michael; Methner, Oliver

    2015-01-01

    After 125 years of development in combustion engines, the attractiveness of these powerplants still gains a great deal of attention. The efficiency of engines has been increased continuously through numerous innovations during the last years. Especially in the field of motor engineering, consequent friction optimization leads to cost-effective fuel consumption advantages and a CO2 reduction. This is the motivation and adjusting lever of NANOSLIDE® from Mercedes-Benz. The twin wire arc-spraying process of the aluminum bore creates a thin, iron-carbon-alloyed coating which is surface-finished through honing. Due to the continuous development in engines, the coating strategies must be adapted in parallel to achieve a quality-conformed coating result. The most important factors to this end are the controlled indemnification of a minimal coating thickness and a homogeneous coating deposition of the complete bore. A specific system enables the measuring and adjusting of the part and the central plunging of the coating torch into the bore to achieve a homogeneous coating thickness. Before and after measurement of the bore diameter enables conclusions about the coating thickness. A software tool specifically developed for coating deposition can transfer this information to a model that predicts the coating deposition as a function of the coating strategy.

  5. Evaluation of mechanical properties of Aluminum-Copper cold sprayed and alloy 625 wire arc sprayed coatings

    Science.gov (United States)

    Bashirzadeh, Milad

    This study examines microstructural-based mechanical properties of Al-Cu composite deposited by cold spraying and wire arc sprayed nickel-based alloy 625 coating using numerical modeling and experimental techniques. The microhardness and elastic modulus of samples were determined using the Knoop hardness technique. Hardness in both transverse and longitudinal directions on the sample cross-sections has been measured. An image-based finite element simulation algorithm was employed to determine the mechanical properties through an inverse analysis. In addition mechanical tests including, tensile, bending, and nano-indentation tests were performed on alloy 625 wire arc sprayed samples. Overall, results from the experimental tests are in relatively good agreement for deposited Al-Cu composites and alloy 625 coating. However, results obtained from numerical simulation are significantly higher in value than experimentally obtained results. Examination and comparison of the results are strong indications of the influence of microstructure characteristics on the mechanical properties of thermally spray deposited coatings.

  6. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  7. Thermal Arc Spray Overview

    International Nuclear Information System (INIS)

    Malek, Muhamad Hafiz Abd; Saad, Nor Hayati; Abas, Sunhaji Kiyai; Shah, Noriyati Mohd

    2013-01-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  8. Structure and Corrosion Behavior of Arc-Sprayed Zn-Al Coatings on Ductile Iron Substrate

    Science.gov (United States)

    Bonabi, Salar Fatoureh; Ashrafizadeh, Fakhreddin; Sanati, Alireza; Nahvi, Saied Mehran

    2018-02-01

    In this research, four coatings including pure zinc, pure aluminum, a double-layered coating of zinc and aluminum, and a coating produced by simultaneous deposition of zinc and aluminum were deposited on a cast iron substrate using electric arc-spraying technique. The coatings were characterized by XRD, SEM and EDS map and spot analyses. Adhesion strength of the coatings was evaluated by three-point bending tests, where double-layered coating indicated the lowest bending angle among the specimens, with detection of cracks at the coating-substrate interface. Coatings produced by simultaneous deposition of zinc and aluminum possessed a relatively uniform distribution of both metals. In order to evaluate the corrosion behavior of the coatings, cyclic polarization and salt spray tests were conducted. Accordingly, pure aluminum coating showed susceptibility to pitting corrosion and other coatings underwent uniform corrosion. For double-layered coating, SEM micrographs revealed zinc corrosion products as flaky particles in the pores formed by pitting on the surface, an indication of penetration of corrosion products from the lower layer (zinc) to the top layer (aluminum). All coatings experienced higher negative corrosion potentials than the iron substrate, indicative of their sacrificial behavior.

  9. Corrosion Resistance Properties of Aluminum Coating Applied by Arc Thermal Metal Spray in SAE J2334 Solution with Exposure Periods

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-03-01

    Full Text Available Arc thermal metal spray coating provides excellent corrosion, erosion and wear resistance to steel substrates. This paper incorporates some results of aluminum coating applied by this method on plain carbon steel. Thereafter, coated panels were exposed to an environment known to form stable corrosion products with aluminum. The coated panels were immersed in Society of Automotive Engineers (SAE J2334 for different periods of time. This solution consists of an aqueous solution of NaCl, CaCl2 and NaHCO3. Various electrochemical techniques, i.e., corrosion potential-time, electrochemical impedance spectroscopy (EIS and the potentiodynamic were used to determine the performance of stimulants in improving the properties of the coating. EIS studies revealed the kinetics and mechanism of corrosion and potentiodynamic attributed the formation of a passive film, which stifles the penetration of aggressive ions towards the substrate. The corrosion products that formed on the coating surface, identified using Raman spectroscopy, were Dawsonite (NaAlCO3(OH2 and Al(OH3. These compounds of aluminum are very sparingly soluble in aqueous solution and protect the substrate from pitting and uniform corrosion. The morphology and composition of corrosion products determined by scanning electron microscopy and energy dispersive X-ray analyses indicated that the environment plays a decisive role in improving the corrosion resistance of aluminum coating.

  10. Thermally sprayed coatings: Aluminum on lead

    International Nuclear Information System (INIS)

    Usmani, S.; Czajkowski, C.J.; Zatorski, R.

    1999-01-01

    An experimental program to determine the feasibility of thermally spraying aluminum on a lead substrate was initiated in support of the accelerator production of tritium (APT) Project for the US Department of Energy. The program consisted of two distinct parts: (1) the characterization of the thermally sprayed coatings, including microhardness testing, effects of heating, and microstructure and porosity determinations, and (2) effects of mercury doping and heat treatments on the thermally sprayed composite. The project determined that aluminum could successfully be thermally sprayed onto the lead. The coatings had a dense microstructure, with a Vicker's Pyramid Hardness (VPH) of about 60, and a maximum porosity (found in strips on the samples) of 12%

  11. Effects of laser remelting on microstructures and immersion corrosion performance of arc sprayed Al coating in 3.5% NaCl solution

    Science.gov (United States)

    Sun, Ze; Zhang, Donghui; Yan, Baoxu; Kong, Dejun

    2018-02-01

    An arc sprayed aluminum (Al) coating on S355 steel was processed using a laser remelting (LR). The microstructures, chemical element composition, and phases of the obtained Al coating were analyzed using a field mission scanning electronic microscope (FESEM), energy dispersive spectrometer (EDS), and X-ray diffractometer (XRD), respectively, and the residual stresses were measured using an X-ray diffraction stress tester. The immersion corrosion tests and potentiodynamic polarization of Al coating in 3.5% NaCl solution were performed to investigate the effects of LR on its immersion corrosion behaviors, and the corrosion mechanism of Al coating was also discussed. The results show that the arc sprayed Al coating is composed of Al phase, while that by LR is composed of Al-Fe and AlO4FeO6 phases, and the porosities and cracks in the arc sprayed Al coating are eliminated by LR, The residual stress of arc sprayed Al coating is -5.6 ± 18 MPa, while that after LR is 137.9 ± 12 MPa, which deduces the immersion corrosion resistance of Al coating. The corrosion mechanism of arc sprayed Al coating is pitting corrosion and crevice corrosion, while that by LR is uniform corrosion and pitting corrosion. The corrosion potential of arc sprayed Al coating by LR shifts positively, which improves its immersion corrosion resistance.

  12. Thermal spray for commercial shipbuilding

    Science.gov (United States)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  13. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  14. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1994-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum-4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  15. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1993-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  16. Plasma transferred arc surface modification of atmospheric plasma sprayed ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ulutan, Mustafa; Kilicay, Koray; Kaya, Esad; Bayar, Ismail [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2016-08-15

    In this study, a 90MnCrV8 steel surface was coated with aluminum oxide and chromium oxide powders through the Atmospheric plasma spray (APS) and Plasma transferred arc (PTA) methods. The effects of PTA surface melting on the microstructure, hardness, and wear behavior were investigated. The microstructures of plasma-sprayed and modified layers were characterized by Optical microscopy (OM), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS). The dry-sliding wear properties of the samples were determined through the ball-on-disk wear test method. Voids, cracks, and nonhomogeneous regions were observed in the microstructure of the APS ceramic-coated surface. These microstructure defects were eliminated by the PTA welding process. The microhardness of the samples was increased. Significant reductions in wear rate were observed after the PTA surface modification. The wear resistance of ceramic coatings increased 7 to 12 times compared to that of the substrate material.

  17. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    Science.gov (United States)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  18. Spray Forming Aluminum - Final Report (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    D. D. Leon

    1999-07-08

    The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Inc developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.

  19. Effect of aluminum coatings on corrosion properties of AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chiu Liuho; Lin Hsingan; Chen Chunchin; Yang Chihfu [Dept. of materials engineering, Tatung Univ., Taipei (Taiwan); Chang Chiahua; Wu Jenchin [Physical chemistry section, chemical systems research div., Chung-Shan Inst. of Science and Technology, Tao-Yuan (Taiwan)

    2003-07-01

    This investigation aimed to increase the corrosion resistance of an AZ31 magnesium alloy by an aluminum arc spray coating and a post-treatment consisted of hot pressing and anodizing. It was found that the aluminum arc spraying alone was incapable of protection against corrosion due to the high amount of pores present in the coating layer. In order to solve the problem, densification of the Al arc-sprayed layer was carried out by hot pressing the coated AZ31 Mg alloy plate under an appropriate range of temperature, time and pressure. After hot pressing the Al coated AZ31 Mg alloy plate exhibited a much improved corrosion resistance. A final anodizing treatment applied to the AZ31 alloy with the dense Al coating further improved its resisting to corrosion. The results showed that, by adopting the Al arc spraying, hot pressing and anodizing process, the corrosion current density of the AZ31 alloy in a 3.5 wt% NaCl solution was from 2.1 x 10{sup -6} A/cm{sup 2} (original AZ31) to 3.7 x 10{sup -7} A/cm{sup 2} (after the surface treatment), which value is close to that of an anodized aluminum plate. (orig.)

  20. Research of Plasma Spraying Process on Aluminum-Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Patricija Kavaliauskaitė

    2016-04-01

    Full Text Available The article examines plasma sprayed 95Ni-5Al coatings on alu-minum-magnesium (Mg ≈ 2,6‒3,6 % alloy substrate. Alumi-num-magnesium samples prior spraying were prepared with mechanical treatment (blasting with Al2O3. 95Ni-5Al coatings on aluminum-magnesium alloys were sprayed with different parameters of process and coating‘s thickness, porosity, micro-hardness and microstructure were evaluated. Also numerical simulations in electric and magnetic phenomena of plasma spray-ing were carried out.

  1. Optimization of Arc-Sprayed Ni-Cr-Ti Coatings for High Temperature Corrosion Applications

    Science.gov (United States)

    Matthews, S.; Schweizer, M.

    2013-04-01

    High Cr content Ni-Cr-Ti arc-spray coatings have proven successful in resisting the high temperature sulfidizing conditions found in black liquor recovery boilers in the pulp and paper industry. The corrosion resistance of the coatings is dependent upon the coating composition, to form chromium sulfides and oxides to seal the coating, and on the coating microstructure. Selection of the arc-spray parameters influences the size, temperature and velocity of the molten droplets generated during spraying, which in turn dictates the coating composition and formation of the critical coating microstructural features—splat size, porosity and oxide content. Hence it is critical to optimize the arc-spray parameters in order to maximize the corrosion resistance of the coating. In this work the effect of key spray parameters (current, voltage, spray distance and gas atomizing pressure) on the coating splat thickness, porosity content, oxide content, microhardness, thickness, and surface profile were investigated using a full factorial design of experiment. Based on these results a set of oxidized, porous and optimized coatings were prepared and characterized in detail for follow-up corrosion testing.

  2. Electric arc spraying for restoration and repair of metallurgical equipment parts

    Directory of Open Access Journals (Sweden)

    В’ячеслав Олександрович Роянов

    2016-07-01

    Full Text Available It has been shown that the electric arc spraying with the use of powder wires can be used to repair and restore parts of metallurgical equipment. The technology of spraying parts by means of the cored wire Steelcored M8TUV; T462MMIN5 and combinations of steel and aluminum wires to restore shaft-gears, shaft-beams, cranes axles for the foundry of the Moldavian Metallurgical Plant has been introduced. The composition of the flux-cored wires MMP-2,3 developed at the Department of Equipment and welding production technology of PSTU that provides the required hardness and adhesion of the coating and the substrate have been shown and the results of the coatings properties studies have been published. Studies have shown matching properties of the coatings to be used for details of the metallurgical equipment working under difficult conditions, including the rolls of rolling mills. Cored wire was used for pilot plating of the rolls surface of the skin-rolling stand at the cold-rolling mill at Illich Steel and Iron Works, Mariupol. Residual coating thickness ranged from 15 to 25 microns. Strip sized 0,9 × 1025 mm has been rolled, the squeezing is equal to 0,8...1,0%.

  3. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Science.gov (United States)

    2010-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of paragraph (a) or...

  4. Effect of layer thickness on the properties of nickel thermal sprayed steel

    Energy Technology Data Exchange (ETDEWEB)

    Nurisna, Zuhri, E-mail: zuhri-nurisna@yahoo.co.id; Triyono,, E-mail: triyonomesin@uns.ac.id; Muhayat, Nurul, E-mail: nurulmuhayat@staff.uns.ac.id; Wijayanta, Agung Tri, E-mail: agungtw@uns.ac.id [Department of Mechanical Engineering, Sebelas Maret University, Jl. Jr. Sutami 36 A, Surakarta (Indonesia)

    2016-03-29

    Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni–5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers were conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.

  5. Can Thermally Sprayed Aluminum (TSA) Mitigate Corrosion of Carbon Steel in Carbon Capture and Storage (CCS) Environments?

    Science.gov (United States)

    Paul, S.; Syrek-Gerstenkorn, B.

    2017-01-01

    Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.

  6. Mechanical Performance of Cold-Sprayed A357 Aluminum Alloy Coatings for Repair and Additive Manufacturing

    Science.gov (United States)

    Petráčková, K.; Kondás, J.; Guagliano, M.

    2017-12-01

    Cold-sprayed coatings made of A357 aluminum alloy, a casting alloy widely used in aerospace, underwent set of standard tests as well as newly developed fatigue test to gain an information about potential of cold spray for repair and additive manufacturing of loaded parts. With optimal spray parameters, coating deposition on substrate with smooth surface resulted in relatively good bonding, which can be further improved by application of grit blasting on substrate's surface. However, no enhancement of adhesion was obtained for shot-peened surface. Process temperature, which was set either to 450 or 550 °C, was shown to have an effect on adhesion and cohesion strength, but it does not influence residual stress in the coating. To assess cold spray perspectives for additive manufacturing, flat tensile specimens were machined from coating and tested in as-sprayed and heat-treated (solution treatment and aging) condition. Tensile properties of the coating after the treatment correspond to properties of the cast A357-T61 aluminum alloy. Finally, fatigue specimen was proposed to test overall performance of the coating and coating's fatigue limit is compared to the results obtained on cast A357-T61 aluminum alloy.

  7. Cold spraying of aluminum bronze on profiled submillimeter cermet structures formed by laser cladding

    Science.gov (United States)

    Ryashin, N. S.; Malikov, A. G.; Shikalov, V. S.; Gulyaev, I. P.; Kuchumov, B. M.; Klinkov, S. V.; Kosarev, V. F.; Orishich, A. M.

    2017-10-01

    The paper presents results of the cold spraying of aluminum bronze coatings on substrates profiled with WC/Ni tracks obtained by laser cladding. Reinforcing cermet frames shaped as grids with varied mesh sizes were clad on stainless steel substrates using a CO2 laser machine "Siberia" (ITAM SB RAS, Russia). As a result, surfaces/substrates with heterogeneous shape, composition, and mechanical properties were obtained. Aluminum bronze coatings were deposited from 5lF-NS powder (Oerlikon Metco, Switzerland) on those substrates using cold spraying equipment (ITAM SB RAS). Data of profiling, microstructure diagnostics, EDS analysis, and mechanical tests of obtained composites is reported. Surface relief of the sprayed coatings dependence on substrate structure has been demonstrated.

  8. Narrow groove gas metal-arc welding of aluminum

    International Nuclear Information System (INIS)

    Armstrong, R.E.

    1975-01-01

    The Gas Metal-Arc (GMA) welding process is explained and the equipment used described with an analysis of power supply function and the action of the arc, followed by discussion of general applications and problems. GMA braze welding of beryllium is then described, as is the development of a special high purity filler wire and a narrow deep groove joint design for improved weld strength in beryllium. This joint design and the special wire are applied in making high strength welds in high strength aluminum for special applications. High speed motion pictures of the welding operation are shown to illustrate the talk. (auth)

  9. Manual gas tungsten arc (dc) and semiautomatic gas metal arc welding of 6XXX aluminum. Welding procedure specification

    International Nuclear Information System (INIS)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-1009 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for manual gas tungsten arc (DC) and semiautomatic gas metal arc (DC) welding of aluminum alloys 6061 and 6063 (P-23), in thickness range 0.187 to 2 in.; filler metal is ER4043 (F-23); shielding gases are helium (GTAW) and argon (GMAW)

  10. Arc tracking energy balance for copper and aluminum aeronautic cables

    International Nuclear Information System (INIS)

    André, T; Valensi, F; Teulet, P; Cressault, Y; Zink, T; Caussé, R

    2017-01-01

    Arc tracking tests have been carried out between two voluntarily damaged aeronautic cables. Copper or aluminum conductors have been exposed to short circuits under alternating current. Various data have been recorded (arc voltage and current, radiated power and ablated mass), enabling to determine a power balance, in which every contribution is estimated. The total power is mainly transferred to the cables (between 50 and 65%, depending on the current and the cable type), and causes the melting and partial vaporization of the metallic core and insulating material, or is conducted or radiated. The other part is deposited into the arc column, being either radiated, convected or conducted. (paper)

  11. Deposition of titanium nitride layers by electric arc – Reactive plasma spraying method

    International Nuclear Information System (INIS)

    Şerban, Viorel-Aurel; Roşu, Radu Alexandru; Bucur, Alexandra Ioana; Pascu, Doru Romulus

    2013-01-01

    Highlights: ► Titanium nitride layers deposited by electric arc – reactive plasma spraying method. ► Deposition of titanium nitride layers on C45 steel at different spraying distances. ► Characterization of the coatings hardness as function of the spraying distances. ► Determination of the corrosion behavior of titanium nitride layers obtained. - Abstract: Titanium nitride (TiN) is a ceramic material which possesses high mechanical properties, being often used in order to cover cutting tools, thus increasing their lifetime, and also for covering components which are working in corrosive environments. The paper presents the experimental results on deposition of titanium nitride coatings by a new combined method (reactive plasma spraying and electric arc thermal spraying). In this way the advantages of each method in part are combined, obtaining improved quality coatings in the same time achieving high productivity. Commercially pure titanium wire and C45 steel as substrate were used for experiments. X-ray diffraction analysis shows that the deposited coatings are composed of titanium nitride (TiN, Ti 2 N) and small amounts of Ti 3 O. The microstructure of the deposited layers, investigated both by optical and scanning electron microscopy, shows that the coatings are dense, compact, without cracks and with low porosity. Vickers microhardness of the coatings presents maximum values of 912 HV0.1. The corrosion tests in 3%NaCl solution show that the deposited layers have a high corrosion resistance compared to unalloyed steel substrate.

  12. Study of the spray to globular transition in gas metal arc welding: a spectroscopic investigation

    International Nuclear Information System (INIS)

    Valensi, F; Pellerin, S; Castillon, Q; Zielinska, S; Boutaghane, A; Dzierzega, K; Pellerin, N; Briand, F

    2013-01-01

    The gas metal arc welding (GMAW) process is strongly influenced by the composition of the shielding gas. In particular, addition of CO 2 increases the threshold current for the transition from unstable globular to more stable spray transfer mode. We report on the diagnostics—using optical emission spectroscopy—of a GMAW plasma in pure argon and in mixtures of argon, CO 2 and N 2 while operated in spray and globular transfer modes. The spatially resolved plasma parameters are obtained by applying the Abel transformation to laterally integrated emission data. The Stark widths of some iron lines are used to determine both electron density and temperature, and line intensities yield relative contents of neutral and ionized iron to argon. Our experimental results indicate a temperature drop on the arc axis in the case of spray arc transfer. This drop reduces with addition of N 2 and disappears in globular transfer mode when CO 2 is added. Despite the temperature increase, the electron density decreases with CO 2 concentration. The highest concentration of iron is observed in the plasma column upper part (close to the anode) and for GMAW with CO 2 . Our results are compared with recently published works where the effect of non-homogeneous metal vapour concentration has been taken into account. (paper)

  13. Indentation creep behavior of cold sprayed aluminum amorphous/nano-crystalline coatings

    Energy Technology Data Exchange (ETDEWEB)

    Babu, P. Suresh [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005, Andhra Pradesh (India); Nanomechanics and Nanotribology Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States); Jha, R.; Guzman, M. [Nanomechanics and Nanotribology Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States); Sundararajan, G. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005, Andhra Pradesh (India); Agarwal, Arvind, E-mail: agarwala@fiu.edu [Nanomechanics and Nanotribology Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

    2016-03-21

    In this study, we report room temperature creep properties of cold sprayed aluminum amorphous/nanocrystalline coating using nanoindentation technique. Creep experiments were also performed on heat treated coatings to study the structural stability and its influence on the creep behavior. The peak load and holding time were varied from 1000 to 4000 µN and 0 to 240 s respectively. Stress exponent value (n) vary from 5.6 to 2.3 in as-sprayed (AS) coatings and 7.2–4.8 in heat treated (HT) coatings at peak load of 1000–4000 µN at 240 s hold time. Higher stress exponent value indicates heat treated coatings have more resistance to creep deformation than as-sprayed coatings. Relaxed, partially crystallized structure with less porosity, and stronger inter-splat boundaries restrict the deformation in heat treated coatings as compared to greater free volume generation in amorphous as-sprayed coatings. The computed activation volume of heat treated coatings is twice of as-sprayed coatings indicating greater number of atom participation in shear band formation in heat treated coatings. The proposed mechanism was found to be consistent with the stress exponent values.

  14. Processing, structure, property and performance relationships for the thermal spray of the internal surface of aluminum cylinders

    Science.gov (United States)

    Cook, David James

    The increased need for automotive weight reduction has necessitated the use of aluminum for engine blocks. Conventional aluminum alloys cannot survive the constant wear from a piston ring reciprocating on the surface. However, a wear resistant thermal spray coating can be applied on the internal surface of the cylinder bore, which has significant advantages over other available options. Thermal spray is a well-established process for depositing molten, semi-molten, or solid particles onto a substrate to form a protective coating. For this application, the two main challenges were obtaining good wear resistance, and achieving good adhesion. To design a system capable of producing a well-adhered, wear resistant coating for this high volume application it is necessary to identify the overall processing, structure, properties, and performance relationships. The results will demonstrate that very important relationships exist among particle characteristics, substrate conditions, and the properties of the final coating. However, it is the scientific studies to understand some of the process physics in these relationships that allow recognition of the critical processing conditions that need to be controlled to ensure a consistent, reliable thermal spray coating. In this investigation, it will be shown that the critical microstructural aspect of the coating that produced the required tribological properties was the presence of wuestite (FeO). It was found that by using a low carbon steel material with compressed air atomizing gas, it was possible to create an Fe/FeO structure that exhibited excellent tribological properties. This study will also show that traditional thermal spray surface preparation techniques were not ideal for this application, therefore a novel alternative approach was developed. The application of a flux to the aluminum surface prior to thermal spray promotes excellent bond strengths to non-roughened aluminum. Analysis will show that this flux strips

  15. Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties

    Science.gov (United States)

    Wilden, J.; Bergmann, J. P.; Jahn, S.; Knapp, S.; van Rodijnen, F.; Fischer, G.

    2007-12-01

    Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization.

  16. Correlations between operating conditions, microstructure and mechanical properties of twin wire arc sprayed steel coatings

    International Nuclear Information System (INIS)

    Jandin, G.; Liao, H.; Feng, Z.Q.; Coddet, C.

    2003-01-01

    An experimental design matrix was set up in which carbon steel coatings were deposited with a twin wire arc spray gun (TAFA 9000 TM ), using either compressed air or nitrogen as spraying gas. The coating's mechanical properties were studied. Some correlations were made between these properties, spraying conditions and the microstructure of the deposits. Young's modulus was estimated by the single beam method using finite element modeling. Results show that direct relationships do exist between spray conditions, oxide content in the coating and microhardness. Young's modulus of the coatings depends on the lamella thickness and the oxide content. When increasing the compressed air flow rate, Young's modulus increases at first because smaller particles and finer lamellae were made and it decreases later because of a higher oxide content. The increase of nitrogen flow rate lowers the oxide content and increases Young's modulus

  17. Effect of epoxy resin sealing on corrosion resistance of arc spraying aluminium coating using cathode electrophoresis method

    Science.gov (United States)

    Pang, Xuming; Wang, Runqiu; Wei, Qian; Zhou, Jianxin

    2018-01-01

    Arc-sprayed Al coating was sealed with epoxy resin using the cathode electrophoresis method. The anti-corrosion performance of the coatings sealed with epoxy resin was studied by means of a 3.5 wt.% NaCl solution test at 40 °C. For comparison, the anti-corrosion performance of Al coating sealed with boiling water was also performed under the same conditions. The results show that epoxy resin with a thickness of about 20 microns can entirely cover open pores and decreases the surface roughness of the as-sprayed Al coating, and the epoxy resin even permeates into the gaps among lamellar splats from open pores. After corrosion, the thickness of the epoxy resin layer is unchanged and can still cover the as-sprayed Al coating entirely. However, the thickness of Al coating sealed with boiling water decreases from 100 to 40 microns, which indicates that the arc-sprayed Al coating has much better corrosion resistance than the Al coating sealed with boiling water. Meanwhile, the content of substituted benzene ring in the epoxy resin increases, but aromatic ring decreases according to the fourier transform infrared spectra, which will cause the rigidity of the epoxy resin to increase, but the toughness slightly decreases after corrosion.

  18. The history and future of thermal sprayed galvanically active metallic anticorrosion coatings used on pipelines and steel structures in the oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Rodijnen, Fred van [Sulzer Metco, Duisburg (Germany)

    2008-07-01

    Since its invention by M. U. Schoop in the beginning of the 20th century, thermal spray has been used for corrosion protection applications in naval, on-shore, submerged and atmospheric environments. Thermally sprayed coatings of zinc, zinc alloys, aluminum and aluminum alloys are currently the most popular materials used for active corrosion protection of steel and concrete, which can be applied using either of the widely known thermal spray processes of combustion wire or electric arc wire. In the oil and gas exploration and production industry, corrosion protection applications using these technologies have evolved since the early sixties. Thermal spray technology has successfully been used to protect steel-based materials from corrosion in many different fields of application like platforms and pipelines. The most used material in the oil and gas industry is TSA (Thermally Sprayed Aluminum) coating. TSA coatings, with a lifetime of 25 to 30 years, require no maintenance except for cosmetic reasons when painted. The surface temperature of a TSA can go as high as 480 deg C. Although TS (Thermal Spray) is an older process, the number of applications and the number of m{sup 2} it is applied to is still increasing resulting from its maintenance-free and reliable active corrosion-protection features. (author)

  19. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  20. Characterization and Tribological Properties of Hard Anodized and Micro Arc Oxidized 5754 Quality Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    M. Ovundur

    2015-03-01

    Full Text Available This study was initiated to compare the tribological performances of a 5754 quality aluminum alloy after hard anodic oxidation and micro arc oxidation processes. The structural analyses of the coatings were performed using XRD and SEM techniques. The hardness of the coatings was determined using a Vickers micro-indentation tester. Tribological performances of the hard anodized and micro arc oxidized samples were compared on a reciprocating wear tester under dry sliding conditions. The dry sliding wear tests showed that the wear resistance of the oxide coating generated by micro arc oxidation is remarkably higher than that of the hard anodized alloy.

  1. Novel Method of Aluminum to Copper Bonding by Cold Spray

    Science.gov (United States)

    Fu, Si-Lin; Li, Cheng-Xin; Wei, Ying-Kang; Luo, Xiao-Tao; Yang, Guan-Jun; Li, Chang-Jiu; Li, Jing-Long

    2018-04-01

    Cold spray bonding (CSB) has been proposed as a new method for joining aluminum and copper. At high speeds, solid Al particles impacted the groove between the two substrates to form a bond between Al and Cu. Compared to traditional welding technologies, CSB does not form distinct intermetallic compounds. Large stainless steel particles were introduced into the spray powders as in situ shot peen particles to create a dense Al deposit and to improve the bond strength of joints. It was discovered that introducing shot peen particles significantly improved the flattening ratio of the deposited Al particles. Increasing the proportion of shot peen particles from 0 to 70 vol.% decreased the porosity of the deposits from 12.4 to 0.2%, while the shear strength of joints significantly increased. The tensile test results of the Al-Cu joints demonstrated that cracks were initiated at the interface between the Al and the deposit. The average tensile strength was 71.4 MPa and could reach 81% of the tensile strength of pure Al.

  2. Study of Multi-Function Micro-Plasma Spraying Technology

    International Nuclear Information System (INIS)

    Wang Liuying; Wang Hangong; Hua Shaochun; Cao Xiaoping

    2007-01-01

    A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al 2 O 3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended

  3. TIG Wire and Arc Additive Manufacturing of 5A06 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    HUANG Dan

    2017-03-01

    Full Text Available Wire and arc additive manufacturing(WAAM was investigated by tungsten inert gas arc welding method(TIG, in which φ1.2mm filler wire of aluminum alloy 5A06(Al-6Mg-Mn-Si was selected as deposition metal. The prototyping process was conducted by a TIG power source(working in AC mode manipulated by a four-axis linkage CNC machine. Backplate preheating temperature and arc current on deposited morphologies of single layer and multi-layer were researched. The microstructure was observed and the sample tensile strength was tested. For single layer, a criterion that describes the correlation between backplate preheating temperature and arc peak current, of which both contribute to the smoothening of the deposited layer. The results show that the layer height drops sharply from the first layer of 3.4mm and keeps at 1.7mm after the 8th layer. Fine dendrite grain and equiaxed grain are found inside a layer and coarsest columnar dendrite structure at layer boundary zone; whereas the microstructure of top region of the deposited sample changes from fine dendrite grain to equiaxed grain that turns to be the finest structure. Mechanical property of the deposited sample is isotropic, in which the tensile strength is approximately 295MPa with the elongation around 36%.

  4. Effects of post annealing on the microstructure, mechanical properties and cavitation erosion behavior of arc-sprayed FeNiCrBSiNbW coatings

    International Nuclear Information System (INIS)

    Lin, Jinran; Wang, Zehua; Lin, Pinghua; Cheng, Jiangbo; Zhang, Xin; Hong, Sheng

    2015-01-01

    Highlights: • FeNiCrBSiNbW coatings were prepared by arc spraying process. • Microstructural changes of the coatings were investigated by TEM. • As-sprayed coating had higher cavitation erosion resistance than annealed coatings. • The mechanism for annealing-induced change in cavitation erosion was discussed. - Abstract: FeNiCrBSiNbW coatings were fabricated via arc spraying process and were subsequently annealed at 450, 550 and 650 °C for 1 h to study the effect of annealing treatment on the microstructure, mechanical properties and cavitation erosion behavior. Microstructure was studied using scanning and transmission electron microscopy. The results showed that oxides, fine crystalline particles and borides were formed after annealing at 650 °C. With increasing annealing temperature, the coatings showed reductions in porosity and fracture toughness, and an increase in microhardness. The cavitation erosion behavior of the coatings was investigated in distilled water. The results showed that the cavitation erosion resistance of the coatings decreased with increasing annealing temperature, and the as-sprayed coating exhibited the best cavitation erosion resistance among the four kinds of coatings. This was attributed to the good fracture toughness, high amorphous phase content and the absence of oxides in the as-sprayed coating

  5. Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding

    International Nuclear Information System (INIS)

    Liu Yao; Wang Wenjing; Xie Jijia; Sun Shouguang; Wang Liang; Qian Ye; Meng Yuan; Wei Yujie

    2012-01-01

    Highlights: ► Welding zones by GTAW and GMAW are softer than the parent material Al5083. ► GTAW for Al5083 are mechanically more reliable than that welded by GMAW. ► GTAW welds fail by shear, but GMAW welds show mixed shear and normal failure. - Abstract: The mechanical properties and microstructural features of aluminum 5083 (Al5083) weldments processed by gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) are investigated. Weldments processed by both methods are mechanically softer than the parent material Al5083, and could be potential sites for plastic localization. It is revealed that Al5083 weldments processed by GTAW are mechanical more reliable than those by GMAW. The former bears higher strength, more ductility, and no apparent microstructure defects. Perceivable porosity in weldments by GMAW is found, which could account for the distinct mechanical properties between weldments processed by GTAW and GMAW. It is suggested that caution should be exercised when using GMAW for Al5083 in the high-speed-train industry where such light weight metal is broadly used.

  6. An Alternative Cu-Based Bond Layer for Electric Arc Coating Process

    Science.gov (United States)

    Fadragas, Carlos R.; Morales, E. V.; Muñoz, J. A.; Bott, I. S.; Lariot Sánchez, C. A.

    2011-12-01

    A Cu-Al alloy has been used as bond coat between a carbon steel substrate and a final coating deposit obtained by applying the twin wire electric arc spraying coating technique. The presence of a copper-based material in the composite system can change the overall temperature profile during deposition because copper exhibits a thermal conductivity several times higher than that of the normally recommended bond coat materials (such as nickel-aluminum alloys or nickel-chromium alloys). The microstructures of 420 and 304 stainless steels deposited by the electric arc spray process have been investigated, focusing attention on the deposit homogeneity, porosity, lamellar structure, and microhardness. The nature of the local temperature gradient during deposition can strongly influence the formation of the final coating deposit. This study presents a preliminary study, undertaken to investigate the changes in the temperature profile which occur when a Cu-Al alloy is used as bond coat, and the possible consequences of these changes on the microstructure and adhesion of the final coating deposit. The influence of the thickness of the bond layer on the top coating temperature has also been also evaluated.

  7. Deposition of Coating to Protect Waste Water Reservoir in Acidic Solution by Arc Thermal Spray Process

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2018-01-01

    Full Text Available The corrosion characteristics of 304 stainless steel (SS and titanium (Ti coatings deposited by the arc thermal spray process in pH 4 solution were assessed. The Ti-sprayed coating exhibits uniform, less porous, and adherent coating morphology compared to the SS-sprayed coating. The electrochemical study, that is, electrochemical impedance spectroscopy (EIS, revealed that as exposure periods to solution were increased, the polarization resistance (Rp decreased and the charge transfer resistance (Rct increased owing to corrosion of the metallic surface and simultaneously at the same time the deposition of oxide films/corrosion on the SS-sprayed surface, while Ti coating transformed unstable oxides into the stable phase. Potentiodynamic studies confirmed that both sprayed coatings exhibited passive tendency attributed due to the deposition of corrosion products on SS samples, whereas the Ti-sprayed sample formed passive oxide films. The Ti coating reduced the corrosion rate by more than six times compared to the SS coating after 312 h of exposure to sulfuric acid- (H2SO4- contaminated water solution, that is, pH 4. Scanning electron microscope (SEM results confirmed the uniform and globular morphology of the passive film on the Ti coating resulting in reduced corrosion. On the other hand, the corrosion products formed on SS-sprayed coating exhibit micropores with a net-like microstructure. X-ray diffraction (XRD revealed the presence of the composite oxide film on Ti-sprayed samples and lepidocrocite (γ-FeOOH on the SS-coated surface. The transformation of TiO and Ti3O into TiO2 (rutile and anatase and Ti3O5 after 312 h of exposure to H2SO4 acid reveals the improved corrosion resistance properties of Ti-sprayed coating.

  8. Salt Spray Test to Determine Galvanic Corrosion Levels of Electroless Nickel Connectors Mounted on an Aluminum Bracket

    Science.gov (United States)

    Rolin, T. D.; Hodge, R. E.; Torres, P. D.; Jones, D. D.; Laird, K. R.

    2014-01-01

    During preliminary vehicle design reviews, requests were made to change flight termination systems from an electroless nickel (EN) connector coating to a zinc-nickel (ZN) plating. The reason for these changes was due to a new NASA-STD-6012 corrosion requirement where connectors must meet the performance requirement of 168 hr of exposure to salt spray. The specification for class F connectors, MIL-DTL-38999, certifies the EN coating will meet a 48-hr salt spray test, whereas the ZN is certified to meet a 168-hr salt spray test. The ZN finish is a concern because Marshall Space Flight Center has no flight experience with ZN-finished connectors, and MSFC-STD-3012 indicates that zinc and zinc alloys should not be used. The purpose of this test was to run a 168-hr salt spray test to verify the electrical and mechanical integrity of the EN connectors and officially document the results. The salt spray test was conducted per ASTM B117 on several MIL-DTL-38999 flight-like connectors mounted to an aluminum 6061-T6 bracket that was alodined. The configuration, mounting techniques, electrical checks, and materials used were typical of flight and ground support equipment.

  9. Dissimilar Joining of Stainless Steel and 5083 Aluminum Alloy Sheets by Gas Tungsten Arc Welding-Brazing Process

    Science.gov (United States)

    Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong

    2018-03-01

    The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.

  10. A review of various nozzle range of wire arc spray on FeCrBMnSi metal coating

    Science.gov (United States)

    Purwaningsih, Hariyati; Rochiem, Rochman; Suchaimi, Muhammad; Jatimurti, Wikan; Wibisono, Alvian Toto; Kurniawan, Budi Agung

    2018-04-01

    Low Temperature Hot Corrosion (LTHC) is type of hot corrosion which occurred on 700-800°C and usually on turbine blades. So, as a result the material of turbine blades is crack and degredation of rotation efficiency. Hot corrosion protection with the use of barrier that separate substrate and environment is one of using metal surface coating, wire arc spray method. This study has a purpose to analyze the effect of nozzle distance and gas pressure on FeCrBMnSi coating process using wire arc spray method on thermal resistance. The parameter of nozzle distance and gas pressure are used, resulted the best parameter on distance 400 mm and gas pressure 3 bar which has the bond strength of 12,58 MPa with porosity percentage of 5,93% and roughness values of 16,36 µm. While the examination of thermal cycle which by heating and cooling continuously, on the coating surface is formed oxide compound (Fe3O4) which cause formed crack propagation and delamination. Beside that hardness of coating surface is increase which caused by precipitate boride (Fe9B)0,2

  11. MICRO-ARC DIELECTRIC COATINGS ON ALUMINUM ALLOYS OF GRINDING WHEEL FRAMEWORKS

    Directory of Open Access Journals (Sweden)

    Yury GUTSALENKO

    2018-05-01

    Full Text Available It is presented the development of local electrically insulating coatings for tool of the technologies of high-efficient processing with the introduction the energy of electrical discharges into the cutting zone to maintain a working capacity of grinding wheels with diamond-metal composition of the working part. Development is an alternative to the electrical insulation upgrade of spindle units of universal grinding machines. The dielectric properties of micro-arc oxide coatings on deformable aluminum alloys formed on an alternating current in the regime of an arbitrarily falling power in alkali-silicate solutions have been studied. Information about the features of practical implementation of development is given.

  12. Properties of arc-sprayed coatings from Fe-based cored wires for high-temperature applications

    Science.gov (United States)

    Korobov, Yu. S.; Nevezhin, S. V.; Filiрpov, M. A.; Makarov, A. V.; Malygina, I. Yu.; Fantozzi, D.; Milanti, A.; Koivuluoto, H.; Vuoristo, P.

    2017-12-01

    Equipment of a thermal power plant is subjected to high temperature oxidation and wear. This raises operating costs through frequent repair of worn parts and high metal consumption. The paper proposes a possible solution to this problem through arc spraying of protective coatings. Cored wires of the Fe-Cr-C basic alloying system are used as a feedstock. Additional alloying by Al, B, Si, Ti and Y allows one to create wear- and heat-resistant coatings, which are an attractive substitute of more expensive Co- and Ni-based materials.

  13. Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yao [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wang Wenjing [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Xie Jijia [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Sun Shouguang [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang Liang [College of Metallurgy and Material Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Qian Ye; Meng Yuan [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei Yujie, E-mail: yujie_wei@lnm.imech.ac.cn [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Welding zones by GTAW and GMAW are softer than the parent material Al5083. Black-Right-Pointing-Pointer GTAW for Al5083 are mechanically more reliable than that welded by GMAW. Black-Right-Pointing-Pointer GTAW welds fail by shear, but GMAW welds show mixed shear and normal failure. - Abstract: The mechanical properties and microstructural features of aluminum 5083 (Al5083) weldments processed by gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) are investigated. Weldments processed by both methods are mechanically softer than the parent material Al5083, and could be potential sites for plastic localization. It is revealed that Al5083 weldments processed by GTAW are mechanical more reliable than those by GMAW. The former bears higher strength, more ductility, and no apparent microstructure defects. Perceivable porosity in weldments by GMAW is found, which could account for the distinct mechanical properties between weldments processed by GTAW and GMAW. It is suggested that caution should be exercised when using GMAW for Al5083 in the high-speed-train industry where such light weight metal is broadly used.

  14. Research on the Properties of Thermal Sprayed Ni-Cr-Si-Fe-B Coatings

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2012-12-01

    Full Text Available The article deals with the flame sprayed Ni-Cr-Si-Fe-B coating on aluminum alloy substrates. Before the thermal spraying process, aluminum samples were modified applying chemical, mechanical and thermal processing pre-treatment methods. The main aluminum surface treatment was removing an oxide layer from the surface and improving the exploitation properties of nickel-based coatings. The work involved coating microstructure, porosity, adhesion and microhardness tests. The dependence of the estimated exploitation properties of flame spray coatings on aluminum surface preparation methods and technological parameters of spraying has been established.Article in Lithuanian

  15. Research on the Properties of Thermal Sprayed Ni-Cr-Si-Fe-B Coatings

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2013-02-01

    Full Text Available The article deals with the flame sprayed Ni-Cr-Si-Fe-B coating on aluminum alloy substrates. Before the thermal spraying process, aluminum samples were modified applying chemical, mechanical and thermal processing pre-treatment methods. The main aluminum surface treatment was removing an oxide layer from the surface and improving the exploitation properties of nickel-based coatings. The work involved coating microstructure, porosity, adhesion and microhardness tests. The dependence of the estimated exploitation properties of flame spray coatings on aluminum surface preparation methods and technological parameters of spraying has been established.Article in Lithuanian

  16. Investigation and control of dc arc jet instabilities to obtain a self-sustained pulsed laminar arc jet

    International Nuclear Information System (INIS)

    Krowka, J; Rat, V; Coudert, J F

    2013-01-01

    The uncontrolled arc plasma instabilities in suspension plasma spraying or solution precursor plasma spraying cause non-homogeneous plasma treatments of material during their flight and also on coatings during their formation. This paper shows that the arc motion in dc plasma torches mainly originates in two main modes of oscillation (Helmholtz and restrike modes). The emphasis is put on the restrike mode in which the time component is extracted after building up and applying a numerical filter to raw arc voltage signals. The dependence of re-arcing events on experimental parameters is analysed in the frame of a phenomenological restrike model. It is shown that when the restrike frequency reaches the Helmholtz one, both modes are locked together and a pulsed arc jet is generated. (paper)

  17. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires.

    Science.gov (United States)

    Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S

    2014-09-01

    In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Analytical interpretation of arc instabilities in a DC plasma spray torch: the role of pressure

    Science.gov (United States)

    Rat, V.; Coudert, J. F.

    2016-06-01

    Arc instabilities in a plasma spray torch are investigated experimentally and theoretically thanks to a linear simplified analytical model. The different parameters that determine the useful properties of the plasma jet at the torch exit, such as specific enthalpy and speed, but also pressure inside the torch and time variations of the flow rate are studied. The work is particularly focused on the link between the recorded arc voltage and the pressure in the cathode cavity. A frequency analysis of the recorded voltage and pressure allows the separation of different contributions following their spectral characteristics and highlights a resonance effect due to Helmholtz oscillations; these oscillations are responsible for the large amplitude fluctuations of all the parameters investigated. The influence of heat transfer, friction forces and residence time of the plasma in the nozzle are taken into account, thanks to different characteristics’ times. The volume of the cathode cavity in which the cold gas is stored before entering the arc region appears to be of prime importance for the dynamics of instabilities, particularly for the non-intuitive effect that induces flow-rate fluctuations in spite of the fact that the torch is fed at a constant flow rate.

  19. Synthesis of aluminum nitride films by plasma immersion ion implantation-deposition using hybrid gas-metal cathodic arc gun

    International Nuclear Information System (INIS)

    Shen Liru; Fu, Ricky K.Y.; Chu, Paul K.

    2004-01-01

    Aluminum nitride (AlN) is of interest in the industry because of its excellent electronic, optical, acoustic, thermal, and mechanical properties. In this work, aluminum nitride films are deposited on silicon wafers (100) by metal plasma immersion ion implantation and deposition (PIIID) using a modified hybrid gas-metal cathodic arc plasma source and with no intentional heating to the substrate. The mixed metal and gaseous plasma is generated by feeding the gas into the arc discharge region. The deposition rate is found to mainly depend on the Al ion flux from the cathodic arc source and is only slightly affected by the N 2 flow rate. The AlN films fabricated by this method exhibit a cubic crystalline microstructure with stable and low internal stress. The surface of the AlN films is quite smooth with the surface roughness on the order of 1/2 nm as determined by atomic force microscopy, homogeneous, and continuous, and the dense granular microstructures give rise to good adhesion with the substrate. The N to Al ratio increases with the bias voltage applied to the substrates. A fairly large amount of O originating from the residual vacuum is found in the samples with low N:Al ratios, but a high bias reduces the oxygen concentration. The compositions, microstructures and crystal states of the deposited films are quite stable and remain unchanged after annealing at 800 deg. C for 1 h. Our hybrid gas-metal source cathodic arc source delivers better AlN thin films than conventional PIIID employing dual plasmas

  20. Polyurethane spray coating of aluminum wire bonds to prevent corrosion and suppress resonant oscillations

    CERN Document Server

    Izen, Joseph; The ATLAS collaboration; Kurth, Matthew Glenn

    2015-01-01

    Unencapsulated aluminum wedge wire bonds are common in particle-physics pixel and strip detectors. Industry-favored bulk encapsulation is eschewed due to the range of operating temperatures and radiation. Wire bond failures are a persistent, source of tracking detector failure Unencapsulated bonds are vulnerable to condensation-induced corrosion, particularly when halides are present. Oscillations from periodic Lorenz forces are documented as another source of wire bond failure. Spray application of polyurethane coatings, performance of polyurethane-coated wire bonds after climate chamber exposure, and resonant properties of PU-coated wire bonds and their resistance to periodic Lorenz forces will be described.

  1. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    Science.gov (United States)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  2. High-Temperature Oxidation and Smelt Deposit Corrosion of Ni-Cr-Ti Arc-Sprayed Coatings

    Science.gov (United States)

    Matthews, S.; Schweizer, M.

    2013-08-01

    High Cr content Ni-Cr-Ti arc-sprayed coatings have been extensively applied to mitigate corrosion in black liquor recovery boilers in the pulp and paper industry. In a previous article, the effects of key spray parameters on the coating's microstructure and its composition were investigated. Three coating microstructures were selected from that previous study to produce a dense, oxidized coating (coating A), a porous, low oxide content coating (coating B), and an optimized coating (coating C) for corrosion testing. Isothermal oxidation trials were performed in air at 550 and 900 °C for 30 days. Additional trials were performed under industrial smelt deposits at 400 and 800 °C for 30 days. The effect of the variation in coating microstructure on the oxidation and smelt's corrosion response was investigated through the characterization of the surface corrosion products, and the internal coating microstructural developments with time at high temperature. The effect of long-term, high-temperature exposure on the interaction between the coating and substrate was characterized, and the mechanism of interdiffusion was discussed.

  3. Enhancement of low pressure cold sprayed copper coating adhesion by laser texturing on aluminum substrates

    Science.gov (United States)

    Knapp, Wolfgang; Gillet, Vincent; Courant, Bruno; Aubignat, Emilie; Costil, Sophie; Langlade, Cécile

    2017-02-01

    Surface pre-treatment is fundamental in thermal spraying processes to obtain a sufficient bonding strength between substrate and coating. Different pre-treatments can be used, mostly grit-blasting for current industrial applications. This study is focused on Cu-Al2O3 coatings obtained by Low Pressure Cold Spray on AW5083 aluminum alloy substrate. Bonding strength is measured by tensile adhesion test, while deposition efficiency is measured. Substrates are textured by laser, using a pattern of equally spaced grooves with almost constant diameter and variations of depth. Results show that bonding strength is improved up to +81% compared to non-treated substrate, while deposition efficiency remains constant. The study of the samples after rupture reveals a modification of the failure mode, from mixed failure to cohesive failure. A modification of crack propagation is also noticed, the shape of laser textured grooves induces a deviation of cracks inside the coating instead of following the interface between the layers.

  4. Effect of Fluctuations of DC Current on Properties of Plasma Jet Generated in Plasma Spraying Torch with Gerdien Arc

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan; Kopecký, Vladimír; Chumak, Oleksiy; Kavka, Tetyana; Mašláni, Alan; Sember, Viktor; Ctibor, Pavel

    2009-01-01

    Roč. 13, č. 2 (2009), s. 229-240 ISSN 1093-3611 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma torch * dc arc * plasma jet * fluctuations * plasma spraying Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.333, year: 2009 http://www.begellhouse.com/journals/57d172397126f956,4e2a92412d8c6bb5.html

  5. TiB2/Al2O3 ceramic particle reinforced aluminum fabricated by spray deposition

    International Nuclear Information System (INIS)

    Chen Xing; Yang Chengxiao; Guan Leding; Yan Biao

    2008-01-01

    Aluminum matrix ceramic particle reinforced composites (AMCs) is a kind of composite with great importance. Aluminum matrix composite reinforced with TiB 2 /Al 2 O 3 ceramic particles was successfully in situ synthesized in Al-TiO 2 -B 2 O 3 system in this paper, using spray deposition with hot-press treatment technique. Five groups of composites with different reinforcement volume contents were prepared and the comparisons of porosity, ultimate tensile strength (UTS), elongation and Brinell hardness (BH) between the composites with and without hot-press treating were carried out. The composite with 21.0% reinforcement volume content was analyzed by X-ray diffraction (XRD), Environmental Scanning Electron Microscope (ESEM), Transmission Electron Microscope (TEM) and Energy Disperse Spectroscopy (EDS). The results revealed the formation and uniform distribution of fine reinforcements in the matrix after hot-press treating, while a new intermetallic phase Al 3 Ti was found besides TiB 2 /Al 2 O 3 ceramic phase

  6. Influence of Post Weld Heat Treatment on Strength of Three Aluminum Alloys Used in Light Poles

    Directory of Open Access Journals (Sweden)

    Craig C. Menzemer

    2016-03-01

    Full Text Available The conjoint influence of welding and artificial aging on mechanical properties were investigated for extrusions of aluminum alloy 6063, 6061, and 6005A. Uniaxial tensile tests were conducted on the aluminum alloys 6063-T4, 6061-T4, and 6005A-T1 in both the as-received (AR and as-welded (AW conditions. Tensile tests were also conducted on the AR and AW alloys, subsequent to artificial aging. The welding process used was gas metal arc (GMAW with spray transfer using 120–220 A of current at 22 V. The artificial aging used was a precipitation heat treatment for 6 h at 182 °C (360 °F. Tensile tests revealed the welded aluminum alloys to have lower strength, both for yield and ultimate tensile strength, when compared to the as-received un-welded counterpart. The beneficial influence of post weld heat treatment (PWHT on strength and ductility is presented and discussed in terms of current design provisions for welded aluminum light pole structures.

  7. Influence of spray parameters on the microstructure and mechanical properties of gas-tunnel plasma sprayed hydroxyapatite coatings

    International Nuclear Information System (INIS)

    Morks, M.F.; Kobayashi, Akira

    2007-01-01

    For biomedical applications, hydroxyapatite (HA) coatings were deposited on 304 stainless steel substrate by using a gas tunnel type plasma spraying process. The influences of spraying distances and plasma arc currents on the microstructure, hardness and adhesion properties of HA coatings were investigated. Microstructure observation by SEM showed that HA coatings sprayed at low plasma power have a porous structure and poor hardness. HA coatings sprayed at high plasma power and short spraying distance are characterized by good adhesion and low porosity with dense structure. Hardness increased for HA coatings sprayed at shorter spraying distance and higher plasma power, mainly due to the formation of dense coatings

  8. Polyurethane spray coating of aluminum wire bonds to prevent corrosion and suppress resonant oscillations

    CERN Document Server

    INSPIRE-00092738; Kurth, Matthew; Boyd, Rusty

    2016-01-01

    Unencapsulated aluminum wedge wire bonds are common in particle physics pixel and strip detectors. Industry-favored bulk encapsulation is eschewed due to the range of operating temperatures and radiation. Wire bond failures are a persistent source of tracking-detector failure. Unencapsulated bonds are vulnerable to condensation-induced corrosion, particularly when halides are present. Oscillations from periodic Lorentz forces are documented as another source of wire bond failure. Spray application of polyurethane coatings, performance of polyurethane-coated wire bonds after climate chamber exposure, and resonant properties of polyurethane-coated wire bonds and their resistance to periodic Lorentz forces are under study for use in a future High Luminosity Large Hadron Collider detector such as the ATLAS Inner Tracker upgrade.

  9. Arc generation from sputtering plasma-dielectric inclusion interactions

    International Nuclear Information System (INIS)

    Wickersham, C.E. Jr.; Poole, J.E.; Fan, J.S.

    2002-01-01

    Arcing during sputter deposition and etching is a significant cause of particle defect generation during device fabrication. In this article we report on the effect of aluminum oxide inclusion size, shape, and orientation on the propensity for arcing during sputtering of aluminum targets. The size, shape, and orientation of a dielectric inclusion plays a major role in determining the propensity for arcing and macroparticle emission. In previous studies we found that there is a critical inclusion size required for arcing to occur. In this article we used high-speed videos, electric arc detection, and measurements of particle defect density on wafers to study the effect of Al 2 O 3 inclusion size, shape, and orientation on arc rate, intensity, and silicon wafer particle defect density. We found that the cross-sectional area of the inclusion exposed to the sputtering plasma is the critical parameter that determines the arc rate and rate of macroparticle emission. Analysis of the arc rate, particle defect density, and the intensity of the optical emission from the arcing plasma indicates that the critical aluminum oxide inclusion area for arcing is 0.22±0.1 mm2 when the sputtering plasma sheath dark-space λ d , is 0.51 mm. Inclusions with areas greater than this critical value readily induce arcing and macroparticle ejection during sputtering. Inclusions below this critical size do not cause arcing or macroparticle ejection. When the inclusion major axis is longer than 2λ d and lies perpendicular to the sputter erosion track tangent, the arcing activity increases significantly over the case where the inclusion major axis lies parallel to the erosion track tangent

  10. Arc generation from sputtering plasma-dielectric inclusion interactions

    CERN Document Server

    Wickersham, C E J; Fan, J S

    2002-01-01

    Arcing during sputter deposition and etching is a significant cause of particle defect generation during device fabrication. In this article we report on the effect of aluminum oxide inclusion size, shape, and orientation on the propensity for arcing during sputtering of aluminum targets. The size, shape, and orientation of a dielectric inclusion plays a major role in determining the propensity for arcing and macroparticle emission. In previous studies we found that there is a critical inclusion size required for arcing to occur. In this article we used high-speed videos, electric arc detection, and measurements of particle defect density on wafers to study the effect of Al sub 2 O sub 3 inclusion size, shape, and orientation on arc rate, intensity, and silicon wafer particle defect density. We found that the cross-sectional area of the inclusion exposed to the sputtering plasma is the critical parameter that determines the arc rate and rate of macroparticle emission. Analysis of the arc rate, particle defect...

  11. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    Science.gov (United States)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  12. Theoretical analysis and experimental study of spray degassing method

    International Nuclear Information System (INIS)

    Wu Ruizhi; Shu Da; Sun Baode; Wang Jun; Li Fei; Chen Haiyan; Lu YanLing

    2005-01-01

    A new hydrogen-removal method of aluminum melt, spray degassing, is presented. The thermodynamic and kinetic analysis of the method are discussed. A comparison between the thermodynamics and kinetics of the spray degassing method and rotary impellor degassing method is made. The thermodynamic analysis shows that the relationship between the final hydrogen content of the aluminum melt and the ratio of purge gas flow rate to melt flow rate is linear. The result of thermodynamic calculation shows that, in spray degassing, when the ratio of G/q is larger than 2.2 x 10 -6 , the final hydrogen content will be less than 0.1 ml/100 g Al. From the kinetic analysis, the degassing effect is affected by both the size of melt droplets and the time that melt droplets move from sprayer to the bottom of the treatment tank. In numerical calculation, the hydrogen in aluminum melt can be degassed to 0.05 ml/100 g Al from 0.2 ml/100 g Al in 0.02 s with the spray degassing method. Finally, the water-model experiments are presented with the spray degassing method and rotary impellor degassing method. Melt experiments are also presented. Both the water-model experiments and the melt experiments show that the degassing effect of the spray degassing method is better than that of the rotary impeller method

  13. Thermally sprayed prepregs for thixoforging of UD fiber reinforced light metal MMCs

    Science.gov (United States)

    Silber, Martin; Wenzelburger, Martin; Gadow, Rainer

    2007-04-01

    Low density and good mechanical properties are the basic requirements for lightweight structures in automotive and aerospace applications. With their high specific strength and strain to failure values, aluminum alloys could be used for such applications. Only the insufficient stiffness and thermal and fatigue strength prevented their usage in high-end applications. One possibility to solve this problem is to reinforce the light metal with unidirectional fibers. The UD fiber allows tailoring of the reinforcement to meet the direction of the component's load. In this study, the production of thermally sprayed prepregs for the manufacturing of continuous fiber reinforced MMC by thixoforging is analysed. The main aim is to optimize the winding procedure, which determines the fiber strand position and tension during the coating process. A method to wind and to coat the continuous fibers with an easy-to-use handling technique for the whole manufacturing process is presented. The prepregs were manufactured by producing arc wire sprayed AlSi6 coatings on fibers bundles. First results of bending experiments showed appropriate mechanical properties.

  14. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    International Nuclear Information System (INIS)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-01-01

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane

  15. The crystallization processes in the aluminum particles production technology

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The physical and mathematical model of the crystallization process of liquid aluminum particles in the spray-jet of the ejection-type atomizer was proposed. The results of mathematical modeling of two-phase flow in the spray-jet and the crystallization process of fluid particles are given. The influence of the particle size, of the flow rate and the stagnation temperature gas in the ranges of industrial technology implemented for the production of powders aluminum of brands ASD, on the crystallization characteristics were investigated. The approximations of the characteristics of the crystallization process depending on the size of the aluminum particles on the basis of two approaches to the mathematical description of the process of crystallization of aluminum particles were obtained. The results allow to optimize the process parameters of ejection-type atomizer to produce aluminum particles with given morphology.

  16. Influence of spray forming process parameters on the microstructure and porosity of Mg{sub 2}Si rich aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Stelling, O.; Hehl, A. von [Foundation Institute for Material Science, Bremen (Germany); Uhlenwinkel, V. [University of Bremen, FB4 FG01 Department Process and Chemcial Engineering, Bremen (Germany); Krug, P. [PEAK Werkstoff GmbH, Velbert (Germany); Ellendt, N.

    2010-07-15

    Due to high cooling rates spray forming is an appropriate process to produce aluminum alloys with a high content of Mg{sub 2}Si. Compared to common casting processes, a fine microstructure can be achieved yielding in improved mechanical properties. In this work, billets were spray formed from the two alloys AlMg15Si8Cu2 (22 mass-% Mg{sub 2}Si) and AlMg20.5Si11Cu2 (30 mass-% Mg{sub 2}Si) under different spraying conditions. The analysis of the microstructure showed that the size of Mg{sub 2}Si dispersoids is very sensitive to process parameters. Besides the well known thermal effects of melt superheat (carried out from -40 K to +170 K) and GMR (varied from 2.0 to 6.3) a strong influence of the scanning frequency of the atomizer nozzle (7 Hz and 15 Hz) could be observed. Similar effects could be found for the occurrence of porosity. A new parameter, the enthalpy flow to gas flow ratio (EGR), was defined from these two parameters of which correlations of Mg{sub 2}Si dispersoid size and amount of porosity were found. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  17. Tribological Characteristics of Tungsten Carbide Reinforced Arc Sprayed Coatings using Different Carbide Grain Size Fractions

    Directory of Open Access Journals (Sweden)

    W. Tillmann

    2017-06-01

    Full Text Available Tungsten carbide reinforced coatings play an important role in the field of surface engineering to protect stressed surfaces against wear. For thermally sprayed coatings, it is already shown that the tribological properties get mainly determined by the carbide grain size fraction. Within the scope of this study, the tribological characteristics of iron based WC-W2C reinforced arc sprayed coatings deposited using cored wires consisting of different carbide grain size fractions were examined. Microstructural characteristics of the produced coatings were scrutinized using electron microscopy and x-ray diffraction analyses. Ball-on-disk test as well as Taber Abraser and dry sand rubber wheel test were employed to analyze both the dry sliding and the abrasive wear behavior. It was shown that a reduced carbide grain size fraction as filling leads to an enhanced wear resistance against sliding. In terms of the Taber Abraser test, it is also demonstrated that a fine carbide grain size fraction results in an improved wear resistant against abrasion. As opposed to that, a poorer wear resistance was found within the dry sand rubber wheel tests. The findings show that the operating mechanisms for both abrasion tests affect the stressed surface in a different way, leading either to microcutting or microploughing.

  18. Design for low-cost gas metal arc weld-based aluminum 3-D printing

    Science.gov (United States)

    Haselhuhn, Amberlee S.

    Additive manufacturing, commonly known as 3-D printing, has the potential to change the state of manufacturing across the globe. Parts are made, or printed, layer by layer using only the materials required to form the part, resulting in much less waste than traditional manufacturing methods. Additive manufacturing has been implemented in a wide variety of industries including aerospace, medical, consumer products, and fashion, using metals, ceramics, polymers, composites, and even organic tissues. However, traditional 3-D printing technologies, particularly those used to print metals, can be prohibitively expensive for small enterprises and the average consumer. A low-cost open-source metal 3-D printer has been developed based upon gas metal arc weld (GMAW) technology. Using this technology, substrate release mechanisms have been developed, allowing the user to remove a printed metal part from a metal substrate by hand. The mechanical and microstructural properties of commercially available weld alloys were characterized and used to guide alloy development in 4000 series aluminum-silicon alloys. Wedge casting experiments were performed to screen magnesium, strontium, and titanium boride alloying additions in hypoeutectic aluminum-silicon alloys for their properties and the ease with which they could be printed. Finally, the top performing alloys, which were approximately 11.6% Si modified with strontium and titanium boride were cast, extruded, and drawn into wire. These wires were printed and the mechanical and microstructural properties were compared with those of commercially available alloys. This work resulted in an easier-to-print aluminum-silicon-strontium alloy that exhibited lower porosity, equivalent yield and tensile strengths, yet nearly twice the ductility compared to commercial alloys.

  19. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-05-25

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane.

  20. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    OpenAIRE

    Skryabin M.L.; Smekhova I. N.

    2017-01-01

    The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential depende...

  1. An assessment of thermal spray coating technologies for high temperature corrosion protection

    International Nuclear Information System (INIS)

    Heath, G.R.; Heimgartner, P.; Gustafsson, S.; Irons, G.; Miller, R.

    1997-01-01

    The use of thermally sprayed coatings in combating high temperature corrosion continues to grow in the major industries of chemical, waste incineration, power generation and pulp and paper. This has been driven partially by the development of corrosion resistant alloys, improved knowledge and quality in the thermal spray industry and continued innovation in thermal spray equipment. There exists today an extensive range of thermal spray process options, often with the same alloy solution. In demanding corrosion applications it is not sufficient to just specify alloy and coating method. For the production of reliable coatings the whole coating production envelope needs to be considered, including alloy selection, spray parameters, surface preparation, base metal properties, heat input etc. Combustion, arc-wire, plasma, HVOF and spray+fuse techniques are reviewed and compared in terms of their strengths and limitations to provide cost-effective solutions for high temperature corrosion protection. Arc wire spraying, HP/HVOF and spray+fuse are emerging as the most promising techniques to optimise both coating properties and economic/practical aspects. (orig.)

  2. Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing

    Science.gov (United States)

    Aldwell, Barry; Kelly, Elaine; Wall, Ronan; Amaldi, Andrea; O'Donnell, Garret E.; Lupoi, Rocco

    2017-10-01

    Additive manufacturing techniques such as cold spray are translating from research laboratories into more mainstream high-end production systems. Similar to many additive processes, finishing still depends on removal processes. This research presents the results from investigations into aspects of the machinability of aluminum 6061 tubes manufactured with cold spray. Through the analysis of cutting forces and observations on chip formation and surface morphology, the effect of cutting speed, feed rate, and heat treatment was quantified, for both cold-sprayed and bulk aluminum 6061. High-speed video of chip formation shows changes in chip form for varying material and heat treatment, which is supported by the force data and quantitative imaging of the machined surface. The results shown in this paper demonstrate that parameters involved in cold spray directly impact on machinability and therefore have implications for machining parameters and strategy.

  3. A model for prediction of fume formation rate in gas metal arc welding (GMAW), globular and spray modes, DC electrode positive.

    Science.gov (United States)

    Dennis, J H; Hewitt, P J; Redding, C A; Workman, A D

    2001-03-01

    Prediction of fume formation rate during metal arc welding and the composition of the fume are of interest to occupational hygienists concerned with risk assessment and to manufacturers of welding consumables. A model for GMAW (DC electrode positive) is described based on the welder determined process parameters (current, wire feed rate and wire composition), on the surface area of molten metal in the arc and on the partial vapour pressures of the component metals of the alloy wire. The model is applicable to globular and spray welding transfer modes but not to dip mode. Metal evaporation from a droplet is evaluated for short time increments and total evaporation obtained by summation over the life of the droplet. The contribution of fume derived from the weld pool and spatter (particles of metal ejected from the arc) is discussed, as are limitations of the model. Calculated droplet temperatures are similar to values determined by other workers. A degree of relationship between predicted and measured fume formation rates is demonstrated but the model does not at this stage provide a reliable predictive tool.

  4. Corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with addition of Al2O3

    Science.gov (United States)

    Zhang, Y.; Chen, Y.; Du, H. Q.; Zhao, YW

    2018-03-01

    Micro-arc oxidation (MAO) coatings were formed on the aluminum alloy in silicate-based electrolyte without and with the addition of Al2O3. It is showed that the coating produced in 7 g l‑1 Al2O3-containing electrolyte was of the most superior corrosion resistance. Besides, the corrosion properties of the coatings were studied by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test in both 0.5 M and 1 M NaCl solution. The results proved that the coating is capable to protect the substrate from the corrosion of aggressive Cl‑ in 0.5 M NaCl after 384 h immersion. However, it can not offer protection to the aluminum alloy substrate after 384 h immersion in 1 M NaCl solution. The schematic diagrams illustrate the corrosion process and matched well with the corrosion test results.

  5. Plasma spraying process of disperse carbides for spraying and facing

    International Nuclear Information System (INIS)

    Blinkov, I.V.; Vishnevetskaya, I.A.; Kostyukovich, T.G.; Ostapovich, A.O.

    1989-01-01

    A possibility to metallize carbides in plasma of impulsing capacitor discharge is considered. Powders granulation occurs during plasma spraying process, ceramic core being completely capped. X-ray phase and chemical analyses of coatings did not show considerable changes of carbon content in carbides before and after plasma processing. This distinguishes the process of carbides metallization in impulsing plasma from the similar processing in arc and high-frequency plasma generator. Use of powder composites produced in the impulsing capacitor discharge, for plasma spraying and laser facing permits 2-3 times increasing wear resistance of the surface layer as against the coatings produced from mechanical powders mixtures

  6. Research On Technology Of Making Rare Earth Alloy Having Rare Earth Content ≽30% From Ore (≽40% REO) Using Aluminum Thermal Technology In Arc Furnace

    International Nuclear Information System (INIS)

    Ngo Xuan Hung; Ngo Trong Hiep; Tran Duy Hai; Nguyen Huu Phuc

    2014-01-01

    Arc furnace was used to smelt materials consisting of rare earth ore having rare earth content of ≽40% REO, aluminum as the reducing agent and additives. Rare earth alloy was obtained with rare earth metal content of more than 30%. (author)

  7. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--cobalt permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high-temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating cobalt--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--cobalt magnets, sprayed from samarium-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million gauss-oersteds and coercive forces of approximately 6000 oersteds. Bar magnet arrays were constructed by depositing magnets on ceramic substrates. (auth)

  8. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--Co permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating Co--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--Co magnets, sprayed from Sm-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million G-Oe and coercive forces of approximately 6000 Oe. Bar magnet arrays were constructed by depositing magnets on ceramic substrates

  9. Sealing of thermally-sprayed stainless steel coatings against corrosion using nickel electroplating technique

    Directory of Open Access Journals (Sweden)

    Hathaipat Koiprasert

    2007-07-01

    Full Text Available Electric arc spraying (EAS is one of the thermal spray techniques used for restoration and to providecorrosion resistance. It can be utilized to build up coatings to thicknesses of several millimeters, It is easy to use on-site. Most importantly, the cost of this technique is lower than other thermal spraying techniques thatmay be suitable for part restoration. A major disadvantage associated with the electric arc sprayed coating is its high porosity, which can be as high as 3-8% making it not appropriate for use in immersion condition. This work was carried out around the idea of using electroplating to seal off the pore of the EAS coating, with an aim to improve the corrosion resistance of the coating in immersion condition. This research compared the corrosion behavior of a stainless steel 316 electric arc sprayed coating in 2M NaOH solution at 25oC. It was found that the Ni plating used as sealant can improve the corrosion resistance of the EAS coating. Furthermore, the smoothened and plated stainless steel 316 coating has a better corrosion resistance than the plated EAS coating that was not ground to smoothen the surface before plating.

  10. Characteristics of combustion flame sprayed nickel aluminum using a Coanda Assisted Spray Manipulation collar for off-normal deposits

    Science.gov (United States)

    Archibald, Reid S.

    A novel flame spray collar called the Coanda Assisted Spray Manipulation collar (CSM) has been tested for use on the Sulzer Metco 5P II combustion flame spray gun. A comparison study of the stock nozzle and the CSM has been performed by evaluating the porosity, surface roughness, microhardness, tensile strength and microscopy of normal and off-normal sprayed NiAl deposits. The use of the CSM collar resulted in the need to position the sprayed coupons closer to the gun, which in turn affected the particle impact energy and particle temperatures of the NiAl powder. For the CSM, porosities had a larger scatterband, surface roughness was comparably the same, microhardness was lower, and tensile strength was higher. The microscopy analysis revealed a greater presence of unmelted particles and steeper intersplat boundaries for the CSM. For both processes, the porosity and surface roughness increased and the microhardness decreased as the spray angle decreased.

  11. Cold Spray for Repair of Magnesium Components

    Science.gov (United States)

    2011-11-01

    Readiness Center East GM General Motors He helium hex-Cr hexavalent chromium HP-Al High Purity Aluminum HVOF High Velocity Oxygen Fuel ID inner...process is the hexavalent chromium (hex-Cr) permissible exposure limit (PEL) as established by the Occupational Safety and Health Administration (OSHA...project related to replacement of hard chrome plating on helicopter dynamic components using HVOF thermal spray coatings. FRC-E has a thermal spray

  12. Adsorption of alginate and albumin on aluminum coatings inhibits adhesion of Escherichia coli and enhances the anti-corrosion performances of the coatings

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiaoyan; Liu, Yi; Huang, Jing; Chen, Xiuyong; Ren, Kun; Li, Hua, E-mail: lihua@nimte.ac.cn

    2015-03-30

    Graphical abstract: - Highlights: • Adsorption behaviors of alginate and albumin on Al coatings were investigated at molecular level. • The adsorption inhibits effectively the colonization of Escherichia coli bacteria. • The adsorption alters the wettability of the Al coatings. • The conditioning layer enhances anti-corrosion performances of the Al coatings. - Abstract: Thermal-sprayed aluminum coatings have been extensively used as protective layers against corrosion for steel structures in the marine environment. The corrosion usually deteriorates from marine biofouling, yet the mechanism of accelerated corrosion of the coatings remains elusive. As the first stage participating in biofouling process, adsorption of molecules plays critical roles in mediating formation of biofilm. Here, we report at molecular level the adsorption behaviors of albumin and marine polysaccharide on arc-sprayed aluminum coatings and their influence on adhesion of Escherichia coli. The adsorption of alginate and albumin was characterized by infrared spectra analyses and atomic force microscopic observation. The adsorption inhibits effectively adhesion of the bacteria. Further investigation indicates that alginate/albumin altered the hydrophilicity/hydrophobicity of the coatings instead of impacting the survival of the bacteria to decline their adhesion. The conditioning layer composed of the molecules enhances anti-corrosion performances of the coatings.

  13. Adsorption of alginate and albumin on aluminum coatings inhibits adhesion of Escherichia coli and enhances the anti-corrosion performances of the coatings

    International Nuclear Information System (INIS)

    He, Xiaoyan; Liu, Yi; Huang, Jing; Chen, Xiuyong; Ren, Kun; Li, Hua

    2015-01-01

    Graphical abstract: - Highlights: • Adsorption behaviors of alginate and albumin on Al coatings were investigated at molecular level. • The adsorption inhibits effectively the colonization of Escherichia coli bacteria. • The adsorption alters the wettability of the Al coatings. • The conditioning layer enhances anti-corrosion performances of the Al coatings. - Abstract: Thermal-sprayed aluminum coatings have been extensively used as protective layers against corrosion for steel structures in the marine environment. The corrosion usually deteriorates from marine biofouling, yet the mechanism of accelerated corrosion of the coatings remains elusive. As the first stage participating in biofouling process, adsorption of molecules plays critical roles in mediating formation of biofilm. Here, we report at molecular level the adsorption behaviors of albumin and marine polysaccharide on arc-sprayed aluminum coatings and their influence on adhesion of Escherichia coli. The adsorption of alginate and albumin was characterized by infrared spectra analyses and atomic force microscopic observation. The adsorption inhibits effectively adhesion of the bacteria. Further investigation indicates that alginate/albumin altered the hydrophilicity/hydrophobicity of the coatings instead of impacting the survival of the bacteria to decline their adhesion. The conditioning layer composed of the molecules enhances anti-corrosion performances of the coatings

  14. Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Content

    Science.gov (United States)

    Fernandez, Ruben; Jodoin, Bertrand

    2018-04-01

    Deposition behavior and deposition efficiency were investigated for several aluminum-alumina mixture compositions sprayed by cold spray. An increase in deposition efficiency was observed. Three theories postulated in the literature, explaining this increase in deposition efficiency, were investigated and assessed. Through finite element analysis, the interaction between a ceramic particle peening an impacting aluminum particle was found to be a possible mechanism to increase the deposition efficiency of the aluminum particle, but a probability analysis demonstrated that this peening event is too unlikely to contribute to the increment in deposition efficiency observed. The presence of asperities at the substrate and deposited layers was confirmed by a single-layer deposition efficiency measurement and proved to be a major mechanism in the increment of deposition efficiency of the studied mixtures. Finally, oxide removal produced by the impact of ceramic particles on substrate and deposited layers was evaluated as the complement of the other effects and found to also play a major role in increasing the deposition efficiency. It was found that the coatings retained approximately half of the feedstock powder alumina content. Hardness tests have shown a steady increase with the coating alumina content. Dry wear tests have revealed no improvement in wear resistance in samples with an alumina content lower than 22 wt.% compared to pure aluminum coatings. Adhesion strength showed a steady improvement with increasing alumina content in the feedstock powder from 18.5 MPa for pure aluminum coatings to values above 70 MPa for the ones sprayed with the highest feedstock powder alumina content.

  15. Analytical methods to characterize heterogeneous raw material for thermal spray process: cored wire Inconel 625

    Science.gov (United States)

    Lindner, T.; Bonebeau, S.; Drehmann, R.; Grund, T.; Pawlowski, L.; Lampke, T.

    2016-03-01

    In wire arc spraying, the raw material needs to exhibit sufficient formability and ductility in order to be processed. By using an electrically conductive, metallic sheath, it is also possible to handle non-conductive and/or brittle materials such as ceramics. In comparison to massive wire, a cored wire has a heterogeneous material distribution. Due to this fact and the complex thermodynamic processes during wire arc spraying, it is very difficult to predict the resulting chemical composition in the coating with sufficient accuracy. An Inconel 625 cored wire was used to investigate this issue. In a comparative study, the analytical results of the raw material were compared to arc sprayed coatings and droplets, which were remelted in an arc furnace under argon atmosphere. Energy-dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) analysis were used to determine the chemical composition. The phase determination was performed by X-ray diffraction (XRD). The results were related to the manufacturer specifications and evaluated in respect to differences in the chemical composition. The comparison between the feedstock powder, the remelted droplets and the thermally sprayed coatings allows to evaluate the influence of the processing methods on the resulting chemical and phase composition.

  16. Estimation and control of droplet size and frequency in projected spray mode of a gas metal arc welding (GMAW) process.

    Science.gov (United States)

    Anzehaee, Mohammad Mousavi; Haeri, Mohammad

    2011-07-01

    New estimators are designed based on the modified force balance model to estimate the detaching droplet size, detached droplet size, and mean value of droplet detachment frequency in a gas metal arc welding process. The proper droplet size for the process to be in the projected spray transfer mode is determined based on the modified force balance model and the designed estimators. Finally, the droplet size and the melting rate are controlled using two proportional-integral (PI) controllers to achieve high weld quality by retaining the transfer mode and generating appropriate signals as inputs of the weld geometry control loop. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Investigation of method for Stainless Steel Welding Wire as a Replacement for Arc Wire Comsumables

    Directory of Open Access Journals (Sweden)

    Koiprasert, H.

    2005-01-01

    Full Text Available Arc spraying as a coating method is being employed in various industrial applications as a part of maintenance service, and also as a surface engineering technique for many machine parts and components. The major cost in producing the arc spray coating is, however, based on the cost of the arc wire comsumables. This project was carried out to investigate the use of the commercially-available gas metal arc welding wire (GMAW wire as a cheaper alternative to the special-purpose arc wire comsumables. The wire material chosen for this early study is the 316L stainless steel, due to its popularity in many applications as a built-up coating for worn parts. The physical properties of the coatings produced from the two sets of 316L stainless steel wire were determined to be different in the percentage of porosity and the oxide content. The mechanical properties, including the tensile bond strength and the wear rate of the coatings produced from the two types of sprayed wire, were also different. This will, in turn, result in a slight difference in the performance of thecoatings.

  18. Thermally Sprayed Aluminum Coatings for the Protection of Subsea Risers and Pipelines Carrying Hot Fluids

    Directory of Open Access Journals (Sweden)

    Nataly Ce

    2016-11-01

    Full Text Available This paper reports the effect of boiling synthetic seawater on the performance of damaged Thermally Sprayed Aluminum (TSA on carbon steel. Small defects (4% of the sample’s geometric surface area were drilled, exposing the steel, and the performance of the coating was analyzed for corrosion potential for different exposure times (2 h, 335 h, and 5000 h. The samples were monitored using linear polarization resistance (LPR in order to obtain their corrosion rate. Scanning electron microscopy (SEM/energy dispersive X-ray spectroscopy (EDX and X-ray diffraction (XRD were used for post-test characterization. The results showed that a protective layer of Mg(OH2 formed in the damaged area, which protected the underlying steel. Additionally, no coating detachment from the steel near the defect region was observed. The corrosion rate was found to be 0.010–0.015 mm/year after 5000 h in boiling synthetic seawater.

  19. A new method for thermal spraying of Zn-Al coatings

    International Nuclear Information System (INIS)

    Gorlach, I.A.

    2009-01-01

    This paper presents the development of the thermal spraying system built on the principles of the high velocity air flame (HVAF) process. HVAF sprayed coatings showed considerably higher bond strength than coatings obtained by the conventional methods, indicating the advantage of this method in areas where the adhesion strength is critically important. The highly dense structure of the coating obtained with HVAF eliminates a need for a top paint coat, which is typically applied on metal sprayed coatings to extend service life. The thermal sprayed coatings were characterized by the standard techniques, such as light microscopy, scanning electron microscopy with energy-dispersive spectroscopy, X-ray diffraction, salt spray and bond strength tests. The results show that thermal sprayed coatings have a dense structure, low presence of oxides and high resistance to corrosion. High spray rate and good coating quality make the HVAF thermal spray method a viable alternative to the conventional thermal spraying technologies, such as Wire Flame and Twin-Wire Arc.

  20. Investigating Tribological Characteristics of HVOF Sprayed AISI 316 Stainless Steel Coating by Pulsed Plasma Nitriding

    Science.gov (United States)

    Mindivan, H.

    2018-01-01

    In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.

  1. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-04-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  2. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-02-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  3. Protection of Reinforced Concrete Structures of Waste Water Treatment Reservoirs with Stainless Steel Coating Using Arc Thermal Spraying Technique in Acidified Water

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-09-01

    Full Text Available Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance—a mixture of Cr3+ enriched with Cr2O3 and Cr-hydroxide in inner and Fe3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions.

  4. The Influence of Nanodispersed Modifiers on the Structure and Properties of Plasma-Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Igor V. Smirnov

    2017-10-01

    Full Text Available Background. Currently, plasma-sprayed coatings are widely used to protect machine parts operating under conditions of high loads and temperatures, abrasive wear and exposure to corrosive media. Objective. The aim of the paper is to improve the physico-mechanical characteristics of plasma-sprayed coatings by modification of nano-sized particles of TiO2 oxides compounds. Methods. Experimental studies of corrosion resistance, microhardness, adhesion strength and residual stresses of plasma-sprayed coatings based on the oxide aluminum ceramic powder with the addition of nanodisperse TiO2 powder were conducted. Results. It is found that addition of TiO2 nanodisperse modifier to the oxide aluminum ceramic powder composition leads to corrosion resistance increase 2.8 times in a 10 % hydrochloric acid solution. The adhesive strength of ceramic nanomodified coatings is increased by 15–20 %. Conclusions. The positive influence of nanodispersed powders on the physico-mechanical and tribological characteristics of plasma-sprayed coatings is established.

  5. Yttrium aluminum garnet coating on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Camila M.A.; Freiria, Gabriela S.; Faria, Emerson H. de; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J., E-mail: eduardo.nassar@unifran.edu.br

    2016-02-15

    Thin luminescent films have seen great technological advances and are applicable in the production of a variety of materials such as sensors, solar cells, photovoltaic devices, optical magnetic readers, waveguides, lasers, and recorders. Systems that contain yttrium aluminum oxide are important hosts for lanthanide ions and serve as light emission devices. This work deals with the deposition of yttrium aluminum garnet (YAG) film doped with Eu{sup 3+} onto a glass substrate obtained by the sol–gel methodology. Spray pyrolysis furnished the yttrium aluminum oxide powder. Dip-coating at a withdrawal speed of 10 mm min{sup −1} and evaporation led to deposition of different numbers of layers of the YAG:Eu{sup 3+} film onto the glass substrate from a YAG:Eu{sup 3+} powder suspension containing ethanol, water, and tetraethylorthosilicate. Photoluminescence, X-ray diffraction, scanning electron microscopy, and transparency measurements aided film characterization. The emission spectra revealed that the number of layers influenced film properties. - Highlights: • The spray pyrolysis was used to obtain luminescent YAG:Eu{sup 3+}. • The matrix was deposited as transparent films. • The YAG:Eu{sup 3+} was deposited by sol–gel process onto glass substrate.

  6. Yttrium aluminum garnet coating on glass substrate

    International Nuclear Information System (INIS)

    Ferreira, Camila M.A.; Freiria, Gabriela S.; Faria, Emerson H. de; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J.

    2016-01-01

    Thin luminescent films have seen great technological advances and are applicable in the production of a variety of materials such as sensors, solar cells, photovoltaic devices, optical magnetic readers, waveguides, lasers, and recorders. Systems that contain yttrium aluminum oxide are important hosts for lanthanide ions and serve as light emission devices. This work deals with the deposition of yttrium aluminum garnet (YAG) film doped with Eu 3+ onto a glass substrate obtained by the sol–gel methodology. Spray pyrolysis furnished the yttrium aluminum oxide powder. Dip-coating at a withdrawal speed of 10 mm min −1 and evaporation led to deposition of different numbers of layers of the YAG:Eu 3+ film onto the glass substrate from a YAG:Eu 3+ powder suspension containing ethanol, water, and tetraethylorthosilicate. Photoluminescence, X-ray diffraction, scanning electron microscopy, and transparency measurements aided film characterization. The emission spectra revealed that the number of layers influenced film properties. - Highlights: • The spray pyrolysis was used to obtain luminescent YAG:Eu 3+ . • The matrix was deposited as transparent films. • The YAG:Eu 3+ was deposited by sol–gel process onto glass substrate.

  7. Effects of Preprocessing on Multi-Direction Properties of Aluminum Alloy Cold-Spray Deposits

    Science.gov (United States)

    Rokni, M. R.; Nardi, A. T.; Champagne, V. K.; Nutt, S. R.

    2018-05-01

    The effects of powder preprocessing (degassing at 400 °C for 6 h) on microstructure and mechanical properties of 5056 aluminum deposits produced by high-pressure cold spray were investigated. To investigate directionality of the mechanical properties, microtensile coupons were excised from different directions of the deposit, i.e., longitudinal, short transverse, long transverse, and diagonal and then tested. The results were compared to properties of wrought 5056 and the coating deposited with as-received 5056 Al powder and correlated with the observed microstructures. Preprocessing softened the particles and eliminated the pores within them, resulting in more extensive and uniform deformation upon impact with the substrate and with underlying deposited material. Microstructural characterization and finite element simulation indicated that upon particle impact, the peripheral regions experienced more extensive deformation and higher temperatures than the central contact zone. This led to more recrystallization and stronger bonding at peripheral regions relative to the contact zone area and yielded superior properties in the longitudinal direction compared with the short transverse direction. Fractography revealed that crack propagation takes place along the particle-particle interfaces in the transverse directions (caused by insufficient bonding and recrystallization), whereas through the deposited particles, fracture is dominant in the longitudinal direction.

  8. Influence of process parameters on the cavitation resistance of arc thermally sprayed cobalt stainless steel; Influencia dos parametros de processo na resistencia a cavitacao de uma liga inoxidavel com cobalto aspergido a arco

    Energy Technology Data Exchange (ETDEWEB)

    Pukasiewicz, A. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Capra, A.R.; Chandelier, J. da L. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)], e-mail: anderson.geraldo@lactec.org.br; Paredes, R.S.C. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    In this work the influence of the arc thermal spraying process on the microstructure, oxide volumetric fraction, porosity and cavitation resistance was studied. The characterization was performed by optical and electrical microscopy, microhardness and ultrasonic cavitation test, ASTM G32-96 in AS895HY cobalt stainless steel. The increase in air pressure, 280 to 410 kPa, modified the oxide fraction from 17,2 +- 3,6% to 10,9 +-1,8%, in the samples without pre-heating treatment. With 120 deg C pre-heating treatment the oxide fraction increase from 24,1 +- 2,8% to 12,8 +- 1,9% when the air pressure was modified from 280 to 550 kPa. The mass loss in vibration-induced cavitation were 1,55 and 1,42 mg/h for 410 kPa AS895HY samples, with and without pre heating treatment, and 2,12 mg/h for 280 kPa samples without pre heating treatment. The results showed that the process parameters modified the microstructure and the cavitation resistance of the arc thermal spraying coatings. (author)

  9. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    Skryabin M.L.

    2017-12-01

    Full Text Available The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential dependence of the current density from the electric field in the surface film of the base metal. The role of discharges in the formation of oxide layers on the treated surface. Proposed and described features of the three main theories of formation of oxide films on the surface of the piston: physical and geometrical model of Keller; models of formation of oxide films as a colloid formations and plasma theory (theory of oxidation with the formation of plasma in the zone of oxidation. The features of formation of films in each of the models. For the model of Keller porous oxide film is a close-Packed oxide cell, having the shape of a prism. They are based on a hexagonal prism. These cells have normal orientation to the surface of the metal. In the center of the unit cell there is one season that is a channel, whose size is determined by the composition of the electrolyte, the chemical composition of the base metal and the electrical parameters of the process of oxidation. In the micro-arc oxidation process according to this model, the beginning of the formation of cells occurs with the formation of the barrier layer, passing in the porous layer and, over time, the elonga-tion of the pores, due to the constant etching electrolyte. In the theory of formation of the oxide films as kolloidnyh formations revealed that formation of pores in the film is a result of their growth. The anodic oxide is represented by a directed electric field, the alumina gel colloidal and

  10. The Influence of Anode Inner Contour on Atmospheric DC Plasma Spraying Process

    Directory of Open Access Journals (Sweden)

    Kui Wen

    2017-01-01

    Full Text Available In thermal plasma spraying process, anode nozzle is one of the most important components of plasma torch. Its inner contour controls the characteristics of plasma arc/jet, determining the motion and heating behaviors of the in-flight particles and hence influencing the coating quality. In this study, the effects of anode inner contour, standard cylindrical nozzle, and cone-shaped Laval nozzle with conical shape diverging exit (CSL nozzle on the arc voltage, net power, thermal efficiency, plasma jet characteristics, in-flight particle behaviors, and coating properties have been systematically investigated under atmospheric plasma spraying conditions. The results show that the cylindrical nozzle has a higher arc voltage, net power, and thermal efficiency, as well as the higher plasma temperature and velocity at the torch exit, while the CSL nozzle has a higher measured temperature of plasma jet. The variation trends of the plasma jet characteristics for the two nozzles are comparable under various spraying parameters. The in-flight particle with smaller velocity of CSL nozzle has a higher measured temperature and melting fraction. As a result, the coating density and adhesive strength of CSL nozzle are lower than those of cylindrical nozzle, but the deposition efficiency is greatly improved.

  11. Modelling of arc behaviour inside a F4 APS torch

    International Nuclear Information System (INIS)

    Ramachandran, K; Marques, J-L; Vassen, R; Stoever, D

    2006-01-01

    The plasma arc inside the F4 torch used for atmospheric plasma spraying is characterized by means of analytical and numerical methods. A simplified analytical model is formulated to understand the physical behaviour of the plasma arc. A three-dimensional numerical model is developed to simulate the realistic plasma arc flow inside the torch. At a given torch power and gas flow rate, possible combinations of the arc core radius and arc length are predicted. The thermodynamic principle of minimum entropy production is used to determine the combination of arc core radius and arc length, which corresponds to the actual physical situation of the arc inside the torch. The effect of arc current and gas flow rate on the plasma arc characteristics is clarified. The effect of hydrogen content in the plasma gas on its velocity and temperature profiles at the nozzle exit is shown. Predicted torch efficiencies are comparable to measured ones. The results of the numerical model are similar to that an analytical model. Previously published experimental and numerical results support part of the present results

  12. Some Material Characteristics of Cold-Sprayed Structures

    Directory of Open Access Journals (Sweden)

    Victor K. Champagne

    2007-01-01

    Full Text Available The deposition and consolidation of metal powders by means of cold spray are methods whereby powder particles are accelerated to high velocity through entrainment in a gas undergoing expansion in a rocket nozzle and are subsequently impacted upon a surface. The impacted powder particles form a consolidated structure which can be several centimeters thick. The characteristics of this structure depend on the initial characteristics of the metal powder and upon impact velocity. The influence of impact velocity on strain hardening and porosity are examined. A materials model is proposed for these phenomena, and model calculation is compared with experiment for the cold spraying of aluminum.

  13. Investigation on the Tribological Behavior of Arc-Sprayed and Hammer-Peened Coatings Using Tungsten Carbide Cored Wires

    Science.gov (United States)

    Tillmann, W.; Hagen, L.; Schröder, P.

    2017-01-01

    Due to their outstanding properties, WC-W2C iron-based cermet coatings are widely used in the field of wear protection. Regarding commonly used WC-W2C reinforced coating systems, it has been reported that their tribological behavior is mainly determined by the carbide grain size fraction. Although the manufacturing route for arc-sprayed WC-W2C cermet coatings is in an advanced state, there is still a lack of knowledge concerning the performance of cored wires with tungsten carbides as filling material and their related coating properties when post-treatment processes are used such as machine hammer peening (MHP). A major objective was to characterize WC-W2C FeCMnSi coatings, deposited with different carbide grain size fractions as a filling using cored wires, with respect to their tribological behavior. Moreover, deposits derived from cored wires with a different amount of hard phases are investigated. According to this, polished MHP surfaces are compared to as-sprayed and polished samples by means of metallographic investigations. With the use of ball-on-disk and dry rubber wheel tests, dry sliding and rolling wear effects on a microscopic level are scrutinized. It has been shown that the MHP process leads to a densification of the microstructure formation. For dry sliding experiments, the MHP coatings obtain lower wear resistances, but lower coefficients of friction than the conventional coatings. In view of abrasion tests, the MHP coatings possess an improved wear resistance. Strain hardening effects at the subsurface area were revealed by the mechanical response using nanoindentation. However, the MHP process has caused a cracking of embedded carbides, which favor breakouts, leading to advanced third-body wear.

  14. Sprayed and Spin-Coated Multilayer Antireflection Coating Films for Nonvacuum Processed Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2017-01-01

    Full Text Available Using the simple and cost-effective methods, spin-coated ZrO2-polymer composite/spray-deposited TiO2-compact multilayer antireflection coating film was introduced. With a single TiO2-compact film on the surface of a crystalline silicon wafer, 5.3% average reflectance (the reflectance average between the wavelengths of 300 nm and 1100 nm was observed. Reflectance decreased further down to 3.3% after forming spin-coated ZrO2 on the spray-deposited TiO2-compact film. Silicon solar cells were fabricated using CZ-Si p-type wafers in three sets: (1 without antireflection coating (ARC layer, (2 with TiO2-compact ARC film, and (3 with ZrO2-polymer composite/TiO2-compact multilayer ARC film. Conversion efficiency of the cells improved by a factor of 0.8% (from 15.19% to 15.88% owing to the multilayer ARC. Jsc was improved further by 2 mA cm−2 (from 35.3 mA cm−2 to 37.2 mA cm−2 when compared with a single TiO2-compact ARC.

  15. Modelling of fluid flow phenomenon in laser+GMAW hybrid welding of aluminum alloy considering three phase coupling and arc plasma shear stress

    Science.gov (United States)

    Xu, Guoxiang; Li, Pengfei; Cao, Qingnan; Hu, Qingxian; Gu, Xiaoyan; Du, Baoshuai

    2018-03-01

    The present study aims to develop a unified three dimensional numerical model for fiber laser+GMAW hybrid welding, which is used to study the fluid flow phenomena in hybrid welding of aluminum alloy and the influence of laser power on weld pool dynamic behavior. This model takes into account the coupling of gas, liquid and metal phases. Laser heat input is described using a cone heat source model with changing peak power density, its height being determined based on the keyhole size. Arc heat input is modeled as a double ellipsoid heat source. The arc plasma flow and droplet transfer are simulated through the two simplified models. The temperature and velocity fields for different laser powers are calculated. The computed results are in general agreement with the experimental data. Both the peak and average values of fluid flow velocity during hybrid welding are much higher than those of GMAW. At a low level of laser power, both the arc force and droplet impingement force play a relatively large role on fluid flow in the hybrid welding. Keyhole depth always oscillates within a range. With an increase in laser power, the weld pool behavior becomes more complex. An anti-clockwise vortex is generated and the stability of keyhole depth is improved. Besides, the effects of laser power on different driving forces of fluid flow in weld pool are also discussed.

  16. Post-heat treatment of arc-sprayed coating prepared by the wires combination of Mg-cathode and Al-anode to form protective intermetallic layers

    International Nuclear Information System (INIS)

    Xu Rongzheng; Song Gang

    2011-01-01

    A Mg-Al intermetallic compounds coating was prepared on the surface of Mg-steel lap joint by arc-sprayed Al-Mg composite coating (Mg-cathode and Al-anode) and its post-heat treatment (PHT). The effect of PHT temperature on the phase transition, microstructure and mechanical properties of the coating was investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, optical microscope and microhardness test. The result shows that the intermetallic compounds layer that is mainly composed of Al 3 Mg 2 and Mg 17 Al 12 is formed by the self-diffusion reaction of Mg and Al splats in the coating after PHT for 4 h at 430 deg. C.

  17. Vacuum arc anode plasma. I. Spectroscopic investigation

    International Nuclear Information System (INIS)

    Bacon, F.M.

    1975-01-01

    A spectroscopic investigation was made of the anode plasma of a pulsed vacuum arc with an aluminum anode and a molybdenum cathode. The arc was triggered by a third trigger electrode and was driven by a 150-A 10-μs current pulse. The average current density at the anode was sufficiently high that anode spots were formed; these spots are believed to be the source of the aluminum in the plasma investigated in this experiment. By simultaneously measuring spectral emission lines of Al I, Al II, and Al III, the plasma electron temperature was shown to decrease sequentially through the norm temperatures of Al III, Al II, and Al I as the arc was extinguished. The Boltzmann distribution temperature T/subD/ of four Al III excited levels was shown to be kT/subD//e=2.0plus-or-minus0.5 V, and the peak Al III 4D excited state density was shown to be about 5times10 17 m -3 . These data suggest a non-local-thermodynamic-equilibrium (non-LTE) model of the anode plasma when compared with the Al 3+ production in the plasma. The plasma was theoretically shown to be optically thin to the observed Al III spectral lines

  18. Colorimetric properties of TiN coating implanted by aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.G. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: zhouqg99@mails.tsinghua.edu.cn; Bai, X.D. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xue, X.Y. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Ling, Y.H. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chen, X.W. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xu, J. [Beijing Great Wall Ti-Gold Corporation, Beijing 100095 (China); Wang, D.R. [Beijing Great Wall Ti-Gold Corporation, Beijing 100095 (China)

    2005-04-05

    TiN coating was prepared by cathodic arc deposition and implanted aluminum using a metal vacuum vapor arc ion source with doses ranging from 5 x 10{sup 16} to 2 x 10{sup 17} ions/cm{sup 2}. The purpose of this work was to determine the dependence of the colorimetric properties of TiN films on the implanting conditions, especially by the aluminum ion implantation. The colorimetry of coatings was evaluated quantitatively in terms of CIE L * a * b *. The color coordinate values L *, a *, and b * provide a numerical representation of the color of the surface. With the dose increasing, the surface color has no obvious change but the surface turns brighter, and a * as well as b * values all decline. The X-ray diffraction patterns showed that the aluminum implantation induced a slight shift of diffraction peaks. X-ray photoemission spectroscopy was employed to analyze the surface valence states. The oxygen in surface top layer does not decrease a * and b * values, it partially combined with nitrogen.

  19. Initial Testing for the Recommendation of Improved Gas Metal Arc Welding Procedures for HY-80 Steel Plate Butt Joints at Norfolk Naval Shipyard

    Science.gov (United States)

    2015-12-01

    17  Figure 11.  IRMS versus VRMS Comparison with Different Ar/CO2 Gas Mixtures Using GMAW-P...21  Figure 13.  IRMS versus VRMS Comparison with Miller and Lincoln Welding Machines in the Horizontal and Vertical Positions Using GMAW-P...Gas Metal Arc Welding Pulsed Spray Transfer GMAW-S Gas Metal Arc Welding Spray Transfer HAZ Heat Affected Zone HC#1 Hull Cut #1 IRMS Current Root

  20. Low pressure plasma spray deposition of W-Ni-Fe alloy

    International Nuclear Information System (INIS)

    Mutasim, Z.Z.; Smith, R.W.

    1991-01-01

    The production of net shape refractory metal structural preforms are increasing in importance in chemical processing, defense and aerospace applications. Conventional methods become limited for refractory metal processing due to the high melting temperatures and fabrication difficulties. Plasma spray forming, a high temperature process, has been shown to be capable of refractory metal powder consolidation in net shape products. The research reported here has evaluated this method for the deposition of heavy tungsten alloys. Plasma Melted Rapidly Solidified (PMRS) W 8%Ni-2%Fe refractory metal powders were spray formed using vacuum plasma spray (VPS) process and produced 99% dense, fine grain and homogeneous microstructures. In this paper plasma operating parameters (plasma arc gas type and flowrate plasma gun nozzle size and spray distance) were studied and their effects on deposit's density and microstructure are reported

  1. Painting rusted steel: The role of aluminum phosphosilicate

    International Nuclear Information System (INIS)

    Roselli, S.N.; Amo, B. del; Carbonari, R.O.; Di Sarli, A.R.; Romagnoli, R.

    2013-01-01

    Highlights: •Aluminum phosphosilicate is an acid pigment which could act as mild phosphating agent. •Aluminum phosphosilicate can phosphatize iron oxides on rusted surfaces. •Aluminum phosphosilicate is compatible with acid binders. •Aluminum phosphosilicate could replace chromate in complete painting schemes. •Aluminum phosphosilicate primers improve paints adhesion on rusted surfaces. -- Abstract: Surface preparation is a key factor for the adequate performance of a paint system. The aim of this investigation is to employ a wash-primer to accomplish the chemical conversion of rusted surface when current cleaning operations are difficult to carry out. The active component of the wash-primer was aluminum phosphosilicate whose electrochemical behavior and the composition of the generated protective layer, both, were studied by electrochemical techniques and scanning electron microscopy (SEM), respectively. Primed rusted steel panels were coated with an alkyd system to perform accelerated tests in the salt spray chamber and electrochemical impedance measurements (EIS). These tests were conducted in parallel with a chromate wash primer and the same alkyd system. Results showed that the wash-primer containing aluminum phosphosilicate could be used satisfactorily to paint rusted steel exhibiting a similar performance to the chromate primer

  2. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    International Nuclear Information System (INIS)

    Hollis, Kendall J.; Pena, Maria I.

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  3. Futurepath: The Story of Research and Technology at NASA Lewis Research Center. Structures for Flight Propulsion, ARC Sprayed Monotape, National Aero-Space Plane

    Science.gov (United States)

    1989-01-01

    The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.

  4. Correlation of microstructure and wear resistance of molybdenum blend coatings fabricated by atmospheric plasma spraying

    International Nuclear Information System (INIS)

    Hwang, Byoungchul; Lee, Sunghak; Ahn, Jeehoon

    2004-01-01

    The correlation of microstructure and wear resistance of various molybdenum blend coatings applicable to automotive parts was investigated in this study. Five types of spray powders, one of which was pure molybdenum powder and the others were blends of brass, bronze, and aluminum alloy powders with molybdenum powder, were deposited on a low-carbon steel substrate by atmospheric plasma spraying (APS). Microstructural analysis of the coatings showed that they consisted of a curved lamellar structure formed by elongated splats, with hard phases that formed during spraying being homogeneously distributed in the molybdenum matrix. The wear test results revealed that the blend coatings showed better wear resistance than the pure molybdenum coating because they contained a number of hard phases. In particular, the molybdenum coating blended with bronze and aluminum alloy powders and the counterpart material showed an excellent wear resistance due to the presence of hard phases, such as CuAl 2 and Cu 9 Al 4 . In order to improve overall wear properties for the coating and the counterpart material, appropriate spray powders should be blended with molybdenum powders to form hard phases in the coatings

  5. Plasma sprayed coatings on crankshaft used steels

    Science.gov (United States)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  6. Arcing at B4C-covered limiters exposed to a SOL-plasma

    International Nuclear Information System (INIS)

    Laux, M.; Schneider, W.; Wienhold, P.; Juettner, B.; Huber, A.; Balden, M.; Linke, J.; Kostial, H.; Mayer, M.; Rubel, M.; Herrmann, A.; Pospieszczyk, A.; Jachmich, S.; Schweer, B.; Hildebrandt, D.; Bolt, H.

    2003-01-01

    Plasma sprayed B 4 C-layers considered as wall coatings for the W7X stellarator have been studied during and after exposure to TEXTOR and after arcing experiments in vacuum. Arcing through the B 4 C layer occurred favoured by high power fluxes and not restricted to less stable phases. But this arcing implies an especially noisy scrape-off layer (SOL). Instead of moving retrograde in the external magnetic field, the arc spot on the B 4 C-layer sticks to the same location for its whole lifetime. Consequently, the arc erodes the entire B 4 C layer, finally burning down to the Cu substrate. In the neighbourhood of craters the surface contains Cu originating from those craters. This material, hauled to the surface by the arc, is subject to subsequent erosion, transport, and redeposition by the SOL-plasma. The behaviour of arcs on B 4 C is most probably caused by the peculiar temperature dependences of the electrical and heat conductivity of B 4 C

  7. Welding robot package; Arc yosetsu robot package

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S. [Yaskawa Electric Corp., Kitakyushu (Japan)

    1998-09-01

    For the conventional high-speed welding robot, the welding current was controlled mainly for reducing the spatters during short circuits and for stabilizing the beads by the periodic short circuits. However, an increase of deposition amount in response to the speed is required for the high-speed welding. Large-current low-spatter welding current region control was added. Units were integrated into a package by which the arc length is kept in short without dispersion of arc length for welding without defects such as undercut and unequal beads. In automobile industry, use of aluminum parts is extended for the light weight. The welding is very difficult, and automation is not so progressing in spite of the poor environment. Buckling of welding wire is easy to occur, and supply of wire is obstructed by the deposition of chipped powders on the torch cable, which stay within the contact chip resulting in the deposition. Dislocation of locus is easy to occur at the corner of rectangular pipe during the welding. By improving these troubles, an aluminum MIG welding robot package has been developed. 13 figs.

  8. Essential Factors Influencing the Bonding Strength of Cold-Sprayed Aluminum Coatings on Ceramic Substrates

    Science.gov (United States)

    Drehmann, R.; Grund, T.; Lampke, T.; Wielage, B.; Wüstefeld, C.; Motylenko, M.; Rafaja, D.

    2018-02-01

    The present work summarizes the most important results of a research project dealing with the comprehensive investigation of the bonding mechanisms between cold-sprayed Al coatings and various poly- and monocrystalline ceramic substrates (Al2O3, AlN, Si3N4, SiC, MgF2). Due to their exceptional combination of properties, metallized ceramics are gaining more and more importance for a wide variety of applications, especially in electronic engineering. Cold spray provides a quick, flexible, and cost-effective one-step process to apply metallic coatings on ceramic surfaces. However, since most of the existing cold-spray-related publications focus on metallic substrates, only very little is known about the bonding mechanisms acting between cold-sprayed metals and ceramic substrates. In this paper, the essential factors influencing the bonding strength in such composites are identified. Besides mechanical tensile strength testing, a thorough analysis of the coatings and especially the metal/ceramic interfaces was conducted by means of HRTEM, FFT, STEM, EDX, EELS, GAXRD, and EBSD. The influence of substrate material, substrate temperature, and particle size is evaluated. The results suggest that, apart from mechanical interlocking, the adhesion of cold-sprayed metallic coatings on ceramics is based on a complex interplay of different mechanisms such as quasiadiabatic shearing, static recrystallization, and heteroepitaxial growth.

  9. dc-plasma-sprayed electronic-tube device

    Science.gov (United States)

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  10. Understanding plasma spraying process and characteristics of DC-arc plasma gun (PJ-100

    Directory of Open Access Journals (Sweden)

    Jovana Ružić

    2012-12-01

    Full Text Available The thermal spray processes are a group of coating processes used to apply metallic or non-metallic coatings. In these processes energy sources are used to heat the coating material (in the form of powder, wire, or rod form to a molten or semi-molten state and accelerated towards a prepared surface by either carrier gases or atomization jets. In plasma spraying process, the spraying material is generally in the form of powder and requires a carrier gas to feed the powder into the plasma jet, which is passing between the hot cathode and the cylindrical nozzle-shaped anode. The design of DC plasma gun (PJ - 100 is designed and manufactured in Serbia. Plasma spaying process, the powder injection with the heat, momentum and mass transfers between particles and plasma jet, and the latest developments related to the production of DC plasma gun are described in this article.

  11. Formation of hydrotalcite coating on the aluminum alloy 6060 in spray system

    DEFF Research Database (Denmark)

    Zhou, Lingli; Friis, Henrik; Roefzaad, Melanie

    2016-01-01

    Coatings with the composition of Li-Al-NO3 hydrotalcite were formed on the Al alloy 6060 using a spray system. The coatings consist of crystals with a typical hydrotalcite structure. Dense, uniform and blade-like flakes cover completely the surface of the Al substrate. The coatings display a multi......-layer structure with average thickness of ∼1000 nm. The hydrotalcite-coated samples performed better than those without coatings in salt-spray and filiform-corrosion tests, and further treatment involving sealing with a Mg acetate solution and dipping in a H2O2 + Ce-based solution improved the corrosion...

  12. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Jalili, M. [Nanomaterials and Nanocoatings Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Surface Coatings and Corrosion Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Nanomaterials and Nanocoatings Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Surface Coatings and Corrosion Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Highlights: • Aluminum nanoparticle was modified with amino trimethylene phosphonic acid. • 2 wt% of zinc dust in zinc-rich paint was substituted by aluminum nanoparticles. • Surface modified aluminum nanoparticle improved the cathodic period of protection. • Aluminum nanoparticles enhanced the corrosion protection of the zinc-rich coating. - Abstract: Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties.

  13. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    International Nuclear Information System (INIS)

    Jalili, M.; Rostami, M.; Ramezanzadeh, B.

    2015-01-01

    Highlights: • Aluminum nanoparticle was modified with amino trimethylene phosphonic acid. • 2 wt% of zinc dust in zinc-rich paint was substituted by aluminum nanoparticles. • Surface modified aluminum nanoparticle improved the cathodic period of protection. • Aluminum nanoparticles enhanced the corrosion protection of the zinc-rich coating. - Abstract: Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties

  14. Processing-Microstructure-Property Relationships for Cold Spray Powder Deposition of Al-Cu Alloys

    Science.gov (United States)

    2015-06-01

    Champagne [18]. The simulations were completed to compare the simulated particle exit velocities versus the measured particle exit velocities. In...620 m/s to 670 m/s [39]. V. Champagne states that for pure aluminum, an acceptable critical velocity for the deposition of pure aluminum is anything...Materials and Processess, vol. 168, no. 5, pp. 53–55, May 2010. [3] V. K. Champagne and P. F. Leyman, “Cold Spray Process Development for the Reclamation

  15. Fracture property of double cantilever beam of aluminum foam bonded with spray adhesive

    International Nuclear Information System (INIS)

    Han, Moon Sik; Choi, Hae Kyu; Cho, Jae Ung; Cho, Chong Du

    2015-01-01

    Aluminum foam with the property of excellent impact absorption has been widely used recently. It is necessary to study fracture energy due to energy release rate by the use of adhesive joint at aluminum foam. This study aims at strength evaluation about adhesive joint on aluminum foam. Bonded DCB specimens with this material property are experimented and the fracture behavior is analyzed by simulation. These specimens are designed by differing in height on the basis of British industrial and ISO standards. As the value of height at model is higher, bonded part is separated to the end. By comparing analysis results with experimental data, these data could agree with each other. By the confirmation with experimental results, these all simulation results in this study can be applied on real composite structure with aluminum foam material effectively. The fracture behavior and its property can also be examined by this study.

  16. Mitigating Localized Corrosion Using Thermally Sprayed Aluminum (TSA) Coatings on Welded 25% Cr Superduplex Stainless Steel

    Science.gov (United States)

    Paul, S.; Lu, Q.; Harvey, M. D. F.

    2015-04-01

    Thermally sprayed aluminum (TSA) coating has been increasingly used for the protection of carbon steel offshore structures, topside equipment, and flowlines/pipelines exposed to both marine atmospheres and seawater immersion conditions. In this paper, the effectiveness of TSA coatings in preventing localized corrosion, such as pitting and crevice corrosion of 25% Cr superduplex stainless steel (SDSS) in subsea applications, has been investigated. Welded 25% Cr SDSS (coated and uncoated) with and without defects, and surfaces coated with epoxy paint were also examined. Pitting and crevice corrosion tests, on welded 25% Cr SDSS specimens with and without TSA/epoxy coatings, were conducted in recirculated, aerated, and synthetic seawater at 90 °C for 90 days. The tests were carried out at both the free corrosion potentials and an applied cathodic potential of -1100 mV saturated calomel electrode. The acidity (pH) of the test solution was monitored daily and adjusted to between pH 7.5 and 8.1, using dilute HCl solution or dilute NaOH, depending on the pH of the solution measured during the test. The test results demonstrated that TSA prevented pitting and crevice corrosion of 25% Cr SDSS in artificial seawater at 90 °C, even when 10-mm-diameter coating defect exposing the underlying steel was present.

  17. Investigation of interface boundary occurring during cold gas-dynamic spraying of metallic particles

    CERN Document Server

    Bolesta, A V; Sharafutdinov, M R; Tolochko, B P

    2001-01-01

    An interface boundary occurring during cold gas dynamic spraying of aluminum particles on a nickel substrate has been studied by the method of X-ray grazing diffraction. Presence of boundary phase of the intermetallic compound Ni sub 3 Al was found.

  18. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate

    Science.gov (United States)

    Hou, Guoliang; An, Yulong; Zhao, Xiaoqin; Zhou, Huidi; Chen, Jianmin; Li, Shuangjian; Liu, Xia; Deng, Wen

    2017-07-01

    Plasma sprayed ceramic coatings can be used to improve the mechanical properties and wear resistance of aluminum alloys, but there are still some challenges to effectively increase their interfacial adhesion. Thus we conducted plasma arc-heat treatment (PA-HT) of Al alloy substrate before plasma spraying, hoping to tune the microstructure of Al2O3 coatings and improve their interfacial strength as well as mechanical and tribological properties. The influences of PA-HT on the microstructure of alumina coatings were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy, while its effect on mechanical and tribological properties were evaluated by a nano-indentation tester and a friction and wear tester. Results demonstrate that a few columnar δ-Al2O3 generated on substrate surface after PA-HT at 200-250 °C can induce the epitaxial growth of γ-Al2O3 grains in Al2O3 coatings, thereby enhancing their interfacial bonding. Besides, elevating substrate temperature can help alumina droplets to melt into the interior of substrate and eliminate holes at the interface, finally increasing the interfacial anchorage force. More importantly, no interfacial holes can allow the heat of droplets to be rapidly transmitted to substrate, which is beneficial to yield smaller crystals in coatings and greatly enhance their strength, hardness and wear resistance.

  19. Corrosion evaluation of multi-pass welded nickel–aluminum bronze alloy in 3.5% sodium chloride solution: A restorative application of gas tungsten arc welding process

    International Nuclear Information System (INIS)

    Sabbaghzadeh, Behnam; Parvizi, Reza; Davoodi, Ali; Moayed, Mohammad Hadi

    2014-01-01

    Highlights: • Corrosion of GTA welded nickel–aluminum bronze (C95800) was studied. • Drastic microstructural changes occurred during the welding operations. • The β′ and α phases acts as anode and cathode, correspondingly, in weld region. • A few nanoamperes couple current was measured in ZRA test as galvanic corrosion. • Corrosion resistance of weld parts could not be weakened in marine environments. - Abstract: In this research, the corrosion behavior of a gas tungsten arc welded nickel–aluminum bronze (NAB) alloy is investigated by DC and AC electrochemical techniques in 3.5% sodium chloride solution. Regarding the electrochemical impedance spectroscopy and potentiodynamic results, uniform corrosion resistance of instantly immersed weld and base samples are almost analogous and increased (more in weld region) during the immersion times. Moreover, zero resistant ammeter results demonstrated that the few nanoampere galvanic currents are attributed to microstructural and morphological differences between these two regions. Therefore, the welding procedure could not deteriorate the general corrosion resistance of the restored damaged NAB parts operating in marine environments

  20. Effect of surface topological structure and chemical modification of flame sprayed aluminum coatings on the colonization of Cylindrotheca closterium on their surfaces

    Science.gov (United States)

    Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua

    2016-12-01

    Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.

  1. Development of a fluid model for DC arc plasma torches and its integration with downstream models of atmospheric plasma spray particle plumes

    Science.gov (United States)

    Cannamela, Michael J., III

    The plasma spray process uses plasma flames to melt micron sized particles of e.g. ceramic and propel the droplets to impinge upon and freeze to the target workpiece, forming a functional coating. Variations in the process arise from many sources, and because sensing of the process is imperfect one is motivated to pursue a modeling approach. This dissertation models the major elements of the process; the torch that produces the plasma flame, the jet of hot plasma issuing from the torch, and the plume of particles conveyed and heated by the jet. The plasma in the torch is modeled by a one-fluid magnetohydrodynamic (MHD) approach and it is found that the MHD equations can accurately predict the power dissipated in the bulk of the plasma, while special treatment is required in regions near the electrodes. Treatment of the cathode region is eased since it can be de-coupled from the bulk flow. Treatment of the anode region aims to extract the correct amount of power from the plasma. With MHD in the bulk and these special conditions at the electrode boundaries, the net power into the plasma can be matched with experiment. For one simulation of an SG-100 torch operating at 500A, the measured net power was 7.0kW while the computed net power was 7.1kW. Using outlet information from the torch, the impact of plasma arc oscillations on the free jet and on the in-flight particle states is predicted. The model of the plasma jet is validated against the existing LAVA code, and is able to predict the fraction of entrained air in the jet to within 20% of the experimental value. The variations in particle states due to the arc fluctuations are found to be similar in size to variations due to changes in particle injection velocity, and so cannot be neglected when considering particle state distributions. The end result of this work is to make available a complete chain of models for the plasma spray process, from torch input conditions to in-flight particle state.

  2. Arc-Sprayed Fe-Based Coatings from Cored Wires for Wear and Corrosion Protection in Power Engineering

    Directory of Open Access Journals (Sweden)

    Korobov Yury

    2018-02-01

    Full Text Available High wear and corrosion of parts lead to an increase in operating costs at thermal power plants. The present paper shows a possible solution to this problem through the arc spraying of protective coatings. Cored wires of the base alloying system Fe-Cr-C were used as a feedstock. Rise of wear- and heat-resistance of the coatings was achieved by additional alloying with Al, B, Ti, and Y. The wear and heat resistance of the coatings were tested via a two-body wear test accompanied by microhardness measurement and the gravimetric method, respectively. A high-temperature corrosion test was performed at 550 °C under KCl salt deposition. The porosity and adhesion strengths of the coatings were also evaluated. The microstructure was investigated with a scanning electron microscope (SEM unit equipped with an energy dispersive X-ray (EDX microanalyzer, and the phase composition was assessed by X-ray diffractometry. The test results showed the positive influence of additional alloying with Y on the coating properties. A comparison with commercial boiler materials showed that the coatings have the same level of heat resistance as austenite steels and are an order of magnitude higher than that of pearlite and martensite-ferrite steels. The coatings can be applied to wear- and heat-resistant applications at 20–700 °C.

  3. Study on modernization processes in the coating metal surfaces (plain bearings by thermal spraying

    Directory of Open Access Journals (Sweden)

    Elena IRIMIE

    2011-09-01

    Full Text Available Knowledge accumulated within the metal coating through thermal spraying allows the understanding of aspects related to the coat structure phenomena, in this case of the routs that need to be followed in order to create strong and stabile connections between the coats subsided through thermal spraying, between the particles that compose those coats, respectively. However, all this knowledge does not ensure the understanding of some practical situations that are apparently paradoxes, as for instance the absence of tin bronze adherence to ignobly steel holders, the perfect adherence of bronze to the aluminum on the same types of holders, in the context in which both elements, tin and aluminum, respectively are found in equal quantity in the two type of bonze that maintain them in solid solutions (below 10%.The parallel study in the sinter antifriction domain has offered information regarding the optimal correlation between the composition of antifriction material and the required type of application, the optimal pinches level and the way that this morphological characteristic may be influenced. By experimental research it is necessary to determine the conditions under which such coverage can be obtained by thermal spraying of the metal coatings.

  4. Heavy duty plasma spray gun

    International Nuclear Information System (INIS)

    Irons, G.C.; Klein, J.F.; Lander, R.D.; Thompson, H.C.; Trapani, R.D.

    1984-01-01

    A heavy duty plasma spray gun for extended industrial service is disclosed. The gun includes a gas distribution member made of a material having a coefficient of expansion different from that of the parts surrounding it. The gas distribution member is forcibly urged by a resilient member such as a coiled spring against a seal so as to assure the plasma gas is introduced into the gun arc in a manner only defined by the gas distribution member. The gun has liquid cooling for the nozzle (anode) and the cathode. Double seals are provided between the coolant and the arc region and a vent is provided between the seals which provides an indication when a seal has failed. Some parts of the gun are electrically isolated from others by an intermediate member which is formed as a sandwich of two rigid metal face pieces and an insulator disposed between them. The metal face pieces provide a rigid body to attach the remaining parts in proper alignment therewith

  5. Analysis of processes in DC arc plasma torches for spraying that use air as plasma forming gas

    International Nuclear Information System (INIS)

    Frolov, V; Ivanov, D; Toropchin, A

    2014-01-01

    Developed in Saint Petersburg State Polytechnical University technological processes of air-plasma spraying of wear-resistant, regenerating, hardening and decorative coatings used in number of industrial areas are described. The article contains examples of applications of air plasma spraying of coatings as well as results of mathematical modelling of processes in air plasma torches for spraying

  6. Numerical analysis of AC tungsten inert gas welding of aluminum plate in consideration of oxide layer cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tashiro, Shinichi, E-mail: tashiro@jwri.osaka-u.ac.jp; Miyata, Minoru; Tanaka, Manabu

    2011-08-01

    A unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.

  7. Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Jeon, GeunHong; Oh, IkHyun; Ro, ChanSeung

    2012-01-01

    Highlights: ► GTAW assisted hybrid friction stir welding (HFSW) has been carried out for dissimilar butt joint. ► Mechanical strength of dissimilar butt joint by HFSW and FSW has been investigated and compared. ► Microstructure of dissimilar butt joint by HFSW and FSW has been investigated and compared. -- Abstract: The aim of this research is to evaluate the potential for using the gas tungsten arc welding (GTAW) assisted hybrid friction stir welding (HFSW) process to join a stainless steel alloy (STS304) to an aluminum alloy (Al6061) in order to improve the weld strength. The difference in mechanical and microstructural characteristics of dissimilar joint by friction stir welding (FSW) and HFSW has been investigated and compared. Transverse tensile strength of approximately 93% of the aluminum alloy (Al6061) base metal tensile strength is obtained with HFSW, which is higher than the tensile strength of FSW welds. This may be due to the enhanced material plastic flow and partial annealing effect in dissimilar materials due to preheating of stainless steel surface by GTAW, resulting in significantly increased elongation of welds. The results indicate that HFSW that integrates GTAW preheating to FSW is advantageous in joining dissimilar combinations compared to conventional FSW.

  8. Metal Droplet Formation in Gas Metal Arc Welding

    International Nuclear Information System (INIS)

    Haidar, J.

    2000-01-01

    A two-dimensional dynamic treatment has been developed for description of arc and electrode properties in gas metal arc welding (GMAW). The theory is a unified treatment of the arc the welding wire anode and the cathode, and includes a detailed account of sheath effects near the anode. The wire anode is included as a dynamic entity and the volume of fluid method is used to handle the movement of the free surface of the molten metal at the tip of the wire, accounting for effects of surface tension, inertia, gravity, arc pressure, viscous drag force of the plasma, magnetic forces and Marangoni effect, and also for the effects of wire feed rate in GMAW. Results of calculations made for a mild steel wire of diameter 0.16 cm are in good agreement with experimental measurements of droplet diameter and droplet detachment frequency at currents between 150 and 330 A, which includes the transition between ''globular'' and ''spray'' transfer. Quantitative predictions are also made of the amount of metal vapour that is generated from the welding droplets at the tip of the welding wire. (author)

  9. CO2 laser coating of nanodiamond on aluminum using an annular beam

    International Nuclear Information System (INIS)

    Blum, Rodger; Molian, Pal

    2014-01-01

    Laser coating of nanodiamond (ND) on aluminum alloy A319 substrate was investigated using a diffraction-free ring beam. A 1000 W continuous wave CO 2 laser in the ring beam configuration heated the 25–35 μm thick electrostatically sprayed ND powder layers on aluminum surface, melted a very thin layer (10 μm) of aluminum in a controlled fashion and caused phase transition of ND to form 50–60 μm thick ND/diamond-like carbon (DLC) coating. Significant improvements in friction, wear resistance and surface finish were observed in the ring beam method over the traditional Gaussian beam method suggesting that these thick (50–60 μm) ND/DLC laser coatings can outperform the currently used thin (<4 μm) chemically vapor deposited DLC coatings for aluminum parts in automobiles.

  10. Arc-discharge system for nondestructive detection of flaws in thin ceramic coatings

    International Nuclear Information System (INIS)

    Scott, G.W.; Davis, E.V.

    1978-04-01

    The feasibility of nondestructively detecting small cracks or holes in plasma-sprayed ceramic coatings with an electric arc-discharge system was studied. We inspected ZrO 2 coatings 0.46 mm (0.018 in.) thick on Incoloy alloy 800 substrates. Cracks were artificially induced in controlled areas of the specimens by straining the substrates in tension. We designed and built a system to scan the specimen's surface at approximately 50 μm (0.002 in.) clearance with a sharp-pointed metal-tipped probe at high dc potential. The system measures the arc currents occurring at flaws, or plots a map of the scanned area showing points where the arc current exceeds a preset threshold. A theoretical model of the probe-specimen circuit shows constant dc potential to be the best choice for arc-discharge inspection of insulating coatings. Experimental observations and analysis of the data disclosed some potential for flaw description

  11. Numerical Simulation of Stationary AC Tungsten Inert Gas Welding of Aluminum Plate in Consideration of Oxide Layer Cleaning

    Science.gov (United States)

    Tashiro, Shinichi; Tanaka, Manabu

    An unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.

  12. Effect of Al-doped on physical properties of ZnO Thin films grown by spray pyrolysis on SnO2: F/glass

    Directory of Open Access Journals (Sweden)

    Castagné M.

    2012-06-01

    Full Text Available Transparent conducting thin films of aluminum-doped zinc oxide (ZnO:Al have been deposited on SnO2:F/glass by the chemical spray technique, starting from zinc acetate (CH3CO22Zn.2H2O and aluminum chloride AlCl3. The effect of changing the aluminum-to-zinc ratio y from 0 to 3 at.%, has been thoroughly investigated. It was found that the optical and electrical properties of Al doped ZnO films improved with the addition of aluminum in the spray solution until y=2%. At this Al doping percentage, the thin layers have a resistivity equal to 4.1 × 10−4 Ω.cm and a transmittance of about 90 % in the region [600-1000] nm. XRD patterns confirm that the films have polycristalline nature and a wurtzite (hexagonal structure which characterized with (100, (002 and (101 principal orientations. The undoped films have (002 as the preferred orientation but Al doped ones have (101 as the preferred orientation. Beyond y= 1%, peak intensities decrease considerably.

  13. Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils

    Directory of Open Access Journals (Sweden)

    Itir Bakis Dogru

    2016-06-01

    Full Text Available In this work, vertically aligned carbon nanotubes (VACNTs grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD method. Solution based ultrasonic spray pyrolysis (USP method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the supercapacitor electrodes and the charge transfer resistance between the electrode and electrolyte. A specific capacitance of 2.61 mF/cm2 at a scan rate of 800 mV/s was obtained from the fabricated electrodes, which is further improved through the bending cycles.

  14. Thin films by metal-organic precursor plasma spray

    International Nuclear Information System (INIS)

    Schulz, Douglas L.; Sailer, Robert A.; Payne, Scott; Leach, James; Molz, Ronald J.

    2009-01-01

    While most plasma spray routes to coatings utilize solids as the precursor feedstock, metal-organic precursor plasma spray (MOPPS) is an area that the authors have investigated recently as a novel route to thin film materials. Very thin films are possible via MOPPS and the technology offers the possibility of forming graded structures by metering the liquid feed. The current work employs metal-organic compounds that are liquids at standard temperature-pressure conditions. In addition, these complexes contain chemical functionality that allows straightforward thermolytic transformation to targeted phases of interest. Toward that end, aluminum 3,5-heptanedionate (Al(hd) 3 ), triethylsilane (HSi(C 2 H 5 ) 3 or HSiEt 3 ), and titanium tetrakisdiethylamide (Ti(N(C 2 H 5 ) 2 ) 4 or Ti(NEt 2 ) 4 ) were employed as precursors to aluminum oxide, silicon carbide, and titanium nitride, respectively. In all instances, the liquids contain metal-heteroatom bonds envisioned to provide atomic concentrations of the appropriate reagents at the film growth surface, thus promoting phase formation (e.g., Si-C bond in triethylsilane, Ti-N bond in titanium amide, etc.). Films were deposited using a Sulzer Metco TriplexPro-200 plasma spray system under various experimental conditions using design of experiment principles. Film compositions were analyzed by glazing incidence x-ray diffraction and elemental determination by x-ray spectroscopy. MOPPS films from HSiEt 3 showed the formation of SiC phase but Al(hd) 3 -derived films were amorphous. The Ti(NEt 2 ) 4 precursor gave MOPPS films that appear to consist of nanosized splats of TiOCN with spheres of TiO 2 anatase. While all films in this study suffered from poor adhesion, it is anticipated that the use of heated substrates will aid in the formation of dense, adherent films.

  15. SPRAYTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Spray Droplet Dispersion Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K Jerry; Rutz, Frederick C.; Droppo, James G.; Rishel, Jeremy P.; Chapman, Elaine G.; Bird, S. L.; Thistle, Harold W.

    2006-09-20

    SPRAY TRANsport (SPRAYTRAN) is a comprehensive dispersion modeling system that is used to simulate the offsite drift of pesticides from spray applications. SPRAYTRAN functions as a console application within Environmental System Research Institute’s ArcMap Geographic Information System (Version 9.x) and integrates the widely-used, U.S. Environmental Protection Agency (EPA)-approved CALifornia PUFF (CALPUFF) dispersion model and model components to simulate longer-range transport and diffusion in variable terrain and spatially/temporally varying meteorological (e.g., wind) fields. Area sources, which are used to define spray blocks in SPRAYTRAN, are initialized using output files generated from a separate aerial-spray-application model called AGDISP (AGricultural DISPersal). The AGDISP model is used for estimating the amount of pesticide deposited to the spray block based on spraying characteristics (e.g., pesticide type, spray nozzles, and aircraft type) and then simulating the near-field (less than 300-m) drift from a single pesticide application. The fraction of pesticide remaining airborne from the AGDISP near-field simulation is then used by SPRAYTRAN for simulating longer-range (greater than 300 m) drift and deposition of the pesticide.

  16. Influence of Laser Welding Speed on the Morphology and Phases Occurring in Spray-Compacted Hypereutectic Al-Si-Alloys

    Directory of Open Access Journals (Sweden)

    Thomas Gietzelt

    2016-11-01

    Full Text Available Normally, the weldability of aluminum alloys is ruled by the temperature range of solidification of an alloy according to its composition by the formation of hot cracks due to thermal shrinkage. However, for materials at nonequilibrium conditions, advantage can be taken by multiple phase formation, leading to an annihilation of temperature stress at the microscopic scale, preventing hot cracks even for alloys with extreme melting range. In this paper, several spray-compacted hypereutectic aluminum alloys were laser welded. Besides different silicon contents, additional alloying elements like copper, iron and nickel were present in some alloys, affecting the microstructure. The microstructure was investigated at the delivery state of spray-compacted material as well as for a wide range of welding speeds ranging from 0.5 to 10 m/min, respectively. The impact of speed on phase composition and morphology was studied at different disequilibrium solidification conditions. At high welding velocity, a close-meshed network of eutectic Al-Si-composition was observed, whereas the matrix is filled with nearly pure aluminum, helping to diminish the thermal stress during accelerated solidification. Primary solidified silicon was found, however, containing considerable amounts of aluminum, which was not expected from phase diagrams obtained at the thermodynamic equilibrium.

  17. On reactive suspension plasma spraying of calcium titanate

    OpenAIRE

    Kotlan, J. (Jiří); Pala, Z. (Zdeněk); Mušálek, R. (Radek); Ctibor, P. (Pavel)

    2016-01-01

    This study shows possibility of preparation of calcium titanate powder and coatings by reactive suspension plasma spraying. Suspension of mixture of calcium carbonate (CaCO3) and titanium dioxide (TiO2) powders in ethanol was fed into hybrid plasma torch with a DC-arc stabilized by a water–argon mixture (WSP-H 500). Various feeding distances and angles were used in order to optimize suspension feeding conditions. In the next step, the coatings were deposited on stainless steel substrates and ...

  18. CO{sub 2} laser coating of nanodiamond on aluminum using an annular beam

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Rodger; Molian, Pal, E-mail: molian@iastate.edu

    2014-01-01

    Laser coating of nanodiamond (ND) on aluminum alloy A319 substrate was investigated using a diffraction-free ring beam. A 1000 W continuous wave CO{sub 2} laser in the ring beam configuration heated the 25–35 μm thick electrostatically sprayed ND powder layers on aluminum surface, melted a very thin layer (10 μm) of aluminum in a controlled fashion and caused phase transition of ND to form 50–60 μm thick ND/diamond-like carbon (DLC) coating. Significant improvements in friction, wear resistance and surface finish were observed in the ring beam method over the traditional Gaussian beam method suggesting that these thick (50–60 μm) ND/DLC laser coatings can outperform the currently used thin (<4 μm) chemically vapor deposited DLC coatings for aluminum parts in automobiles.

  19. Experimental breakdown of selected anodized aluminum samples in dilute plasmas

    Science.gov (United States)

    Grier, Norman T.; Domitz, Stanley

    1992-01-01

    Anodized aluminum samples representative of Space Station Freedom structural material were tested for electrical breakdown under space plasma conditions. In space, this potential arises across the insulating anodized coating when the spacecraft structure is driven to a negative bias relative to the external plasma potential due to plasma-surface interaction phenomena. For anodized materials used in the tests, it was found that breakdown voltage varied from 100 to 2000 volts depending on the sample. The current in the arcs depended on the sample, the capacitor, and the voltage. The level of the arc currents varied from 60 to 1000 amperes. The plasma number density varied from 3 x 10 exp 6 to 10 exp 3 ions per cc. The time between arcs increased as the number density was lowered. Corona testing of anodized samples revealed that samples with higher corona inception voltage had higher arcing inception voltages. From this it is concluded that corona testing may provide a method of screening the samples.

  20. Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum coatings on Q235 steel substrate

    International Nuclear Information System (INIS)

    Lu Lihong; Shen Dejiu; Zhang Jingwu; Song Jian; Li Liang

    2011-01-01

    Micro-arc oxidation (MAO) is not applicable to prepare ceramic coatings on the surface of steel directly. In this work, hybrid method of MAO and hot-dipping aluminum (HDA) were employed to fabricate composite ceramic coatings on the surface of Q235 steel. The evolution of MAO coatings, such as growth rate, thickness of the total coatings, ingrown and outgrown coatings, cross section and surface morphologies and phase composition of the ceramic coatings were studied. The results indicate that both the current density and the processing time can affect the total thickness, the growth rate and the ratio of ingrown and outgrown thickness of the ceramic coatings. The total thickness, outgrown thickness and growth rate have maximum values with the processing time prolonged. The time when the maximum value appears decreases and the ingrown dominant turns to outgrown dominant little by little with the current density increasing. The composite coatings obtained by this hybrid method consists of three layers from inside to outside, i.e. Fe-Al alloy layer next to the substrate, aluminum layer between the Fe-Al layer and the ceramic coatings which is as the top exterior layer. Metallurgical bonding was observed between every of the two layers. There are many micro-pores and micro-cracks, which act as discharge channels and result of quick and non-uniform cooling of melted sections in the MAO coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al 2 O 3 oxides. The crystal Al 2 O 3 phase includes κ-Al 2 O 3 , θ-Al 2 O 3 and β-Al 2 O 3 . Compared with the others, the β-Al 2 O 3 content is the least. The MAO process can be divided into three periods, namely the common anodic oxidation stage, the stable MAO stage and the ceramic coatings destroyed stage. The exterior loose part of the ceramic coatings was destroyed badly in the last period which should be avoided during the MAO process.

  1. Evaluation of several corrosion protective coating systems on aluminum

    Science.gov (United States)

    Higgins, R. H.

    1981-01-01

    A study of several protective coating systems for use on aluminum in seawater/seacoast environments was conducted to review the developments made on protective coatings since early in the Space Shuttle program and to perform comparative studies on these coatings to determine their effectiveness for providing corrosion protection during exposure to seawater/seacoast environments. Panels of 2219-T87 aluminum were coated with 21 different systems and exposed to a 5 percent salt spray for 4000 hr. Application properties, adhesion measurements, heat resistance and corrosion protection were evaluated. For comparative studies, the presently specified Bostik epoxy system used on the SRB structures was included. Results of these tests indicate four systems with outstanding performance and four additional systems with protection almost as good. These systems are based on a chromated pretreatment, a chromate epoxy primer, and a polyurethane topcoat. Consideration for one of these systems should be included for those applications where superior corrosion protection for aluminum surfaces is required.

  2. Plasma spraying of hard magnetic coatings based on Sm-Co alloys

    International Nuclear Information System (INIS)

    KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F. Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Saunin, V N; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F. Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Telegin, S V

    2015-01-01

    Our research is focused on the formation of hard magnetic coatings by plasma spraying an arc-melted Sm-Co powder. We have studied basic magnetic characteristics depending on the components ratio in the alloy. A sample with a 40 wt.% Sm coating exhibits the highest coercive force (63 kOe) as compared to near-to-zero coercive force in the starting powder. X-ray structure analysis of the starting alloy and the coating reveals that the amount of SmCo 5 phase in the sprayed coating increases occupying up to 2/3 of the sample. We have also studied temperature dependence of the coating and have been able to obtain plasma sprayed permanent magnets operating within the temperature range from -100 to +500 °C. The technique used does not involve any additional thermal treatment and allows a coating to be formed right on the magnetic conductor surface irrespective of the conductor geometry

  3. Evaluation of aluminum oxide dosimeters using OSL technique in dosimetry of clinical photon beams on volumetric modulated arc treatment

    International Nuclear Information System (INIS)

    Villani, Daniel

    2017-01-01

    Treatment using Volumetric Modulated Arc Radiation Therapy is the most modern modality of conformational radiotherapy so that, with the overlapping of several fields, the dose distributions provide a perfect conformation to the tumor, reducing the probability of complications in adjacent normal tissues. In this sense, many efforts are being invested to improve dose distribution compliance as well as the integration of imaging techniques for tumor screening and correction of inter and intrafraction variations. To this end, an intensive monitoring of the quality of the processes and a quality assurance program are fundamental for patient safety and compliance with current legislation; besides the use of different dosimetry methodologies for intercomparison and validation of the results. The aim of this study is to evaluate and compare the performance of aluminum oxide (Al_2O_3:C) OSL dosimeters manufactured by Landauer Inc. with those produced by Rexon™ in the dosimetry of high energy photon clinical bundles used in Volumetric Modulated Arc Therapy - (VMAT) using different simulating objects. The dosimeters were characterized for gamma radiation of the "6"0Co and for clinical photon beams of 6 MV typical of treatments by VMAT under conditions of electronic equilibrium and maximum dose respectively. Performance tests of the TL and OSL readers used and repeatability of the samples were evaluated. After all tests, the dosimeters were irradiated in the simulation of different radiotherapy treatments by VMAT and their responses compared to the planning system. All types of dosimeters presented satisfactory results in verifying the doses of this type of planning simulation. The Al_2O_3:C dosimeters presented compatible results and validated by the other dosimeters and ionization chamber. Regarding the best technique, the OSL InLight commercial system presents greater practicality and versatility for use and application in the clinical routine. (author)

  4. Effects of spray parameters on the microstructure and property of Al2O3 coatings sprayed by a low power plasma torch with a novel hollow cathode

    International Nuclear Information System (INIS)

    Li Changjiu; Sun Bo

    2004-01-01

    Al 2 O 3 coating is deposited using a low power plasma torch with a novel hollow cathode through axial powder injection under a plasma power up to several kilowatts. The effects of the main processing parameters including plasma arc power, operating gas flow and spray distance on particle velocity during spraying, and the microstructure and property of the coating are investigated. The microstructure of the Al 2 O 3 coating is examined using optical microscopy and X-ray diffraction analysis. The property of the coating is characterized by dry rubber wheel abrasive wear test. The velocity of in-flight particle is measured using a velocity/temperature measurement system for spray particle based on thermal radiation from the particle. The dependency of the microstructure and property of the coating on spray particle conditions are examined by comparing the particle velocity, and microstructure and abrasive wear weight loss of subsequent coating deposited by low power plasma spray with those of the coating by conventional plasma spray at a power one order higher. X-ray diffraction analysis of the coating revealed that Al 2 O 3 particles during low power plasma spraying reach to sufficiently melting state prior to impact on the substrate with a velocity comparable to that in conventional plasma spraying. The experiment results have shown that processing parameters have significant influence on the particle conditions and performance of deposited Al 2 O 3 coating. The coating of comparable microstructure and properties to that deposited by conventional plasma spray can be produced under a power one order lower. From the present study, it can be suggested that a comparable coating can be produced despite plasma power level if the comparable particle velocity and molten state are achieved

  5. Mechanical properties of friction stir welded aluminum alloys 5083 and 5383

    Directory of Open Access Journals (Sweden)

    Jeom Kee Paik

    2009-09-01

    Full Text Available The use of high-strength aluminum alloys is increasing in shipbuilding industry, particularly for the design and construction of war ships, littoral surface craft and combat ships, and fast passenger ships. While various welding methods are used today to fabricate aluminum ship structures, namely gas metallic arc welding (GMAW, laser welding and friction stir welding (FSW, FSW technology has been recognized to have many advantages for the construction of aluminum structures, as it is a low-cost welding process. In the present study, mechanical properties of friction stir welded aluminum alloys are examined experimentally. Tensile testing is undertaken on dog-bone type test specimen for aluminum alloys 5083 and 5383. The test specimen includes friction stir welded material between identical alloys and also dissimilar alloys, as well as unwelded (base alloys. Mechanical properties of fusion welded aluminum alloys are also tested and compared with those of friction stir welded alloys. The insights developed from the present study are documented together with details of the test database. Part of the present study was obtained from the Ship Structure Committee project SR-1454 (Paik, 2009, jointly funded by its member agencies.

  6. Controlling of Nitriding Process on Reactive Plasma Spraying of Al Particles

    International Nuclear Information System (INIS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    2011-01-01

    Reactive plasma spraying (RPS) has been considered as a promising technology for in-situ formation of aluminum nitride (AlN) thermally sprayed coatings. To fabricate thick A lN coatings in RPS process, controlling and improving the in-flight nitriding reaction of Al particles is required. In this study, it was possible to control the nitriding reaction by using ammonium chloride (NH 4 Cl) powders. Thick and dense AlN coating (more than 300 μm thickness) was successfully fabricated with small addition of NH 4 Cl powders. Thus, addition of NH 4 Cl prevented the Al aggregation by changing the reaction pathway to a mild way with no explosive mode (relatively low heating rates) and it acts as a catalyst, nitrogen source and diluent agent.

  7. Influence of Powder Injection Parameters in High-Pressure Cold Spray

    Science.gov (United States)

    Ozdemir, Ozan C.; Widener, Christian A.

    2017-10-01

    High-pressure cold spray systems are becoming widely accepted for use in the structural repair of surface defects of expensive machinery parts used in industrial and military equipment. The deposition quality of cold spray repairs is typically validated using coupon testing and through destructive analysis of mock-ups or first articles for a defined set of parameters. In order to provide a reliable repair, it is important to not only maintain the same processing parameters, but also to have optimum fixed parameters, such as the particle injection location. This study is intended to provide insight into the sensitivity of the way that the powder is injected upstream of supersonic nozzles in high-pressure cold spray systems and the effects of variations in injection parameters on the nature of the powder particle kinetics. Experimentally validated three-dimensional computational fluid dynamics (3D CFD) models are implemented to study the particle impact conditions for varying powder feeder tube size, powder feeder tube axial misalignment, and radial powder feeder injection location on the particle velocity and the deposition shape of aluminum alloy 6061. Outputs of the models are statistically analyzed to explore the shape of the spray plume distribution and resulting coating buildup.

  8. Characteristics and Thermal Efficiency of a Non-transferred DC Plasma Spraying Torch Under Low Pressure

    International Nuclear Information System (INIS)

    Bao Shicong; Ye Minyou; Zhang Xiaodong; Guo Wenkang; Xu Ping

    2008-01-01

    Current-voltage (I-V) characteristics of a non-transferred DC arc plasma spray torch operated in argon at vacuum are reported. The arc voltage is of negative characteristics for a current below 200 A, flat for a current between 200 A to 250 A and positive for a current beyond 250 A. The voltage increases slowly with the increase in carrier gas of arc. The rate of change in voltage with currents is about 3∼4 V/100 A at a gas flow rate of about 1∼1.5 V/10 standard liter per minute (slpm). The I-V characteristics of the DC plasma torch are of a shape of hyperbola. Arc power increases with the argon flow rate, and the thermal efficiency of the torch acts in a similar way. The thermal efficiency of the non-transferred DC plasmatron is about 65∼78%. (low temperature plasma)

  9. Amanteigamento por aspersão térmica na soldagem em operação de dutos de pequena espessura: estabilidade e penetração do arco voltaico Buttering by thermal spraying in welding in-service repair of pipes with small thickness: arc stability and penetration

    Directory of Open Access Journals (Sweden)

    Nilceu Novicki

    2011-09-01

    thermal spraying. The characteristics of buttering layers deposited by two thermal spraying processes (arc and conventional flame were compared, in special the influence of their degree of oxidation in dependence of the carrying gas (pressurized air or argonium on the arc stability and penetration of weld beads SMAW over plain carbon steels previously buttered with similar composition layers. The results allowed to correlate the stability of the arc to the level of oxidation of the sprayed layers. (Temperature measurements on the surface of the sprayed layers showed that, since the process of thermal spray occur in an non-stopped way until the final thickness of the coating, the superficial temperature is increased with the thickness of the deposit, what results in a higher content of oxides, which is associated to an arc instability and a greater penetration of the molten pool. X-ray diffractrogams and oxygen analysis proved the influence of this element in the changing profile of the fusion zone. As an alternative to the use of compressed air, its substitution by the inert gas argon as carrying gas was evaluated, verifying very benefic effects - significant reduction of penetration e good arc stability - believed coming from the reduction of oxidation in the sprayed layer by the protective effect of the inert gas. The evaluation of the results permitted to establish criteria of welding with lower risks of burn-through compared to a condition without buttering layers.

  10. Modelling of gas-metal arc welding taking into account metal vapour

    Energy Technology Data Exchange (ETDEWEB)

    Schnick, M; Fuessel, U; Hertel, M; Haessler, M [Institute of Surface and Manufacturing Technology, Technische Universitaet Dresden, D-01062 Dresden (Germany); Spille-Kohoff, A [CFX Berlin Software GmbH, Karl-Marx-Allee 90, 10243 Berlin (Germany); Murphy, A B [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)

    2010-11-03

    The most advanced numerical models of gas-metal arc welding (GMAW) neglect vaporization of metal, and assume an argon atmosphere for the arc region, as is also common practice for models of gas-tungsten arc welding (GTAW). These models predict temperatures above 20 000 K and a temperature distribution similar to GTAW arcs. However, spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to measurements of GTAW arcs, they have shown the presence of a central local minimum of the radial temperature distribution. This paper presents a GMAW model that takes into account metal vapour and that is able to predict the local central minimum in the radial distributions of temperature and electric current density. The influence of different values for the net radiative emission coefficient of iron vapour, which vary by up to a factor of hundred, is examined. It is shown that these net emission coefficients cause differences in the magnitudes, but not in the overall trends, of the radial distribution of temperature and current density. Further, the influence of the metal vaporization rate is investigated. We present evidence that, for higher vaporization rates, the central flow velocity inside the arc is decreased and can even change direction so that it is directed from the workpiece towards the wire, although the outer plasma flow is still directed towards the workpiece. In support of this thesis, we have attempted to reproduce the measurements of Zielinska et al for spray-transfer mode GMAW numerically, and have obtained reasonable agreement.

  11. An electron microscopy study of the effect of Ce on plasma sprayed bronze coatings

    Science.gov (United States)

    Wensheng, Li; Wang, S. C.; Ma, Chao; Zhiping, Wang

    2012-07-01

    The Cu-Al eutectoid alloy is an excellent material for mould due to its superior low friction. The conventional sand casting technique, however, is not feasible to fabricate high Al bronze because of high hardness and brittleness. Plasma arc spray has been used to produce high Al/Fe bronze coatings for mould. The inherent impurities such as H, O, N, S during the spray, however, may affect the coating's mechanical strength. One approach is to utilise the active rare earth Ce to clean up these impurities. The study is to investigate the effect of Ce on the microstructure, which has few reported in the literature.

  12. Inertia and friction welding of aluminum alloy 1100 to type 316 stainless steel

    International Nuclear Information System (INIS)

    Perkins, M.A.

    1979-01-01

    The inertia and friction-welding processes were evaluated for joining aluminum alloy 1100-H14 and Type 316 vacuum-induction melted, vacuum-arc remelted (VIM VAR) stainless steel. While both processes consistently produced joints in which the strength exceeded the strength of the aluminum base metal, 100 percent bonding was not reliably achieved with inertia welding. The deficiency points out the need for development of nondestructive testing techniques for this type of joint. Additionally, solid-state volume diffusion did not appear to be a satisfactory explanation for the inertia and friction-welding bonding mechanism

  13. Process development for synthesis and plasma spray deposition of LaPO4 and YPO4 for nuclear applications

    International Nuclear Information System (INIS)

    Chakravarthy, Y.; Sreekumar, K.P.; Jayakumar, S.; Thiyagarajan, T.K.; Ananthapadmanabhan, P.V.; Das, A.K.; Gantayet, L.M.; Krishnan, K.

    2009-01-01

    Rare earth phosphates are geologically very stable and considered as potential matrix material for nuclear waste disposal and also for many high temperature thermal barrier and corrosion barrier applications involving molten metals. This paper focuses on developmental studies related to synthesis, thermal stability and plasma spray deposition of LaPO 4 and YPO 4 . The rare earth phosphates were synthesized by chemical method from their respective oxide materials using ortho phosphoric acid. The as-precipitated powders were converted to thermal spray grade powder by compaction, sintering and crushing. Thermal stability of these phosphates up to their melting point was determined by arc plasma melting, followed by X-ray diffraction. Results indicate that LaPO 4 and YPO 4 melt congruently without decomposition. Plasma spray deposition was carried out using the in-house 40 kW atmospheric plasma spray system. Adherent coatings could be deposited on various substrates by optimizing the plasma spray parameters. (author)

  14. Temporal development of the plasma composition of a pulsed aluminum plasma stream in the presence of oxygen

    International Nuclear Information System (INIS)

    Schneider, J.M.; Anders, A.; Brown, I.G.; Hjoervarsson, B.; Hultman, L.

    1999-01-01

    We describe the temporal development of the plasma composition of pulsed aluminum plasma streams at various oxygen pressures. The plasma was formed with a vacuum arc plasma source and the time resolved plasma composition was measured with time-of-flight charge-to-mass spectrometry. The temporal development of the plasma composition as well as the Al average ion charge state was found to be a strong function of the oxygen pressure. Oxygen and hydrogen concentrations of up to 0.36 and 0.32, respectively, were found in the first 50 μs of the pulse at oxygen pressures of ≥5x10 -5 Torr. The average charge state of aluminum ions was found to vary from +1.2 to +2.5 depending on the oxygen pressure and the time elapsed after ignition of the arc. These results are of fundamental importance for the understanding of the evolution of the composition (through the plasma composition) and microstructure (through the Al ion flux energy) of alumina thin films produced by pulsed, reactive aluminum plasmas. copyright 1999 American Institute of Physics

  15. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    Science.gov (United States)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  16. Controlling of Nitriding Process on Reactive Plasma Spraying of Al Particles

    Energy Technology Data Exchange (ETDEWEB)

    Shahien, Mohammed [Graduate Student, Toyohashi University of Technology (Japan); Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro, E-mail: mo.shahien@yahoo.com [Toyohashi University of Technology (Japan)

    2011-10-29

    Reactive plasma spraying (RPS) has been considered as a promising technology for in-situ formation of aluminum nitride (AlN) thermally sprayed coatings. To fabricate thick A lN coatings in RPS process, controlling and improving the in-flight nitriding reaction of Al particles is required. In this study, it was possible to control the nitriding reaction by using ammonium chloride (NH{sub 4}Cl) powders. Thick and dense AlN coating (more than 300 {mu}m thickness) was successfully fabricated with small addition of NH{sub 4}Cl powders. Thus, addition of NH{sub 4}Cl prevented the Al aggregation by changing the reaction pathway to a mild way with no explosive mode (relatively low heating rates) and it acts as a catalyst, nitrogen source and diluent agent.

  17. Scintillation screen applications in a vacuum arc ion source with composite hydride cathode

    Science.gov (United States)

    Wang, X. H.; Tuo, X. G.; Yang, Z.; Peng, Y. F.; Li, J.; Lv, H. Y.; Li, J. H.; Long, J. D.

    2018-05-01

    Vacuum arc ion source with composite hydride cathode was developed to produce intense ion beams which can be applied in particle accelerator injections. Beam profile and beam composition are two fundamental parameters of the beam for the vacuum arc ion source in such specific applications. An aluminum-coated scintillation screen with an ICCD camera readout was used to show the space-time distribution of the beam directly. A simple magnetic analysis assembly with the scintillation screen shows the beam composition information of this kind ion source. Some physical and technical issues are discussed and analyzed in the text.

  18. In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating

    International Nuclear Information System (INIS)

    Balani, K.; Zhang, T.; Karakoti, A.; Li, W.Z.; Seal, S.; Agarwal, A.

    2008-01-01

    Carbon nanotubes (CNT) are potential reinforcements for toughening the ceramic matrix. The critical issue of avoiding CNT agglomeration and introducing CNT-matrix anchoring has challenged many researchers to improve the mechanical properties of the CNT reinforced nanocomposite. In the current work, dispersed CNTs are grown on Al 2 O 3 powder particles in situ by the catalytic chemical vapor deposition (CCVD) technique. Consequently, 0.5 wt.% CNT-reinforced Al 2 O 3 particles were successfully plasma sprayed to obtain a 400 μm thick coating on the steel substrate. In situ CNTs grown on Al 2 O 3 shows a promising enhancement in hardness and fracture toughness of the plasma-sprayed coating attributed to the existence of strong metallurgical bonding between Al 2 O 3 particles and CNTs. In addition, CNT tentacles have imparted multi-directional reinforcement in securing the Al 2 O 3 splats. High-resolution transmission electron microscopy shows interfacial fusion between Al 2 O 3 and CNT and the formation of Y-junction nanotubes

  19. Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum coatings on Q235 steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lihong, E-mail: llh_qc@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China) and Research Department, The Chinese People' s Armed Police Academy, Langfang 065000 (China); Shen Dejiu; Zhang Jingwu [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Song Jian; Li Liang [Tsinghua University, State Key Laboratory of Automotive Safety and Energy, Beijing 100084 (China)

    2011-02-15

    Micro-arc oxidation (MAO) is not applicable to prepare ceramic coatings on the surface of steel directly. In this work, hybrid method of MAO and hot-dipping aluminum (HDA) were employed to fabricate composite ceramic coatings on the surface of Q235 steel. The evolution of MAO coatings, such as growth rate, thickness of the total coatings, ingrown and outgrown coatings, cross section and surface morphologies and phase composition of the ceramic coatings were studied. The results indicate that both the current density and the processing time can affect the total thickness, the growth rate and the ratio of ingrown and outgrown thickness of the ceramic coatings. The total thickness, outgrown thickness and growth rate have maximum values with the processing time prolonged. The time when the maximum value appears decreases and the ingrown dominant turns to outgrown dominant little by little with the current density increasing. The composite coatings obtained by this hybrid method consists of three layers from inside to outside, i.e. Fe-Al alloy layer next to the substrate, aluminum layer between the Fe-Al layer and the ceramic coatings which is as the top exterior layer. Metallurgical bonding was observed between every of the two layers. There are many micro-pores and micro-cracks, which act as discharge channels and result of quick and non-uniform cooling of melted sections in the MAO coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al{sub 2}O{sub 3} oxides. The crystal Al{sub 2}O{sub 3} phase includes {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3} and {beta}-Al{sub 2}O{sub 3}. Compared with the others, the {beta}-Al{sub 2}O{sub 3} content is the least. The MAO process can be divided into three periods, namely the common anodic oxidation stage, the stable MAO stage and the ceramic coatings destroyed stage. The exterior loose part of the ceramic coatings was destroyed badly in the last period which should be

  20. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

    Science.gov (United States)

    Story, William A.; Brewer, Luke N.

    2018-02-01

    This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

  1. Technique for the comparison of light spectra from natural and laboratory generated lightning current arcs

    International Nuclear Information System (INIS)

    Mitchard, D.; Clark, D.; Carr, D.; Haddad, A.

    2016-01-01

    A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum was reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.

  2. Stainless steel coatings produced through atmospheric plasma spraying study of in flight powder behavior and coating structure

    International Nuclear Information System (INIS)

    Denoirjean, A.; Denoirjean, P.; Fauchais, P.; Labbe, J.C.; Khan, A.A.

    2005-01-01

    The Stainless Steel coatings deposited through Atmospheric Plasma Spraying over mild steel surface present an interest from commercial point of view, especially for the applications where corrosion resistance or inertness towards severe environment is required. Atmospheric Plasma Spraying is fast and relatively less expensive choice as compared to Vacuum Plasma Spraying, the only limitation being the extremely reactive nature of metallic powders used. A study of the behaviour of metallic powders within an Atmospheric Plasma Jet is presented in view of better understanding and eventual improvement in coating properties. Metallic powder particles show very interesting features when individual particles are collected after passing them through a DC Blown Arc Thermal Plasma Jet under Atmospheric Pressure. The spraying was carried out under air which makes the significance of these results even more interesting from the industrial point of view. Proper control of Spraying Parameters can help produce Stainless Steel coatings of reasonably low porosity and a typical lamellar microstructure. The results of SEM, AFM and XRD are discussed. A strange oxidation phenomenon under highly non equilibrium conditions is observed. (author)

  3. Thermal Conductivity and Wear Behavior of HVOF-Sprayed Fe-Based Amorphous Coatings

    Directory of Open Access Journals (Sweden)

    Haihua Yao

    2017-10-01

    Full Text Available To protect aluminum parts in vehicle engines, metal-based thermal barrier coatings in the form of Fe59Cr12Nb5B20Si4 amorphous coatings were prepared by high velocity oxygen fuel (HVOF spraying under two different conditions. The microstructure, thermal transport behavior, and wear behavior of the coatings were characterized simultaneously. As a result, this alloy shows high process robustness during spraying. Both Fe-based coatings present dense, layered structure with porosities below 0.9%. Due to higher amorphous phase content, the coating H-1 exhibits a relatively low thermal conductivity, reaching 2.66 W/(m·K, two times lower than the reference stainless steel coating (5.85 W/(m·K, indicating a good thermal barrier property. Meanwhile, the thermal diffusivity of amorphous coatings display a limited increase with temperature up to 500 °C, which guarantees a steady and wide usage on aluminum alloy. Furthermore, the amorphous coating shows better wear resistance compared to high carbon martensitic GCr15 steel at different temperatures. The increased temperature accelerating the tribological reaction, leads to the friction coefficient and wear rate of coating increasing at 200 °C and decreasing at 400 °C.

  4. The Tribological Performance of Hardfaced/ Thermal Sprayed Coatings for Increasing the Wear Resistance of Ventilation Mill Working Parts

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2015-09-01

    Full Text Available During the coal pulverizing, the working parts of the ventilation mill are being worn by the sand particles. For this reason, the working parts are usually protected with materials resistant to wear (hardfaced/thermal sprayed coatings. The aim of this study was to evaluate the tribological performance of four different types of coatings as candidates for wear protection of the mill’s working parts. The coatings were produced by using the filler materials with the following nominal chemical composition: NiFeBSi-WC, NiCrBSiC, FeCrCTiSi, and FeCrNiCSiBMn, and by using the plasma arc welding and flame and electric arc spraying processes. The results showed that Ni-based coatings exhibited higher wear resistance than Fe-based coatings. The highest wear resistance showed coating produced by using the NiFeBSi-WC filler material and plasma transferred arc welding deposition process. The hardness was not the only characteristic that affected the wear resistance. In this context, the wear rate of NiFeBSi-WC coating was not in correlation with its hardness, in contrast to other coatings. The different wear performance of NiFeBSi-WC coating was attributed to the different type and morphological features of the reinforcing particles (WC.

  5. Formation mechanism and microstructure characterization of nickel-aluminum intertwining interface in cold spray

    Czech Academy of Sciences Publication Activity Database

    Xie, Y.; Yin, S.; Čížek, Jan; Cupera, J.; Guo, E.; Lupoi, R.

    2018-01-01

    Roč. 337, March (2018), s. 447-452 ISSN 0257-8972 Institutional support: RVO:61389021 Keywords : Kinetic spray * Materials mixing * Grain refinement * Dynamic recrystallization * Nanostructure Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.589, year: 2016 https://www.sciencedirect.com/science/article/pii/S0257897218300574

  6. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.B. [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Yu, C.; Shiue, R.K. [Department of Materials Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsay, L.W., E-mail: b0186@mail.ntou.edu.tw [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-10-15

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  7. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    International Nuclear Information System (INIS)

    Cai, J.B.; Yu, C.; Shiue, R.K.; Tsay, L.W.

    2015-01-01

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  8. Gas Metal Arc Weld (GMAW) Qualification of 7020-T651 Aluminum

    Science.gov (United States)

    2015-11-01

    strength Al, with tough, ductile , weld joints may provide improved protection and crash safety by means of a rigid vehicle structure. This...characteristics and ballistic protection, with V50 statistics of 5083 and 7039 aluminum and RHA steel . Aberdeen Proving Ground (MD): Army Research...633. 9. McQueen H, Leo P, Cerri E. Al-Zn-Mg for extrusion– hot workability. In TMS 2009, Al Alloys: Fabrication, Characterization and Applications II

  9. Deposition characteristics of copper particles on roughened substrates through kinetic spraying

    International Nuclear Information System (INIS)

    Kumar, S.; Bae, Gyuyeol; Lee, Changhee

    2009-01-01

    In this paper, a systematic study of copper particle deposition behavior on polished and roughened surfaces (aluminum and copper) in kinetic spray process has been performed. The particle deformation behavior was simulated through finite element analysis (FEA) software ABAQUS explicit 6.7-2. The particle-substrate contact time, contact temperature and contact area upon impact have been estimated for smooth and three different roughened substrate cases. Copper powders were deposited on smooth and grit-blasted copper and aluminium substrates and characterized through scanning electron microscopy and Romulus bond strength analyzer. The results indicate that the deformation and the resultant bonding were higher for the roughened substrates than that of smooth. The characteristic factors for bonding are reported and discussed. Thus the substrate roughness appears to be beneficial for the initial deposition efficiency of the kinetic spray process.

  10. Spectrochemical analysis of aluminum and its alloys, and S. A. P

    International Nuclear Information System (INIS)

    Roca, M.

    1966-01-01

    Three different techniques have been employed for the spectrochemical analysis of aluminum, aluminum alloys, and S.A.P. :1) Point to plane with condensed spark and direct reading spectrometry; from the study on the instantaneous spectral-line intensities a long pre integration time has been established. 1) Powdered samples technique with direct current arc and also direct reading spectrometry; samples are transformed into Al 2 O 3 and mixed with graphite powder (1:1). A complete study on the different elements in aluminium oxide, aluminium sulfate and their mixtures with graphite, has been carried out. 3) Carrier distillation method with photographic recording for very low concentrations of boron and cadmium in S. A.P. (Author) 10 refs

  11. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    Science.gov (United States)

    Singh, Prabhakar; Ruka, Roswell J.

    1995-01-01

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  12. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    Science.gov (United States)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  13. Numerical Coupling of the Particulate Phase to the Plasma Phase in Modeling of Multi-Arc Plasma Spraying

    International Nuclear Information System (INIS)

    Bobzin, K.; Öte, M.

    2017-01-01

    Inherent to Euler-Lagrange formulation, which can be used in order to describe the particle behavior in plasma spraying, particle in-flight characteristics are determined by calculating the impulse, heat and mass transfer between the plasma jet and individual powder particles. Based on the assumption that the influence of the particulate phase on the fluid phase is insignificant, impulse, heat and mass transfer from particles to the plasma jet can be neglected using the so-called numerical approach of “one-way coupling”. On the other hand, so-called “two-way coupling” considers the two-sided transfer between both phases. The former is a common simplification used in the literature to describe the plasma-particle interaction in thermal spraying. This study focuses on the significance of this simplification on the calculated results and shows that the use of this simplification leads to significant errors in calculated plasma and particle in-flight characteristics in three-cathode plasma spraying process. (paper)

  14. Processing and structure of in situ Fe-Al alloys produced by gas tungsten arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-02-14

    Iron aluminide weld overlays are being investigated for corrosion and erosion protection of boiler tubes in low NOx burners. The primary objective of the research is to identify overlay compositions which can be deposited in a crack-free condition and provide corrosion protection in moderately reducing environments. In the current phase of work, Fe-Al alloy weld overlays were produced by depositing commercially pure aluminum wire on to low carbon steel substrates using Gas Tungsten Arc Welding. A systematic variation of the wire feed speed and current, two major factors affecting dilution, resulted in a variation in aluminum contents of the welds ranging from 3--42 wt% aluminum. The aluminum content was observed to increase with wire feed speed and a decrease in the current. The aluminum content was also found to affect the cracking susceptibility of the overlays. At 10wt% aluminum, few to no cracks were observed in the deposits. Above this value, cracking was prevalent throughout the weld. In addition, two types of microstructures were found correlating to different concentrations of aluminum. A homogeneous matrix with second phase particles consisting of coarse columnar grains was found for low aluminum concentrations. With higher aluminum contents, a two-phase constituent was observed to surround primary dendrites growing from the substrate. The transition of the microstructures occurred between 24 and 32 wt% Al.

  15. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    Science.gov (United States)

    Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  16. Spray cast Al-Si base alloys for stiffness and fatigue strength requirements

    International Nuclear Information System (INIS)

    Courbiere, M.; Mocellin, A.

    1993-01-01

    Hypereutectic AlSiFe spray-cast alloys exhibit properties similar to those of metal-matrix composite (MMC's) : high Young's modulus and a low coefficient of thermal expansion. These physical properties can be adjusted by changing the Si content of the alloy. The refinement of the microstructure is produced by formation of a large amount of nuclei in the spray. Consolidation done by extrusion (bars, tubes or profiles) and/or forging leads to high mechanical properties, especially very good dynamic properties. High fatigue properties coupled with high modulus, good high temperature behaviour and low thermal expansion, allow their use for applications in the automotive industry. In opposition to MMC's, these materials present the advantage of easy recycling and easy machinability as it is the case for the conventional AlSi alloys. The low oxygen content allows quality joining with conventional arc welding techniques. (orig.)

  17. Spray deposition of organic electroluminescent coatings for application in flexible light emitting devices

    Directory of Open Access Journals (Sweden)

    Mariya Aleksandrova

    2015-12-01

    Full Text Available Organic electroluminescent (EL films of tris(8-hydroxyquinolinatoaluminum (Alq3 mixed with polystyrene (PS binder were produced by spray deposition. The influence of the substrate temperature on the layer’s morphology and uniformity was investigated. The deposition conditions were optimized and simple flexible light-emitting devices consisting of indium-tin oxide/Alq3:PS/aluminum were fabricated on polyethylene terephthalate (PET foil to demonstrate the advantages of the sprayed organic coatings. Same structure was produced by thermal evaporation of Alq3 film as a reference. The influence of the deposition method on the film roughness and contact resistance at the electrode interfaces for both types of structures was estimated. The results were related to the devices’ efficiency. It was found that the samples with sprayed films turn on at 4 V, which is 2 V lower in comparison to the device with thermal evaporated Alq3. The current through the sprayed device is six times higher as well (17 mA vs. 2.8 mA at 6.5 V, which can be ascribed to the lower contact resistance at the EL film/electrode interfaces. This is due to the lower surface roughness of the pulverized layers.

  18. A Comparative Study of Cyclic Oxidation and Sulfates-Induced Hot Corrosion Behavior of Arc-Sprayed Ni-Cr-Ti Coatings at Moderate Temperatures

    Science.gov (United States)

    Guo, Wenmin; Wu, Yuping; Zhang, Jianfeng; Hong, Sheng; Chen, Liyan; Qin, Yujiao

    2015-06-01

    The cyclic oxidation and sulfates-induced hot corrosion behaviors of a Ni-43Cr-0.3Ti arc-sprayed coating at 550-750 °C were characterized and compared in this study. In general, all the oxidation and hot corrosion kinetic curves of the coating followed a parabolic law, i.e., the weight of the specimens showed a rapid growth initially and then reached the gradual state. However, the initial stage of the hot corrosion process was approximately two times longer than that of the oxidation process, indicating a longer preparation time required for the formation of a protective scale in the former process. At 650 °C, the parabolic rate constant for the hot corrosion was 7.2 × 10-12 g2/(cm4·s), approximately 1.7 times higher than that for the oxidation at the same temperature. The lower parabolic rate constant for the oxidation was mainly attributed to the formation of a protective oxide scale on the surface of corroded specimens, which was composed of a mixture of NiO, Cr2O3, and NiCr2O4. However, as the liquid molten salts emerged during the hot corrosion, these protective oxides would be dissolved and the coating was corrupted acceleratedly.

  19. Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements

    Science.gov (United States)

    Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay

    2016-12-01

    Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.

  20. SPRAY CASTING

    OpenAIRE

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and comp...

  1. Study of 2219 aluminum alloy using direct current A-TIG welding

    Science.gov (United States)

    Li, Hui; Zou, Jiasheng

    2017-07-01

    Direct current A-TIG (DCEN A-TIG) welding using special active agent had eliminated the pores and the oxidation of 2219 high-strength aluminum alloy in welding. Addition of AlF3-25% LiF active agent to DCEN A-TIG welding and arc morphology showed a trailing phenomenon. However, the change in arc morphology was not remarkable when AlF3-75% LiF active agent was added. Addition of AlF3-75% LiF active agent can refine the grain size of DCEN A-TIG joint. The mechanical properties of the weld were optimal at 10% AlF3-75% LiF active agent. Compared with AC TIG and AC A-TIG welding, DCEN A-TIG welding yielded better results for 2219 Al alloy.

  2. Protective film formation on AA2024-T3 aluminum alloy by leaching of lithium carbonate from an organic coating

    NARCIS (Netherlands)

    Liu, Y.; Visser, P.; Zhou, X.; Lyon, S.B.; Hashimoto, T.; Curioni, M.; Gholinia, A.; Thompson, G.E.; Smyth, G.; Gibbon, S.R.; Graham, D.; Mol, J.M.C.; Terryn, H.A.

    2015-01-01

    An investigation into corrosion inhibition properties of a primer coating containing lithium carbonate as corrosion inhibitive pigment for AA2024 aluminum alloy was conducted. It was found that, during neutral salt spray exposure, a protective film of about 0.2 to 1.5 ?m thickness formed within the

  3. Local deposition of Copper on Aluminum based MWT Back Contact Foil using Cold Spray Technology

    Energy Technology Data Exchange (ETDEWEB)

    Goris, M.J.A.A.; Bennett, I.J.; Eerenstein, W. [ECN Solar Energy, Petten (Netherlands)

    2013-11-15

    MWT cell and module technology has been shown to result in modules with up to 5% higher power output than H-pattern modules and to be suitable for use with thin and fragile cells. In this study, the use of a low cost conductive back-sheet with aluminium as the current carrier in combination with locally applied copper (5 to 30 {mu}m) using the cold spray method is benchmarked against a standard PVF-PET-copper foil in 2 x 2 cell modules. Cell to module losses and reliability during climate chamber tests according to IEC61215 ed. 2, are comparable to module made with the standard foil. Optimizing the cold spray process can result in a cost reduction of more than a factor 10 of the current carrying component, when compared to a full copper conductive back-sheet foil.

  4. Evaluation of thermal sprayed metallic coatings for use on the structures at Launch Complex 39

    Science.gov (United States)

    Welch, Peter J.

    1990-01-01

    The current status of the evaluation program is presented. The objective was to evaluate the applicability of Thermal Sprayed Coatings (TSC) to protect the structures in the high temperature acid environment produced by exhaust of the Solid Rocket Boosters during the launches of the Shuttle Transportation System. Only the relatively low cost aluminum TSC which provides some cathodic protection for steel appears to be a practical candidate for further investigation.

  5. Structural, optical and thermal properties of nanoporous aluminum

    International Nuclear Information System (INIS)

    Ghrib, Taher

    2015-01-01

    Highlights: • A simple electrochemical technique is presented and used to manufacture a porous aluminum layer. • Manufactured pores of 40 nm diameter and 200 nm depth are filled by nanocrystal of silicon and graphite. • Dimensions of pores increase with the anodization current which ameliorate the optical and thermal properties. • A new thermal method is presented which permit to determine the pores density and the layer thickness. • All properties show that the manufactured material can be used with success in solar cells. - Abstract: In this work the structural, thermal and optical properties of porous aluminum thin film formed with various intensities of anodization current in sulfuric acid are highlighted. The obtained pores at the surface are filled by sprayed graphite and nanocrystalline silicon (nc-Si) thin films deposited by plasma enhancement chemical vapor deposition (PECVD) which the role is to improve its optical and thermal absorption giving a structure of an assembly of three different media such as deposited thin layer (graphite or silicon)/(porous aluminum layer filled with the deposited layer)/(Al sample). The effect of anodization current on the microstructure of porous aluminum and the effect of the deposited layer were systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM) and Raman spectroscopy. The thermal properties such as the thermal conductivity (K) and thermal diffusivity (D) are determined by the photothermal deflection (PTD) technique which is a non destructive technique. Based on this full characterization, it is demonstrated that the thermal and optical characteristics of these films are directly correlated to their micro-structural properties

  6. The structure, properties and performance of plasma-sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.

    1995-01-01

    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H 2 gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m 2

  7. Effect of zirconium addition on welding of aluminum grain refined by titanium

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2011-01-01

    Aluminum and its alloys solidify in large grains columnar structure which tends to reduce their mechanical behaviour and surface quality. Therefore, they are industrially grain refined by titanium or titanium + boron. Furthermore, aluminum oxidizes in ordinary atmosphere which makes its weldability difficult and weak. Therefore, it is anticipated that the effect of addition of zirconium at a weight percentages of 0.1% (which proved to be an effective grain refiner on the weldability of aluminum grain refined by Ti) is worthwhile investigating. This formed the objective of this research work. In this paper, the effect of zirconium addition at a weight percentage of 0.1%, which corresponds to the peritctic limit on the aluminum-zirconium phase diagram, on the weldability of aluminum grain refined by Ti is investigated. Rolled sheets of commercially pure aluminum, Al grain refined Ti of 3 mm thickness were welded together using Gas Tungsten Arc Welding method (GTAW), formerly known as TIG. A constant air gap was maintained at a constant current level, 30 ampere AC, was used because it removes the oxides of the welding process under the same process parameters. Metallographic examination of weldments of the different combinations of aluminum and its microalloys at the heat affected zone, HAZ, and base metal was carried out and examined for width, porosity, cracks and microhardness. It was found that grain refining of commercially pure aluminum by Ti resulted in enhancement of its weldability. Similarly, addition of zirconium to Al grain refined by Ti resulted in further enhancement of the weldment. Photomicrographs of the HAZ regions are presented and discussed. (author)

  8. Effects of micro arc oxidation on fatigue limits and fracture morphologies of 7475 high strength aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dejun, Kong, E-mail: kong-dejun@163.com [College of Mechanical Engineering, Changzhou University, Changzhou, 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou, 213164 (China); Hao, Liu; Jinchun, Wang [College of Mechanical Engineering, Changzhou University, Changzhou, 213164 (China)

    2015-11-25

    The oxide coatings with thicknesses of 8 μm, 10 μm, and 15 μm were prepared on 7475 aluminum alloy with micro arc oxidation (MAO) by controlling MAO time, the fatigue limits of original and MAO samples were contrastively measured by the Roccati method. The surface-interface morphologies, fracture morphologies, surface phases, and residual stresses of MAO coating were analyzed with a scanning electron microscopy (SEM), X-ray diffractometer (XRD) and XRD stress tester, respectively. The results show that fatigue limits of the MAO samples decreases as the coating thickness increasing. The fatigue limit of MAO sample with thickness of 8 μm, 10 μm, and 15 μm decreases by 6.48%, 8.33%, and 11.11%, respectively, compared with the original sample. The residual stress and defects introduced by MAO were the main factors of decreasing fatigue limits. - Graphical abstract: The fatigue limit of original sample was 216 MPa (a), while that of MAO samples with thickness of 8 μm, 10 μm and 15 μm was 202 MPa, 198 MPa and 192 MPa (b). The fatigue limit of MAO samples with thickness of 8 μm, 10 μm and 15 μm decreased by 6.48%, 8.33% and 11.11% compared with that of the original sample, as a result, the fatigue limit decreased with the MAO film thickness increasing. - Highlights: • The fatigue limits of MAO samples decrease with the oxide thickness increasing. • The overgrowth regions cause the crack source expanding. • The overgrowth of MAO film and tensile residual stress decrease fatigue limit.

  9. Spray and microjets produced by focusing a laser pulse into a hemispherical drop

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2009-11-02

    We use high-speed video imaging to study laser disruption of the free surface of a hemispheric drop. The drop sits on a glass surface and the Nd:YAG (yttrium aluminum garnet) laser pulse propagates through the drop and is focused near the free surface from below. We focus on the evolution of the cylindrical liquid sheet and spray which emerges out of the drop and resembles typical impact crowns. The tip of the sheet emerges at velocities over 1 km/s. The tip of the crown breaks up into fine spray some of which is sucked back into the growing cavity at about 100 m/s. We measure the size of the typical spray droplets to be about 3 μm. We also show the formation of fine microjets, which are produced when the laser is focused inside the drop and the shock front hits small bubbles sitting under the free surface. For water these microjets are 5–50 μm in diameter and exit at 100–250 m/s. For higher viscositydrops, these jets can emerge at over 500 m/s.

  10. Spray and microjets produced by focusing a laser pulse into a hemispherical drop

    KAUST Repository

    Thoroddsen, Sigurdur T; Takehara, K.; Etoh, T. G.; Ohl, C.-D.

    2009-01-01

    We use high-speed video imaging to study laser disruption of the free surface of a hemispheric drop. The drop sits on a glass surface and the Nd:YAG (yttrium aluminum garnet) laser pulse propagates through the drop and is focused near the free surface from below. We focus on the evolution of the cylindrical liquid sheet and spray which emerges out of the drop and resembles typical impact crowns. The tip of the sheet emerges at velocities over 1 km/s. The tip of the crown breaks up into fine spray some of which is sucked back into the growing cavity at about 100 m/s. We measure the size of the typical spray droplets to be about 3 μm. We also show the formation of fine microjets, which are produced when the laser is focused inside the drop and the shock front hits small bubbles sitting under the free surface. For water these microjets are 5–50 μm in diameter and exit at 100–250 m/s. For higher viscositydrops, these jets can emerge at over 500 m/s.

  11. Internal Heterogeneous Processes in Aluminum Combustion

    Science.gov (United States)

    Dreizin, E. L.

    1999-01-01

    This paper discusses the aluminum particle combustion mechanism which has been expanded by inclusion of gas dissolution processes and ensuing internal phase transformations. This mechanism is proposed based on recent normal and microgravity experiments with particles formed and ignited in a pulsed micro-arc. Recent experimental findings on the three stages observed in Al particle combustion in air and shows the burning particle radiation, trajectory (streak), smoke cloud shapes, and quenched particle interiors are summarized. During stage I, the radiation trace is smooth and the particle flame is spherically symmetric. The temperature measured using a three-color pyrometer is close to 3000 K. Because it exceeds the aluminum boiling point (2730 K), this temperature most likely characterizes the vapor phase flame zone rather than the aluminum surface. The dissolved oxygen content within particles quenched during stage I was below the detection sensitivity (about 1 atomic %) for Wavelength Dispersive Spectroscopy (WDS). After an increase in the radiation intensity (and simultaneous decrease in the measured color temperature from about 3000 to 2800 K) indicative of the transition to stage II combustion, the internal compositions of the quenched particles change. Both oxygen-rich (approx. 10 atomic %) and oxygen-lean (combustion behavior and the evolution of its internal composition, the change from the spherically symmetric to asymmetric flame shape occurring upon the transition from stage I to stage II combustion could not be understood based only on the fact that dissolved oxygen is detected in the particles. The connection between the two phenomena appeared even less significant because in earlier aluminum combustion studies carried in O2/Ar mixtures, flame asymmetry was not observed as opposed to experiments in air or O2/CO mixtures. It has been proposed that the presence of other gases, i.e., hydrogen, or nitrogen causes the change in the combustion regime.

  12. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  13. Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Pieters, Jan G; Nuyttens, David

    2014-03-01

    Spray boom systems, an alternative to the predominantly-used spray guns, have the potential to considerably improve crop protection management in glasshouses. Based on earlier experiments, the further optimization of the deposits of a medium spray quality extended range flat fan nozzle type using easy adjustable spray boom settings was examined. Using mineral chelate tracers and water sensitive papers, the spray results were monitored at three plant levels, on the upper side and the underside of the leaves, and on some off-target collectors. In addition, the deposition datasets of all tree experiments were compared. The data showed that the most efficient spray distribution with the medium spray quality flat fan nozzles was found with a 30° forward angled spray combined with air support and an application rate of 1000 L ha(-1) . This technique resulted in a more uniform deposition in the dense canopy and increased spray deposition on the lower side of the leaves compared with the a standard spray boom application. Applying 1000 L ha(-1) in two subsequent runs instead of one did not seem to show any added value. Spray deposition can be improved hugely simply by changing some spray boom settings like nozzle type, angling the spray, using air support and adjusting the spray volume to the crop. © 2013 Society of Chemical Industry.

  14. Optical fuel spray measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hillamo, H.

    2011-07-01

    Diesel fuel sprays, including fuel/air mixing and the physics of two-phase jet formation, are discussed in the thesis. The fuel/air mixing strongly affects emissions formation in spray combustion processes where the local combustion conditions dictate the emission formation. This study comprises optical measurements both in pressurized spray test rigs and in a running engine.The studied fuel injection was arranged with a common rail injection system and the injectors were operated with a solenoid-based injection valve. Both marine and heavy-duty diesel engine injectors were used in the study. Optical fuel spray measurements were carried out with a laser-based double-framing camera system. This kind of equipments is usually used for flow field measurements with Particle Image Velocimetry technique (PIV) as well as for backlight imaging. Fundamental fuel spray properties and spray formation were studied in spray test rigs. These measurements involved studies of mixing, atomization, and the flow field. Test rig measurements were used to study the effect of individual injection parameters and component designs. Measurements of the fuel spray flow field, spray penetration, spray tip velocity, spray angle, spray structure, droplet accumulation, and droplet size estimates are shown. Measurement campaign in a running optically accessible large-bore medium-speed engine was also carried out. The results from engine tests were compared with equivalent test rig measurements, as well as computational results, to evaluate the level of understanding of sprays. It was shown that transient spray has an acceleration and a deceleration phase. Successive flow field measurements (PIV) in optically dense diesel spray resulted in local and average velocity data of diesel sprays. Processing fuel spray generates a flow field to surrounding gas and entrainment of surrounding gas into fuel jet was also seen at the sides of the spray. Laser sheet imaging revealed the inner structure of diesel

  15. Spray characteristics and spray cooling heat transfer in the non-boiling regime

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Han, Feng-Yun; Liu, Qi-Nie; Fan, Han-Lin

    2011-01-01

    Spray cooling is an effective method for dissipating high heat fluxes in the field of electronics thermal control. In this study, experiments were performed with distilled water as a test liquid to study the spray cooling heat transfer in non-boiling regime. A Phase Doppler Anemometry (PDA) was used to study the spray characteristics. The effects of spray flow rate, spray height, and inlet temperature on spray cooling heat transfer were investigated. It was found that the parameters affect heat transfer of spray cooling in non-boiling regime by the spray characteristics and working fluid thermophysical properties. Then the corresponding droplet axial velocity and Sauter mean diameter (SMD) were successfully correlated with mean absolute error of 15%, which were based upon the orifice diameter, the Weber and Reynolds numbers of the orifice flow prior to liquid breakup, dimensionless spray height and spray cross-section radius. The heat transfer in non-boiling regime was correlated with a mean absolute error of 7%, which was mainly associated with the working fluid thermophysical properties, the Weber and Reynolds numbers hitting the heating surface, dimensionless heating surface temperature and diameter. -- Highlights: → The spray flow rate, spray height, and inlet temperature affect heat transfer of spray cooling in non-boiling regime by the spray characteristics and the working fluid thermophysical properties. → Then the corresponding droplet axial velocity and Sauer mean diameter (SMD) were successfully correlated with mean absolute error of 15%. → The heat transfer in non-boiling regime was correlated with a mean absolute error of 7%.

  16. Layered growth with bottom-spray granulation for spray deposition of drug.

    Science.gov (United States)

    Er, Dawn Z L; Liew, Celine V; Heng, Paul W S

    2009-07-30

    The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.

  17. Hydroxyapatite-Coated Magnesium-Based Biodegradable Alloy: Cold Spray Deposition and Simulated Body Fluid Studies

    Science.gov (United States)

    Noorakma, Abdullah C. W.; Zuhailawati, Hussain; Aishvarya, V.; Dhindaw, B. K.

    2013-10-01

    A simple modified cold spray process in which the substrate of AZ51 alloys were preheated to 400 °C and sprayed with hydroxyapatite (HAP) using high pressure cold air nozzle spray was designed to get biocompatible coatings of the order of 20-30 μm thickness. The coatings had an average modulus of 9 GPa. The biodegradation behavior of HAP-coated samples was tested by studying with simulated body fluid (SBF). The coating was characterized by FESEM microanalysis. ICPOES analysis was carried out for the SBF solution to know the change in ion concentrations. Control samples showed no aluminum corrosion but heavy Mg corrosion. On the HAP-coated alloy samples, HAP coatings started dissolving after 1 day but showed signs of regeneration after 10 days of holding. All through the testing period while the HAP coating got eroded, the surface of the sample got deposited with different apatite-like compounds and the phase changed with course from DCPD to β-TCP and β-TCMP. The HAP-coated samples clearly improved the biodegradability of Mg alloy, attributed to the dissolution and re-precipitation of apatite showed by the coatings as compared to the control samples.

  18. Metal halide arc discharge lamp having short arc length

    Science.gov (United States)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  19. Spray deposition and spray drift in orchard spraying by multiple row sprayers

    NARCIS (Netherlands)

    Wenneker, M.; Zande, van de J.C.; Michielsen, J.G.P.; Stallinga, H.; Velde, van P.

    2016-01-01

    The evaluation of the latest data on spray drift in orchard spraying in the Netherlands, and measurements of surface water quality parameters show that the current legislation and measures are insufficient to protect the surface water. To meet the national and European objectives regarding surface

  20. Effect of alkaline cleaning and activation on aluminum alloy 7075-T6

    International Nuclear Information System (INIS)

    Joshi, Simon; Fahrenholtz, William G.; O'Keefe, Matthew J.

    2011-01-01

    The effect of alkaline cleaning and activation on the composition and thickness of the oxide layer on aluminum alloy 7075-T6 was studied. E-pH diagrams were developed to predict the effect of alkaline cleaning and activation solutions on the stability of the oxide surface layers. The thickness of the native oxide layer was determined to be ∼30 nm by Auger electron spectroscopy depth profiling analysis. The outer ∼20 nm was rich in magnesium while the remaining ∼10 nm was rich in aluminum. Cleaning in a 9.1 pH alkaline solution was found to remove the magnesium-rich layer and leave behind an aluminum-rich oxide layer ∼10 nm thick. Activation in alkaline solutions of NaOH (pH > 12.9) or Na 2 CO 3 (pH > 11.5) produced an oxide that was ∼20 to 60 nm thick and rich in magnesium. Alkaline cleaning and activation altered the oxide composition and thickness making it possible for deposition of thicker cerium-based conversion coatings (∼100 to 250 nm) compared to only alkaline cleaning (∼30 nm), with application of one spray cycle of deposition solution.

  1. Effect of alkaline cleaning and activation on aluminum alloy 7075-T6

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Simon, E-mail: sjwt5@mst.edu [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Fahrenholtz, William G.; O' Keefe, Matthew J. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2011-01-01

    The effect of alkaline cleaning and activation on the composition and thickness of the oxide layer on aluminum alloy 7075-T6 was studied. E-pH diagrams were developed to predict the effect of alkaline cleaning and activation solutions on the stability of the oxide surface layers. The thickness of the native oxide layer was determined to be {approx}30 nm by Auger electron spectroscopy depth profiling analysis. The outer {approx}20 nm was rich in magnesium while the remaining {approx}10 nm was rich in aluminum. Cleaning in a 9.1 pH alkaline solution was found to remove the magnesium-rich layer and leave behind an aluminum-rich oxide layer {approx}10 nm thick. Activation in alkaline solutions of NaOH (pH > 12.9) or Na{sub 2}CO{sub 3} (pH > 11.5) produced an oxide that was {approx}20 to 60 nm thick and rich in magnesium. Alkaline cleaning and activation altered the oxide composition and thickness making it possible for deposition of thicker cerium-based conversion coatings ({approx}100 to 250 nm) compared to only alkaline cleaning ({approx}30 nm), with application of one spray cycle of deposition solution.

  2. Experimental and Numerical Study of the Influence of Substrate Surface Preparation on Adhesion Mechanisms of Aluminum Cold Spray Coatings on 300M Steel Substrates

    Science.gov (United States)

    Nastic, A.; Vijay, M.; Tieu, A.; Rahmati, S.; Jodoin, B.

    2017-10-01

    The effect of substrate surface topography on the creation of metallurgical bonds and mechanical anchoring points has been studied for the cold spray deposition of pure aluminum on 300M steel substrate material. The coatings adhesion strength showed a significant decrease from 31.0 ± 5.7 MPa on polished substrates to 6.9 ± 2.0 MPa for substrates with roughness of 2.2 ± 0.5 μm. Strengths in the vicinity of 45 MPa were reached for coatings deposited onto forced pulsed waterjet treated surfaces with roughnesses larger than 33.8 μm. Finite element analysis has confirmed the sole presence of mechanical anchoring in coating adhesion strength for all surface treatment except polished surfaces. Grit embedment has been shown to be non-detrimental to coating adhesion for the current deposited material combination. The particle deformation process during impacts has been studied through finite element analysis using the Preston-Tonks-Wallace (PTW) constitutive model. The obtained equivalent plastic strain (PEEQ), temperature, contact pressure and velocity vector were correlated to the particle ability to form metallurgical bonds. Favorable conditions for metallurgical bonding were found to be highest for particles deposited on polished substrates, as confirmed by fracture surface analysis.

  3. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    Science.gov (United States)

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  4. A 36,000-Year-Old Volcanic Eruption Depicted in the Chauvet-Pont d'Arc Cave (Ardèche, France)?

    Science.gov (United States)

    Nomade, Sébastien; Genty, Dominique; Sasco, Romain; Scao, Vincent; Féruglio, Valérie; Baffier, Dominique; Guillou, Hervé; Bourdier, Camille; Valladas, Hélène; Reigner, Edouard; Debard, Evelyne; Pastre, Jean-François; Geneste, Jean-Michel

    2016-01-01

    Among the paintings and engravings found in the Chauvet-Pont d'Arc cave (Ardèche, France), several peculiar spray-shape signs have been previously described in the Megaloceros Gallery. Here we document the occurrence of strombolian volcanic activity located 35 km northwest of the cave, and visible from the hills above the cave entrance. The volcanic eruptions were dated, using 40Ar/39Ar, between 29 ± 10 ka and 35 ± 8 ka (2σ), which overlaps with the 14C AMS and thermoluminescence ages of the first Aurignacian occupations of the cave in the Megaloceros Gallery. Our work provides the first evidence of an intense volcanic activity between 40 and 30 ka in the Bas-Vivarais region, and it is very likely that Humans living in the Ardèche river area witnessed one or several eruptions. We propose that the spray-shape signs found in the Chauvet-Pont d'Arc cave could be the oldest known depiction of a volcanic eruption, predating by more than 34 ka the description by Pliny the Younger of the Vesuvius eruption (AD 79) and by 28 ka the Çatalhöyük mural discovered in central Turkey.

  5. Monitoring ARC services with GangliARC

    International Nuclear Information System (INIS)

    Cameron, D; Karpenko, D

    2012-01-01

    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  6. Resonant mode for a dc plasma spray torch by means of pressure–voltage coupling: application to synchronized liquid injection

    International Nuclear Information System (INIS)

    Krowka, J; Rat, V; Coudert, J F

    2013-01-01

    Electric arc instabilities in dc plasma torches result in non-homogeneous treatment of nanosized solid particles injected into the plasma jets. In the particular case of suspension plasma spraying, large discrepancies in the particles trajectories and thermal histories make the control of coating properties more difficult to achieve. In this paper, a new approach of arc dynamics highlights the existence of different resonant modes and the possibility of their coupling. This study leads us to design a special plasma torch working in a very regular pulsed regime. Then, an innovative injection system based on the drop-on-demand method synchronized with the plasma oscillations is presented as an efficient method to control the dynamics of plasma/particles interactions. (paper)

  7. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  8. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  9. Arc Shape Characteristics with Ultra-High-Frequency Pulsed Arc Welding

    Directory of Open Access Journals (Sweden)

    Mingxuan Yang

    2017-01-01

    Full Text Available Arc plasma possesses a constriction phenomenon with a pulsed current. The constriction is created by the Lorentz force, the radial electromagnetic force during arc welding, which determines the energy distribution of the arc plasma. Welding experiments were carried out with ultra-high-frequency pulsed arc welding (UHFP-AW. Ultra-high-speed camera observations were produced for arc surveillance. Hue-saturation-intensity (HSI image analysis was used to distinguish the regions of the arc plasma that represented the heat energy distribution. The measurement of arc regions indicated that, with an ultra-high-frequency pulsed arc, the constriction was not only within the decreased arc geometry, but also within the constricted arc core region. This can be checked by the ratio of the core region to the total area. The arc core region expanded significantly at 40 kHz at 60 A. A current level of 80 A caused a decrease in the total region of the arc. Meanwhile, the ratio of the core region to the total increased. It can be concluded that arc constriction depends on the increased area of the core region with the pulsed current (>20 kHz.

  10. Effect of the Milling Time of the Precursors on the Physical Properties of Sprayed Aluminum-Doped Zinc Oxide (ZnO:Al Thin Films

    Directory of Open Access Journals (Sweden)

    María De La Luz Olvera

    2012-08-01

    Full Text Available Aluminum doped zinc oxide (ZnO:Al thin films were deposited on soda-lime glass substrates by the chemical spray technique. The atomization of the solution was carried out by ultrasonic excitation. Six different starting solutions from both unmilled and milled Zn and Al precursors, dissolved in a mix of methanol and acetic acid, were prepared. The milling process was carried out using a planetary ball mill at a speed of 300 rpm, and different milling times, namely, 15, 25, 35, 45, and 60 min. Molar concentration, [Al]/[Zn] atomic ratio, deposition temperature and time, were kept at constant values; 0.2 M, 3 at.%, 475 °C, and 10 min, respectively. Results show that, under the same deposition conditions, electrical resistivities of ZnO:Al thin films deposited from milled precursors are lower than those obtained for films deposited from unmilled precursors. X-ray diffraction analysis revealed that all films display a polycrystalline structure, fitting well with the hexagonal wurtzite structure. Changes in surface morphology were observed by scanning electron microscopy (SEM as well, since films deposited from unmilled precursors show triangular shaped grains, in contrast to films deposited from 15 and 35 min milled precursors that display thin slices with hexagonal shapes. The use of milled precursors to prepare starting solutions for depositing ZnO:Al thin films by ultrasonic pyrolysis influences their physical properties.

  11. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  12. Adaptation of metal arc plasma source to plasma source ion implantation

    International Nuclear Information System (INIS)

    Shamim, M.M.; Fetherston, R.P.; Conrad, J.R.

    1995-01-01

    In Plasma Source Ion Implantation (PSII) a target is immersed in a plasma and a train of high negative voltage pulses is applied to accelerate ions into the target and to modify the properties in the near surface region. In PSII, until now the authors have been using gaseous species to generate plasmas. However metal ion plasma may be used to modify the surface properties of material for industrial applications. Conventionally the ion implantation of metal ions is performed using beam line accelerators which have complex engineering and high cost. The employment of a metal arc source to PSII has tremendous potential due to its ability to process the conformal surfaces, simple engineering and cost effectiveness. They have installed metal arc source for generation of titanium plasma. Currently, they are investigating the properties of titanium plasma and material behavior of titanium implanted aluminum and 52100 steel. The recent results of this investigation are presented

  13. Spray boom for selectively spraying a herbicidal composition onto dicots

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a method and spray boom for discriminating cereal crop (monocot) and weeds (dicots). The spray boom includes means for digitally recording an image of a selected area to be treated by a nozzle on the spray boom, whereby a plant material is identified based on a segmentation proc...

  14. Ignition of Liquid Fuel Spray and Simulated Solid Rocket Fuel by Photoignition of Carbon Nanotube Utilizing a Camera Flash

    Science.gov (United States)

    2011-12-01

    10,11 There has been a recent report on the photoignition of graphene oxide for fuel ignition applications.12 In this report, we will describe the...slide Aluminum foil Glass petri dish Xe flash Camera Sample Black spray paint Figure 2- Schematic and photographs of the experimental setup...Gilje, Sergey Dubin, Alireza Badakhshan, Jabari Farrar, Stephen. A. Danczyk, Richard B. Kaner, “Photothermal Deoxygenation of Graphene Oxide for

  15. Reduction of spray pressure leads to less emission and better deposition of spray liquid at high-volume spraying in greenhouse tomato

    NARCIS (Netherlands)

    Os, van E.A.; Michielsen, J.M.G.P.; Corver, F.J.M.; Berg, van den J.V.; Bruins, M.A.; Porskamp, H.A.J.; Zande, van de J.C.

    2005-01-01

    In an experimental greenhouse, growing a tomato crop, it was investigated if a reduction in spray pressure could improve the spray result, while, simultaneously, emission to the ground could be reduced. Spray deposition on the leaves and the emission to the ground was evaluated at different spray

  16. Structure and Distribution of Components in the Working Layer Upon Reconditioning of Parts by Electric-Arc Metallization

    Science.gov (United States)

    Skoblo, T. S.; Vlasovets, V. M.; Moroz, V. V.

    2001-11-01

    Reliable data on the structure of the deposited layer are very important due to the considerable instability of the process of deposition of coatings by the method of electric-arc metallization and the strict requirements for reconditioned crankshafts. The present paper is devoted to the structure of coatings obtained from powder wire based on ferrochrome-aluminum with additional alloying elements introduced into the charge.

  17. Investigation of aluminum surface cleaning using cavitating fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavičiaus str.28, 03224, Vilnius (Lithuania)

    2013-12-16

    This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

  18. Relation between surface roughness and number of cathode spots of a low-pressure arc

    International Nuclear Information System (INIS)

    Sato, Atsushi; Iwao, Toru; Yumoto, Motoshige

    2008-01-01

    A remarkable characteristic of the cathode spot of a low-pressure arc is that it can remove an oxide layer preferentially. Recently, cathode spots of a low-pressure arc have been used for cleaning metal oxide surfaces before thermal spraying or surface modification. Nevertheless, few reports have described the cathode spot movement or the oxide removal process. This experiment was carried out using a Fe+C cathode workpiece and a cylindrical copper anode. The cathode spot movement was recorded using a high-speed video camera. The images were later analysed using plasma image processing. The workpiece surface, which was covered with a 9.67 μm thick oxide, was analysed using laser microscopy after processing. The surface roughness and the number of cathode spots showed no direct relation because the current density per cathode spot did not change according to the number of cathode spots.

  19. Thermal efficiency on welding of AA6061-T6 alloy by modified indirect electric arc and current signals digitalisation

    International Nuclear Information System (INIS)

    Ambriz, R. R.; Barrera, G.; Garcia, R.; Lopez, V. H.

    2009-01-01

    The results of the thermal efficiency on welding by modified indirect electric arc technique (MIEA) [1] of the 6061- T6 aluminum alloy are presented. These values are in a range of 90 to 94 %, which depend of the preheating employed. Thermal efficiency was obtained by means of a balance energy which considers the heat input, the amount of melted mass of the welding profiles, and welding parameters during the joining, especially of the arc current data acquisition. Also, some dimensionless parameters were employed in order to determine the approximation grade of the melted pool, the heat affected zone (HAZ), and their corresponding values with the experimental results. (Author) 13 refs

  20. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  1. Thermal barrier coatings - Technology for diesel engines

    International Nuclear Information System (INIS)

    Harris, D.H.; Lutz, J.

    1988-01-01

    Thermal Barrier Coatings (TBC) are a development of the aerospace industry primarily aimed at hot gas flow paths in turbine engines. TBC consists of zirconia ceramic coatings applied over (M)CrAlY. These coatings can provide three benefits: (1) a reduction of metal surface operating temperatures, (2) a deterrent to hot gas corrosion, and (3) improved thermal efficiencies. TBC brings these same benefits to reciprocal diesel engines but coating longevity must be demonstrated. Diesels require thicker deposits and have challenging geometries for the arc-plasma spray (APS) deposition process. Different approaches to plasma spraying TBC are required for diesels, especially where peripheral edge effects play a major role. Bondcoats and ceramic top coats are modified to provide extended life as determined by burner rig tests, using ferrous and aluminum substrates

  2. The influence of Ac parameters in the process of micro-arc oxidation film electric breakdown

    Directory of Open Access Journals (Sweden)

    Ma Jin

    2016-01-01

    Full Text Available This paper studies the electric breakdown discharge process of micro-arc oxidation film on the surface of aluminum alloy. Based on the analysis of the AC parameters variation in the micro-arc oxidation process, the following conclusions can be drawn: The growth of oxide film can be divided into three stages, and Oxide film breakdown discharge occurs twice in the micro-arc oxidation process. The first stage is the formation and disruptive discharge of amorphous oxide film, producing the ceramic oxide granules, which belong to solid dielectric breakdown. In this stage the membrane voltage of the oxide film plays a key role; the second stage is the formation of ceramic oxide film, the ceramic oxide granules turns into porous structure oxide film in this stage; the third stage is the growth of ceramic oxide film, the gas film that forms in the oxide film’s porous structure is electric broken-down, which is the second breakdown discharge process, the current density on the oxide film surface could affect the breakdown process significantly.

  3. A 36,000-Year-Old Volcanic Eruption Depicted in the Chauvet-Pont d’Arc Cave (Ardèche, France)?

    Science.gov (United States)

    Nomade, Sébastien; Genty, Dominique; Sasco, Romain; Scao, Vincent; Féruglio, Valérie; Baffier, Dominique; Guillou, Hervé; Bourdier, Camille; Valladas, Hélène; Reigner, Edouard; Debard, Evelyne; Pastre, Jean–François; Geneste, Jean-Michel

    2016-01-01

    Among the paintings and engravings found in the Chauvet-Pont d’Arc cave (Ardèche, France), several peculiar spray-shape signs have been previously described in the Megaloceros Gallery. Here we document the occurrence of strombolian volcanic activity located 35 km northwest of the cave, and visible from the hills above the cave entrance. The volcanic eruptions were dated, using 40Ar/39Ar, between 29 ± 10 ka and 35 ± 8 ka (2σ), which overlaps with the 14C AMS and thermoluminescence ages of the first Aurignacian occupations of the cave in the Megaloceros Gallery. Our work provides the first evidence of an intense volcanic activity between 40 and 30 ka in the Bas-Vivarais region, and it is very likely that Humans living in the Ardèche river area witnessed one or several eruptions. We propose that the spray-shape signs found in the Chauvet-Pont d’Arc cave could be the oldest known depiction of a volcanic eruption, predating by more than 34 ka the description by Pliny the Younger of the Vesuvius eruption (AD 79) and by 28 ka the Çatalhöyük mural discovered in central Turkey. PMID:26745626

  4. On arc efficiency in gas tungsten arc welding

    Directory of Open Access Journals (Sweden)

    Nils Stenbacka

    2013-12-01

    Full Text Available The aim of this study was to review the literature on published arc efficiency values for GTAW and, if possible, propose a narrower band. Articles between the years 1955 - 2011 have been found. Published arc efficiency values for GTAW DCEN show to lie on a wide range, between 0.36 to 0.90. Only a few studies covered DCEP - direct current electrode positive and AC current. Specific information about the reproducibility in calorimetric studies as well as in modeling and simulation studies (considering that both random and systematic errors are small was scarce. An estimate of the average arc efficiency value for GTAW DCEN indicates that it should be about 0.77. It indicates anyway that the GTAW process with DCEN is an efficient welding method. The arc efficiency is reduced when the arc length is increased. On the other hand, there are conflicting results in the literature as to the influence of arc current and travel speed.

  5. On-line defect detection of aluminum coating using fiber optic sensor

    Science.gov (United States)

    Patil, Supriya S.; Shaligram, A. D.

    2015-03-01

    Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as defects in the surface coating. This paper reports a novel configuration of the fiber optic sensor for on-line checking the aluminum metallization uniformity and hence for defect detection. An optimally chosen high bright 440 nm BLUE LED (light-emitting diode) launches light into a transmitting fiber inclined at the angle of 60° to the surface under inspection placed adequately. The reflected light is transported by a receiving fiber to a blue enhanced photo detector. The metallization thickness on the coated surface results in visually observable variation in the gray shades. The coated pipe is spirally inspected by a combination of linear and rotary motions. The sensor output is the signal conditioned and monitored with RISHUBH DAS. Experimental results show the good repeatability in the defect detection and coating non-uniformity measurement.

  6. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Guoliang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); An, Yulong, E-mail: csuayl@sohu.com [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, Xiaoqin; Zhou, Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, Jianmin, E-mail: chenjm@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Shuangjian; Liu, Xia; Deng, Wen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-07-31

    Highlights: • Columnar δ-Al{sub 2}O{sub 3} induces epitaxial growth of γ-Al{sub 2}O{sub 3} grains in coating after PA-HT. • Epitaxial growth greatly enhances interfacial bonding of Al{sub 2}O{sub 3} coating on Al alloy. • Penetration of Al{sub 2}O{sub 3} droplets into Al alloy increases interfacial anchorage force. • Crystal structure of the alumina coatings can be refined after PA-HT of substrate. • Mechanical and tribological properties of the coatings are improved after PA-HT. - Abstract: Plasma sprayed ceramic coatings can be used to improve the mechanical properties and wear resistance of aluminum alloys, but there are still some challenges to effectively increase their interfacial adhesion. Thus we conducted plasma arc-heat treatment (PA-HT) of Al alloy substrate before plasma spraying, hoping to tune the microstructure of Al{sub 2}O{sub 3} coatings and improve their interfacial strength as well as mechanical and tribological properties. The influences of PA-HT on the microstructure of alumina coatings were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy, while its effect on mechanical and tribological properties were evaluated by a nano-indentation tester and a friction and wear tester. Results demonstrate that a few columnar δ-Al{sub 2}O{sub 3} generated on substrate surface after PA-HT at 200–250 °C can induce the epitaxial growth of γ-Al{sub 2}O{sub 3} grains in Al{sub 2}O{sub 3} coatings, thereby enhancing their interfacial bonding. Besides, elevating substrate temperature can help alumina droplets to melt into the interior of substrate and eliminate holes at the interface, finally increasing the interfacial anchorage force. More importantly, no interfacial holes can allow the heat of droplets to be rapidly transmitted to substrate, which is beneficial to yield smaller crystals in coatings and greatly enhance their strength, hardness and wear resistance.

  7. Experimental Study On Fracture Property Of Double Cantilever Beam Specimen With Aluminum Foam

    Directory of Open Access Journals (Sweden)

    Kim Y.C.

    2015-06-01

    Full Text Available This study aims to investigate double cantilever beam specimen with aluminum foam bonded by spray adhesive to investigate the fracture strength of the adhesive joint experimentally. The fracture energy at opening mode is calculated by the formulae of British Engineering Standard (BS 7991 and International Standard (ISO 11343. For the static experiment, four types of specimens with the heights (h of 25 mm, 30 mm, 35 mm and 40 mm are manufactured and the experimental results are compared with each other. As the height becomes greater, the fracture energy becomes higher. After the length of crack reaches 150 mm, the fracture energy of the specimen (h=35 mm is greater than that of the specimen (h=40 mm. Fatigue test is also performed with DCB test specimen. As the height decreases, the fracture energy becomes higher. By the result obtained from this study, aluminum foam with adhesive joint can be applied to actual composite structure and its fracture property can possibly be anticipated.

  8. Deposition of aluminum coatings on bio-composite laminates

    Science.gov (United States)

    Boccarusso, L.; Viscusi, A.; Durante, M.; Astarita, A.; De Fazio, D.; Sansone, R.; Caraviello, A.; Carrino, L.

    2018-05-01

    As a result of the increasing environmental awareness, the concern for environmental sustainability and the growing global waste problem, the interest of bio-composites materials is growing rapidly in the last years in order to use them in various engineering fields. Tremendous advantages and opportunities are associated with the use of these materials. On the other hand, some issues are related to the superficial properties of the bio-laminates, in particular the wear properties, the flame resistance and the aesthetic appearance have to be improved in order to extend the application fields of these materials. Aiming to these goals this paper deals with the study of the deposition of aluminum coating through cold spray process on hemp/PLA bio-composites manufactured by using the compression molding technique. Therefore, SEM observations, roughness analyses, bending tests, pin on disk and scratch tests were carried out in order to study the feasibility of the process and to investigate on the properties of the coated samples. The experimental results proved that when the process parameters of the deposition process are properly set, no damages are induced in the composite panel and that the aluminum coating, under specific load conditions, resulted to be able to protect the substrate.

  9. Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Spengler, Charles J.; Folser, George R.; Vora, Shailesh D.; Kuo, Lewis; Richards, Von L.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO.sub.3 powder, preferably compensated with chromium as Cr.sub.2 O.sub.3 and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO.sub.3 layer to about 1100.degree. C. to 1300.degree. C. to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell.

  10. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    Science.gov (United States)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  11. Microstructural evolution in a spray-cast aluminum alloy during equal-channel angular pressing

    International Nuclear Information System (INIS)

    Gao Nong; Starink, Marco J.; Furukawa, Minoru; Horita, Zenji; Xu Cheng; Langdon, Terence G.

    2005-01-01

    A spray-cast Al-7034 alloy was processed by equal-channel angular pressing (ECAP) to a total of eight passes at 473 K and the pressed samples were examined using transmission electron microscopy, differential scanning calorimetry and electron back-scatter diffraction. It is shown that the grain size of the alloy is reduced to ∼0.3 μm by ECAP and the high pressures associated with ECAP lead to a fragmentation of the rod-like η-phase. The high temperature of ECAP also produces a precipitation of η-phase. There is an increase in the fraction of high-angle boundaries during the initial passes of ECAP but the fraction of low-angle boundaries remains high even after eight passes

  12. STUDY OF ARC IMPULSE FREQUENCY EFFECT ON THE STRUCTURE AND PROPERTIES OF WELDED CONNECTION ELEMENTS IN ALUMINIUM PIPELINE SYSTEMS, MADE WITH MASTERTIG 3500

    Directory of Open Access Journals (Sweden)

    Mr. Pavel V. Bakhmatov

    2016-06-01

    Full Text Available Summary . The article focuses on the arc impulse frequency effect on the structure and properties of welded connections in aluminum pipeline systems hand-operated with argon-arc welding nonconsumable rod on MasterTig3500. It was revealed that the frequency of the welding current impulses plays an important role in the forming of the welded connection. The authors determined the optimal value of the welding current frequency significantly accelerating the welding process to ensure consistent quality of the weld. The authors detailed some features of cleaning assembly parts with a wire brush prior to welding process.

  13. In Situ Fabrication of AlN Coating by Reactive Plasma Spraying of Al/AlN Powder

    Directory of Open Access Journals (Sweden)

    Mohammed Shahien

    2011-10-01

    Full Text Available Reactive plasma spraying is a promising technology for the in situ formation of aluminum nitride (AlN coatings. Recently, it became possible to fabricate cubic-AlN-(c-AlN based coatings through reactive plasma spraying of Al powder in an ambient atmosphere. However, it was difficult to fabricate a coating with high AlN content and suitable thickness due to the coalescence of the Al particles. In this study, the influence of using AlN additive (h-AlN to increase the AlN content of the coating and improve the reaction process was investigated. The simple mixing of Al and AlN powders was not suitable for fabricating AlN coatings through reactive plasma spraying. However, it was possible to prepare a homogenously mixed, agglomerated and dispersed Al/AlN mixture (which enabled in-flight interaction between the powder and the surrounding plasma by wet-mixing in a planetary mill. Increasing the AlN content in the mixture prevented coalescence and increased the nitride content gradually. Using 30 to 40 wt% AlN was sufficient to fabricate a thick (more than 200 µm AlN coating with high hardness (approximately 1000 Hv. The AlN additive prevented the coalescence of Al metal and enhanced post-deposition nitriding through N2 plasma irradiation by allowing the nitriding species in the plasma to impinge on a larger Al surface area. Using AlN as a feedstock additive was found to be a suitable method for fabricating AlN coatings by reactive plasma spraying. Moreover, the fabricated coatings consist of hexagonal (h-AlN, c-AlN (rock-salt and zinc-blend phases and certain oxides: aluminum oxynitride (Al5O6N, cubic sphalerite Al23O27N5 (ALON and Al2O3. The zinc-blend c-AlN and ALON phases were attributed to the transformation of the h-AlN feedstock during the reactive plasma spraying. Thus, the zinc-blend c

  14. Solidification Mechanism of the D-Gun Sprayed Fe-Al Particles

    Directory of Open Access Journals (Sweden)

    Wołczyński W.

    2017-12-01

    Full Text Available The detonation gas spraying method is used to study solidification of the Fe-40Al particles after the D-gun spraying and settled on the water surface. The solidification is divided into two stages. First, the particle solid shell forms during the particle contact with the surrounding air / gas. Usually, the remaining liquid particle core is dispersed into many droplets of different diameter. A single Fe-Al particle is described as a body subjected to a rotation and finally to a centrifugal force leading to segregation of iron and aluminum. The mentioned liquid droplets are treated as some spheres rotated freely / chaotically inside the solid shell of the particle and also are subjected to the centrifugal force. The centrifugal force, and first of all, the impact of the particles onto the water surface promote a tendency for making punctures in the particles shell. The droplets try to desert / abandon the mother-particles through these punctures. Some experimental evidences for this phenomenon are delivered. It is concluded that the intensity of the mentioned phenomenon depends on a given droplet momentum. The droplets solidify rapidly during their settlement onto the water surface at the second stage of the process under consideration. A model for the solidification mechanism is delivered.

  15. Reactor container spray device

    International Nuclear Information System (INIS)

    Yanai, Ryoichi.

    1980-01-01

    Purpose: To enable decrease in the heat and the concentration of radioactive iodine released from the reactor vessel into the reactor container in the spray device of BWR type reactors. Constitution: A plurality of water receiving trays are disposed below the spray nozzle in the dry well and communicated to a pressure suppression chamber by way of drain pipeways passing through a diaphragm floor. When the recycling system is ruptured and coolants in the reactor vessel and radioactive iodine in the reactor core are released into the dry well, spray water is discharged from the spray nozzle to eliminate the heat and the radioactive iodine in the dry well. In this case, the receiving trays collect the portions of spray water whose absorption power for the heat and radioactive iodine is nearly saturated and falls them into the pool water of the pressure suppression chamber. Consequently, other portions of the spray water that still possess absorption power can be jetted with no hindrance, to increase the efficiency for the removal of the heat and iodine of the spray droplets. (Horiuchi, T.)

  16. Slurry spray distribution within a simulated laboratory scale spray dryer

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1979-01-01

    It was found that the distribution of liquid striking the sides of a simulated room temperature spray dryer was not significantly altered by the choice of nozles, nor by a variation in nozzle operating conditions. Instead, it was found to be a function of the spray dryer's configuration. A cocurrent flow of air down the drying cylinder, not possible with PNL's closed top, favorably altered the spray distribution by both decreasing the amount of liquid striking the interior of the cylinder from 72 to 26% of the feed supplied, and by shifting the zone of maximum impact from 1.0 to 1.7 feet from the nozzle. These findings led to the redesign of the laboratory scale spray dryer to be tested at the Savannah River Plant. The diameter of the drying chamber was increased from 5 to 8 inches, and a cocurrent flow of air was established with a closed recycle. Finally, this investigation suggested a drying scheme which offers all the advantages of spray drying without many of its limitations

  17. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    International Nuclear Information System (INIS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-01-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  18. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    Science.gov (United States)

    Jalili, M.; Rostami, M.; Ramezanzadeh, B.

    2015-02-01

    Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties.

  19. Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle.

    Science.gov (United States)

    Lee, Changyeol; Wada, Ikuko

    2017-06-29

    Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering.

  20. CONCHAS-SPRAY, Reactive Flows with Fuel Sprays

    International Nuclear Information System (INIS)

    Cloutman, L.D.; Dukowicz, J.K.; Ramshaw, J.D.; Amsden, A.A.

    2001-01-01

    Description of program or function: CONCHAS-SPRAY solves the equations of transient, multicomponent, chemically reactive fluid dynamics, together with those for the dynamics of an evaporating liquid spray. The program was developed with applications to internal combustion engines in mind. The formulation is spatially two-dimensional, and encompasses both planar and axisymmetric geometries. In the latter case, the flow is permitted to swirl about the axis of symmetry. CONCHAS-SPRAY is a time-marching, finite- difference program that uses a partially implicit numerical scheme. Spatial differences are formed with respect to a generalized two- dimensional mesh of arbitrary quadrilaterals whose corner locations are specified functions of time. This feature allows a Lagrangian, Eulerian, or mixed description, and is particularly useful for representing curved or moving boundary surfaces. Arbitrary numbers of species and chemical reactions are allowed. The latter are subdivided into kinetic and equilibrium reactions, which are treated by different algorithms. A turbulent law-of-the-wall boundary layer option is provided. CONCHAS-SPRAY calls a number of LANL system subroutines to display graphic or numerical information on microfiche. These routines are not included, but are described in the reference report. Several routines called from LINPACK and SLATEC1.0 are included

  1. Microstructure and corrosive wear resistance of plasma sprayed Ni-based coatings after TIG remelting

    Science.gov (United States)

    Tianshun, Dong; Xiukai, Zhou; Guolu, Li; Li, Liu; Ran, Wang

    2018-02-01

    Ni based coatings were prepared on steel substrate by means of plasma spraying, and were remelted by TIG (tungsten inert gas arc) method subsequently. The microstructure, microhardness, electrochemical corrosion and corrosive wear resistance under PH = 4, PH = 7 and PH = 10 conditions of the coatings before and after remelting were investigated. The results showed that the TIG remelting obviously reduced the defects and dramatically decreased the coating’s porosity from 7.2% to 0.4%. Metallurgical bonding between the remelted coating and substrate was achieved. Meanwhile, the phase compositions of as-sprayed coating were γ-Ni, Mn5Si2 and Cr2B, while the phase compositions of the remelting coating were Fe3Ni, Cr23C6, Cr2B and Mn5Si2. The microhardness of the coating decreased from 724 HV to 608 HV, but the fracture toughness enhanced from 2.80 MPa m1/2 to 197.3 MPa m1/2 after remelting. After corrosive wear test, the average wear weight loss and 3D morphology of wear scar of two coatings indicated that the wear resistance of the remelted coating was remarkably higher than that of as-sprayed coating. Therefore, TIG remelting treatment was a feasible method to improve the coating’s microstructure and enhance its corrosive wear resistance.

  2. Numerical modelling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, C.

    1999-06-01

    The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs

  3. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation.

    Science.gov (United States)

    Duarte, Laís T; Bolfarini, Claudemiro; Biaggio, Sonia R; Rocha-Filho, Romeu C; Nascente, Pedro A P

    2014-08-01

    The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines

    International Nuclear Information System (INIS)

    Cong Haoxi; Li Qingmin; Xing Jinyuan; Li Jinsong; Chen Qiang

    2015-01-01

    The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low-voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines. (paper)

  5. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

    Directory of Open Access Journals (Sweden)

    Jose Mario Paiva

    2018-02-01

    Full Text Available In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,AlN deposited by physical vapor deposition (PVD have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC and one central rotating cathode (CERC. The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES, scanning electron microscopy (SEM, and X-ray diffraction (XRD, respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  6. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool.

    Science.gov (United States)

    Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen

    2018-02-28

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  7. Arc saw development report

    International Nuclear Information System (INIS)

    Deichelbohrer, P.R.; Beitel, G.A.

    1981-01-01

    The arc saw is one of the key components of the Contaminated Equipment Volume Reduction (CEVR) Program. This report describes the progress of the arc saw from its inception to its current developmental status. History of the arc saw and early contributors are discussed. Particular features of the arc saw and their advantages for CEVR are detailed. Development of the arc saw including theory of operation, pertinent experimental results, plans for the large arc saw and advanced control systems are covered. Associated topics such as potential applications for the arc saw and other arc saw installations in the world is also touched upon

  8. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yanfeng Ge

    2014-12-01

    Full Text Available The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating, and it acted as a shelter against corrosive products. The copper-accelerated acetic acid salt spray Test, abrasion resistance test, stone impact resistance test, thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM. The test results showed the composite coatings meet all the requirements. The MCC coating on Mg presents excellent properties, and it is a promising surface treatment technology on magnesium alloys for production vehicles.

  9. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    Science.gov (United States)

    Zaid, A. I. O.

    2014-06-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1% (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Ti+B on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Ti+B or Zr resulted in enhancement of the weldment.

  10. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    International Nuclear Information System (INIS)

    Zaid, A. I. O.

    2013-01-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1 percentage (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Tau i+Beta on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Tau i+Beta or Zr resulted in enhancement of the weldment. (author)

  11. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    International Nuclear Information System (INIS)

    Zaid, A I O

    2014-01-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1% (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Ti+B on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Ti+B or Zr resulted in enhancement of the weldment

  12. Auroral arc classification scheme based on the observed arc-associated electric field pattern

    International Nuclear Information System (INIS)

    Marklund, G.

    1983-06-01

    Radar and rocket electric field observations of auroral arcs have earlier been used to identify essentially four different arc types, namely anticorrelation and correlation arcs (with, respectively, decreased and increased arc-assocaited field) and asymmetric and reversal arcs. In this paper rocket double probe and supplementary observations from the literature, obtained under various geophysical conditions, are used to organize the different arc types on a physical rather than morphological basis. This classification is based on the relative influence on the arc electric field pattern from the two current continuity mechanisms, polarisation electric fields and Birkeland currents. In this context the tangential electric field plays an essential role and it is thus important that it can be obtained with both high accuracy and resolution. In situ observations by sounding rockets are shown to be better suited for this specific task than monostatic radar observations. Depending on the dominating mechanism, estimated quantitatively for a number of arc-crossings, the different arc types have been grouped into the following main categories: Polarisation arcs, Birkeland current arcs and combination arcs. Finally the high altitude potential distributions corresponding to some of the different arc types are presented. (author)

  13. Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc

    Science.gov (United States)

    Ancellin, Marie-Anne; Samaniego, Pablo; Vlastélic, Ivan; Nauret, François; Gannoun, Adbelmouhcine; Hidalgo, Silvana

    2017-03-01

    Previous studies of the Ecuadorian arc (1°N-2°S) have revealed across-arc geochemical trends that are consistent with a decrease in mantle melting and slab dehydration away from the trench. The aim of this work is to evaluate how these processes vary along the arc in response to small-scale changes in the age of the subducted plate, subduction angle, and continental crustal basement. We use an extensive database of 1437 samples containing 71 new analyses, of major and trace elements as well as Sr-Nd-Pb isotopes from Ecuadorian and South Colombian volcanic centers. Large geochemical variations are found to occur along the Ecuadorian arc, in particular along the front arc, which encompasses 99% and 71% of the total variations in 206Pb/204Pb and 87Sr/86Sr ratios of Quaternary Ecuadorian volcanics, respectively. The front arc volcanoes also show two major latitudinal trends: (1) the southward increase of 207Pb/204Pb and decrease of 143Nd/144Nd reflect more extensive crustal contamination of magma in the southern part (up to 14%); and (2) the increase of 206Pb/204Pb and decrease of Ba/Th away from ˜0.5°S result from the changing nature of metasomatism in the subarc mantle wedge with the aqueous fluid/siliceous slab melt ratio decreasing away from 0.5°S. Subduction of a younger and warmer oceanic crust in the Northern part of the arc might promote slab melting. Conversely, the subduction of a colder oceanic crust south of the Grijalva Fracture Zone and higher crustal assimilation lead to the reduction of slab contribution in southern part of the arc.

  14. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  15. Therapeutic paint of cidofovir/sucralfate gel combination topically administered by spraying for treatment of orf virus infections.

    Science.gov (United States)

    Sonvico, Fabio; Colombo, Gaia; Gallina, Laura; Bortolotti, Fabrizio; Rossi, Alessandra; McInnes, Colin J; Massimo, Gina; Colombo, Paolo; Scagliarini, Alessandra

    2009-06-01

    The aim of the research was to study a new cidofovir/sucralfate drug product to be used as a spray for treating the mucosal and/or skin lesions. The product, i.e., a water suspension of sucralfate (15% w/w) and cidofovir (1% w/w), combines the potent antiviral activity of the acyclic nucleoside phosphonate cidofovir ((S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine) and the wound healing properties of sucralfate gel (sucrose octasulphate basic aluminum salt). The product was characterized in vitro with respect to compatibility between drug and carrier, spray particle size, spray deposition, drying kinetics, and drug content and release. An interaction between the two active substances was found. The interaction between sucralfate and cidofovir was counteracted by introducing sodium dihydrogen phosphate (16% w/w) in the preparation. The spray formulation containing cidofovir/sucralfate gel painted the skin and dried quickly to a scab, remaining firmly adhered to the lesions. The therapeutic paint was tested in vivo on lambs infected with orf virus by treating the animals with different cidofovir/sucralfate formulations (0.5% or 1% cidofovir + sucralfate 15% + NaH(2)PO(4) 16% w/w) and with sucralfate gel suspension alone as control. The treatment with formulations containing cidofovir and phosphate salt for four consecutive days resulted in a rapid resolution of the lesions, with scabs containing significantly lower amounts of viable virus when compared with untreated lesions and lesions treated with sucralfate suspension alone.

  16. Study of the corrosion behavior of magnesium alloy weddings in NaCl solutions by gravimetric tests

    Energy Technology Data Exchange (ETDEWEB)

    Segarra, J. A.; Calderon, B.; Portoles, A.

    2015-07-01

    In this article, the corrosion behavior of commercial AZ31 welded plates in aqueous chloride media was investigated by means of gravimetric techniques and Neutral Salt Spray tests (NSS). The AZ31 samples tested were welded using Gas Tugsten Arc Welding (GTAW) and different filler materials. Material microstructures were investigated by optical microscopy to stablish the influence of those microstructures in the corrosion behavior. Gravimetric and NSS tests indicate that the use of more noble filler alloys for the sample welding, preventing the reduction of aluminum content in weld beads, does not imply a better corrosion behavior. (Author)

  17. Packaging material and aluminum. Hoso zairyo to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Itaya, T [Mitsubishi Aluminum Co. Ltd., Tokyo (Japan)

    1992-02-01

    The present paper introduces aluminum foil packaging materials among the relation between packing materials and aluminum. The characteristics of aluminum foil in the packaging area are in its barrier performance, non-toxicity, tastelessness and odorlessness. Its excellent functions and processibility suit best as functional materials for food, medicine and industrial material packaging. While an aluminum foil may be used as a single packing material as in foils used in homes, many of it as a packaging material are used in combination with adhesives, papers or plastic films, or coated or printed. It is used as composite materials laminated or coated with other materials according to their use for the purpose of complementing the aluminum foil as the base material. Representative method to laminate aluminum foils include the wet lamination, dry lamination, thermally dissolved lamination and extruded lamination. The most important quality requirement in lamination is the adhesion strength, which requires a close attention in selecting the kinds of adhesive, laminating conditions, and aging conditions. 8 figs., 6 tabs.

  18. Remotely controlled spray gun

    Science.gov (United States)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  19. Influence of arc current and pressure on non-chemical equilibrium air arc behavior

    Science.gov (United States)

    Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU

    2018-01-01

    The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.

  20. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  1. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  2. Improved design and durability of aluminum die casting horizontal shot sleeves

    Science.gov (United States)

    Birceanu, Sebastian

    The design and performance of shot sleeves is critical in meeting the engineering requirements of aluminum die cast parts. Improvement in shot sleeve materials have a major impact on dimensional stability, reproducibility and quality of the product. This investigation was undertaken in order to improve the life of aluminum die casting horizontal shot sleeves. Preliminary pin tests were run to evaluate the soldering, wash-out and thermal fatigue behavior of commercially available materials and coatings. An experimental rig was designed and constructed for shot sleeve configuration evaluation. Fabrication and testing of experimental shot sleeves was based upon preliminary results and manufacturing costs. Three shot sleeve designs and materials were compared to a reference nitrided H13 sleeve. Nitrided H13 is the preferred material for aluminum die casting shot sleeves because of wear resistance, strength and relative good soldering and wash-out resistance. The study was directed towards damage evaluation on the area under the pouring hole. This area is the most susceptible to damage because of high temperatures and impingement of molten aluminum. The results of this study showed that tungsten and molybdenum had the least amount of soldering and wash-out damage, and the best thermal fatigue resistance. Low solubility in molten aluminum and stability of intermetallic layers are main factors that determine the soldering and wash-out behavior. Thermal conductivity and thermal expansion coefficient directly influence thermal fatigue behavior. TiAlN nanolayered coating was chosen as the material with the best damage resistance among several commercial PVD coatings, because of relatively large thickness and simple deposition conditions. The results show that molybdenum thermal sprayed coating provided the best protection against damage under the pouring hole. Improved bonding is however required for life extension of the coating. TiAlN PVD coating applied on H13 nitrided

  3. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Bartolucci, Stephen F.; Paras, Joseph; Rafiee, Mohammad A.; Rafiee, Javad; Lee, Sabrina; Kapoor, Deepak; Koratkar, Nikhil

    2011-01-01

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  4. High strength and large ductility in spray-deposited Al–Zn–Mg–Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongchun, E-mail: hcyu@hnu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Wang, Mingpu; Jia, Yanlin [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Xiao, Zhu, E-mail: xiaozhu8417@gmail.com [School of Engineering, University of Liverpool, Liverpool L69 3GH (United Kingdom); Chen, Chang; Lei, Qian; Li, Zhou; Chen, Wei [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Zhang, Hao [Jiangsu Haoran Spray Forming Alloys Co., Ltd., Zhengjiang 212009, Jiangsu (China); Wang, Yanguo; Cai, Canying [School of Physics and Microelectronics, Hunan University, Changsha 410082, Hunan (China)

    2014-07-15

    Highlights: • Spray deposition process was used to produce Al alloys with excellent performance. • The deposited alloys exhibited a high strength of 690 MPa and elongation up to 17.2%. • The η′ phase was coherent with α-Al and their orientation relationship was studied. • The interface misfits and the transition matrixes of two phases were calculated. - Abstract: The mechanical properties and microstructure of large-scale Al–Zn–Mg–Cu alloys fabricated by spray deposition/rapid solidification technology were investigated in detail. The as-extruded alloys under peak-aging temper exhibited ultimate tensile strength (UTS), yield strength (YS) and elongation of 690 MPa, 638 MPa and 17.2%, respectively. The simultaneous coexisting of high strength and large tensile ductility of the alloys were achieved in our experiment. It was considered that the high-density nano-precipitates distributed uniformly in the peak-aged alloys may be responsible for the high strength and improved ductility. Orientation relationship between η′ precipitates and α-Al matrix were verified by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction patterns (SADPs) observations. The η′ phases in the alloy were fully coherent with the aluminum matrix, with the orientation relationship of (101{sup ¯}0){sub η{sup ′}}//{110}{sub Al} and [1{sup ¯}21{sup ¯}0]{sub η{sup ′}}//<1{sup ¯}12>{sub Al}. The relationship between the lattice parameters of η′ phase and the related plane-spacing of the aluminum were a{sub η{sup ′}}=3d{sub (112){sub A{sub l}}} and c{sub η{sup ′}}=6d{sub (111){sub A{sub l}}}. Based on obtained orientation relationship, the transition matrix of η′ phases were also calculated.

  5. Determination of trace elements in uranium and aluminum by emission spectrographic methods

    Energy Technology Data Exchange (ETDEWEB)

    Chao, C N; Lee, S L; Tsai, H T

    1976-07-01

    Owing to its simplicity and sensitivity, emission spectrographic method is used to analyze the impurities in nuclear grade uranium rod and aluminum tubings for their strict specifications. With higher quantities of impurities, reactor fuel cladding, aluminum flow-tube, is analyzed by a.c. spark, point to plane method which is developed in quality control without damage for large scale samples. D.C. arc method, either carrier-distillation or without carrier, is developed to determine the limited impurities and it is especially good for analyzing irregular shaped samples. Both standard and sample are converted to oxide form and special standards matching sample matrix are not required. One of the requirements of good reactor fuel and sheathing materials is that, non-fission capture of neutrons by impurities should be held to a minimum. Some of the elements such as boron, cadmium, lithium and rare earths have very great absorption power. It has been shown by calculation that some of them should not exist more than a few parts per million or even a fraction of a part per million. Lithium seldom exists in uranium fuel rod and aluminum sheathing material and is not sought after; the determination of boron and cadmium are included in these reports. Among the carrier-distillation methods, mixture of 3 percent gallium oxide--graphite (2:1) carrier is used in uranium determination and 10 percent silver chloride--lithium fluoride (1:1) carrier is adoped in aluminum analysis. Analytical lines, concentration range and precision data are shown.

  6. The dual-electrode DC arc furnace-modelling brush arc conditions

    OpenAIRE

    Reynolds, Q.G.

    2012-01-01

    The dual-electrode DC arc furnace, an alternative design using an anode and cathode electrode instead of a hearth anode, was studied at small scale using computational modelling methods. Particular attention was paid to the effect of two key design variables, the arc length and the electrode separation, on the furnace behaviour. It was found that reducing the arc length to brush arc conditions was a valid means of overcoming several of the limitations of the dual-electrode design, namely high...

  7. Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988: Annual report of the metals initiative for fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This annual report has been prepared for the President and Congress describing the activities carried out under the Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988, commonly referred to as the Metals Initiative. The Act has the following purposes: (1) increase energy efficiency and enhance the competitiveness of the American steel, aluminum, and copper industries; and (2) continue research and development efforts begun under the U.S. Department of Energy (DOE) program known as the Steel Initiative. These activities are detailed in a subsequent section. Other sections describe the appropriation history, the distribution of funds through fiscal year 1996, and the estimated funds necessary to continue projects through fiscal year 1997. The Metals Initiative supported four research and development projects with the U.S. Steel industry: (1) steel plant waste oxide recycling and resource recovery by smelting, (2) electrochemical dezincing of steel scrap, (3) rapid analysis of molten metals using laser-produced plasmas, and (4) advanced process control. There are three Metals Initiative projects with the aluminum industry: (1) evaluation of TiB2-G cathode components, (2) energy efficient pressure calciner, and (3) spray forming of aluminum. 1 tab.

  8. Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988: Annual report of the metals initiative for fiscal year 1996

    International Nuclear Information System (INIS)

    1998-01-01

    This annual report has been prepared for the President and Congress describing the activities carried out under the Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988, commonly referred to as the Metals Initiative. The Act has the following purposes: (1) increase energy efficiency and enhance the competitiveness of the American steel, aluminum, and copper industries; and (2) continue research and development efforts begun under the U.S. Department of Energy (DOE) program known as the Steel Initiative. These activities are detailed in a subsequent section. Other sections describe the appropriation history, the distribution of funds through fiscal year 1996, and the estimated funds necessary to continue projects through fiscal year 1997. The Metals Initiative supported four research and development projects with the U.S. Steel industry: (1) steel plant waste oxide recycling and resource recovery by smelting, (2) electrochemical dezincing of steel scrap, (3) rapid analysis of molten metals using laser-produced plasmas, and (4) advanced process control. There are three Metals Initiative projects with the aluminum industry: (1) evaluation of TiB2-G cathode components, (2) energy efficient pressure calciner, and (3) spray forming of aluminum. 1 tab

  9. Electrostatically atomised hydrocarbon sprays

    Energy Technology Data Exchange (ETDEWEB)

    Yule, A.J.; Shrimpton, J.S.; Watkins, A.P.; Balachandran, W.; Hu, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, Dept. of Mechanical Engineering

    1995-07-01

    A burner using an electrostatic method to produce and control a fuel spray is investigated for non-burning sprays. The burner has a charge injection nozzle and the liquid flow rate and charge injection rate are varied using hydrocarbon liquids of differing viscosities, surface tensions and electrical conductivities (kerosene, white spirit and diesel oil). Droplet size distributions are measured and it is shown how the dropsize, spray pattern, breakup mechanism and breakup length depend on the above variables, and in particular on the specific charge achieved in the spray. The data are valuable for validating two computer models under development. One predicts the electric field and flow field inside the nozzle as a function of emitter potential, geometry and flow rate. The other predicts the effect of charge on spray dispersion, with a view to optimizing spray combustion. It is shown that electrostatic disruptive forces can be used to atomize oils at flow rates commensurate with practical combustion systems and that the charge injection technique is particularly suitable for highly resistive liquids. Possible limitations requiring further research include the need to control the wide spray angle, which may provide fuel-air mixtures too lean near the nozzle, and the need to design for maximum charge injection rate, which is thought to be limited by corona breakdown in the gas near the nozzle orifice. 30 refs., 15 figs., 1 tab.

  10. Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings

    Science.gov (United States)

    Jaworski, R.; Pawlowski, L.; Pierlot, C.; Roudet, F.; Kozerski, S.; Petit, F.

    2010-01-01

    The paper aims at reviewing of the recent studies related to the development of suspension plasma sprayed TiO2 and Ca5(PO4)3OH (hydroxyapatite, HA) coatings as well as their multilayer composites obtained onto stainless steel, titanium and aluminum substrates. The total thickness of the coatings was in the range 10 to 150 μm. The suspensions on the base of distilled water, ethanol and their mixtures were formulated with the use of fine commercial TiO2 pigment crystallized as rutile and HA milled from commercial spray-dried powder or synthesized from calcium nitrate and ammonium phosphate in an optimized reaction. The powder was crystallized as hydroxyapatite. Pneumatic and peristaltic pump liquid feeders were applied. The injection of suspension to the plasma jet was studied carefully with the use of an atomizer injector or a continuous stream one. The injectors were placed outside or inside of the anode-nozzle of the SG-100 plasma torch. The stream of liquid was tested under angle right or slightly backwards with regard to the torch axis. The sprayed deposits were submitted to the phase analysis by the use of x-ray diffraction. The content of anatase and rutile was calculated in the titanium oxide deposits as well as the content of the decomposition phases in the hydroxyapatite ones. The micro-Raman spectroscopy was used to visualize the area of appearance of some phases. Scratch test enabled to characterize the adhesion of the deposits, their microhardness and friction coefficient. The electric properties including electron emission, impedance spectroscopy, and dielectric properties of some coatings were equally tested.

  11. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  12. Particle size distribution of aerosols sprayed from household hand-pump sprays containing fluorine-based and silicone-based compounds.

    Science.gov (United States)

    Kawakami, Tsuyoshi; Isama, Kazuo; Ikarashi, Yoshiaki

    2015-01-01

    Japan has published safety guideline on waterproof aerosol sprays. Furthermore, the Aerosol Industry Association of Japan has adopted voluntary regulations on waterproof aerosol sprays. Aerosol particles of diameter less than 10 µm are considered as "fine particles". In order to avoid acute lung injury, this size fraction should account for less than 0.6% of the sprayed aerosol particles. In contrast, the particle size distribution of aerosols released by hand-pump sprays containing fluorine-based or silicone-based compounds have not been investigated in Japan. Thus, the present study investigated the aerosol particle size distribution of 16 household hand-pump sprays. In 4 samples, the ratio of fine particles in aerosols exceeded 0.6%. This study confirmed that several hand-pump sprays available in the Japanese market can spray fine particles. Since the hand-pump sprays use water as a solvent and their ingredients may be more hydrophilic than those of aerosol sprays, the concepts related to the safety of aerosol-sprays do not apply to the hand pump sprays. Therefore, it may be required for the hand-pump spray to develop a suitable method for evaluating the toxicity and to establish the safety guideline.

  13. The effect of Bi3+ and Li+ co-doping on the luminescence characteristics of Eu3+-doped aluminum oxide films

    International Nuclear Information System (INIS)

    Padilla-Rosales, I.; Martinez-Martinez, R.; Cabañas, G.; Falcony, C.

    2015-01-01

    The incorporation of Bi 3+ and Li + as co-dopants in Eu 3+ -doped aluminum oxide films deposited by the ultrasonic spray pyrolysis technique and its effect on the luminescence characteristics of this material are described. Both Bi 3+ and Li + do not introduce new luminescence features but affect the luminescence intensity of the Eu 3+ related emission spectra as well as the excitation spectra. The introduction of Bi 3+ generates localized states in the aluminum oxide host that result in a quenching of the luminescence intensity, while Li + and Bi 3+ co-doping increase the luminescence intensity of these films. - Highlights: • Li and Bi co-doping increase the luminescence. • Bi creates localized states in the Al 2 O 3 host. • Li was incorporated as a co-activator

  14. Dismantling of JPDR reactor internals by underwater plasma arc cutting technique using robotic manipulator

    International Nuclear Information System (INIS)

    Yokota, M.

    1988-01-01

    The actual dismantling of JPDR started on December 4, 1986. As of now, equipment that surrounds the reactor has mostly been removed to provide working space in reactor containment prior to the dismantling of reactor internals. Some reactor internals have been successfully dismantled using the underwater arc cutting system with a robotic manipulator during the period of January to March 1988. The cutting system is composed of an underwater plasma arc cutting device and a robotic manipulator. The cut off reactor internals were core spray block, feedwater sparger and stabilizers for fuel upper grid tube. The plasma arc cutting device was developed to dismantle the reactor internals underwater. It mainly consists of a plasma torch, power and gas supply systems for the torch, and by-product treatment systems. It has the cutting ability of 130 mm thickness stainless steel underwater. The robotic manipulator has seven degrees of freedom of movement, enabling it to move in almost the same way as the arm of a human being. The arm of the robot is mounted on a supporting device which is suspended by three chains from the support structure set on a service floor. A plasma torch is griped by the robotic hand; its position to the structure to be cut is controlled from a remote control room, about 100 meters outside the reactor containment

  15. Comparison between alkali heat treatment and sprayed hydroxyapatite coating on thermally-sprayed rough Ti surface in rabbit model: Effects on bone-bonding ability and osteoconductivity.

    Science.gov (United States)

    Kawai, Toshiyuki; Takemoto, Mitsuru; Fujibayashi, Shunsuke; Tanaka, Masashi; Akiyama, Haruhiko; Nakamura, Takashi; Matsuda, Shuichi

    2015-07-01

    In this study, we investigated the effect of different surface treatments (hydroxyapatite (HA) coating, alkali heat treatment, and no treatment) on the ability of bone to bond to a rough arc-sprayed Ti metal surface, using rabbit models. The bone-to-implant contacts for untreated, HA-coated, and alkali heat-treated implants were 21.2%, 72.1%, and 33.8% at 4 weeks, 21.8%, 70.9%, and 30.0% at 8 weeks, and 16.3%, 70.2%, and 29.9% at 16 weeks, respectively (n = 8). HA -coated implants showed significantly higher bone-to-implant contacts than the untreated and alkali heat-treated implants at all the time point, whereas alkali heat-treated implants showed significantly higher bone-to-implant contacts than untreated implants at 4 and 16 weeks. The failure loads in a mechanical test for untreated, HA coated, alkali heat-treated plates were 65.4 N, 70.7 N, and 90.8 N at 4 weeks, 76.1 N, 64.7 N, and 104.8 N at 8 weeks and 88.7 N, 92.6 N, and 118.5 N at 16 weeks, respectively (n = 8). The alkali heat-treated plates showed significantly higher failure loads than HA-coated plates at 8 and 16 weeks. The difference between HA-coated plates and untreated plates were not statistically significant at any time point. Thus HA coating, although it enables high bone-to-implant contact, may not enhance the bone-bonding properties of thermally-sprayed rough Ti metal surfaces. In contrast, alkali heat treatment can be successfully applied to thermally-sprayed Ti metal to enhance both bone-to-implant contact and bone-bonding strength. © 2014 Wiley Periodicals, Inc.

  16. Influence of the particle morphology on the Cold Gas Spray deposition behaviour of titanium on aluminum light alloys

    International Nuclear Information System (INIS)

    Cinca, N.; Rebled, J.M.; Estradé, S.; Peiró, F.; Fernández, J.; Guilemany, J.M.

    2013-01-01

    Highlights: ► Study of the particle–substrate and particle–particle interfaces in the cold spray process. ► Use of irregular feedstock particles whereas normally FIB studies have been undergone for spherical particles. ► Deep Transmission Electron Microscopy characterization of the interfaces and within the particle. -- Abstract: The present work evaluates the deposition behaviour of irregular titanium powder particles impinged by Cold Gas Spraying onto an aluminium 7075-T6 alloy substrate. The influence of their irregular shape on the bonding phenomena, in particle–substrate and particle–particle interfaces are discussed in view of Transmission Electron Microscopy examinations of a Focused Ion Beam lift-out prepared sample. Key aspects will be the jetting-out, the occurrence of oxide layers and grain size refinement. Different structural morphologies could be featured; at the particle–substrate interface, both the aluminium alloy and the titanium side exhibit recrystallization. Titanium particles in intimate contact in small agglomerates during deposition, on the other hand, show grain refinement at their interfaces whereas the original structure is maintained outside those boundaries

  17. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-01

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z ∼> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z ∼> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  18. Residual stress evaluation and curvature behavior of aluminum 7050 peen forming processed

    International Nuclear Information System (INIS)

    Oliveira, Rene Ramos de

    2011-01-01

    Shot peening is a superficial cold work process used to increase the fatigue life evaluated by residual stress measurements. The peen forming process is a variant of the shot peening process, where a curvature in the plate is obtained by the compression of the grains near to the surface. In this paper, the influence of the parameters such as: pressure of shot, ball shot size and thickness of aluminum 7050 samples with respect to residual stress profile and resulting arc height was studied. The evaluation of the residual stress profile was obtained by sin 2 ψ method. The results show that the formation of the curvature arc height is proportional to the shot peening pressure, of spheres size and inversely proportional to the thickness of the sample, and that stress concentration factor is larger for samples shot peened with small balls. On final of this paper presents an additional study on micro strain and average crystallite size, which can evaluate the profile of the samples after blasting. (author)

  19. An experimental methodology to quantify the spray cooling event at intermittent spray impact

    International Nuclear Information System (INIS)

    Moreira, Antonio L.N.; Carvalho, Joao; Panao, Miguel R.O.

    2007-01-01

    The present paper describes an experimental methodology devised to study spray cooling with multiple-intermittent sprays as those found in fuel injection systems of spark-ignition and diesel engines, or in dermatologic surgery applications. The spray characteristics and the surface thermal behaviour are measured by combining a two-component phase-Doppler anemometer with fast response surface thermocouples. The hardware allows simultaneous acquisition of Doppler and thermocouple signals which are processed in Matlab to estimate the time-varying heat flux and fluid-dynamic characteristics of the spray during impact. The time resolution of the acquisition system is limited by the data rate of validation of the phase-Doppler anemometer, but it has been shown to be accurate for the characterization of spray-cooling processes with short spurt durations for which the transient period of spray injection plays an important role. The measurements are processed in terms of the instantaneous heat fluxes, from which phase-average values of the boiling curves are obtained. Two of the characteristic parameters used in the thermal analysis of stationary spray cooling events, the critical heat flux (CHF) and Leidenfrost phenomenon, are then inferred in terms of operating conditions of the multiple-intermittent injections, such as the frequency, duration and pressure of injection. An integral method is suggested to describe the overall process of heat transfer, which accounts for the fluid-dynamic heterogeneities induced by multiple and successive droplet interactions within the area of spray impact. The method considers overall boiling curves dependant on the injection conditions and provides an empirical tool to characterize the heat transfer processes on the impact of multiple-intermittent sprays. The methodology is tested in a preliminary study of the effect of injection conditions on the heat removed by a fuel spray striking the back surface of the intake valve as in spark

  20. The Formation of Composite Ti-Al-N Coatings Using Filtered Vacuum Arc Deposition with Separate Cathodes

    Directory of Open Access Journals (Sweden)

    Ivan A. Shulepov

    2017-11-01

    Full Text Available Ti-Al-N coatings were deposited on high-speed steel substrates by filtered vacuum arc deposition (FVAD during evaporation of aluminum and titanium cathodes. Distribution of elements, phase composition, and mechanical properties of Ti-Al-N coatings were investigated using Auger electron spectroscopy (AES, X-ray diffraction (XRD, transmission electron microscopy (TEM and nanoindentation, respectively. Additionally, tribological tests and scratch tests of the coatings were performed. The stoichiometry of the coating changes from Ti0.6Al0.4N to Ti0.48Al0.52N with increasing aluminum arc current from 70 A to 90 A, respectively. XRD and TEM showed only face-centered cubic Ti-Al-N phase with preferred orientation of the crystallites in (220 direction with respect to the sample normal and without precipitates of AlN or intermetallics inside the coatings. Incorporation of Al into the TiN lattice caused shifting of the (220 reflex to a higher 2θ angle with increasing Al content. Low content and size of microdroplets were obtained using coaxial plasma filters, which provides good mechanical and tribological properties of the coatings. The highest value of microhardness (36 GPa and the best wear-resistance were achieved for the coating with higher Al content, thus for Ti0.48Al0.52N. These coatings exhibit good adhesive properties up to 30 N load in the scratch tests.

  1. Modifications Of A Commercial Spray Gun

    Science.gov (United States)

    Allen, Peter B.

    1993-01-01

    Commercial spray gun modified to increase spray rate and make sprayed coats more nearly uniform. Consists of gun head and pneumatic actuator. Actuator opens valves for two chemical components, called "A" and "B," that react to produce foam. Components flow through orifices, into mixing chamber in head. Mixture then flows through control orifice to spray tip. New spray tip tapered to reduce area available for accumulation of foam and makes tip easier to clean.

  2. Numerical analysis of partially molten splat during thermal spray process using the finite element method

    Science.gov (United States)

    Zirari, M.; Abdellah El-Hadj, A.; Bacha, N.

    2010-03-01

    A finite element method is used to simulate the deposition of the thermal spray coating process. A set of governing equations is solving by a volume of fluid method. For the solidification phenomenon, we use the specific heat method (SHM). We begin by comparing the present model with experimental and numerical model available in the literature. In this study, completely molten or semi-molten aluminum particle impacts a H13 tool steel substrate is considered. Next we investigate the effect of inclination of impact of a partially molten particle on flat substrate. It was found that the melting state of the particle has great effects on the morphologies of the splat.

  3. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Kuo, Lewis J. H.; Vora, Shailesh D.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La.sub.1-x M.sub.x Cr.sub.1-y N.sub.y O.sub.3, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075-0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO).sub.12. (Al.sub.2 O.sub.3).sub.7 flux particles including Ca and Al dopant, and LaCrO.sub.3 interconnection particles, preferably undoped LaCrO.sub.3, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and, (C) heat treating the interconnection layer at from about 1200.degree. to 1350.degree. C. to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power.

  4. Plan quality comparison between 4-arc and 6-arc noncoplanar volumetric modulated arc stereotactic radiotherapy for the treatment of multiple brain metastases.

    Science.gov (United States)

    Yoshio, Kotaro; Mitsuhashi, Toshiharu; Wakita, Akihisa; Kitayama, Takahiro; Hisazumi, Kento; Inoue, Daisaku; Shiode, Tsuyoki; Akaki, Shiro; Kanazawa, Susumu

    2018-01-04

    To compare the plans of 4-arc and 6-arc noncoplanar volumetric modulated arc stereotactic radiotherapy (VMA-SRT) for multiple brain metastases and to investigate the cutoff value for the tumor number and volume for 6-arc rather than 4-arc VMA-SRT. We identified 24 consecutive multiple-target cases (3 to 19 targets in each case) with 189 total targets. We constructed plans using both 4- and 6-arc noncoplanar VMA-SRT. The prescribed dose was 36 Gy/6 fr, and it was delivered to 95% of the planning target volume (PTV). The plans were evaluated for the dose conformity using the Radiation Therapy Oncology Group and Paddick conformity indices (RCI and PCI), fall-off (Paddick gradient index [PGI]), and the normal brain dose. The median (range) RCI, PCI, and PGI was 0.94 (0.92 to 0.99), 0.89 (0.77 to 0.94), and 3.75 (2.24 to 6.54) for the 4-arc plan and 0.94 (0.91 to 0.98), 0.89 (0.76 to 0.94), and 3.65 (2.24 to 6.5) for the 6-arc plan, respectively. The median (range) of the normal brain dose was 910.3 cGy (381.4 to 1268.9) for the 4-arc plan and 898.8 cGy (377 to 1252.9) for the 6-arc plan. The PGI of the 6-arc plan was significantly superior to that of the 4-arc plan (p = 0.0076), and the optimal cutoff values for the tumor number and volume indicative of 6-arc (and not 4-arc) VMA-SRT were cases with ≥ 5 metastases and a PTV of ≥ 12.9 mL, respectively. The PCI values, however, showed no significant difference between the 2 plans. We believe these results will help in considering the use of 6-arc VMA-SRT for multiple brain metastases. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  5. Substrate system for spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Men G. (Export, PA); Chernicoff, William P. (Harrisburg, PA)

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  6. Characterization of Sodium Spray Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C. T.; Koontz, R. L.; Silberberg, M. [Atomics International, North American Rockwell Corporation, Canoga Park, CA (United States)

    1968-12-15

    The consequences of pool and spray fires require evaluation in the safety analysis of liquid metal-cooled fast breeder reactors. Sodium spray fires are characterized by high temperature and pressure, produced during the rapid combustion of sodium in air. Following the initial energy release, some fraction of the reaction products are available as aerosols which follow the normal laws of agglomeration, growth, settling, and plating. An experimental study is underway at Atomics International to study the characteristics of high concentration sprays of liquid sodium in reduced oxygen atmospheres and in air. The experiments are conducted in a 31.5 ft{sup 3} (2 ft diam. by 10 ft high) vessel, certified for a pressure of 100 lb/in{sup 2} (gauge). The spray injection apparatus consists of a heated sodium supply pot and a spray nozzle through which liquid sodium is driven by nitrogen pressure. Spray rate and droplet size can be varied by the injection velocity (nozzle size, nitrogen pressure, and sodium temperature). Aerosols produced in 0, 4, and 10 vol. % oxygen environments have been studied. The concentration and particle size distribution of the material remaining in the air after the spray injection and reaction period are measured. Fallout rates are found to be proportional to the concentration of aerosol which remains airborne following the spray period. (author)

  7. The global chemical systematics of arc front stratovolcanoes: Evaluating the role of crustal processes

    Science.gov (United States)

    Turner, Stephen J.; Langmuir, Charles H.

    2015-07-01

    Petrogenetic models for convergent margins should be consistent with the global systematics of convergent margin volcanic compositions. A newly developed tool for compiling and screening data from the GEOROC database was used to generate a global dataset of whole rock chemical analyses from arc front stratovolcano samples. Data from 227 volcanoes within 31 volcanic arc segments were first averaged by volcano and then by arc to explore global systematics. Three different methods of data normalization produce consistent results that persist across a wide range of Mg# [Mg# =Mg / (Mg +Fe) ]. Remarkably coherent systematics are present among major and trace element concentrations and ratios, with the exception of three arcs influenced by mantle plumes and Peru/N. Chile, which is built on exceptionally thick crust. Chemical parameters also correlate with the thickness of the overlying arc crust. In addition to previously established correlations of Na6.0 with Ca6.0 and crustal thickness, correlations are observed among major elements, trace elements, and trace element ratios (e.g. La/Yb, Dy/Yb, Zr/Sm, Zr/Ti). Positive correlations include "fluid mobile," "high field strength," and "large ion lithophile" element groups, with concentrations that vary by a factor of five in all groups. Incompatible element enrichments also correlate well with crustal thickness, with the greatest enrichment found at arcs with the thickest crust. Intra-crustal processes, however, do not reproduce the global variations. High pressure fractionation produces intermediate magmas enriched in aluminum, but such magmas are rare. Furthermore, differences among magma compositions at various volcanic arcs persist from primitive to evolved compositions, which is inconsistent with the possibility that global variations are produced by crystal fractionation at any pressure. Linear relationships among elements appear to be consistent with mixing between depleted primary magma and an enriched contaminant

  8. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Song, HyunJong; Joo, SungMin

    2013-01-01

    Highlights: • Hybrid friction stir welding for Al alloy and Ti alloy joint has been carried out. • Mechanical strength of dissimilar joint by HFSW and FSW has been compared. • Microstructure of dissimilar joint by HFSW and FSW has been compared. - Abstract: Hybrid friction stir butt welding of Al6061-T6 aluminum alloy plate to Ti–6%Al–4%V titanium alloy plate with satisfactory acceptable joint strength was successfully achieved using preceding gas tungsten arc welding (GTAW) preheating heat source of the Ti alloy plate surface. Hybrid friction stir welding (HFSW) joints were welded completely without any unwelded zone resulting from smooth material flow by equally distributed temperature both in Al alloy side and Ti alloy side using GTAW assistance for preheating the Ti alloy plate unlike friction stir welding (FSW) joints. The ultimate tensile strength was approximately 91% in HFSW welds by that of the Al alloy base metal, which was 24% higher than that of FSW welds without GTAW under same welding condition. Notably, it was found that elongation in HFSW welds increased significantly compared with that of FSW welds, which resulted in improved joint strength. The ductile fracture was the main fracture mode in tensile test of HFSW welds

  9. Arc dynamics of a pulsed DC nitrogen rotating gliding arc discharge

    Science.gov (United States)

    Zhu, Fengsen; Zhang, Hao; Li, Xiaodong; Wu, Angjian; Yan, Jianhua; Ni, Mingjiang; Tu, Xin

    2018-03-01

    In this study, a novel pulsed direct current (DC) rotating gliding arc (RGA) plasma reactor co-driven by an external magnetic field and a tangential gas flow has been developed. The dynamic characteristics of the rotating gliding arc have been investigated by means of numerical simulation and experiment. The simulation results show that a highly turbulent vortex flow can be generated at the bottom of the RGA reactor to accelerate the arc rotation after arc ignition, whereas the magnitude of gas velocity declined significantly along the axial direction of the RGA reactor. The calculated arc rotation frequency (14.4 Hz) is reasonably close to the experimental result (18.5 Hz) at a gas flow rate of 10 l min-1. In the presence of an external magnet, the arc rotation frequency is around five times higher than that of the RGA reactor without using a magnet, which suggests that the external magnetic field plays a dominant role in the maintenance of the arc rotation in the upper zone of the RGA reactor. In addition, when the magnet is placed outside the reactor reversely to form a reverse external magnetic field, the arc can be stabilized at a fixed position in the inner wall of the outer electrode at a critical gas flow rate of 16 l min-1.

  10. A spray flamelet/progress variable approach combined with a transported joint PDF model for turbulent spray flames

    Science.gov (United States)

    Hu, Yong; Olguin, Hernan; Gutheil, Eva

    2017-05-01

    A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new

  11. arcControlTower: the System for Atlas Production and Analysis on ARC

    International Nuclear Information System (INIS)

    Filipcic, Andrej

    2011-01-01

    PanDA, the Atlas management and distribution system for production and analysis jobs on EGEE and OSG clusters, is based on pilot jobs to increase the throughput and stability of the job execution on grid. The ARC middleware uses a specific approach which tightly connects the job requirements with cluster capabilities like resource usage, software availability and caching of input files. The pilot concept renders the ARC features useless. The arcControlTower is the job submission system which merges the pilot benefits and ARC advantages. It takes the pilot payload from the panda server and submits the jobs to the Nordugrid ARC clusters as regular jobs, with all the job resources known in advance. All the pilot communication with the PanDA server is done by the arcControlTower, so it plays the role of a pilot factory and the pilot itself. There are several advantages to this approach: no grid middleware is needed on the worker nodes, the fair-share between the production and user jobs is tuned with the arcControlTower load parameters, the jobs can be controlled by ARC client tools. The system could be extended to other submission systems using central distribution.

  12. Aluminum recovery as a product with high added value using aluminum hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2013-01-01

    Highlights: • Granular and compact aluminum dross were physically and chemically characterized. • A relationship between density, porosity and metal content from dross was established. • Chemical reactions involving aluminum in landfill and negative consequences are shown. • A processing method for aluminum recovering from aluminum dross was developed. • Aluminum was recovered as an value product with high grade purity such as alumina. -- Abstract: The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al 3+ soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%)

  13. Method and Apparatus for Thermal Spraying of Metal Coatings Using Pulsejet Resonant Pulsed Combustion

    Science.gov (United States)

    Paxson, Daniel E. (Inventor)

    2014-01-01

    An apparatus and method for thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such as Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air, and a spark. Metal is inserted continuously in a high volume of metal into a combustion chamber of the pulsejet. The combustion is thereafter controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tailpipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.

  14. Physically based arc-circuit interaction

    International Nuclear Information System (INIS)

    Zhong-Lie, L.

    1984-01-01

    An integral arc model is extended to study the interaction of the gas blast arc with the test circuit in this paper. The deformation in the waveshapes of arc current and voltage around the current zero has been formulated to first approximation by using a simple model of arc voltage based on the arc core energy conservation. By supplementing with the time scale for the radiation, the time rates of arc processes were amended. Both the contributions of various arc processes and the influence of circuit parameters to the arc-circuit interaction have been estimated by this theory. Analysis generated a new method of calculating test circuit parameters which improves the accurate simulation of arc-circuit interaction. The new method agrees with the published experimental results

  15. Dynamics of flare sprays

    International Nuclear Information System (INIS)

    Tandberg-Hanssen, E.; Hansen, R.T.

    1980-01-01

    During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable pass-band filters, multi-slit spectroscopy and extended angular field coronographs). From combined analysis of 13 well-observed sprays which occured between 1969-1974 we conclude that (i) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (ii) the spray material is confined within a steadily expanding, loop-shaped (presumably magnetically controlled) envelope with part of the material draining back down along one or both legs of the loop. (orig.)

  16. Absorption/desorption in sprays

    International Nuclear Information System (INIS)

    Naimpally, A.

    1987-01-01

    This survey paper shall seek to present the present state of knowledge concerning absorption and desorption in spray chambers. The first part of the paper presents the theories and formulas for the atomization and break-up of sprays in nozzles. Formulas for the average (sauter-mean) diameters are then presented. For the case of absorption processes, the formulas for the dimensionless mass transfer coefficients is in drops. The total; mass transfer is the total of the transfer in individual drops. For the case of desorption of sparingly soluble gases from liquids in a spray chamber, the mass transfer occurs in the spray just at the point of break-up of the jet. Formulas for the desorption of gases are presented

  17. PC-based arc ignition and arc length control system for gas tungsten arc welding

    International Nuclear Information System (INIS)

    Liu, Y.; Cook, G.E.; Barnett, R.J.; Springfield, J.F.

    1992-01-01

    In this paper, a PC-based digital control system for gas tungsten arc welding (GTAW) is presented. This system controls the arc ignition process, the arc length, and the process of welding termination. A DT2818 made by Data Translation is used for interface and A/D and D/A conversions. The digital I/O ports of the DT2818 are used for control of wirefeed, shield gas, cooling water, welding power supply, etc. The DT2818 is housed in a PC. The welding signals and status are displayed on the screen for in-process monitoring. A user can control the welding process by the keyboard

  18. Sheath and arc-column voltages in high-pressure arc discharges

    International Nuclear Information System (INIS)

    Benilov, M S; Benilova, L G; Li Heping; Wu Guiqing

    2012-01-01

    Electrical characteristics of a 1 cm-long free-burning atmospheric-pressure argon arc are calculated by means of a model taking into account the existence of a near-cathode space-charge sheath and the discrepancy between the electron and heavy-particle temperatures in the arc column. The computed arc voltage exhibits a variation with the arc current I similar to the one revealed by the experiment and exceeds experimental values by no more than approximately 2 V in the current range 20-175 A. The sheath contributes about two-thirds or more of the arc voltage. The LTE model predicts a different variation of the arc voltage with I and underestimates the experimental values appreciably for low currents but by no more than approximately 2 V for I ≳ 120 A. However, the latter can hardly be considered as a proof of unimportance of the space-charge sheath at high currents: the LTE model overestimates both the resistance of the bulk of the arc column and the resistance of the part of the column that is adjacent to the cathode, and this overestimation to a certain extent compensates for the neglect of the voltage drop in the sheath. Furthermore, if the latter resistance were evaluated in the framework of the LTE model in an accurate way, then the overestimation would be still much stronger and the obtained voltage would significantly exceed those observed in the experiment.

  19. Role of the micro/macro structure of welds in crack nucleation and propagation in aerospace aluminum-lithium alloy

    Science.gov (United States)

    Talia, George E.

    1996-01-01

    Al-Li alloys offer the benefits of increased strength, elastic modulus and lower densities as compared to conventional aluminum alloys. Martin Marietta Laboratories has developed an Al-Li alloy designated 2195 which is designated for use in the cryogenic tanks of the space shuttle. The Variable Polarity Plasma Arc (VPPA) welding process is currently being used to produce these welds [1]. VPPA welding utilizes high temperature ionized gas (plasma) to transfer heat to the workpiece. An inert gas, such as Helium, is used to shield the active welding zone to prevent contamination of the molten base metal with surrounding reactive atmospheric gases. [1] In the Space Shuttle application, two passes of the arc are used to complete a butt-type weld. The pressure of the plasma stream is increased during the first pass to force the arc entirely through the material, a practice commonly referred to as keyholing. Molten metal forms on either side of the arc and surface tension draws this liquid together as the arc passes. 2319 Al alloy filler material may also be fed into the weld zone during this pass. During the second pass, the plasma stream pressure is reduced such that only partial penetration of the base material is obtained. Al 2319 filler material is added during this pass to yield a uniform, fully filled welded joint. This additional pass also acts to alter the grain structure of the weld zone to yield a higher strength joint.

  20. Development of spraying methods for high density bentonite barriers. Part 3. Field investigation of spraying methods

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Nakajima, Makoto; Kobayashi, Ichizo; Toida, Masaru; Fukuda, Katsumi; Sato, Tatsuro; Nonaka, Katsumi; Gozu, Keisuke

    2007-01-01

    The authors have developed a new method of constructing high density bentonite barriers by means of a wet spraying method. Using this method, backfill material can be placed in narrow upper and side parts in a low-level radioactive waste disposal facility. Using a new supplying machine for bentonite, spraying tests were conducted to investigate the conditions during construction. On the basis of the test results, the various parameters for the spraying method were investigated. The test results are summarized as follows: 1. The new machine supplied about twice the weight of material supplied by a screw conveyor. A dry density of spraying bentonite 0.05 Mg/m 3 higher than that of a screw conveyor with the same water content could be achieved. 2. The dry density of sprayed bentonite at a boundary with concrete was the same as that at the center of the cross section. 3. The variation in densities of bentonite sprayed in the vertical downward and horizontal directions was small. Also, density reduction due to rebound during spraying was not seen. 4. Bentonite controlled by water content could be sprayed smoothly in the horizontal direction by a small machine. Also rebound could be collected by a machine conveying air. (author)

  1. Spectrochemical analysis of aluminum and its alloys, and S. A. P.; Analisis espectroquimico de aluminio y sus aleaciones y de S.A.P.

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M

    1966-07-01

    Three different techniques have been employed for the spectrochemical analysis of aluminum, aluminum alloys, and S.A.P. :1) Point to plane with condensed spark and direct reading spectrometry; from the study on the instantaneous spectral-line intensities a long pre integration time has been established. 1) Powdered samples technique with direct current arc and also direct reading spectrometry; samples are transformed into Al{sub 2}O{sub 3} and mixed with graphite powder (1:1). A complete study on the different elements in aluminium oxide, aluminium sulfate and their mixtures with graphite, has been carried out. 3) Carrier distillation method with photographic recording for very low concentrations of boron and cadmium in S. A.P. (Author) 10 refs.

  2. 1994 Thermal spray industrial applications: Proceedings

    International Nuclear Information System (INIS)

    Berndt, C.C.; Sampath, S.

    1994-01-01

    The 7th National Thermal Spray Conference met on June 20--24, 1994, in Boston, Massachusetts. The conference was sponsored by the Thermal Spray Division of ASM International and co-sponsored by the American Welding Society, Deutscher Verband fur Schweisstechnik e.V., High Temperature Society of Japan, International Thermal Spray Association, and Japanese Thermal Spraying Society. The conference covered applications for automobiles, aerospace, petrochemicals, power generation, and biomedical needs. Materials included metals, ceramics, and composites with a broad range of process developments and diagnostics. Other sections included modeling and systems control; spray forming and reactive spraying; post treatment; process, structure and property relationships; mechanical properties; and testing, characterization and wear. One hundred and seventeen papers have been processed separately for inclusion on the data base

  3. Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Minerva Dorta-Almenara

    2016-09-01

    Full Text Available Gas Tungsten Arc Welding (GTAW is one of the most used methods to weld aluminum. This work investigates the influence of welding parameters on the microstructure and mechanical properties of GTAW welded AA6105 aluminum alloy joints. AA6105 alloy plates with different percent values of cold work were joined by GTAW, using various combinations of welding current and speed. The fusion zone, in which the effects of cold work have disappeared, and the heat affected zone of the welded samples were examined under optical and scanning electron microscopes, additionally, mechanical tests and measures of Vickers microhardness were performed. Results showed dendritic morphology with solute micro- and macrosegregation in the fusion zone, which is favored by the constitutional supercooling when heat input increases. When heat input increased and welding speed increased or remained constant, greater segregation was obtained, whereas welding speed decrease produced a coarser microstructure. In the heat affected zone recrystallization, dissolution, and coarsening of precipitates occurred, which led to variations in hardness and strength.

  4. Plasma source ion implantation process for corrosion protection of 6061 aluminum

    International Nuclear Information System (INIS)

    Zhang, L.; Booske, J.H.; Shohet, J.L.; Jacobs, J.R.; Bernardini, A.J.

    1995-01-01

    This paper describes results of an investigation of the feasibility of using nitrogen plasma source ion implantation (PSII) treatment to improve corrosion resistance of 6061 aluminum to salt water. Flat Al samples were implanted with various doses of nitrogen. The surface microstructures and profiles of Al and N in the flat samples were examined using transmission electron microscopy (TEM), scanning Auger microprobe, x-ray diffraction. Corrosion properties of the samples and the components were evaluated using both a 500 hour salt spray field test and a laboratory electrochemical corrosion system. The tested samples were then analyzed by scanning electron microscopy. Corrosion measurements have demonstrated that PSII can significantly improve the pitting resistance of 6061 aluminum. By correlating the analytical results with the corrosion test results, it has been verified that the improved corrosion resistance in PSII-treated coupons is due to the formation of a continuous AlN layer. It was also identified that the formation of a continuous AlN layer. It was also identified that the formation of a continuous AlN layer is mainly determined by the bias voltage and the total integrated implantation dose, and relatively insensitive to factors such as the plasma source, pulse length, or frequency

  5. Spray Drift Reduction Evaluations of Spray Nozzles Using a Standardized Testing Protocol

    Science.gov (United States)

    2010-07-01

    Drop Size Characteristics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards, Vol. 14-02, ASTM...Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Non- imaging Light-Scattering Instruments 22. AGDISP Model

  6. Effects of spray axis incident angle on heat transfer performance of rhombus-pitch shell-and-tube interior spray evaporator

    International Nuclear Information System (INIS)

    Lin, Ru-Li; Chang, Tong-Bou; Liang, Chih-Chang

    2012-01-01

    An interior spray method is proposed for enhancing the heat transfer performance of a compact rhombus-pitch shell-and-tube spray evaporator. The experimental results show that the shell-side heat transfer coefficient obtained using the proposed spray method is significantly higher than that achieved in a conventional flooded-type evaporator. Four different spray axis incident angles (0 .deg., 45 .deg., 60 .deg. and 75 .deg.) are tested in order to investigate the effect of the spray inclination angle on the heat transfer performance of the spray evaporator system. It is shown that the optimal heat transfer performance is obtained using a spray axis incident angle of 60 .deg.

  7. Development and application of the global rainbow refractometry for the study of heat and mass transfers in a spray; Developpement et application de la refractometrie arc-en-ciel global pour l'etude des transferts massique et thermique dans un spray

    Energy Technology Data Exchange (ETDEWEB)

    Lemaitre, P

    2004-12-15

    During the course of an hypothetical severe accident in a Pressure Water Reactor (PWR), hydrogen produced by the degradation and oxidation of the reactor core and high pressure water vapor can be released into the reactor containment. The repartition of the hydrogen in the reactor containment is then dependent of the forced (mixed or natural) convection flows which will be established. This type of accidental scenario will lead then to the pressurization of the reactor containment and to a potential risk of hydrogen combustion, able to prejudice to the integrity of the reactor. One of the means of PWR safety, called spraying, consists to release cold water sprays in the reactor containment, with the aim to make its internal pressure and its temperature decrease, on account of the condensation of water vapor on the injected water droplets. Moreover, the spraying leads to a mixing of the gaseous mixture containing air, water vapor and hydrogen, and contributes to make the hydrogen local concentration decreased. The TOSQAN experiment, developed at the IRSN, allows to reproduce the thermal-hydraulic conditions which represent accidental sequences able to happen in a PWR. In the frame of the current program consecrated to the spraying study, an innovating optical technique has been implemented on the TOSQAN experiment to finely characterize the mass and heat transfers between a spray and the surrounding atmosphere. This work gives into details the development of the global rainbow technique which allows to measure, in a non intrusive way, the temperature of the droplets during their fall. This technique has been coupled with others optical diagnoses such as the spontaneous Raman diffusion spectrometry, the PIV (Particle Image Velocimetry) and the implementation imagery, to respectively measure the water vapor parts as well as the velocities and the droplets sizes. The obtained experimental results have led to a global and local analysis of the interaction between the

  8. A study on the macroscopic spray behavior and atomization characteristics of biodiesel and dimethyl ether sprays under increased ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Jun; Park, Su Han [Graduate School of Hanyang University, 17 Haengdang-dong, Seoungdong-gu, Seoul 133-791 (Korea); Lee, Chang Sik [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea)

    2010-03-15

    The aim of this work is to investigate the spray behaviors of biodiesel and dimethyl ether (DME) fuels using image processing and atomization performance analysis of the two fuel sprays injected through a common-rail injection system under various ambient pressure conditions in a high pressure chamber. In order to observe the biodiesel and DME fuel spray behaviors under various ambient pressures, the spray images were analyzed at various times after the start of energization using a visualization system consisting of a high speed camera and two metal halide light sources. In addition, a high pressure chamber that can withstand a pressure of 4 MPa was used for adjusting the ambient pressure. From the spray images, spray characteristics such as the spray tip penetration, cone angle, area, and contour plot at various light intensity levels were analyzed using image conversion processing. Also, the local Sauter mean diameters (SMD) were measured at various axial/radial distances from the nozzle tip by a droplet measuring system to compare the atomization performances of the biodiesel and DME sprays. The results showed that the ambient pressure had a significant effect on the spray characteristics of the fuels at the various experimental conditions. The spray tip penetration and spray area decreased as the ambient pressure increased. The contour plot of the biodiesel and DME sprays showed a high light intensity level in the center regions of the sprays. In addition, it was revealed that the atomization performance of the biodiesel spray was inferior to that of the DME spray at the same injection and ambient conditions. (author)

  9. Fixed automated spray technology.

    Science.gov (United States)

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  10. Single-Arc IMRT?

    International Nuclear Information System (INIS)

    Bortfeld, Thomas; Webb, Steve

    2009-01-01

    The idea of delivering intensity-modulated radiation therapy (IMRT) with a multileaf collimator in a continuous dynamic mode during a single rotation of the gantry has recently gained momentum both in research and industry. In this note we investigate the potential of this Single-Arc IMRT technique at a conceptual level. We consider the original theoretical example case from Brahme et al that got the field of IMRT started. Using analytical methods, we derive deliverable intensity 'landscapes' for Single-Arc as well as standard IMRT and Tomotherapy. We find that Tomotherapy provides the greatest flexibility in shaping intensity landscapes and that it allows one to deliver IMRT in a way that comes close to the ideal case in the transverse plane. Single-Arc and standard IMRT make compromises in different areas. Only in relatively simple cases that do not require substantial intensity modulation will Single-Arc be dosimetrically comparable to Tomotherapy. Compared with standard IMRT, Single-Arc could be dosimetrically superior in certain cases if one is willing to accept the spreading of low dose values over large volumes of normal tissue. In terms of treatment planning, Single-Arc poses a more challenging optimization problem than Tomotherapy or standard IMRT. We conclude that Single-Arc holds potential as an efficient IMRT technique especially for relatively simple cases. In very complex cases, Single-Arc may unduly compromise the quality of the dose distribution, if one tries to keep the treatment time below 2 min or so. As with all IMRT techniques, it is important to explore the tradeoff between plan quality and the efficiency of its delivery carefully for each individual case. (note)

  11. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  12. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 30-09-2014 to 29-09-2015 4. TITLE AND SUBTITLE The Oxidation Products of Aluminum ...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT

  13. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  14. LSPRAY-IV: A Lagrangian Spray Module

    Science.gov (United States)

    Raju, M. S.

    2012-01-01

    LSPRAY-IV is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray. Some important research areas covered as a part of the code development are: (1) the extension of combined CFD/scalar-Monte- Carlo-PDF method to spray modeling, (2) the multi-component liquid spray modeling, and (3) the assessment of various atomization models used in spray calculations. The current version contains the extension to the modeling of superheated sprays. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers.

  15. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  16. Evaluation of volumetric modulated arc therapy for cranial radiosurgery using multiple noncoplanar arcs

    International Nuclear Information System (INIS)

    Audet, Chantal; Poffenbarger, Brett A.; Chang, Pauling; Jackson, Paul S.; Lundahl, Robert E.; Ryu, Stephen I.; Ray, Gordon R.

    2011-01-01

    Purpose: To evaluate a commercial volumetric modulated arc therapy (VMAT), using multiple noncoplanar arcs, for linac-based cranial radiosurgery, as well as evaluate the combined accuracy of the VMAT dose calculations and delivery. Methods: Twelve patients with cranial lesions of variable size (0.1-29 cc) and two multiple metastases patients were planned (Eclipse RapidArc AAA algorithm, v8.6.15) using VMAT (1-6 noncoplanar arcs), dynamic conformal arc (DCA, ∼4 arcs), and IMRT (nine static fields). All plans were evaluated according to a conformity index (CI), healthy brain tissue doses and volumes, and the dose to organs at risk. A 2D dose distribution was measured (Varian Novalis Tx, HD120 MLC, 1000 MU/min, 6 MV beam) for the ∼4 arc VMAT treatment plans using calibrated film dosimetry. Results: The CI (0-1 best) average for all plans was best for ∼4 noncoplanar arc VMAT at 0.86 compared with ∼0.78 for IMRT and a single arc VMAT and 0.68 for DCA. The volumes of healthy brain receiving 50% of the prescribed target coverage dose or more (V 50% ) were lowest for the four arc VMAT [RA(4)] and DCA plans. The average ratio of the V 50% for the other plans to the RA(4) V 50% were 1.9 for a single noncoplanar arc VMAT [RA(1nc)], 1.4 for single full coplanar arc VMAT [RA(1f)] and 1.3 for IMRT. The V 50% improved significantly for single isocenter multiple metastases plan when two noncoplanar VMAT arcs were added to a full single coplanar one. The maximum dose to 5 cc of the outer 1 cm rim of healthy brain which one may want to keep below nonconsequential doses of 300-400 cGy, was 2-3 times greater for IMRT, RA(1nc) and RA(1f) plans compared with the multiple noncoplanar arc DCA and RA(4) techniques. Organs at risk near (0-4 mm) to targets were best spared by (i) single noncoplanar arcs when the targets are lateral to the organ at risk and (ii) by skewed nonvertical planes of IMRT fields when the targets are not lateral to the organ at risk. The highest dose gradient

  17. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  18. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  19. COUPLED ATOMIZATION AND SPRAY MODELLING IN THE SPRAY FORMING PROCESS USING OPENFOAM

    DEFF Research Database (Denmark)

    Gjesing, Rasmus; Hattel, Jesper Henri; Fritsching, Udo

    2009-01-01

    The paper presents a numerical model capable of simulating the atomization, break-up and in-flight spray phenomena in the spray forming process. The model is developed and implemented in the freeware code openFOAM. The focus is on studying the coupling effect of the melt break-up phenomena...

  20. Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient

    Directory of Open Access Journals (Sweden)

    Raul Garcia-Segura

    2017-09-01

    Full Text Available Electric arc furnaces (EAFs contribute to almost one third of the global steel production. Arc furnaces use a large amount of electrical energy to process scrap or reduced iron and are relevant to study because small improvements in their efficiency account for significant energy savings. Optimal controllers need to be designed and proposed to enhance both process performance and energy consumption. Due to the random and chaotic nature of the electric arcs, neural networks and other soft computing techniques have been used for modeling EAFs. This study proposes a methodology for modeling EAFs that considers the time varying arc length as a relevant input parameter to the arc furnace model. Based on actual voltages and current measurements taken from an arc furnace, it was possible to estimate an arc length suitable for modeling the arc furnace using neural networks. The obtained results show that the model reproduces not only the stable arc conditions but also the unstable arc conditions, which are difficult to identify in a real heat process. The presented model can be applied for the development and testing of control systems to improve furnace energy efficiency and productivity.

  1. Diesel spray characterization; Dieselmoottorin polttoainesuihkujen ominaisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.; Turunen, R.; Paloposki, T.; Rantanen, P.; Virolainen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Internal Combustion Engine Lab.

    1997-10-01

    Fuel injection of diesel engines will be studied using large-scale models of fuel injectors. The advantage of large-scale models is that the measurement of large-scale diesel sprays will be easier than the measurement of actual sprays. The objective is to study the break-up mechanism of diesel sprays and to measure drop size distributions in the inner part of the spray. The results will be used in the development of diesel engines and diesel fuels. (orig.)

  2. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  3. Multiple-Nozzle Spray Head Applies Foam Insulation

    Science.gov (United States)

    Walls, Joe T.

    1993-01-01

    Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.

  4. Method to reduce arc blow during DC arc welding of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J. H.; Rueda-Morales, G.L.; Caleyo, F.; Hallen, J. M. [Instituto Politecnico Nacional, Mexico, (Mexico); Lopez-Montenegro, A.; Perz-Baruch, E. [Pemex Exploracion y Produccion, Tabasco, (Mexico)

    2010-07-01

    Steel pipelines are huge ferromagnetic structures and can be easily subjected to arc blow during the DC arc welding process. The development of methods to avoid arc blow during pipeline DC arc welding is a major objective in the pipeline industry. This study developed a simple procedure to compensate the residual magnetic field in the groove during DC arc welding. A Gaussmeter was used to perform magnetic flux density measurements in pipelines in southern Mexico. These data were used to perform magnetic finite element simulations using FEMM. Different variables were studied such as the residual magnetic field in the groove or the position of the coil with respect to the groove. An empirical predictive equation was developed from these trials to compensate for the residual magnetic field. A new method of compensating for the residual magnetic field in the groove by selecting the number of coil turns and the position of the coil with respect to the groove was established.

  5. Water spray interaction with air-steam mixtures under containment spray conditions: experimental study in the TOSQAN facility

    Energy Technology Data Exchange (ETDEWEB)

    Porcheron, E.; Lemaitre, P.; Malet, J.; Nuboer, A.; Brun, P.; Bouilloux, L.; Vendel, J. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Direction de la Surete des Usines, des laboratoires, des transports et des dechets, Saclay, BP 68 - 91192 Gif-sur-Yvette cedex (France)

    2005-07-01

    Full text of publication follows: During the course of an hypothetical severe accident in a Pressurized Water Reactor (PWR), hydrogen can be produced by the reactor core oxidation and distributed into the reactor containment according to convection flows and steam wall condensation. In order to assess the risk of detonation generated by a high local hydrogen concentration, hydrogen distribution in the containment has to be known. The TOSQAN experimental program has been created to simulate typical accidental thermal hydraulic flow conditions in the reactor containment. The present work is devoted to study the interaction of a water spray injection used as a mitigation mean in order to reduce containment pressure and to produce a mixing of air, steam and hydrogen induced by spray entrainment and condensation on droplet. In order to have a better understanding of physical phenomena, we need to make a detailed characterization of the spray and the gas. The TOSQAN facility that is highly instrumented with non-intrusive diagnostics consists in a closed cylindrical vessel (7 m{sup 3} volume, 4 m high, 1.5 m i.d.) into which steam is injected. Water droplets size is measured in the vessel by the Interferometric Laser Imaging for Droplet Sizing technique. Droplet velocity is obtained by Particle Image Velocimetry and Laser Doppler Velocimetry, and droplet temperature is measured by global rainbow refractometry. Gas concentration measurements are performed by Spontaneous Raman Scattering. The walls of the vessel are thermostatically controlled by heated oil circulation. Inner spray system that is located on the top of the enclosure on the vertical axis, is composed of a single nozzle producing a full cone water spray. Spray test scenario consists of water spray injection in TOSQAN that is first pressurized with a steam injection (steam injection is stopped before spray injection). Water spray falling into the sump is removed to avoid accumulation and evaporation

  6. Is the Aluminum Hypothesis Dead?

    Science.gov (United States)

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  7. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J., E-mail: jeanne.malet@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, Saclay (France); Mimouni, S., E-mail: stephane.mimouni@edf.fr [Electricité de France, EDF MF2E, Chatou (France); Manzini, G., E-mail: giovanni.manzini@rse-web.it [RSE, Milano (Italy); Xiao, J., E-mail: jianjun.xiao@kit.edu [IKET, KIT, Karlsruhe (Germany); Vyskocil, L., E-mail: vyl@ujv.cz [UJV Rez (Czech Republic); Siccama, N.B., E-mail: siccama@nrg.eu [NRG, Safety and Power (Netherlands); Huhtanen, R., E-mail: risto.huhtanen@vtt.fi [VTT, PO Box 1000, FI-02044 VTT (Finland)

    2015-02-15

    Highlights: • This paper presents a benchmark performed in the frame of the SARNET-2 EU project. • It concerns momentum transfer between a PWR spray and the surrounding gas. • The entrained gas velocities can vary up to 100% from one code to another. • Simplified boundary conditions for sprays are generally used by the code users. • It is shown how these simplified conditions impact the gas entrainment. - Abstract: This paper presents a benchmark performed in the frame of the SARNET-2 EU project, dealing with momentum transfer between a real-scale PWR spray and the surrounding gas. It presents a description of the IRSN tests on the CALIST facility, the participating codes (8 contributions), code-experiment and code-to-code comparisons. It is found that droplet velocities are almost well calculated one meter below the spray nozzle, even if the spread of the spray is not recovered and the values of the entrained gas velocity vary up to 100% from one code to another. Concerning sensitivity analysis, several ‘simplifications’ have been made by the contributors, especially based on the boundary conditions applied at the location where droplets are injected. It is shown here that such simplifications influence droplet and entrained gas characteristics. The next step will be to translate these conclusions in terms of variables representative of interesting parameters for nuclear safety.

  8. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark

    International Nuclear Information System (INIS)

    Malet, J.; Mimouni, S.; Manzini, G.; Xiao, J.; Vyskocil, L.; Siccama, N.B.; Huhtanen, R.

    2015-01-01

    Highlights: • This paper presents a benchmark performed in the frame of the SARNET-2 EU project. • It concerns momentum transfer between a PWR spray and the surrounding gas. • The entrained gas velocities can vary up to 100% from one code to another. • Simplified boundary conditions for sprays are generally used by the code users. • It is shown how these simplified conditions impact the gas entrainment. - Abstract: This paper presents a benchmark performed in the frame of the SARNET-2 EU project, dealing with momentum transfer between a real-scale PWR spray and the surrounding gas. It presents a description of the IRSN tests on the CALIST facility, the participating codes (8 contributions), code-experiment and code-to-code comparisons. It is found that droplet velocities are almost well calculated one meter below the spray nozzle, even if the spread of the spray is not recovered and the values of the entrained gas velocity vary up to 100% from one code to another. Concerning sensitivity analysis, several ‘simplifications’ have been made by the contributors, especially based on the boundary conditions applied at the location where droplets are injected. It is shown here that such simplifications influence droplet and entrained gas characteristics. The next step will be to translate these conclusions in terms of variables representative of interesting parameters for nuclear safety

  9. 14 CFR 23.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 23.239 Section 23.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Handling Characteristics § 23.239 Spray characteristics. Spray may not dangerously obscure the vision of...

  10. 14 CFR 29.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 29.239 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 29.239 Spray characteristics. If certification for water operation is requested, no spray characteristics...

  11. 14 CFR 27.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 27.239 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 27.239 Spray characteristics. If certification for water operation is requested, no spray characteristics...

  12. Using arc voltage to locate the anode attachment in plasma arc cutting

    International Nuclear Information System (INIS)

    Osterhouse, D J; Heberlein, J V R; Lindsay, J W

    2013-01-01

    Plasma arc cutting is a widely used industrial process in which an electric arc in the form of a high velocity plasma jet is used to melt and blow away metal. The arc attaches inside the resulting cut slot, or kerf, where it both provides a large heat flux and determines the flow dynamics of the plasma. Knowledge of the position of the arc attachment is essential for understanding the phenomena present at the work piece. This work presents a new method of measuring the location of the arc attachment in which the arc voltage is measured during the cutting of a range of work piece thicknesses. The attachment location is then interpreted from the voltages. To support the validity of this method, the kerf shape, dross particle size and dross adhesion to the work piece are also observed. While these do not conclusively give an attachment location, they show patterns which are consistent with the attachment location found from the voltage measurements. The method is demonstrated on the cutting of mild steel, where the arc attachment is found to be stationary in the upper portion of the cut slot and in reasonable agreement with existing published findings. For a process optimized for the cutting of 12.7 mm mild steel, the attachment is found at a depth of 1.5–3.4 mm. For a slower process optimized for the cutting of 25.4 mm mild steel, the attachment is found at a depth of 3.4–4.8 mm, which enhances heat transfer further down in the kerf, allowing cutting of the thicker work piece. The use of arc voltage to locate the position of the arc attachment is unique when compared with existing methods because it is entirely independent of the heat distribution and visualization techniques. (paper)

  13. Crustal growth of the Izu-Ogasawara arc estimated from structural characteristics of Oligocene arc

    Science.gov (United States)

    Takahashi, N.; Yamashita, M.; Kodaira, S.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.

    2011-12-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out seismic surveys using a multichannel reflection system and ocean bottom seismographs, and we have clarified crustal structures of whole Izu-Ogasawara (Bonin)-Marina (IBM) arc since 2002. These refection images and velocity structures suggest that the crustal evolution in the intra-oceanic island arc accompanies with much interaction of materials between crust and mantle. Slow mantle velocity identified beneath the thick arc crusts suggests that dense crustal materials transformed into the mantle. On the other hand, high velocity lower crust can be seen around the bottom of the crust beneath the rifted region, and it suggests that underplating of mafic materials occurs there. Average crustal production rate of the entire arc is larger than expected one and approximately 200 km3/km/Ma. The production rate of basaltic magmas corresponds to that of oceanic ridge. Repeated crustal differentiation is indispensable to produce much light materials like continental materials, however, the real process cannot still be resolved yet. We, therefore, submitted drilling proposals to obtain in-situ middle crust with P-wave velocity of 6 km/s. In the growth history of the IBM arc, it is known by many papers that boninitic volcanisms preceded current bimodal volcanisms based on basaltic magmas. The current volcanisms accompanied with basaltic magmas have been occurred since Oligocene age, however, the tectonic differences to develop crustal architecture between Oligocene and present are not understood yet. We obtained new refraction/reflection data along an arc strike of N-S in fore-arc region. Then, we estimate crustal structure with severe change of the crustal thickness from refraction data, which are similar to that along the volcanic front. Interval for location of the thick arc crust along N-S is very similar to that along the volcanic front. The refection image indicates that the basement of the fore-arc

  14. Resistencia al desgaste de recubrimientos de bronce al aluminio producidos con técnica de proyección térmica//Wear resistance of aluminum bronze coatings produced by thermal spray

    Directory of Open Access Journals (Sweden)

    Dayan Carolina Cárdenas-Feria

    2015-09-01

    Full Text Available Se estudió la resistencia al desgaste adhesivo de recubrimientos de bronce al aluminio depositados con la técnica de proyección térmica por llama sobre bronce fosforado SAE 62. Los recubrimientos fueron fabricados variando las presiones parciales de los gases de combustión, oxígeno y acetileno. El material utilizado fue caracterizado estructuralmente mediante difracción de rayosX (X-ray diffraction, XRD y el estudio morfológico mediante microscopía electrónica de barrido (Scanning electron microscopy, SEM. La resistencia al desgaste adhesivo de los recubrimientos se determinó por medio del ensayo de bola sobre disco, utilizando como bola una esférica de acero 100Cr6. Los resultados obtenidos permiten establecer que los recubrimientos proyectados con una presión de oxigeno de 78 psi y una presión de acetileno de 8 psi presentan la mejor resistencia al desgaste en comparación a los tratamientos producidos. El modo de falla de desgaste en los recubrimientos producidos es discutido en esta investigación.Palabras clave: desgaste abrasivo y adhesivo,  proyección térmica,  recubrimientos.______________________________________________________________________________AbstractWe studied the adhesive wear resistance of aluminum bronze coatings deposited by thermal spray on phosphor bronze SAE 62 substrates. The coatings were deposited by varying the partial pressures of the combustion gases: oxygen and acetylene. The structural characterization was made through X-ray diffraction (XRD and the morphological analysis was performed by scanning electron microscopy (SEM. The adhesive wear resistance of the coatings was determined by the bole on disc test using a spherical ball made of steel 100Cr6 and with a diameter of 6 mm. The results obtained show that the coating projected with an oxygen pressure of 78 psi and an acetylene pressure of 8 psi have the better wear resistance compared with the substrate and the others treatments deposited

  15. Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3

    Energy Technology Data Exchange (ETDEWEB)

    Pinc, W. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)], E-mail: wrphw5@mst.edu; Geng, S.; O' Keefe, M.; Fahrenholtz, W.; O' Keefe, T. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2009-01-15

    Cerium based conversion coatings were spray deposited on Al 2024-T3 and characterized to determine the effect of surface preparation on the deposition rate and surface morphology. It was found that activation of the panel using a 1-wt.% sulfuric acid solution increased the coating deposition rate compared to alkaline cleaning alone. Analysis of the surface morphology of the coatings showed that the coatings deposited on the acid treated panels exhibited fewer visible cracks compared to coatings on alkaline cleaned panels. Auger electron spectroscopy depth profiling showed that the acid activation decreased the thickness of the aluminum oxide layer and the concentration of magnesium on the surface of the panels compared to the alkaline treatment. Additionally, acid activation increased the copper concentration at the surface of the aluminum substrate. Based on the results, the acid based surface treatment appeared to expose copper rich intermetallics, thus increasing the number of cathodic sites on the surface, which led to an overall increase in the deposition rate.

  16. A comparison of biological effect and spray liquid distribution and deposition for different spray application techniques in different crops

    OpenAIRE

    Larsolle, Anders; Wretblad, Per; Westberg, Carl

    2002-01-01

    The objective of this study was to compare a selection of spray application techniques with different application volumes, with respect to the spray liquid distribution on flat surfaces, the deposition in fully developed crops and the biological effect. The spray application techniques in this study were conventional spray technique with three different nozzles: Teelet XR, Lechler ID and Lurmark DriftBeta, and also AirTec, Danfoil, Hardi Twin, Kyndestoit and Släpduk. The dynamic spray liquid ...

  17. Transient analysis of intermittent multijet sprays

    Energy Technology Data Exchange (ETDEWEB)

    Panao, Miguel R.O.; Moreira, Antonio Luis N. [Universidade Tecnica de Lisboa, IN, Center for Innovation, Technology and Policy Research, Instituto Superior Tecnico, Lisboa (Portugal); Durao, Diamantino G. [Universidade Lusiada, Lisboa (Portugal)

    2012-07-15

    This paper analyzes the transient characteristics of intermittent sprays produced by the single-point impact of multiple cylindrical jets. The aim is to perform a transient analysis of the intermittent atomization process to study the effect of varying the number of impinging jets in the hydrodynamic mechanisms of droplet formation. The results evidence that hydrodynamic mechanisms underlying the physics of ligament fragmentation in 2-impinging jets sprays also apply to sprays produced with more than 2 jets during the main period of injection. Ligaments detaching from the liquid sheet, as well as from its bounding rim, have been identified and associated with distinct droplet clusters, which become more evident as the number of impinging jets increases. Droplets produced by detached ligaments constitute the main spray, and their axial velocity becomes more uniformly distributed with 4-impinging jets because of a delayed ligament fragmentation. Multijet spray dispersion patterns are geometric depending on the number of impinging jets. Finally, an analysis on the Weber number of droplets suggests that multijet sprays are more likely to deposit on interposed surfaces, thus becoming a promising and competitive atomization solution for improving spray cooling. (orig.)

  18. Diffuse and spot mode of cathode arc attachments in an atmospheric magnetically rotating argon arc

    International Nuclear Information System (INIS)

    Chen, Tang; Wang, Cheng; Liao, Meng-Ran; Xia, Wei-Dong

    2016-01-01

    A model including the cathode, near-cathode region, and arc column was constructed. Specifically, a thermal perturbation layer at the arc fringe was calculated in order to couple sheath/presheath modelling with typical arc column modelling. Comparative investigation of two modes of attachment of a dc (100, 150, 200 A) atmospheric-pressure arc in argon to a thermionic cathode made of pure tungsten was conducted. Computational data revealed that there exists two modes of arc discharge: the spot mode, which has an obvious cathode surface temperature peak in the arc attachment centre; and the diffuse mode, which has a flat cathode surface temperature distribution and a larger arc attachment area. The modelling results of the arc attachment agree with previous experimental observations for the diffuse mode. A further 3D simulation is obviously needed to investigate the non-axisymmetrical features, especially for the spot mode. (paper)

  19. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,376] Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood Forge Division; Currently Known As Contech Forgings, LLC..., applicable to workers of Kaiser Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division...

  20. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  1. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy

    Science.gov (United States)

    Liu, Liming; Chen, Minghua

    2011-09-01

    This paper presents the results of the investigation on the interactions between laser and arc plasma during laser-arc hybrid welding on magnesium alloy AZ31B using the spectral diagnose technique. By comparably analyzing the variation in plasma information (the shape, the electron temperature and density) of single tungsten inert gas (TIG) welding with the laser-arc hybrid welding, it is found that the laser affects the arc plasma through the keyhole forming on the workpiece. Depending on the welding parameters there are three kinds of interactions taking place between laser and arc plasma.

  2. Influence of thin porous Al2O3 layer on aluminum cathode to the Hα line shape in glow discharge

    International Nuclear Information System (INIS)

    Steflekova, V.; Sisovic, N. M.; Konjevic, N.

    2009-01-01

    The results of the Balmer alfa line shape study in a plane cathode-hollow anode Grimm discharge with aluminum (Al) cathode covered with thin layer of porous Al 2 O 3 are presented. The comparison with same line profile recorded with pure Al cathode shows lack of excessive Doppler broadened line wings, which are always detected in glow discharge with metal cathode. The effect is explained by the lack of strong electric field in the cathode sheath region, which is missing in the presence of thin oxide layer in, so called, spray discharge.

  3. Effectiveness of containment sprays in containment management

    International Nuclear Information System (INIS)

    Nourbakhsh, H.P.; Perez, S.E.; Lehner, J.R.

    1993-05-01

    A limited study has been performed assessing the effectiveness of containment sprays-to mitigate particular challenges which may occur during a severe accident. Certain aspects of three specific topics related to using sprays under severe accident conditions were investigated. The first was the effectiveness of sprays connected to an alternate water supple and pumping source because the actual containment spray pumps are inoperable. This situation could occur during a station blackout. The second topic concerned the adverse as well as beneficial effects of using containment sprays during severe accident scenario where the containment atmosphere contains substantial quantities of hydrogen along with steam. The third topic was the feasibility of using containment sprays to moderate the consequences of DCH

  4. Preparation of cellulose based microspheres by combining spray coagulating with spray drying.

    Science.gov (United States)

    Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua

    2014-10-13

    Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  6. Peculiar features of metallurgical processes at plasma-arc spraying of coatings, made of steel wire with powder fillers B4C and B4C+ZrO2

    Directory of Open Access Journals (Sweden)

    Георгій Михайлович Григоренко

    2016-11-01

    Full Text Available The interaction of metallurgical processes occurring in plasma-arc spraying between the steel shell and the carbide fillers of B4C and B4C cored wires with the addition of nanocrystalline ZrO2 powder has been analyzed. Iron-boron compounds alloyed with carbon are formed in ingots as a result of ferritiс coating of wire interacrion with fillers while the ferritic matrix contains boride and carboboride eutectics. Average microhardness of the carboboride compounds and the matrix is high – 17,78; 16,40 and 8,69; 9,95 GPa for the ingots with с B4C and B4C+ZrO2 respectively. The best quality coatings with low porosity (~1%, lamellar structure consisting of ferrite matrix reinforced with dispersed Fe borides, were obtained at a higher heat input (plasmatron current 240-250 A. The average amount of oxides in the coatings makes 15%. 0,5% addition of nanopowder ZrO2 accelerates dispersed iron-boron compounds forming, promotes their uniform distribution in the structure and improves coating microhardness up to 7,0 GPa. Application of the differential thermal analysis method to simulate the interaction processes between the steel shell and the filler during the heating of wire in the shielding gas makes it possible to promote formation of new phases (borides and carboborides of iron and to predict the phase composition of the coatings

  7. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  8. Arc-to-arc mini-sling 1999: a critical analysis of concept and technology

    Directory of Open Access Journals (Sweden)

    Paulo Palma

    2011-04-01

    Full Text Available PURPOSE: The aim of this study was to critically review the Arc-to-Arc mini-sling (Palma's technique a less invasive mid-urethral sling using bovine pericardium as the sling material. MATERIALS AND METHODS: The Arc-to-Arc mini-sling, using bovine pericardium, was the first published report of a mini-sling, in 1999. The technique was identical to the "tension-free tape" operation, midline incision and dissection of the urethra. The ATFP (white line was identified by blunt dissection, and the mini-sling was sutured to the tendinous arc on both sides with 2 polypropylene 00 sutures. RESULTS: The initial results were encouraging, with 9/10 patients cured at the 6 weeks post-operative visit. However, infection and extrusion of the mini-sling resulted in sling extrusion and removal, with 5 patients remaining cured at 12 months. CONCLUSION: The Arc-to-Arc mini-sling was a good concept, but failed because of the poor technology available at that time. Further research using new materials and better technology has led to new and safer alternatives for the management of stress urinary incontinence.

  9. Corrosion of aluminum and zinc in containment following a LOCA and potential for precipitation of corrosion products in the sump

    International Nuclear Information System (INIS)

    Niyogi, K.K.; Lunt, R.R.; Mackenzie, J.S.

    1982-01-01

    Following a loss-of-coolant accident (LOCA) in a LWR containment, certain materials in the containment come in contact with alkaline emergency cooling and containment spray solutions and may corrode yielding hydrogen gas. The problems associated with the production of hydrogen gas and the control of combustible gas concentration have been extensively explored in recent years. However, the phenomenon of corrosion and its consequences in the long term cooling of the reactor and the containment have drawn very little attention. United Engineers and Constructors Inc. has made an extensive effort to study through literature survey the solubility of the corrosion products from aluminum and zinc in order to assess the potential for precipitation in the containment sump. The analysis presented in this article is based on parameters for a typical large dry reactor containment with caustic/boric acid buffered spray solution. Parameters used in this study may vary from one plant to another. However, they are not expected to affect the overall conclusions

  10. Effect of arc behaviour on the temperature fluctuation of carbon electrode in DC arc discharge

    International Nuclear Information System (INIS)

    Liang, F; Tanaka, M; Choi, S; Watanabe, T

    2014-01-01

    Diffuse and multiple arc-anode attachment modes were observed in a DC arc discharge with a carbon electrode. During the arc discharge, the surface temperature of the electrode was successfully measured by two-colour pyrometry combined with a high-speed camera which employs appropriate band-pass filters. The relationship between the arc-anode attachment mode and the temperature fluctuation of electrode surface was investigated. The diffuse arc-anode attachment mode leads to relatively large temperature fluctuation on anode surface due to the rotation of the arc spot. In the case of diffuse mode, the purity of synthesized multi-wall carbon nanotube was deteriorated with temperature fluctuation

  11. ROTARY SPRAY DUSTER

    Directory of Open Access Journals (Sweden)

    E. S. Nechaeva

    2013-01-01

    Full Text Available Results of researches of hydraulic resistance, ablation of splashes and efficiency of dedusting in the rotor spray dust collector are given. Influence of frequency of rotation of the spray, the specified speed of gas and diameter of spattering holes on hydraulic resistance, size ablation of splashes and efficiency of a dedusting the device by diameter 0,25 m is investigated. As model liquid water is used. Results of mathematical processing are presented.

  12. A new, bright and hard aluminum surface produced by anodization

    Science.gov (United States)

    Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei

    2017-07-01

    Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.

  13. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    Science.gov (United States)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  14. On the modeling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Christer

    1997-12-01

    This report concerns on the modelling of fuel sprays in a non-combustible case using an own developed fuel spray code module. The spray code is made as an independent module to simplify the use of different gas flow solvers together with the spray module. This enables the possibility to use different turbulence models. In the report two turbulence models has been used, the standard k-{epsilon} and the LES (Large Eddy Simulation) model. The report presents results obtained from a sensitivity study of both numerical and physical parameters on an evaporating spray under diesel like conditions (light duty diesel engine) with the spray code module attached to a cylindrical gas phase flow solver. The results from the sensitivity analysis showed that these effects were not so pronounced as has been reported. It was suggested that this was due to the `easy` nature of the investigated case, where the flow field could be sufficiently resolved without violating the droplet void fraction criteria and break-up, collision and combustion that may increase the grid spacing sensitivity were not modelled. An investigation was performed to valuate the feasibility of using LES as turbulence model. Calculations of the initial phase of a developing jet were made and it was found that in the initial phase of the spray and the flow structure were similar to that of a spatially developing jet flow, which is in agreement with experimental observations. Results from LES calculations on a developing spray jet was also compared with k-{epsilon} based ones. This result showed that the spray-LES approach captured the transition from a laminar to a turbulent flow field with an increase in turbulent kinetic energy k along the injection direction 45 refs, 37 figs, 2 tabs

  15. Unzipping of the volcano arc, Japan

    Science.gov (United States)

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  16. Tokamak ARC damage

    International Nuclear Information System (INIS)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage

  17. Tokamak ARC damage

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  18. Radio-frequency plasma spraying of ceramics

    International Nuclear Information System (INIS)

    Okada, T.; Hamatani, H.; Yoshida, T.

    1989-01-01

    This study was aimed at developing a novel spraying process using a radio-frequency (rf) plasma. Experiments of Al 2 O 3 and ZrO 2 - 8 wt% Y 2 O 3 spraying showed that the initial powder size was the most important parameter for depositing dense coatings. The optimum powder sizes of Al 2 O 3 and ZrO 2 - 8 wt% Y 2 O 3 were considered to be around 100 and 80 μm, respectively. The use of such large-size powders compared with those used by conventional dc plasma spraying made it possible to deposit adherent ceramics coatings of 150 to 300 μm on as-rolled SS304 substrates. It was also shown that low particle velocity of about 10 m/s, which is peculiar to rf plasma spraying, was sufficient for particle deformation, though it imposed a severe limitation on the substrate position. These experimental results prove that rf plasma spraying is an effective process and a strong candidate to open new fields of spraying applications

  19. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  20. Large Eddy Simulation of the spray formation in confinements

    International Nuclear Information System (INIS)

    Lampa, A.; Fritsching, U.

    2013-01-01

    Highlights: • Process stability of confined spray processes is affected by the geometric design of the spray confinement. • LES simulations of confined spray flow have been performed successfully. • Clustering processes of droplets is predicted in simulations and validated with experiments. • Criteria for specific coherent gas flow patterns and droplet clustering behaviour are found. -- Abstract: The particle and powder properties produced within spray drying processes are influenced by various unsteady transport phenomena in the dispersed multiphase spray flow in a confined spray chamber. In this context differently scaled spray structures in a confined spray environment have been analyzed in experiments and numerical simulations. The experimental investigations have been carried out with Particle-Image-Velocimetry to determine the velocity of the gas and the discrete phase. Large-Eddy-Simulations have been set up to predict the transient behaviour of the spray process and have given more insight into the sensitivity of the spray flow structures in dependency from the spray chamber design

  1. Microstructure Evolution and Mechanical Behavior of 2219 Aluminum Alloys Additively Fabricated by the Cold Metal Transfer Process

    Directory of Open Access Journals (Sweden)

    Xuewei Fang

    2018-05-01

    Full Text Available In this research, four different welding arc modes including conventional cold metal transfer (CMT, CMT-Pulse (CMT-P, CMT-Advanced (CMT-ADV, and CMT pulse advanced (CMT-PADV were used to deposit 2219-Al wire. The effects of different arc modes on porosity, pore size distribution, microstructure evolution, and mechanical properties were thoroughly investigated. The statistical analysis of the porosity and its size distribution indicated that the CMT-PADV process gave the smallest pore area percentage and pore aspect ratio, and had almost no larger pores. The results from optical microscopy, scanning electron microscopy, and fractographic morphology proved that uniform and fine equiaxed grains, evenly distributed Al2Cu second phase particles were formed during the CMT-PADV process. Furthermore, the X-ray diffraction test ascertained that the CMT-PADV sample had the smallest lattice parameter and the highest solute Cu content. Besides, the tensile strength could reach 283 MPa, the data scattering was the smallest, and the strength scattering of the sample in the horizontal direction was the shortest. In addition, the strength properties were nearly isotropic, with only 5 MPa difference in the vertical and horizontal directions. The above mentioned results indicated that the mechanical properties of 2219 aluminum alloy was improved using the CMT-PADV arc mode.

  2. Microstructure Evolution and Mechanical Behavior of 2219 Aluminum Alloys Additively Fabricated by the Cold Metal Transfer Process.

    Science.gov (United States)

    Fang, Xuewei; Zhang, Lijuan; Li, Hui; Li, Chaolong; Huang, Ke; Lu, Bingheng

    2018-05-16

    In this research, four different welding arc modes including conventional cold metal transfer (CMT), CMT-Pulse (CMT-P), CMT-Advanced (CMT-ADV), and CMT pulse advanced (CMT-PADV) were used to deposit 2219-Al wire. The effects of different arc modes on porosity, pore size distribution, microstructure evolution, and mechanical properties were thoroughly investigated. The statistical analysis of the porosity and its size distribution indicated that the CMT-PADV process gave the smallest pore area percentage and pore aspect ratio, and had almost no larger pores. The results from optical microscopy, scanning electron microscopy, and fractographic morphology proved that uniform and fine equiaxed grains, evenly distributed Al₂Cu second phase particles were formed during the CMT-PADV process. Furthermore, the X-ray diffraction test ascertained that the CMT-PADV sample had the smallest lattice parameter and the highest solute Cu content. Besides, the tensile strength could reach 283 MPa, the data scattering was the smallest, and the strength scattering of the sample in the horizontal direction was the shortest. In addition, the strength properties were nearly isotropic, with only 5 MPa difference in the vertical and horizontal directions. The above mentioned results indicated that the mechanical properties of 2219 aluminum alloy was improved using the CMT-PADV arc mode.

  3. Microstructure Evolution and Mechanical Behavior of 2219 Aluminum Alloys Additively Fabricated by the Cold Metal Transfer Process

    Science.gov (United States)

    Fang, Xuewei; Li, Hui; Li, Chaolong; Lu, Bingheng

    2018-01-01

    In this research, four different welding arc modes including conventional cold metal transfer (CMT), CMT-Pulse (CMT-P), CMT-Advanced (CMT-ADV), and CMT pulse advanced (CMT-PADV) were used to deposit 2219-Al wire. The effects of different arc modes on porosity, pore size distribution, microstructure evolution, and mechanical properties were thoroughly investigated. The statistical analysis of the porosity and its size distribution indicated that the CMT-PADV process gave the smallest pore area percentage and pore aspect ratio, and had almost no larger pores. The results from optical microscopy, scanning electron microscopy, and fractographic morphology proved that uniform and fine equiaxed grains, evenly distributed Al2Cu second phase particles were formed during the CMT-PADV process. Furthermore, the X-ray diffraction test ascertained that the CMT-PADV sample had the smallest lattice parameter and the highest solute Cu content. Besides, the tensile strength could reach 283 MPa, the data scattering was the smallest, and the strength scattering of the sample in the horizontal direction was the shortest. In addition, the strength properties were nearly isotropic, with only 5 MPa difference in the vertical and horizontal directions. The above mentioned results indicated that the mechanical properties of 2219 aluminum alloy was improved using the CMT-PADV arc mode. PMID:29772708

  4. Experimental characterization of gasoline sprays under highly evaporating conditions

    Science.gov (United States)

    Khan, Muhammad Mahabat; Sheikh, Nadeem Ahmed; Khalid, Azfar; Lughmani, Waqas Akbar

    2018-05-01

    An experimental investigation of multistream gasoline sprays under highly evaporating conditions is carried out in this paper. Temperature increase of fuel and low engine pressure could lead to flash boiling. The spray shape is normally modified significantly under flash boiling conditions. The spray plumes expansion along with reduction in the axial momentum causes the jets to merge and creates a low-pressure area below the injector's nozzle. These effects initiate the collapse of spray cone and lead to the formation of a single jet plume or a big cluster like structure. The collapsing sprays reduces exposed surface and therefore they last longer and subsequently penetrate more. Spray plume momentum increase, jet plume reduction and spray target widening could delay or prevent the closure condition and limit the penetration (delayed formation of the cluster promotes evaporation). These spray characteristics are investigated experimentally using shadowgraphy, for five and six hole injectors, under various boundary conditions. Six hole injectors produce more collapsing sprays in comparison to five hole injector due to enhanced jet to jet interactions. The spray collapse tendency reduces with increase in injection pressure due high axial momentum of spray plumes. The spray evaporation rates of five hole injector are observed to be higher than six hole injectors. Larger spray cone angles of the six hole injectors promote less penetrating and less collapsing sprays.

  5. ALICE-ARC integration

    International Nuclear Information System (INIS)

    Anderlik, C; Gregersen, A R; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites

  6. Fundamental Study of Electron Beam Welding of AA6061-T6 Aluminum Alloy for Nuclear Fuel Plate Assembly (II)

    International Nuclear Information System (INIS)

    Kim, Soosung; Lee, Haein; Lee, Donbae; Park, Jongman; Lee, Yoonsang

    2013-01-01

    Certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes posses the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using a electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. In this experiment, a feasibility test was carried out by tensile tester, bead-on-plate welding and metallographic examination to comply with the aluminum welding procedure. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the mechanical testing and microstructure examinations. This study was carried out to determine the suitable welding process and to investigate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory EBW of the square butt weld specimens was developed. In comparison with the rolling directions of test specimens, the tensile strengths were no difference between the longitudinal and transverse welds. Based on this fundamental study, fabrication and assembly of the nuclear fuel plates will be provided for the future Kijang research reactor project

  7. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No. 555...

  8. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  9. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  10. Study on Spray Characteristics and Spray Droplets Dynamic Behavior of Diesel Engine Fueled by Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Sapit Azwan

    2014-07-01

    Full Text Available Fuel-air mixing is important process in diesel combustion. It directly affects the combustion and emission of diesel engine. Biomass fuel needs great help to atomize because the fuel has high viscosity and high distillation temperature. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fueled by rapeseed oil (RO. Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the rapeseed oil spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. The results show that RO has very poor atomization due to the high viscosity nature of the fuel. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  11. Time resolved Thomson scattering diagnostic of pulsed gas metal arc welding (GMAW) process

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Schein, J; Marquès, J L

    2014-01-01

    In this work a Thomson scattering diagnostic technique was applied to obtain time resolved electron temperature and density values during a gas metal arc welding (GMAW) process. The investigated GMAW process was run with aluminum wire (AlMg 4,5 Mn) with 1.2 mm diameter as a wire electrode, argon as a shielding gas and peak currents in the range of 400 A. Time resolved measurements could be achieved by triggering the laser pulse at shifted time positions with respect to the current pulse driving the process. Time evaluation of resulting electron temperatures and densities is used to investigate the state of the plasma in different phases of the current pulse and to determine the influence of the metal vapor and droplets on the plasma properties

  12. Development of process data capturing, analysis and controlling for thermal spray techniques - SprayTracker

    Science.gov (United States)

    Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.

    2017-03-01

    Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.

  13. Fundamental Study on the Effect of Spray Parameters on Characteristics of P3HT:PCBM Active Layers Made by Spray Coating

    Directory of Open Access Journals (Sweden)

    Yu Xie

    2015-08-01

    Full Text Available This paper is an attempt to elucidate the effects of the important spray characteristics on the surface morphology and light absorbance of spray-on P3HT:PCBM thin-films, used as an active layer in polymer solar cells (PSCs. Spray coating or deposition is a viable scalable technique for the large-scale, fast, and low-cost fabrication of solution-processed solar cells, and has been widely used for device fabrication, although the fundamental understanding of the underlying and controlling parameters, such as spray characteristics, droplet dynamics, and surface wettability, is still limited, making the results on device fabrication not reproducible and unreliable. In this paper, following the conventional PSC architecture, a PEDOT:PSS layer is first spin-coated on glass substrates, followed by the deposition of P3HT:PCBM using an automatic ultrasonic spray coating system, with a movable nozzle tip, to mimic an industrial manufacturing process. To gain insight, the effects of the spray carrier air pressure, the number of spray passes, the precursor flow rate, and precursor concentration are studied on the surface topography and light absorbance spectra of the spray-on films. Among the results, it is found that despite the high roughness of spray-on films, the light absorbance of the film is satisfactory. It is also found that the absorbance of spray-on films is a linear function of the number of spray passes or deposition layers, based on which an effective film thickness is defined for rough spray-on films. The effective thickness of a rough spray-on P3HT:PCBM film was found to be one-quarter of that of a flat film predicted by a simple mass balance.

  14. Arc-weld pool interactions

    International Nuclear Information System (INIS)

    Glickstein, S.S.

    1978-08-01

    The mechanisms involved in arc-weld pool interactions are extremely complex and no complete theory is presently available to describe much of the phenomena observed during welding. For the past several years, experimental and analytical studies have been undertaken at the Bettis Atomic Power Laboratory to increase basic understanding of the gas tungsten arc welding process. These studies have included experimental spectral analysis of the arc in order to determine arc temperature and analytical modeling of the arc and weld puddle. The investigations have been directed toward determining the cause and effects of variations in the energy distribution incident upon the weldment. In addition, the effect of weld puddle distortion on weld penetration was investigated, and experimental and analytical studies of weld process variables have been undertaken to determine the effects of the variables upon weld penetration and configuration. A review of the results and analysis of these studies are presented

  15. Fine Sprays for Disinfection within Healthcare

    Directory of Open Access Journals (Sweden)

    G Nasr

    2016-09-01

    Full Text Available Problems exist worldwide with Hospital Acquired Infections (HAI's. The Spray Research Group (SRG have been working with relevant industries in developing a product which can provide a delivery system for treatment chemicals for surfaces, including the design and testing of a novel Spill-Return Atomiser (SRA for this purpose. A comprehensive description of this atomiser has already been given. This paper reports on a new application of this atomiser and discusses the problem of spray coating for disinfection that has been considered very little in previous work. The related spray coating performance tests in developing the product are thus provided. The experimental work includes determining the required spray duration and the coverage area produced by different sprays, including the analysis of the effects of atomiser positions, configurations, and the required number of atomisers. Comparison is made with the efficacy of an ultrasonic gas atomiser that is currently used for this purpose. The investigation has found that the utilisation of fine sprays (10μm>D32>25μm at high liquid pressure (<12MPa and low flow rates (<0.3 l/min is suitable for surface disinfection in healthcare applications (i.e. MRSA, VRSA etc.

  16. Volcanism in slab tear faults is larger than in island-arcs and back-arcs.

    Science.gov (United States)

    Cocchi, Luca; Passaro, Salvatore; Tontini, Fabio Caratori; Ventura, Guido

    2017-11-13

    Subduction-transform edge propagators are lithospheric tears bounding slabs and back-arc basins. The volcanism at these edges is enigmatic because it is lacking comprehensive geological and geophysical data. Here we present bathymetric, potential-field data, and direct observations of the seafloor on the 90 km long Palinuro volcanic chain overlapping the E-W striking tear of the roll-backing Ionian slab in Southern Tyrrhenian Sea. The volcanic chain includes arc-type central volcanoes and fissural, spreading-type centers emplaced along second-order shears. The volume of the volcanic chain is larger than that of the neighbor island-arc edifices and back-arc spreading center. Such large volume of magma is associated to an upwelling of the isotherms due to mantle melts upraising from the rear of the slab along the tear fault. The subduction-transform edge volcanism focuses localized spreading processes and its magnitude is underestimated. This volcanism characterizes the subduction settings associated to volcanic arcs and back-arc spreading centers.

  17. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  18. Electric arc hydrogen heaters

    International Nuclear Information System (INIS)

    Zasypin, I.M.

    2000-01-01

    The experimental data on the electric arc burning in hydrogen are presented. Empirical and semiempirical dependences for calculating the arc characteristics are derived. An engineering method of calculating plasma torches for hydrogen heating is proposed. A model of interaction of a hydrogen arc with a gas flow is outlined. The characteristics of plasma torches for heating hydrogen and hydrogen-bearing gases are described. (author)

  19. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    Science.gov (United States)

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  20. Production of aluminum metal by electrolysis of aluminum sulfide

    Science.gov (United States)

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  1. Multiphysics modelling of the spray forming process

    International Nuclear Information System (INIS)

    Mi, J.; Grant, P.S.; Fritsching, U.; Belkessam, O.; Garmendia, I.; Landaberea, A.

    2008-01-01

    An integrated, multiphysics numerical model has been developed through the joint efforts of the University of Oxford (UK), University of Bremen (Germany) and Inasmet (Spain) to simulate the spray forming process. The integrated model consisted of four sub-models: (1) an atomization model simulating the fragmentation of a continuous liquid metal stream into droplet spray during gas atomization; (2) a droplet spray model simulating the droplet spray mass and enthalpy evolution in the gas flow field prior to deposition; (3) a droplet deposition model simulating droplet deposition, splashing and re-deposition behavior and the resulting preform shape and heat flow; and (4) a porosity model simulating the porosity distribution inside a spray formed ring preform. The model has been validated against experiments of the spray forming of large diameter IN718 Ni superalloy rings. The modelled preform shape, surface temperature and final porosity distribution showed good agreement with experimental measurements

  2. Water spray interaction with air-steam mixtures under containment spray conditions: comparison of heat and mass transfer modelling with the TOSQAN spray tests

    International Nuclear Information System (INIS)

    Malet, J.; Lemaitre, P.; Porcheron, E.; Vendel, J.

    2005-01-01

    Full text of publication follows: During the course of a hypothetical severe accident in a Pressurized Water Reactor (PWR), hydrogen can be produced by the reactor core oxidation and distributed into the reactor containment according to convection flows and water steam wall condensation. In order to mitigate the risk of detonation generated by a high local hydrogen concentration, spray systems are used in the containment. The TOSQAN programme has been created to simulate separate-effect tests representative of typical accidental thermal-hydraulic flow conditions in the reactor containment. The present work concerns the interaction of a water spray, used at the top of the containment in order to reduce the steam partial pressure, with air-steam mixtures. The main phenomena occurring when water spray is used are the mixing induced by spray entrainment and the condensation on droplets. In order to improve the latter phenomena, different levels of modelling can be used. The objective of this paper is to analyze experimental results obtained for water spray interaction with air-steam mixtures using different heat and mass transfer modelling. For this purpose, two modelling issues have been used: the first one is devoted for the determination of the gas thermodynamical properties, and the second one concerns the droplets characterization. In the first one, the gas thermodynamical analysis is performed using depressurization, gas temperature variation and humidity decrease during the spray injection. In this modelling, heat and mass transfer between the spray and the surrounding gas is treated in a global way by energy balance between the total amount of water and the gas. In the second one, droplets characterization is obtained by means of droplet size, temperature and velocities evolutions. In this modelling, the spray is considered as a single droplet falling with an initial velocity. Droplet interactions are neglected. Assessment of these two modelling is performed

  3. Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications

    Science.gov (United States)

    Chen, Xiuyong; Yuan, Jianhui; Huang, Jing; Ren, Kun; Liu, Yi; Lu, Shaoyang; Li, Hua

    2014-08-01

    This study aims to further enhance the anti-corrosion performances of Al coatings by constructing superhydrophobic surfaces. The Al coatings were initially arc-sprayed onto steel substrates, followed by deposition of polyurethane (PU)/nano-Al2O3 composites by a suspension flame spraying process. Large-scale corrosion-resistant superhydrophobic PU/nano-Al2O3-Al coatings were successfully fabricated. The coatings showed tunable superhydrophilicity/superhydrophobicity as achieved by changing the concentration of PU in the starting suspension. The layer containing 2.0 wt.%PU displayed excellent hydrophobicity with the contact angle of ∼151° and the sliding angle of ∼6.5° for water droplets. The constructed superhydrophobic coatings showed markedly improved anti-corrosion performances as assessed by electrochemical corrosion testing carried out in 3.5 wt.% NaCl solution. The PU/nano-Al2O3-Al coatings with superhydrophobicity and competitive anti-corrosion performances could be potentially used as protective layers for marine infrastructures. This study presents a promising approach for fabricatiing superhydrophobic coatings for corrosion-resistant applications.

  4. Fluctuations of a spray generated by an airblast atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Batarseh, Feras Z.; Gnirss, Markus; Roisman, Ilia V.; Tropea, Cameron [Technische Universitaet Darmstadt (Germany). Chair of Fluid Mechanics and Aerodynamics

    2009-06-15

    This paper is devoted to the study of the aerodynamic instability of the spray generated by an airblast atomizer. As a result of this instability the spray shape and its velocity fluctuate with a certain frequency, which depends on the operational parameters of the atomizer. The effect of three parameters, namely; chamber pressure, liquid phase flow rate and the gas phase flow rate on the spray fluctuating frequency are investigated. The velocity vector of the drops in the spray and the arrival times to the detection volume are measured using the laser Doppler instrument. The slotting technique is applied to the data of axial velocity and arrival times of the drops in order to estimate the dominating spray frequencies. Additionally, the shape of the spray has been observed using the high-speed video system. The frequencies of the shape fluctuations are estimated using proper orthogonal decomposition of the time-resolved images of the spray. We show that the frequencies of the spray velocity and those exhibited by spray shape coincide over a wide range of spray parameters. Finally, a simple scaling for the spray frequency is proposed and validated by the experimental data. (orig.)

  5. BONDING ALUMINUM METALS

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  6. エキタイ ザイリョウ ソウキュウジ ノ プラズマ デンキョクガタ ヨウシャ ガン ノ トクセイ

    OpenAIRE

    大崎, 堅; 藤本, 聡; 福政, 修; 小林, 明

    2001-01-01

    A newly designed plasma electrode-type spray gun, which can inject the spraying material into the center of the arc column, has been developed. In order to demonstrate the application feasibility of this plasma spray gun to thermal processing, the effect of liquid material loading on the characteristics of the arc and plasma jet was clarified. The liquid material was C2H5OH. It was found that the spray gun operated stably with liquid loading, and the jet power was effectively controlled by ch...

  7. Consolidating NASA's Arc Jets

    Science.gov (United States)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  8. Equilibrium motion of quict auroral arcs

    International Nuclear Information System (INIS)

    Lyatskij, V.B.; Leont'ev, S.V.

    1981-01-01

    Ionospheric plasma convection across auroral arc is investigated. It is shown that the existence of plasma area of increased concentration adjoining arc results not only from the arc but also is a factor supporting its existence. Under stable conditions the arc and plasma zone connected to it will move at a velocity different from a velocity of plasma convection. Arc velocity will be higher or lower as compared with convection velocity depending on arc orientation relative to an external electric field. At that the plasma zone is located either in front of or behind aurora polaris [ru

  9. Bifurcation theory of ac electric arcing

    International Nuclear Information System (INIS)

    Christen, Thomas; Peinke, Emanuel

    2012-01-01

    The performance of alternating current (ac) electric arcing devices is related to arc extinction or its re-ignition at zero crossings of the current (so-called ‘current zero’, CZ). Theoretical investigations thus usually focus on the transient behaviour of arcs near CZ, e.g. by solving the modelling differential equations in the vicinity of CZ. This paper proposes as an alternative approach to investigate global mathematical properties of the underlying periodically driven dynamic system describing the electric circuit containing the arcing device. For instance, the uniqueness of the trivial solution associated with the insulating state indicates the extinction of any arc. The existence of non-trivial attractors (typically a time-periodic state) points to a re-ignition of certain arcs. The performance regions of arcing devices, such as circuit breakers and arc torches, can thus be identified with the regions of absence and existence, respectively, of non-trivial attractors. Most important for applications, the boundary of a performance region in the model parameter space is then associated with the bifurcation of the non-trivial attractors. The concept is illustrated for simple black-box arc models, such as the Mayr and the Cassie model, by calculating for various cases the performance boundaries associated with the bifurcation of ac arcs. (paper)

  10. Electric contact arcing

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1976-01-01

    Electrical contacts must function properly in many types of components used in nuclear weapon systems. Design, application, and testing of these components require detailed knowledge of chemical and physical phenomena associated with stockpile storage, stockpile testing, and operation. In the past, investigation of these phenomena has led to significant discoveries on the effects of surface contaminants, friction and wear, and the mechanics of closure on contact performance. A recent investigation of contact arcing phenomena which revealed that, preceding contact closure, arcs may occur at voltages lower than had been previously known is described. This discovery is important, since arcing may damage contacts, and repetitive testing of contacts performed as part of a quality assurance program might produce cumulative damage that would yield misleading life-test data and could prevent proper operation of the contacts at some time in the future. This damage can be avoided by determining the conditions under which arcing occurs, and ensuring that these conditions are avoided in contact testing

  11. Arcing and surface damage in DITE

    International Nuclear Information System (INIS)

    Goodall, D.H.J.; McCracken, G.M.

    1977-11-01

    An investigation into the arcing damage on surfaces exposed to plasmas in the DITE tokamak is described. It has been found that arcing occurs on the fixed limiters, on probes inserted into the plasma and on parts of the torus structure. For surfaces parallel to the toroidal field most of the arcs run across the surface orthogonal to the field direction. Observations in the scanning electron microscope show that the arc tracks are formed by a series of melted craters characteristic of cathode arc spots. The amount of metal removed from the surface is consistent with the concentration of metal observed in the plasma. In plasmas with hydrogen gas puffing during the discharge or with injection of low Z impurities, the arc tracks are observed to be much shallower than in normal low density discharges. Several types of surface damage other than arc tracks have also been observed on probes. These phenomena occur less frequently than arcing and appear to be associated with abnormal discharge conditions. (author)

  12. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  13. Spray casting project final report

    International Nuclear Information System (INIS)

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step

  14. 21 CFR 73.1645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum. It...

  15. Structure of Non-evaporating diesel sprays

    International Nuclear Information System (INIS)

    Mirza, M.R.; Baluch, A.H.; Tahir, Z.R.

    2008-01-01

    Need is always felt of some rational experimental information on fuel spray jet formation, its development and dispersion in the combustion chamber of an internal combustion engine. The latest study uses computational fluid dynamics for the modeling of engine flows. The original experimental work of the present author on non-evaporating sprays produced by a single-hole orifice type nozzle using a distribution type commercial fuel injection pump forms the basis to derive correlations for penetration rates, break up times and lengths of non-evaporating diesel sprays. The correlations derived can be used to do CFD modeling of sprays under variable conditions of injector nozzle hole diameter, fuel injection pressure and combustion chamber pressure. (author)

  16. Operator Bias in the Estimation of Arc Efficiency in Gas Tungsten Arc Welding

    Directory of Open Access Journals (Sweden)

    Fredrik Sikström

    2015-03-01

    Full Text Available In this paper the operator bias in the measurement process of arc efficiency in stationary direct current electrode negative gas tungsten arc welding is discussed. An experimental study involving 15 operators (enough to reach statistical significance has been carried out with the purpose to estimate the arc efficiency from a specific procedure for calorimetric experiments. The measurement procedure consists of three manual operations which introduces operator bias in the measurement process. An additional relevant experiment highlights the consequences of estimating the arc voltage by measuring the potential between the terminals of the welding power source instead of measuring the potential between the electrode contact tube and the workpiece. The result of the study is a statistical evaluation of the operator bias influence on the estimate, showing that operator bias is negligible in the estimate considered here. On the contrary the consequences of neglecting welding leads voltage drop results in a significant under estimation of the arc efficiency.

  17. Water spray ventilator system for continuous mining machines

    Science.gov (United States)

    Page, Steven J.; Mal, Thomas

    1995-01-01

    The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

  18. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  19. Arcing phenomena in fusion devices workshop

    International Nuclear Information System (INIS)

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included

  20. Multiphysics Simulation of Welding-Arc and Nozzle-Arc System: Mathematical-Model, Solution-Methodology and Validation

    Science.gov (United States)

    Pawar, Sumedh; Sharma, Atul

    2018-01-01

    This work presents mathematical model and solution methodology for a multiphysics engineering problem on arc formation during welding and inside a nozzle. A general-purpose commercial CFD solver ANSYS FLUENT 13.0.0 is used in this work. Arc formation involves strongly coupled gas dynamics and electro-dynamics, simulated by solution of coupled Navier-Stoke equations, Maxwell's equations and radiation heat-transfer equation. Validation of the present numerical methodology is demonstrated with an excellent agreement with the published results. The developed mathematical model and the user defined functions (UDFs) are independent of the geometry and are applicable to any system that involves arc-formation, in 2D axisymmetric coordinates system. The high-pressure flow of SF6 gas in the nozzle-arc system resembles arc chamber of SF6 gas circuit breaker; thus, this methodology can be extended to simulate arcing phenomenon during current interruption.

  1. A new method for spray deposit assessment

    Science.gov (United States)

    Chester M. Himel; Leland Vaughn; Raymond P. Miskus; Arthur D. Moore

    1965-01-01

    Solid fluorescent particles suspended in a spray liquid are distributed in direct proportion to the size of the spray droplets. Use of solid fluorescent particles is the basis of a new method for visual recognition of the size and number of droplets impinging on target and nontarget portions of sprayed areas.

  2. A simplified model of aerosol removal by containment sprays

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A. (Sandia National Labs., Albuquerque, NM (United States)); Burson, S.B. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of Safety Issue Resolution)

    1993-06-01

    Spray systems in nuclear reactor containments are described. The scrubbing of aerosols from containment atmospheres by spray droplets is discussed. Uncertainties are identified in the prediction of spray performance when the sprays are used as a means for decontaminating containment atmospheres. A mechanistic model based on current knowledge of the physical phenomena involved in spray performance is developed. With this model, a quantitative uncertainty analysis of spray performance is conducted using a Monte Carlo method to sample 20 uncertain quantities related to phenomena of spray droplet behavior as well as the initial and boundary conditions expected to be associated with severe reactor accidents. Results of the uncertainty analysis are used to construct simplified expressions for spray decontamination coefficients. Two variables that affect aerosol capture by water droplets are not treated as uncertain; they are (1) [open quote]Q[close quote], spray water flux into the containment, and (2) [open quote]H[close quote], the total fall distance of spray droplets. The choice of values of these variables is left to the user since they are plant and accident specific. Also, they can usually be ascertained with some degree of certainty. The spray decontamination coefficients are found to be sufficiently dependent on the extent of decontamination that the fraction of the initial aerosol remaining in the atmosphere, m[sub f], is explicitly treated in the simplified expressions. The simplified expressions for the spray decontamination coefficient are given. Parametric values for these expressions are found for median, 10 percentile, and 90 percentile values in the uncertainty distribution for the spray decontamination coefficient. Examples are given to illustrate the utility of the simplified expressions to predict spray decontamination of an aerosol-laden atmosphere.

  3. Effect of spray volume on the deposition, viability and infectivity of entomopathogenic nematodes in a foliar spray on vegetables.

    Science.gov (United States)

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-10-01

    Spray volume can influence the amount of free water on the leaf surface and subsequently the ability of entomopathogenic nematodes (EPNs) to move. In this study, an investigation was made of the effect of spray volume (548, 730 and 1095 L ha(-1) ) on the deposition, viability and infectivity of EPNs against Galleria mellonella on savoy cabbage, cauliflower and leek. Increasing spray volume decreased nematode deposition on 7.1 cm2 leek leaf discs at a 15° angle with the spray nozzle. Although the number of living nematodes observed on leek after 240 min of exposure was not significantly different between the low-volume application (548 L ha(-1) ) and the high-volume application (1095 L ha(-1) ), a greater infectivity was obtained in the latter application. The higher number of droplets deposited on the leek discs in the high-volume application may have stimulated nematode movement. No significant effect of spray volume was observed on the relative deposition of Steinernema carpocapsae on the bottom side of cauliflower and savoy cabbage leaf discs. In spite of the low S. carpocapsae deposition on the bottom side of the savoy cabbage discs, high infectivity was obtained against G. mellonella. Using the lowest spray volume on savoy cabbage, infectivity decreased with increasing exposure time, while infectivity was not affected by exposure time when a spray volume of 730 L ha(-1) or more was used. Spray volume is an important application parameter, as it affects nematode infectivity. Future research should investigate the effect of spray volume in the field and its influence on the effect of adjuvants. Copyright © 2012 Society of Chemical Industry.

  4. Numerical investigation of the double-arcing phenomenon in a cutting arc torch

    International Nuclear Information System (INIS)

    Mancinelli, B. R.; Minotti, F. O.; Kelly, H.; Prevosto, L.

    2014-01-01

    A numerical investigation of the double-arcing phenomenon in a cutting arc torch is reported. The dynamics of the double-arcing were simulated by using a two-dimensional model of the gas breakdown development in the space-charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen. The kinetic scheme includes ionization of heavy particles by electron impact, electron attachment, electron detachment, electron–ion recombination, and ion–ion recombination. Complementary measurements during double-arcing phenomena were also conducted. A marked rise of the nozzle voltage was found. The numerical results showed that the dynamics of a cathode spot at the exit of the nozzle inner surface play a key role in the raising of the nozzle voltage, which in turn allows more electrons to return to the wall at the nozzle inlet. The return flow of electrons thus closes the current loop of the double-arcing. The increase in the (floating) nozzle voltage is due to the fact that the increased electron emission at the spot is mainly compensated by the displacement current (the ions do not play a relevant role due to its low-mobility) until that the stationary state is achieved and the electron return flow fully-compensates the electron emission at the spot. A fairly good agreement was found between the model and the experiment for a spot emission current growth rate of the order of 7 × 10 4  A/s.

  5. Albendazole Microparticles Prepared by Spray Drying Technique ...

    African Journals Online (AJOL)

    Purpose: To enhance the dissolution of albendazole (ABZ) using spray-drying technique. Method: ABZ binary mixtures with Kollicoat IR® (KL) and polyvinyl pyrrolidone (PVP) in various drug to polymer ratios (1: 1, 1: 2 and 1; 4) were prepared by spray-drying. The spray-dried particles were characterized for particle shape, ...

  6. CHARACTERIZATION OF DIESEL SPRAY IMAGES USING A SHAPE PROCESSING METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cecile Petit

    2011-05-01

    Full Text Available In Diesel engines, a key element in achieving a clean and efficient combustion process is a proper fuel-air mixing, which is a consequence of the fuel spray development and fuel-air interaction inside the engine combustion chamber. The spray structure and behavior are classically described by the length (penetration and width (angle of the spray plume but these parameters do not give any clue on the geometrical injection center and on the spray symmetry. The purpose of this paper is to find out original tools to characterize the Diesel spray: the virtual spray origin is the geometrical injection center, which may (or may not coincide with the injector axis. Another interesting point is the description of the Diesel spray in terms of symmetry: the spray plume internal and external symmetry characterize the spray and the injector performance. Our approach is first to find out the virtual spray origin: after the image segmentation, the spray is coded with the Freeman code and with an original shape coding from which the moments are derived. The symmetry axes are then computed and the spray plumes are discarded (or not for the virtual spray origin computation, which is derived from a Voronoi diagram. The last step is the internal and external spray plume symmetry characterization thanks to correlation and mathematical distances.

  7. Quality characteristic of spray-drying egg white powders.

    Science.gov (United States)

    Ma, Shuang; Zhao, Songning; Zhang, Yan; Yu, Yiding; Liu, Jingbo; Xu, Menglei

    2013-10-01

    Spray drying is a useful method for developing egg process and utilization. The objective of this study was to evaluate effects on spray drying condition of egg white. The optimized conditions were spraying flow 22 mL/min, feeding temperature 39.8 °C and inlet-air temperature 178.2 °C. Results of sulfydryl (SH) groups measurement indicated conformation structure have changed resulting in protein molecule occur S-S crosslinking phenomenon when heating. It led to free SH content decreased during spray drying process. There was almost no change of differential scanning calorimetry between fresh egg white and spray-drying egg white powder (EWP). For a given protein, the apparent SH reactivity is in turn influenced by the physico-chemical characteristics of the reactant. The phenomenon illustrated the thermal denaturation of these proteins was unrelated to their free SH contents. Color measurement was used to study browning level. EWP in optimized conditions revealed insignificant brown stain. Swelling capacity and scanning electron micrograph both proved well quality characteristic of spray-drying EWP. Results suggested spray drying under the optimized conditions present suitable and alternative method for egg processing industrial implementation. Egg food industrialization needs new drying method to extend shelf-life. The purpose of the study was to provide optimal process of healthy and nutritional instant spray-drying EWP and study quality characteristic of spray-drying EWP.

  8. Spray drying of beryllium oxide powder

    International Nuclear Information System (INIS)

    Sepulveda, J.L.; Kahler, D.A.

    1991-01-01

    Forming of beryllia ceramics through dry pressing requires the agglomeration of the powder through spray drying. To produce high quality fired ceramics it is necessary to disperse/grind the primary powder prior to binder addition. Size reduction of the powder is accomplished using an aqueous system in Vibro-Energy mills (VEM) charged with beryllia media to minimize contamination. Two VEM mills of different size were used to characterize the grinding operation. Details of the grinding kinetics are described within the context of the Macroscopic Population Balance Model approach. Spray drying of the ceramic slurry was accomplished with both a centrifugal atomizer and a two fluid nozzle atomizer. Two different spray dryers were used. Important operating parameters affecting the size distribution of the spray dried powder are discussed

  9. LSPRAY-V: A Lagrangian Spray Module

    Science.gov (United States)

    Raju, M. S.

    2015-01-01

    LSPRAY-V is a Lagrangian spray solver developed for application with unstructured grids and massively parallel computers. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray encountered over a wide range of operating conditions in modern aircraft engine development. It could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-V, we have advanced the state-of-the-art in spray computations in several important ways.

  10. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    Science.gov (United States)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2017-02-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  11. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  12. Teaching with ArcGIS Pro

    OpenAIRE

    Theller, Larry

    2016-01-01

    For Fall semester 2016 the ABE department moved the course ASM 540 Basic GIS from ArcGIS Desktop 10.2 to ArcGIS Pro 1.3. This software from ESRI has a completely new look and feel, (ribbon-based rather than cascading menus) and is a true 64 bit application, capable of multi-threading, and built on Python 3. After ArcGIS Desktop 10.5 is released, desktop ends and the future release will be ArcGIS Pro; so it makes sense to switch sooner rather than later. This talk will discuss some issues and...

  13. Characterization of the full cone pressure swirl spray nozzles for the nuclear reactor containment spray system

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Manish [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); John, Benny [Nuclear Power Corporation of India Limited, Mumbai (India); Iyer, K.N. [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Prabhu, S.V., E-mail: svprabhu@iitb.ac.in [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India)

    2014-07-01

    Highlights: • Full cone spray pressure swirl nozzle with X-Vane is studied. • Laser illuminated imaging technique is used. • Correlations for coefficient of discharge, spray cone angle and SMD are suggested. • Droplet size and mass fraction distribution is measured. • Inviscid theory predicts the coefficient of discharge. - Abstract: The objective of the present study is to characterize a full cone pressure swirl nozzle for the Containment Spray System (CSS) of Indian Pressurized heavy Water reactors (IPHWR). The influence of Reynolds number and geometric parameters on the coefficient of discharge, spray cone angle, mass flux density distribution, droplet size distribution, Sauter mean diameter (SMD is studied for full cone pressure swirl full cone nozzles. The nozzles of orifice diameter range from 1.3 to 7.2 mm are studied. Experiments are conducted with water at room temperature as the working medium. The nozzles are operated with the pressure ranging from 1 to 8 bar. The measurements of the drop size distributions are performed with laser illuminated imaging technique. The spray cone-angle of the full cone nozzles is measured by the evaluation of images recorded with a camera using IMAGE J software. Correlations for coefficient of discharge, spray cone angle and Sauter mean diameter are suggested on the basis of the experimental results. Rosin–Rammler model and Nukiyama–Tanasawa distributions predict the mass fraction distribution reasonably well. However, the droplet size distribution is predicted by Nukiyama-Tanasawa model only.

  14. High temperature corrosion of thermally sprayed NiCr- and amorphous Fe-based coatings covered with a KCl-K{sub 2}SO{sub 4} salt

    Energy Technology Data Exchange (ETDEWEB)

    Varis, T.; Suhonen, T.; Tuurna, S.; Ruusuvuori, K.; Holmstroem, S.; Salonen, J. [VTT, Espoo (Finland); Bankiewicz, D.; Yrjas, P. [Aabo Akademi Univ., Turku (Finland)

    2010-07-01

    New process conditions due to the requirement of higher efficiency together with the use of high-chlorine and alkali containing fuels such as biomass and waste fuels for heat and electricity production will challenge the resistance and life of tube materials. In conventional materials the addition of alloying elements to increase the corrosion resistance in aggressive combustion conditions increases costs relatively rapidly. Thermally sprayed coating offer promising, effective, flexible and cost efficient solutions to fulfill the material needs for the future. Some heat exchanger design alteractions before global commercialization have to be overcome, though. High temperature corrosion in combustion plants can occur by a variety of mechanisms including passive scale degradation with subsequent rapid scaling, loss of adhesion and scale detachment, attack by melted or partly melted deposits via fluxing reactions and intergranular-/interlamellar corrosion. A generally accepted model of the ''active oxidation'' attributes the responsibility for inducing corrosion to chlorine. The active oxidation mechanism plays a key role in the thermally sprayed coatings due to their unique lamellar structure. In this study, the corrosion behaviour of NiCr (HVOF and Wire Arc), amorphous Fe-based, and Fe13Cr (Wire Arc) thermally sprayed coatings, were tested in the laboratory under simplified biomass combustion conditions. The tests were carried out by using a KCl-K{sub 2}SO{sub 4} salt mixture as a synthetic biomass ash, which was placed on the materials and then heat treated for one week (168h) at two different temperatures (550{sup 0}C and 600 C) and in two different gas atmospheres (air and air+30%H{sub 2}O). After the exposures, the metallographic cross sections of the coatings were studied with SEM/EDX analyzer. The results showed that the coatings behaved relatively well at the lower test temperature while critical corrosion through the lamella boundaries

  15. ALICE: ARC integration

    CERN Document Server

    Anderlik, C; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a modu...

  16. Intensity-modulated arc therapy simplified

    International Nuclear Information System (INIS)

    Wong, Eugene; Chen, Jeff Z.; Greenland, Jonathan

    2002-01-01

    Purpose: We present a treatment planning strategy for intensity-modulated radiation therapy using gantry arcs with dynamic multileaf collimator, previously termed intensity-modulated arc therapy (IMAT). Methods and Materials: The planning strategy is an extension of the photon bar arc and asymmetric arc techniques and is classified into three levels of complexity, with increasing number of gantry arcs. This principle allows us to generalize the analysis of the number of arcs required for intensity modulation for a given treatment site. Using a phantom, we illustrate how the current technique is more flexible than the photon bar arc technique. We then compare plans from our strategy with conventional three-dimensional conformal treatment plans for three sites: prostate (prostate plus seminal vesicles), posterior pharyngeal wall, and chest wall. Results: Our strategy generates superior IMAT treatment plans compared to conventional three-dimensional conformal plans. The IMAT plans spare critical organs well, and the trade-off for simplicity is that the dose uniformity in the target volume may not rival that of true inverse treatment plans. Conclusions: The analyses presented in this paper give a better understanding of IMAT plans. Our strategy is easier to understand and more efficient in generating plans than inverse planning systems; our plans are also simpler to modify, and quality assurance is more intuitive

  17. Spray deposition of poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester blend under electric field for improved interface and organic solar cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Neha, E-mail: nchaturvedi9@gmail.com; Swami, Sanjay Kumar; Dutta, Viresh

    2016-01-01

    Spray process is used for the deposition of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) blend film under different voltages (0 V, 300 V, 500 V and 700 V) applied to the nozzle. The presence of the electric field during the spray process makes the P3HT:PCBM film smoother, uniform and more crystalline with well aligned domains. X-ray photoelectron spectroscopy study shows that PCBM rich surface is formed by application of the DC voltage (700 V) which improves the electron transport at the active layer and cathode interface. The application of electric field reduces the recombination at interfaces. The increased charge carrier separation between donor and acceptor at the interface and the crystallinity enhancement result in improved short circuit current density–voltage characteristics of Indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) /P3HT:PCBM/Aluminum solar cell. The organic bulk-heterojunction solar cell using the electric field assisted spray deposited PEDOT:PSS and P3HT:PCBM layers exhibited 84% and 154% increment in the short circuit current density and power conversion efficiency, respectively in comparison to the solar cell having spray deposited PEDOT:PSS and P3HT:PCBM layers in the absence of the electric field. - Highlights: • Spray deposition of P3HT:PCBM is carried out. • Spray deposition under electric field is done. • Electric field application enhanced the crystallinity of the layers. • P3HT:PCBM film arranged in more ordered form with electric field • Efficiency of organic solar cell is enhanced with application of electric field.

  18. Investigation of plasma arc welding as a method for the additive manufacturing of titanium-(6)aluminum-(4)vanadium alloy components

    Science.gov (United States)

    Stavinoha, Joe N.

    The process of producing near net-shape components by material deposition is known as additive manufacturing. All additive manufacturing processes are based on the addition of material with the main driving forces being cost reduction and flexibility in both manufacturing and product design. With wire metal deposition, metal is deposited as beads side-by-side and layer-by-layer in a desired pattern to build a complete component or add features on a part. There are minimal waste products, low consumables, and an efficient use of energy and feedstock associated with additive manufacturing processes. Titanium and titanium alloys are useful engineering materials that possess an extraordinary combination of properties. Some of the properties that make titanium advantageous for structural applications are its high strength-to-weight ratio, low density, low coefficient of thermal expansion, and good corrosion resistance. The most commonly used titanium alloy, Ti-6Al-4V, is typically used in aerospace applications, pressure vessels, aircraft gas turbine disks, cases and compressor blades, and surgical implants. Because of the high material prices associated with titanium alloys, the production of near net-shape components by additive manufacturing is an attractive option for the manufacturing of Ti-6Al-4V alloy components. In this thesis, the manufacturing of cylindrical Ti-6Al-4V alloy specimens by wire metal deposition utilizing the plasma arc welding process was demonstrated. Plasma arc welding is a cost effective additive manufacturing technique when compared to other current additive manufacturing methods such as laser beam welding and electron beam welding. Plasma arc welding is considered a high-energy-density welding processes which is desirable for the successful welding of titanium. Metal deposition was performed using a constant current plasma arc welding power supply, flow-purged welding chamber, argon shielding and orifice gas, ERTi-5 filler metal, and Ti-6Al

  19. Alignment Fixtures For Vacuum-Plasma-Spray Gun

    Science.gov (United States)

    Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.

    1993-01-01

    Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.

  20. Research of plating aluminum and aluminum foil on internal surface of carbon fiber composite material centrifuge rotor drum

    International Nuclear Information System (INIS)

    Lu Xiuqi; Dong Jinping; Dai Xingjian

    2014-01-01

    In order to improve the corrosion resistance, thermal conductivity and sealability of the internal surface of carbon fiber/epoxy composite material centrifuge rotor drum, magnetron sputtering aluminum and pasting an aluminum foil on the inner wall of the drum are adopted to realize the aim. By means of XRD, SEM/EDS and OM, the surface topography of aluminum coated (thickness of 5 μm and 12 μm) and aluminum foil (12 μm) are observed and analyzed; the cohesion of between aluminum coated (or aluminum foil) and substrate material (CFRP) is measured by scratching experiment, direct drawing experiment, and shear test. Besides, the ultra-high-speed rotation experiment of CFRP ring is carried out to analyze stress and strain of coated aluminum (or aluminum foil) which is adhered on the ring. The results showed aluminum foil pasted on inner surface do better performance than magnetron sputtering aluminum on CFRP centrifuge rotor drum. (authors)

  1. Tungsten/copper composite deposits produced by a cold spray

    International Nuclear Information System (INIS)

    Kang, Hyun-Ki; Kang, Suk Bong

    2003-01-01

    An agglomerated tungsten/copper composite powder was both cold sprayed and plasma sprayed onto a mild steel substrate for electronic package applications. Most pores resulting from the spraying were found in the vicinity of the tungsten-rich regions of the final product. The levels of porosity varied with the amount of tungsten present. No copper oxidation was found at the cold-sprayed deposit, but relatively high copper oxidation was observed at the plasma-sprayed deposit

  2. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  3. Effects of lorentz force on flow fields of free burning arc and wall stabilized non-transferred arc

    International Nuclear Information System (INIS)

    Peng Yi; Huang Heji; Pan Wenxia

    2013-01-01

    The flow fields of two typical DC plasma arcs, namely the transferred free burning arc and the non-transferred arc were simulated by solving hydrodynamic equations and electromagnetic equations. The effects of the Lorentz force on the characteristics of the flow fields of these two typical DC plasma arcs were estimated. Results show that in the case of the free burning arc, the Lorentz force due to the current self-induced magnetic field has significant impact on the flow fields, as the self-induced magnetic compression is the main arc constraint mechanism. However, in the case of the non-transferred arc generated in a torch with long and narrow inter-electrode inserts and an abruptly expanded anode, the Lorentz force has limited impact on the flow fields of the plasma especially at the downstream of the inter-electrode inserts, compared with the strong wall constraints and relatively high aerodynamic force. This is because the ratio of the electromagnetic force to the aerodynamic force is only about 0.01 in this region. When the main consideration is outlet parameters of the wall stabilized non-transferred DC arc plasma generator, in order to improve the efficiency of the numerical simulation program, the Lorentz force could be neglected in the non-transferred arc in some cases. (authors)

  4. Research Into Ni-Cr-Si-B Coating Sprayed Onto Aluminium Substrate Using the Method of Plasma Spray

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2013-02-01

    Full Text Available The article deals with Ni base coatings deposited on aluminium substrate applying the method of plasma spray. The purpose of the conducted research is to improve the physical and mechanical properties of coatings on the surface of aluminium alloy work pieces. Spraying on aluminium alloys encounters serious problems, and therefore this work analyses the ways to make the situation more favourable. Before spraying, the surfaces of substrates were modified employing chemical and mechanical pre-treatment methods. The aim of pre-treating aluminium alloys was to remove oxide layers from the aluminium surface. Coating microstructures and porosity were characterised applying optical microscopy. Differences in the roughness of pre-treated surfaces have been determined referring to profilometry. The paper investigates the influence of the adhesion of plasma spray coatings on aluminium surface pretreatment. Microhardness technique was applied for measuring the hardness of coatings. The study also describes and compares the mechanical properties of Ni base coatings deposited on different pre-treated aluminium substrates using plasma spray.Article in Lithuanian

  5. Research Into Ni-Cr-Si-B Coating Sprayed Onto Aluminium Substrate Using the Method of Plasma Spray

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2012-12-01

    Full Text Available The article deals with Ni base coatings deposited on aluminium substrate applying the method of plasma spray. The purpose of the conducted research is to improve the physical and mechanical properties of coatings on the surface of aluminium alloy work pieces. Spraying on aluminium alloys encounters serious problems, and therefore this work analyses the ways to make the situation more favourable. Before spraying, the surfaces of substrates were modified employing chemical and mechanical pre-treatment methods. The aim of pre-treating aluminium alloys was to remove oxide layers from the aluminium surface. Coating microstructures and porosity were characterised applying optical microscopy. Differences in the roughness of pre-treated surfaces have been determined referring to profilometry. The paper investigates the influence of the adhesion of plasma spray coatings on aluminium surface pretreatment. Microhardness technique was applied for measuring the hardness of coatings. The study also describes and compares the mechanical properties of Ni base coatings deposited on different pre-treated aluminium substrates using plasma spray.Article in Lithuanian

  6. Dosimetric comparison of helical tomotherapy, RapidArc, and a novel IMRT and Arc technique for esophageal carcinoma

    International Nuclear Information System (INIS)

    Martin, Spencer; Chen, Jeff Z.; Rashid Dar, A.; Yartsev, Slav

    2011-01-01

    Purpose: To compare radiotherapy treatment plans for mid- and distal-esophageal cancer with primary involvement of the gastroesophageal (GE) junction using a novel IMRT and Arc technique (IMRT and Arc), helical tomotherapy (HT), and RapidArc (RA1 and RA2). Methods and materials: Eight patients treated on HT for locally advanced esophageal cancer with radical intent were re-planned for RA and IMRT and Arc. RA plans employed single and double arcs (RA1 and RA2, respectively), while IMRT and Arc plans had four fixed-gantry IMRT fields and a conformal arc. Dose-volume histogram statistics, dose uniformity, and dose homogeneity were analyzed to compare treatment plans. Results: RA2 plans showed significant improvement over RA1 plans in terms of OAR dose and PTV dose uniformity and homogeneity. HT plan provided best dose uniformity (p = 0.001) and dose homogeneity (p = 0.002) to planning target volume (PTV), while IMRT and Arc and RA2 plans gave lowest dose to lungs among four radiotherapy techniques with acceptable PTV dose coverage. Mean V 10 of the lungs was significantly reduced by the RA2 plans compared to IMRT and Arc (40.3%, p = 0.001) and HT (66.2%, p 15 of the lungs for the RA2 plans also showed significant improvement over the IMRT and Arc (25.2%, p = 0.042) and HT (34.8%, p = 0.027) techniques. These improvements came at the cost of higher doses to the heart volume compared to HT and IMRT and Arc techniques. Mean lung dose (MLD) for the IMRT and Arc technique (21.2 ± 5.0% of prescription dose) was significantly reduced compared to HT (26.3%, p = 0.004), RA1 (23.3%, p = 0.028), and RA2 (23.2%, p = 0.017) techniques. Conclusion: The IMRT and Arc technique is a good option for treating esophageal cancer with thoracic involvement. It achieved optimal low dose to the lungs and heart with acceptable PTV coverage. HT is a good option for treating esophageal cancer with little thoracic involvement as it achieves superior dose conformality and uniformity. The RA2

  7. Sprayed concrete linings

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-12-01

    Sprayed concrete, or shotcrete, was invented in the 1920s for preserving dinosaur skeletons and was used underground initially in coalmines for the preservation and fine proofing of timber supports. Its use as a support lining in rock tunnelling was developed in the 1950s and 60s. The article surveys equipment available from major manufacturers and suppliers of concrete spraying equipment (Aliva, Cifa, GIA, Industri, Ingersoll Rand, etc.), specialist cement and additive manufacturers (Castle, Cement, Moria Carbotech). manufacturers of lattice girders and fibre reinforcement, and manufacturers of instrumentation for tunnel linings. 5 tabs., 9 photos.

  8. Computational Analysis of Spray Jet Flames

    Science.gov (United States)

    Jain, Utsav

    There is a boost in the utilization of renewable sources of energy but because of high energy density applications, combustion will never be obsolete. Spray combustion is a type of multiphase combustion which has tremendous engineering applications in different fields, varying from energy conversion devices to rocket propulsion system. Developing accurate computational models for turbulent spray combustion is vital for improving the design of combustors and making them energy efficient. Flamelet models have been extensively used for gas phase combustion because of their relatively low computational cost to model the turbulence-chemistry interaction using a low dimensional manifold approach. This framework is designed for gas phase non-premixed combustion and its implementation is not very straight forward for multiphase and multi-regime combustion such as spray combustion. This is because of the use of a conserved scalar and various flamelet related assumptions. Mixture fraction has been popularly employed as a conserved scalar and hence used to parameterize the characteristics of gaseous flamelets. However, for spray combustion, the mixture fraction is not monotonic and does not give a unique mapping in order to parameterize the structure of spray flames. In order to develop a flamelet type model for spray flames, a new variable called the mixing variable is introduced which acts as an ideal conserved scalar and takes into account the convection and evaporation of fuel droplets. In addition to the conserved scalar, it has been observed that though gaseous flamelets can be characterized by the conserved scalar and its dissipation, this might not be true for spray flamelets. Droplet dynamics has a significant influence on the spray flamelet and because of effects such as flame penetration of droplets and oscillation of droplets across the stagnation plane, it becomes important to accommodate their influence in the flamelet formulation. In order to recognize the

  9. Coordination Structure of Aluminum in Magnesium Aluminum Hydroxide Studied by 27Al NMR

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The coordination structure of aluminum in magnesium aluminum hydroxide was studiedby 27Al NMR. The result showed that tetrahedral aluminum (AlⅣ) existed in magnesiumaluminum hydroxide, and the contents of AlⅣ increased with the increase of the ratio of Al/Mg andwith the peptizing temperature. AlⅣ originated from the so-called Al13 polymer with the structureof one Al tetrahedron surrounded by twelve Al octahedrons.

  10. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2005-01-01

    a linear system to be controlled by linear state feedback control. The advantage of using a nonlinear approach as feedback linearization is the ability of this method to cope with nonlinearities and different operating points. However, the model describing the GMAW process is not exact, and therefore......In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only......, the cancellation of nonlinear terms might give rise to problems with respect to robustness. Robustness of the closed loop system is therefore nvestigated by simulation....

  11. Correlation methods in cutting arcs

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L; Kelly, H, E-mail: prevosto@waycom.com.ar [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina)

    2011-05-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  12. Correlation methods in cutting arcs

    International Nuclear Information System (INIS)

    Prevosto, L; Kelly, H

    2011-01-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  13. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  14. Structural, Optical and Electrical Properties of Transparent Conducting Oxide Based on Al Doped ZnO Prepared by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Abdeslam DOUAYAR

    2014-05-01

    Full Text Available Aluminum doped zinc oxide (AZO thin films were deposited on glass substrates at 350 °C by spray pyrolysis technique. X-ray diffraction patterns show that the undoped and AZO films exhibit the hexagonal wűrtzite crystal structure with a preferential orientation along 2 direction. AFM images showed that AZO film with 3 % of Al has a uniform grain sizes with a surface roughness of about 24 nm. All films present a high transmittance in the visible range. Both undoped and AZO films were n-type degenerate semiconductor and the best electrical resistivity value was around 8.0 ´ 10- 2 W.cm obtained for 3 % Al content.

  15. Arc brazing of austenitic stainless steel to similar and dissimilar metals

    Science.gov (United States)

    Moschini, Jamie Ian

    There is a desire within both the stainless steel and automotive industries to introduce stainless steel into safety critical areas such as the crumple zone of modem cars as a replacement for low carbon mild steel. The two main reasons for this are stainless steel's corrosion resistance and its higher strength compared with mild steel. It has been anticipated that the easiest way to introduce stainless steel into the automotive industry would be to incorporate it into the existing design. The main obstacle to be overcome before this can take place is therefore how to join the stainless steel to the rest of the car body. In recent times arc brazil g has been suggested as a joining technique which will eliminate many of the problems associated with fusion welding of zinc coated mild steel to stainless steel.Similar and dissimilar parent material arc brazed joints were manufactured using three copper based filler materials and three shielding gases. The joints were tested in terms of tensile strength, impact toughness and fatigue properties. It was found that similar parent material stainless steel joints could be produced with a 0.2% proof stress in excess of the parent material and associated problems such as Liquid Metal Embrittlement were not experienced. Dissimilar parent material joints were manufactured with an ultimate tensile strength in excess of that of mild steel although during fatigue testing evidence of Liquid Metal Embrittlement was seen lowering the mean fatigue load.At the interface of the braze and stainless steel in the similar material butt joints manufactured using short circuit transfer, copper appeared to penetrate the grain boundaries of the stainless steel without embrittling the parent material. Further microscopic investigation of the interface showed that the penetration could be described by the model proposed by Mullins. However, when dissimilar metal butt joints were manufactured using spray arc transfer, penetration of copper into the

  16. Decarbonization process for carbothermically produced aluminum

    Science.gov (United States)

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  17. Intermetallic Al-, Fe-, Co- and Ni-Based Thermal Barrier Coatings Prepared by Cold Spray for Applications on Low Heat Rejection Diesel Engines

    Science.gov (United States)

    Leshchinsky, E.; Sobiesiak, A.; Maev, R.

    2018-02-01

    Conventional thermal barrier coating (TBC) systems consist of a duplex structure with a metallic bond coat and a ceramic heat insulating topcoat. They possess the desired low thermal conductivity, but at the same time they are very brittle and sensitive to thermal shock and thermal cycling due to the inherently low coefficient of thermal expansion. Recent research activities are focused on the developing of multilayer TBC structures obtained using cold spraying and following annealing. Aluminum intermetallics have demonstrated thermal and mechanical properties that allow them to be used as the alternative TBC materials, while the intermetallic layers can be additionally optimized to achieve superior thermal physical properties. One example is the six layer TBC structure in which cold sprayed Al-based intermetallics are synthesized by annealing in nitrogen atmosphere. These multilayer coating systems demonstrated an improved thermal fatigue capability as compared to conventional ceramic TBC. The microstructures and properties of the coatings were characterized by SEM, EDS and mechanical tests to define the TBC material properties and intermetallic formation mechanisms.

  18. To spray or not to spray? Understanding participation in an indoor residual spray campaign in Arequipa, Peru.

    Science.gov (United States)

    Paz-Soldán, Valerie A; Bauer, Karin M; Hunter, Gabrielle C; Castillo-Neyra, Ricardo; Arriola, Vanessa D; Rivera-Lanas, Daniel; Rodriguez, Geoffrey H; Toledo Vizcarra, Amparo M; Mollesaca Riveros, Lina M; Levy, Michael Z; Buttenheim, Alison M

    2018-01-01

    Current low participation rates in vector control programmes in Arequipa, Peru complicate the control of Chagas disease. Using focus groups (n = 17 participants) and semi-structured interviews (n = 71) conducted in March and May 2013, respectively, we examined barriers to and motivators of household participation in an indoor residual spray (IRS) campaign that had taken place one year prior in Arequipa. The most common reported barriers to participation were inconvenient spray times due to work obligations, not considering the campaign to be necessary, concerns about secondary health impacts (e.g. allergic reactions to insecticides), and difficulties preparing the home for spraying (e.g. moving heavy furniture). There was also a low perception of risk for contracting Chagas disease that might affect participation. The main motivator to participate was to ensure personal health and well-being. Future IRS campaigns should incorporate more flexible hours, including weekends; provide appropriate educational messages to counter concerns about secondary health effects; incorporate peer educators to increase perceived risk to Chagas in community; obtain support from community members and leaders to build community trust and support for the campaign; and assist individuals in preparing their homes. Enhancing community trust in both the need for the campaign and its operations is key.

  19. Filtered cathodic arc source

    International Nuclear Information System (INIS)

    Falabella, S.; Sanders, D.M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45 degree to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures

  20. Injector spray characterization of methanol in reciprocating engines

    Science.gov (United States)

    Dodge, L.; Naegeli, D.

    1994-06-01

    This report covers a study that addressed cold-starting problems in alcohol-fueled, spark-ignition engines by using fine-spray port-fuel injectors to inject fuel directly into the cylinder. This task included development and characterization of some very fine-spray, port-fuel injectors for a methanol-fueled spark-ignition engine. After determining the spray characteristics, a computational study was performed to estimate the evaporation rate of the methanol fuel spray under cold-starting and steady-state conditions.

  1. Development of cold sprayed Cu coating for canister

    International Nuclear Information System (INIS)

    Kim, Hyung Jun; Kang, Yoon Ha

    2010-01-01

    Cold sprayed Cu deposition was studied for the application of outer part of canister for high level nuclear waste. Five commercially available pure Cu powders were analyzed and sprayed by high pressure cold spray system. Electrochemical corrosion test using potentiostat in 3.5% NaCl solution was conducted as well as microstructural analysis including hardness and oxygen content measurements. Overall evaluation of corrosion performance of cold sprayed Cu deposition is inferior to forged and extruded Cu plates, but some of Cu depositions are comparable to Cu plates. The simulated corrosion test in 200m underground cave is still in progress. The effect of cold spray process parameters was also studied and the results show that the type of nozzle is the most important other than powder feed rate, spray distance, and scan speed. 1/10 scale miniature of canister was manufactured confirming that the production of full scale canister is possible

  2. Weld Repair of Thin Aluminum Sheet

    Science.gov (United States)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  3. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  4. Gas evolution behavior of aluminum in mortar

    International Nuclear Information System (INIS)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs

  5. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    KAUST Repository

    Sim, Jaeheon

    2016-04-05

    The outwardly-opening piezoelectric injector is gaining popularity as a high efficient spray injector due to its precise control of the spray. However, few modeling studies have been reported on these promising injectors. Furthermore, traditional linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide spray angles and string-like film structures. In this study, a new spray injection modeling was proposed for outwardly-opening hollow-cone injector. The injection velocities are computed from the given mass flow rate and injection pressure instead of ambiguous annular nozzle geometry. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like structure. Spray injection was modeled using a Lagrangian discrete parcel method within the framework of commercial CFD software CONVERGE, and the new model was implemented through the user-defined functions. A Siemens outwardly-opening hollow-cone spray injector was characterized and validated with existing experimental data at the injection pressure of 100 bar. It was found that the collision modeling becomes important in the current injector because of dense spray near nozzle. The injection distribution model showed insignificant effects on spray due to small initial droplets. It was demonstrated that the new model can predict the liquid penetration length and local SMD with improved accuracy for the injector under study.

  6. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    Energy Technology Data Exchange (ETDEWEB)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    2018-02-06

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance against corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.

  7. Aluminum-based metal-air batteries

    Science.gov (United States)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  8. Analogue modeling of arc and backarc deformation in the New Hebrides arc and North Fiji Basin

    NARCIS (Netherlands)

    Schellart, W. P.; Lister, G. S.; Jessell, M. W.

    In most backarc basins, extension is perpendicular to the arc. Thus individual spreading ridges extend approximately parallel to the arc. In the North Fiji Basin, however, several ancient and active spreading ridges strike 70°-90° to the New Hebrides arc. These high-angle spreading ridges relocated

  9. Physical characteristics of welding arc ignition process

    Science.gov (United States)

    Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei

    2012-07-01

    The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.

  10. SPRAY code user's report

    International Nuclear Information System (INIS)

    Shire, P.R.

    1977-03-01

    The SPRAY computer code has been developed to model the effects of postulated sodium spray release from LMFBR piping within containment chambers. The calculation method utilizes gas convection, heat transfer and droplet combustion theory to calculate the pressure and temperature effects within the enclosure. The applicable range is 0-21 mol percent oxygen and .02-.30 inch droplets with or without humidity. Droplet motion and large sodium surface area combine to produce rapid heat release and pressure rise within the enclosed volume

  11. Busbar arcs at large fusion magnets: Conductor to feeder tube arcing model experiments with the LONGARC device

    Energy Technology Data Exchange (ETDEWEB)

    Klimenko, Dmitry, E-mail: dmitry.klimenko@kit.edu; Pasler, Volker

    2014-10-15

    Highlights: •The LONGARC device was successfully implemented for busbar to feeder tubes arcing model experiments. •Arcing at an ITER busbar inside its feeder tube was simulated in scaled model experiments. •The narrower half tubes imply a slight increase of the arc propagation speed in compare to full tube experiments. •All simulated half tubes experiments show severe damage indicating that the ITER inner feeder tube will not withstand a busbar arc. -- Abstract: Electric arcs moving along the power cables (the so-called busbars) of the toroidal field (TF) coils of ITER may reach and penetrate the cryostat wall. Model experiments with the new LONGARC device continue the VACARC (VACuum ARC) experiments that were initiated to investigate the propagation and destruction mechanisms of busbar arcs in small scale [1]. The experiments are intended to support the development and validation of a numerical model. LONGARC overcomes the space limitations inside VACARC and allows also for advanced 1:3 (vs. ITER full scale) model setups. The LONGARC device and first results are presented below.

  12. Influence of powder and spray parameters on erosion and corrosion properties of HVOF sprayed WC-Co-Cr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Berget, John

    1998-07-01

    Thermal spraying is a generic term including various processes used to deposit coatings on surfaces. The coating material is in the form of powder or a wire and is melted or softened by means of a heat source. A gas stream accelerates the material towards a prepared surface and deposits it there to form the coating. Examples of components being maintained by application of thermal spray coatings are gate valves and ball valves for the offshore industry and turbine blades in power generations installations. Recent investigation has shown that the commonly used coating material WC-Co is not corrosion resistant. But it can be improved by the addition of Cr. The main objective of this thesis is to study the influence of spray process control variables and powder characteristics on the erosion and erosion-corrosion properties of the coatings. Spray process variables investigated include energy input, powder feed rate and spray distance. Powder characteristics studied are average size of the WC particles, relative proportions of Co and Cr in the metal phase and powder grain size distribution.

  13. Numerical modeling of transferred arc melting bath heating; Modelisation numerique du chauffage de bains par arc transfere

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, A. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Trenty, L.; Guillot, J.B. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France); Delalondre, C. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1997-12-31

    This paper presents the modeling of a transferred electric arc inside a bath of melted metal. After a recall of the context of the study, the problem of the modeling, which involves magnetohydrodynamic coupling inside the arc and the bath, is described. The equations that govern the phenomena inside the arc and the bath are recalled and the approach used for the modeling of the anode region of the arc is explained using a 1-D sub-model. The conditions of connection between arc and bath calculations are explained and calculation results obtained with a 200 kW laboratory furnace geometry are presented. (J.S.) 8 refs.

  14. Cryogen spray cooling: Effects of droplet size and spray density on heat removal.

    Science.gov (United States)

    Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.

  15. An experimental study on atomizing formation process of diesel spray

    International Nuclear Information System (INIS)

    Kim, Ki Bong

    2000-02-01

    In this study, the experiment has, been conducted to investigate the spray characteristics under the parameter of an ambient pressure with a single hole nozzle having aspect ratio(L/D) of 5 and diameter of 0.45mm. Under the condition of the injection pressure of 14Mpa, the initial disintegrating process of a diesel spray is investigated and analysized according to change of the ambient pressures, 0.1, 1, 2 and 3Mpa. The double flash method has been employed to visualize the process of the diesel sprays. The results obtained in this study are as follows: 1) After spray starts, the spray is shown as non-disturbance liquid column within about 1∼2mm from the nozzle tip, whose diameter is similar to that of a nozzle. For the same injection pressure, the increase of the ambient pressure makes the length of the non-disturbance liquid column become short. 2) Due to the surface wave, ligaments of the shape thread appear at the boundary of liquid column right after spray. The more developed wave together the progress of spray transforms ligaments into droplets that have generally the uniformed size. 3) In case spraying into chambers having different ambient pressures, 1, 2, and 3Mpa, the spray tip velocities reach up to 1.5, 1.2, and 0.6ms, respectively, and decrease with lapse of time. The spray angle keeps increasing for 0.6, 1.2, and 1.4ms after spray under the various ambient pressures, 3, 2, and 1Mpa, respectively, and begins to decrease and maintains the constant value. Therefore, the transition points appear near the point where the velocity decreases and the spray angle increases, simultaneously. The higher ambient pressure leads to fast appearance of transition under the same spray pressure. 4) The disintegrating mechanism of the liquid spray is two combined effects: a) friction forces between the surface waves generated at the surface of the liquid column and the ambient gas, b) the collisions of liquid droplets and ligaments by spray were overtaking

  16. Aluminium-12wt% silicon coating prepared by thermal spraying technique: Part 1 optimization of spray condition based on a design of experiment

    Directory of Open Access Journals (Sweden)

    Jiansirisomboon, S.

    2006-03-01

    Full Text Available At present, thermal spray technology is used for maintenance parts of various machines in many industries. This technology can be used to improve the surface wear resistance. Therefore, this technology can significantly reduce cost of manufacturing. Al-12wt%Si alloy is an interesting and popular material used in the automotive industry. This research studies the suitable condition for spraying of Al-12wt%Si powder. This powder was sprayed by a flame spray technique onto low carbon steel substrates. The suitable conditions for spraying can be achieved by a design of experiment (DOE principle, which provided statistical data defined at 90% confidence. This research used control factors, which were oxygen flow rate, acetylene flow rate and spray distance. The satisfaction levels of these factors were set at 3 levels, i.e. low, medium and high, in order to determine suitable responses, which were hardness, thickness, wear rate and percentage volume fraction of porosity. It was found that the optimized condition for spraying Al-12wt%Si powder consisted of 38 ft3/hr (1.026 m3/hr of oxygen flow rate, 27 ft3/hr (0.729 m3/hr of acetylene flow rate and 58 mm of spray distance.

  17. Numerical simulation of gas metal arc welding parametrical study

    International Nuclear Information System (INIS)

    Szanto, M.; Gilad, I.; Shai, I.; Quinn, T.P.

    2002-01-01

    The Gas Metal Arc Welding (GMAW) is a widely used welding process in the industry. The process variables are usually determined through extensive experiments. Numerical simulation, reduce the cost and extends the understanding of the process. In the present work, a versatile model for numerical simulation of GMAW is presented. The model provides the basis for fundamental understanding of the process. The model solves the magneto-hydrodynamic equations for the flow and temperature fields of the molten electrode and the plasma simultaneously, to form a fully coupled model. A commercial CFD code was extended to include the effects of radiation, Lorentz forces, Joule heating and thermoelectric effects. The geometry of the numerical model assembled to fit an experimental apparatus. To demonstrate the method, an aluminum electrode was modeled in a pure argon arc. Material properties and welding parameters are the input variables in the numerical model. In a typical process, the temperature distribution of the plasma is over 15000 K, resulting high non-linearity of the material properties. Moreover, there is high uncertainty in the available property data, at that range of temperatures. Therefore, correction factors were derived for the material properties to adjust between the numerical and the experimental results. Using the compensated properties, parametric study was performed. The effects of the welding parameters on the process, such the working voltage, electrode feed rate and shielding gas flow, were derived. The principal result of the present work is the ability to predict, by numerical simulation, the mode, size and frequency of the metal transferred from the electrode, which is the main material and energy source for the welding pool in GMAW

  18. Plasma sprayed Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.; Bauser, S.; Liu, S.; Huang, M.

    2003-01-01

    This study demonstrated that the plasma spray deposition method is an alternative process for producing Nd-Fe-B magnets in addition to the two existing principal processes: the powder metallurgy process for producing sintered Nd-Fe-B magnets and the melt spinning process for bonded Nd-Fe-B magnets. Plasma spray is a potentially better process for producing magnetic parts with complicated shape, large area, thin thickness, small dimension, or unusual geometry. High intrinsic coercivity greater than 15 kOe was readily obtained for Nd 16 Dy 1 Fe 76 B 7 even in the as-deposited condition when the substrate was preheated. The plasma spray process contains only three steps: melting, crushing, and plasma spray, which is much simpler than the powder metallurgy and melt spinning processes. Without preheating the substrate, the coercivity was usually very low (∼0.1 kOe) in the as-deposited condition and it increased to 10 to >15 kOe after anneal. Evidence of magnetocrystalline anisotropy was observed in plasma sprayed Nd 15 Dy 1 Fe 77 B 7 magnets when the substrate was not preheated. It is believed that a crystal texture was developed during the plasma spray as a result of the existence of a temperature gradient in the solidifying melt

  19. Nano spray drying for encapsulation of pharmaceuticals.

    Science.gov (United States)

    Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi

    2018-05-17

    Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Momentum equation for arc-driven rail guns

    International Nuclear Information System (INIS)

    Batteh, J.H.

    1984-01-01

    In several models of arc-driven rail guns, the rails are assumed to be infinitely high to simplify the calculation of the electromagnetic fields which appear in the momentum equation for the arc. This assumption leads to overestimates of the arc pressures and accelerations by approximately a factor of 2 for typical rail-gun geometries. In this paper, we develop a simple method for modifying the momentum equation to account for the effect of finite-height rails on the performance of the rail gun and the properties of the arc. The modification is based on an integration of the Lorentz force across the arc cross section at each axial location in the arc. Application of this technique suggests that, for typical rail-gun geometries and moderately long arcs, the momentum equation appropriate for infinite-height rails can be retained provided that the magnetic pressure term in the equation is scaled by a factor which depends on the effective inductance of the gun. The analysis also indicates that the magnetic pressure gradient actually changes sign near the arc/projectile boundary because of the magnetic fields associated with the arc current

  1. 9 CFR 590.542 - Spray process drying operations.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Spray process drying operations. 590..., Processing, and Facility Requirements § 590.542 Spray process drying operations. (a) The drying room shall be... interrupted. (1) Spray nozzles, orifices, cores, or whizzers shall be cleaned immediately after cessation of...

  2. 49 CFR 195.226 - Welding: Arc burns.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn may...

  3. High-power electronics thermal management with intermittent multijet sprays

    International Nuclear Information System (INIS)

    Panão, Miguel R.O.; Correia, André M.; Moreira, António L.N.

    2012-01-01

    Thermal management plays a crucial role in the development of high-power electronics devices, e.g. in electric vehicles. The greatest energy demands occur during power peaks, implying dynamic thermal losses within the vehicle’s driving cycle. Therefore, the need for devising intelligent thermal management systems able to efficiently respond to these power peaks has become a technological challenge. Experiments have been performed with methanol in order to quantify the maximum heat flux removed by a multijet spray to keep the 4 cm 2 surface temperature stabilized and below the threshold of 125 °C. A multijet atomization strategy consists in producing a spray through the multiple and simultaneous impact of N j cylindrical jets. Moreover, the spray intermittency is expressed through the duty cycle (DC), which depends on the frequency and duration of injection. Results evidence that: i) a shorter time between consecutive injection cycles enables a better distribution of the mass flow rate, resulting in larger heat transfer coefficient values, as well as higher cooling efficiencies; ii) compared with continuous sprays, the analysis evidences that an intermittent spray allows benefiting more from phase-change convection. Moreover, the mass flux is mainly affecting heat transfer rather than differences induced in the spray structure by using different multijet configurations. - Highlights: ► Intermittent spray cooling (ISC) is advantageous for intelligent thermal management. ► Distributing the mass flow rate through ISC improves heat transfer. ► Multijet sprays with increasing number of jets have higher heat transfer rates. ► ISC with multijet sprays benefit more from phase-change than continuous sprays.

  4. Current implications of past DDT indoor spraying in Oman.

    Science.gov (United States)

    Booij, Petra; Holoubek, Ivan; Klánová, Jana; Kohoutek, Jiří; Dvorská, Alice; Magulová, Katarína; Al-Zadjali, Said; Čupr, Pavel

    2016-04-15

    In Oman, DDT was sprayed indoors during an intensive malaria eradication program between 1976 and 1992. DDT can remain for years after spraying and is associated with potential health risk. This raises the concern for human exposure in areas where DDT was used for indoor spraying. Twelve houses in three regions with a different history of DDT indoor spraying were chosen for a sampling campaign in 2005 to determine p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and p,p'-dichlorodiphenyldichloroethane (p,p'-DDD) levels in indoor air, dust, and outdoor soil. Although DDT was only sprayed indoor, p,p'-DDT, p,p'-DDE and p,p'-DDD were also found in outdoor soil. The results indicate that release and exposure continue for years after cessation of spraying. The predicted cancer risk based on concentrations determined in 2005, indicate that there was still a significant cancer risk up to 13 to 16years after indoor DDT spraying. A novel approach, based on region-specific half-lives, was used to predict concentrations in 2015 and showed that more than 21years after spraying, cancer risk for exposure to indoor air, dust, and outdoor soil are acceptable in Oman for adults and young children. The model can be used for other locations and countries to predict prospective exposure of contaminants based on indoor experimental measurements and knowledge about the spraying time-schedule to extrapolate region-specific half-lives and predict effects on the human population years after spraying. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A Virtual Aluminum Reduction Cell

    Science.gov (United States)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  6. Polydisperse effects in jet spray flames

    Science.gov (United States)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  7. Spray deposition using impulse atomization technique

    International Nuclear Information System (INIS)

    Ellendt, N.; Schmidt, R.; Knabe, J.; Henein, H.; Uhlenwinkel, V.

    2004-01-01

    A novel technique, impulse atomization, has been used for spray deposition. This single fluid atomization technique leads to different spray characteristics and impact conditions of the droplets compared to gas atomization technique which is the common technique used for spray deposition. Deposition experiments with a Cu-6Sn alloy were conducted to evaluate the appropriateness of impulse atomization to produce dense material. Based on these experiments, a model has been developed to simulate the thermal history and the local solidification rates of the deposited material. A numerical study shows how different cooling conditions affect the solidification rate of the material

  8. Spray drying for processing of nanomaterials

    International Nuclear Information System (INIS)

    Lindeloev, Jesper Saederup; Wahlberg, Michael

    2009-01-01

    Consolidation of nano-particles into micron-sized granules reduces the potential risks associated with handling nano-powders in dry form. Spray drying is a one step granulation technique which can be designed for safe production of free flowing low dusty granules from suspensions of nano-particles. Spray dried granules are well suited for subsequent processing into final products where the superior properties given by the nano-particles are retained. A spray drier with bag filters inside the drying chamber and recycling of drying gas combined with containment valves are proposed as a safe process for granulation of potential hazardous nano-particles.

  9. Containment atmosphere response to external sprays

    International Nuclear Information System (INIS)

    Green, J.; Almenas, K.

    1995-01-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J 2 /He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated

  10. Containment atmosphere response to external sprays

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Almenas, K. [Univ. of Maryland, College Park, MD (United States)

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  11. Interface characterization of plasma sprayed hydroxy apatite coat on Ti-6 Al-4 V

    International Nuclear Information System (INIS)

    Ghorbani, M.; Afshar, A.; Ehsani, N.; Saeri, R.; Sorrell, C.C.

    2002-01-01

    Hydroxyapatite, a material proven to be biocompatible within the human body, has been produced to a high level of purity. This material has been applied as a coating on Ti-6 Al-4 V alloy by using the air plasma spraying technique.The coat was characterized with SEM, XRD, FTIR and Raman spectroscopy methods to consist of a mixture of calcium phosphates including H A mainly and traces of tricalcium phosphate, tetra calcium phosphate and calcium oxide phases. This H A phase was dehydrated and partially decomposed to oxy apatite and amorphous H A. EPMA method was used cross-sectionally on the interface in order to determine the depth profiles and elemental maps of Calcium, Phosphorous, Oxygen, Titanium, Vanadium and Aluminum elements.The results clearly showed to evidence of interdiffusion at the interface. Ultimately, the diffusion depth of each element was studied and compared with each other

  12. A Grey-Box Model for Spray Drying Plants

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2013-01-01

    Multi-stage spray drying is an important and widely used unit operation in the production of food powders. In this paper we develop and present a dynamic model of the complete drying process in a multi-stage spray dryer. The dryer is divided into three stages: The spray stage and two fluid bed...

  13. Numerical Modeling of Diesel Spray Formation and Combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Somers, L.M.T.; Goey, de L.P.H.

    2009-01-01

    A study is presented on the modeling of fuel sprays in diesel engines. The objective of this study is in the first place to accurately and efficiently model non-reacting diesel spray formation, and secondly to include ignition and combustion. For that an efficient 1D Euler-Euler spray model [21] is

  14. Inhalational and dermal exposures during spray application of biocides.

    Science.gov (United States)

    Berger-Preiss, Edith; Boehncke, Andrea; Könnecker, Gustav; Mangelsdorf, Inge; Holthenrich, Dagmar; Koch, Wolfgang

    2005-01-01

    Data on inhalational and potential dermal exposures during spray application of liquid biocidal products were generated. On the one hand, model experiments with different spraying devices using fluorescent tracers were carried out to investigate the influence of parameters relevant to the exposure (e.g. spraying equipment, nozzle size, direction of application). On the other hand, measurements were performed at selected workplaces (during disinfection operations in food and feed areas; pest control operations for private, public and veterinary hygiene; wood protection and antifouling applications) after application of biocidal products such as Empire 20, Responsar SC, Omexan-forte, Actellic, Perma-forte; Fendona SC, Pyrethrum mist; CBM 8, Aldekol Des 03, TAD CID, Basileum, Basilit. The measurements taken in the model rooms demonstrated dependence of the inhalation exposure on the type of spraying device used, in the following order: "spraying with low pressure" < "airless spraying" < "fogging" indicating that the particle diameter of the released spray droplets is the most important parameter. In addition inhalation exposure was lowest when the spraying direction was downward. Also for the potential dermal exposure, the spraying direction was of particular importance: overhead spraying caused the highest contamination of body surfaces. The data of inhalational and potential dermal exposures gained through workplace measurements showed considerable variation. During spraying procedures with low-pressure equipments, dose rates of active substances inhaled by the operators ranged from 7 to 230 microg active substance (a.s.)/h. An increase in inhaled dose rates (6-33 mg a.s./h) was observed after use of high application volumes/time unit during wood protection applications indoors. Spraying in the veterinary sector using medium-pressure sprayers led to inhaled dose rates between 2 and 24mga.s./h. The highest inhaled dose rates were measured during fogging (114 mg a

  15. Automated Plasma Spray (APS) process feasibility study: Plasma spray process development and evaluation

    Science.gov (United States)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1979-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.

  16. Progressive damage during thermal shock cycling of D-gun sprayed thermal barrier coatings with hollow spherical ZrO{sub 2}-8Y{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ke, P.L. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China) and School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom)]. E-mail: csun@imr.ac.cn; Wang, Q.M. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Gong, J. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, C. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhou, Y.C. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2006-11-05

    Thermal shock cycling behaviors of D-gun sprayed TBCs with a hollow spherical ZrO{sub 2}-8Y{sub 2}O{sub 3} (HSP-YSZ) top coat and NiCrAlY bond coat on directionally solidified Ni-base superalloys DZ125 were investigated at high temperature (1100 deg. C) {r_reversible} room temperature (RT) repeatedly by water quenching. Scanning electron microscopy (SEM) was used to characterize the coating microstructure and failure morphology. The results showed that failure of the D-gun sprayed TBC starts with crack initiation along the splats boundary in the ceramic top coat and the non-alumina oxides. The cracks propagate and coalesce with the increasing thermal cycling. The extensive cracking of the rapidly formed non-alumina oxides, resulting from the depletion of aluminum in the bond coat, aids to delamination of the outer ceramic layer. The stress distributions in TGO layer at different thermal shock cycles was measured by luminescence spectroscopy to investigate the failure mechanism of TBC system.

  17. CrAlN coatings deposited by cathodic arc evaporation at different substrate bias

    International Nuclear Information System (INIS)

    Romero, J.; Gomez, M.A.; Esteve, J.; Montala, F.; Carreras, L.; Grifol, M.; Lousa, A.

    2006-01-01

    CrAlN is a good candidate as an alternative to conventional CrN coatings especially for high temperature oxidation-resistance applications. Different CrAlN coatings were deposited on hardened steel substrates by cathodic arc evaporation (CAE) from chromium-aluminum targets in a reactive nitrogen atmosphere at negative substrate bias between - 50 and - 400 V. The negative substrate bias has important effects on the deposition growth rate and crystalline structure. All our coatings presented hardness higher than conventional CrN coatings. The friction coefficient against alumina and tungsten carbide balls was around 0.6. The sliding wear coefficient of the CrAlN coatings was very low while an important wear was observed in the balls before a measurable wear were produced in the coatings. This effect was more pronounced as the negative substrate bias was increased

  18. Wear resistance of Fe-Nb-Cr-W, Nb, AISI 1020 and AISI 420 coatings produced by thermal spray wire arc; Resistencia al desgaste de recubrimientos Fe-Nb-Cr-W, Nb, AISI 1020 y AISI 420 producidos por proyeccion termica por arco electrico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Covaleda, E. A.; Mercado-Veladia, J. L.; Olaya-Florez, J. J.

    2013-07-01

    The commercial materials 140MXC (with iron, tungsten, chrome, niobium), 530AS (AISI 1015 steel) and 560AS (AISI 420 steel) on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1) homogeneous coatings and (2) coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical microscopy, Scanning electron microscopy and Laser con focal microscopy. The wear resistance was evaluated through dry sand rubber wheel test (DSRW). We found that the wear resistance depends on the quantity of defects and the mechanical properties like hardness. For example, the softer coatings have the biggest wear rates and the failure mode was characterized by plastic deformation caused by particles indentation, and the other hand the failure mode at the harder materials was grooving. The details and wear mechanism of the coatings produced are described in this investigation. (Author)

  19. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  20. Unit thermal performance of atmospheric spray cooling systems

    International Nuclear Information System (INIS)

    Porter, R.W.; Jain, M.; Chaturvedi, S.K.

    1980-01-01

    Thermal performance of an open atmospheric spray pond or canal depends on the direct-contact evaporative cooling of an individual spray unit (spray nozzle or module) and the interference caused by local heating and humidification. Droplet parameters may be combined into a dimensionless group, number of transfer units (NTU) or equivalent, whereas large-scale air-vapor dynamics determine interference through the local wet-bulb temperature. Quantity NTU were implied from field experiments for a floating module used in steam-condenser spray canals. Previous data were available for a fixed-pipe nozzle assembly used in spray ponds. Quantity NTU were also predicted using the Ranz-Marshall correlations with the Sauter-mean diameter used as the characteristic length. Good agreement with experiments was shown for diameters of 1--1.1 cm (module) and 1.9 mm