WorldWideScience

Sample records for arc ion source

  1. Hooded arc ion-source

    CERN Multimedia

    1972-01-01

    The positioning system for the hooded arc ion-source, shown prior to mounting, consists of four excentric shafts to locate the ion-source and central electrodes. It will be placed on the axis of the SC and introduced into the vacuum tank via the air locks visible in the foreground.

  2. Ion source based on the cathodic arc

    Science.gov (United States)

    Sanders, David M.; Falabella, Steven

    1994-01-01

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles.

  3. Vacuum arc ion source development at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Spaedtke, P.; Emig, H.; Wolf, B.H. [GSI Darmstadt (Germany)

    1996-08-01

    Ion beams produced by the Mevva ion source are well suited for the injection into a synchrotron accelerator due to the low repetition rate (0.2 ... 5 Hz, the higher repetition rate is for the optimization of the linear accelerator only) and the short pulse length (up to 0.5ms). From the beginning of the authors experience with the Mevva ion source at GSI they tried to improve the reliability of pulse-to-pulse reproducibility and to minimize the noise on the extracted ion beam. For accelerator application this is highly necessary, otherwise the accelerator tuning and optimization becomes very difficult or even impossible. Already the beam transport becomes difficult for a noisy beam, because space charge compensation can be destroyed (at least partially). Furthermore a noisy dc-beam results in some rf-buckets which might be even empty.

  4. Vacuum ARC ion sources - activities & developments at LBL

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I. [Lawrence Berkeley Laboratory, CA (United States)

    1996-08-01

    The author describes work at LBL on the development and application of vacuum arc ion sources. Work has been done on vacuum spark sources - to produce very high charge states, studies of high charge states in magnetic field, hybrid ion source operation on metal/gas plasma, multipole operation, work on MEVVA V for implantation applications, development of broad beam sources, and removal of particles from the output of the source.

  5. A review of vacuum ARC ion source research at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Noorman, J.T.; Watt, G.C. [ANSTO, Menai (Australia)

    1996-08-01

    The authors talk briefly describes the history and current status of vacuum arc ion source research at the Australian Nuclear Science and Technology Organization (ANSTO). In addition, the author makes some mention of the important role of previous Vacuum Arc Ion Source Workshops in fostering the development of this research field internationally. During the period 1986 - 89, a type of plasma centrifuge known as a vacuum arc centrifuge was developed at ANSTO as part of a research project on stable isotope separation. In this device, a high current vacuum arc discharge was used to produce a metal plasma which was subsequently rotated in an axial magnetic field. The high rotational speeds (10{sup 5} - 10{sup 6} rad sec{sup {minus}1}) achievable with this method produce centrifugal separation of ions with different mass:charge ratios such as isotopic species. The first portent of things to come occurred in 1985 when Dr. Ian Brown visited ANSTO`s Lucas Heights Research Laboratories and presented a talk on the metal vapour vacuum arc (MEVVA) ion source which had only recently been invented by Brown and co-workers, J. Galvin and R. MacGill, at Lawrence Berkeley Laboratory. For those of us involved in vacuum arc centrifuge research, this was an exciting development primarily because the metal vapour vacuum arc plasma source was common to both devices. Thus, a type of arc, which had since the 1930`s been extensively investigated as a means of switching high current loads, had found wider application as a useful plasma source.

  6. Dual arc penning ion source gas flow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E.D.; Lord, R.S.; Mallory, M.L.; Antaya, T.A.

    1984-01-01

    Support gas, when added directly to an arc or admitted to an auxiliary chamber of a two-arc chamber ion source, increases the beam intensity for multicharged ions such as /sup 16/O/sup 5 +/. To clarify the mechanism of this intensity increase, gas flow rates from the auxiliary chamber to the main chamber have been measured by using the ORIC cyclotron as a mass spectrometer. The results show that only about three percent of the gas admitted to the auxiliary chamber reaches the main chamber. One can then infer that the improved operation probably results from the stabilizing effect of heating the common cathodes with the auxiliary arc and/or the more favorable distribution of the support gas to the part of the main arc close to the cathodes.

  7. Shunting arc plasma source for pure carbon ion beama)

    Science.gov (United States)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm2 at the peak of the pulse.

  8. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  9. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  10. Ion angular distribution in plasma of vacuum arc ion source with composite cathode and elevated gas pressure.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Yushkov, G Yu; Oks, E M

    2014-02-01

    The Metal Vapor Vacuum Arc (MEVVA) ion sources are capable of generating ion beams of almost all metals of the periodic table. For this kind of ion source, a combination of gas feeding with magnetic field allows the simultaneous generation of both metal and gaseous ions. That makes the MEVVA ion source an excellent instrument for science and application. This work presents results of investigation for ion angular distributions in vacuum arc plasma of Mevva-V.Ru ion source for composite cathodes and for elevated gas pressure. It was shown that for all the cathode materials, singly charged ions have wider angular distribution than multiply charged ions. Increasing the working gas pressure leads to a significant change in the angular distribution of gaseous ions, while with the distribution of metal ions gas remains practically unchanged. The reasons for such different influences are discussed.

  11. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A.G., E-mail: nik@opee.hcei.tsc.ru [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Yushkov, G.Yu.; Oks, E.M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Oztarhan, A. [Izmir University, Izmir 35140 (Turkey); Akpek, A.; Hames-Kocabas, E.; Urkac, E.S. [Bioengineering Department, Ege University, Bornova 35100, Izmir (Turkey); Brown, I.G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94708 (United States)

    2014-08-15

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  12. Filtered cathodic arc source

    Science.gov (United States)

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  13. Characteristics of shunting arc discharge for carbon ion source

    Science.gov (United States)

    Takaki, K.; Mukaigawa, S.; Fujiwara, T.; Kumagai, M.; Yukimura, K.

    2003-05-01

    The criteria of initial resistance of carbon rod for shunting arc ignition are described in this article. The five different resistances were used. The rods are 40 mm in length and 2 mm in diameter. The carbon rod was set in the vacuum and was initially heated up with a pulsed current supplied by a charged capacitor with a capacitance of 20 μF, followed by a self-ignition. The heating energy is almost independent of the charging voltage of the capacitor. The heating energy increases with decreasing the rod resistance, whereas the energy deposited in the plasma and the utilizing efficiency of the charged energy in the capacitor decreases.

  14. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    Science.gov (United States)

    Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.

    2014-08-01

    Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  15. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    Science.gov (United States)

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  16. Development of high efficiency Versatile Arc Discharge Ion Source at CERN ISOLDE.

    Science.gov (United States)

    Penescu, L; Catherall, R; Lettry, J; Stora, T

    2010-02-01

    We report here recent developments of Forced Electron Beam Induced Arc Discharge (FEBIAD) ion sources at the ISOLDE radioactive ion beam facility, hosted at the European Organization for Nuclear Research (CERN). As a result of the propositions to improve the ionization efficiency, two FEBIAD prototypes have been produced and successfully tested in 2008. Off-line studies showed that the 1+ ionization efficiencies for noble gases are 5-20 times larger than with the standard ISOLDE FEBIAD ion sources and reach 60% for radon, which allowed the identification at ISOLDE of (229)Rn, an isotope that had never previously been observed in the laboratory. A factor of 3 increase is also expected for the ionization efficiency of the other elements. The experimental and theoretical methodology is presented. The theoretical model, which gives precise insights on the processes affecting the ionization, is used to design optimal sources (grouped under the name of VADIS--Versatile Arc Discharge Ion Source) for the different chemical classes of the produced isotopes, as already demonstrated for the noble gases.

  17. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  18. Investigation on the Tribology of Co Implanted Stainless Steel Using Metal Vapor Vacuum Arc Ion Source

    Institute of Scientific and Technical Information of China (English)

    Junxia GUO; Xun CAI; Qiulong CHEN

    2004-01-01

    AISI 304 stainless steel was ion implanted with Co, and the tribological property on the surface of the stainless steel was investigated. The Co ion implantation was carried out using a metal vapor vacuum arc (Mevva) broad-beam ion source with an extraction voltage of 40 kV, implantation doses of 3×1017/cm2 and 5×1017/cm2, and ion current densities of 13, 22 and 32 μA/cm2. The results showed that the near-surface hardness of Co-implanted stainless steel sample was increased by 50% or more, and it increased with increasing ion current density at first and then declined. The friction coefficient decreased from 0.74 to 0.20 after Co implantation. The wear rate after Co implantation reduced by 25% or more as compared to the unimplanted sample. The wear rate initially decreased with increasing ion current density and then an increase was observed. Within the range of experimental parameters, there exists a critical ion current density for the Co-implanted stainless steel, at which the wear rate decreased with increasing retained dose, going through a minimum and then increased. The critical ion current density in this paper is about 22 μA/cm2.

  19. Ongoing characterization of the forced electron beam induced arc discharge ion source for the selective production of exotic species facility

    Energy Technology Data Exchange (ETDEWEB)

    Manzolaro, M., E-mail: mattia.manzolaro@lnl.infn.it; Andrighetto, A.; Monetti, A.; Scarpa, D.; Rossignoli, M.; Vasquez, J.; Corradetti, S.; Calderolla, M.; Prete, G. [INFN, Laboratori Nazionali di Legnaro, Viale dell’Universita’ 2 - 35020 Legnaro, Padova,Italy (Italy); Meneghetti, G. [Department of Industrial Engineering, University of Padova, Via Venezia 1 - 35131 Padova (Italy)

    2014-02-15

    An intense research and development activity to finalize the design of the target ion source system for the selective production of exotic species (SPES) facility (operating according to the isotope separation on line technique) is at present ongoing at Legnaro National Laboratories. In particular, the characterization of ion sources in terms of ionization efficiency and transversal emittance is currently in progress, and a preliminary set of data is already available. In this work, the off-line ionization efficiency and emittance measurements for the SPES forced electron beam induced arc discharge ion source in the case of a stable Ar beam are presented in detail.

  20. Lifetime of hydrogenated composite cathodes in a vacuum arc ion source

    Energy Technology Data Exchange (ETDEWEB)

    Savkin, K. P., E-mail: savkin@opee.hcei.tsc.ru; Frolova, V. P.; Nikolaev, A. G.; Yushkov, G. Yu. [Institute of High Current Electronics SB RAS, Tomsk 634055 (Russian Federation); Oks, E. M. [Institute of High Current Electronics SB RAS, Tomsk 634055 (Russian Federation); Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Barengolts, S. A. [Prokhorov General Physics Institute RAS, Moscow 119991 (Russian Federation)

    2016-02-15

    The paper reports on a study of the mass-charge state of the plasma produced in a vacuum arc discharge with composite cathodes which were copper-disk coated with a hydrogenated Zr film of thicknesses 9, 22, and 35 μm. The cathodes allow the generation of multicomponent gas and metal ion beams with a hydrogen ion content from several to several tens of percent. Also investigated is the dependence of the H ion fraction in a beam on the Zr film thickness during erosion to the point of disappearance of Zr peaks in mass-charge spectra. The ability of the vacuum arc system to produce H ions is analyzed by analyzing the cathode lifetime as a function of the film thickness and pulse repetition frequency.

  1. Using Adaptive Discrete-Time Gas Supply Control for Long Pulse Arc Discharge of Ion Source on NBI

    Institute of Scientific and Technical Information of China (English)

    SHENG Peng; HU Chundong; SONG Shihua; LIU Sheng; LIU Zhimin

    2008-01-01

    A control model of gas supply system is introduced for ion source and an adaptive discrete-time control algorithm to regulate the hydrogen injection.A real-time feedback control system (RFCS) is designed to control the gas supply for ion source based on the control model and the discrete-time control algorithm.The experimental results have proved that RFCS could regulate the gas supply smoothly,suppress the arc's abrupt over-current at the end of the ion source discharging,prolong the discharge pulse and stabilize the ion concentration.With RFCS,the ion source for neutral beam injection has reached its longest pulse with a length of 4.5 seconds in a stable status.

  2. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H., E-mail: nakano@nifs.ac.jp; Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 5095292 (Japan); Nishiyama, S.; Sasaki, K. [Graduate school of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 0608628 (Japan)

    2015-04-08

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure.

  3. Arc Power Limit and Distribution on the Large Negative Ion Source Based on JT-60 NNBI

    Institute of Scientific and Technical Information of China (English)

    LEIGuangjiu; N.Umeda; M.Kawai; T.Yamamoto; M.Kuriyama; T.Ohga; N.Ebisawa; T.Yamazaki; M.Kusaka; K.Kikuchi; S.Hikida; K.Usui; M.Kazawa; S.Numazawa; K.Mogaki; A.Honda; F.Satoh; S.Norio; K.Ooshima

    2001-01-01

    The target of the large negative ion source based on neutral beam injection (N-NBI) is to produce neutral beam current of 22 A and beam power of 10 MW at 500 keV with duration time of 10 s. Since it was successfully operated in 1996, the 5.3 MW neutral beam power at 380 keV with duration time of 3 s has been achieved. In recent years improving and enhancing the beam power are going on. Several reasons such as plasma non-uniformity, higher beam density at the upper region in the beam profile,

  4. Structure and properties of Mo-containing diamond-like carbon films produced by ion source assisted cathodic arc ion-plating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.L. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 China (China); Wang, R.Y. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Yan, S.J.; Zhang, R. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 China (China); Yang, B. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Zhang, Z.D.; Huang, Z.H. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 China (China); Fu, D.J., E-mail: djfu@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 China (China)

    2013-12-01

    Ion source assisted cathodic arc ion-plating was used to synthesize molybdenum containing diamond-like carbon films. The element of molybdenum is uniformly distributed in our sample as analyzed by Rutherford backscattering spectroscopy. The surface morphology of the films was analyzed by scanning electron microscope and atomic force microscope. The structure and bond state of the molybdenum containing diamond-like carbon films were characterized by X-ray diffraction, high resolution transmission electron microscopy, Raman spectra, and X-ray photoelectron spectroscopy. The Mo content in the films was controlled by varying of the acetylene gas flow rates. The root-mean square roughness of the as-deposited sample was found in the range of 1.5 nm. The hardness of 35 GPa has been achieved at the optimum conditions of synthesis. This can be attributed to formation multilayer structure during deposition process and the formation of hard molybdenum carbide phase with C=Mo bonding. The results show that ion source assisted cathodic arc ion-plating is an effective technique to fabricate metal-containing carbon films with controlled metal contents.

  5. Numerical analysis of atomic density distribution in arc driven negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T., E-mail: t.yamamoto@ppl.appi.keio.ac.jp; Shibata, T.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan); Kashiwagi, M.; Hanada, M. [Japan Atomic Energy Agency (JAEA), 801-1 Mukouyama, Naka 311-0193 (Japan); Sawada, K. [Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan)

    2014-02-15

    The purpose of this study is to calculate atomic (H{sup 0}) density distribution in JAEA 10 ampere negative ion source. A collisional radiative model is developed for the calculation of the H{sup 0} density distribution. The non-equilibrium feature of the electron energy distribution function (EEDF), which mainly determines the H{sup 0} production rate, is included by substituting the EEDF calculated from 3D electron transport analysis. In this paper, the H{sup 0} production rate, the ionization rate, and the density distribution in the source chamber are calculated. In the region where high energy electrons exist, the H{sup 0} production and the ionization are enhanced. The calculated H{sup 0} density distribution without the effect of the H{sup 0} transport is relatively small in the upper region. In the next step, the effect should be taken into account to obtain more realistic H{sup 0} distribution.

  6. Simplification of the Plasma Load of Negative-Pulse-Bias Source Used in Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    Dong QI; Ninghui WANG; Guoqiang LIN; Zhenfeng DING

    2003-01-01

    Based on the voltage and current fluctuating phenomenon in the arc plasma load under the negative-pulse-bias, usingthe plasma physics theory and analysis of computer simulation expatiates that the nature of plasma load in vacuumarc plasma is a capacitance

  7. Ion sources with arc-discharge plasma box driven by directly heated LaB(6) electron emitter or cold cathode.

    Science.gov (United States)

    Ivanov, Alexander A; Davydenko, Vladimir I; Deichuli, Petr P; Shulzhenko, Grigori I; Stupishin, Nikolay V

    2008-02-01

    In the Budker Institute, Novosibirsk, an ion source with arc-discharge plasma box has been developed in the recent years for application in thermonuclear devices for plasma diagnostics. Several modifications of the ion source were provided with extracted current ranging from 1 to 7 A and pulse duration of up to 4 s. Initially, the arc-discharge plasma box with cold cathode was used, with which pulse duration is limited to 2 s by the cathode overheating and sputtering in local arc spots. Recently, a directly heated LaB(6) electron emitter was employed instead, which has extended lifetime compared to the cold cathode. In the paper, characteristics of the beam produced with both arrangements of the plasma box are presented.

  8. Miniaturized cathodic arc plasma source

    Science.gov (United States)

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  9. Simple filtered repetitively pulsed vacuum arc plasma source

    Science.gov (United States)

    Chekh, Yu.; Zhirkov, I. S.; Delplancke-Ogletree, M. P.

    2010-02-01

    A very simple design of cathodic filtered vacuum arc plasma source is proposed. The source without filter has only four components and none of them require precise machining. The source operates in a repetitively pulsed regime, and for laboratory experiments it can be used without water cooling. Despite the simple construction, the source provides high ion current at the filter outlet reaching 2.5% of 400 A arc current, revealing stable operation in a wide pressure range from high vacuum to oxygen pressure up to more than 10-2 mbar. There is no need in complicated power supply system for this plasma source, only one power supply can be used to ignite the arc, to provide the current for the arc itself, to generate the magnetic field in the filter, and provide its positive electric biasing without any additional high power resistance.

  10. A highly reliable trigger for vacuum ARC plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Bernardet, H.; Godechot, X.; Jarjat, F. [SODERN, Limeil-Brevannes (France)

    1996-08-01

    The authors have developed a reliable electrical trigger and its associated circuitry to fire vacuum arc plasma or ion source. They tested different embodiments of the trigger device in order to get a highly reliable one, which is able to perform more than 1.2 x 10{sup 6} shots at 60 A and 6.5 ps pulse length. The evolution of the ion current emitted has been recorded as a function of the number of shots. They have also investigated in which direction the plasma jet is emitted : axially or radially. This device can be used to fire a vacuum arc plasma or ion source by plasma injection. It has obvious advantage to be placed outside the cathode and therefore would ease maintenance of vacuum arc devices.

  11. Electron Beam Ion Sources

    OpenAIRE

    Zschornacka, G.; Schmidt, M.; Thorn, A.

    2014-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviole...

  12. Three Filtered Vacuum Arc Plasma Sources Deposition & Implantation System

    Institute of Scientific and Technical Information of China (English)

    WU Xian-ying; ZHANG Hui-xing; LI Qiang

    2004-01-01

    A deposition & implantation system, which includes three filtered vacuum arc plasma sources, has been built. Vacuum arc discharge is used to produce high-density metal plasma; Curved magnetic filtering technique is used to transfer the plasma into out-of-sight vacuum chamber and reduce macro-particles from the vacuum arc plasma in order to drastically reduce the macro-particles contamination of the films. The up to 30 kV negative bias applied to the target can be used for ion implantation in order to improve the film adhesion; or for ion sputtering to clear the substrate surface. The 0 to 300 V negative bias can be used to adjust the ion energy which forming films. The system is designed for various thin films synthesizing, such as single-layer, compound layer, multi-layer films. It's principle, components and applications are described in the literature.

  13. Ion Source DECRIS-3

    CERN Document Server

    Efremov, A; Lebedev, A N; Loginov, V N; Yazvitsky, N Yu

    1999-01-01

    The ECR ion source DECRIS-3 is the copy of the mVINIS ion source which was designed and built in Dubna for the TESLA Accelerator Installation (Belgrade, Yugoslavia) in 1997. The assembly of the source was completely finished in the end of 1998 and then it was installed at the FLNR ECR test bench. The source was successfully tested with some gases and metals by using the MIVOC technique. In nearest future the source will be capable of ECR plasma heating using two different frequencies simultaneously. We are also going to use the DECRIS-3 ion source to design 1+ -> n+ technique for the DRIBs (Dubna Radioactive Ion Beams) project.

  14. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G; Thorn, A

    2013-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  15. Peristaltic ion source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.

    1995-08-01

    Conventional ion sources generate energetic ion beams by accelerating the plasma-produced ions through a voltage drop at the extractor, and since it is usual that the ion beam is to propagate in a space which is at ground potential, the plasma source is biased at extractor voltage. For high ion beam energy the plasma source and electrical systems need to be raised to high voltage, a task that adds considerable complexity and expense to the total ion source system. The authors have developed a system which though forming energetic ion beams at ground potential as usual, operates with the plasma source and electronics at ground potential also. Plasma produced by a nearby source streams into a grided chamber that is repetitively pulsed from ground to high positive potential, sequentially accepting plasma into its interior region and ejecting it energetically. They call the device a peristaltic ion source. In preliminary tests they`ve produced nitrogen and titanium ion beams at energies from 1 to 40 keV. Here they describe the philosophy behind the approach, the test embodiment that they have made, and some preliminary results.

  16. Experimental Verification of Surface Ionization in Ion Source

    Institute of Scientific and Technical Information of China (English)

    CAO; Jin-wen; REN; Xiu-yan; ZENG; Zi-qiang; DU; Xue-yuan

    2015-01-01

    The ion source is playing an important role in EMIS(Electro-Magnetic Isotope Separator),and its characteristics decide the capability of the EMIS and the isotope quality.The ion source has arc discharge chamber and extracting electrodes.The focusing electrode of the extracting electrodes extracts and focuses the ion beam,and

  17. Radio frequency ion source

    CERN Document Server

    Shen Guan Ren; Gao Fu; LiuNaiYi

    2001-01-01

    The study on Radio Frequency Ion Source is mainly introduced, which is used for CIAE 600kV ns Pulse Neutron Generator; and obtained result is also presented. The RF ion source consists of a diameter phi 25 mm, length 200 mm, coefficient of expansion =3.5 mA, beam current on target >=1.5 mA, beam spot =100 h.

  18. Filtered cathodic arc deposition with ion-species-selectivebias

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Pasaja, Nitisak; Sansongsiri, Sakon; Lim, SunnieH.N.

    2006-10-05

    A dual-cathode arc plasma source was combined with acomputer-controlled bias amplifier such as to synchronize substrate biaswith the pulsed production of plasma. In this way, bias can be applied ina material-selective way. The principle has been applied to the synthesismetal-doped diamond-like carbon films, where the bias was applied andadjusted when the carbon plasma was condensing, and the substrate was atground when the metal was incorporated. In doing so, excessive sputteringby too-energetic metal ions can be avoided while the sp3/sp2 ratio can beadjusted. It is shown that the resistivity of the film can be tuned bythis species-selective bias. The principle can be extended tomultiple-material plasma sources and complex materials

  19. Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation%Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation

    Institute of Scientific and Technical Information of China (English)

    G. Yu. YUSHKOV; K. P. SAVKIN; A. G. NIKOLAEV; E. M. OKS; A.V. VODOPYANOV; I. V. IZOTOV; D. A. MANSFELD

    2011-01-01

    A new method for the generation of high charged state metal ion beams is developed. This method is based on microwave heating of vacuum arc plasma in a magnetic trap under electron cyclotron resonance (ECR) conditions. Two gyrotrons for plasma heating were used, which were with the following parameters. The first is with a wave frequency of 37.5 GHz, a pulse duration of 1 ms and power of 100 kW, another is with 75 GHz, 0.15 ms and 400 kW. Two different magnetic traps were considered for vacuum arc plasma confinement. The first one is a simple mirror trap. Such system was already investigated and could provide high charge state ions. The second trap was with a cusp magnetic field configuration with native "minimum-B" field structure. Two different ways of metal plasma injection into the magnetic trap were used. The first one is an axial injection from an arc source located out of the trap, and the second is a radial injection from four arc sources mounted at the center of the trap. Both traps provide up to 200 eMA of ion beam current for platinum ions with highest charge state 10+. Ion beams were successfully extracted from the plasma and accelerated by a voltage of up to 20 kV.

  20. Composition Gradient Hard Coatings by Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun; LIN Guo-qiang; WANG Fu-gang

    2004-01-01

    Arc Ion Plating can be used to synthesize multi-component composition gradient hard coatings by adjusting arc currents of metal targets. The present work aims at a comprehensive description of such a technique. The examples of TiAl multi-layer alloy coatings and (Ti, M) N composition-gradient films were taken (M representing Zr, Nb etc.) for the purpose of explaining the working process and evaluating practical effects. The results show that this technique has the advantages of easy manipulation, rapid deposition, and wide composition range.Key Words: Arc Ion plating, hard coating, composition gradient coatings

  1. Microwave Discharge Ion Sources

    CERN Document Server

    Celona, L

    2013-01-01

    This chapter describes the basic principles, design features and characteristics of microwave discharge ion sources. A suitable source for the production of intense beams for high-power accelerators must satisfy the requirements of high brightness, stability and reliability. The 2.45 GHz off-resonance microwave discharge sources are ideal devices to generate the required beams, as they produce multimilliampere beams of protons, deuterons and singly charged ions. A description of different technical designs will be given, analysing their performance, with particular attention being paid to the quality of the beam, especially in terms of its emittance.

  2. Ecton mechanism of ion flow generation in vacuum arc

    CERN Document Server

    Mesyats, G A

    2001-01-01

    The basic characteristics of cathode plasma generation in vacuum arc (ion erosion, ion average charge) were studied from the point of an ecton model of a cathode spot in vacuum arc. The estimates of ion parameters obtained for a single cell of a cathode spot show qualitative conformity with the experimental data. One introduces the following mechanism of cathode plasma generation in vacuum arc. In case of explosion-like destruction of a cathode segment under the effect of the Joule heating the cathode matter changes sequentially its state: condensed one, nonideal and ideal plasma ones. During this change one observes formation of plasma charge composition and ion acceleration under the effect of plasma pressure gradient

  3. Plasma-Based Ion Beam Sources

    Energy Technology Data Exchange (ETDEWEB)

    Loeb, H. W.

    2005-07-01

    Ion beam sources cover a broad spectrum of scientific and technical applications delivering ion currents between less than 1 mA and about 100 A at acceleration voltages between 100 V and 100 kV. The ions are mostly generated by electron collisions in a gas discharge and then extracted from the discharge plasma, focused and post-accelerated by single- or multi-aperture electrode systems. Some important applications require the neutralization of the exhausted beam either by charge exchange or by admixture of electrons. In the first part of the paper, the theory of ionization by electron impact, the energy and carrier balances in the plasma, and the extraction and focusing mechanisms will be outlined. The principles of the preferred gas discharges and of the ion beam sources based on them are discussed; i.e. of the Penning, bombardment, arc, duoplasmatron, radio frequency, and microwave types. In the second part of the paper, the special requirements of the different applications are described together with the related source hardware. One distinguishes: 1. Single-aperture ion sources producing protons, heavy ions, isotope ions, etc. for particle accelerators, ion microprobes, mass spectrometers, isotope separators, etc.; quality determinative quantities are brightness, emittance, energy width, etc. 2. Broad-beam multi-aperture injector sources for fusion machines with positive or negative deuterium ions; very high beam densities, small portions of molecular ions, flat beam profiles with small divergence angles, etc. are required. 3. Broad-beam multi-aperture ion thrusters for space propulsion operated with singly charged xenon ions; high efficiencies, reliable operation, and long lifetimes are most important. Spin-offs are applied in industry for material processing. Referring to these applications, the following sources will be described in some detail: 1. Cold cathode and filament driven sources, capillary arc and plasmatron types, microwave and ECR-sources. 2

  4. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2011-12-18

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  5. Ion plating with an induction heating source

    Science.gov (United States)

    Spalvins, T.; Brainard, W. A.

    1976-01-01

    Induction heating is introduced as an evaporation heat source in ion plating. A bare induction coil without shielding can be directly used in the glow discharge region with no arcing. The only requirement is to utilize an rf inductive generator with low operating frequency of 75 kHz. Mechanical simplicity of the ion plating apparatus and ease of operation is a great asset for industrial applications; practically any metal such as nickel, iron, and the high temperature refractories can be evaporated and ion plated.

  6. Assistant Anode in a Cathodic Arc Plasma Source

    Institute of Scientific and Technical Information of China (English)

    张涛; Paul K. Chu; 张荟星; Ian G. Brown

    2001-01-01

    The performance and characteristics of a cathodic arc plasma source, consisting of a titanium cathode, an anode with and without a tungsten mesh, and a coil producing a focusing magnetic field between the anode and cathode,are investigated. The high transparency and large area of the mesh allow a high plasma flux to penetrate the anode from the cathodic arc. The mesh helps to decrease the arc resistance and the ignition voltage of the cathodic arc in the focusing magnetic field, and to increase the life of the source, which means that the source makes the cathodic arc easily and greatly stabilized during the operation when a focusing magnetic field exists in the source.

  7. Unusual Cathode Erosion Patterns Observed for Steered Arc Sources

    CERN Document Server

    Kolbeck, Jonathan

    2014-01-01

    A cathodic arc source with a magnetron-type magnetic field was investigated for stability, erosion, and compatibility with a linear macroparticle filter. Here we report about unusual arc spot erosion patterns, which were narrow (~ 2 mm) with periodic pits when operating in argon, and broad (~ 10 mm) with periodic groves and ridges when operating in an argon and oxygen mixtures. These observations can be correlated with the ignition probability for type 2 and type 1 arc spots, respectively.

  8. A negative ion source for alkali ions

    NARCIS (Netherlands)

    Vermeer, A.; Zwol, N.A. van

    1980-01-01

    An ion source is described which delivers negative alkali ions. With this source, which consists of a duoplasmatron and a charge exchange canal with alkali vapour, negative Li, Na and K ions are produced. The oven in which alkali metals are evaporated can reach temperatures up to 575°C.

  9. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  10. Performance of positive ion based high power ion source of EAST neutral beam injector

    Science.gov (United States)

    Hu, Chundong; Xie, Yahong; Xie, Yuanlai; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Jiang, Caichao; Li, Jun; Liu, Zhimin

    2016-02-01

    The positive ion based source with a hot cathode based arc chamber and a tetrode accelerator was employed for a neutral beam injector on the experimental advanced superconducting tokamak (EAST). Four ion sources were developed and each ion source has produced 4 MW @ 80 keV hydrogen beam on the test bed. 100 s long pulse operation with modulated beam has also been tested on the test bed. The accelerator was upgraded from circular shaped to diamond shaped in the latest two ion sources. In the latest campaign of EAST experiment, four ion sources injected more than 4 MW deuterium beam with beam energy of 60 keV into EAST.

  11. Composition Gradient Hard Coatings by Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    CHENJun; LINGuo-qiang; WANGFu-gang

    2004-01-01

    Arc Ion Plating can be used to synthesize multi-component composition gradient hard coatings by adjusting arc currents of metal targets. The present work aims at a comprehensive description of such a technique. The examples of TiAl multi-layer alloy coatings and (Ti,M) N composition-gradient films were taken (M representing Zr, Nb etc.) for the purpose of explaining the working process and evaluating practical effects. The results show that this technique has the advantages of easy manipulation, rapid deposition, and wide composition range.

  12. Novel laser ion sources

    CERN Document Server

    Fournier, P; Kugler, H; Lisi, N; Scrivens, R; Rodríguez, F V; Düsterer, S; Sauerbrey, R; Schillinger, H; Theobald, W; Veisz, L; Tisch, J W G; Smith, R A

    2000-01-01

    Development in the field of high-power laser systems with repetition rates of several Hz and energies of few joules is highly active and opening, giving new possibilities for the design of laser ions sources. Preliminary investigations on the use of four different laser and target configurations are presented: (1) A small CO/sub 2/ laser (100 mJ, 10.6 mu m) focused onto a polyethylene target to produce C ions at 1 Hz repetition rate (CERN). (2) An excimer XeCl laser (6 J, 308 nm) focused onto solid targets (Frascati). (3) A femtosecond Ti: sapphire laser (250 mJ, 800 nm) directed onto a solid targets (Jena). (4) A picosecond Nd: yttrium-aluminum-garnet (0.3 J, 532 nm) focused into a dense medium of atomic clusters and onto solid targets (London). The preliminary experimental results and the most promising schemes will be discussed with respect to the scaling of the production of high numbers of highly charged ions. Different lasers are compared in terms of current density at 1 m distance for each charge state...

  13. Ion sources for ion implantation technology (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Shigeki, E-mail: sakai-shigeki@nissin.co.jp; Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki [Nissin Ion Equipment co., ltd, 575 Kuze-Tonoshiro-cho Minami-ku, Kyoto 601-8205 (Japan)

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  14. Operation of ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In 2001, ECR ion source was operated for HIRFL about 5138 hours and 8 species of ion beams, such as ~(12)C~(4+), ~(12)C~(5+), ~(36)Ar~(11+),~(13)C~(4+),~(40)Ca~(11+),~(40)Ar~(11+),~(56)Fe~(10+) and ~(18)O~(6+) were provided. Among these ions,~(56)Fe~(10+)is a new ion beam. In this period, 14 experiments of heavy ion physics application and nuclear research were finished.

  15. Gas and metal ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Oaks, E. [High Current Electronics Institute, Tomsk (Russian Federation)]|[State Academy of Control System and Radioelectronics, Tomsk (Russian Federation); Yushkov, G. [High Current Electronics Institute, Tomsk (Russian Federation)

    1996-08-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of {approximately} 10{sup 17} cm{sup {minus}2} in some tens of minutes. So the average ion current density at the surface under treatment should be over 10{sup {minus}5} A/cm{sup 2}. The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from {approximately}1 kV (for the ion source used for surface sputtering) to {approximately}100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation).

  16. Electrical shielding box measurement of the negative hydrogen beam from Penning ion gauge ion source.

    Science.gov (United States)

    Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W

    2012-06-01

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.

  17. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  18. Note: Triggering behavior of a vacuum arc plasma source.

    Science.gov (United States)

    Lan, C H; Long, J D; Zheng, L; Dong, P; Yang, Z; Li, J; Wang, T; He, J L

    2016-08-01

    Axial symmetry of discharge is very important for application of vacuum arc plasma. It is discovered that the triggering method is a significant factor that would influence the symmetry of arc discharge at the final stable stage. Using high-speed multiframe photography, the transition processes from cathode-trigger discharge to cathode-anode discharge were observed. It is shown that the performances of the two triggering methods investigated are quite different. Arc discharge triggered by independent electric source can be stabilized at the center of anode grid, but it is difficult to achieve such good symmetry through resistance triggering. It is also found that the triggering process is highly correlated to the behavior of emitted electrons.

  19. A vacuum spark ion source: High charge state metal ion beams

    Science.gov (United States)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  20. A vacuum spark ion source: High charge state metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  1. Industrial ion sources broadbeam gridless ion source technology

    CERN Document Server

    Zhurin, Viacheslav V

    2012-01-01

    Due to the large number of uses of ion sources in academia and industry, those who utilize these sources need up to date and coherent information to keep themselves abreast of developments and options, and to chose ideal solutions for quality and cost-effectiveness. This book, written by an author with a strong industrial background and excellent standing, is the comprehensive guide users and developers of ion sources have been waiting for. Providing a thorough refresher on the physics involved, this resource systematically covers the source types, components, and the operational parameters.

  2. Ecton mechanism for the generation of ion flows in a vacuum arc

    CERN Document Server

    Mesyats, G A

    2001-01-01

    Physical substantiation of the parameters of the ion flow, generated by the vacuum arc cathode spots is given for the first time in this work. The main characteristics of the vacuum arc cathode plasma generation process (the ion erosion, the ions average charge) are considered within the frames, of the ecton model of the vacuum arc cathode spot. According to this model the vacuum arc cathode spot consists of separate cells, emitting ectons. The ions parameter evaluations, obtained within the frames of the ecton model, qualitatively and quantitatively agree with the experimental data

  3. Advanced penning ion source

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, Thomas; Ji, Qing; Persaud, Arun; Sy, Amy V.

    2016-11-01

    This disclosure provides systems, methods, and apparatus for ion generation. In one aspect, an apparatus includes an anode, a first cathode, a second cathode, and a plurality of cusp magnets. The anode has a first open end and a second open end. The first cathode is associated with the first open end of the anode. The second cathode is associated with the second open end of the anode. The anode, the first cathode, and the second cathode define a chamber. The second cathode has an open region configured for the passage of ions from the chamber. Each cusp magnet of the plurality of cusp magnets is disposed along a length of the anode.

  4. Cold Strontium Ion Source for Ion Interferometry

    Science.gov (United States)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  5. Effect of high energy electrons on H⁻ production and destruction in a high current DC negative ion source for cyclotron.

    Science.gov (United States)

    Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J

    2016-02-01

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments.

  6. Laser ion source for high brightness heavy ion beam

    Science.gov (United States)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  7. The DCU laser ion source.

    Science.gov (United States)

    Yeates, P; Costello, J T; Kennedy, E T

    2010-04-01

    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I approximately 10(8)-10(11) W cm(-2)) and fluences (F=0.1-3.9 kJ cm(-2)) from a Q-switched ruby laser (full-width half-maximum pulse duration approximately 35 ns, lambda=694 nm) were used to generate a copper plasma. In "basic operating mode," laser generated plasma ions are electrostatically accelerated using a dc HV bias (5-18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I approximately 600 microA for Cu(+) to Cu(3+) ions were recorded. The maximum collected charge reached 94 pC (Cu(2+)). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L=48 mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a "continuous einzel array" were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at "high pressure." In "enhanced operating mode," peak currents of 3.26 mA (Cu(2+)) were recorded. The collected currents of more highly charged ions (Cu(4+)-Cu(6+)) increased considerably in this mode of operation.

  8. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  9. Composition demixing effect on cathodic arc ion plating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The composition demixing effect has been found often in alloy coatings deposited by cathodic arc ion plating using various alloy cathode targets.The characteristics of composition demixing phenomena were summarized.Beginning with the ionization zone near the surface of the cathode target, a physical model in terms of the ions generated in the ionization zone and their movement in the plating room modified by bias electric field was proposed.Based on the concept of electric charge state, the simulation calculation of the composition demixing effect was carried out.The percentage of atoms of an element in coating and from the alloy target was demonstrated by direct comparison.The influences of the composition change of the alloy target and the bias electric field on the composition demixing effect were discussed in detail.It is also proposed that the average charge states of the elements may be used to calculate the composition demixing effect and to design the composition of the alloy target.

  10. Characterization of ISOLDE ion source and ion source chemistry

    CERN Document Server

    Barbeau, Marion

    2014-01-01

    This report presents results of measurements made with the ISOLDE OFF-LINE mass separator [1]. The first part shows measurements of the ionization characteristics of noble gases in a VADIS ion source. The goal of the measurements was to determine the dependency of the extractable current of first and second noble gases ions with the electron energy. In the second part, investigation on in-target chemistry are presented. Here, the effect of injected sulfur hexafluoride ($SF_6$) on the release of oxygen from aluminium oxide ($Al_2 O_3$) was studied.

  11. Improvement of penning ion sources

    CERN Document Server

    Bizyukov, A A; Kashaba, A Y; Sereda, K N

    2000-01-01

    It is shown that the loss of a longitudinal symmetry of magnetic field distribution in respect to the centre of the Penning discharge system causes change of electrostatic potential distribution in the discharge gap leads to appearance of asymmetry of current magnitude to the cathodes of the Penning cell,change of magnitude of current density and energy distribution of the ion beam extracted in a longitudinal direction.The use of an inhomogeneous magnetic field which is longitudinally asymmetrical concerning electrodes of the system allows to increase current efficiency of Penning ion sources from 0,2 to 0,55.

  12. Laser ion source studies at CERN

    CERN Document Server

    Tambini, J

    1995-01-01

    The plasma produced when a powerful laser pulse is focused onto a target surface in vacuum can provide a copious source of highly charged ions. Ions can then be extracted from the plasma to form a high current, short pulse length ion beam. Experimental laser ion sources have been the subject of investigation in medical physics and particle accelerator applications; a laser ion source is an option for the injection system of heavy ions for the Large Hadron Collider at CERN where a high intensity lead ion beam is required. This paper describes work carried out at CERN to develop a CO2 laser ion source.

  13. Control System of the H~- Ion Source

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The control system is of primary importance to the accelerator operation. This paper presents a brief introduction to the new ion source control system. The research is to build a new H- ion source based on

  14. A study of vacuum arc ion velocities using a linear set of probes

    Energy Technology Data Exchange (ETDEWEB)

    Hohenbild, Stefan; Grubel, Christoph; Yushkov, Georgy Yu.; Oks, Efim M.; Anders, Andre

    2008-07-15

    The most likely velocity of ions moving away from vacuum arc cathode spots was measured using a set of probes along the path of plasma expansion. The goal was to determine how much, if any, change of the ion drift velocity occurs in the expanded plasma. The arc discharge current was perturbed to create plasma density markers whose travel is picked up by the set of probes. It was found that the perturbation with current oscillations did not result in consistent data because ion current maxima and minima are not only determined by the plasma production but by the transients of the arc pulse and by the asymmetry of the ion velocity distribution function. Perturbation with a short current spike was more conclusive. The ion velocity was measured to be slightly reduced with increasing distance from the cathode, which can be explained by collisions of ions with the background of neutrals. The ion velocity was increased when the arc current was increased, which correlated with enhanced arc voltage and power dissipation. The ion velocity could be enhanced when the plasma was produced in a non-uniform magnetic field.

  15. Wear Resistance of Mo-Implanted H13 Steel by a Metal Vapour Vacuum Arc Source

    Science.gov (United States)

    Yang, Jian-Hua; Zhang, Tong-He

    2003-10-01

    Pulsed molybdenum ion beams extracted from a metal vapour vacuum arc ion source at voltage of 25 kV or 48 kV were implanted into H13 steel with a high implantation dose of 5×1017 ions·cm-2 and a time-averaged ion beam current density of about 300 µA·cm-2. We have investigated the steel implanted for wear resistance by an optical interference microscope and a pin-on-disc apparatus. The Rutherford backscattering spectroscopy demonstrated that rather low-energy ions could penetrate quite deep into the substrates. It was observed by x-ray photoelectron spectroscopy and transmission-electron microscopy that carbide of molybdenum appeared in the doped region. The results showed that dramatically improved wear resistance of H13 steel after molybdenum ion implantation at 48 kV was attributed to the development of Mo2C precipitates in the doped zone and to the formation of the implantation affected zone below the doped zone.

  16. Ion optics of RHIC electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Kuznetsov, G. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  17. Recent Operation of the FNAL Magnetron H- Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Karns, Patrick R. [Fermilab; Bollinger, D. S. [Fermilab; Sosa, A. [Fermilab

    2016-09-06

    This paper will detail changes in the operational paradigm of the Fermi National Accelerator Laboratory (FNAL) magnetron H- ion source due to upgrades in the accelerator system. Prior to November of 2012 the H- ions for High Energy Physics (HEP) experiments were extracted at ~18 keV vertically downward into a 90 degree bending magnet and accelerated through a Cockcroft-Walton accelerating column to 750 keV. Following the upgrade in the fall of 2012 the H- ions are now directly extracted from a magnetron at 35 keV and accelerated to 750 keV by a Radio Frequency Quadrupole (RFQ). This change in extraction energy as well as the orientation of the ion source required not only a redesign of the ion source, but an updated understanding of its operation at these new values. Discussed in detail are the changes to the ion source timing, arc discharge current, hydrogen gas pressure, and cesium delivery system that were needed to maintain consistent operation at >99% uptime for HEP, with an increased ion source lifetime of over 9 months.

  18. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    Energy Technology Data Exchange (ETDEWEB)

    Segal, M. J., E-mail: mattiti@gmail.com [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); University of Cape Town, Rondebosch, Cape Town 7700 (South Africa); Bark, R. A.; Thomae, R. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A. [Joint Institute for Nuclear Research, Joloit-Curie 6, 141980 Dubna, Moscow Region (Russian Federation)

    2016-02-15

    An assembly for a commercial Ga{sup +} liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga{sup +} ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga{sup +} and Au{sup +} ion beams will be reported as well.

  19. Vacuum arc with a distributed cathode spot as a plasma source for plasma separation of spent nuclear fuel and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Amirov, R. Kh., E-mail: ravus46@yandex.ru; Vorona, N. A.; Gavrikov, A. V.; Lizyakin, G. D.; Polishchuk, V. P.; Samoilov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    Results from experimental studies of a vacuum arc with a distributed cathode spot on the heated cathode are presented. Such an arc can be used as a plasma source for plasma separation of spent nuclear fuel and radioactive waste. The experiments were performed with a gadolinium cathode, the properties of which are similar to those of an uranium arc cathode. The heat flux from the plasma to the cathode (and its volt equivalent) at discharge voltages of 4-15 V and discharge currents of 44-81 A, the radial distribution of the emission intensity of gadolinium atoms and singly charged ions in the arc channel at a voltage of 4.3 V, and the plasma electron temperature behind the anode were measured. The average charge of plasma ions at arc voltages of 3.5-8 V and a discharge current of 52 A and the average rate of gadolinium evaporation in the discharge were also determined.

  20. Laser ion source for isobaric heavy ion collider experiment.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  1. Long-pulse operation of an intense negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Yasuhiko; Osakabe, Masaki; Tsumori, Katsuyoshi; Kaneko, Osamu; Oka, Yoshihide; Asano, Eiji; Kawamoto, Toshikazu; Akiyama, Ryuichi; Kuroda, Tsutomu [National Inst. for Fusion Science, Nagoya (Japan)

    1997-02-01

    In the National Institute for Fusion Science, as the heating system for the Large Helical Device (LHD), the negative ion NBI system of 20 MW incident power has been planned, and the development of a large current, large size negative ion source has been advanced. Based on the results obtained so far, the design of the LHD-NBI system was reconsidered, and the specification of the actual negative ion source was decided as 180 KeV-40A. This time, the grounding electrode with heightened heat removal capacity was made, and the long pulse operation was attempted, therefore, its results are reported. The structure of the external magnetic filter type large negative ion source used for the long pulse experiment is explained. In order to form the negative ion beam of long pulses, it is necessary to form stable are discharge plasma for long time, and variable resistors were attached to the output side of arc power sources of respective filament systems. By adjusting the resistors, uniform are discharge was able to be caused for longer than 10 s stably. The results of the long pulse experiment are reported. The dependence of the characteristics of negative ion beam on plasma electrode temperature was small, and the change of the characteristics of negative ion beam due to beam pulse width was not observed. (K.I.)

  2. Wear Resistance of Mo-Implanted H13 Steel by a Metal Vapour Vacuum Arc Source

    Institute of Scientific and Technical Information of China (English)

    杨建华; 张通和

    2003-01-01

    Pulsed molybdenum ion beams extracted from a metal vapour vacuum arc ion source at voltage of 25kV or 48kV were implanted into H13 steel with a high implantation dose of 5×1017 inons·cm-2 and a time-averaged ion beam current density of about 300μA·cm-2. We have investigated the steel implanted for wear resistance by an optical interference microscope and a pin-on-disc apparatus. The Rutherford backscattering spectroscopy demonstrated that rather low-energy ions could penetrate quite deep into the substrates. It was observed by x-ray photoelectron spectroscopy and transmission-electron microscopy that carbide of molybdenum appeared in the doped region. The results showed that dramatically improved wear resistance of H13 steel after molybdenum ion implantation at 48 kV was attributed to the development of Mo2 C precipitates in the doped zone and to the formation of the implantation affected zone below the doped zone.

  3. Compact RF ion source for industrial electrostatic ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  4. Design of the RF ion source for the ITER NBI

    Energy Technology Data Exchange (ETDEWEB)

    Marcuzzi, D. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I-35127 Padova (Italy)], E-mail: diego.marcuzzi@igi.cnr.it; Agostinetti, P.; Dalla Palma, M. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I-35127 Padova (Italy); Falter, H.D.; Heinemann, B.; Riedl, R. [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany)

    2007-10-15

    A radio frequency (RF) driven negative ion source has been designed for the ITER neutral beam injectors, as an alternative to the traditional arc driven solution. The main advantage of this technology is to avoid the presence of the filaments, that require periodic maintenance and consequently frequent shutdowns. The requirements for the ion source of the ITER NBI are to provide a uniform flux of D{sup -}/H{sup -} to the plasma grid of the accelerator that will result in a beam current of 40 A at 1 MeV. The present specification is for a filling pressure of 0.3 Pa. The ion source needs to provide 20/28 mA/cm{sup 2} D{sup -}/H{sup -} current density across the 0.58 m x 1.54 m aperture array for 3600 s. The source, consisting of a main chamber facing the plasma grid, of eight RF drivers and the auxiliary systems for power transfer, cooling and diagnostic purposes, is housed in the same quasi-cylindrical structure that supports the arc driven solution. Specific electric and hydraulic circuits have been designed and verified. In the paper the analyses performed for the design of the components are presented in detail.

  5. The Physics and Technology of Ion Sources

    CERN Document Server

    2004-01-01

    The first edition of this title has become a well-known reference book on ion sources. The field is evolving constantly and rapidly, calling for a new, up-to-date version of the book. In the second edition of this significant title, editor Ian Brown, himself an authority in the field, compiles yet again articles written by renowned experts covering various aspects of ion source physics and technology. The book contains full chapters on the plasma physics of ion sources, ion beam formation, beam transport, computer modeling, and treats many different specific kinds of ion sources in sufficient detail to serve as a valuable reference text

  6. Modeling of negative ion transport in a plasma source

    Science.gov (United States)

    Riz, David; Paméla, Jérôme

    1998-08-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H-/H+ and of charge exchange H-/H0 are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of «volume production» (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  7. Production and ion-ion cooling of highly charged ions in electron string ion source.

    Science.gov (United States)

    Donets, D E; Donets, E D; Donets, E E; Salnikov, V V; Shutov, V B; Syresin, E M

    2009-06-01

    The scheme of an internal injection of Au atoms into the working space of the "Krion-2" electron string ion source (ESIS) was applied and tested. In this scheme Au atoms are evaporated from the thin tungsten wire surface in vicinity of the source electron string. Ion beams with charge states up to Au51+ were produced. Ion-ion cooling with use of C and O coolant ions was studied. It allowed increasing of the Au51+ ion yield by a factor of 2. Ions of Kr up to charge state 28+ were also produced in the source. Electron strings were first formed with injection electron energy up to 6 keV. Methods to increase the ESIS ion output are discussed.

  8. Dynamic character analysis for the arc welding power source based on fuzzy logic

    Institute of Scientific and Technical Information of China (English)

    Wang Zhenmin; Xue Jiaxiang; Wang Fuguang

    2007-01-01

    A lot of experimental methods have been brought forth to assess the dynamic character of the arc welding power source, but up to now, this issue has not been solved very well. In this paper, based on the fuzzy logic reasoning method, a dynamic character assessing model for the arc welding power source was established and used to analyze the dynamic character of the welding power source. Three different types of welding machine have been tested, and the characteristic information of the electrical signals such as re-striking arc voltage, low welding current and so on of the welding process were extracted accurately by using a self-developed welding dynamic arc wavelet analyzer. The experimental results indicate that this model can be used as a new assessing method for the dynamic character of the arc welding power source.

  9. Laser ion source with solenoid field

    Science.gov (United States)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  10. Ion density and dielectric breakdown in the afterglow of a high-current arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rutgers, W.R.; Verhagen, F.C.M.; De Zeeuw, W.A.

    1984-01-01

    The ion density in the afterglow of a high-current atmospheric arc-discharge and electrical breakdown have been investigated in atomic (argon), molecular (nitrogen) and electronegative (carbon dioxide) media. From the decay with time of the ion density, effective recombination coefficients can be calculated. When the ion density is reduced to values below 2 x 10/sup 17/m/sup -3/, the afterglow plasma changes from a resistive into a dielectric medium. (J.C.R.)

  11. Temporal magma source changes at Gaua volcano, Vanuatu island arc

    Science.gov (United States)

    Beaumais, Aurélien; Bertrand, Hervé; Chazot, Gilles; Dosso, Laure; Robin, Claude

    2016-08-01

    Gaua Island (also called Santa Maria), from the central part of the Vanuatu arc, consists of a large volcano marked by a caldera that hosts the active Mount Garet summit cone. In this paper, a geochemical study including Sr, Nd, Pb and Hf isotopic compositions of 25 lavas emitted since 1.8 Ma is presented, with a focus on the volcanic products that preceded (old volcanics, main cone and pyroclastic series) and followed (Mount Garet) the caldera forming event. All lavas show an island arc signature with enrichment in LILE and depletion in HFSE. Post-caldera lavas define a medium-K calc-alkaline trend, whereas lavas from the former main cone have high-K calc-alkaline compositions. Compared to the pre-caldera volcanic suite, the Mount Garet lavas have similar Th/Nb ( 1.5), 143Nd/144Nd ( 0.51295) and 176Hf/177Hf ( 0.28316) ratios, but higher Ba/La ( 42 vs. 27) and 87Sr/86Sr (0.70417 vs. 0.70405) ratios and lower Ce/Pb ( 2.7 vs. 4.6), La/Sm ( 2.5 vs. 4.0) and 206Pb/204Pb (18.105 vs. 18.176) ratios. High Th/Nb and low Nd and Hf isotopic ratios compared to N-MORB suggest the contribution of 2% of subducted sediment melt to the mantle source of Gaua magmas. Most of the observed differences between pre- and post-caldera lavas can be accounted for by the involvement of at least two portions of the mantle wedge, metasomatized by different slab-derived aqueous fluids. In addition, the lower La/Sm (at a given 143Nd/144Nd) ratios of Mount Garet lavas suggest a higher degree of partial melting ( 10-15%) compared to the pre-caldera lavas ( 5%). The Santa Maria Pyroclastic Series (SMPS) eruption probably triggered the caldera collapse, in response to emptying of the magmatic chamber. This event may have allowed new access to the surface for a geochemically distinct batch of magma issued from a separate magma chamber, resulting in the birth and construction of Mount Garet within the caldera. As both magmatic suites were emitted over a very short time, the storage of their parental

  12. A Plasma Ion Source for ISOLTRAP

    CERN Document Server

    Skov, Thomas Guldager

    2016-01-01

    In this report, my work testing the new Penning ion source as a summer student at ISOLTRAP is described. The project was composed of three stages: (1) Setting up a test laboratory in building 275, (2) characterizing the ion source, and (3) implementing and testing the source in the ISOLTRAP setup. After setting up the test laboratory, the ion source was tested in a constant pressure environment with produced ion currents in the range of nA . An extensive scan of the source ion current versus operating parameters (pressure, voltage) was performed. A setup with pulsed gas flow was also tested, allowing a reduction of the gas load on the vacuum system. The behavior of the ion source together with the ISOLTRAP setup was also investigated, allowing to understand current limitations and future directions of improvement.

  13. The physics of Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.; Cocke, C.L.

    1990-01-01

    There are 13 Electron Beam Ion Sources in operation which produce highly charged ions, up to Th[sup 80+] and Xe[sup 53+]. Most of the sources are used to study these ions under electron impact or when recombining with gaseous or solid targets. That provides an insight into the atomic physics of these highly charged ions and into the physics of the plasma in which such ions can be found. This paper reviews the present knowledge of atomic processes, important in the production of such ions with an EBIS.

  14. The physics of Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.; Cocke, C.L.

    1990-12-31

    There are 13 Electron Beam Ion Sources in operation which produce highly charged ions, up to Th{sup 80+} and Xe{sup 53+}. Most of the sources are used to study these ions under electron impact or when recombining with gaseous or solid targets. That provides an insight into the atomic physics of these highly charged ions and into the physics of the plasma in which such ions can be found. This paper reviews the present knowledge of atomic processes, important in the production of such ions with an EBIS.

  15. Ion beam measurements at the superconducting ECR ion source SECRAL

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Jan; Rossbach, Jon; Lang, Ralf; Maimone, Fabio; Spaedtke, Peter; Tinschert, Klaus [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Sun, Liangting; Cao, Yun; Zhao, Hongwei [Institute of Modern Physics, Lanzhou, GS (China)

    2009-08-15

    Measurement of the charge-state distribution, the beam profile, the beam emittance of the named ion source are presented. Furthermore computer simulations of the magnetic flux-density distribution in this source are described. (HSI)

  16. New ion-assisted filtered cathodic arc deposition (IFCAD) technology for producing advanced thin films on temperature-sensitive substrates

    Science.gov (United States)

    Fulton, Michael L.

    1999-10-01

    An innovative Ion-Assisted Filtered Cathodic Arc Deposition (IFCAD) system has been developed for low temperature production of thin-film coatings. The IFCAD system employs electro-magnetic and mechanical filtering techniques to remove unwanted macroparticles and neutral atoms from the plasma stream. Therefore, only ions within a defined energy range arrive at the substrate surface, depositing thin-films with excellent mechanical and optical properties. Ion- Assisted-Deposition is coupled with Filtered Cathodic Arc technology to enhance and modify the arc deposited thin- films. Using an advanced computer controlled plasma beam scanning system, high quality, large area, uniform IFCAD multi-layer film structures are attained. Amorphous Diamond- Like-Carbon films (up to 85% sp3 bonded carbon; and micro- hardness greater than 50 GPa) have been deposited in multi- layer thin-film combinations with other IFCAD source materials (such as: Al2O3) for optical and tribological applications. Rutile TiO2 (refractive index of 2.8 at 500 nm) has been deposited with this technology for advanced optical filter applications. The new IFCAD technology has been included in development programs, such as: plastic and glass lens coatings for optical systems; wear resistant coatings on various metal substrates, ultra smooth, durable, surface hydrophobic coatings for aircraft windows; EUV coatings for space instrumentation; transparent conductive coatings; and UV protective coatings for solar cell concentrator plastic Fresnel lens elements for space power.

  17. CSNS H- ion source test stand

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-Bing; ZHANG Jun-Song; ZHANG Hua-Shun; ZHAO Fu-Xiang; OUYANG Hua-Fu; CHI Yun-Long; HE Wei; HUANG Tao; LI Gang; LIU Ying-Man; LU Yan-Hua; XU Tao-Guang

    2011-01-01

    The Penning surface plasma source is adopted as the China Spallation Neutron Source (CSNS) H- ion source. The designed energy and beam current of the source are 50 keV and 20 mA, respectively, with a normalized root mean square(norm·rms.)emittance of 0.2πmm·mrad.The construction of a H-ion source test stand has been completed, and the commissioning of the source is in progress. Stable H- ion beams with energy of 50 keV and current up to 50 mA are attained. Emittance measurement for the H- beam is being prepared.

  18. 11. international conference on ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, D.; Lyneis, C.; Cheng, D.; Galloway, M.L.; Leitner, M.; Todd, D.S.; Ciavola, G.; Gammino, S.; Celona, L.; Ando, L.; Torrisi, L.; Cavenago, M.; Galata, A.; Spaedtke, P.; Tinschert, K.; Lang, R.; Iannucci, R.; Leroy, R.; Barue, C.; Hitz, D.; Koivisto, H.; Suominen, P.; Tarvainen, O.; Beijers, H.; Brandenburg, S.; Vanrooyen, D.; Hillo, C.; Kuchler, D.; Homeyer, H.; Rohrich, J.; Schachter, L.; Dobrescu, S.; Nakagawa, T.; Higurashi, Y.; Kidera, M.; Aihara, T.; Kase, M.; Goto, A.; Yang, Y.; Zhao, H.W.; Zhang, Z.M.; Zhang, X.Z.; Guo, X.H.; He, W.E.; Sun, L.T.; Yuan, P.; Song, M.T.; Xie, Z.Q.; Cao, Y.; Zhan, W.L.; Wei, B.W.; Bricault, P.; Lau, C.; Essabaa, S.; Cheikh Mhamed, M.; Bajeat, O.; Ducourtieux, M.; Lefort, H.; Panteleev, V.N.; Barzakh, A.E.; Fedorov, D.V.; Ionan, A.M.; Mezilev, K.A.; Moroz, F.V.; Orlov, S.Y.; Volkov, Y.M.; Andrighetto, A.; Lhersonneau, G.; Rizzi, V.; Tecchio, L.B.; Dubois, M.; Gaubert, G.; Jardins, P.; Lecesne, N.; Leroy, R.; Pacquet, J.Y.; Saint Laurent, M.G.; Villari, A.C.O.; Bajeat, O.; Essabaa, S.; Lau, C.; Menna, M.; Franberg, H.; Ammann, M.; Gdggeler, H.W.; Koster, U.; Allen, F.; Biedermann, C.; Radtke, R.; Ames, F.; Baartman, R.; Bricault, P.; Jayamanna, K.; Lamy, T.; McDonald, M.; Olivo, M.; Schmorl, P.; Yuan, D.H.L.; Asaji, T.; Sasaki, H.; Kato, Y.; Atabaev, B.; Radjabov, S.S.; Akhmadjanova, M.K.; Yuzikaeva, F.R.; Baoqun, Cui; Liqiang, Li; Yingjun, Ma; Shengyun, Zhu; Cong, Jiang

    2005-07-01

    This document gathers the summaries of the presentations made at ICIS05 (international conference on ion sources). It can be organized into 3 main topics: 1) 'fundamentals and theory' that deals with plasma, beam extraction, transport and emittance, diagnostics and simulation; 2) 'various types of ion sources' that include ECRIS, EBIS, microwave, negative, radioactive, polarized and laser ion sources, and charge breeders; and 3) 'ion sources and applications' in fields like accelerator injection, fusion energy, space propulsion, mass spectrometry, and neutron and cluster and rare nuclide production.

  19. Modeling of negative ion transport in a plasma source (invited)

    Science.gov (United States)

    Riz, David; Paméla, Jérôme

    1998-02-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The H-/D- trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collision with H+/D+ and of charge exchange with H0/D0 are handled at each time step by a Monte Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have been allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that, in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided they are produced at a distance lower than 2 cm from the plasma grid in the case of volume production (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  20. An Experimental Study of Waveguide Coupled Microwave Heating with Conventional Multicusp Negative Ion Source

    CERN Document Server

    Komppula, J; Koivisto, H; Laulainen, J; Tarvainen, O

    2015-01-01

    Negative ion production with conventional multicusp plasma chambers utilizing 2.45 GHz microwave heating is demonstrated. The experimental results were obtained with the multicusp plasma chambers and extraction systems of the RFdriven RADIS ion source and the filament driven arc discharge ion source LIISA. A waveguide microwave coupling system, which is almost similar to the one used with the SILHI ion source, was used. The results demonstrate that at least one third of negative ion beam obtained with inductive RF-coupling (RADIS) or arc discharge (LIISA) can be achieved with 1 kW of 2.45 GHz microwave power in CW mode without any modification of the plasma chamber. The co-extracted electron to H^- ratio and the optimum pressure range were observed to be similar for both heating methods. The behaviour of the plasma implies that the energy transfer from the microwaves to the plasma electrons is mainly an off-resonance process.

  1. Electron beam ion source and electron beam ion trap (invited).

    Science.gov (United States)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  2. Electron beam ion source and electron beam ion trap (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  3. Mathematical Model and the Simulation of Electrical Arc Welding as Moving Source in Protector Gas Welding

    Directory of Open Access Journals (Sweden)

    Lenuta Suciu

    2006-10-01

    Full Text Available The works presents the mathematical model of electrical arc welding, simulation of the electrical arc as a moving source with help programs software Ansys, passing through three stage of simulation: pre- processing, processing (solution and post-processing.

  4. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  5. Electron string ion sources for carbon ion cancer therapy accelerators

    CERN Document Server

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  6. Along-arc geochemical and isotopic variations in Javanese volcanic rocks: 'crustal' versus 'source' contamination at the Sunda arc, Indonesia

    Science.gov (United States)

    Handley, H.; Blichert-Toft, J.; Turner, S.; Macpherson, C. G.

    2012-12-01

    Understanding the genesis of volcanic rocks in subduction zone settings is complicated by the multitude of differentiation processes and source components that exert control on lava geochemistry. Magma genesis and evolution at the Sunda arc is controlled and influenced by 1) along arc changes in the composition and thickness of the overriding Eurasian plate, 2) the variable age of the subducting oceanic crust and, 3) changes in the type and amount of sediment deposited on the subducting plate. Along-arc changes in geochemistry have long been recognised in the Sunda arc (Whitford, 1975), but debate still prevails over the cause of such variations and the relative importance of shallow (crustal) versus deep (subduction) contamination at the Sunda arc, Indonesia. Detailed study of individual Sunda arc volcanic centres is, therefore, a prerequisite in order to establish the relative importance and contributions of various potential source components and composition modifying differentiation processes at individual volcanoes, prior to an along arc comparative petrogenetic investigation. We present new radiogenic isotope data for Javanese volcanoes, which is combined with our recently published (Handley et al., 2007; Handley et al., 2008, Handley et al., 2010; Handley et al., 2011) geochemical and isotopic data of Javanese volcanic rocks along with data from other detailed geochemical studies to establish whether variable contributions from the subducting slab, or a change in crustal architecture of the overriding plate, best explain along-arc variations in isotope ratios and trace element characteristics. In West and Central Java Sr isotope ratios of the volcanic rocks broadly correlate with inferred lithospheric thickness implicating a shallow level control on isotopic composition. However, key trace element ratios combined with Hf isotope data indicate that the subducted slab and slab thermal regime also exert major control on the composition of the erupted Javanese

  7. Ion sources for energy extremes of ion implantation.

    Science.gov (United States)

    Hershcovitch, A; Johnson, B M; Batalin, V A; Kropachev, G N; Kuibeda, R P; Kulevoy, T V; Kolomiets, A A; Pershin, V I; Petrenko, S V; Rudskoy, I; Seleznev, D N; Bugaev, A S; Gushenets, V I; Litovko, I V; Oks, E M; Yushkov, G Yu; Masunov, E S; Polozov, S M; Poole, H J; Storozhenko, P A; Svarovski, A Ya

    2008-02-01

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P(2+) [8.6 pmA (particle milliampere)], P(3+) (1.9 pmA), and P(4+) (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb(3+)Sb(4+), Sb(5+), and Sb(6+) respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  8. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    Energy Technology Data Exchange (ETDEWEB)

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  9. CERN PS laser ion source development

    CERN Document Server

    Fournier, P; Haseroth, H; Khomenko, S; Kondrashev, S A; Kugler, H; Lisi, N; Lombardi, A M; Makarov, K; Meyer, C; Ostroumov, P N; Pirkl, Werner; Rörich, V; Roudskoy, I; Satov, Yu A; Schnuriger, J C; Scrivens, R; Sharkov, B Yu; Shumshurov, A V; Stepanov, A; Tenishev, V; Varelá-Rodriguez, F

    1999-01-01

    CERN, together with ITEP and TRINITI (Russia), is developing a CO2 laser ion source. The key design parameters are: 1.4 1010 ions of Pb25+ in a pulse of 5.5 ms, with a 4-rms emittance of 0.2 10-6 rad m, working at a repetition rate of 1 Hz. This device is considered as one candidate source for LHC heavy ion operation. The status of the laser development, the experimental set-up of the source consisting of the target area and its illumination, the plasma expansion area and extraction, beam transport and ion pre-acceleration by an RFQ, will be given.

  10. Laser Ion Source Project at IGISOL

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, A. [University of Manchester, Department of Physics and Astronomy (United Kingdom); Moore, I. D., E-mail: iain.moore@php.jyu.fi [University of Jyvaeskylae, Department of Physics (Finland); Billowes, J.; Campbell, P.; Flanagan, K. T. [University of Manchester, Department of Physics and Astronomy (United Kingdom); Geppert, Ch. [University of Mainz, Institut fuer Physik (Germany); Huikari, J.; Jokinen, A. [University of Jyvaeskylae, Department of Physics (Finland); Kessler, T. [University of Mainz, Institut fuer Physik (Germany); Marsh, B. [University of Manchester, Department of Physics and Astronomy (United Kingdom); Penttilae, H.; Rinta-Antila, S. [University of Jyvaeskylae, Department of Physics (Finland); Tordoff, B. [University of Manchester, Department of Physics and Astronomy (United Kingdom); Wendt, K. D. A. [University of Mainz, Institut fuer Physik (Germany); Aystoe, J. [University of Jyvaeskylae, Department of Physics (Finland)

    2005-04-15

    The application of laser ionisation is being developed for the IGISOL mass separator facility in Jyvaeskylae, Finland. The conceived laser ion source will have two independent pulsed laser systems based on all solid-state lasers and dye lasers for maximal coverage of ionisation schemes throughout the periodic table. A laser ion source trap, LIST, method will be pursued for optimal selectivity.

  11. GANIL Workshop on Ion Sources; Journees Sources d'Ions

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, Renan [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    1999-07-01

    The proceedings of the GANIL Workshop on Ion Sources held at GANIL - Caen on 18-19 March 1999 contains 13 papers aiming at improving the old source operation and developing new types of sources for nuclear research and studies of ion physics. A number of reports are devoted to applications like surface treatment, ion implantation or fusion injection. The 1+{yields}n+ transformation, charged particle transport in ECR sources, addition of cesium and xenon in negative ion sources and other basic issues in ion sources are also addressed.

  12. Peltier Refrigerators for Molecular Ion Sources

    Science.gov (United States)

    Hershcovitch, Ady

    2008-11-01

    Molecular ion sources have been considered for various applications. In particular, there is considerable effort to develop decaborane and octadecaborane ion sources for the semiconductor industry. Since the invention of the transistor, the trend has been to miniaturize semiconductor devices. As semiconductors become smaller (and get miniaturized), ion energy needed for implantation decreases, since shallow implantation is desired. But, due to space charge (intra-ion repulsion) effects, forming and transporting ion beams becomes a rather difficult task. These problems associated with lower energy ion beams limit implanter ion currents, thus leading to low production rates. One way to tackle the space charge problem is to use singly charged molecular ions. A crucial aspect in generating large molecular ion beam currents is ion source temperature control. Peltier coolers, which have in the past successfully utilized in BaF2 and CSI gamma ray detectors, may be ideal for this application. Clogging prevention of molecular ion sources is also a hurdle, which was overcome with special slots. Both topics are to be presented.

  13. CSNS H^- ion source test stand

    Institute of Scientific and Technical Information of China (English)

    吴小兵; 张俊嵩; 张华顺; 赵富祥; 欧阳华甫; 池云龙; 何伟; 黄涛; 李刚; 刘应满; 卢艳华; 徐韬光

    2011-01-01

    The Penning surface plasma source is adopted as the China Spallation Neutron Source (CSNS) H^- ion source. The designed energy and beam current of the source are 50 keV and 20 mA, respectively, with a normalized root mean square (norm. rms.) emittance of

  14. Ion Sources for MedAustron

    CERN Document Server

    Lettry, J; Wallner, J; Sargsyan, E; CERN. Geneva. BE Department

    2010-01-01

    The MedAustron Ion therapy center will be constructed in Wiener Neustadt (Austria) in the vicinity of Vienna. Its accelerator complex consists of four ion sources, a linear accelerator, a synchrotron and a beam delivery system to the three medical treatment rooms and to the research irradiation room. The ion sources shall deliver beams of H31+, C4+ and light ions with utmost reliability and stability. This paper describes the features of the ion sources presently planned for the MedAustron facility; such as ion source main parameters, gas injection, temperature control and cooling systems. A dedicated beam diagnostics technique is proposed in order to characterize ECR ions beams; in the first drift region after the ion source, a fraction of the mixed beam is selected via moveable aperture. With standard beam diagnostics, we then aim to produce position-dependant observables such as ion-current density, beam energy distribution and emittance for each charge states to be compared to simulations of ECR e-heating...

  15. New Developments of a Laser Ion Source for Ion Synchrotrons

    CERN Document Server

    Kondrashev, S; Konukov, K; Sharkov, B Yu; Shumshurov, A V; Camut, O; Chamings, J A; Kugler, H; Scrivens, R; Charushin, A; Makarov, K; Satov, Yu; Smakovskii, Yu

    2004-01-01

    Laser Ion Sources (LIS) are well suited to filling synchrotron rings with highly charged ions of almost any element in a single turn injection mode. We report the first measurements of the LIS output parameters for Pb27+ ions generated by the new 100 J/1 Hz Master Oscillator - Power Amplifier CO2-laser system. A new LIS has been designed, built and tested at CERN, as an ion source for ITEP-TWAC accelerator/accumulator facility, and as a possible future source for an upgrade of the Large Hadron Collider (LHC) injector chain. The use of the LIS based on 100 J/1 Hz CO2-laser together with the new ion LINAC, as injector for ITEP-TWAC project, is discussed..

  16. The Frankfurt RF-driven ion source

    CERN Document Server

    Beller, Peter; Klein, H; Maaser, A; Volk, K; Weber, M

    2000-01-01

    An RF-driven volume ion source based on the high efficiency ion source (HIEFS) has been developed at the Institut fuer Angewandte Physik in Frankfurt. The RF-driven ion source operates at a frequency of 3.5 MHz with a maximum duty factor of 10%. Using an 11 kW RF-amplifier a He sup + -beam with a current of 82 mA as well as an oxygen beam with a current of 39 mA and an O sup + -fraction of 90% could be extracted. Experiments were done to study the operating conditions of the ion source. For the working gases helium and oxygen the emission current density in dependence on several ion source parameters was investigated. Furthermore, the energy distribution of the electrons and ions in the plasma as well as the beam composition for several working gases were studied. This article will give a detailed description of the ion source and the experimental setup. In addition, various dependencies between the plasma parameters and the emission current density, the energy distribution of electrons and ions and the beam ...

  17. Characteristics of MINI ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Yuichi; Yokota, Watalu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A very compact electron cyclotron resonance ion source (MINI ECR) was manufactured to extend available energy ranges of ion beams by applying multiply charged ions to electrostatic accelerators. The magnetic field to confine a plasma is formed only by small permanent magnets and the microwave power up to 15 W is generated by a compact transistor amplifier in order to install the ion source at a narrow high-voltage terminal where the electrical power feed is restricted. The magnet assembly is 12 cm in length and 11 cm in diameter, and forms a mirror field with the maximum strength of 0.55 T. The total power consumption of the source is below 160 W. The performance of the source was tested in a bench stand. The results of Ar, Xe, O, and N ion generation are reported in this paper. (author)

  18. An ion-optical bench for testing ion source lenses

    Science.gov (United States)

    Stoffels, J. J.; Ells, D. R.

    1988-06-01

    An ion-optical bench has been designed and constructed to obtain experimental data on the focusing properties of ion lenses in three dimensions. The heart of the apparatus is a position-sensitive detector (PSD) that gives output signals proportional to the x and y positions of each ion impact. The position signals can be displayed on an oscilloscope screen and analyzed by a two-parameter pulse-height analyzer, thereby giving a visual picture of the ion beam cross section and intensity distribution. The PSD itself is mounted on a track and is movable during operation from a position immediately following the ion lens to 30 cm away. This enables the rapid collection of accurate data on the intensity distribution and divergence angles of ions leaving the source lens. Examples of ion lens measurements are given.

  19. Review of polarized ion sources (invited).

    Science.gov (United States)

    Zelenski, A

    2010-02-01

    Recent progress in polarized ion sources development is reviewed. New techniques for production of polarized H(-) ion (proton), D(-) (D(+)), and (3)He(++) ion beams are discussed. Feasibility studies of these techniques are in progress at BNL and other laboratories. Polarized deuteron beams will be required for the polarization program at the Dubna Nuclotron and at the deuteron electric dipole moment experiment at BNL. Experiments with polarized (3)He(++) ion beams are a part of the experimental program at the future electron ion collider.

  20. Electrospray ion source with reduced analyte electrochemistry

    Science.gov (United States)

    Kertesz, Vilmos; Van Berkel, Gary J

    2013-07-30

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  1. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.

  2. The prototype of radioactive ion source

    CERN Document Server

    Aleksandrov, A V; Kot, N K; Andrighetto, A; Stroe, L

    2001-01-01

    The design and experimental results of the RIB source prototype are presented.A source will have the container of sup 2 sup 3 sup 5 U compounds heated up to 2200-2500 degree C. Vapors of uranium fission obtained when the ion source is irradiated by the high-energy neutron flux, are then ionized and extracted from the source. In the experiments with the prototype loaded by sup 1 sup 2 C the source working temperature 2700 degree C was reached, the carbon ion current 10 nA was obtained. The total operation time of more than 100 hours with no performance degradation was demonstrated.

  3. Silicon etch with chromium ions generated by a filtered or non-filtered cathodic arc discharge.

    Science.gov (United States)

    Scopece, Daniele; Döbeli, Max; Passerone, Daniele; Maeder, Xavier; Neels, Antonia; Widrig, Beno; Dommann, Alex; Müller, Ulrich; Ramm, Jürgen

    2016-01-01

    The pre-treatment of substrate surfaces prior to deposition is important for the adhesion of physical vapour deposition coatings. This work investigates Si surfaces after the bombardment by energetic Cr ions which are created in cathodic arc discharges. The effect of the pre-treatment is analysed by X-ray diffraction, Rutherford backscattering spectroscopy, scanning electron microscopy and in-depth X-ray photoemission spectroscopy and compared for Cr vapour produced from a filtered and non-filtered cathodic arc discharge. Cr coverage as a function of ion energy was also predicted by TRIDYN Monte Carlo calculations. Discrepancies between measured and simulated values in the transition regime between layer growth and surface removal can be explained by the chemical reactions between Cr ions and the Si substrate or between the substrate surface and the residual gases. Simulations help to find optimum and more stable parameters for specific film and substrate combinations faster than trial-and-error procedure.

  4. Influence of Jet Angle and Ion Density of Cathode Side on Low Current Vacuum Arc Characteristics

    Institute of Scientific and Technical Information of China (English)

    WANG Lijun; JIA Shenli; SHI Zongqian

    2008-01-01

    In this study, the influence of the initial jet angles (IJAs) and ion number densities (INDs) at the cathode side on the low current vacuum arc (LCVA) characteristics is simulated and analysed. The results show that the ion temperature, electron temperature, ion number density, axial current density and plasma pressure all decrease with the increase of the cathode IJAs. It is also shown that LCVA can cause a current constriction for lower cathode IND, and the anode sheath potential is more nonuniform, which is mainly related to the nonuniform distribution of the axial current density at the anode side.

  5. Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas

    Science.gov (United States)

    Bénard, A.; Arculus, R. J.; Nebel, O.; Ionov, D. A.; McAlpine, S. R. B.

    2017-02-01

    Primary arc melts may form through fluxed or adiabatic decompression melting in the mantle wedge, or via a combination of both processes. Major limitations to our understanding of the formation of primary arc melts stem from the fact that most arc lavas are aggregated blends of individual magma batches, further modified by differentiation processes in the sub-arc mantle lithosphere and overlying crust. Primary melt generation is thus masked by these types of second-stage processes. Magma-hosted peridotites sampled as xenoliths in subduction zone magmas are possible remnants of sub-arc mantle and magma generation processes, but are rarely sampled in active arcs. Published studies have emphasised the predominantly harzburgitic lithologies with particularly high modal orthopyroxene in these xenoliths; the former characteristic reflects the refractory nature of these materials consequent to extensive melt depletion of a lherzolitic protolith whereas the latter feature requires additional explanation. Here we present major and minor element data for pristine, mantle-derived, lava-hosted spinel-bearing harzburgite and dunite xenoliths and associated primitive melts from the active Kamchatka and Bismarck arcs. We show that these peridotite suites, and other mantle xenoliths sampled in circum-Pacific arcs, are a distinctive peridotite type not found in other tectonic settings, and are melting residues from hydrous melting of silica-enriched mantle sources. We explore the ability of experimental studies allied with mantle melting parameterisations (pMELTS, Petrolog3) to reproduce the compositions of these arc peridotites, and present a protolith ('hybrid mantle wedge') composition that satisfies the available constraints. The composition of peridotite xenoliths recovered from erupted arc magmas plausibly requires their formation initially via interaction of slab-derived components with refractory mantle prior to or during the formation of primary arc melts. The liquid

  6. Development of a microwave ion source for ion implantations

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N., E-mail: Nbk-Takahashi@shi.co.jp; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T. [Technology Research Center, Sumitomo Heavy Industries Ltd., Yokosuka, Kanagawa 237-8555 (Japan)

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  7. Radiofrequency and 2.45 GHz electron cyclotron resonance H- volume production ion sources

    Science.gov (United States)

    Tarvainen, O.; Peng, S. X.

    2016-10-01

    The volume production of negative hydrogen ions ({{{H}}}-) in plasma ion sources is based on dissociative electron attachment (DEA) to rovibrationally excited hydrogen molecules (H2), which is a two-step process requiring both, hot electrons for ionization, and vibrational excitation of the H2 and cold electrons for the {{{H}}}- formation through DEA. Traditionally {{{H}}}- ion sources relying on the volume production have been tandem-type arc discharge sources equipped with biased filament cathodes sustaining the plasma by thermionic electron emission and with a magnetic filter separating the main discharge from the {{{H}}}- formation volume. The main motivation to develop ion sources based on radiofrequency (RF) or electron cyclotron resonance (ECR) plasma discharges is to eliminate the apparent limitation of the cathode lifetime. In this paper we summarize the principles of {{{H}}}- volume production dictating the ion source design and highlight the differences between the arc discharge and RF/ECR ion sources from both, physics and technology point-of-view. Furthermore, we introduce the state-of-the-art RF and ECR {{{H}}}- volume production ion sources and review the challenges and future prospects of these yet developing technologies.

  8. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  9. H- ion source developments at the SNS

    Energy Technology Data Exchange (ETDEWEB)

    Welton, Robert F [ORNL; Stockli, Martin P [ORNL; Murray Jr, S N [ORNL; Pennisi, Terry R [ORNL; Han, Baoxi [ORNL; Kang, Yoon W [ORNL; Goulding, Richard Howell [ORNL; Crisp, Danny W [ORNL; Sparks, Dennis O [ORNL; Luciano, Nicholas P [ORNL; Carmichael, Justin R [ORNL; Carr, Jr, Jerry [ORNL

    2008-01-01

    The U.S. Spallation Neutron Source (SNS) will require substantially higher average and pulse H- beam currents than can be produced from conventional ion sources such as the base line SNS source. H- currents of 40-50 mA (SNS operations) and 70-100 mA (power upgrade project) with an rms emittance of 0.20-0.35 Pi mm mrad and a ~7% duty factor will be needed. We are therefore investigating several advanced ion source concepts based on RF excitation. First, the performance characteristics of an external antenna source based on an Al2O3 plasma chamber combined with an external multicusp magnetic configuration, an elemental Cs system, and plasma gun will be discussed. Second, the first plasma measurements of a helicon-driven H- ion source will also be presented.

  10. Enhancing the performances of ECR Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Alton, G.D.; Liu, Y.

    1999-03-29

    The performances of ECR ion sources can be enhanced in the spatial domain by tailoring the central magnetic field so that it is uniformly distributed over a large plasma volume and is of magnitude so as to be in resonance with single frequency microwave radiation. Analogously, the performances of conventional minimum-B ECR ion sources can be enhanced in the frequency domain by injecting multiple discrete frequency or broadband microwave radiation into their plasma volumes. In this report, examples of both the spatial-and frequency-domain techniques will be given. For example, the design aspects of an all permanent-magnet ''volume-type'' (spatial-domain) ECR ion source will be described and the effects of injecting multiple frequencies (frequency-domain) on the charge-state-distributions extracted from a conventional minimum-B ECR ion source will be presented.

  11. Negative ion source with external RF antenna

    Science.gov (United States)

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  12. Blurring the boundaries between ion sources: The application of the RILIS inside a FEBIAD type ion source at ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Day Goodacre, T., E-mail: thomas.day.goodacre@cern.ch [CERN, CH-1211 Geneva 23 (Switzerland); School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Billowes, J. [School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Catherall, R. [CERN, CH-1211 Geneva 23 (Switzerland); Cocolios, T.E. [School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Crepieux, B. [CERN, CH-1211 Geneva 23 (Switzerland); Fedorov, D.V. [Petersburg Nuclear Physics Institute, 188350 Gatchina (Russian Federation); Fedosseev, V.N. [CERN, CH-1211 Geneva 23 (Switzerland); Gaffney, L.P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven (Belgium); Giles, T.; Gottberg, A.; Lynch, K.M.; Marsh, B.A.; Mendonça, T.M. [CERN, CH-1211 Geneva 23 (Switzerland); Ramos, J.P. [CERN, CH-1211 Geneva 23 (Switzerland); Laboratory of Powder Technology, EPFL, CH-1015 Lausanne (Switzerland); Rossel, R.E. [CERN, CH-1211 Geneva 23 (Switzerland); Institut für Physik, Johannes Gutenberg Universität, D-55099 Mainz (Germany); Faculty of Design, Computer Science and Media, Hochschule RheinMain, 65197 Wiesbaden (Germany); Rothe, S. [CERN, CH-1211 Geneva 23 (Switzerland); Sels, S.; Sotty, C. [KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven (Belgium); Stora, T. [CERN, CH-1211 Geneva 23 (Switzerland); Van Beveren, C. [KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven (Belgium); and others

    2016-06-01

    For the first time, the laser resonance photo-ionization technique has been applied inside a FEBIAD-type ion source at an ISOL facility. This was achieved by combining the ISOLDE RILIS with the ISOLDE variant of the FEBIAD ion source (the VADIS) in a series of off-line and on-line tests at CERN. The immediate applications of these developments include the coupling of the RILIS with molten targets at ISOLDE and the introduction of two new modes of FEBIAD operation: an element selective RILIS mode and a RILIS + VADIS mode for increased efficiency compared to VADIS mode operation alone. This functionality has been demonstrated off-line for gallium and barium and on-line for mercury and cadmium. Following this work, the RILIS mode of operation was successfully applied on-line for the study of nuclear ground state and isomer properties of mercury isotopes by in-source resonance ionization laser spectroscopy. The results from the first studies of the new operational modes, of what has been termed the Versatile Arc Discharge and Laser Ion Source (VADLIS), are presented and possible directions for future developments are outlined.

  13. Polarized ion source operation at IUCF

    Energy Technology Data Exchange (ETDEWEB)

    Derenchuk, V. [Indiana University Cyclotron Facility, Bloomington, Indiana 47408 (United States); Belov, A. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, 117312, Russian Federation (Russian Federation); Brown, R.; Collins, J.; Sowinski, J.; Stephenson, E.; Wedekind, M. [Indiana University Cyclotron Facility, Bloomington, Indiana 47408 (United States)

    1995-07-15

    The IUCF high intensity polarized ion source (HIPIOS), based on the source in operation at TUNL (1) and employing cold ({similar_to}30 K) atomic beam technology with an electron cyclotron resonance ionizer, has recently delivered beam to the first users. The results of the development work required to make the source operate reliably, with reasonable beam parameters are described. Methods used to measure the polarization and possible sources of unpolarized background are also discussed.

  14. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu. [High Current Electronics Institute, Siberian Branch of Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S. [Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Dugin, S.; Alexeyenko, O. [State Scientific Center of the Russian Federation State Research Institute for Chemistry and Technology of Organoelement Compounds, Moscow (Russian Federation)

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  15. Laser ion source for particle accelerators

    CERN Document Server

    Sherwood, T R

    1995-01-01

    There is an interest in accelerating atomic nuclei to produce particle beams for medical therapy, atomic and nuclear physics, inertial confinement fusion and particle physics. Laser Ion Sources, in which ions are extracted from plasma created when a high power density laser beam pulse strikes a solid surface in a vacuum, are not in common use. However, some new developments in which heavy ions have been accelerated show that such sources have the potential to provide the beams required for high-energy accelerator systems.

  16. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    Science.gov (United States)

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  17. A Modified MeVVA Ion Source for a Malmberg-Penning Trap

    Science.gov (United States)

    Olson, David K.; Peterson, Bryan G.; Hart, Grant W.

    2006-10-01

    We have designed a new type of plasma gun ion source for a Malmberg-Penning trap based on Metal Vapor Vacuum Arc (MeVVA) ion source designs. Our primary intent with this MeVVA-type source is to create a confinable beryllium-7 (7Be) plasma. The radioactivity of 7Be requires us to replace the sample inside the ion source on a regular basis. Our design makes it possible to easily remove the cathode of the ion source from an ultra-high vacuum trap and exchange 7Be samples while only needing to repressurize a small chamber rather than the entire trap. This design has an added benefit of being capable of generating plasmas from a wide variety of metals by simply exchanging the source target in the removable cathode. Because of this wide compatibility, we will be able to use our trap for studying any number of different plasmas, including other radioactive types.

  18. A Study of AlN Films Prepared by Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Hexagonal AIN films have been obtained by arc ion plating at different negative biases. X-ray diffraction and scanningelectron microscopy results show that AIN films with smooth surfaces and (002) preferred orientation are obtainedat Iow biases, whereas those with coarse surfaces and (100) preferred orientation are obtained at high biases. Theformation mechanism of AIN is analyzed and the experiment results are discussed. The effect of bias on adhesionstrength has also been examined.

  19. Study on the measure to improve the arc stabilization in smaller current welding for the variable polarity GTAW power source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The variable polarity power source which incorporates a constant current power and a secondary inverter does not need special apparatus for stabilizing arc. The pulse for stabilizing arc is created by the circuit structure itself. The paper analyzes the principle of acquiring the pulse, provides the better method to improve the arc stabilization under smaller welding current. Test shows the arc is highly stable , and the process has no high-frequency electromagnetic interference, which is suitable for automatic welding case.

  20. Negative hydrogen ion sources for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, D.P.; /Fermilab; Peters, J.; /DESY; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  1. New 500-kV Ion Source Test Strand for HIF

    Energy Technology Data Exchange (ETDEWEB)

    Sangster, T.C.; Ahle, L.E.; Halaxa, E.F.; Karpenko, V.P.; Oldaker, M.E.; Mitchell, J.W.; Beck, D.N.; Bieniosek, F.M.; Henestroza, E.; Kwan, J.W.

    2000-03-09

    One of the most challenging aspects of ion beam driven inertial fusion energy is the reliable and efficient generation of low emittance, high current ion beams. The primary ion source requirements include a rise time of order 1-{micro}sec, a pulse width of at least 20-{micro}sec, a flattop ripple of less than 0.1% and a repetition rate of at least 5-HZ. Naturally, at such a repetition rate, the duty cycle of the source must be greater than 10{sup 8} pulses. Although these specifications do not appear to exceed the state-of-the-art for pulsed power, considerable effort remains to develop a suitable high current ion source. Therefore, we are constructing a 500-kV test stand specifically for studying various ion source concepts including surface, plasma and metal vapor arc. This paper will describe the test stand design specifications as well as the details of the various subsystems and components.

  2. Comparison on welding mode characteristics of arc heat source for heat input control in hybrid welding of aluminum alloy

    Science.gov (United States)

    Song, Moo-Keun; Kim, Jong-Do; Oh, Jae-Hwan

    2015-03-01

    Presently in shipbuilding, transportation and aerospace industries, the potential to apply welding using laser and laser-arc hybrid heat sources is widely under research. This study has the purpose of comparing the weldability depending on the arc mode by varying the welding modes of arc heat sources in applying laser-arc hybrid welding to aluminum alloy and of implementing efficient hybrid welding while controlling heat input. In the experimental study, we found that hybrid welding using CMT mode produced deeper penetration and sounder bead surface than those characteristics produced during only laser welding, with less heat input compared to that required in pulsed arc mode.

  3. Saddle antenna radio frequency ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R. [Muons, Inc., Batavia, Illinois 60510 (United States); Murray, S.; Pennisi, T.; Santana, M.; Piller, C.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, Tennessee 37831 (United States); Breitschopf, J. [TLU, Seguin, Texas 78155 (United States); Dudnikova, G. [UMD, College Park, Maryland 32611 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2016-02-15

    Existing RF ion sources for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation ∼3–5 mA/cm{sup 2} kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) surface plasma source (SPS) described here was developed to improve H{sup −} ion production efficiency, reliability, and availability. In SA RF ion source, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} kW. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF. Continuous wave (CW) operation of the SA SPS has been tested on the test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. CW operation with negative ion extraction was tested with RF power up to ∼1.2 kW in the plasma with production up to Ic = 7 mA. A stable long time generation of H{sup −} beam without degradation was demonstrated in RF discharge with AlN discharge chamber.

  4. Liquid metal ion source analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, P.

    1986-06-14

    An analysis system for angular and mass resolved energy distribution measurements of liquid metal ion source beams has been constructed. The energy analyser has been calibrated, and preliminary on-axis energy distribution measurements of a gallium source operating between 0.26 and 30.0 ..mu..A have been made. These results closely agree with measurements reported by other workers, confirming the unusual FWHM behaviour of gallium sources below approx. 2 ..mu..A.

  5. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  6. LINAC4 - The Ion Source

    CERN Document Server

    Haugaa, Olav

    2013-01-01

    My summer student project has been split in three parts. During the first 4-5 weeks I was involved in the design of the filtermagnets for the IS02 with the simulation tool Opera. After this, I have performed data analysis of the plasma light emission in the IS01 source with the software Matlab and I took part in the development of a Fortran code for plasma simulations. In all projects, understanding plasma physics has been essential and the learning outcome related to this field has been very high.

  7. Overview of Recent Studies and Design Changes for the FNAL Magnetron Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, D. S. [Fermilab; Sosa, A. [Fermilab

    2016-09-06

    This paper will cover several studies and design changes that will eventually be implemented to the Fermi National Accelerator Laboratory (FNAL) magnetron ion source. The topics include tungsten cathode insert, solenoid gas valves, current controlled arc pulser, cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor reduction. The studies were performed on the FNAL test stand described in [1], with the aim to improve source lifetime, stability, and reducing the amount of tuning needed.

  8. First results with the yin-yang type electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, P. [Department of Physics, University of Jyvaeskylae (JYFL), P.O. Box 35, FI-40014, Jyvaeskylae (Finland)]. E-mail: pekka.suominen@gmail.com; Ropponen, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae (JYFL), P.O. Box 35, FI-40014, Jyvaeskylae (Finland)

    2007-08-01

    Highly charged heavy-ion beams are often produced with Electron Cyclotron Resonance Ion Sources (ECRIS). The so-called conventional minimum-B ECRIS design includes two solenoid magnets and a multipole magnet (usually a hexapole). A minimum-B configuration can also be formed with 'yin-yang' ('baseball') type coils. Such a magnetic field configuration has been extensively tested in magnetic fusion experiments but not for the production of highly charged heavy ions. The application of the afore-mentioned coil structure to the production of multiply charged ion beams was studied. In this paper we present a design of a yin-yang type ion source known as the ARC-ECRIS and some preliminary experimental results. As a result of this work it was found that the ARC-ECRIS plasma is stable and capable of producing multiply charged ions. Many compromises were made in order to keep the costs of the prototype low. As a consequence, significant improvement can be expected in performance if the plasma size is increased and magnetic confinement is improved. At the end of this article an evolution model of the ARC-ECRIS and some future prospects are presented.

  9. The RHIC polarized H- ion source

    Science.gov (United States)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D.

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H- ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H- ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  10. Ion source design for industrial applications

    Science.gov (United States)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The more frequently used design techniques for the components of broad-beam electron bombardment ion sources are discussed. The approach used emphasizes refractory metal cathodes and permanent-magnet multipole discharge chambers. Design procedures and sample calculations are given for the discharge chamber, ion optics, the cathodes, and the magnetic circuit. Hardware designs are included for the isolator, cathode supports, anode supports, pole-piece assembly, and ion-optics supports. A comparison is made between two-grid and three-grid optics. The designs presented are representative of current technology and are adaptable to a wide range of configurations.

  11. Plasma ion sources and ion beam technology inmicrofabrications

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lili [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  12. Numerical Simulation Multicomponent Ion Beam Transport form ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    MaLei; SongMingtao; ZhangZimin; CaoYun

    2003-01-01

    In order to simulate the transport of multi-components ion beam extracted from an ECR ion source, we have developed a multi-charged ion beam transport program named MCIBS 1.0. The program is dedicated to numerical simulation of the behavior of highly-charged ion beam and optimization of beam optics in transport lines and is realized on a PC with Windows user interface of Microsoft Visual Basic. Among all the ions with different charge states in the beam, the exchanges of electrons between highly charged ions and low charged ions or neutral,atoms of residual gas are taken into account by using classical Molecular Over-barrier Model and Monte Carlo method. An advanced Windows graphical interface makes it; comfortable and friendly for the user to operate in an interactive mode. The present program is used for the numerical calculation and optimization of beam optics in a transport line consisting of various magnetic elements, such as dipole magnet, quadrupole and so on. It is possible to simultaneously simulate 200,000 particles, in a transport line of 340 m at most, and show every particle orbit. Beam cross section graphics and emittance phase pictures can be also shown at any position in the transport line.

  13. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  14. Negative Ion Sources: Magnetron and Penning

    CERN Document Server

    Faircloth, D C

    2013-01-01

    The history of the magnetron and Penning electrode geometry is briefly outlined. Plasma generation by electrical discharge-driven electron impact ionization is described and the basic physics of plasma and electrodes relevant to magnetron and Penning discharges are explained. Negative ions and their applications are introduced, along with their production mechanisms. Caesium and surface production of negative ions are detailed. Technical details of how to build magnetron and Penning surface plasma sources are given, along with examples of specific sources from around the world. Failure modes are listed and lifetimes compared.

  15. rf improvements for Spallation Neutron Source H-ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yoon W [ORNL; Fuja, Raymond E [ORNL; Goulding, Richard Howell [ORNL; Hardek, Thomas W [ORNL; Lee, Sung-Woo [ORNL; McCarthy, Mike [ORNL; Piller, Chip [ORNL; Shin, Ki [ORNL; Stockli, Martin P [ORNL; Welton, Robert F [ORNL

    2010-01-01

    The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering 38 mA H beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride AlN plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier. 2010 American Institute of Physics.

  16. Development of laser ion source for heavy ion applications

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Shinji, E-mail: shibuya@aec-beam.co.jp [Accelerator Engineering Corporation, 3-8-5 Konakadai, Inage-ku, Chiba 263-0043 (Japan); Hattori, Toshiyuki, E-mail: thattori@nr.titech.ac.jp [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Hayashizaki, Noriyosu, E-mail: nhayashi@nr.titech.ac.jp [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Kashiwagi, Hirotsugu, E-mail: hirotsugu.kashiwagi@jaea.go.jp [Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Maruyama, Toshiyuki, E-mail: t-maruyama@toyama-jp.com [Toyama Co., Ltd., 4-13-16 Hibarigaoka, Zama-shi, Kanagawa 252-0003 (Japan); Mochizuki, Tetsuro, E-mail: Mochizuki@toyama-jp.com [Toyama Co., Ltd., 4-13-16 Hibarigaoka, Zama-shi, Kanagawa 252-0003 (Japan); Momota, Sadao, E-mail: momota.sadao@kochi-tech.ac.jp [Kochi University of Technology, 185 Tosa-yamada-cyo, Kami-shi, Kochi 782-8502 (Japan); Nakagawa, Jun, E-mail: nakagawa@toyama-jp.com [Toyama Co., Ltd., 4-13-16 Hibarigaoka, Zama-shi, Kanagawa 252-0003 (Japan); Takeuchi, Takeshi, E-mail: aec2g@nirs.go.jp [Accelerator Engineering Corporation, 3-8-5 Konakadai, Inage-ku, Chiba 263-0043 (Japan)

    2011-12-15

    We have been developing a high-performance laser ion source (LIS) for practical applications since 2009. Ideally, the LIS should generate a carbon beam with a peak current of 20 mA and a pulse duration of over 1 {mu}s. We selected a Nd:YAG laser with a Gaussian-coupled resonator as the laser source based on our experience of generating high-charge-state ion beams. This laser can produce fundamental pulses with a power of 650 mJ and durations of about 6 ns. The graphite target used is 10 cm high and 10 cm in diameter, as it can be irradiated with up to 10{sup 5} laser shots. The maximum extraction voltage was designed to be 50 kV. We have already finished designing the LIS and we commenced fabrication. We intend to measure the source performance by performing plasma and beam tests up to the end of March 2011.

  17. Finite element analysis of keyhole plasma arc welding based on an adaptive heat source mode

    Institute of Scientific and Technical Information of China (English)

    Hu Qingxian; Wu Chuansong; Zhang Yuming

    2007-01-01

    An adaptive heat source mode is proposed to account for the keyhole effect and the characteristics of volumetric distribution along the direction of the workpiece thickness. Finite element analysis of the temperature field in keyhole plasma arc welding is conducted and the weld geometry is obtained. The predicted results are in agreement with the measured ones.

  18. Development of versatile multiaperture negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Cavenago, M.; Minarello, A.; Sattin, M. [INFN-LNL, v.le dell' Universita n 2, I-35020, Legnaro (PD) Italy (Italy); Serianni, G.; Antoni, V.; Bigi, M.; Pasqualotto, R.; Recchia, M.; Veltri, P.; Agostinetti, P.; Barbisan, M.; Baseggio, L.; Cervaro, V.; Degli Agostini, F.; Franchin, L.; Laterza, B.; Ravarotto, D.; Rossetto, F.; Zaniol, B.; Zucchetti, S. [Consorzio RFX, Associazione Euratom-ENEA sulla fusione, c.so S. Uniti 4, 35127 Padova (Italy); and others

    2015-04-08

    Enhancement of negative ion sources for production of large ion beams is a very active research field nowadays, driven from demand of plasma heating in nuclear fusion devices and accelerator applications. As a versatile test bench, the ion source NIO1 (Negative Ion Optimization 1) is being commissioned by Consorzio RFX and INFN. The nominal beam current of 135 mA at −60 kV is divided into 9 beamlets, with multiaperture extraction electrodes. The plasma is sustained by a 2 MHz radiofrequency power supply, with a standard matching box. A High Voltage Deck (HVD) placed inside the lead shielding surrounding NIO1 contains the radiofrequency generator, the gas control, electronics and power supplies for the ion source. An autonomous closed circuit water cooling system was installed for the whole system, with a branch towards the HVD, using carefully optimized helical tubing. Insulation transformer is installed in a nearby box. Tests of several magnetic configurations can be performed. Status of experiments, measured spectra and plasma luminosity are described. Upgrades of magnetic filter, beam calorimeter and extraction grid and related theoretical issues are reviewed.

  19. Influence of argon and oxygen on charge-state-resolved ion energydistributions of filtered aluminum arcs

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Johanna; Anders, Andre; Mraz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-03-23

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range 0.5 8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin-film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.

  20. Formation of nanocrystalline microstructure in arc ion plated CrN films

    Institute of Scientific and Technical Information of China (English)

    Qi-min WANG; Se-Hun KWON; Kwang-Ho KIM

    2011-01-01

    Applying negative bias voltages caused significant microstructure changes in arc ion plated CrN films. Nanocrystalline microstructures were obtained by adjusting the negative bias voltage. Structural characterizations of the films were carried out using X-ray diffractometry (XRD) and high-resolution transmission electron microscopy (HR-TEM). The results indicated that increasing ion bombardment by applying negative bias voltages resulted in the formation of defects in the CrN films, inducing microstructure evolution from micro-columnar to nanocrystalline. The microhardness and residual stresses of the films were also affected. Based on the experimental results, the evolution mechanisms of the film microstructure and properties were discussed by considering ion bombardment eftects.

  1. Design of Magnetic Field System for Calutron Ion Source Set

    Institute of Scientific and Technical Information of China (English)

    REN; Xiu-yan; ZENG; Zi-qiang

    2013-01-01

    The Calutron ion source is the most important equipment of EMIS,and the structure of the ion source is more complicated.Because the parameter of each part is interrelate,as experiment and test set,It is very convenient to adjust the parameter of ion source and make the ion source get a good quality.Magnetic field system is the leading and necessary auxiliary equipment of the Calutron ion source

  2. MHD generators as pulse power sources for arc-driven railguns

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, N.; Raugi, M.; Tellini, A. [Univ. di Pisa (Italy). Dipt. di Sistemi Elettrici e Automazione

    1995-01-01

    In this paper the performances of an electromagnetic launch system constituted by an arc driven railgun powered by a MHD generator are investigated. A small bore plasma driven railgun for fusion fuel pellet injection is examined considering as pulse power source a MHD generator having characteristics taken from operating devices. The analysis of the railgun and generator has been carried out by means of a lumped parameter equivalent network model that takes into account drag force and ablation effects and allowing the evaluation of the main electrical and thermodynamic quantity distributions of the plasma arc.

  3. Modification of a metallic surface in a vacuum arc discharge plasma using thermally stimulated ion diffusion

    Science.gov (United States)

    Muboyadzhyan, S. A.

    2008-12-01

    A new process for modifying a metallic surface in a vacuum arc discharge plasma using thermally stimulated ion diffusion is considered. The effect of the bias voltage (negative substrate potential) on the processes that occur on the surface of a treated part is studied when the substrate material interacts with an accelerated metallic-ion flow. The phase and elemental compositions of the modified layer are studied for substrates made of nickel-based superalloys, austenitic and martensitic steels, and titanium-based alloys. The heat resistance, the salt corrosion resistance, and the corrosion cracking resistance of steels and titanium-based alloys are investigated after their modification in vacuum arc plasmas of pure metals (Ti, Zr, Al, Cr, Y) and related alloys. The surface modification caused by the thermally stimulated ion saturation of the surfaces of parts made from structural materials is shown to change the structural-phase states of their surfaces and, correspondingly, the properties of these materials in relation to the state of the surface.

  4. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    P Kumar; G Rodrigues; U K Rao; C P Safvan; D Kanjilal; A Roy

    2002-11-01

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  5. Cavitation-erosion resistance of arc ion-plated (Ti, Cr) N coatings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The cavitation-erosion behavior of (Ti,Cr)N multi-component coatings produced by arcion-plating on grey cast iron was studied by using an ultrasonic cavitation -erosion testing appara-tus and scanning electron microscopy. The test results indicated that surface roughness of thesubstrate, surface morphology of the coating, substrate bias voltage and the thickness of the coat-ing had certain influence on the erosion rate. Arc ion-plated (Ti,Cr)N multi-component coatingsshowed better cavitation -erosion resistance than single component coatings because of highermicrohardness and good adhesion.

  6. The SNS External Antenna H- Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Welton, Robert F [ORNL; Stockli, Martin P [ORNL; Murray Jr, S N [ORNL; Crisp, Danny W [ORNL; Carmichael, Justin R [ORNL; Goulding, Richard Howell [ORNL; Han, Baoxi [ORNL; Pennisi, Terry R [ORNL; Santana, Manuel [ORNL

    2010-01-01

    The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure that we will meet our operational commitments as well as provide for future facility upgrades with high reliability, we have developed an RF-driven, H- ion source based on a ceramic aluminum nitride (AlN) plasma chamber [1]. This source is expected to be utilized by the SNS for neutron production starting in 2009. This report details the design of the production source which features an AlN plasma chamber, 2-layer external antenna, cooled-multicusp magnet array, Cs2CrO4 cesium system and a Molybdenum plasma ignition gun. Performance of the production source both on the SNS accelerator and SNS test stand is reported. The source has also been designed to accommodate an elemental Cs system with an external reservoir which has demonstrated unanalyzed beam currents up to ~100mA (60Hz, 1ms) on the SNS ion source test stand.

  7. Ion source choices - an h- source for the high intensity neutrino source

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, Douglas P.; /Fermilab; Welton, Robert F.; /SNS Project, Oak Ridge; Stockli, Martin P.; Peters, Jens; /DESY; Alessi, James; /Brookhaven

    2006-08-01

    The High Intensity Neutrino Source (HINS) program at Fermilab (formerly the Proton Driver) aims to develop a multi-mission linear accelerator (LINAC) capable of accelerate H{sup -} ions to 8 GeV. This paper touches on the ion source requirements for the HINS and discusses long pulse length testing of three ion sources which appear to have the capability of meeting these requirements.

  8. Design of the Prototype Negative Ion Source for Neutral Beam Injector at ASIPP

    Science.gov (United States)

    Wei, Jianglong; Xie, Yahong; Liang, Lizhen; Gu, Yuming; Yi, Wei; Li, Jun; Hu, Chundong; Xie, Yuanlai; Jiang, Caichao; Tao, Ling; Sheng, Peng; Xu, Yongjian

    2016-09-01

    In order to support the design, manufacture and commissioning of the negative-ion-based neutral beam injection (NBI) system for the Chinese Fusion Engineering Test Reactor (CFETR), the Hefei utility negative ion test equipment with RF source (HUNTER) was proposed at ASIPP. A prototype negative ion source will be developed at first. The main bodies of plasma source and accelerator of the prototype negative ion source are similar to that of the ion source for EAST-NBI. But instead of the filament-arc driver, an RF driver is adopted for the prototype negative ion source to fulfill the requirement of long pulse operation. A cesium seeding system and a magnetic filter are added for enhancing the negative ion density near the plasma grid and minimizing co-extracted electrons. Besides, an ITER-like extraction system is applied inside the accelerator, where the negative ion beam is extracted and accelerated up to 50 kV. supported by National Natural Science Foundation of China (Nos. 11505224, 11575240, 11405207), the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001, 2013GB101002, 2013GB101003), International Science and Technology Cooperation Program of China (No. 2014DFG61950), and Foundation of ASIPP (No. DSJJ-14-JC07)

  9. Status of ECR ion sources at JAERI

    CERN Document Server

    Yokota, W; Nara, T; Ishi, Y; Arakawa, K; Ohkoshi, K

    1999-01-01

    At the Takasaki site of Japan Atomic Energy Research Institute, four ECR ion sources were purchased or developed so far. This paper will report their performance, modification and status. The outlines for each source are as follows; 1. OCTOPUS purchased from IBA s.a. has been in use with a cyclotron since 1990. The gas feed system was modified to change gas species within 10 minutes to avoid impurity ions in the cocktail beam acceleration technique of the cyclotron. 2. ECR-18 with 18-GHz microwave has a solenoid coil between a pair of mirror coils to change mirror ratio in a wide range. A bump between mirror peaks in the original axial field distribution was removed by halving the solenoid length. The performance in generating high charge state ions was significantly improved as a result. 3. HYPERNANOGAN was purchased from PANTECHNIK s.a. and installed in the cyclotron system this year. Test operation was successfully made with generation of Ar, Pb and Ta ions. 4. MINI ECR is a full permanent magnet source wi...

  10. Main magnetic focus ion source with the radial extraction of ions

    CERN Document Server

    Ovsyannikov, V P

    2015-01-01

    In the main magnetic focus ion source, atomic ions are produced in the local ion trap created by the rippled electron beam in focusing magnetic field. Here we present the novel modification of the room-temperature hand-size device, which allows the extraction of ions in the radial direction perpendicular to the electron beam across the magnetic field. The detected X-ray emission evidences the production of Ir$^{44+}$ and Ar$^{16+}$ ions. The ion source can operate as the ion trap for X-ray spectroscopy, as the ion source for the production of highly charged ions and also as the ion source of high brightness.

  11. Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources.

    Science.gov (United States)

    Kulevoy, Timur V; Chalyhk, Boris B; Fedin, Petr A; Sitnikov, Alexey L; Kozlov, Alexander V; Kuibeda, Rostislav P; Andrianov, Stanislav L; Orlov, Nikolay N; Kravchuk, Konstantin S; Rogozhkin, Sergey V; Useinov, Alexey S; Oks, Efim M; Bogachev, Alexey A; Nikitin, Alexander A; Iskandarov, Nasib A; Golubev, Alexander A

    2016-02-01

    Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.

  12. Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Kulevoy, Timur V., E-mail: kulevoy@itep.ru; Orlov, Nikolay N.; Rogozhkin, Sergey V.; Bogachev, Alexey A.; Nikitin, Alexander A.; Iskandarov, Nasib A.; Golubev, Alexander A. [State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute,” Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Chalyhk, Boris B.; Fedin, Petr A.; Sitnikov, Alexey L.; Kozlov, Alexander V.; Kuibeda, Rostislav P.; Andrianov, Stanislav L. [State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute,” Moscow (Russian Federation); Kravchuk, Konstantin S.; Useinov, Alexey S. [Technological Institute for Superhard and Novel Carbon Materials, Moscow (Russian Federation); Oks, Efim M. [Institute of High Current Electronics SB RAS, Tomsk (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk (Russian Federation)

    2016-02-15

    Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.

  13. Characterization of surface enhancement of carbon ion-implanted TiN coatings by metal vapor vacuum arc ion implantation

    CERN Document Server

    Chang, C L

    2002-01-01

    The modification of the surfaces of energetic carbon-implanted TiN films using metal vapor vacuum arc (MEVVA) ion implantation was investigated, by varying ion energy and dose. The microhardness, microstructure and chemical states of carbon, implanted on the surface layer of TiN films, were examined, as functions of ion energy and dose, by nanoindenter, transmission electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Results revealed that the microhardness increased from 16.8 up to 25.3 GPa and the friction coefficient decreased to approximately 0.2, depending on the implanted ion energy and dose. The result is attributed to the new microcrystalline phases of TiCN and TiC formed, and carbon concentration saturation of the implanted matrix can enhance the partial mechanical property of TiN films after MEVVA treatment. The concentration distribution, implantation depth and chemical states of carbon-implanted TiN coatings depended strongly on the ion dose and...

  14. New insights into the Aeolian Islands and other arc source compositions from high-precision olivine chemistry

    Science.gov (United States)

    Zamboni, Denis; Trela, Jarek; Gazel, Esteban; Sobolev, Alexander V.; Cannatelli, Claudia; Lucchi, Federico; Batanova, Valentina G.; De Vivo, Benedetto

    2017-02-01

    The Aeolian arc (Italy) is characterized by some of the strongest along-the-arc geochemical variations in the planet, making it an ideal location to study the effect of subducting components in modifying the mantle source of island arc melts. Here, we use high-precision element concentrations in primitive phenocrystic olivine from basalts along the arc to elucidate the effects of mantle source modification by the subduction process. Olivines from this arc have Ni concentrations and Fe/Mn ratios that show similarity to peridotite sources that melted to produce mid-ocean ridge basalts. Nevertheless, they also have systematically lower Ca concentrations and Fe/Mn ratios that broadly overlap with olivines from the available global arc array. These phenocrysts also do not show significant variations in Ca as a function of olivine forsterite content. The global data suggest that all olivines crystallizing from island-arc melts have suppressed Ca concentrations and Fe/Mn ratios, relative to olivines derived from melts at intraplate and mid-ocean ridge settings suggesting elevated H2O concentrations and higher oxidation state of the equilibrium melts. Based on olivine chemistry, we interpret a predominantly peridotite source (fluxed by subduction fluids) beneath the Aeolian Arc and also for other examples of arc-related lavas.

  15. ARC technology turns animal manure into new source of energy

    Energy Technology Data Exchange (ETDEWEB)

    Golka, V.

    2003-09-30

    Bio-based fertilizers, reusable water and reduced greenhouse gas emissions are the results of the Integrated Manure Utilization System (IMUS) began some five years ago at the Alberta Research Council. The process incorporates anaerobic digestion that produces biogas, which is then used to generate electricity, while the nutrient byproducts of the process are used to produce bio-based fertilizer and water, which is reusable for applications like irrigation. A pilot-scale IMUS plant was constructed at Highland Feeders in Vegreville, which will produce one MW of electricity from the manure produced by 7,500 head of cattle. Commercialization of the technology is underway as a joint venture involving the Alberta Research Council, industry, the federal and provincial governments and non-governmental agencies. Because IMUS is designed to overcome the challenges associated with high-solid manure typical of most outdoor feedlots in North America, the technology is adaptable to other biomass sources, including liquid manure, food processing waste and municipal waste; a significant development in the field of renewable energy technologies. The demonstration project is expected to reduce greenhouse gas emissions by 740,000 tonnes annually based on cattle manure only; more when other livestock, such as poultry and dairy are included.

  16. Compact microwave ion source for industrial applications.

    Science.gov (United States)

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok

    2012-02-01

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  17. Field ion source development for neutron generators

    Science.gov (United States)

    Bargsten Johnson, B.; Schwoebel, P. R.; Holland, C. E.; Resnick, P. J.; Hertz, K. L.; Chichester, D. L.

    2012-01-01

    An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption (˜20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with ˜10,000 tip arrays have achieved deuterium ion currents of ˜50 nA. Neutron production by field ionization has yielded ˜10 2 n/s from ˜1 mm 2 of array area using the deuterium-deuterium fusion reaction at 90 kV.

  18. Field ion source development for neutron generators

    Energy Technology Data Exchange (ETDEWEB)

    Bargsten Johnson, B. [University of New Mexico, Albuquerque, NM 87131 (United States); Schwoebel, P.R., E-mail: schwoebel@chtm.unm.edu [University of New Mexico, Albuquerque, NM 87131 (United States); Holland, C.E. [SRI International, Menlo Park, CA 94025 (United States); Resnick, P.J. [Sandia National Laboratories, Albuquerque, NM 87123 (United States); Hertz, K.L. [Sandia National Laboratories, Livermore, CA 94551 (United States); Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2012-01-21

    An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption ({approx}20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with {approx}10,000 tip arrays have achieved deuterium ion currents of {approx}50 nA. Neutron production by field ionization has yielded {approx}10{sup 2} n/s from {approx}1 mm{sup 2} of array area using the deuterium-deuterium fusion reaction at 90 kV.

  19. Field Ion Source Development for Neutron Generators

    Energy Technology Data Exchange (ETDEWEB)

    B. Bargsten Johnson; P. R. Schwoebel; C. E. Holland; P. J. Resnick; K. L. Hertz; D. L. Chichester

    2012-01-01

    An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption ({approx}20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with {approx}10,000 tip arrays have achieved deuterium ion currents of {approx}50 nA. Neutron production by field ionization has yielded {approx}10{sup 2} n/s from {approx}1 mm{sup 2} of array area using the deuterium-deuterium fusion reaction at 90 kV.

  20. Microscopy with a Deterministic Single Ion Source

    CERN Document Server

    Jacob, Georg; Wolf, Sebastian; Ulm, Stefan; Couturier, Luc; Dawkins, Samuel T; Poschinger, Ulrich G; Schmidt-Kaler, Ferdinand; Singer, Kilian

    2015-01-01

    We realize a single particle microscope by using deterministically extracted laser cooled $^{40}$Ca$^+$ ions from a Paul trap as probe particles for transmission imaging. We demonstrate focusing of the ions with a resolution of 5.8$\\;\\pm\\;$1.0$\\,$nm and a minimum two-sample deviation of the beam position of 1.5$\\,$nm in the focal plane. The deterministic source, even when used in combination with an imperfect detector, gives rise to much higher signal to noise ratios as compared with conventional Poissonian sources. Gating of the detector signal by the extraction event suppresses dark counts by 6 orders of magnitude. We implement a Bayes experimental design approach to microscopy in order to maximize the gain in spatial information. We demonstrate this method by determining the position of a 1$\\,\\mu$m circular hole structure to an accuracy of 2.7$\\,$nm using only 579 probe particles.

  1. CAS Accelerator Physics (Ion Sources) in Slovakia

    CERN Multimedia

    CAS School

    2012-01-01

    The CERN Accelerator School (CAS) and the Slovak University of Technology jointly organised a specialised course on ion sources, held at the Hotel Senec, Senec, Slovakia, from 29 May to 8 June, 2012.   Following some background lectures on accelerator physics and the fundamental processes of atomic and plasma physics, the course covered a wide range of topics related to ion sources and highlighted the latest developments in the field. Realistic case studies and topical seminars completed the programme. The school was very successful, with 69 participants representing 25 nationalities. Feedback from the participants was extremely positive, reflecting the high standard of the lectures. The case studies were performed with great enthusiasm and produced some excellent results. In addition to the academic programme, the participants were able to take part in a one-day excursion consisting of a guided tour of Bratislava and free time. A welcome event was held at the Hotel Senec, with s...

  2. Indigenous Ion Sources for Material Processing

    Directory of Open Access Journals (Sweden)

    R. Bhattacharyya

    2009-07-01

    Full Text Available Ion beam sources for material processing in their working are no different from those required for space thrusters, ion implanters or for fusion experiments. They are scaled down versions of the devices earlier developed for space research. However, they are not being manufactured in the country. Their use in ophthalmic coatings and DLC for magnetic heads, CD, etc. are commercially attractive. In this technical report is suggested as to a strategy how to develop them, pooling resources from different active groups in the country, with specific targets. Dc gridded,Rf gridded, Saddle field, End Hall and ICP sources have been identified based on preliminary work carried out at different places in the country. This areas may be read more as a research opportunity report.Defence Science Journal, 2009, 59(4, pp.377-394, DOI:http://dx.doi.org/10.14429/dsj.59.1537

  3. Improved Ambient Pressure Pyroelectric Ion Source

    Science.gov (United States)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  4. Development of a high-current hydrogen-negative ion source for LHD-NBI system

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Yasuhiko; Osakabe, Masaki; Tsumori, Katsuyoshi; Oka, Yoshihide; Kaneko, Osamu; Asano, Eiji; Kawamoto, Toshikazu; Akiyama, Ryuichi [National Inst. for Fusion Science, Toki, Gifu (Japan); Tanaka, Masanobu

    1998-08-01

    We have developed a high-current hydrogen-negative ion source for a negative-ion-based NBI system in Large Helical Device (LHD). The ion source is a cesium-seeded volume-production source equipped with an external magnetic filter. An arc chamber is rectangular, the dimensions of which are 35 cm x 145 cm in cross section and 21 cm in depth. A three-grid single-stage accelerator is divided into five sections longitudinally, each of which has 154(14 x 11) apertures in an area of 25 cm x 25 cm. The ion source was tested in the negative-NBI teststand, and 25 A of the negative ion beam is incident on a beamdump 13 m downstream with an energy of 104 keV for 1 sec. Multibeamlets of 770 are focused on a focal point 13 m downstream with an averaged divergence angle of 10 mrad by the geometrical arrangement of five sections of grid and the aperture displacement technique of the grounded grid. A uniform beam in the vertical direction over 125 cm is obtained with uniform plasma production in the arc chamber by balancing individual arc currents flowing through each filament. Long-pulse beam production was performed, and 1.3 MW of the negative ion beam is incident on the beamdump for 10 sec, and the temperature rise of the cooling water is almost saturated for the extraction and the grounded grids. These results satisfy the first-step specification of the LHD-NBI system. (author)

  5. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  6. Experimental study of high current negative ion sources D{sup -} / H{sup -}. Analysis based on the simulation of the negative ion transport in the plasma source; Etude experimentale de sources a fort courant d`ions negatifs D{sup -} / H{sup -}. Analyse fondee sur la simulation du transport des ions dans le plasma de la source

    Energy Technology Data Exchange (ETDEWEB)

    Riz, D.

    1996-10-30

    In the frame of the development of a neutral beam injection system able to work the ITER tokamak (International Thermonuclear Experimental Reactor), two negative ion sources, Dragon and Kamaboko, have been installed on the MANTIS test bed in Cadarache, and studies in order to extract 20 mA/cm{sup 2} of D{sup -}. The two production modes of negative ions have been investigated: volume production; surface production after cesium injection in the discharge. Experiments have shown that cesium seeding is necessary in order to reach the requested performances for ITER. 20 mA/cm{sup 2} have been extracted from the Kamaboko source for an arc power density of 2.5 kW/liter. Simultaneously, a code called NIETZSCHE has been developed to simulate the negative ions transport in the source plasma, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collisions H{sup -}/H{sup +} and of charge exchange H{sup -}/H{sup 0} are handled at each time step by a Monte Carlo procedure. The code allows to obtain the extraction probability of a negative ion produced at a given location. The calculations performed with NIETZSCHE have allowed to explain several phenomena observed on negative ion sources, such as the isotopic effect H{sup -}/D{sup -} and the influence of the polarisation of the plasma grid and of the magnetic filter on the negative ions current. The code has also shown that, in the type of sources contemplated for ITER, working with large arc power densities (> 1 kW/liter), only negative ions produced in volume at a distance lower that 2 cm from the plasma grid and those produced at the grid surface have a chance of being extracted. (author). 122 refs.

  7. Experimental and theoretical determination of the efficiency of a sub-atmospheric flowing high power cascaded arc hydrogen plasma source

    NARCIS (Netherlands)

    Vijvers, W. A. J.; D.C. Schram,; Shumack, A. E.; Cardozo, N. J. L.; Rapp, J.; van Rooij, G. J.

    2010-01-01

    Cascaded arc plasma sources with channel diameters between 4 and 8mm were experimentally investigated at discharge currents up to 900A and hydrogen (H-2) flow rates up to 10 slm. Pressure measurements at the arc exit showed that the heavy particle temperature in the discharge channel was about 0.8 e

  8. Development of a compact powdery sample negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Motoi [Doshisha Univ., Tanabe, Kyoto (Japan). Faculty of Engineering; Sasao, Mamiko; Kawano, Hiroyuki

    1997-02-01

    A gas-feed-free compact negative ion source can be realized by utilizing the process of electron stimulated desorption from powdery sample. A negative ion source of this type is designed to be attached to a standard 1.33 inch copper-gasket-flange. The ion source is operated stable with LiH powder for more than 10 hours with the mass-separated negative hydrogen ion current of 1 nA. The source causes minute gas emission, and particularly suitable for ion beam applications in which a good vacuum is required. The present status of the compact ion source development is briefly described. (author)

  9. Ions beams and ferroelectric plasma sources

    Science.gov (United States)

    Stepanov, Anton

    Near-perfect space-charge neutralization is required for the transverse compression of high perveance ion beams for ion-beam-driven warm dense matter experiments, such as the Neutralized Drift Compression eXperiment (NDCX). Neutralization can be accomplished by introducing a plasma in the beam path, which provides free electrons that compensate the positive space charge of the ion beam. In this thesis, charge neutralization of a 40 keV, perveance-dominated Ar+ beam by a Ferroelectric Plasma Source (FEPS) is investigated. First, the parameters of the ion beam, such as divergence due to the extraction optics, charge neutralization fraction, and emittance were measured. The ion beam was propagated through the FEPS plasma, and the effects of charge neutralization were inferred from time-resolved measurements of the transverse beam profile. In addition, the dependence of FEPS plasma parameters on the configuration of the driving pulser circuit was studied to optimize pulser design. An ion accelerator was constructed that produced a 30-50 keV Ar + beam with pulse duration ion source showed that the dependence of beam radius on Q was consistent with space charge expansion. It was concluded that the beam was perveance-dominated with a charge neutralization fraction of approximately zero in the absence of neutralizing plasma. Since beam expansion occurred primarily due to space charge, the decrease in effective perveance due to neutralization by FEPS plasma can be inferred from the reduction in beam radius. Results on propagation of the ion beam through FEPS plasma demonstrate that after the FEPS is triggered, the beam radius decreases to its neutralized value in about 5 mus. The duration of neutralization was about 10 mus at a charging voltage VFEPS = 5.5 kV and 35 mus at VFEPS = 6.5 kV. With VFEPS = 6.5 kV, the transverse current density profile 33 cm downstream of the source had a Gaussian shape with xrms =5 mm, which corresponds to a half-angle divergence of 0.87°. The

  10. Development of the RF Ion Sources for Focused Ion Beam Accelerators

    Directory of Open Access Journals (Sweden)

    V. Voznyi

    2014-01-01

    Full Text Available The paper presents the results of investigations of ion sources developed in the IAP of NAS of Ukraine for generation of high brightness ion beams with small energy spread. A series of RF ion sources operated at the frequency of 27.12 MHz were studied: the inductive RF ion source, the helicon ion source, the multi-cusp RF ion source, and the sputter type RF source of metal ions. A global model and transformer model were applied for calculation of RF source plasma parameters. Ion energy spread, ion mass, and ion current density of some sources were measured in the wide range of RF power, extraction voltage and gas pres-sure.

  11. Polarized ion source development at IUCF

    Energy Technology Data Exchange (ETDEWEB)

    Derenchuk, V.; Brown, R.; Wedekind, M. (Indiana University Cyclotron Facility, Bloomington, Indiana 47408 (United States))

    1993-12-05

    The IUCF high intensity polarized ion source (HIPIOS) has been completed and installed in the 600 kV terminal. The design was originally based on the source in operation at TUNL, which employs cold ([similar to]30 K) atomic beam technology and an electron cyclotron resonance ionizer. Development of the reliability and intensity of the atomic beam source will be described. An atomic beam flux of 5.0[times]10[sup 16] atoms/sec is estimated to be incident on the ECR ionizer. Preliminary testing of a multiple grid, high conductance, extraction system on the ECR ionizer has resulted in an extracted current of 500 [mu]A attributable to the atomic beam, as measured 30 cm downstream of the ECR ionizer. After a mass analysis magnet, 245 [mu]A are measured with a normalized emittance of 0.78 [pi]-mm-mrad.

  12. High Current, High Density Arc Plasma as a New Source for WiPAL

    Science.gov (United States)

    Waleffe, Roger; Endrizzi, Doug; Myers, Rachel; Wallace, John; Clark, Mike; Forest, Cary; WiPAL Team

    2016-10-01

    The Wisconsin Plasma Astrophysics Lab (WiPAL) has installed a new array of nineteen plasma sources (plasma guns) on its 3 m diameter, spherical vacuum vessel. Each gun is a cylindrical, molybdenum, washer-stabilized, arc plasma source. During discharge, the guns are maintained at 1.2 kA across 100 V for 10 ms by the gun power supply establishing a high density plasma. Each plasma source is fired independently allowing for adjustable plasma parameters, with densities varying between 1018 -1019 m-3 and electron temperatures of 5-15 eV. Measurements were characterized using a 16 tip Langmuir probe. The plasma source will be used as a background plasma for the magnetized coaxial plasma gun (MCPG), the Terrestrial Reconnection Experiment (TREX), and as the plasma source for a magnetic mirror experiment. Temperature, density, and confinement results will be presented. This work is supported by the DoE and the NSF.

  13. MIVOC method at the mVINIS ion source

    Directory of Open Access Journals (Sweden)

    Jovović Jovica

    2007-01-01

    Full Text Available Based on the metal-ions-from-volatile-compounds (MIVOC method with the mVINIS ion source, we have produced multiply charged ion beams from solid substances. Highly in tense, stable multiply charged ion beams of several solid substances with high melting points were extracted by using this method. The spectrum of multiply charged ion beams obtained from the element hafnium is presented here. For the first time ever, hafnium ion beam spectra were recorded at an electron cyclotron resonance ion source. Multiply charged ion beams from solid substances were used to irradiate the polymer, fullerene and glassy carbon samples at the channel for the modification of materials.

  14. How Common are Noise Sources on the Crash Arc of Malaysian Flight 370

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kunkle, Thomas David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stead, Richard J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-21

    Malaysian Flight 370 disappeared nearly without a trace. Besides some communication handshakes to the INMASAT satellite, the Comprehensive Test Ban Treaty monitoring system could have heard the aircraft crash into the southern Indian Ocean. One noise event from Cape Leeuwin has been suggested by Stead as the crash and occurs within the crash location suggested by Kunkle at el. We analyze the hydrophone data from Cape Leeuwin to understand how common such noise events are on the arc of possible locations where Malaysian Flight 370 might have crashed. Few other noise sources were found on the arc. The noise event found by Stead is the strongest. No noise events are seen within the Australian Transportation Safety Board (ATSB) new search location until the 10th strongest event, an event which is very close to the noise level.

  15. Composition Control of Alloy Coatings and Composition Designof Cathode Targets in Multi-Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The composition from alloy cathode target to alloy coating generally changes to some extentin multi-arc ion plating. This demixing effect leads to the difficulties in the control of alloycomposition of coating and in the design of composition of alloy cathode target. A new simple formula,is proposed in present work to deal with the problem. According to this formula, the composition of alloy coating can be calculated bymeans of the degrees of ionization of alloy elements. The results of calculation agree with theexperimental ones within very limited error range. Modifying the formula into another form,the design for alloy composition of cathode target can be conveniently carried out, and the ideal composition of alloy coating can be obtained.

  16. Wear-resistance and anti-scuffing of multi-arc ion plating molybdenum films

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-dou; XU Bin-shi; LIU Jia-jun; ZHUANG Da-ming

    2004-01-01

    The multi-arc ion plating technology was employed to prepare the molybdenum films with thickness of 3 μm on the AISI 1045 steel. The wear and scuffing tests were carried out on the ball-on-disc tester. AFM and SEM equipped with EDS were adopted to observe and analyze the morphologies and element compositions of surface,cross-section and worn scar of the Mo film. The phase structure was studied by XRD and the bonding strength between Mo film and substrate was measured by scratching tester. The tribological experiments show that the Mo film possesses a good wear-resistance and an excellent anti-scuffing property. The failure mechanism of Mo film under extreme condition is flaking off.

  17. Fabrication of highly transparent Al-ion-implanted ZnO thin films by metal vapor vacuum arc method

    Science.gov (United States)

    Lee, Han; Sivashanmugan, Kundan; Kao, Chi-Yuan; Liao, Jiunn-Der

    2017-03-01

    In this study, we utilized the metal vapor vacuum arc technique to implant vaporized aluminum (Al) ions in zinc oxide (ZnO) thin films. By adjusting the ion implantation dose and operational parameters, the conductivity and optical properties of the ZnO thin film can be controlled. The electrical sheet resistance of Al-ion-implanted ZnO decreased from 3.02 × 107 to 3.03 × 104 Ω/sq, while the transparency of the film was mostly preserved (91.5% at a wavelength of 550 nm). The ZnO thin-film Young’s modulus significantly increased with increasing Al ion dose.

  18. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, James, E-mail: alessi@bnl.gov; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-02-15

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  19. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source.

    Science.gov (United States)

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  20. Ion sources for high-power hadron accelerators

    CERN Document Server

    Faircloth, Dan

    2013-01-01

    Ion sources are a critical component of all particle accelerators. They create the initial beam that is accelerated by the rest of the machine. This paper will introduce the many methods of creating a beam for high-power hadron accelerators. A brief introduction to some of the relevant concepts of plasma physics and beam formation is given. The different types of ion source used in accelerators today are examined. Positive ion sources for producing H+ ions and multiply charged heavy ions are covered. The physical principles involved with negative ion production are outlined and different types of negative ion sources are described. Cutting edge ion source technology and the techniques used to develop sources for the next generation of accelerators are discussed.

  1. Simulation of Electron Behavior in PIG Ion Source for 9MeV Cyclotron

    CERN Document Server

    Ghergherehchi, Mitra; Yeon, Yeong- Heum; Chai, Jong- Seo

    2013-01-01

    In this paper, we focus on a PIG source for producing intense H-ions inside a 9MeV cyclotron. The properties of the PIG ion source were simulated for a variety of electric field distributions and magnetic field strengths using CST Particle Studio. After analyzing secondary electron emission (SEE) as a function of both magnetic and electric field strengths, we found that for the modeled PIG geometry a magnetic field strength of 0.2 T provided the best results in term of number of secondary electrons. Furthermore, at 0.2 T the number of secondary electrons proved to be greatest regardless of the cathode potential. Also the modified PIG ion source with quartz insulation tubes was tested in KIRAMS-13 cyclotron by varying gas flow rate and arc current, respectively. The capacity of the designed ion source was also demonstrated by producing plasma inside the constructed 9MeV cyclotron. As a result, the ion source is verified to be capable to produce intense H- beam and high ion beam current for the desired 9 MeV cy...

  2. Development of hollow anode penning ion source for laboratory application

    Science.gov (United States)

    Das, B. K.; Shyam, A.; Das, R.; Rao, A. D. P.

    2012-03-01

    The research work presented here focuses for the development of miniature penning type ion source. One hollow anode penning type ion source was developed in our laboratory. The size of the ion source is 38 mm diameter and 55 mm length. The ion source consists of two cathodes, a hollow anode and one piece of rare earth permanent magnet. The plasma was created in the plasma region between cathodes and the hollow anode. The J × B force in the region helps for efficient ionization of the gas even in the high vacuum region˜1×10 -5 Torr. The ions were extracted in the axial direction with help of the potential difference between the electrodes and the geometry of the extraction angle. The effect of the extraction electrode geometry for efficient extraction of the ions from the plasma region was examined. This ion source is a self extracted ion source. The self extracted phenomena reduce the cost and the size of the ion source. The extracted ion current was measured by a graphite probe. An ion current of more than 200 μA was observed at the probe placed 70 mm apart from the extraction electrode. In this paper, the structure of the ion source, effect of operating pressure, potential difference and the magnetic field on the extracted ion current is reported.

  3. Detailed beam and plasma measurements on the vessel for extraction and source plasma analyses (VESPA) Penning H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, S. R., E-mail: scott.lawrie@stfc.ac.uk [STFC ISIS Pulsed Spallation Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell, Oxford (United Kingdom); John Adams Institute of Accelerator Science, University of Oxford, Oxford (United Kingdom); Faircloth, D. C.; Letchford, A. P.; Whitehead, M. O.; Wood, T. [STFC ISIS Pulsed Spallation Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell, Oxford (United Kingdom)

    2016-02-15

    A vessel for extraction and source plasma analyses (VESPA) is operational at the Rutherford Appleton Laboratory (RAL). This project supports and guides the overall ion source R&D effort for the ISIS spallation neutron and muon facility at RAL. The VESPA produces 100 mA of pulsed H{sup −} beam, but perveance scans indicate that the source is production-limited at extraction voltages above 12 kV unless the arc current is increased. A high resolution optical monochromator is used to measure plasma properties using argon as a diagnostic gas. The atomic hydrogen temperature increases linearly with arc current, up to 2.8 eV for 50 A; whereas the electron temperature has a slight linear decrease toward 2.2 eV. The gas density is 10{sup 21} m{sup −3}, whilst the electron density is two orders of magnitude lower. Densities follow square root relationships with arc current, with gas density decreasing whilst electron (and hence ion) density increases. Stopping and range of ions in matter calculations prove that operating a high current arc with an argon admixture is extremely difficult because cathode-coated cesium is heavily sputtered by argon.

  4. Adding high time resolution to charge-state-specific ion energy measurements for pulsed copper vacuum arc plasmas

    CERN Document Server

    Tanaka, Koichi; Zhou, Xue; Anders, André

    2015-01-01

    Charge-state-resolved ion energy-time-distributions of pulsed Cu arc plasma were obtained by using direct (time dependent) acquisition of the ion detection signal from a commercial ion mass-per-charge and energy-per-charge analyzer. We find a shift of energies of Cu2+, Cu3+ and Cu4+ ions to lower values during the first few hundred microseconds after arc ignition, which is evidence for particle collisions in the plasma. The generation of Cu1+ ions in the later part of the pulse, measured by the increase of Cu1+ signal intensity and an associated slight reduction of the mean charge state point to charge exchange reactions between ions and neutrals. At the very beginning of the pulse, when the plasma expands into vacuum and the plasma potential strongly fluctuates, ions with much higher energy (over 200 eV) were observed. Early in the pulse, the ion energies observed are approximately proportional to the ion charge state, and we conclude that the acceleration mechanism is primarily based on acceleration in an e...

  5. The first experimental results on laser ion loading into superconducting ECR ion source at RIKEN

    CERN Document Server

    Arzumanyan, G M; Shirkov, G D; Yano, Y

    2002-01-01

    The first experimental results on ions and neutrals injection by means of laser ablation from metal targets into the RIKEN 18 GHz superconducting electron cyclotron resonance ion source (SC ECRIS) are presented. Pulsed aluminium ion currents up to Al sup 8 sup + were generated in the source. The difference in pulse shapes of various charge states of the extracted ion currents is registered

  6. Ion Source Development for Ultratrace Detection of Uranium and Thorium

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan [ORNL; Batchelder, Jon Charles [ORNL; Galindo-Uribarri, Alfredo {nmn} [ORNL; Stracener, Daniel W [ORNL

    2015-01-01

    A hot-cavity surface ionization source and a hot-cavity laser ion source are evaluated in terms of ionization efficiencies for generating ion beams of U and Th. The work is motivated by the need for more efficient ion sources for detecting ultratrace U and Th impurities in a copper matrix by mass spectrometry techniques such as accelerator mass spectrometry (AMS). The performances of the ion sources are characterized using uranyl nitrate and thorium nitrate sample materials and sample sizes of 20 - 40 g of U or Th. For the surface source, the dominant ion beams observed are UO+ or ThO+ and ionization efficiencies of 2-4% have been obtained with W and Re cavities. Three-step resonant photoionization of U atoms is studied and an ionization efficiency of 8.7% has been obtained with the laser ion source. The positive ion sources promise more than an order of magnitude more efficient than conventional Cs-sputter negative ion sources used for AMS. In addition, the laser ion source is highly selective and effective in suppressing interfering and ions. Work is in progress to improve the efficiencies of both positive ion sources.

  7. Development of ion source with a washer gun for pulsed neutral beam injection.

    Science.gov (United States)

    Asai, T; Yamaguchi, N; Kajiya, H; Takahashi, T; Imanaka, H; Takase, Y; Ono, Y; Sato, K N

    2008-06-01

    A new type of economical neutral beam source has been developed by using a single washer gun, pulsed operation, and a simple electrode system. We replaced the conventional hot filaments for arc-discharge-type plasma formation with a single stainless-steel washer gun, eliminating the entire dc power supply for the filaments and the cooling system for the electrodes. Our initial experiments revealed successful beam extraction up to 10 kV and 8.6 A, based on spatial profile measurements of density and temperature in the plasma source. The system also shows the potential to control the beam profile by controlling the plasma parameters in the ion accumulation chamber.

  8. A singly charged ion source for radioactive 11C ion acceleration

    Science.gov (United States)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K.

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  9. A singly charged ion source for radioactive {sup 11}C ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2016-02-15

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  10. Cathodic Vacuum Arc Plasma of Thallium

    OpenAIRE

    Yushkov, Georgy Yu.; Anders, Andre

    2006-01-01

    Thallium arc plasma was investigated in a vacuum arc ion source. As expected from previous consideration of cathode materials in the Periodic Table of the Elements, thallium plasma shows lead-like behavior. Its mean ion charge state exceeds 2.0 immediately after arc triggering, reaches the predicted 1.60 and 1.45 after about 100 microsec and 150 microsec, respectively. The most likely ion velocity is initially 8000 m/s and decays to 6500 m/s and 6200 m/s after 100 microsec and 150 micros...

  11. Magnetic plasma confinement for laser ion source.

    Science.gov (United States)

    Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R

    2010-02-01

    A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.

  12. Measurement of Gas Temperature in Negative Hydrogen Ion Source by Wavelength-Modulated Laser Absorption Spectroscopy

    Science.gov (United States)

    Nishiyama, S.; Sasaki, K.; Nakano, H.; Goto, M.; Kisaki, M.; Tsumori, K.; NIFS-NBI Team

    2014-10-01

    Measurement of the energy distribution of hydrogen atom is important and essential to understand the production mechanism of its negative ion (H-) in cesium-seeded negative ion sources. In this work, we evaluated the temperature of atomic hydrogen in the large-scale arc-discharge negative hydrogen ion source in NIFS by wavelength-modulated laser absorption spectroscopy. The laser beam was passed through the adjacent region to the grid electrode for extracting negative ions. The frequency of the laser was scanned slowly over the whole range of the Doppler width (100 GHz in 1s). A sinusoidal frequency modulation at 600 Hz with a width of 30 GHz was superposed onto the slow modulation. The transmitted laser was detected using a photodiode, and its second harmonic component of the sinusoidal modulation was amplified using a lock-in amplifier. The obtained spectrum was in good agreement with an expected spectrum of the Doppler-broadened Balmer- α line. The estimated temperature of atomic hydrogen was approximately 3000 K. The absorption increased with the arc-discharge power, while the temperature was roughly independent of the power. This work is supported by the NIFS Collaboration Research Program NIFS13KLER021.

  13. Seismotectonic pattern and the source region of volcanism in the central part of Sunda Arc

    Science.gov (United States)

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří

    2005-07-01

    The seismotectonic pattern in the central part of the Sunda Arc (Java, Nusa Tenggara) was studied in relation to the distribution of active calc-alkaline volcanoes, using global seismological data. Hypocentral determinations of the International Seismological Centre from the period 1964-1999, as relocated by Engdahl, and Harvard Centroid Moment Tensor Solutions from the period 1976-2003 were used. The following phenomena, which could assist the location of the source region of primary magma for island arc calc-alkaline volcanism, were observed: (1) An aseismic gap without any strong teleseismically recorded earthquakes was found in the Wadati-Benioff zone of the subducting slab along the whole investigated region of the Sunda Arc, forming a continuous strip of laterally variable depth and shape, at depths between 100 and 200 km. The absence of strong earthquakes (with mb>4.0) indicates a significant change in the mechanical properties of the subducting slab at intermediate depths. All active calc-alkaline volcanoes in the Sunda Arc are located above this gap. (2) The majority of earthquakes occurring in the lithospheric wedge of the Eurasian Plate above the subducted slab could be attributed to several deep-rooted seismically active fracture zones of regional extent. All delineated active fracture zones display a thrust tectonic regime as shown by the available fault plane solutions. (3) Clusters of earthquakes were found beneath active volcanoes of western Java, Bali and Nusa Tenggara in the lithospheric wedge above the slab and identified as seismically active columns. These clusters occur only beneath the volcanoes that are located at the outcrops of seismically active fracture zones. We interpret the earthquakes in these clusters beneath volcanoes as events induced by magma transport through the medium of the lithospheric wedge that has been subcritically pre-stressed by the process of plate convergence. (4) Beneath the volcanoes of central Java no seismically

  14. Status report on electron cyclotron resonance ion sources at the Heavy Ion Medical Accelerator in Chiba

    CERN Document Server

    Kitagawa, A; Sekiguchi, M; Yamada, S; Jincho, K; Okada, T; Yamamoto, M; Hattori, T G; Biri, S; Baskaran, R; Sakata, T; Sawada, K; Uno, K

    2000-01-01

    The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences (NIRS) is not only dedicated to cancer therapy, it is also utilized with various ion species for basic experiments of biomedical science, physics, chemistry, etc. Two electron cyclotron resonance (ECR) ion sources are installed for production of gaseous ions. One of them, the NIRS-ECR, is a 10 GHz ECR ion source, and is mainly operated to produce C/sup 4+/ ions for daily clinical treatment. This source realizes good reproducibility and reliability and it is easily operated. The other source, the NIRS-HEC, is an 18 GHz ECR ion source that is expected to produce heavier ion species. The output ion currents of the NIRS-ECR and the NIRS-HEC are 430e mu A for C/sup 4+/ and 1.1e mA for Ar/sup 8+/, respectively. (14 refs).

  15. Design and Construction of a Microwave Plasma Ion Source

    CERN Document Server

    Çınar, Kamil

    2011-01-01

    This thesis is about the designing and constructing a microwave ion source. The ions are generated in a thermal and dense hydrogen plasma by microwave induction. The plasma is generated by using a microwave source with a frequency of 2.45 GHz and a power of 700 W. The generated microwave is pulsing with a frequency of 50 Hz. The designed and constructed microwave system generates hydrogen plasma in a pyrex plasma chamber. Moreover, an ion extraction unit is designed and constructed in order to extract the ions from the generated hydrogen plasma. The ion beam extraction is achieved and ion currents are measured. The plasma parameters are determined by a double Langmuir probe and the ion current is measured by a Faraday cup. The designed ion extraction unit is simulated by using the dimensions of the designed and constructed ion extraction unit in order to trace out the trajectories of the extracted ions.

  16. A multicharge ion source (Supernanogan) for the OLIS facility at ISAC/TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Jayamanna, K.; Wight, G.; Gallop, D.; Dube, R.; Jovicic, V.; Laforge, C.; Marchetto, M.; Leross, M.; Louie, D.; Laplante, R.; Laxdal, R.; McDonald, M.; Wiebe, G. J.; Wang, V.; Yan, F. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada)

    2010-02-15

    The Off-Line Ion Source (OLIS) [K. Jayamanna, D. Yuan, T. Kuo, M. MacDonald, P. Schmor, and G. Dutto, Rev. Sci. Instrum. 67, 1061 (1996); K. Jayamanna, Rev. Sci. Instrum. 79, 02711 (2008)] facility consists of a high voltage terminal containing a microwave cusp ion source, either a surface ion source or a hybrid surface-arc discharge ion source [K. Jayamanna and C. Vockenhuber, Rev. Sci. Instrum. 79, 02C712 (2008)], and an electrostatic switch that allows the selection of any one of the sources without mechanical intervention. These sources provide a variety of +1 beams up to mass 30 for Isotope Separator and ACcelerator (ISAC) [R. E. Laxdal, Nucl. Instrum. Methods Phys. Res. B 204, 400 (2003)] experiments, commissioning the accelerators, setting up the radioactive experiments, and for tuning the beam lines. The radio frequency quadrupole (RFQ) [M. Marchetto, Z. T. Ang, K. Jayamanna, R. E. Laxdal, A. Mitra, and V. Zvyagintsev, Eur. Phys. J. Spec. Top. 150, 241 (2005)] injector accelerator is a constant velocity machine designed to accept only 2 keV/u and the source extraction energy is limited to 60 kV. Further stripping is then needed downstream of the RFQ to inject the beam into the drift tube linac [M. Marchetto, Z. T. Ang, K. Jayamanna, R. E. Laxdal, A. Mitra, and V. Zvyagintsev, Eur. Phys. J. Spec. Top. 150, 241 (2005)] accelerator that requires A/q up to 6. Base on this constraints a multicharge ion source capable to deliver beams above mass 30 with A/q up to 6 was needed in order to reach full capability of the ISAC facility. A Supernanogan [C. Bieth et al., Nucleonika 48, S93 (2003)] multicharge ion source was then purchased from Pantechnik and was installed in the OLIS terminal. Commissioning and performance of the Supernanogan with some results such as emittance dependence of the charge states as well as charge state efficiencies are presented.

  17. Towards large and powerful radio frequency driven negative ion sources for fusion

    Science.gov (United States)

    Heinemann, B.; Fantz, U.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Bonomo, F.; Fröschle, M.; Nocentini, R.; Riedl, R.

    2017-01-01

    The ITER neutral beam system will be equipped with radio-frequency (RF) negative ion sources, based on the IPP Garching prototype source design. Up to 100 kW at 1 MHz is coupled to the RF driver, out of which the plasma expands into the main source chamber. Compared to arc driven sources, RF sources are maintenance free and without evaporation of tungsten. The modularity of the driver concept permits to supply large source volumes. The prototype source (one driver) demonstrated operation in hydrogen and deuterium up to one hour with ITER relevant parameters. The ELISE test facility is operating with a source of half the ITER size (four drivers) in order to validate the modular source concept and to gain early operational experience at ITER relevant dimensions. A large variety of diagnostics allows improving the understanding of the relevant physics and its link to the source performance. Most of the negative ions are produced on a caesiated surface by conversion of hydrogen atoms. Cs conditioning and distribution have been optimized in order to achieve high ion currents which are stable in time. A magnetic filter field is needed to reduce the electron temperature and co-extracted electron current. The influence of different field topologies and strengths on the source performance, plasma and beam properties is being investigated. The results achieved in short pulse operation are close to or even exceed the ITER requirements with respect to the extracted ion currents. However, the extracted negative ion current for long pulse operation (up to 1 h) is limited by the increase of the co-extracted electron current, especially in deuterium operation.

  18. Optimization of the Adhesion Strength of Arc Ion Plating TiAlN Films by the Taguchi Method

    Directory of Open Access Journals (Sweden)

    Tong-Yul Cho

    2009-06-01

    Full Text Available A three-level six-factor (arc power, substrate temperature, pre-treatment bias voltage, working pressure, deposition bias voltage and pretreatment time orthogonal experimental array (L18 to optimize the adhesion strength of arc ion plating (AIP TiAlN films was designed using the Taguchi method. An optimized film process, namely substrate temperature 220 °C, arc power 60 A, negative bias voltage -800 V, nitrogen pressure 10-2 Torr, pretreated voltage -450 V and pretreated time 15 minutes was obtained by the Taguchi program for the purpose of obtaining a larger critical load. The critical load of the optimized TiAlN film (53 N was increased by 43% compared to the film with the highest critical load before optimization. The improvement in the adhesion strength of the films was attributed to the enhancement of hardness and the competitive growth of the (111, (200 and (220 orientations in the film.

  19. Source profile derivation for an arc welding shop using time sequenced sampling and PIXE analysis

    Science.gov (United States)

    Formenti, P.; Van Den Heever, D. J.; Annegarn, H. J.

    1998-03-01

    Samples of particulate concentration inside a welding shop in Bloemfontein (South Africa) were collected for two weeks during August 1995 using a single stage time sequenced sampler (streaker sampler). Inorganic elemental concentrations (μg/m 3) for 12 metallic rods are melted through electric arc welding to join steel plates. The absence of proper ventilation in the building, due to the closing of doors and windows during winter conditions, results in accumulation of pollutants and in enhanced hazardous conditions for the workers. Analysis of temporal coincidences of elemental concentrations time series formed the basis for extracting the arc welding source profile. Major periodical and episodic contributors to the indoor pollution were qualitatively observed during the sampling period. Due to the hourly time resolution of the sampling, their different time dependence could be identified and isolated. The welding shop activities were found to be characterised by high metal concentrations ([Fe] up to 95 μg/m 3) and variations in the Cu-to-Fe and Mn-to-Fe ratios within 30% over a week period. Cr concentrations up to 7 μg/m 3 were detected over 8-h shift periods. A profile for soil dust in the welding shop air was extracted, and was found to be enriched in Cr, Mn and Fe. This identifies the existence of a secondary source of heavy metal particulate exposure, to which all the workers, not only welders during their shifts, are exposed.

  20. Ion source development for ultratrace detection of uranium and thorium

    Science.gov (United States)

    Liu, Y.; Batchelder, J. C.; Galindo-Uribarri, A.; Chu, R.; Fan, S.; Romero-Romero, E.; Stracener, D. W.

    2015-10-01

    Efficient ion sources are needed for detecting ultratrace U and Th impurities in a copper matrix by mass spectrometry techniques such as accelerator mass spectrometry (AMS). Two positive ion sources, a hot-cavity surface ionization source and a resonant ionization laser ion source, are evaluated in terms of ionization efficiencies for generating ion beams of U and Th. The performances of the ion sources are characterized using uranyl nitrate and thorium nitrate sample materials with sample sizes between 20 and 40 μg of U or Th. For the surface ion source, the dominant ion beams observed are UO+ or ThO+ and ionization efficiencies of 2-4% have been obtained with W and Re cavities. With the laser ion source, three-step resonant photoionization of U atoms has been studied and only atomic U ions are observed. An ionization efficiency of about 9% has been demonstrated. The performances of both ion sources are expected to be further improved.

  1. High-Intensity, High Charge-State Heavy Ion Sources

    CERN Document Server

    Alessi, J

    2004-01-01

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions will be reviewed. These sources include ECR, EBIS, and Laser ion sources. The benefits and limitations for these type sources will be described, for both dc and pulsed applications. Possible future improvements in these type sources will also be discussed.

  2. Hydrogen Plasma Generation with 200 MHz RF Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongtae; Park, Kwangmook; Seo, Dong Hyuk; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The ion source for the system is required to be rugged with 2000 hours maintenance free operation time because it is installed in the vessel filled with SF6 gas at the pressure of 10 bar. A 200 MHz RF ion source is considered as an ion source. It is a simple construction and provides long life operation. The specifications of the ion source are 5 kV extraction voltage and 1 mA beam current referenced to the proton. RF ion source has been developed and undergone a performance test. Results of the test are presented. 200 MHz RF ion source is designated and manufactured. First of all test stand test of ion source are set up for a performance test of ion source. It includes a RF ion source, a 200-MHz RF system, beam extraction system, vacuum system, beam extraction system, and beam diagnostic system. At pressure of 1.2E-5 torr, hydrogen plasma is generated with net RF power 70 W. Pyrex tube surrounded by an inductive coil takes the role of vessel and discharge is enhanced with field of permanent magnets.

  3. A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc.

    Science.gov (United States)

    Klaver, Martijn; Carey, Steven; Nomikou, Paraskevi; Smet, Ingrid; Godelitsas, Athanasios; Vroon, Pieter

    2016-08-01

    This study reports the first detailed geochemical characterization of Kolumbo submarine volcano in order to investigate the role of source heterogeneity in controlling geochemical variability within the Santorini volcanic field in the central Aegean arc. Kolumbo, situated 15 km to the northeast of Santorini, last erupted in 1650 AD and is thus closely associated with the Santorini volcanic system in space and time. Samples taken by remotely-operated vehicle that were analyzed for major element, trace element and Sr-Nd-Hf-Pb isotope composition include the 1650 AD and underlying K2 rhyolitic, enclave-bearing pumices that are nearly identical in composition (73 wt.% SiO2, 4.2 wt.% K2O). Lava bodies exposed in the crater and enclaves are basalts to andesites (52-60 wt.% SiO2). Biotite and amphibole are common phenocryst phases, in contrast with the typically anhydrous mineral assemblages of Santorini. The strong geochemical signature of amphibole fractionation and the assimilation of lower crustal basement in the petrogenesis of the Kolumbo magmas indicates that Kolumbo and Santorini underwent different crustal differentiation histories and that their crustal magmatic systems are unrelated. Moreover, the Kolumbo samples are derived from a distinct, more enriched mantle source that is characterized by high Nb/Yb (>3) and low (206)Pb/(204)Pb (<18.82) that has not been recognized in the Santorini volcanic products. The strong dissimilarity in both petrogenesis and inferred mantle sources between Kolumbo and Santorini suggests that pronounced source variations can be manifested in arc magmas that are closely associated in space and time within a single volcanic field.

  4. Interconnected High-Voltage Pulsed-Power Converters System Design for H− Ion Sources

    CERN Document Server

    Aguglia, D

    2014-01-01

    This paper presents the design and experimental validations of a system of three new high-voltage (HV) pulsedpower converters for the H− sources. The system requires three pulsed voltages (50, 40, and 25 kV to ground) at 2-Hz repetition rate, for 700 μs of usable flat-top. The solution presents ripplefree output voltages and minimal stored energy to protect the ion source from the consequences of arc events. Experimental results on the final full-scale prototype are presented. In case of short-circuit events, the maximal energy delivered to the source is in the Joule range. HV flat-top stability of 1% is experimentally achieved with a simple Proportional-Integral- Derivative regulation and preliminary tuned H− source (e.g., radio frequency control, gas injection, and so forth). The system is running since more than a year with no power converter failures and damage to the source.

  5. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  6. Improvements on the Stability and Operation of a Magnetron H- Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Sosa, A. [Fermilab; Bollinger, D. S. [Fermilab; Karns, P. R. [Fermilab; Tan, C. Y. [Fermilab

    2017-01-06

    The magnetron H- ion sources developed in the 1970s currently in operation at Fermilab provide beam to the rest of the accelerator complex. A series of modifications to these sources have been tested in a dedicated offline test stand with the aim of improving different operational issues. The solenoid type gas valve was tested as an alternative to the piezoelectric gas valve in order to avoid its temperature dependence. A new cesium oven was designed and tested in order to avoid glass pieces that were present with the previous oven, improve thermal insulation and fine tune its temperature. A current-regulated arc modulator was developed to run the ion source at a constant arc current, providing very stable beam outputs during operations. In order to reduce beam noise, the addition of small amounts of N2 gas was explored, as well as testing different cathode shapes with increasing plasma volume. This paper summarizes the studies and modifications done in the source over the last three years with the aim of improving its stability, reliability and overall performance.

  7. Oxidation and corrosion behavior of titanium aluminum nitride coatings by arc ion plating

    Institute of Scientific and Technical Information of China (English)

    LI Ming-sheng; FENG Chang-jie; ZHANG Zhi-feng; WANG Fu-hui

    2006-01-01

    Composite metastable TiN and Ti1-xAlxN coatings with different Al content were deposited on 1Cr11Ni2W2MoV stainless steel for aero-engine compressor blades by arc ion plating. The results show that all coatings have a B1NaCl structure and the preferred orientation changes from (111) to (220) with increasing Al content; the lattice parameter of Ti1-xAlxN decreases with the increase of Al content. The oxidation-resistance of (Ti,Al)N coatings is significantly improved owing to the formation of Al-riched oxide on the surface of the coatings. The nitride coatings can significantly improve the corrosion-resistance of 1Cr11Ni2W2MoV stainless steel under the synergistic of water vapor and NaCl, and the corrosion-resistance becomes better when the Al content increases, because not only the quick formation of thin alumina layer prevents the further corrosion but also the formation of alumina seals the pinholes or defects in the coatings, which prevents the occurrence of localized nodules-like corrosion.

  8. C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation

    Science.gov (United States)

    Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E.; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2008-03-01

    The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.

  9. ECR Ion Source Developments at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Alton, G.D.; Liu, Y.; Meyer, F.W.

    1998-10-05

    New techniques for enhancing the performances of electron cyclotron resonance (ECR) ion sources are being investigated at the Oak Ridge National Laboratory. We have utilized the multiple discrete frequency technique to improve the charge state distributions extracted from conventional magnetic field geometry ECR source by injecting three frequencies into the source. A new flat central magnetic field concept, has been incorporated in the designs of a compact all-permanent-magnet source for high charge-state ion beam generation and a compact electromagnetic source for singly ionized radioactive ion beam generation for use in the Holifield Radioactive Ion Beam Facility (HRIBF) research program. A review of the three frequency injection experiments and descriptions of the design aspects of the "volume-type" ECR ion sources will be given in this report.

  10. Ion Source Physics and Technology (1/2)

    CERN Document Server

    CERN. Geneva

    2016-01-01

    This series of lectures starts with an introduction in some aspects of atomic and plasma physics as base for the ion source physics. The main part covers aspects of ion source physics, technology and operation. Several source types are presented. Some information on infrastructure and supporting services (as high voltage, cooling, microwaves etc) are given to better understand the source environment. The last part on engineering aims to show that, in the field of ion sources, many different technologies are combined in a quite small environment, which is challenging and interesting at the same time.

  11. Ion Source Physics and Technology (2/2)

    CERN Document Server

    CERN. Geneva

    2016-01-01

    This series of lectures starts with an introduction in some aspects of atomic and plasma physics as base for the ion source physics. The main part covers aspects of ion source physics, technology and operation. Several source types are presented. Some information on infrastructure and supporting services (as high voltage, cooling, microwaves etc) are given to better understand the source environment. The last part on engineering aims to show that, in the field of ion sources, many different technologies are combined in a quite small environment, which is challenging and interesting at the same time.

  12. Cathodic arcs

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  13. Experimental validation of a mass- efficiency model for an indium liquid-metal ion source

    CERN Document Server

    Tajmar, M

    2003-01-01

    A model is derived linking microdroplet emission of a liquid-metal ion source (LMIS) to the actual current-voltage characteristic and operating temperature. All parameters were experimentally investigated using an indium LMIS, confirming the relationships found. The model allows for the first time the optimisation of a LMIS for low droplet emission at high emission currents. This is very important for application as a thruster, which has been developed at ARC Seibersdorf research. It can be also used to extrapolate droplet emission values along the current-voltage characteristic. (orig.)

  14. Development of a laser ion source at IGISOL

    Energy Technology Data Exchange (ETDEWEB)

    Moore, I D [Accelerator Laboratory, University of Jyvaeskylae, FIN-40014 (Finland); Nieminen, A [Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom); Billowes, J [Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom); Campbell, P [Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom); Geppert, Ch [Institut fuer Physik, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Jokinen, A [Accelerator Laboratory, University of Jyvaeskylae, FIN-40014 (Finland); Kessler, T [Accelerator Laboratory, University of Jyvaeskylae, FIN-40014 (Finland); Marsh, B [Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom); Penttilae, H [Accelerator Laboratory, University of Jyvaeskylae, FIN-40014 (Finland); Rinta-Antila, S [Accelerator Laboratory, University of Jyvaeskylae, FIN-40014 (Finland); Tordoff, B [Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom); Wendt, K D A [Institut fuer Physik, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Aystoe, J [Accelerator Laboratory, University of Jyvaeskylae, FIN-40014 (Finland)

    2005-10-01

    FURIOS, the Fast Universal laser IOn Source, is under development at the IGISOL (Ion Guide Isotope Separator On-Line) mass separator facility in Jyvaeskylae, Finland. This new laser ion source will combine a state-of-the-art solid state laser system together with a dye laser system, for the selective and efficient production of exotic radioactive species without compromising the universality and fast release inherent in the IGISOL system. The motivation for, and development of, this ion source is discussed in relation to the programme of research ongoing at this mass separator facility.

  15. Verification of high efficient broad beam cold cathode ion source

    Science.gov (United States)

    Abdel Reheem, A. M.; Ahmed, M. M.; Abdelhamid, M. M.; Ashour, A. H.

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.

  16. Status report of the ECR ion sources at the KVI

    NARCIS (Netherlands)

    Drentje, A. G.; Barzangy, F.; Kremers, H. R.; Meyer, D.; Mulder, J.; Sijbring, J.

    1999-01-01

    Abstract: At the moment three ECR ion sources are in operation at the KVI. One of these is being used as the ionizer section of the polarized ion (protons and deuterons) source POLIS; it runs at 2.5 GHz. In this paper the emphasis will be on the other two ECRISs, both being used for the production o

  17. Volume and Surface-Enhanced Volume Negative Ion Sources

    CERN Document Server

    Stockli, M P

    2013-01-01

    H- volume sources and, especially, caesiated H- volume sources are important ion sources for generating high-intensity proton beams, which then in turn generate large quantities of other particles. This chapter discusses the physics and technology of the volume production and the caesium-enhanced (surface) production of H- ions. Starting with Bacal's discovery of the H- volume production, the chapter briefly recounts the development of some H- sources, which capitalized on this process to significantly increase the production of H- beams. Another significant increase was achieved in the 1990s by adding caesiated surfaces to supplement the volume-produced ions with surface-produced ions, as illustrated with other H- sources. Finally, the focus turns to some of the experience gained when such a source was successfully ramped up in H- output and in duty factor to support the generation of 1 MW proton beams for the Spallation Neutron Source.

  18. Characterization of plasma chemistry and ion energy in cathodic arc plasma from Ti-Si cathodes of different compositions

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, A. O.; Zhirkov, I.; Dahlqvist, M.; Jensen, J.; Hultman, L.; Rosen, J. [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2013-04-28

    Arc plasma from Ti-Si compound cathodes with up to 25 at. % Si was characterized in a DC arc system with respect to chemistry and charge-state-resolved ion energy. The plasma ion composition showed a lower Si content, diverging up to 12 at. % compared to the cathode composition, yet concurrently deposited films were in accordance with the cathode stoichiometry. Significant contribution to film growth from neutrals is inferred besides ions, since the contribution from macroparticles, estimated by scanning electron microscopy, cannot alone account for the compositional difference between cathode, plasma, and film. The average ion charge states for Ti and Si were higher than reference data for elemental cathodes. This result is likely related to TiSi{sub x} phases of higher cohesive energies in the compound cathodes and higher effective electron temperature in plasma formation. The ion energy distributions extended up to {approx}200 and {approx}130 eV for Ti and Si, respectively, with corresponding average energies of {approx}60 and {approx}30 eV. These averages were, however, not dependent on Si content in the cathode, except for 25 at. % Si where the average energies were increased up to 72 eV for Ti and 47 eV for Si.

  19. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  20. Sources and detectors of fast ions for basic devices

    OpenAIRE

    Furno, Ivo; Fasoli, Ambrogio; Plyushchev, Gennady

    2009-01-01

    The physics of supra thermal test ions in turbulent plasmas can be conveniently studied in basic plasma physics devices, which allow high-resolution measurements of plasma and fast ion parameters and wave fields throughout the whole plasma cross-section. We describe recent advances in the development of an experimental setup consisting of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and drift/interchange–dr...

  1. GISELE: A resonant ionization laser ion source for the production of radioactive ions at GANIL

    CERN Document Server

    Lecesne, N; Wendt, K; Mattolat, C; Rothe, S; Pichard, A; Pacquet, J Y; Dubois, M; Coterreau, E; Franberg, H; Leroy, R; Gottwald, T; Alves-Conde, R; Flambard, J L; De Oliveira, F; Le Blanc, F; Jardin, P; Olivier, A; Lassen, J

    2010-01-01

    SPIRAL2 is the new project under construction at GANIL to produce radioactive ion beams and in particular neutron rich ion beams. For the past 10 yr SPIRAL1 at GANIL has been delivering accelerated radioactive ion beams of gases. Both facilities now need to extend the range of radioactive ion beams produced to condensable elements. For that purpose, a resonant ionization laser ion source, funded by the French Research National Agency, is under development at GANIL, in collaboration with IPN Orsay, University of Mainz (Germany) and TRIUMF, Vancouver (Canada). A description of this project called GISELE (GANIL Ion Source using Electron Laser Excitation) is presented.

  2. GISELE: A resonant ionization laser ion source for the production of radioactive ions at GANIL

    Energy Technology Data Exchange (ETDEWEB)

    Lecesne, N.; Alves-Conde, R.; De Oliveira, F.; Dubois, M.; Flambard, J. L.; Franberg, H.; Jardin, P.; Leroy, R.; Pacquet, J. Y.; Pichard, A.; Saint-Laurent, M. G. [GANIL, BP 55027, 14076 Caen Cedex 5 (France); Coterreau, E.; Le Blanc, F.; Olivier, A. [IPN Orsay, BP 1-91406 Orsay (France); Gottwald, T.; Mattolat, C.; Wendt, K. [Johannes Gutenberg-Universitaet Mainz, Staudinger Weg 7, 55099 Mainz (Germany); Lassen, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Rothe, S. [Department of Engineering, CERN, CH-1211 Geneva 23 (Switzerland)

    2010-02-15

    SPIRAL2 is the new project under construction at GANIL to produce radioactive ion beams and in particular neutron rich ion beams. For the past 10 yr SPIRAL1 at GANIL has been delivering accelerated radioactive ion beams of gases. Both facilities now need to extend the range of radioactive ion beams produced to condensable elements. For that purpose, a resonant ionization laser ion source, funded by the French Research National Agency, is under development at GANIL, in collaboration with IPN Orsay, University of Mainz (Germany) and TRIUMF, Vancouver (Canada). A description of this project called GISELE (GANIL Ion Source using Electron Laser Excitation) is presented.

  3. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    Science.gov (United States)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  4. Molecular and negative ion production by a standard electron cyclotron resonance ion source.

    Science.gov (United States)

    Rácz, R; Biri, S; Juhász, Z; Sulik, B; Pálinkás, J

    2012-02-01

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H(-), O(-), OH(-), O(2)(-), C(-), C(60)(-) negative ions and H(2)(+), H(3)(+), OH(+), H(2)O(+), H(3)O(+), O(2)(+) positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several μA and positive molecular ion beams in the mA range were successfully obtained.

  5. Synthesis and characterization of CrCN–DLC composite coatings by cathodic arc ion-plating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.Y. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Wang, L.L. [Key Laboratory of Artificial Nanomaterials and Nanostructure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Liu, H.D. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Yan, S.J. [Key Laboratory of Artificial Nanomaterials and Nanostructure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Y.M. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Fu, D.J. [Key Laboratory of Artificial Nanomaterials and Nanostructure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yang, B., E-mail: toyangbing@163.com [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China)

    2013-07-15

    CrCN–DLC composite coatings were deposited onto silicon (1 0 0) and cemented carbides substrates using pure Cr targets under C{sub 2}H{sub 2} ambient by cathodic arc ion plating system. The influence of C{sub 2}H{sub 2} flow rate on the structure and mechanical properties of the coatings was investigated systemically. The coatings structure and bonding state were characterized by XRD, Raman and X-ray photoelectron spectroscopy. The chemical composition was measured by EDS. The mechanical performance and tribological behaviour of the coatings were studied by a hardness tester and ball-on-disc wear tester. The results showed that with increasing C{sub 2}H{sub 2} flow rate from 50 to 100 sccm, the corresponding hardness of coatings increased firstly and then decreased with further addition of C{sub 2}H{sub 2} flow rate. The coatings deposited at lower C{sub 2}H{sub 2} flow rate (less than 200 sccm) exhibited a relatively higher hardness value (more than HV{sub 0.025}2000) and then the hardness decrease with increasing C{sub 2}H{sub 2} flow rate. The friction coefficient also exhibited similar variation trend, when the C{sub 2}H{sub 2} flow rate was higher than 100 sccm, the friction coefficient decreased and then maintained in a relatively lower value from 0.18 to 0.24, which may be attribute to the increasing carbon content and the coating exhibited more diamond-like structure.

  6. Properties of TiAlCrN coatings prepared by vacuum cathodic arc ion plating

    Institute of Scientific and Technical Information of China (English)

    RU Qiang; HU Shejun; HUANG Nacan; ZHAO Lingzhi; QIU Xiuli; HU Xianqi

    2008-01-01

    TiAlCrN coatings were deposited by means of vacuum cathodic arc ion plating technique on TC11 (Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3Si) titanium alloy substrates. The composition, phase structure, mechanical performance, and oxidation-resistance of the nitride coatings were investigated by scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), auger electron spectroscopy (AES), and X-ray photoelectron microscopy (XPS). A new process for preparing protective coatings of the titanium alloy is successfully acquired. The experimental results indicate that the added element chromium in the TiAlN coatings make a contribution to form the (220) preferred direction. The phases of the coatings are composed of (Ti, Al)N and (Ti, Cr)N. After 700℃ and 800℃ oxidation, AES analysis shows that the diffusion distribution of the TiAlCrN coatings emerges a step shape. From the outside to the inner, the concentrations of O, Al, and Cr reduce, but those of Ti and N increase. The Al-rich oxide is formed on the surface of the coatings, and the mixed structure of Ti-rich and Cr-rich oxides is formed in the internal layer. The oxidation resistance of the TiAlCrN coatings is excellent at the range of 700 to 800℃. Adhesion wear is the dominant mechanical characteristic for the titanium alloy at room temperature, and the protective coatings with high hardness can improve the mechanical properties of the titanium alloy. The wear resistance of the TC11 alloy is considerably improved by the TiAlCrN coatings.

  7. Charge state distribution analysis of Al and Pb ions from the laser ion source at IMP

    CERN Document Server

    Shan, Sha; Zhang-Min, Li; Xiao-Hong, Guo; Lun-Cai, Zhou; Guo-Zhu, Cai; Liang-ting, Sun; Xue-Zhen, Zhang; Huan-Yu, Zhao; Xi-Meng, Chen; Hong-Wei, Zhao

    2013-01-01

    A prototype laser ion source that could demonstrate the possibility of producing intense pulsed high charge state ion beams has been established with a commercial Nd:YAG laser (E max = 3 J, 1064 nm, 8-10 ns) to produce laser plasma for the research of Laser Ion Source (LIS). At the laser ion source test bench, high purity (99.998 %) aluminum and lead targets have been tested for laser plasma experiment. An Electrostatic Ion Analyzer (EIA) and Electron Multiply Tube (EMT) detector were used to analyze the charge state and energy distribution of the ions produced by the laser ion source. The maximum charge states of Al12+ and Pb7+ were achieved. The results will be presented and discussed in this paper.

  8. Some plasma aspects and plasma diagnostics of ion sources.

    Science.gov (United States)

    Wiesemann, Klaus

    2008-02-01

    We consider plasma properties in the most advanced type of plasma ion sources, electron cyclotron resonance ion sources for highly charged ions. Depending on the operation conditions the plasma in these sources may be highly ionized, which completely changes its transport properties. The most striking difference to weakly ionized plasma is that diffusion will become intrinsically ambipolar. We further discuss means of plasma diagnostics. As noninvasive diagnostic methods we will discuss analysis of the ion beam, optical spectroscopy, and measurement of the x-ray bremsstrahlung continuum. From beam analysis and optical spectroscopy one may deduce ion densities, and electron densities and distribution functions as a mean over the line of sight along the axis (optical spectroscopy) or at the plasma edge (ion beam). From x-ray spectra one obtains information about the population of highly energetic electrons and the energy transfer from the driving electromagnetic waves to the plasma -- basic data for plasma modeling.

  9. Transverse emittance investigation of the ISOLDE target ion sources

    CERN Document Server

    Lettry, Jacques; Wenander, F

    2003-01-01

    In order to produce target-ion sources allowing for a high isotopic resolution in the separator, CERN/ISOLDE (Isotope Separator On Line) has purchased a commercial emittance metre, capable of measuring transverse phase-space emittances for ion-beam intensities down to approximately 1 nA. It was installed at the ISOLDE off-line separator where targets are tested with respect to material purity and the ion-source efficiencies are determined. Now, also the emittance and brightness are measured for different stable elements. An extensive programme has been launched aiming at a complete survey of the emittance dependence on the various ion-source parameters. Results from the measurements on the different ISOLDE ion-source types, with associated analysis, are presented.

  10. Ion source issues for the DAEδALUS neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Jose R., E-mail: JRAlonso@LBL.gov; Barletta, William A.; Toups, Matthew H.; Conrad, Janet [Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Liu, Y.; Bannister, Mark E.; Havener, C. C.; Vane, Randy [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-02-15

    The DAEδALUS experiment calls for 10 mA of protons at 800 MeV on a neutrino-producing target. To achieve this record-setting current from a cyclotron system, H{sub 2}{sup +} ions will be accelerated. Loosely bound vibrationally excited H{sub 2}{sup +} ions inevitably produced in conventional ion sources will be Lorentz stripped at the highest energies. Presence of these states was confirmed at the Oak Ridge National Laboratory and strategies were investigated to quench them, leading to a proposed R and D effort towards a suitable ion source for these high-power cyclotrons.

  11. Oxygen ion source and RFQ for Linac 1

    CERN Multimedia

    Photographic Service

    1986-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions. In 1984, its Cockcroft-Walton preinjector was replaced by an RFQ. In the foreground at the right is the oxygen ion source. A 90 deg bending magnet selects O6+ ions which are preaccelerated in an RFQ and enter Linac 1, at the far left. In the background is the proton and negative hydrogen ion source, followed by the 520 keV RFQ-1 and a bending magnet towards the entrance of Linac 1.

  12. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  13. Isotopic anomaly for carbon ions in an electron cyclotron resonance ion source

    NARCIS (Netherlands)

    Drentje, A. G.; Kitagawa, A.; Muramatsu, M.

    2010-01-01

    In many experiments methods were applied to increase the highly charged ion output from an electron cyclotron resonance ion source; the gas-mixing method is still generally being applied. The dominant role of the masses of the ions in the gas-mixture was apparent. Two basically differing mechanisms

  14. Influence of ion species ratio on grid-enhanced plasma source ion implantation

    Institute of Scientific and Technical Information of China (English)

    Wang Jiu-Li; Zhang Gu-Ling; Liu Yuan-Fu; Wang You-Nian; Liu Chi-Zi; Yang Si-Ze

    2004-01-01

    @@ Grid-enhanced plasma source ion implantation (GEPSII) is a newly proposed technique to modify the inner-surface properties of a cylindrical bore. In this paper, a two-ion fluid model describing nitrogen molecular ions N2+ and atomic ions N+ is used to investigate the ion sheath dynamics between the grid electrode and the inner surface of a cylindrical bore during the GEPSII process, which is an extension of our previous calculations in which only N2+ was considered.Calculations are concentrated on the results of ion dose and impact energy on the target for different ion species ratios in the core plasma. The calculated results show that more atomic ions N+ in the core plasma can raise the ion impact energy and reduce the ion dose on the target.

  15. Low pressure arc discharges with hollow cathodes and their using in plasma generators and charged particle sources

    CERN Document Server

    Vintizenko, L G; Koval, N N; Tolkachev, V S; Lopatin, I V; Shchanin, P M

    2001-01-01

    Paper presents the results of investigation into arc discharges with a hollow cathode generating 10 sup 1 sup 0 -10 sup 1 sup 2 concentration gas-discharge plasma in essential (approx 1 m sup 3) volumes at low (10 sup - sup 2 -1 Pa) pressures and up to 200 A discharge currents. One studied design of discharge systems with heated and cold cathodes their peculiar features, presented the parameters of plasma generators and of charged particle sources based on arc discharges and discussed, as well, the problems of more rational application of those systems in the processes for surface modification of solids

  16. Electron beam ion source and electron beam ion trap (invited)a)

    Science.gov (United States)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  17. Simulation methods of ion sheath dynamics in plasma source ion implantation

    Institute of Scientific and Technical Information of China (English)

    WANG Jiuli; ZHANG Guling; WANG Younian; LIU Yuanfu; LIU Chizi; YANG Size

    2004-01-01

    Progress of the theoretical studies on the ion sheath dynamics in plasma source ion implantation (PSII) is reviewed in this paper. Several models for simulating the ion sheath dynamics in PSII are provided. The main problem of nonuniform ion implantation on the target in PSII is discussed by analyzing some calculated results. In addition, based on the relative researches in our laboratory, some calculated results of the ion sheath dynamics in PSII for inner surface modification of a cylindrical bore are presented. Finally, new ideas and tendency for future researches on ion sheath dynamics in PSII are proposed.

  18. A New Technique for Diagnosing Multi-charged Ion Beams Produced by ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    ZhangZimin; ZhaoHongwei; CaoYun; MaLei; MaBaohua; LiJinyu; WangHui; FengYucheng; DuJunfeng

    2003-01-01

    In order to study the transmission properties of multi-charged ion beams between the ECR ion source and the analyzing magnet, a new diagnostic system composed of three Wien-filters with three single-wires has been built and installed on the IMP ECR source test bcnch. The single-wire is used to measure the beam profile and the beam density distribution, and the Wien-filter is used to measure the charge state distribution of ion beam.

  19. Ionization efficiency estimations for the SPES surface ion source

    Science.gov (United States)

    Manzolaro, M.; Andrighetto, A.; Meneghetti, G.; Rossignoli, M.; Corradetti, S.; Biasetto, L.; Scarpa, D.; Monetti, A.; Carturan, S.; Maggioni, G.

    2013-12-01

    Ion sources play a crucial role in ISOL (Isotope Separation On Line) facilities determining, with the target production system, the ion beam types available for experiments. In the framework of the SPES (Selective Production of Exotic Species) INFN (Istituto Nazionale di Fisica Nucleare) project, a preliminary study of the alkali metal isotopes ionization process was performed, by means of a surface ion source prototype. In particular, taking into consideration the specific SPES in-target isotope production, Cs and Rb ion beams were produced, using a dedicated test bench at LNL (Laboratori Nazionali di Legnaro). In this work the ionization efficiency test results for the SPES Ta surface ion source prototype are presented and discussed.

  20. A review of ion sources for medical accelerators (invited).

    Science.gov (United States)

    Muramatsu, M; Kitagawa, A

    2012-02-01

    There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespread since the 1990s. The energy and intensity are typically over 200 MeV and several 10(10) pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV∕u. Although the beam intensity depends on the irradiation method, it is typically several 10(8) or 10(9) pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of accelerators are

  1. Empirical laws of particle extraction from single-grid source of bipolar ion-electron flow

    Energy Technology Data Exchange (ETDEWEB)

    Dudin, S. V. [Department of Physics and Technology, V.N. Karazin Kharkiv National University, Kurchatova Ave. 31, 61108 Kharkiv (Ukraine); Scientific Center of Physical Technologies, Svobody sq. 6, 61022 Kharkiv (Ukraine); Rafalskyi, D. V. [Scientific Center of Physical Technologies, Svobody sq. 6, 61022 Kharkiv (Ukraine)

    2012-11-15

    The present research is devoted to the problem of extraction grid choice for a single-grid source of bipolar ion-electron flow. The paper contains detailed reference information on ion and electron extraction characteristics of 10 different grids with broad range of parameters: aperture width (0.09-0.6 mm), grid transparency (0.19-0.51), thickness (0.036-0.5 mm), and with different aperture geometry. The grids with square, circular, and slit apertures were made with different technologies: laser cutting, welding, weaving, and electrolytic erosion. The general regularities of the ion and electron extraction from the single-grid source are experimentally researched for the cases of dc and RF extraction grid biasing. A conclusion has been made that the maximum extracted ion current at low ion energy (0-200 eV) does not significantly vary for all the grids and does not exceed half of the primary ion current from plasma multiplied by the optical grid transparency. The low-energy limit of efficient ion extraction has been discovered which cannot be overcome by the aperture narrowing. A conclusion is made that the RF extraction mode is superior for all the researched grids since it is characterized by higher extracted ion current at any acceleration voltage for any grid with much more simple and smooth extraction curves behavior in comparison to the dc case as well as absence of arcing, jumps, and hysteresis of the measured curves at any RF voltages. The unique ability of the RF biased single-grid source of simultaneous ion/electron emission has been studied. The measured maximal attainable ion beam current compensation ratio is always sufficiently higher than 1 and typically varies in the range 2-6. The results obtained in the present paper demonstrate prospective of the single-grid source in space thruster applications and in modern technologies, particularly for ion beam processing of wide bandgap semiconductor devices such as GaN and SiC transistors due to inherent

  2. Pulsed, Inductively Generated, Streaming Plasma Ion Source for Heavy Ion Fusion Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Steven C. Glidden; Howard D Sanders; John B. Greenly; Daniel L. Dongwoo

    2006-04-28

    This report describes a compact, high current density, pulsed ion source, based on electrodeless, inductively driven gas breakdown, developed to meet the requirements on normalized emittance, current density, uniformity and pulse duration for an ion injector in a heavy-ion fusion driver. The plasma source produces >10 μs pulse of Argon plasma with ion current densities >100 mA/cm2 at 30 cm from the source and with strongly axially directed ion energy of about 80 eV, and sub-eV transverse temperature. The source has good reproducibility and spatial uniformity. Control of the current density during the pulse has been demonstrated with a novel modulator coil method which allows attenuation of the ion current density without significantly affecting the beam quality. This project was carried out in two phases. Phase 1 used source configurations adapted from light ion sources to demonstrate the feasibility of the concept. In Phase 2 the performance of the source was enhanced and quantified in greater detail, a modulator for controlling the pulse shape was developed, and experiments were conducted with the ions accelerated to >40 kV.

  3. Focused ion beams using a high-brightness plasma source

    Science.gov (United States)

    Guharay, Samar

    2002-10-01

    High-brightness ion beams, with low energy spread, have merits for many new applications in microelectronics, materials science, and biology. Negative ions are especially attractive for the applications that involve beam-solid interactions. When negative ions strike a surface, especially an electrically isolated surface, the surface charging voltage is limited to few volts [1]. This property can be effectively utilized to circumvent problems due to surface charging, such as device damage and beam defocusing. A compact plasma source, with the capability to deliver either positive or negative ion beams, has been developed. H- beams from this pulsed source showed brightness within an order of magnitude of the value for beams from liquid-metal ion sources. The beam angular intensity is > 40 mAsr-1 and the corresponding energy spread is 1 Acm-2 and a spot size of 100 nm. Such characteristics of focused beam parameters, using a dc source, will immediately open up a large area of new applications. [1] P. N. Guzdar, A. S. Sharma, S. K. Guharay, "Charging of substrates irradiated by particle beams" Appl. Phys. Lett. 71, 3302 (1997). [2] S. K. Guharay, E. Sokolovsky, J. Orloff, "Characteristics of ion beams from a Penning source for focused ion beam applications" J. Vac. Sci Technol. B17, 2779 (1999).

  4. Study on heat source model in twin-arc GMAW with a common weld pool

    Institute of Scientific and Technical Information of China (English)

    Zhao Pengcheng; Wang Lulu; Liu Chunting; Huang Shisheng

    2009-01-01

    The heat input from arcs to weld pool in twin-arc gas metal arc welding (GMAW) with a common weld pool is investigated by high-speed photography. The characteristics of arc shapes and droplet transfer are studied and then the models for heat flux distribution on top surface of weld pool and enthalpy distribution of metal droplets transferred into weld pool are established. By using the model, 3-D geometries of weld pools in twin-arc GMAW with a common weld pool are predicted. Corresponding welding experiments on mild steel plates are carried out and the results indicate that the predicted shape of weld bead on cross section shows good agreement with measured one.

  5. Experimental Verification of the Physical Model for Droplet-Particles Cleaning in Pulsed Bias Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    Yanhui ZHAO; Guoqiang LIN; Chuang DONG; Lishi WEN

    2005-01-01

    It has been reported that application of pulsed biases in arc ion plating could effectively eliminate droplet particles.The present paper aims at experimental verification of a physical model proposed previously by us which is based on particle charging and repulsion in the pulsed plasma sheath. An orthogonal experiment was designed for this purpose,using the electrical parameters of the pulsed bias for the deposition of TiN films on stainless steel substrates. The effect of these parameters on the amount and the size distribution of the particles were analyzed, and the results provided sufficient evidence for the physical model.

  6. Multiple species beam production on laser ion source for electron beam ion source in Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M., E-mail: sekine.m.ae@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Riken, Wako, Saitama (Japan); Ikeda, S. [Riken, Wako, Saitama (Japan); Department of Energy Science, Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Hayashizaki, N. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Kanesue, T.; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-02-15

    Extracted ion beams from the test laser ion source (LIS) were transported through a test beam transport line which is almost identical to the actual primary beam transport in the current electron beam ion source apparatus. The tested species were C, Al, Si, Cr, Fe, Cu, Ag, Ta, and Au. The all measured beam currents fulfilled the requirements. However, in the case of light mass ions, the recorded emittance shapes have larger aberrations and the RMS values are higher than 0.06 π mm mrad, which is the design goal. Since we have margin to enhance the beam current, if we then allow some beam losses at the injection point, the number of the single charged ions within the acceptance can be supplied. For heaver ions like Ag, Ta, and Au, the LIS showed very good performance.

  7. Droplet-free high-density metal ion source for plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Keiji [Department of Electrical Engineering, College of Engineering, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan)]. E-mail: nakamura@solan.chubu.ac.jp; Yoshinaga, Hiroaki [Department of Electrical Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Yukimura, Ken [Department of Electrical Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321 (Japan)

    2006-01-15

    This paper reports on plasma parameters and ion composition of droplet-free Zr ion source for plasma immersion ion implantation and deposition (PIII and D). Zirconium (Zr) ions were obtained by ionizing sputtered Zr atoms in inductively-coupled argon discharge. The characteristics of plasma density, plasma potential and electron temperature were typical ones of such a inductive discharge, and the plasma parameters were not significantly influenced by mixing the sputtered Zr atoms into the plasma. Actually, the main ionic component was still Ar{sup +} ions, and the ion density ratio of [Zr{sup +}]/[Ar{sup +}] was as low as {approx}8%. Increase in sputtering rate of the Zr source will be necessary to improve the ion density ratio.

  8. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    Science.gov (United States)

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    Directory of Open Access Journals (Sweden)

    Ganhua Lu

    2006-01-01

    Full Text Available Miniaturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS. The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM for morphology and defects, energy dispersive X-ray (EDX spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS for surface composition. Nonagglomerated rutile tin oxide (SnO2 nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.

  10. Operation of the CSNS Penning surface H~- ion source

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The accelerator complex of the China Spallation Neutron Source (CSNS) consists of a H- linear accelerator (linac) and a rapid cycling synchrotron (RCS). The linac contains a Penning surface H- ion source. The designed energy and the beam current of the source are 50 keV and 20 mA respectively, with a normalized root mean square (norm. rms.) emittance of 0.2π mm mrad. The manufactures and tests of the discharge chamber are in great progress. The construction of H- ion source test stand has been completed, and the operation of the source is also in progress. Stable H- ion beams with energy of 50 keV and current up to 50 mA are attained. Emittance measurement for the H- beam is being prepared.

  11. Characterization of an atmospheric double arc argon-nitrogen plasma source

    Science.gov (United States)

    Tu, X.; Chéron, B. G.; Yan, J. H.; Yu, L.; Cen, K. F.

    2008-05-01

    In the framework of studies devoted to hazardous waste destruction, an original dc double anode plasma torch has been designed and tested, which produces an elongated, weak fluctuation and reproducible plasma jet at atmospheric pressure. The arc instabilities and dynamic behavior of the double arc argon-nitrogen plasma jet are investigated through the oscillations of electrical signals by combined means of fast Fourier transform and Wigner distribution. In our experiment, the restrike mode is identified as the typical fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra and Wigner distributions exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which reveals that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the undulation of the power supply and both arc roots motion on the anode channels. In addition, the microscopic properties of the plasma jet inside and outside the arc chamber are investigated by means of optical emission spectroscopy, which yields excitation, electronic, rotational, and vibrational temperatures, as well as the electron number density. The results allow us to examine the validity criteria of a local thermodynamic equilibrium (LTE) state in the plasma arc. The measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the atmospheric double arc argon-nitrogen plasma in the core region is close to the LTE state under our experimental conditions.

  12. Multicharged iron ions produced by using induction heating vapor source.

    Science.gov (United States)

    Kato, Yushi; Kubo, Takashi; Muramatsu, Masayuki; Tanaka, Kiyokatsu; Kitagawa, Atsushi; Yoshida, Yoshikazu; Asaji, Toyohisa; Sato, Fuminobu; Iida, Toshiyuki

    2008-02-01

    Multiply charged Fe ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with an induction coil which is made of bare molybdenum wire partially covered by ceramic beads in vacuum and surrounding and heating directly the pure Fe rod. Heated material has no contact with insulators, so that outgas is minimized. The evaporator is installed around the mirror end plate outside of the ECR plasma with its hole grazing the ECR zone. Helium or argon gas is usually chosen for supporting gas. The multicharged Fe ions up to Fe(13+) are extracted from the opposite side of mirror and against the evaporator, and then multicharged Fe ion beam is formed. We compare production of multicharged iron ions by using this new source with our previous methods.

  13. Highly charged ion X-rays from Electron-Cyclotron Resonance Ion Sources

    OpenAIRE

    Indelicato, Paul; Boucard, S.; Covita, D. S.; Gotta, D.; Gruber, A; Hirtl, A.; Fuhrmann, H.; Le Bigot, E.-O.; Schlesser, S.; dos Santos, J. M. F.; Simons, L.M.; Stingelin, L.; Trassinelli, Martino; Veloso, J.; Wasser, A.

    2006-01-01

    Radiation from the highly-charged ions contained in the plasma of Electron-Cyclotron Resonance Ion Sources constitutes a very bright source of X-rays. Because the ions have a relatively low kinetic energy ($\\approx 1$~eV) transitions can be very narrow, containing only small Doppler broadening. We describe preliminary accurate measurements of two and three-electron ions with $Z=16$--18. We show how these measurement can test sensitively many-body relativistic calculations or can be used as X-...

  14. A New ECR Ion Source for Atomic Physics Research at IMP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new Electron Cyclotron Resonance (ECR) ion source (LECR3-Lanzhou Electron Cyclotron Resonance ion source No.3) was constructed this year. The main purpose of this source is to provide highly charged ion beams for atomic physics and surface physics research. The design of this ion source is based on the IMP 14.5 GHz ECR ion source (LECR2-Lanzhou Electron Cyclotron Resonance ion source No.2) with double RF heating

  15. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclay.

    Science.gov (United States)

    Delferrière, O; Gobin, R; Harrault, F; Nyckees, S; Sauce, Y; Tuske, O

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  16. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclaya)

    Science.gov (United States)

    Delferrière, O.; Gobin, R.; Harrault, F.; Nyckees, S.; Sauce, Y.; Tuske, O.

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  17. Calcium and lithium ion production for laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M.; Palm, K.; Stifler, C.; Steski, D.; Ikeda, S.; Kumaki, M.; Kanesue, T.

    2015-08-23

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) to simulate the effects of cosmic radiation. To find out difficulties to provide such high reactive material as laser targets, the both species were experimentally tested. Plate-shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6ns, 1064nm Nd:YAG laser. We found significant oxygen contamination in both the Ca and Li high-charge-state beams due to the rapid oxidation of the surfaces. A large-spot-size, low-power-density laser was then used to analyze the low-charge-state beams without scanning the targets. The low-charge-state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely with a low-power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low-power shot. To measure the rate of oxidation, we shot the low-power laser at the target repeatedly at 10sec, 30sec, 60sec, and 120sec interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.

  18. A compact source for bunches of singly charged atomic ions

    Science.gov (United States)

    Murböck, T.; Schmidt, S.; Andelkovic, Z.; Birkl, G.; Nörtershäuser, W.; Vogel, M.

    2016-04-01

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 106 Mg+ ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg+ ions for sympathetic cooling of highly charged ions by laser-cooled 24Mg+.

  19. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    Science.gov (United States)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C5+ ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C5+ ion beam was got when work gas was CH4 while about 262 eμA of C5+ ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  20. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yun, E-mail: caoyun@impcas.ac.cn; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gas was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  1. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.

    Science.gov (United States)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  2. Emission characteristics of AuSiBe field ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Drandarov, N.; Georgieva, St.; Nikolov, B.; Donchev, T. (Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. po Elektronika)

    A ribbon type AuSiBe alloy field ion source, which combines the advantages of both hairpin type sources and reservoir type sources, has been constructed. The current-voltage characteristics of this source have been investigated. Hysteresis and four differentiated emission regions have been observed for them. By means of scanning electronic microscopy, it has been established that this complicated behaviour of the I-V curves and the angular distribution of the extracted ions are associated with the shape of the emitting surface. The mass spectrum of the emitted ions has been determined by means of an E x B mass filter. Considerable emission of Au[sup +], AuBe[sub 3][sup 2+], Si[sup 2+], Be[sup 2+], AuBe[sub 3][sup +], Be[sup +], Si[sup +], and Au[sup 2+] has been observed. (author).

  3. Status and Operation of the Linac4 Ion Source Prototypes

    CERN Document Server

    Lettry, J; Andersson, P; Bertolo, S; Butterworth, A; Coutron, Y; Dallocchio, A; Chaudet, E; Gil-Flores, J; Guida, R; Hansen, J; Koszar, I; Mahner, E; Mastrostefano, C; Mathot, S; Mattei, S; Midttun, O; Moyret, P; Nisbet, D; O’Neil, M; Paoluzzi, M; Pasquino, C; Pereira, H; Rochez, J; Sanchez Alvarez, J; Sanchez Arias, J; Scrivens, R; Steyaert, D; Thaus, N; Hatayama, A; Nishida, K; Shibata, T; Yamamot, T; Otha, M

    2014-01-01

    CERN’s Linac4 45 kV H- ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma and pulsed high voltages are described. The first experimental results of two prototypes relying on 2MHz RF- plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H- beam of 16-22 mA which has successfully been used for the commissioning of the LEBT, RFQ and chopper of Linac4.

  4. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    Science.gov (United States)

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  5. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    Science.gov (United States)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  6. Development of C{sup 6+} laser ion source and RFQ linac for carbon ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sako, T., E-mail: takayuki1.sako@toshiba.co.jp; Yamaguchi, A.; Sato, K. [Toshiba Corporation, Yokohama 235-8522 (Japan); Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T. [Cancer Research Center, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Takeuchi, T. [Accelerator Engineering Corporation, Chiba 263-0043 (Japan)

    2016-02-15

    A prototype C{sup 6+} injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  7. Overview of ion source characterization diagnostics in INTF

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, M., E-mail: mainak@iter-india.org; Sudhir, Dass; Bhuyan, M.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A. [ITER-India, Institute for Plasma Research, A-29 GIDC, Sector-25, Gandhinagar, Gujarat 382016 (India); Soni, J. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382 428 (India)

    2016-02-15

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.

  8. Overview of ion source characterization diagnostics in INTF

    Science.gov (United States)

    Bandyopadhyay, M.; Sudhir, Dass; Bhuyan, M.; Soni, J.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A.

    2016-02-01

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.

  9. Some estimates of the virtual source size of a liquid metal ion source

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, S.; Vichev, R.G.; Drandarov, N. (Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. po Elektronika)

    A Monte Carlo computer code simulating the trajectories of ions emitted from a liquid metal ion source (LMIS) is developed. The electric field of the tip is taken to be that created by a sphere-on-orthogonal cone. The ions are emitted normal to the surface with an initial energy of 1 eV. A Poisson distribution is used to describe the time dependence of their emission process. Ion trajectories are followed and the virtual source size and energy spectra are evaluated for three reference planes normal to the emitter axis. The obtained results are compared with the experimentally measured values. (author).

  10. Characterization of electron temperature by simulating a multicusp ion source

    Science.gov (United States)

    Yeon, Yeong Heum; Ghergherehchi, Mitra; Kim, Sang Bum; Jun, Woo Jung; Lee, Jong Chul; Mohamed Gad, Khaled Mohamed; Namgoong, Ho; Chai, Jong Seo

    2016-12-01

    Multicusp ion sources are used in cyclotrons and linear accelerators to produce high beam currents. The structure of a multicusp ion source consists of permanent magnets, filaments, and an anode body. The configuration of the array of permanent magnets, discharge voltage of the plasma, extraction bias voltage, and structure of the multicusp ion source body decide the quality of the beam. The electrons are emitted from the filament by thermionic emission. The emission current can be calculated from thermal information pertaining to the filament, and from the applied voltage and current. The electron trajectories were calculated using CST Particle Studio to optimize the plasma. The array configuration of the permanent magnets decides the magnetic field inside the ion source. The extraction bias voltage and the structure of the multicusp ion source body decide the electric field. Optimization of the electromagnetic field was performed with these factors. CST Particle Studio was used to calculate the electron temperature with a varying permanent magnet array. Four types of permanent magnet array were simulated to optimize the electron temperature. It was found that a 2-layer full line cusp field (with inverse field) produced the best electron temperature control behavior.

  11. Development of a compact ECR ion source for various ion production

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, M., E-mail: m-mura@nirs.go.jp; Hojo, S.; Iwata, Y.; Katagiri, K.; Sakamoto, Y.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Takahashi, N. [Sumitomo Heavy Industries, Ltd., 19 Natsushima, Yokosuka, Kanagawa 237-8555 (Japan); Sasaki, N.; Fukushima, K.; Takahashi, K.; Suzuki, T.; Sasano, T. [Accelerator Engineering Corporation, 3-8-5 Konakadai, Inage, Chiba 263-0043 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Hagino, S.; Nishiokada, T.; Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2016-02-15

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute of Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured.

  12. 22 A beam production of the uniform negative ions in the JT-60 negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Masafumi, E-mail: yoshida.masafumi@jaea.go.jp [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Grisham, Larry R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Hatayama, Akiyoshi; Shibata, Takanori; Yamamoto, Takashi [Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8511 (Japan); Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ohzeki, Masahiro; Seki, Norikazu; Sasaki, Shunichi; Shimizu, Tatsuo; Terunuma, Yuto [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan)

    2015-10-15

    Highlights: • In order to improve a uniformity of the negative ion beam and produce high current negative ion beam in the JT-60 negative ion source, a tent-shaped filter is applied. • Beam uniformity is improved from 68% to 83% over an area of the whole extraction area of 450 x 1100 mm{sup 2}. • The improvement of the beam uniformity leads to the production of 32 A H{sup −} ion beams with the whole extraction area. - Abstract: In order to improve the spatial uniformity of the negative ion beam and to produce high current negative ion beams in a large negative ion source, a magnetic field configuration is modified from an original transverse filter to a tent-shaped filter, in combination with reducing the magnetic field strength in the JT-60 negative ion source. As a result, the beam uniformity is improved from 68% to 83% over an area of the whole extraction area of 450 × 1100 mm{sup 2}. The improvement of the beam uniformity leads to the production of 32 A H{sup −} ion beams with the whole extraction area. The obtained beam current fulfills the requirement for JT-60SA.

  13. Shutterless ion mobility spectrometer with fast pulsed electron source

    Science.gov (United States)

    Bunert, E.; Heptner, A.; Reinecke, T.; Kirk, A. T.; Zimmermann, S.

    2017-02-01

    Ion mobility spectrometers (IMS) are devices for fast and very sensitive trace gas analysis. The measuring principle is based on an initial ionization process of the target analyte. Most IMS employ radioactive electron sources, such as 63Ni or 3H. These radioactive materials have the disadvantage of legal restrictions and the electron emission has a predetermined intensity and cannot be controlled or disabled. In this work, we replaced the 3H source of our IMS with 100 mm drift tube length with our nonradioactive electron source, which generates comparable spectra to the 3H source. An advantage of our emission current controlled nonradioactive electron source is that it can operate in a fast pulsed mode with high electron intensities. By optimizing the geometric parameters and developing fast control electronics, we can achieve very short electron emission pulses for ionization with high intensities and an adjustable pulse width of down to a few nanoseconds. This results in small ion packets at simultaneously high ion densities, which are subsequently separated in the drift tube. Normally, the required small ion packet is generated by a complex ion shutter mechanism. By omitting the additional reaction chamber, the ion packet can be generated directly at the beginning of the drift tube by our pulsed nonradioactive electron source with only slight reduction in resolving power. Thus, the complex and costly shutter mechanism and its electronics can also be omitted, which leads to a simple low-cost IMS-system with a pulsed nonradioactive electron source and a resolving power of 90.

  14. Low fragment polyatomic molecular ion source by using permanent magnets.

    Science.gov (United States)

    Takeuchi, Mitsuaki; Hayashi, Kyouhei; Imanaka, Kousuke; Ryuto, Hiromichi; Takaoka, Gikan H

    2014-02-01

    Electron-ionization-type polyatomic molecular ion source with low fragment was developed by using a pair of ring-shaped Sm-Co magnets. The magnets were placed forward and backward side of ionization part to confine electrons extracted from a thermionic cathode. Calculated electron trajectory of the developed ion source was 20 times longer than that of an ordinary outer filament configuration that has no magnetic confinement. Mass spectra of the molecular ions generated from n-tetradecane (C14H30) gas exhibited 4 times larger intensity than that of the ordinary configuration in a range of mass/charge from 93 to 210 u. This indicates that suppression of fragment ion was obtained by increase of low energy electrons resulted from the electron confinement.

  15. Scanning microbeam using a liquid metal ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ishitani, T.; Tamura, H.; Todokoro, H.

    1982-01-01

    A scanning ion microprobe system using a liquid-Ga ion source and a voltage-asymmetric three-electrode lens is developed. It produces 2--20 keV Ga/sup +/ beams of 0.1--5 ..mu..m diameter with 20 pA--8 nA current. Beam sizes are directly measured by a combined sharp-edge and Faraday cup mehtod. This optical system is well suited for variable energy microprobe applications.

  16. Alternative modeling methods for plasma-based Rf ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com; Beckwith, Kristian R. C., E-mail: beckwith@txcorp.com [Tech-X Corporation, Boulder, Colorado 80303 (United States)

    2016-02-15

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two

  17. Alternative modeling methods for plasma-based Rf ion sources

    Science.gov (United States)

    Veitzer, Seth A.; Kundrapu, Madhusudhan; Stoltz, Peter H.; Beckwith, Kristian R. C.

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H- source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H- ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models

  18. Development of a low energy ion source with multicapillary anode

    Science.gov (United States)

    Ogawa, Soichi; Okamoto, Akio; Takiguchi, Katsumi; Yoshitake, Masaaki; Nosaka, Toshikazu; Fukui, Shigeo; Ueno, Tsutomu

    1989-02-01

    A new type of hot cathode ion source which has a multicapillary anode and a discharge stabilizer electrode has been developed. There are two special features in this ion source. The gaseous flow is intense and of the collimated beam type, because it is introduced through the multicapillary anode. A high ion current density ( > 5 mA/cm 2) can be obtained because discharge in high vacuum can continue with the help of the stabilizer electrode. At a stabilizer voltage ( Vs) of 50 V, ion current densities of 2.2 and 6.1 mA/cm 2 were obtained at acceleration voltages ( Vacc) of 20 and 200 V, respectively. The ion energy was dependent on Vd, and the full width at half maximum (FWHM) of its distribution was less than 15 eV. Cu films were etched by this ion source. The etching rate ( Er) was 150 Å/min at Vacc = 100 V. The relationship between the etching rate and Vacc was represented by Er ∝ ( Vacc) α. The values of α were 2.0 in the region of Vacc ≤ 100 V and 1.0 for Vacc ≥ 100 V.

  19. Surface modeling for optical fabrication with linear ion source

    CERN Document Server

    Wu, Lixiang; Shao, Jianda

    2016-01-01

    We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. It is the first time that we have a surface descriptor for building a relationship between the fabrication process of optical surfaces and the surface characterization based on PSD analysis, which akin to Zernike polynomials used for mapping the relationship between surface errors and Seidel aberrations. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of surface errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that, in theory, optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approac...

  20. Design and development of the CSNS ion source control system

    CERN Document Server

    Yan-Hua, Lu; Hua-Fu, Ouyang

    2013-01-01

    After the CSNS ion source test stand has been stably working for years, an online control system for CSNS ion source aiming to be more stable and reliable is now under development. F3RP61-2L, a new PLC CPU module under Linux system, is introduced to the system as an IOC, to function together with the I/O modules of FA-M3 PLC on the PLC-bus. The adoption of the new IOC not only simplifies the architecture of the control system, but also improves the data transmission speed. In this paper, the design and development of the supervisory and control system for CSNS ion source are described.

  1. Design and development of the CSNS ion source control system

    Institute of Scientific and Technical Information of China (English)

    LU Yan-Hua; LI Gang; OUYANG Hua-Fu

    2013-01-01

    Now that the CSNS ion source test stand has been stably working for years,an online control system for the CSNS ion source which aims to be more stable and reliable is now under development.F3RP61-2L,a new PLC CPU module running an embedded Linux system,is introduced to the system as an IOC,to function together with the I/O modules of FA-M3 PLC on the PLC-bus.The adoption of the new IOC not only simplifies the architecture of the control system,but also improves the data transmission speed.In this paper,the design and development of the supervisory and control system for the CSNS ion source are described.

  2. Plasma and Ion Sources in Large Area Coatings: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2005-02-28

    Efficient deposition of high-quality coatings often requires controlled application of excited or ionized particles. These particles are either condensing (film-forming) or assisting by providing energy and momentum to the film growth process, resulting in densification, sputtering/etching, modification of stress, roughness, texture, etc. In this review, the technical means are surveyed enabling large area application of ions and plasmas, with ion energies ranging from a few eV to a few keV. Both semiconductortype large area (single wafer or batch processing with {approx} 1000 cm{sup 2}) and in-line web and glass-coating-type large area (> 10{sup 7} m{sup 2} annually) are considered. Characteristics and differences between plasma and ion sources are explained. The latter include gridded and gridless sources. Many examples are given, including sources based on DC, RF, and microwave discharges, some with special geometries like hollow cathodes and E x B configurations.

  3. Hollow metal target magnetron sputter type radio frequency ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, N., E-mail: mwada@mail.doshisha.ac.jp; Kasuya, T.; Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyoto 610–0321 (Japan); Tsubouchi, N. [Kansai Institute, Advanced Industrial Science and Technology, Osaka 563–8577 (Japan)

    2014-02-15

    A 70 mm diameter 70 mm long compact ion source equipped with a hollow sputtering target has been designed and tested. The hollow sputtering target serves as the radio frequency (RF) plasma excitation electrode at 13.56 MHz. A stable beam of Cu{sup +} has been extracted when Ar was used as the discharge support gas. In the extracted beam, Cu{sup +} had occupied more than 85% of the total ion current. Further increase in Cu{sup +} ions in the beam is anticipated by increasing the RF power and Ar pressure.

  4. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O. [RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Tamura, M.; Aihara, T.; Uchiyama, A. [SHI Accelerator Service Ltd., 1-17-6 Osaki, Shinagawa, Tokyo 141-0032 (Japan)

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  5. H- Ion Sources For CERN’s Linac4

    CERN Document Server

    Lettry, J; Coutron, Y; Chaudeta, E; Dallocchio, A; Gil Flores, J; Hansen, J; Mahner, E; Mathot, S; Mattei, S; Midttun, O; Moyret, P; Nisbet, D; O’Neil, M; Paoluzzi, M; Pasquino, C; Pereira, H; Sanchez Arias, J; Schmitzer, C; Scrivens, R; Steyaert, D

    2013-01-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitabl...

  6. The Leuven isotope separator on-line laser ion source

    CERN Document Server

    Kudryavtsev, Y; Franchoo, S; Huyse, M; Gentens, J; Kruglov, K; Müller, W F; Prasad, N V S; Raabe, R; Reusen, I; Van den Bergh, P; Van Duppen, P; Van Roosbroeck, J; Vermeeren, L; Weissman, L

    2002-01-01

    An element-selective laser ion source has been used to produce beams of exotic radioactive nuclei and to study their decay properties. The operational principle of the ion source is based on selective resonant laser ionization of nuclear reaction products thermalized and neutralized in a noble gas at high pressure. The ion source has been installed at the Leuven Isotope Separator On-Line (LISOL), which is coupled on-line to the cyclotron accelerator at Louvain-la-Neuve. sup 5 sup 4 sup , sup 5 sup 5 Ni and sup 5 sup 4 sup , sup 5 sup 5 Co isotopes were produced in light-ion-induced fusion reactions. Exotic nickel, cobalt and copper nuclei were produced in proton-induced fission of sup 2 sup 3 sup 8 U. The b decay of the sup 6 sup 8 sup - sup 7 sup 4 Ni, sup 6 sup 7 sup - sup 7 sup 0 Co, sup 7 sup 0 sup - sup 7 sup 5 Cu and sup 1 sup 1 sup 0 sup - sup 1 sup 1 sup 4 Rh isotopes has been studied by means of beta-gamma and gamma-gamma spectroscopy. Recently, the laser ion source has been used to produce neutron-d...

  7. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yushi, E-mail: kato@eei.eng.osaka-u.ac.jp; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2016-02-15

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  8. Ion beams in SEM: An experiment towards a high brightness low energy spread electron impact gas ion source

    NARCIS (Netherlands)

    Jun, D.S.; Kutchoukov, V.G.; Kruit, P.

    2011-01-01

    A next generation ion source suitable for both high resolution focused ion beam milling and imaging applications is currently being developed. The new ion source relies on a method of which positively charged ions are extracted from a miniaturized gas chamber where neutral gas atoms become ionized b

  9. Recent progress on the superconducting ion source VENUS.

    Science.gov (United States)

    Benitez, J Y; Franzen, K Y; Hodgkinson, A; Loew, T; Lyneis, C M; Phair, L; Saba, J; Strohmeier, M; Tarvainen, O

    2012-02-01

    The 28 GHz Ion Source VENUS (versatile ECR for nuclear science) is back in operation after the superconducting sextupole leads were repaired and a fourth cryocooler was added. VENUS serves as an R&D device to explore the limits of electron cyclotron resonance source performance at 28 GHz with its 10 kW gryotron and optimum magnetic fields and as an ion source to increase the capabilities of the 88-Inch Cyclotron both for nuclear physics research and applications. The development and testing of ovens and sputtering techniques cover a wide range of applications. Recent experiments on bismuth demonstrated stable operation at 300 eμA of Bi(31+), which is in the intensity range of interest for high performance heavy-ion drivers such as FRIB (Facility for Rare Isotope Beams). In addition, the space radiation effects testing program at the cyclotron relies on the production of a cocktail beam with many species produced simultaneously in the ion source and this can be done with a combination of gases, sputter probes, and an oven. These capabilities are being developed with VENUS by adding a low temperature oven, sputter probes, as well as studying the RF coupling into the source.

  10. Small cluster ions from source of negative ions by cesium sputtering

    CERN Document Server

    Wang, X M; Shao, L; Liu, J R; Chu, W K

    2002-01-01

    We investigated the delivery of small cluster ions using a source of negative ions by cesium sputtering (SNICS). The negative cluster ions of B sub n , C sub n , Si sub n , Co sub n , Cu sub n , Ge sub n , Au sub n , GeB sub n and SiB sub n have been extracted by SNICS. Adequate beam current of some small clusters was obtained by changing several parameters for cluster ion yield. After a comprehensive study of the operation parameters, such as target material selection, target geometry, sputtering voltage and current, the small cluster ion current can be increased by several orders of magnitude, with little change on the monomer ion yield.

  11. A simple radionuclide-driven single-ion source

    CERN Document Server

    Díez, M Montero; Fairbank, W; Gratta, G; Barbeau, P S; Barry, K; DeVoe, R; Dolinski, M J; Green, M; LePort, F; Müller, A R; Neilson, R; O'Sullivan, K; Ackerman, N; Aharmin, B; Auger, M; Benitez-Medina, C; Breidenbach, M; Burenkov, A; Cook, S; Daniels, T; Donato, K; Farine, J; Giroux, G; Gornea, R; Graham, K; Hagemann, C; Hall, C; Hall, K; Hallman, D; Hargrove, C; Herrin, S; Karelin, A; Kaufman, L J; Kuchenkov, A; Kumar, K; Lacey, J; Leonard, D S; Mackay, D; MacLellan, R; Mong, B; Niner, E; Odian, A; Piepke, A; Pocar, A; Prescott, C Y; Pushkin, K; Rollin, E; Rowson, P C; Sinclair, D; Slutsky, S; Stekhanov, V; Vuilleumier, J -L; Wichoski, U; Wodin, J; Yang, L; Yen, Y -R

    2010-01-01

    We describe a source capable of producing single barium ions through nuclear recoils in radioactive decay. The source is fabricated by electroplating 148Gd onto a silicon {\\alpha}-particle detector and vapor depositing a layer of BaF2 over it. 144Sm recoils from the alpha decay of 148Gd are used to dislodge Ba+ ions from the BaF2 layer and emit them in the surrounding environment. The simultaneous detection of an {\\alpha} particle in the substrate detector allows for tagging of the nuclear decay and of the Ba+ emission. The source is simple, durable, and can be manipulated and used in different environments. We discuss the fabrication process, which can be easily adapted to emit most other chemical species, and the performance of the source.

  12. Laserspray ionization imaging of multiply charged ions using a commercial vacuum MALDI ion source.

    Science.gov (United States)

    Inutan, Ellen D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2012-11-06

    This is the first report of imaging mass spectrometry (MS) from multiply charged ions at vacuum. Laserspray ionization (LSI) was recently extended to applications at vacuum producing electrospray ionization-like multiply charged ions directly from surfaces using a commercial intermediate pressure matrix-assisted laser desorption/ionization ion mobility spectrometry (IMS) MS instrument. Here, we developed a strategy to image multiply charged peptide ions. This is achieved by the use of 2-nitrophloroglucinol as matrix for spray deposition onto the tissue section and implementation of "soft" acquisition conditions including lower laser power and ion accelerating voltages similar to electrospray ionization-like conditions. Sufficient ion abundance is generated by the vacuum LSI method to employ IMS separation in imaging multiply charged ions obtained on a commercial mass spectrometer ion source without physical instrument modifications using the laser in the commercially available reflection geometry alignment. IMS gas-phase separation reduces the complexity of the ion signal from the tissue, especially for multiply charged relative to abundant singly charged ions from tissue lipids. We show examples of LSI tissue imaging from charge state +2 of three endogenous peptides consisting of between 1 and 16 amino acid residues from the acetylated N-terminal end of myelin basic protein: mass-to-charge (m/z) 795.81 (+2) molecular weight (MW) 1589.6, m/z 831.35 (+2) MW 1660.7, and m/z 917.40 (+2) MW 1832.8.

  13. Analysis of the H- ion emissive surface in the extraction region of negative ion sources.

    Science.gov (United States)

    Kameyama, N; Fukuyama, T; Wada, S; Kuppel, S; Tsumori, K; Nakano, H; Hatayama, A; Miyamoto, K; Fukano, A; Bacal, M

    2012-02-01

    To understand the plasma characteristics in the extraction region of negative H(-) sources is very important for the optimization of H(-) extraction from the sources. The profile of plasma density and electrostatic potential in the extraction region with and without extraction grid voltage are analyzed with a 2D particle in cell modeling of the NIFS-RD H(-) sources. The simulation results make clear the physical process forming a double ion plasma layer (which consists only of positive H(+) and negative H(-) ions) recently observed in the Cs-seeded experiments of the NIFS-R&D source in the vicinity of the extraction hole and the plasma grid. The results also give a useful insight into the formation mechanism of the plasma meniscus and the H(-) extraction process for such double ion plasma.

  14. Effect of Sample Configuration on Droplet-Particles of TiN Films Deposited by Pulse Biased Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    Yanhui Zhao; Guoqiang Lin; Jinquan Xiao; Chuang Dong; Lishi Wen

    2009-01-01

    Orthogonal experiments are used to design the pulsed bias related parameters, including bias magnitude, duty cycle and pulse frequency, during arc ion deposition of TiN films on stainless steel substrates in the case of samples placing normal to the plasma flux. The effect of these parameters on the amount and the size distribution of droplet-particles are investigated, and the results have provided sufficient evidence for the physical model, in which particles reduction is due to the case that the particles are negatively charged and repulsed from negative pulse electric field. The effect of sample configuration on amount and size distribution of the particles are analyzed. The results of the amount and size distribution of the particles are compared to those in the case of samples placing parallel to the plasma flux.

  15. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    CERN Document Server

    Efthimion, Philip; Gilson, Erik P; Grisham, Larry; Logan, B G; Waldron, William; Yu, Simon

    2005-01-01

    Plasmas are employed as a medium for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ~ 0.1-1 m would be suitable. To produce 1 meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic. High voltage (~ 1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long produced plasma densities ~ 5x1011 cm-3. The source was integrated into the experiment and successfully charge neutralized the K ion beam. Presently, the 1 meter source ...

  16. Long-pulse production of high current negative ion beam by using actively temperature controlled plasma grid for JT-60SA negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, A.; Hanada, M.; Yoshida, M.; Umeda, N.; Hiratsuka, J.; Kashiwagi, M.; Tobari, H.; Watanabe, K. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2015-04-08

    The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because the PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.

  17. Fundamental studies on the Cs dynamics under ion source conditions

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, R., E-mail: roland.friedl@physik.uni-augsburg.de; Fantz, U. [AG Experimentelle Plasmaphysik (EPP), Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstraße 2, 85748 Garching (Germany)

    2014-02-15

    The performance of surface conversion based negative hydrogen ion sources is mainly determined by the caesium dynamics. Therefore, fundamental investigations in vacuum and plasma are performed at a flexible laboratory setup with ion source parameters. Studies on the influence of Cs on the plasma parameters of H{sub 2} and D{sub 2} plasmas showed that n{sub e} and T{sub e} in the bulk plasma are not affected by relevant amounts of Cs and no isotopic differences could be observed. The coating of the vessel surfaces with Cs, however, leads to a considerable gettering of hydrogen atoms from the plasma volume and to the decrease of n{sub e} close to a sample surface due to the formation of negative ions.

  18. Note: A pulsed laser ion source for linear induction accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H., E-mail: bamboobbu@hotmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-106, Mianyang 621900 (China); School of Physics, Peking University, Beijing 100871 (China); Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J. [Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-106, Mianyang 621900 (China)

    2015-01-15

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  19. Numerical Simulation and Interpretation of the Results of Lead Ion Production in the ECR Ion Source at CERN

    CERN Document Server

    Haseroth, H; Langbein, K; Shirkov, G D

    1995-01-01

    A new library of the computer codes for the mathematical simulation of heavy ion production in the ECR ion source is presented. These codes are based on the equations of model of ion confinement and losses in ECR ion sources. The ECR4 developed at GANIL is now used for lead ion production for the accelerator complex at CERN. An ion pulse with a current of up to 100 emA of Pb27+ has been regularly injected into the linac since May 1994. The results of numerical simulation with these computer codes and interpretation of experimental data of lead ion production in the ECR source at CERN are presented.

  20. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  1. A LASER ION-SOURCE FOR ONLINE MASS SEPARATION

    NARCIS (Netherlands)

    VANDUPPEN, P; DENDOOVEN, P; HUYSE, M; VERMEEREN, L; QAMHIEH, ZN; SILVERANS, RE; VANDEWEERT, E

    1992-01-01

    A laser ion source based on resonance photo ionization in a gas cell is proposed. The gas cell, filled with helium, consists of a target chamber in which the recoil products are stopped and neutralized, and an ionization chamber where the atoms of interest are selectively ionized by the laser light.

  2. The Cathode Ramper: Application for the Duoplasmatron Ion Source

    CERN Document Server

    Sánchez-Conejo, J

    2003-01-01

    The purpose of the Cathode Ramper Application is to heat the Linac 2 duoplasmatron ion source cathode up to a desired temperature selected by the user. The application has been developed in Java, making use of the Java Development Kit 1.4 and the PS Java environment.

  3. Handling radiation generated during an ion source commissioning

    Science.gov (United States)

    Ren, H. T.; Zhao, J.; Peng, S. X.; Lu, P. N.; Zhou, Q. F.; Xu, Y.; Chen, J.; Zhang, T.; Zhang, A. L.; Guo, Z. Y.; Chen, J. E.

    2014-02-01

    Radiation is an important issue, which should be carefully treated during the design and commissioning of an ion source. Measurements show that X-rays are generated around the ceramics column of an extraction system when the source is powered up to 30 kV. The X-ray dose increases greatly when a beam is extracted. Inserting the ceramic column into a metal vacuum box is a good way to block X-ray emission for those cases. Moreover, this makes the online test of an intense H+ ion beam with energy up to 100 keV possible. However, for deuteron ion source commissioning, neutron and gamma-ray radiation become a serious topic. In this paper, we will describe the design of the extraction system and the radiation doses of neutrons and gamma-rays measured at different D+ beam energy during our 2.45 GHz deuteron electron cyclotron resonance ion source commissioning for PKUNIFTY (PeKing University Neutron Imaging FaciliTY) project at Peking University.

  4. Estimation of Sputtering Damages on a Magnetron H- Ion Source Induced by Cs+ and H+ Ions

    CERN Document Server

    Pereira, H; Alessi, J; Kalvas, t

    2013-01-01

    An H− ion source is being developed for CERN’s Linac4 accelerator. A beam current requirement of 80 mA and a reliability above 99% during 1 year with 3 month uninterrupted operation periods are mandatory. To design a low-maintenance long life-time source, it is important to investigate and understand the wear mechanisms. A cesiated plasma discharge ion source, such as the BNL magnetron source, is a good candidate for the Linac4 ion source. However, in the magnetron source operated at BNL, the removal of material from the molybdenum cathode and the stainless steel anode cover plate surfaces is visible after extended operation periods. The observed sputtering traces are shown to result from cesium vapors and hydrogen gas ionized in the extraction region and subsequently accelerated by the extraction field. This paper presents a quantitative estimate of the ionization of cesium and hydrogen by the electron and H− beams in the extraction region of BNL’s magnetron ion source. The respective contributions o...

  5. Preparation of TiOx Films by Cathode Multi Arc Ion and Its Performance%TiO薄膜的多弧离子制备及表征

    Institute of Scientific and Technical Information of China (English)

    范多进; 范多旺; 王成龙; 刘红忠

    2007-01-01

    @@ Experimental Procedure Fig. 1 shows the custom-made Cathode Multi Arc Ion equipment, which is made up of three pars:CCS(computer contral system, Fig. 1's left part), Vacuum Chamber (Fig. 1's middle part) and Air Pump parts(Fig. 1's right part).

  6. Laser ion source for multi-nucleon transfer reaction products

    Science.gov (United States)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2015-06-01

    We have developed a laser ion source for the target-like fragments (TLFs) produced in multi-nucleon transfer (MNT) reactions. The operation principle of the source is based on the in-gas laser ionization and spectroscopy (IGLIS) approach. In the source TLFs are thermalized and neutralized in high pressure and high purity argon gas, and are extracted after being selectively re-ionized in a multi-step laser resonance ionization process. The laser ion source has been implemented at the KEK Isotope Separation System (KISS) for β-decay spectroscopy of neutron-rich isotopes with N = 126 of nuclear astrophysical interest. The simulations of gas flow and ion-beam optics have been performed to optimize the gas cell for efficient thermalization and fast transporting the TLFs, and the mass-separator for efficient transport with high mass-resolving power, respectively. To confirm the performances expected at the design stage, off-line experiments have been performed by using 56Fe atoms evaporated from a filament in the gas cell. The gas-transport time of 230 ms in the argon cell and the measured KISS mass-resolving power of 900 are consistent with the designed values. The high purity of the gas-cell system, which is extremely important for efficient and highly-selective production of laser ions, was achieved and confirmed from the mass distribution of the extracted ions. After the off-line tests, on-line experiments were conducted by directly injecting energetic 56Fe beam into the gas cell. After thermalization of the injected 56Fe beam, laser-produced singly-charged 56Fe+ ions were extracted. The extraction efficiency and selectivity of the gas cell in the presence of plasma induced by 56Fe beam injection as well as the time profile of the extracted ions were investigated; extraction efficiency of 0.25%, a beam purity of >99% and an extraction time of 270 ms. It has been confirmed that the performance of the KISS laser ion source is satisfactory to start the measurements of

  7. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Seouk [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of); School of Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of); Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Won, Mi-Sook, E-mail: mswon@kbsi.re.kr [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of); Lee, Seung Wook, E-mail: Seunglee@pusan.ac.kr [School of Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of)

    2016-02-15

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1–10 mm{sup 2}. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  8. Efficient cesiation in RF driven surface plasma negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu.; Ivanov, A.; Konstantinov, S.; Sanin, A., E-mail: sanin@inp.nsk.su; Sotnikov, O. [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    Experiments on hydrogen negative ions production in the large radio-frequency negative ion source with cesium seed are described. The system of directed cesium deposition to the plasma grid periphery was used. The small cesium seed (∼0.5 G) provides an enhanced H{sup −} production during a 2 month long experimental cycle. The gradual increase of negative ion yield during the long-term source runs was observed after cesium addition to the source. The degraded H{sup −} production was recorded after air filling to the source or after the cesium washing away from the driver and plasma chamber walls. The following source conditioning by beam shots produces the gradual recovery of H{sup −} yield to the high value. The effect of H{sup −} yield recovery after cesium coverage passivation by air fill was studied. The concept of cesium coverage replenishment and of H{sup −} yield recovery due to sputtering of cesium from the deteriorated layers is discussed.

  9. Power supply system for negative ion source at IPR

    Energy Technology Data Exchange (ETDEWEB)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K G; Soni, Jignesh; Bandyopadhyay, M; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun, E-mail: agrajit@ipr.res.i [Institute for Plasma Research, Gandhinagar, Gujarat - 382428 (India)

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density {approx}5 x 10{sup 12} cm{sup -3}, from which {approx} 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage ({approx}15 to 35kV), and high current ({approx} 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< {+-}1%), low ripple (< {+-}2%), isolation ({approx}50kV), low energy content (< 10J) and fast cut-off (< 100{mu}s). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically ({approx} 50k

  10. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    Science.gov (United States)

    Nakagawa, T.

    2014-02-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams.

  11. Design of 1+ Ion Source Coupling First Design of the Resonant Ionization Laser Ion Source For the Multi-Mega Watt Target Station

    CERN Document Server

    A. Olivier, F. Le Blanc, C. Lau

    The realisation of next-generation ion sources suitable for the EURISOL multi-mega-watt (MMW) target station needs exhaustive studies and developments. An exhaustive review was carried out to evaluate the capability of the ion-sources to operate under the irradiation conditions of the MMW target station. In addition, selectivity must be taken into account to avoid the spread of unwanted radioactivity out of the target-ion-source system (TIS).These studies led to consider RILIS (Resonance Ionization Laser Ion Source) as the reference ion source for this target station.

  12. First experiments with gasdynamic ion source in CW mode

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Vodopyanov, A. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., Nizhny Novgorod 603950 (Russian Federation); Izotov, I.; Golubev, S. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., Nizhny Novgorod 603950 (Russian Federation); Tarvainen, O. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), 40500 Jyvaskyla (Finland)

    2016-02-15

    A new type of ECR ion source—a gasdynamic ECR ion source—has been recently developed at the Institute of Applied Physics. The main advantages of such device are extremely high ion beam current with a current density up to 600–700 emA/cm{sup 2} in combination with low emittance, i.e., normalized RMS emittance below 0.1 π mm mrad. Previous investigations were carried out in pulsed operation with 37.5 or 75 GHz gyrotron radiation with power up to 100 kW at SMIS 37 experimental facility. The present work demonstrates the first experience of operating the gasdynamic ECR ion source in CW mode. A test bench of SMIS 24 facility has been developed at IAP RAS. 24 GHz radiation of CW gyrotron was used for plasma heating in a magnetic trap with simple mirror configuration. Initial studies of plasma parameters were performed. Ion beams with pulsed and CW high voltage were successfully extracted from the CW discharge. Obtained experimental results demonstrate that all advantages of the gasdynamic source can be realized also in CW operation.

  13. The Resonance Ionization Laser Ion Source RILIS - leading all-rounder of on-line ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian [CERN, Geneva (Switzerland); Institut fuer Physik, Univ. Mainz (Germany); Fedosseev, Valentin; Fink, Daniel; Seliverstov, Maxim [CERN, Geneva (Switzerland); Rossel, Ralf [CERN, Geneva (Switzerland); Institut fuer Physik, Univ. Mainz (Germany); Hochschule RheinMain, Wiesbaden (Germany); Wendt, Klaus [Institut fuer Physik, Univ. Mainz (Germany)

    2012-07-01

    The resonance ionization laser ion source (RILIS) of the on-line isotope separator facility ISOLDE at CERN, is based on the method of stepwise resonant laser excitation and ionization of atoms. The element selectivity of the RILIS complements the mass selection process of the ISOLDE separator magnets to provide high purity ion beams of many isotopes. The RILIS, which now includes two complementary and independent tunable laser systems (dye and titanium:sapphire lasers), has been significantly improved since its first demonstration of selective ionization of Yb isotopes in 1992. Today, on account of the high degree of selectivity for the 27 elements now offered, the annual operation of RILIS exceeds 2500 h, making it the most versatile and commonly used ion source at ISOLDE. The use of a narrow band dye laser enables precision in-source laser spectroscopy of isotope shifts and hyperfine structures of isotopes far from stability as well as the production of isomer pure beams as has been demonstrated for Ag, Cu, Pb, Bi, Po, and Tl. A recent upgrade of the RILIS comprises the incorporation of a complementary all solid state laser system as well as the Laser Ion Source Trap (LIST), which greatly enhances selectivity by suppressing any surface ionized isobars.

  14. Ion Current Density Calculation of the Inductive Radio Frequency Ion Source

    Directory of Open Access Journals (Sweden)

    V.I. Voznyi

    2012-10-01

    Full Text Available A radio-frequency (RF inductive ion source at 27.12 MHz is investigated. With a global model of the argon discharge, plasma density, electron temperature and ion current density of the ion source is calculated in relation to absorbed RF power and gas pressure as a discharge chamber size changes. It is found that ion beam current density grows as the discharge chamber size decreases. Calculations show that in the RF source with a discharge chamber 30 mm in diameter and 35 mm long the ion current density is 40 mA/cm2 at 100 W of absorbed RF power and 7 mTorr of pressure, and agrees well with experimentally measured value of 43 mA/cm2. With decreasing discharge chamber diameter to 15 mm ion current density can reach 85 mA/cm2 at absorbed RF power of 100 W.

  15. Numerical modeling of the SNS H- ion source

    Science.gov (United States)

    Veitzer, Seth A.; Beckwith, Kristian R. C.; Kundrapu, Madhusudhan; Stoltz, Peter H.

    2015-04-01

    Ion source rf antennas that produce H- ions can fail when plasma heating causes ablation of the insulating coating due to small structural defects such as cracks. Reducing antenna failures that reduce the operating capabilities of the Spallation Neutron Source (SNS) accelerator is one of the top priorities of the SNS H- Source Program at ORNL. Numerical modeling of ion sources can provide techniques for optimizing design in order to reduce antenna failures. There are a number of difficulties in developing accurate models of rf inductive plasmas. First, a large range of spatial and temporal scales must be resolved in order to accurately capture the physics of plasma motion, including the Debye length, rf frequencies on the order of tens of MHz, simulation time scales of many hundreds of rf periods, large device sizes on tens of cm, and ion motions that are thousands of times slower than electrons. This results in large simulation domains with many computational cells for solving plasma and electromagnetic equations, short time steps, and long-duration simulations. In order to reduce the computational requirements, one can develop implicit models for both fields and particle motions (e.g. divergence-preserving ADI methods), various electrostatic models, or magnetohydrodynamic models. We have performed simulations using all three of these methods and have found that fluid models have the greatest potential for giving accurate solutions while still being fast enough to perform long timescale simulations in a reasonable amount of time. We have implemented a number of fluid models with electromagnetics using the simulation tool USim and applied them to modeling the SNS H- ion source. We found that a reduced, single-fluid MHD model with an imposed magnetic field due to the rf antenna current and the confining multi-cusp field generated increased bulk plasma velocities of > 200 m/s in the region of the antenna where ablation is often observed in the SNS source. We report

  16. Gas feeding molecular phosphorous ion source for semiconductor implanters

    Science.gov (United States)

    Gushenets, V. I.; Oks, E. M.; Bugaev, A. S.; Kulevoy, T. V.; Hershcovitch, A.

    2014-02-01

    Phosphorus is a much used dopant in semiconductor technology. Its vapors represent a rather stable tetratomic molecular compound and are produced from one of the most thermodynamically stable allotropic forms of phosphorus—red phosphorus. At vacuum heating temperatures ranging from 325 °C, red phosphorus evaporates solely as P4 molecules (P4/P2 ˜ 2 × 105, P4/P ˜ 1021). It is for this reason that red phosphorus is best suited as a source of polyatomic molecular ion beams. The paper reports on experimental research in the generation of polyatomic phosphorus ion beams with an alternative P vapor source for which a gaseous compound of phosphorus with hydrogen - phosphine - is used. The ion source is equipped with a specially designed dissociator in which phosphine heated to temperatures close to 700 °C decomposes into molecular hydrogen and phosphorus (P4) and then the reaction products are delivered through a vapor line to the discharge chamber. Experimental data are presented reflecting the influence of the discharge parameters and temperature of the dissociator heater on the mass-charge state of the ion beam.

  17. A Study on the Ion Beam Extraction using Duo-PiGatron Ion source for Vertical Type Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Sok; Lee, Chan young; Lee, Jae Sang [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In Korea Multipurpose Accelerator Complex (KOMAC), we have started ion beam service in the new beam utilization building since March this year. For various ion beam irradiation services, we are developed implanters such as metal (150keV/1mA), gaseous (200keV/5mA) and high current ion beam facility (20keV/150mA). One of the new one is a vertical type ion beam facility without acceleration tube (60keV/20mA) which is easy to install the sample. After the installation is complete, it is where you are studying the optimal ion beam extraction process. Detailed experimental results will be presented. Vertical Type Ion Beam Facility without acceleration tube of 60keV 20mA class was installed. We successfully extracted 60keV 20mA using Duo- PiGatron Ion source for Vertical Type Ion Beam Facility. Use the BPM and Faraday-cup, is being studied the optimum conditions of ion beam extraction.

  18. Main Magnetic Focus Ion Source: II. The first investigations at 10 keV

    CERN Document Server

    Ovsyannikov, V P

    2015-01-01

    The basic principles of design for the compact ion source of new generation are presented. The device uses the local ion trap created by the axial electron beam rippled in a thick magnetic lens. In accordance with this feature, the ion source is given the name main magnetic focus ion source. The experimental evidences for the production of Ir$^{59+}$, Xe$^{44+}$, and Ar$^{16+}$ ions are obtained. The control over depth of the local ion trap is shown to be feasible.

  19. A low energy ion source for electron capture spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tusche, C., E-mail: tusche@mpi-halle.mpg.de [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Germany)

    2014-06-15

    We report on the design of an ion source for the production of single and double charged Helium ions with kinetic energies in the range from 300 eV down to 5 eV. The construction is based on a commercial sputter ion gun equipped with a Wien-filter for mass/charge separation. Retardation of the ions from the ionizer potential (2 keV) takes place completely within the lens system of the sputter gun, without modification of original parts. For 15 eV He{sup +} ions, the design allows for beam currents up to 30 nA, limited by the space charge repulsion in the beam. For He{sup 2+} operation, we obtain a beam current of 320 pA at 30 eV, and 46 pA at 5 eV beam energy, respectively. In addition, operating parameters can be optimized for a significant contribution of metastable He*{sup +} (2s) ions.

  20. A compact source for bunches of singly charged atomic ions.

    Science.gov (United States)

    Murböck, T; Schmidt, S; Andelkovic, Z; Birkl, G; Nörtershäuser, W; Vogel, M

    2016-04-01

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 10(6) Mg(+) ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg(+) ions for sympathetic cooling of highly charged ions by laser-cooled (24)Mg(+).

  1. Ion Behavior and Gas Mixing in electron cyclotron resonance plasmas as sources of highly charged ions (concept

    OpenAIRE

    Melin, G.; Drentje, A. G.; Girard, A; Hitz, D.

    1999-01-01

    Abstract: An ECR ion source is basically an ECR heated plasma confinement machine, with hot electrons and cold ions. The main parameters of the ion population have been analyzed, including temperature, losses, and confinement time. The "gas mixing" effect has been studied in this context. An expression is derived for determining the ion temperature from the values of all extracted ion currents. One aim is to study the ion temperature behavior in argon plasmas without and with mixing different...

  2. PRELIMINARY STUDY OF COMBINED PULSED VACUUM ARC SOURCE PLASMA%组合体脉冲真空电弧源的初步研究

    Institute of Scientific and Technical Information of China (English)

    李璟; 黄杰; 王锴; 张荟星; 彭建华; 邓春凤; 吴先映

    2014-01-01

    为得到高密度的等离子体,设计研制了组合体脉冲真空电弧源,它由4套脉冲真空电弧源组合而成.测量了脉冲真空电弧源弧压与弧流的关系;利用静电探针测量了组合体脉冲真空电弧源和单套脉冲真空电弧源产生的等离子体,得到了探针饱和电流(与等离子体密度成正比)与弧压的关系,以及等离子体密度的轴向分布情况;采用飞行时间方法估测了等离子体的飞行速度.组合脉冲真空电弧源最大等离子体密度达到8×1012 cm-3.%In order to get high density plasma,a combined pulsed vacuum arc source is designed and developed with four pulsed vacuum arc sources.The relationship of arc voltage and arc current is measured;The plasma in combined pulsed vacuum arc source and single pulsed vacuum arc source are measured using electrical probe.The relationship of probe saturation current (in proportion to plasma density)versus arc voltage and axial distribution of plasma are measured;The plasma velocity is estimated using time-of-flight method.The maximal plasma density in combined pulsed vacuum arc source is 8×1012 cm-3 .

  3. Numerical simulation program of multicomponent ion beam transport from ECR ion source

    Institute of Scientific and Technical Information of China (English)

    MA Lei; SONG Ming-Tao; CAO Yun; ZHAO Hong-Wei; ZHANG Zi-Min; LI Xue-Qian; LI Jia-Cai

    2004-01-01

    In order to research multi-component ion beam transport process and improve transport efficiency, a special simulating program for ECR beam is becoming more and more necessary. We have developed a program written by Visual Basic to be dedicated to numerical simulation of the highly charged ion beam and to optimization of beam dynamics in transport line. In the program the exchange of electrons between highly charged ions and low chargedions or neutral atoms (residual gas in transport line) is taken into account, adopting classical molecular over-barrier model and Monte Carlo method, so the code can easily give the change of charge state distribution along the transmission line. The main advantage of the code is the ability to simultaneously simulate a large quantity of ions with different masses and charge states, and particularly, to simulate the loss of highly charged ions and the increase of low charged ions due to electron exchange in the whole transport process. Some simulations have been done to study the transmission line of LECR3[1] which is an ECR ion source for highly charged ion beam at IMP. Compared with experimental results, the simulations are considered to be successful.

  4. Status and operation of the Linac4 ion source prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Lettry, J., E-mail: Jacques.lettry@cern.ch; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; Chaudet, E.; Gil-Flores, J.; Guida, R.; Hansen, J.; Koszar, I.; Mahner, E.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Midttun, Ø.; Moyret, P.; Nisbet, D.; O’Neil, M. [CERN, 1211 Geneva 23 (Switzerland); and others

    2014-02-15

    CERN's Linac4 45 kV H{sup −} ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H{sup −} beam of 16–22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.

  5. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources.

    Science.gov (United States)

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that "…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more" (Int. J. Mass Spectrom. 200: 459-478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451-4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that "super-atmospheric operation would be more preferable in space-charge-limited situations."(Int. J. Mass Spectrom. 300: 182-193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper.

  6. Status report of the ECR ion sources at the KVI

    CERN Document Server

    Drentje, A G; Kremers, H R; Meyer, D; Mulder, J; Sijbring, J

    1999-01-01

    At the moment three ECR ion sources are in operation at the KVI. One of these is being used as the ionizer section of the polarized ion (protons and deuterons) source POLIS; it runs at 2.5 GHz. In this paper the emphasis will be on the other two ECRISs, both being used for the production of highly charged ions. ECRIS3 is connected to the AGOR super-conducting Cyclotron. Beams of 12, 13C6+, 14N7+, 15N5+, 16O6+, 8+, 36Ar11+, 12+, 14+, 40Ar8+ and 3He2+, 4He2+ have been produced at various source voltages (16 - 29 kV), corresponding to a range of beam energies for experiments. The source is operating satisfactorily with sufficiently high beam intensities. Gas mixing is important for the high charge states of argon, where the best results have been obtained with 18O as a mixing gas. Since the AGOR cyclotron is used for the larger fraction of available beam time with (polarized) protons, the ECRIS3 set up is quite often available for test runs. ECRIS4 is connected to the five experimental set-ups of the Atomic Phys...

  7. Status and Operation of the Linac4 Ion Source Prototypes

    CERN Document Server

    Lettry, J; Andersson, P; Bertolo, S; Butterworth, A; Coutron, Y; Dallocchio, A; Chaudet, E; Gil-Flores, J; Guida, R; Hansen, J; Hatayama, A; Koszar, I; Mahner, E; Mastrostefano, C; Mathot, S; Mattei, S; Midttun, O; Moyret, P; Nisbet, D; Nishida, K; O’Neil, M; Ohta, M; Paoluzzi, M; Pasquino, C; Pereira, H; Rochez, J; Sanchez Alvarez, J; Sanchez Arias, J; Scrivens, R; Shibata, T; Steyaert, D; Thaus, N; Yamamoto, T

    2014-01-01

    CERN’s Linac4 45 kV H- ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma and pulsed high voltages are described. The first experimental results of two prototypes relying on 2MHz RF- plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H- beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator and chopper of Linac4.

  8. Linac4 H{sup −} ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Lettry, J., E-mail: Jacques.lettry@cern.ch; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C. [CERN-ABP, 1211 Geneva 23 (Switzerland); and others

    2016-02-15

    CERN’s 160 MeV H{sup −} linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H{sup −} source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H{sup −} source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described.

  9. Status and operation of the Linac4 ion source prototypes.

    Science.gov (United States)

    Lettry, J; Aguglia, D; Andersson, P; Bertolo, S; Butterworth, A; Coutron, Y; Dallocchio, A; Chaudet, E; Gil-Flores, J; Guida, R; Hansen, J; Hatayama, A; Koszar, I; Mahner, E; Mastrostefano, C; Mathot, S; Mattei, S; Midttun, Ø; Moyret, P; Nisbet, D; Nishida, K; O'Neil, M; Ohta, M; Paoluzzi, M; Pasquino, C; Pereira, H; Rochez, J; Sanchez Alvarez, J; Sanchez Arias, J; Scrivens, R; Shibata, T; Steyaert, D; Thaus, N; Yamamoto, T

    2014-02-01

    CERN's Linac4 45 kV H(-) ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H(-) beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.

  10. The Gridless Plasma Ion Source(GIS)for Plasma Ion Assisted Optical Coating

    Institute of Scientific and Technical Information of China (English)

    尤大伟; 李晓谦; 王宇; 林永昌

    2004-01-01

    High-quality optical coating is a key technology for modern optics. Ion-assisted deposition technology was used to improve the vaporized coating in 1980's. The GIS (gridless ion source), which is an advanced plasma source for producing a high-quality optical coating in large area, can produce a large area uniformity>1000 mm(diameter), a high ion current density ~ 0.5mA/cm2, 20 eV ~ 200 eV energetic plasma ions and can activate reactive gas and film atoms. Now we have developed a GIS system. The GIS and the plasma ion-assisted deposition technology are investigated to achieve a high-quality optical coating. The GIS is a high power and high current source with a power of I kW ~ 7.5 kW, a current of 10 A ~ 70 A and an ion density of 200μA/cm2 ~ 500μA/cm2. Because of the special magnetic structure, the plasma-ion extraction efficiency has been improved to obtain a maximum ion density of 500μA/cm2 in the medium power (~ 4 kW) level. The GIS applied is of a special cathode structure, so that the GIS operation can be maintained under a rather low power and the lifetime of cathode will be extended. The GIS has been installed in the LPSX-1200 type box coating system. The coated TiO2, SiO2 films such as antireflective films with the system have the same performance reported by Leybold Co, 1992, along with a controllable refractive index and film structure.

  11. Geochemistry and alteration patterns in the early Mesozoic Cordilleran arc and arc-related rocks: evidence for sources of detritus in continental successions

    Science.gov (United States)

    Riggs, N.; Barth, A. P.; Walker, D.

    2009-12-01

    The Upper Triassic Chinle Formation on the Colorado Plateau and El Antimonio Group in northwest Sonora, Mexico, contain abundant coarse volcanic detritus. Detailed geochemistry of 15 clasts from coarse-grained units in the middle Chinle Formation and eight clasts of the El Antimonio Group provide information about potential source rocks in the Triassic volcanic arc along the Cordilleran margin. These data are complemented by new analyses of 27 granite and 10 volcanic rock samples from the eastern Sierra Nevada. Clasts from the Chinle Formation range in age from 218 - 235 Ma. Samples are dacite to rhyolite and are strongly altered with respect to Na, K, Rb, and Sr. In some cases clasts are highly silicified; SiO2 values are as high as 79%. Na2O values range from 0.71 - 9.62%, K2O ranges from 0.6 - 6.44, Rb from 0 - 220 ppm, and Sr from 59 - 283 ppm. Sr initial ratios vary from 0.708123 - 0.709412. El Antimonio clasts (280 Ma on one clast) are dacite and are much less altered than Chinle clasts (Na2O = 4.25% - 6.94%; K2O = 2.21% - 3.19%; Rb = 61 ppm - 95 ppm; Sr = 416 ppm - 713 ppm), although initial Sr ratios are equally high (0.707103 - 0.709783). Coeval granites from the central Sierra Nevada plot in standard fields on total alkali-silica and variation diagrams; Sr initial ratios are 0.70236 - 0.70628. Triassic rhyolitic ignimbrite from the Sierra Nevada is generally similar to the granitic rocks, with Na2O depletion in some rocks (as low as 0.06%). ɛNd values in the Sierran igneous rocks vary from +0.29 (2 samples) to -4.58. The Chinle and El Antimonio clasts have more negative values, from -3.21 to -8.35. These data, when taken together with previously published results from Triassic plutons in the Mojave desert, suggest broad relations between clasts and remnants of the arc. ɛNd values from Chinle and El Antimonio clasts suggest the possibility of sources in the San Gabriel or Granite Mtn suite, where ɛNd values are -2 to -8 and in the San Bernardino suites

  12. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Kalvas, T.; Tarvainen, O.; Komppula, J.; Koivisto, H.; Tuunanen, J. [University of Jyväskylä, Department of Physics (Finland); Potkins, D.; Stewart, T.; Dehnel, M. P. [D-Pace, Inc., Nelson, B.C. Canada (Canada)

    2015-04-08

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H{sup −} and D{sup −} beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H{sup −} (2.6 mA/cm{sup 2}), which is the intensity needed at injection for production of 200 µA H{sup +} with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed.

  13. Proceedings of the 10th international workshop on ECR ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F W; Kirkpatrick, M I [eds.

    1991-01-01

    This report contains papers on the following topics: Recent Developments and Future Projects on ECR Ion Sources; Operation of the New KVI ECR Ion Source at 10 GHz; Operational Experience and Status of the INS SF-ECR Ion Source; Results of the New ECR4'' 14.5 GHz ECRIS; Preliminary Performance of the AECR; Experimental Study of the Parallel and Perpendicular Particle Losses from an ECRIS Plasma; Plasma Instability in Electron Cyclotron Resonance Heated Ion Sources; The Hyperbolic Energy Analyzer; Status of ECR Source Development; The New 10 GHz CAPRICE Source; First Operation of the Texas A M ECR Ion Source; Recent Developments of the RIKEN ECR Ion Sources; The 14 GHz CAPRICE Source; Characteristics and Potential Applications of an ORNL Microwave ECR Multicusp Plasma Ion Source; ECRIPAC: The Production and Acceleration of Multiply Charged Ions Using an ECR Plasma; ECR Source for the HHIRF Tandem Accelerator; Feasibility Studies for an ECR-Generated Plasma Stripper; Production of Ion Beams by using the ECR Plasmas Cathode; A Single Stage ECR Source for Efficient Production of Radioactive Ion Beams; The Single Staged ECR Source at the TRIUMF Isotope Separator TISOL; The Continuous Wave, Optically Pumped H{sup {minus}} Source; The H{sup +} ECR Source for the LAMPF Optically Pumped Polarized Ion Source; Present Status of the Warsaw CUSP ECR Ion Source; An ECR Source for Negative Ion Production; GYRAC-D: A Device for a 200 keV ECR Plasma Production and Accumulation; Status Report of the 14.4 GHZ ECR in Legnaro; Status of JYFL-ECRIS; Report on the Uppsala ECRIS Facility and Its Planned Use for Atomic Physics; A 10 GHz ECR Ion Source for Ion-Electron and Ion-Atom Collision Studies; and Status of the ORNL ECR Source Facility for Multicharged Ion Collision Research.

  14. Langmuir probe studies on a RF ion source for NBI

    Energy Technology Data Exchange (ETDEWEB)

    McNeely, P. E-mail: p.mcneely@ipp.mpg.de; Heineman, B.; Kraus, W.; Riedl, R.; Speth, E.; Vollmer, O

    2001-10-01

    IPP Garching has been developing a RF ion source for H{sup -} production. In order to improve the data quality a new scanning probe system with passive RF compensation has been installed on the Type VI ion source on the BATMAN test stand. Using this probe, measurements have been carried out to study changes to the plasma parameters (electron density, electron temperature, and plasma potential) due to variation in the source operating conditions. The data were collected at a source pressure of 0.5 Pa and with 60{+-}5 kW applied RF power. Presented are some of the results of these measurements, focusing on the effect of: argon seeding, addition of Cs to the source, and the newly added Faraday screen. The electron density behaves in a fashion that agrees with the theory of ambipolar diffusion. Typically there is little change to the average electron energy observed regardless of which effect is considered. The plasma potential shows the most significant changes with external source conditions, both in value for all cases and shape when the Faraday screen was added.

  15. rf-driven ion sources for industrial applications (invited) (abstract)a)

    Science.gov (United States)

    Leung, Ka-Ngo

    2008-02-01

    The Plasma and Ion Source Technology Group at the Lawrence Berkeley National Laboratory have been developing rf-driven ion sources for the last two decades. These sources are being used to generate both positive and negative ion beams. Some of these sources are operating in particle accelerators such as the Spallation Neutron Source (SNS) at Oak Ridge, while others are being employed in various industrial ion beam systems. There are four areas where the rf-driven ion sources are commonly used in industry. (1) In semiconductor manufacturing, rf-driven sources have found important applications in plasma etching, ion beam implantation, and ion beam lithography. (2) In material analysis and surface modification, miniature rf-ion sources can be found in focused ion beam systems. They can provide ion beams of essentially any element in the Periodic Table. The newly developed combined rf ion-electron beam unit improves greatly the performance of the secondary ion mass spectrometry tool. (3) For neutron production, rf ion source is a major component of compact, high flux D-D, D-T, or T-T neutron generators. These neutron sources are now being employed in boron neutron capture therapy (BNCT) as well as in neutron imaging and material interrogation. (4) Large area rf-driven ion source will be used in an industrial design neutral beam diagnostic system for probing fusion plasmas. Such sources can be easily scaled to provide large ion beam current for future fusion reactor applications.

  16. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  17. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  18. High dielectric constant ceramics for ion-electron sources

    CERN Document Server

    Boscolo, I

    2002-01-01

    Ferroelectric disks, coated with proper electrodes, can easily produce a dense plasma cloud when excited with a high-voltage pulse. This plasma can be a source of either electrons or ions depending on the sign of the extracting field set in front of the disk. We present the behavior of the disks operating at high frequency as emitters of both electrons and ions in two experimental configurations: (a) without and (b) with two screening grids. These two screening grids are inserted when the plasma must be confined within the cathode region. The system is capable of providing ion pulses of a few hundred milliamperes, whose length can range from a hundred nanoseconds to dozen microseconds. The electron pulses of energetic electrons have typically an amplitude higher than a couple of amperes. Tests at MHz repetition rate were positive as for stable operation.

  19. Proceedings of the workshop on ion source issues relevant to a pulsed spallation neutron source: Part 1: Workshop summary

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, L.; Leung, K.N.; Alonso, J. [eds.

    1994-10-01

    The workshop reviewed the ion-source requirements for high-power accelerator-driven spallation neutron facilities, and the performance of existing ion sources. Proposals for new facilities in the 1- to 5-MW range call for a widely differing set of ion-source requirements. For example, the source peak current requirements vary from 40 mA to 150 mA, while the duty factor ranges from 1% to 9%. Much of the workshop discussion centered on the state-of-the-art of negative hydrogen ion source (H{sup {minus}}) technology and the present experience with Penning and volume sources. In addition, other ion source technologies, for positive ions or CW applications were reviewed. Some of these sources have been operational at existing accelerator complexes and some are in the source-development stage on test stands.

  20. Re and Os concentrations in arc basalts: The roles of volatility and source region fO 2 variations

    Science.gov (United States)

    Righter, K.; Chesley, J. T.; Caiazza, C. M.; Gibson, E. K., Jr.; Ruiz, J.

    2008-02-01

    Olivine and spinel compositions, major elements (including ferric and ferrous iron), S, Re and Os contents have been measured for a suite of primitive (most >6 wt% MgO) basalts from the Trans Mexican Volcanic Belt (TMVB), including the western Mexican volcanic belt, the Michoacan-Guanajuato Volcanic Field, Sierra Chichinautzin, Pico de Orizaba region, Palma Sola, San Martin Tuxtlas, and the eastern alkaline province (EAP). Sulfur contents at sulfide saturation were calculated to determine whether the measured S contents are representative of sulfide saturated liquids. Most of the samples have S contents much lower than expected for sulfide saturation. A few have higher contents than calculated perhaps due to the presence of sulfate in the measured total sulfur (i.e., more oxidized samples). Comparison of the TMVB samples along with previously analyzed MORB, OIB, BABB and arc samples reveals a continuum of Re and Os contents that is best explained by variation in oxygen fugacity—and thus sulfide stability—in the source region. High Re and Os magmatic suites are best explained by derivation by melting of oxidized mantle, where sulfide is no longer stable and Re and Os behave incompatibly, whereas low Re and Os magmatic suites are derived from melting of relatively reduced mantle where sulfide is stable, and Re and Os behave compatibly. Intermediate examples abound, and arc magmas span a wide range of Re and Os concentrations due to variation of fO 2 in the source during genesis of arc magmas. Low Re magmatic suites are furthermore potentially affected by volatility which can lower Re by a factor of 3-5.

  1. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  2. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  3. Effect of electrode materials on a negative ion production in a cesium seeded negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi; Morishita, Takutoshi; Kashiwagi, Mieko; Hanada, Masaya; Iga, Takashi; Inoue, Takashi; Watanabe, Kazuhiro; Imai, Tsuyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Wada, Motoi [Doshisha Univ., Kyoto (Japan)

    2003-03-01

    Effects of plasma grid materials on the negative ion production efficiency in a cesium seeded ion source have been experimentally studied. Grid materials of Au, Ag, Cu, Ni, and Mo were examined. A 2.45 GHz microwave ion source was utilized in the experiment to avoid contamination of tungsten from filament cathode. Relations between the negative ion currents and work functions of the grid were measured for these materials. Influence of the contamination by tungsten on the grid was also investigated. If was clarified that the negative ion production efficiency was determined only by the work function of the grid. The efficiency did not depend on the material itself. The lowest work function of 1.42 eV was obtained for Au grid with Cs, and a high H{sup -} production efficiency of 20.7 mA/kW was measured. This efficiency is about 1.3 times larger than that of Cs/Mo and Cs/Cu. Further improvement of the production efficiency was observed by covering the plasma grid with tungsten and cesium simultaneously. Such co-deposition of W and Cs on the plasma grid produced the negative ion production efficiency of 1.7 times higher than that from the tungsten grid simply covered with Cs. (author)

  4. Ion collector design for an energy recovery test proposal with the negative ion source NIO1

    Energy Technology Data Exchange (ETDEWEB)

    Variale, V., E-mail: vincenzo.variale@ba.infn.it [INFN-BA, Via Orabona 4, I-70125 Bari (Italy); Cavenago, M. [INFN – LNL, viale dell’Università 2, I-35020 Legnaro (PD) (Italy); Agostinetti, P.; Sonato, P.; Zanotto, L. [Consorzio RFX, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2016-02-15

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D{sup −} beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D{sup −} and D{sup +}), so that an ion beam energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H{sup −} each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.

  5. Ion collector design for an energy recovery test proposal with the negative ion source NIO1.

    Science.gov (United States)

    Variale, V; Cavenago, M; Agostinetti, P; Sonato, P; Zanotto, L

    2016-02-01

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D(-) beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D(-) and D(+)), so that an ion beam energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H(-) each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.

  6. Laser desorption lamp ionization source for ion trap mass spectrometry.

    Science.gov (United States)

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds.

  7. Extraction of ions and electrons from audio frequency plasma source

    Directory of Open Access Journals (Sweden)

    N. A. Haleem

    2016-09-01

    Full Text Available Herein, the extraction of high ion / electron current from an audio frequency (AF nitrogen gas discharge (10 – 100 kHz is studied and investigated. This system is featured by its small size (L= 20 cm and inner diameter = 3.4 cm and its capacitive discharge electrodes inside the tube and its high discharge pressure ∼ 0.3 Torr, without the need of high vacuum system or magnetic fields. The extraction system of ion/electron current from the plasma is a very simple electrode that allows self-beam focusing by adjusting its position from the source exit. The working discharge conditions were applied at a frequency from 10 to 100 kHz, power from 50 – 500 W and the gap distance between the plasma meniscus surface and the extractor electrode extending from 3 to 13 mm. The extracted ion/ electron current is found mainly dependent on the discharge power, the extraction gap width and the frequency of the audio supply. SIMION 3D program version 7.0 package is used to generate a simulation of ion trajectories as a reference to compare and to optimize the experimental extraction beam from the present audio frequency plasma source using identical operational conditions. The focal point as well the beam diameter at the collector area is deduced. The simulations showed a respectable agreement with the experimental results all together provide the optimizing basis of the extraction electrode construction and its parameters for beam production.

  8. Spectroscopic applications of the ISOLDE laser ion source

    CERN Document Server

    Sebastian, V; Fedosseev, V; Georg, U; Huber, G; Jading, Y; Jonsson, O; Köster, U; Koizumi, M; Kratz, K L; Kugler, E; Lettry, Jacques; Mishin, V I; Ravn, H L; Tamburella, C; Wöhr, A

    1998-01-01

    At the ISOLDE facility radioactive ion beams are produced via proton induced reactions in a target which is connected to a laser ion source. For beryllium a two step excitation scheme with laser light at wavelengths of lambda =235 nm and lambda =297 nm has been developed. Efficient laser ionization of beryllium was achieved with a new optical set-up using frequency tripling with two non-linear BBO crystals to generate laser light in the ultraviolet for the first excitation step. The second step was optimized to reach the 2p/sup 2 1/S/sub 0/ autoionizing state for high ionization efficiency. The isotope shift of /sup 7,9,10,11,12,14/Ba could be measured by tuning the wavelength of the first step. The laser ion source has also been used for the preparation of neutron-rich silver ion beams. Tuning the laser frequency of the first step it was possible to ionize selectively low- and high spin isomers of silver isotopes via the hyperfine structure. In both cases it was demonstrated that laser spectroscopy of exotic...

  9. Negative hydrogen ion source research and beam parameters for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zolkin, Timofey V.; /Fermilab

    2006-09-01

    H{sup -} beams are useful for multi-turn charge-exchange stripping injection into circular accelerators. Studies on a modified ion source for this purpose are presented. This paper includes some theory about a H{sup -} magnetron discharge, ion-electron emission, emittance and problems linked with emittance measurement and calculations. Investigated parameters of the emittance probe for optimal performance give a screen voltage of 150 V and a probe step of about 5 mil. Normalized 90% emittance obtained for this H{sup -} source is 0.22 {pi} mm-mr, for an extraction voltage of 18 kV at a beam energy of 30 keV and a beam current of 11 mA.

  10. Temporal source evolution and crustal contamination at Lopevi Volcano, Vanuatu Island Arc

    OpenAIRE

    2013-01-01

    Here we present a new geochemical study of Lopevi volcano, one the most active volcanoes in the Vanuatu island arc. We focus on the temporally well-defined sequence of lava flows emitted since 1960, and for the first time, on pre-1960 volcanic products, including high-MgO basalts and felsic andesites, the most evolved lavas sampled so far on this island. This work reports the first Pb and Hf isotopic study of lavas from Lopevi island. These lavas display correlations between differentiation i...

  11. Conceptional Design of the Laser Ion Source based Hadrontherapy Facility

    OpenAIRE

    Xie, Xiucui; Song, Mingtao; Zhang, Xiaohu

    2013-01-01

    Laser ion source (LIS), which can provide carbon beam with highly stripped state (C6+) and high intensity (several tens mA), would significantly change the overall design of the hadrontherapy facility. A LIS based hadrontherapy facility is proposed with the advantage of short linac length, simple injection scheme and small synchrotron size. With the experience from the DPIS and HITFiL project that had conducted in IMP, a conceptional design of the LIS based hadrontherapy facility will be pres...

  12. Progress of Target/Ion Source for Radioactive Beam

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An ISOL test bench which uses proton beam from HL-13 Tandem to generate radioactive ion beamhas been set up and primary off line test has been carried out. The effects of magnetic field, anode voltage,cathode current and flax of feed-in gas on ionization efficiency have been investigated. The results showthe overal ionization efficiency of the source is greater than 0.7%. The effort to improve the overallefficiency is still in progress.

  13. The microwave absorption of ceramic-cup microwave ion source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An experiment system of ceramic-cup microwave ion source has been built here. Its microwave absorption efficiency as a function of the magnetic field and the pressure is presented. When the microwave incident power is 300~500W the microwave absorption efficiencies are more than 90% if the system is optimized and the magnetic field at the microwave window is 0.095T.

  14. Status report of the JYFL-ECR ion sources

    CERN Document Server

    Ärje, J; Seppälä, R; Hyvönen, H; Liukkonen, E; Heikkinen, P; Nieminen, V; Ranttila, K; Hänninen, V; Lassila, A; Pakarinen, J; Koivisto, H; Xie, Z Q

    1999-01-01

    "Ion beam cocktails" are mixtures of ions with near-identical charge-to-mass ratios. In conjunction with the JYFL-ECRIS, the K130-cyclotron acts as a mass analyzer: the switch from one ion to another within the same cocktail is simple and fast. In the case of the first ion beam cocktail, the oxygen and argon gases were mixed into the gas feed line. At the same time the magnesium and iron ion beams were produced using the MIVOC method. Magnesocene and ferrocene compounds were both mixed into the MIVOC chamber. This capability is especially useful in the study of single event effects (SEE) in space electronics. All gaseous elements from H to Xe can be produced. The non-gaseous elements produced so far are C, Mg, Al, Si, S, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn and Ge. A major technical modification since the construction (in 1990) of the JYFL-ECRIS was made in January 98: a negatively biased disc replaces now the first plasma stage. After a couple of months experience with the modified source the change was found to b...

  15. RF sources for ITER Ion Cyclotron H and CD system

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, F., E-mail: fabienne.kazarian@iter.org [ITER Organization, CS 90 046, 13067 Sain-Paul-Les-Durance (France); Beaumont, B.; Arambhadiya, B.; Gassmann, T.; Lamalle, Ph.; Rathi, D. [ITER Organization, CS 90 046, 13067 Sain-Paul-Les-Durance (France); Mukherjee, A.; Ajesh, P.; Machchhar, H.; Patadia, D.; Patel, M.; Rajnish, K.; Singh, R.; Suthar, G.; Trivedi, R. [ITER India, IPR, Bhat, Gandhinagar 382428, Gujarat (India); Kumazawa, R.; Seki, T.; Saito, K.; Kasahara, H.; Mutoh, T. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2011-10-15

    The Ion Cyclotron Heating and Current Drive (IC H and CD) system for ITER will provide 20 MW to the plasma. The associated Radio Frequency (RF) source system has to be compliant with all operation modes foreseen in that frame. Their specifications are fully described in this paper and constraints on IC RF source components are detailed, in particular concerning the final stage tube of the amplifier. Results of tests performed under a collaborative work at the National Institute for Fusion Science (NIFS) facility are presented. Consequences on the procurement process by ITER India (II) are deduced.

  16. Beam optics optimization of a negative-ion sputter source

    Indian Academy of Sciences (India)

    F Osswald; R Rebmeister

    2002-11-01

    A negative-ion sputter source has been studied in order to increase the beam intensity delivered by the Vivitron tandem injector. The aim was to characterize the influence on the beam intensity of some factors related to the configuration of the source such as the shape of the target holder, the target surface topography and the anode/cathode voltage. The paper reports the results carried out by experimentation on a test facility and on the injector itself as well as the investigations performed with computer simulations.

  17. First experiments with the negative ion source NIO1

    Energy Technology Data Exchange (ETDEWEB)

    Cavenago, M., E-mail: cavenago@lnl.infn.it; Fagotti, E.; Minarello, A.; Poggi, M.; Sattin, M. [INFN-Laboratori Nazionali di Legnaro (LNL), v.le dell’Università 2, I-35020 Legnaro PD (Italy); Serianni, G.; Agostinetti, P.; Antoni, V.; Baltador, C.; Barbisan, M.; Baseggio, L.; Bigi, M.; Cervaro, V.; Degli Agostini, F.; Laterza, B.; Maniero, M.; Pasqualotto, R.; Ravarotto, D.; Recchia, M.; Sartori, E. [Consorzio RFX, Corso Stati Uniti 4, I-35127 Padova (Italy); and others

    2016-02-15

    Neutral Beam Injectors (NBIs), which need to be strongly optimized in the perspective of DEMO reactor, request a thorough understanding of the negative ion source used and of the multi-beamlet optics. A relatively compact radio frequency (rf) ion source, named NIO1 (Negative Ion Optimization 1), with 9 beam apertures for a total H{sup −} current of 130 mA, 60 kV acceleration voltage, was installed at Consorzio RFX, including a high voltage deck and an X-ray shield, to provide a test bench for source optimizations for activities in support to the ITER NBI test facility. NIO1 status and plasma experiments both with air and with hydrogen as filling gas are described. Transition from a weak plasma to an inductively coupled plasma is clearly evident for the former gas and may be triggered by rising the rf power (over 0.5 kW) at low pressure (equal or below 2 Pa). Transition in hydrogen plasma requires more rf power (over 1.5 kW)

  18. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I., E-mail: goto@ppl.appi.keio.ac.jp; Nishioka, S.; Abe, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Mattei, S.; Lettry, J. [CERN, 1211 Geneva 23 (Switzerland)

    2016-02-15

    To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  19. Investigation of helium ion production in constricted direct current plasma ion source with layered-glows

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yuna [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr [Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Park, Yeong-Shin [Samsumg Electronics Co. Ltd., Gyeonggi 445-701 (Korea, Republic of); Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2014-02-15

    Generation of helium ions is experimentally investigated with a constricted direct current (DC) plasma ion source operated at layered-glow mode, in which electrons could be accelerated through multiple potential structures so as to generate helium ions including He{sup 2+} by successive ionization collisions in front of an extraction aperture. The helium discharge is sustained with the formation of a couple of stable layers and the plasma ball with high density is created near the extraction aperture at the operational pressure down to 0.6 Torr with concave cathodes. The ion beam current extracted with an extraction voltage of 5 kV is observed to be proportional to the discharge current and inversely proportional to the operating pressure, showing high current density of 130 mA/cm{sup 2} and power density of 0.52 mA/cm{sup 2}/W. He{sup 2+} ions, which were predicted to be able to exist due to multiple-layer potential structure, are not observed. Simple calculation on production of He{sup 2+} ions inside the plasma ball reveals that reduced operating pressure and increased cathode area will help to generate He{sup 2+} ions with the layered-glow DC discharge.

  20. Improvements to the internal and external antenna H(-) ion sources at the Spallation Neutron Source.

    Science.gov (United States)

    Welton, R F; Dudnikov, V G; Han, B X; Murray, S N; Pennisi, T R; Pillar, C; Santana, M; Stockli, M P; Turvey, M W

    2014-02-01

    The Spallation Neutron Source (SNS), a large scale neutron production facility, routinely operates with 30-40 mA peak current in the linac. Recent measurements have shown that our RF-driven internal antenna, Cs-enhanced, multi-cusp ion sources injects ∼55 mA of H(-) beam current (∼1 ms, 60 Hz) at 65-kV into a Radio Frequency Quadrupole (RFQ) accelerator through a closely coupled electrostatic Low-Energy Beam Transport system. Over the last several years a decrease in RFQ transmission and issues with internal antennas has stimulated source development at the SNS both for the internal and external antenna ion sources. This report discusses progress in improving internal antenna reliability, H(-) yield improvements which resulted from modifications to the outlet aperture assembly (applicable to both internal and external antenna sources) and studies made of the long standing problem of beam persistence with the external antenna source. The current status of the external antenna ion source will also be presented.

  1. Ion source memory in {sup 36}Cl accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Merchel, Silke; Rugel, Georg [HZDR, Dresden (Germany); Arnold, Maurice; Aumaitre, Georges; Bourles, Didier; Martschini, Martin [ASTER, Aix-en-Provence (France); Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Steier, Peter [VERA, Vienna (Austria)

    2013-07-01

    Since the DREAMS (Dresden Accelerator Mass Spectrometry) facility went operational in 2011, constant effort was put into enabling routine measurements of long-lived radionuclides as {sup 10}Be, {sup 26}Al and {sup 41}Ca. For precise AMS-measurements of the volatile element Cl the key issue is the minimization of the long term memory effect. For this purpose one of the two original HVE sources was mechanically modified, allowing the usage of bigger cathodes with individual target apertures. Additionally a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, a small inter-laboratory comparison had been initiated. The long-term memory effect in the Cs sputter ion sources of the AMS facilities VERA, ASTER and DREAMS had been investigated by running samples of natural {sup 35}Cl/{sup 37}Cl-ratio and samples containing highly enriched {sup 35}Cl({sup 35}Cl/{sup 37}Cl > 500). Primary goals of the research are the time constants of the recovery from the contaminated sample ratio to the initial ratio of the sample and the level of the long-term memory effect in the sources.

  2. PIC modeling of negative ion sources for fusion

    Science.gov (United States)

    Taccogna, F.; Minelli, P.

    2017-01-01

    This work represents the first attempt to model the full-size ITER negative ion source prototype including expansion, extraction and part of the acceleration regions keeping the resolution fine enough to resolve every single aperture of the extraction grid. The model consists of a 2.5-dimensional Particle-in-Cell/Monte Carlo Collision representation of the plane perpendicular to the filter field lines. Both the magnetic filter and electron deflection fields have been included. A negative ion current density of {j}{H-}=500 {{A}} {{{m}}}-2 produced by neutral conversion from the plasma grid is used as fixed parameter, while negative ions produced by electron dissociative attachment of vibrationally excited molecules and by ionic conversion on plasma grid are self-consistently simulated. Results show the non-ambipolar character of the transport in the expansion region driven by electron magnetic drifts in the plane perpendicular to the filter field. It induces a top-bottom asymmetry detected up to the extraction grid which in turn leads to a tilted positive ion flow hitting the plasma grid and a tilted negative ion flow emitted from the plasma grid. As a consequence, the plasma structure is not uniform around the single aperture: the meniscus assumes a form of asymmetric lobe and a deeper potential well is detected from one side of the aperture relative to the other side. Therefore, the surface-produced contribution to the negative ion extraction is not equally distributed between both the sides around the aperture but it come mainly from the lower side of the grid giving an asymmetrical current distribution in the single beamlet.

  3. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    Science.gov (United States)

    Sun, L.; Guo, J. W.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Yang, Y.; Qian, C.; Fang, X.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar12+, 0.92 emA Xe27+, and so on, will be presented.

  4. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L., E-mail: sunlt@impcas.ac.cn; Lu, W.; Zhang, W. H.; Feng, Y. C.; Qian, C.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W. [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Guo, J. W.; Yang, Y.; Fang, X. [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-02-15

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω{sup 2} scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE{sub 01} and HE{sub 11} modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar{sup 12+}, 0.92 emA Xe{sup 27+}, and so on, will be presented.

  5. Size scaling of negative hydrogen ion sources for fusion

    Science.gov (United States)

    Fantz, U.; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-04-01

    The RF-driven negative hydrogen ion source (H-, D-) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.

  6. Low-Cost Open-Source Voltage and Current Monitor for Gas Metal Arc Weld 3D Printing

    Directory of Open Access Journals (Sweden)

    A. Pinar

    2015-01-01

    Full Text Available Arduino open-source microcontrollers are well known in sensor applications for scientific equipment and for controlling RepRap 3D printers. Recently low-cost open-source gas metal arc weld (GMAW RepRap 3D printers have been developed. The entry-level welders used have minimal controls and therefore lack any real-time measurement of welder voltage or current. The preliminary work on process optimization of GMAW 3D printers requires a low-cost sensor and data logger system to measure welder current and voltage. This paper reports on the development of a low-cost open-source power measurement sensor system based on Arduino architecture. The sensor system was designed, built, and tested with two entry-level MIG welders. The full bill of materials and open source designs are provided. Voltage and current were measured while making stepwise adjustments to the manual voltage setting on the welder. Three conditions were tested while welding with steel and aluminum wire on steel substrates to assess the role of electrode material, shield gas, and welding velocity. The results showed that the open source sensor circuit performed as designed and could be constructed for <$100 in components representing a significant potential value through lateral scaling and replication in the 3D printing community.

  7. 6.4 GHz ECR ion source at VECC

    Indian Academy of Sciences (India)

    G S Taki; D K Chakraborty; R K Bhandari

    2002-11-01

    The 6.4 GHz ECR ion source that was indigenously developed a few years ago has been operating continuously for injecting oxygen and neon beams to the cyclotron since 1997. VEC-ECR is a single stage high magnetic field ion source provided with a negatively biased electron repeller placed on the axis, near the injection mirror point. The supply of cold electrons and use of low mass mixing gas improve the stability of ECR plasma. Very recently, the effect of aluminum oxide coating on the copper plasma chamber wall has been studied. The plasma chamber wall was coated with aluminum by vacuum evaporation method and then exposed to oxygen gas to form aluminum oxide. It was noticed that the process substantially shifts the charge state distribution to the higher charge state with an enhancement of ion current by an order of magnitude. With the aluminized plasma chamber, the VEC-ECR can now produce 12 A of O7+, 6.5 A of Ar12+, 1.5 A of Kr20+ and 1.0 A of Xe31+.

  8. A large-area RF source for negative hydrogen ions

    Science.gov (United States)

    Frank, P.; Feist, J. H.; Kraus, W.; Speth, E.; Heinemann, B.; Probst, F.; Trainham, R.; Jacquot, C.

    1998-08-01

    In a collaboration with CEA Cadarache, IPP is presently developing an rf source, in which the production of negative ions (H-/D-) is being investigated. It utilizes PINI-size rf sources with an external antenna and for the first step a small size extraction system with 48 cm2 net extraction area. First results from BATMAN (Ba¯varian T_est Ma¯chine for N_egative Ions) show (without Cs) a linear dependence of the negative ion yield with rf power, without any sign of saturation. At elevated pressure (1.6 Pa) a current density of 4.5 mA/cm2 H- (without Cs) has been found so far. At medium pressure (0.6 Pa) the current density is lower by approx. a factor of 5, but preliminary results with Cesium injection show a relative increase by almost the same factor in this pressure range. Langmuir probe measurements indicate an electron temperature Te>2 eV close to the plasma grid with a moderate magnetic filter (700 Gcm). Attempts to improve the performance by using different magnetic configurations and different wall materials are under way.

  9. Miniaturized Sources and Traps for Spectroscopy of Multicharged Ions

    Science.gov (United States)

    Tan, Joseph; Guise, Nicholas

    2013-05-01

    Penning traps made extremely compact (earth (NdFeB) magnets have been used recently to isolate highly charged ions (HCI) for spectroscopy. For example, radiative lifetimes of metastable states are measured by observing the visible fluorescence emitted by isolated Ar XIV (441 nm, 2p 2P3/2 --> 2p 2P1/2) and Kr XVIII (637 nm, 3d 2D3/2 --> 3d 2D1/2) . These measurements use HCIs extracted from an electron beam ion trap (EBIT) at NIST. For planned experiments, a new apparatus is being developed which will incorporate a ``mini-EBIT'' source using similar permanent-magnet structures. It combines a mini-EBIT and a compact Penning trap to facilitate production of multicharged ions including bare nuclei with nuclear charge in the range Z =1 to Z =10, in a cryogen-free setup with multiple ports for laser and atomic beam access to the isolated HCI. One goal is to produce one-electron ions in Rydberg states with transitions accessible to an optical frequency comb. Such engineered atomic systems are sought to enable tests of theory that could illuminate the proton radius puzzle. J.N. Tan, S.M. Brewer, and N.D. Guise, Rev. Sci. Instrum. 83, 023103 (2012).

  10. Microstructures and friction-wear behaviors of cathodic arc ion plated CrC coating at high temperatures

    Science.gov (United States)

    Dejun, Kong; Shouyu, Zhu

    2016-11-01

    A CrC coating was deposited on YT14 cemented carbide cutting tools by a CAIP (cathodic arc ion plating). The surface and interface morphologies, chemical composition, and phases of the obtained coating were analyzed with a field emission scanning electronic microscope (FESEM), energy dispersive spectroscope (EDS), and x-ray diffraction (XRD), respectively. The COFs (coefficient of frictions) and worn morphologies of the CrC coating at 300 °C, 400 °C, and 500 °C were investigated by using a high temperature tribometer, the effects of wear temperatures on the friction-wear properties of the CrC coating were discussed. The results show that the CrC coating exhibits fine dense structure, and the lattice constants of CrC coatings are dependent on processing parameters. The C and Cr elements in the coating are mutually diffused with the W, Co, and Ti in the substrate. The average COF of the coating at 300 °C, 400 °C, and 500 °C is 0.64, 0.63, and 0.40, respectively. The Cr2O3 layer formed on the CrC coating at 500 °C has excellent oxidation resistance, which improves lubrication and wear performance, the wear mechanism is abrasive wear and oxidation wear.

  11. STRUCTURE, MECHANICAL PROPERTIES AND THERMAL STABILITY OF DIAMOND-LIKE CARBON FILMS PREPARED BY ARC ION PLATING

    Institute of Scientific and Technical Information of China (English)

    Y.S. Zou; J.D. Zheng; J. Gong; C. Sun; R.F. Huang; L.S. Wen

    2005-01-01

    Diamond-like Carbon (DLC) films have been prepared on Si(100) substrates by arc ion plating in conjunction with pulse bias voltage under H2 atmosphere. The deposited films have been characterized by scanning electron microscopy and atomic force microscopy. The results show that the surface of the film is smooth and dense without any cracks, and the surface roughness is low. The bonding characteristic of the films has been studied by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It shows the sp3 bond content of the film deposited at -200V is 26.7%. The hardness and elastic modulus of the film determined by nanoindentation technique are 30.8 and 250.1GPa, respectively. The tribological characteristic of the films reveals that they have low friction coefficient and good wear-resistance. After deposition, the films have been annealed in the range of 350-700℃ for 1h in vacuum to investigate the thermal stability. Raman spectra indicate that the ID/IG ratio and G peak position have few detectable changes below 500℃. Further increasing the annealing temperature, the hydrogen can be released, the structure rearranges, and the phase transition of sp3 configured carbon to sp2 configured carbon appears.

  12. Calculation of water-bearing primary basalt and estimation of source mantle conditions beneath arcs: PRIMACALC2 model for WINDOWS

    Science.gov (United States)

    Kimura, Jun-Ichi; Ariskin, Alexey A.

    2014-04-01

    present a new method for estimating the composition of water-bearing primary arc basalt and its source mantle conditions. The PRIMACALC2 model uses a thermodynamic fractional crystallization model COMAGMAT3.72 and runs with an Excel macro to examine the mantle equilibrium and trace element calculations of a primary basalt. COMAGMAT3.72 calculates magma fractionation in 0-10 kb at various compositions, pressure, oxygen fugacity, and water content, but is only applicable for forward calculations. PRIMACALC2 first calculates the provisional composition of a primary basalt from an observed magma. The basalt composition is then calculated by COMAGMAT3.72 for crystallization. Differences in elemental concentrations between observed and the closest-match calculated magmas are then adjusted in the primary basalt. Further iteration continues until the calculated magma composition converges with the observed magma, resulting in the primary basalt composition. Once the fitting is satisfied, back calculations of trace elements are made using stepwise addition of fractionated minerals. Mantle equilibrium of the primary basalt is tested using the Fo-NiO relationship of olivine in equilibrium with the primary basalt, and thus with the source mantle. Source mantle pressure, temperature, and degree of melting are estimated using petrogenetic grids based on experimental data obtained in anhydrous systems. Mantle melting temperature in a hydrous system is computed by adjusting T with a parameterization for a water-bearing system. PRIMACALC2 can be used either in dry or water-bearing arc magmas and is also applicable to mid-ocean ridge basalts and nonalkalic ocean island basalts.

  13. Optimization of a hot-cavity type resonant ionization laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Henares, J. L., E-mail: henares@ganil.fr; Lecesne, N.; Hijazi, L.; Bastin, B.; Leroy, R.; Osmond, B.; Vignet, J. L. [GANIL, BP 55027, 14076 Caen Cedex 5 (France); Kron, T.; Naubereit, P.; Wendt, K. [Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz (Germany); Lassen, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Le Blanc, F. [IPN Orsay, BP 1-91406 Orsay (France)

    2016-02-15

    Resonant Ionization Laser Ion Source (RILIS) is nowadays an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability and ability to ionize efficiently and element selectively. Grand Accélérateur National d’Ions Lourds (GANIL) Ion Source using Electron Laser Excitation (GISELE) is an off-line test bench for RILIS developed to study a fully operational resonant laser ion source at GANIL facility. The ion source body has been designed as a modular system to investigate different experimental approaches by varying the design parameters, to develop the future on-line laser ion source. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. Latest results concerning emittance and time profile development as a function of the temperature for different ion source versions will be presented.

  14. Production of rare-earth atomic negative ion beams in a cesium-sputter-type negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Davis, V.T. [Test Support Division, Defense Threat Reduction Agency, West Desert Test Center, Dugway, UT 84022-5000 (United States)]. E-mail: vernon.davis@us.army.mil; Covington, A.M. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States); Duvvuri, S.S. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States); Kraus, R.G. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States); Emmons, E.D. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States); Kvale, T.J. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Thompson, J.S. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States)

    2007-08-15

    The desire to study negative ion structure and negative ion-photon interactions has spurred the development of ion sources for use in research and industry. The many different types of negative ion sources available today differ in their characteristics and abilities to produce anions of various species. Thus the importance of choosing the correct type of negative ion source for a particular research or industrial application is clear. In this study, the results of an investigation on the production of beams composed of negatively-charged rare-earth ions from a cylindrical-cathode-geometry, cesium-sputter-type negative ion source are presented. Beams of atomic anions have been observed for most of the first-row rare-earth elements, with typical currents ranging from hundreds of picoamps to several nanoamps.

  15. New progress of high current gasdynamic ion source (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Tarvainen, O.; Koivisto, H.; Kalvas, T. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), 40500 Jyvaskyla (Finland)

    2016-02-15

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.

  16. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Kolmogorov, A., E-mail: anton.kolmogorov@gmail.com; Stupishin, N. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Atoian, G.; Ritter, J.; Zelenski, A. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Davydenko, V.; Ivanov, A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation)

    2014-02-15

    The RHIC polarized H{sup −} ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H{sub 2} gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce “geometrical” beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  17. Next Generation H- Ion Sources for the SNS

    Energy Technology Data Exchange (ETDEWEB)

    Welton, Robert F [ORNL; Carmichael, Justin R [ORNL; Carr, Jr, Jerry [ORNL; Crisp, Danny W [ORNL; Goulding, Richard Howell [ORNL; Han, Baoxi [ORNL; Pennisi, Terry R [ORNL; Murray Jr, S N [ORNL; Stockli, Martin P [ORNL; Tarvainen, Olli A [ORNL; Santana, Manuel [ORNL

    2009-01-01

    The U.S. Spallation Neutron Source (SNS) is the leading accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure meeting operational requirements as well as providing for future facility beam power upgrades, a multifaceted H{sup -} ion source development program is ongoing. This work discusses several aspects of this program, specifically the design and first beam measurements of an RF-driven, external antenna H{sup -} ion source based on an AlN ceramic plasma chamber, elemental and chromate Cs-systems, and plasma ignition gun. Unanalyzed beam currents of up to {approx}100 mA (60Hz, 1ms) have been observed and sustained currents >60 mA (60Hz, 1ms) have been demonstrated on the test stand. Accelerated beam currents of {approx}40 mA have also been demonstrated into the SNS front end. Data are also presented describing the first H{sup -} beam extraction experiments from a helicon plasma generator based on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine design.

  18. Computer simulations for rf design of a Spallation Neutron Source external antenna H ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Woo [ORNL; Goulding, Richard Howell [ORNL; Kang, Yoon W [ORNL; Shin, Ki [ORNL; Welton, Robert F [ORNL

    2010-01-01

    Electromagnetic modeling of the multicusp external antenna H ion source for the Spallation Neutron Source SNS has been performed in order to optimize high-power performance. During development of the SNS external antenna ion source, antenna failures due to high voltage and multicusp magnet holder rf heating concerns under stressful operating conditions led to rf characteristics analysis. In rf simulations, the plasma was modeled as an equivalent lossy metal by defining conductivity as . Insulation designs along with material selections such as ferrite and Teflon could be included in the computer simulations to compare antenna gap potentials, surface power dissipations, and input impedance at the operating frequencies, 2 and 13.56 MHz. Further modeling and design improvements are outlined in the conclusion.

  19. H- Ion Sources for High Intensity Proton Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul; Dudnikov, Vadim

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  20. H- Ion Sources for High Intensity Proton Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dudnikov, Vadim [Muons, Inc., Batavia, IL (United States)

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  1. Conceptional design of the laser ion source based hadrontherapy facility

    Science.gov (United States)

    Xie, Xiu-Cui; Song, Ming-Tao; Zhang, Xiao-Hu

    2014-04-01

    A laser ion source (LIS), which can provide a carbon beam with highly stripped state (C6+) and high intensity (several tens mA), would significantly change the overall design of the hadrontherapy facility. The proposed LIS based hadrontherapy facility has the advantages of short linac length, simple injection scheme, and small synchrotron size. With the experience from the DPIS and HITFiL projects that have been conducted in IMP, a conceptional design of the LIS based hadrontherapy facility will be presented, with special attention given to APF type IH DTL design and simulation.

  2. Conceptional Design of the Laser Ion Source based Hadrontherapy Facility

    CERN Document Server

    Xie, Xiucui; Zhang, Xiaohu

    2013-01-01

    Laser ion source (LIS), which can provide carbon beam with highly stripped state (C6+) and high intensity (several tens mA), would significantly change the overall design of the hadrontherapy facility. A LIS based hadrontherapy facility is proposed with the advantage of short linac length, simple injection scheme and small synchrotron size. With the experience from the DPIS and HITFiL project that had conducted in IMP, a conceptional design of the LIS based hadrontherapy facility will be present with special dedication to APF type IH DTL design and simulation.

  3. Negative ion production and beam extraction processes in a large ion source (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Tsumori, K., E-mail: tsumori@nifs.ac.jp; Nakano, H.; Goto, M.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Ikeda, K.; Kisaki, M. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Geng, S. [The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Sasaki, K.; Nishiyama, S. [Division of Quantum Science and Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Serianni, G.; Agostinetti, P.; Sartori, E.; Brombin, M.; Veltri, P. [Plasma Engineering Group, Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Wimmer, C. [Max-Planck-Institut für Plasmaphysik, Bereich ITER-Technologie und -Diagnostik/N-NBI Boltzmannstr. 2, 85748 Garching (Germany)

    2016-02-15

    Recent research results on negative-ion-rich plasmas in a large negative ion source have been reviewed. Spatial density and flow distributions of negative hydrogen ions (H{sup −}) and positive hydrogen ions together with those of electrons are investigated with a 4-pin probe and a photodetachment (PD) signal of a Langmuir probe. The PD signal is converted to local H{sup −} density from signal calibration to a scanning cavity ring down PD measurement. Introduction of Cs changes the slope of plasma potential local distribution depending upon the plasma grid bias. A higher electron density H{sub 2} plasma locally shields the bias potential and behaves like a metallic free electron gas. On the other hand, the bias and extraction electric fields penetrate in a Cs-seeded electronegative plasma even when the electron density is similar. Electrons are transported by the penetrated electric fields from the driver region along and across the filter and electron deflection magnetic fields. Plasma ions exhibited a completely different response against the penetration of electric fields.

  4. Ion Extraction from a Toroidal Electron Cyclotron Resonance Ion Source: a Numerical Feasibility Study

    Science.gov (United States)

    Caliri, Claudia; Volpe, Francesco; Gammino, Santo; Mascali, David

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are magnetic mirror plasmas of microwave-heated electrons and cold multi-charged ions. The ions are extracted from one end of the mirror and injected in accelerators for nuclear and particle physics studies, hadrontherapy, or neutral beam injection in fusion plasmas. ECRIS devices progressed to higher and higher ion currents and charge states by adopting stronger magnetic fields (beneficial for confinement) and proportionally higher ECR frequencies. Further improvements would require the attainment of ``triple products'' comparable with major fusion experiments. For this, we propose a new, toroidal rather than linear, ECRIS geometry, which would at the same time improve confinement and make better use of the magnetic field. Ion extraction is more complicated than from a linear device, but feasible, as our modeling indicates. Possible techniques involve charge-dependent drifts, divertors, specially designed magnetic fields and associated loss-cones, electrostatic and/or magnetic deflectors, or techniques used in accelerators to transfer particles from one storage ring or accelerator to the next. Here we present single-particle tracings assessing and comparing these extraction techniques.

  5. Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources

    Directory of Open Access Journals (Sweden)

    N. Forsythe

    2014-09-01

    Full Text Available A three-step climate classification was applied to a spatial domain covering the Himalayan arc and adjacent plains regions using input data from four global meteorological reanalyses. Input variables were selected based on an understanding of the climatic drivers of regional water resource variability and crop yields. Principal components analysis (PCA of those variables and k means clustering on the PCA outputs revealed a reanalysis ensemble consensus for eight sub-regional climate zones. Spatial statistics of input variables for each zone revealed consistent, distinct climatologies. This climate classification approach has potential both for enhancing assessment of climatic influences on water resources and food security as well as for characterising the skill and bias of gridded datasets, both meteorological reanalyses and climate models, for reproducing sub-regional climatologies. Through their spatial descriptors (area, geographic centroid, elevation mean range, climate classifications also provide metrics, beyond simple changes in individual variables, with which to assess the magnitude of projected climate change. Such sophisticated metrics are of particular interest for regions, including mountainous areas, where natural and anthropogenic systems are expected to be sensitive to incremental climate shifts.

  6. Charge-state and element-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    CERN Document Server

    Franz, Robert; Anders, André

    2014-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al$^{+}$ regardless of the background gas species, whereas Cr$^{2+}$ ions were dominating in Ar and N$_2$ and Cr$^{+}$ in O$_2$ atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were mainly thermalised. In addition to the positively charged metal and gas ions, negatively charged oxygen an...

  7. Ion Behavior and Gas Mixing in electron cyclotron resonance plasmas as sources of highly charged ions (concept

    NARCIS (Netherlands)

    Melin, G.; Drentje, A. G.; Girard, A.; Hitz, D.

    1999-01-01

    Abstract: An ECR ion source is basically an ECR heated plasma confinement machine, with hot electrons and cold ions. The main parameters of the ion population have been analyzed, including temperature, losses, and confinement time. The "gas mixing" effect has been studied in this context. An express

  8. Design of a high-yield H{sub 2}{sup +} ion source for commissioning of the IFMIF accelerator using a one-dimensional plasma model

    Energy Technology Data Exchange (ETDEWEB)

    King, R.F. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)], E-mail: robert.king@jet.uk; Surrey, E. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Holmes, A.J.T. [Marcham Scientific Ltd., Sarum House, 10 Salisbury Road, Hungerford, Berkshire RG17 0LH (United Kingdom)

    2008-12-15

    It is desirable to minimise the activation of components during the commissioning phase of the IFMIF accelerator and this can be achieved by using a beam of H{sub 2}{sup +} ions in place of the D{sup +} beam. Having the same charge to mass ratio ensures that the commissioning can be conducted at full power, provided a sufficiently intense source of H{sub 2}{sup +} ions is available. Ideally, the H{sub 2}{sup +} beam current should equal that of the IFMIF D{sup +} beam current, 140 mA, with a species fraction of greater than 85% H{sub 2}{sup +}. This paper describes a study to determine the physical processes and ion source design criteria that optimise H{sub 2}{sup +} yield. Examination of the processes contributing to the yield of H{sub 2}{sup +} ions in a plasma indicate that extraction should occur as close to the ionisation volume as possible. The most suitable ion source is currently the volume discharge. A one-dimensional plasma model of this source has been developed and is validated against experimental measurements. The model has been used to identify those design criteria that most strongly affect the H{sub 2}{sup +} yield and has been used to optimise the design of the volume arc source for the production of H{sub 2}{sup +} ions.

  9. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited).

    Science.gov (United States)

    Vondrasek, R; Levand, A; Pardo, R; Savard, G; Scott, R

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci (252)Cf source to produce radioactive beams with intensities up to 10(6) ions∕s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for (23)Na(8+), 15.6% for (84)Kr(17+), and 13.7% for (85)Rb(19+) with typical breeding times of 10 ms∕charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The project has been commissioned with a radioactive beam of (143)Ba(27+) accelerated to 6.1 MeV∕u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  10. Angular resolved energy analysis of /sup 69/Ga/sup +/ions from a gallium liquid metal ion source

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, P.

    1987-11-01

    An analysis system has been designed and built to characterise liquid metal ion source beams. Both mass and angular resolved energy distribution measurements can be made, from which both FWHM energy spreads and energy deficits can be obtained. This paper briefly describes the system and presents and discusses the first off-axis results taken with a gallium liquid metal ion source.

  11. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    Science.gov (United States)

    Fathi, A.; Feghhi, S. A. H.; Sadati, S. M.; Ebrahimibasabi, E.

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  12. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Science.gov (United States)

    Zhao, H. Y.; Zhang, J. J.; Jin, Q. Y.; Liu, W.; Wang, G. C.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 1013 W cm-2 in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  13. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Jin, Q. Y.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, W.; Wang, G. C. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-02-15

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10{sup 13} W cm{sup −2} in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  14. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    Science.gov (United States)

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  15. Pulsed ion sheath dynamics in a cylindrical bore for inner surface grid-enhanced plasma source ion implantation

    CERN Document Server

    Wang Jiu Li; Fan Song Hua; Yang Wu Bao; Yang Size

    2002-01-01

    Based on authors' recently proposed grid-enhanced plasma source ion implantation (GEPSII) technique for inner surface modification of materials with cylindrical geometry, the authors present the corresponding theoretical studies of the temporal evolution of the plasma ion sheath between the grid electrode and the target in a cylindrical bore. Typical results such as the ion sheath evolution, time-dependent ion density and time-integrated ion energy distribution at the target are calculated by solving Poisson's equation coupled with fluid equations for collisionless ions and Boltzmann assumption for electrons using finite difference methods. The calculated results can further verify the feasibility and superiority of this new technique

  16. Size scaling of negative hydrogen ion sources for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fantz, U., E-mail: ursel.fantz@ipp.mpg.de; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-04-08

    The RF-driven negative hydrogen ion source (H{sup −}, D{sup −}) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.

  17. Source Evolution After Subduction Initiation as Recorded in the Izu-Bonin-Mariana Fore-arc Crust

    Science.gov (United States)

    Shervais, J. W.; Reagan, M. K.; Pearce, J. A.; Shimizu, K.

    2015-12-01

    Drilling in the Izu-Bonin-Mariana (IBM) fore-arc during IODP Expedition 352 and DSDP Leg 60 recovered consistent stratigraphic sequences of volcanic rocks reminiscent of those found in many ophiolites. The oldest lavas in these sections are "fore-arc basalts" (FAB) with ~51.5 Ma ages. Boninites began eruption approximately 2-3 m.y. later (Ishizuka et al., 2011, EPSL; Reagan et al., 2013, EPSL) and further from the trench. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB at Sites U1440 and U1441 were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Temperatures appear to have been unusually high and pressures of melting appear to have been unusually low compared to mid-ocean ridges. Spreading rates at this time appear to have been robust enough to maintain a stable melt lens. Incompatible trace element abundances are low in FAB compared to even depleted MORB. Nd and Hf Isotopic compositions published before the expedition suggest that FAB were derived from typical MORB source mantle. Thus, their extreme deletion resulted from unusually high degrees of melting immediately after subduction initiation. The oldest boninites from DSDP Site 458 and IODP Sites U1439 and U1442 have relatively high concentrations of fluid-soluble elements, low concentrations of REE, and light depleted REE patterns. Younger boninites, have even lower REE concentrations, but have U-shaped REE patterns. Our first major and trace element compositions for the FAB through boninite sequence suggests that melting pressures and temperatures decreased through time, mantle became more depleted though time, and spreading rates waned during boninite genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured.

  18. Studies in ion source development for application in heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kapica, Jonathan G. [Univ. of California, Berkeley, CA (United States)

    2004-05-01

    The overall purpose of these experiments is to contribute to the development of ion injector technology in order to produce a driver for use in a heavy-ion-fusion (HIF) power generating facility. The overall beam requirements for HIF are quite demanding; a short list of the constraints is the following: (1) Low cost (a large portion of overall cost will come from the beam system); (2) Bright, low emittance beam; (3) Total beam energy 5MJ; (4) Spot size 3mm (radius); (5) Pulse Duration 10ns; (6) Current on target 40kA; (7) Repetition Rate 5Hz; (8) Standoff from target 5m; and (9) Transverse Temp < 1 keV. The reasons for employing ion beams in inertial fusion systems become obvious when the repetition rate required is considered. While laser drivers are useful in producing a proof-of-concept, they will be incapable of application in power generation. Consequently attempts in the U.S. to achieve a power generating system make use of linear ion accelerators. It is apparent that the accelerator system requires the highest quality input as obtainable. Therefore injector design is an essential portion of the entire inertial fusion system. At Lawrence Berkeley and Lawrence Livermore National Laboratories experiments are being conducted using two injector formats. For this project I have conducted a series of studies using both. The next two sections provide a brief description of the sources used for my experiments.

  19. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  20. ECR Ion Source of High Charge States%高电荷态ECR离子源

    Institute of Scientific and Technical Information of China (English)

    张子民; 刘占稳; 赵红卫

    2000-01-01

    介绍了目前ECR离子源的发展状况和国际上几台典型的ECR离子源.%Electron cyclotron resonance (ECR) ion source is the most efficient facility for producing highly charged ions.So far more than 1 emA of O6+ and 0.02eμA of U55+ have been delivered by ECR ion source. In this paper the latest develop-ment of ECR ion source is presented and several typical ECR ion sources in the world is introduced.

  1. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    2003-01-01

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  2. Preliminary Tests Of The Decris-sc Ion Source

    CERN Document Server

    Efremov, A; Bechterev, V; Bogomolov, S L; Bondarenko, P G; Datskov, V I; Dmitriev, S; Drobin, V; Lebedev, A; Leporis, M; Malinowski, H; Nikiforov, A; Paschenko, S V; Seleznev, V; Shishov, Yu A; Smirnov, Yu; Tsvineva, G; Yakovlev, B; Yazvitsky, N Yu

    2004-01-01

    A new "liquid He-free" superconducting Electron Cyclotron Resonance Ion Source DECRIS-SC, to be used as injector for the IC-100 small cyclotron, has been designed by FLNR and LHE JINR. The main feature is that a compact refrigerator of Gifford-McMahon type is used to cool the solenoid coils. For the reason of very small cooling power at 4.2 K (about 1 W) our efforts were to optimize the magnetic structure and minimize an external heating of the coils. The maximum magnetic field strength is 3 T and 2 T in injection and extraction region respectively. For the radial plasma confinement a hexapole made of NdFeB permanent magnet is used. The source will be capable of ECR plasma heating using different frequencies (14 GHz or 18 GHz). To be able to deliver usable intensities of solids, the design is also allow axial access for evaporation oven and metal samples using the plasma sputtering technique. Very preliminary results of the source test are presented.

  3. ATLAS 10 GHz electron cyclotron resonance ion source upgrade project

    CERN Document Server

    Moehs, D P; Pardo, R C; Xie, D

    2000-01-01

    A major upgrade of the first ATLAS 10 GHz electron cyclotron resonance (ECR) ion source, which began operations in 1987, is in the planning and procurement phase. The new design will convert the old two-stage source into a single-stage source with an electron donor disk and high gradient magnetic field that preserves radial access for solid material feeds and pumping of the plasma chamber. The new magnetic-field profile allows for the possibility of a second ECR zone at a frequency of 14 GHz. An open hexapole configuration, using a high-energy-product Nd-Fe-B magnet material, having an inner diameter of 8.8 cm and pole gaps of 2.4 cm, has been adopted. Models indicate that the field strengths at the chamber wall, 4 cm in radius, will be 9.3 kG along the magnet poles and 5.6 kG along the pole gaps. The individual magnet bars will be housed in austenitic stainless steel, allowing the magnet housing within the aluminum plasma chamber to be used as a water channel for direct cooling of the magnets. Eight solenoid...

  4. ATLAS 10 GHz electron cyclotron resonance ion source upgrade project

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, D. P. [Argonne National Laboratory, Physics Division, Argonne, Illinois 60439 (United States); Vondrasek, R. [Argonne National Laboratory, Physics Division, Argonne, Illinois 60439 (United States); Pardo, R. C. [Argonne National Laboratory, Physics Division, Argonne, Illinois 60439 (United States); Xie, D. [Berkeley Ion Equipment Inc., Santa Clara, California 95054 (United States)

    2000-02-01

    A major upgrade of the first ATLAS 10 GHz electron cyclotron resonance (ECR) ion source, which began operations in 1987, is in the planning and procurement phase. The new design will convert the old two-stage source into a single-stage source with an electron donor disk and high gradient magnetic field that preserves radial access for solid material feeds and pumping of the plasma chamber. The new magnetic-field profile allows for the possibility of a second ECR zone at a frequency of 14 GHz. An open hexapole configuration, using a high-energy-product Nd-Fe-B magnet material, having an inner diameter of 8.8 cm and pole gaps of 2.4 cm, has been adopted. Models indicate that the field strengths at the chamber wall, 4 cm in radius, will be 9.3 kG along the magnet poles and 5.6 kG along the pole gaps. The individual magnet bars will be housed in austenitic stainless steel, allowing the magnet housing within the aluminum plasma chamber to be used as a water channel for direct cooling of the magnets. Eight solenoid coils from the existing ECR will be enclosed in an iron yoke to produce the axial mirror. Based on a current of 500 A, the final model predicts a minimum B field of 3 kG with injection and extraction mirror ratios of 4.4 and 2.9, respectively. (c) 2000 American Institute of Physics.

  5. ATLAS 10 GHz ECR ions source upgrade project.

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, D. P.; Pardo, R. C.; Vondrasek, R.; Xie, D.

    1999-08-10

    A major upgrade of the first ATLAS 10 GHz ECR ion source, which began operations in 1987, is in the planning and procurement phase. The new design will convert the old two-stage source into a single-stage source with an electron donor disk and high gradient magnetic field that preserves radial access for solid material feeds and pumping of the plasma chamber. The new magnetic field profile allows for the possibility of a second ECR zone at a frequency of 14 GHz. An open hexapole configuration, using a high energy-product Nd-Fe-B magnet material, having an inner diameter of 8.8 cm and pole gaps of 2.4 cm has been adopted. Models indicate that the field strengths at the chamber wall, 4 cm in radius, will be 9.3 kG along the magnet poles and 5.6 kG along the pole gaps. The individual magnet bars will be housed in austenitic stainless steel allowing the magnet housing within the aluminum plasma chamber to be used as a water channel for direct cooling of the magnets. Eight solenoid coils from the existing ECR will be enclosed in an iron yoke to produce the axial mirror. Based on a current of 500 A, the final model predicts a minimum B field of 3 kG with injection and extraction mirror ratios of 4.4 and 2.9 respectively.

  6. Study of the negative ion extraction mechanism from a double-ion plasma in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I.; Nishioka, S.; Hatayama, A. [Graduate school of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)

    2015-04-08

    We have developed a 2D3V-PIC model of the extraction region, aiming to clarify the basic extraction mechanism of H{sup −} ions from the double-ion plasma in H{sup −} negative ion sources. The result shows the same tendency of the H{sup −} ion density n{sub H{sup −}} as that observed in the experiments, i.e.,n{sub H{sup −}} in the upstream region away from the plasma meniscus (H{sup −} emitting surface) has been reduced by applying the extraction voltage. At the same time, relatively slow temporal oscillation of the electric potential compared with the electron plasma frequency has been observed in the extraction region. Results of the systematic study using a 1D3V-PIC model with the uniform magnetic field confirm the result that the electrostatic oscillation is identified to be lower hybrid wave. The effect of this oscillation on the H{sup −} transport will be studied in the future.

  7. Operational Experience with The GTS-LHC Ion Source and Future Developments of The CERN Ion Injector

    CERN Document Server

    Kuchler, D; Lombardi, A; O'Neil, M; Scrivens, R; Stafford-Haworth, J; Thomae, R

    2012-01-01

    Since 2010 the GTS-LHC source delivers lead ions for heavy ion physics at the LHC. Several modifications allowed the improvement the source reliability and the beam stability. The attempts to improve the beam intensity were less successful. The different modifications and actual performance figures will be presented in this paper. In addition to the heavy ion physics program of the LHC new ion species will be requested for different experiments in the future. The fixed target experiment NA61 requires primary argon and xenon beams. And a future biomedical facility asks for light ions in the range helium to neon. Approaches to prepare these beams and to modify the ion injector towards a light ion front end are presented.

  8. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W. [Accelerator Engineering Corporation, Chiba (Japan); Biri, S.; Rácz, R. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Kato, Y. [Graduate School of Engineering, Osaka University, Osaka (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe (Japan)

    2016-02-15

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  9. Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    A. Kürten

    2010-11-01

    Full Text Available The performance of an ion source based on corona discharge has been studied. This source is used for the detection of gaseous sulfuric acid by chemical ionization mass spectrometry (CIMS through the reaction of NO3 ions with H2SO4. The ion source is operated under atmospheric pressure and its design is similar to the one of a radioactive (Americium 241 ion source which has been used previously. Our results show that the detection limit for the corona ion source is sufficiently good for most applications. For an integration time of one minute it is ~6 × 104 molecules of H2SO4 per cm3. In addition, only a small cross-sensitivity to SO2 has been observed for concentrations as high as 1 ppmv in the sample gas. This low sensitivity to SO2 is achieved even without the addition of an OH scavenger. When comparing the new corona ion source with the americium ion source for the same provided H2SO4 concentration, both ion sources yield almost identical values. These features make the corona ion source investigated here favorable over the more commonly used radioactive ion sources for most applications where H2SO4 is measured by CIMS.

  10. Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    A. Kürten

    2011-03-01

    Full Text Available The performance of an ion source based on corona discharge has been studied. This source is used for the detection of gaseous sulfuric acid by chemical ionization mass spectrometry (CIMS through the reaction of NO3 ions with H2SO4. The ion source is operated under atmospheric pressure and its design is similar to the one of a radioactive (americium-241 ion source which has been used previously. The results show that the detection limit for the corona ion source is sufficiently good for most applications. For an integration time of 1 min it is ~6 × 104 molecule cm−3 of H2SO4. In addition, only a small cross-sensitivity to SO2 has been observed for concentrations as high as 1 ppmv in the sample gas. This low sensitivity to SO2 is achieved even without the addition of an OH scavenger. When comparing the new corona ion source with the americium ion source for the same provided H2SO4 concentration, both ion sources yield almost identical values. These features make the corona ion source investigated here favorable over the more commonly used radioactive ion sources for most applications where H2SO4 is measured by CIMS.

  11. Combined corona discharge and UV photoionization source for ion mobility spectrometry.

    Science.gov (United States)

    Bahrami, Hamed; Tabrizchi, Mahmoud

    2012-08-15

    An ion mobility spectrometer is described which is equipped with two non-radioactive ion sources, namely an atmospheric pressure photoionization and a corona discharge ionization source. The two sources cannot only run individually but are additionally capable of operating simultaneously. For photoionization, a UV lamp was mounted parallel to the axis of the ion mobility cell. The corona discharge electrode was mounted perpendicular to the UV radiation. The total ion current from the photoionization source was verified as a function of lamp current, sample flow rate, and drift field. Simultaneous operation of the two ionization sources was investigated by recording ion mobility spectra of selected samples. The design allows one to observe peaks from either the corona discharge or photoionization individually or simultaneously. This makes it possible to accurately compare peaks in the ion mobility spectra from each individual source. Finally, the instrument's capability for discriminating two peaks appearing in approximately identical drift times using each individual ionization source is demonstrated.

  12. Review of ISOL target-ion-source systems

    CERN Document Server

    Kirchner, R

    2003-01-01

    Any review of target-ion-source systems (TISS) is necessarily a variation of the ISOL-theme 'efficient, fast, selective'. In the first part, more than 30 years of TISS development are examined in view of these key characteristics. By looking at the lines of development that were successful, at the lines that were abandoned (partly for good, partly for less good reasons), the lines with the most promising perspectives emerge. The second part deals with on-line chemistry in the TISS and its possibly double benefits: enhanced selectivity or increased separation speed, or both in favourable cases, as the relatively new sulfide chemistry. For the group-IVa-elements germanium and tin, the separation as sulfide-ions does not only suppress strongly the contamination by the neighbouring elements. It also reduces the effusion part of the release by orders of magnitude to the level of the intrinsic delay caused by molecular flow. The homologue chemistry is likely to work for silicon, but not for lead. While selectivity ...

  13. Study of negative ion transport phenomena in a plasma source

    Science.gov (United States)

    Riz, D.; Paméla, J.

    1996-07-01

    NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.

  14. Study of negative ion transport phenomena in a plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Riz, D.; Pamela, J. [Departement de Recherches sur la Fusion Controlee C. E., Cadarache, 13108 St-Paul-lez-Durance Cedex (France)

    1996-07-01

    NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H{sup {minus}}/H{sup +}) and charge exchanges (H{sup {minus}}/H{sup 0}). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter. {copyright} {ital 1996 American Institute of Physics.}

  15. Sheath overlap during very large scale plasma source ion implantation

    Science.gov (United States)

    Cluggish, B. P.; Munson, C. P.

    1998-12-01

    Measurements of plasma source ion implantation have been performed on a large target of complex geometry. The target consists of 1000 aluminum, automotive piston surrogates mounted on four racks; total surface area is over 16 m2. The four racks are positioned parallel to each other, 0.25 m apart, in an 8 m3 vacuum chamber. The racks of pistons are immersed in a capacitive radio frequency plasma, with an argon gas pressure of 20-65 mPa. Langmuir probe measurements indicate that the plasma density profile is highly nonuniform, due to particle losses to the racks of pistons. The plasma ions are implanted into the pistons by pulse biasing the workpiece to negative voltages as low as -18 kV for up to 20 μs. During the voltage pulse, the high-voltage sheaths from adjacent racks of pistons converge towards each other. At plasma densities less than 109 cm-3 the sheaths are observed to overlap. Measurements of the sheath overlap time are compared with standard analytic theory and with simulations run with a two-dimensional particle-in-cell code.

  16. Anion formation in sputter ion sources by neutral resonant ionization

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. S., E-mail: johnsvogel@yahoo.com [University of California, 8300 Feliz Creek Dr., Ukiah, California 95482 (United States)

    2016-02-15

    Focused Cs{sup +} beams in sputter ion sources create mm-diameter pits supporting small plasmas that control anionization efficiencies. Sputtering produces overwhelmingly neutral products that the plasma can ionize as in a charge-change vapor. Electron capture between neutral atoms rises as the inverse square of the difference between the ionization potential of the Cs state and the electron affinity of the sputtered atom, allowing resonant ionization at very low energies. A plasma collision-radiation model followed electronic excitation up to Cs(7d). High modeled Cs(7d) in a 0.5 mm recess explains the 80 μA/mm{sup 2} C{sup −} current density compared to the 20 μA/mm{sup 2} from a 1 mm recess.

  17. RF Plasma modeling of the Linac4 H− ion source

    CERN Document Server

    Mattei, S; Hatayama, A; Lettry, J; Kawamura, Y; Yasumoto, M; Schmitzer, C

    2013-01-01

    This study focuses on the modelling of the ICP RF-plasma in the Linac4 H− ion source currently being constructed at CERN. A self-consistent model of the plasma dynamics with the RF electromagnetic field has been developed by a PIC-MCC method. In this paper, the model is applied to the analysis of a low density plasma discharge initiation, with particular interest on the effect of the external magnetic field on the plasma properties, such as wall loss, electron density and electron energy. The use of a multi-cusp magnetic field effectively limits the wall losses, particularly in the radial direction. Preliminary results however indicate that a reduced heating efficiency results in such a configuration. The effect is possibly due to trapping of electrons in the multi-cusp magnetic field, preventing their continuous acceleration in the azimuthal direction.

  18. WSTF electrical arc projects

    Science.gov (United States)

    Linley, Larry

    1994-09-01

    The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.

  19. Generation of ions in a pulsed ion source with an interface based on a polymer track membrane

    Science.gov (United States)

    Balakin, A. A.; Khidirov, S. G.; Buido, E. A.

    2016-10-01

    The time-of-flight spectra of ions generated during the extraction of negative ions from the KI solution in water-glycerin mixture by high-strength electric field pulses are studied using a source with an interface based on a polymer track membrane. It has been shown that the ions formed in secondary processes of bombardment of the membrane surface make a considerable contribution to the observed spectra. It has been found that the peaks of negative hydrogen ions have the highest intensity in the spectrum, indicating effective emission of these ions during the bombardment of polyethylene terephthalate by secondary ions with an energy of about 6 keV. The main trends in the modification of the membrane interface to reduce the fraction of secondary ions in the ion beam have been outlined.

  20. Computer simulation of the emission process of some field emission alloy ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, S.; Vichev, R.; Drandarov, N. [Bulgarian Academy of Sciences, Sofia (Bulgaria)

    1996-10-01

    The ion emission process from InGa, AuBe and AuSi field emission alloy ion sources (LAIS) is simulated. Field strength is calculated using the SOC model. Paraxial source size, beam spot size, energy and angular distributions are estimated. The effects on the emission characteristics of Coulomb interaction between ions are investigated, and the strong influences of ion mass and charge are also shown. (Author).

  1. Charge Breeding of Radioactive Ions in an Electron Cyclotron Resonance Ion Source(ECRIS) at ISOLDE

    CERN Multimedia

    Lindroos, M

    2002-01-01

    The development of an efficient charge breeding scheme for the next generation of RIB facilities will have a strong impact on the post-accelerator for several Radioactive Ion Beam (RIB) projects at European large scale facilities. At ISOLDE/CERN there will be the unique possibility to carry out experiments with the two possible charge breeding set-ups with a large variety of radioactive isotopes using identical injection conditions. One charge breeding set-up is the Penning trap/EBIS combination which feeds the REX-ISOLDE linear accelerator and which is in commissioning now. The second charge breeder is a new ECRIS PHOENIX developed at the ISN ion source laboratory at Grenoble. This ECRIS is now under investigation with a 14 GHz amplifier to characterize its performance. The experiments are accompanied by theoretical studies in computer simulations in order to optimize the capture of the ions in the ECRIS plasma. A second identical PHOENIX ECRIS which is under investigation at the Daresbury Laboratory is avai...

  2. GaBi alloy liquid metal ion source for microelectronics research.

    Science.gov (United States)

    Bischoff, L; Pilz, W; Ganetsos, Th; Forbes, R G; Akhmadaliev, Ch

    2007-09-01

    A GaBi alloy liquid metal ion source has been studied. From an analysis of the source mass spectra as a function of emission current, a mechanism is suggested for the production of single- and double-charged ions. There is good agreement with the results of Swanson's investigations of a pure Bi source.

  3. STUDY ON DEPOSITION OF MAGNETIC FILMS USING ARC ION PLATING%电弧离子镀沉积磁性薄膜的研究

    Institute of Scientific and Technical Information of China (English)

    常正凯; 肖金泉; 陈育秋; 刘山川; 宫骏; 孙超

    2012-01-01

    Arc ion plating (AIP) has been widely used for depositing various kinds of coatings due to the excellent characteristics of high deposition rate, convenient parameter control, high degree of ionization in the target material, good coating-substrate adhesion, flexibility of target arrangements and merits of producing coatings with high packing density. Magnetic films, with a few micrometers or less, could be utilized in the electronics industry, such as magnetic recording, magnetic microelectrome-chanical systems, magneto optical modulator, and so on. In AIP process, due to magnetic shielding and self-induced magnetic field, arc spot on the surface of the magnetic target moved outside all the time, and the erosion of the magnetic target could not be stable. In this study, arc spot outside moving and unstable erosion of the magnetic target in arc ion plating have been investigated. The distribution of the magnetic field of the nonmagnetic target and the magnetic target under an additional magnetic field was simulated by the finite element method (FEM). The effect of magnetic field on the arc spot movement was researched. With the physical mechanism of the arc spot discharge, the feasibility on the solution of the application problem of the magnetic target has been discussed by the program of the composited structure target, which were composed of magnetic target materials and target shell of low saturation vapor pressure metal, target shell of insulating ceramics, or target shell of soft magnetic metal. The results showed that all these solutions could solve the problem of arc spot outside moving efficiently. In the study, the transition temperature is (136.6±23.0) ℃ in the solutions of the target shell of low saturation vapor pressure metal or insulating ceramics, during which the arc striking frequently transformed to the controlled movement of arc spot.%研究了电弧离子镀磁性靶材使用过程中发生“跑弧”并导致靶材无法稳定刻蚀的问

  4. Development of an ion source for volatile elements at DREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Merchel, Silke; Rugel, Georg [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Ion Beam Physics and Materials Research, Dresden (Germany)

    2012-07-01

    After successful measurements of {sup 10}Be, {sup 26}Al and {sup 41}Ca at DREAMS (DResden Accelerator Mass Spectrometry), extensive test measurements of {sup 36}Cl started. Besides the challenge of separating the stable isobar {sup 36}S, which at DREAMS is accomplished by post-stripping and a split-anode-ionization-chamber, the problem of ion source memory must be solved. To characterize this effect we use {sup 35}Cl/{sup 37}Cl samples of natural composition and {sup 35}Cl-enriched samples with a {sup 35}Cl/{sup 37}Cl-ratio >100. Similar measurements at the French AMS facility ASTER showed differences of 2-4% in the {sup 35}Cl/{sup 37}Cl ratios of the highly enriched samples after 24 h of sputtering samples with natural isotopic ratios. To minimize the long-term-memory effect, two modified designs of the original source (HVEE) were constructed at DREAMS. A more open geometry was used to improve the vacuum level, and parts of the target loading system were modified to allow the exchange of the individual cathode aperture with each target.

  5. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    Energy Technology Data Exchange (ETDEWEB)

    Lettry, J.; Gerardin, A.; Pereira, H.; Sgobba, S. [CERN, 1211 Geneva 23 (Switzerland); Alessi, J. [BNL, P.O. Box 5000, Upton, New York 11973-5000 (United States); Faircloth, D. [RAL, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Kalvas, T. [University of Jyvaskyla, P.O.Box 35, FI-40014 (Finland)

    2012-02-15

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  6. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    Energy Technology Data Exchange (ETDEWEB)

    Lettry J.; Alessi J.; Faircloth, D.; Gerardin, A.; Kalvas, T.; Pereira, H.; Sgobba, S.

    2012-02-23

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  7. Analysis of plasma distribution near the extraction region in surface produced negative ion sources.

    Science.gov (United States)

    Fukano, A; Hatayama, A

    2014-02-01

    In study of a negative ion source, it is important to understand the plasma characteristics near the extraction region. A recent experiment in the NIFS-R&D ion source has suggested that a "double ion plasma layer" which is a region consisting of hydrogen positive and negative ions exists near the plasma grid (PG). Density distribution of plasma near the extraction region is studied analytically. It is shown that the density distribution depends on an amount of the surface produced negative ions and the double ion plasma layer is formed near the PG surface for the case of strong surface production.

  8. Simulation of RF power and multi-cusp magnetic field requirement for H- ion sources

    Science.gov (United States)

    Pathak, Manish; Senecha, V. K.; Kumar, Rajnish; Ghodke, Dharmraj. V.

    2016-12-01

    A computer simulation study for multi-cusp RF based H- ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H- Linac project for SNS applications. The average reaction rates for different reactions responsible for H- ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H- ion source for a maximum possible H- ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H- ion source like excited hydrogen molecular density, H- ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H- ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H- ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.

  9. Upgraded millimeter-wave interferometer for measuring the electron density during the beam extraction in the negative ion source

    Science.gov (United States)

    Tokuzawa, T.; Kisaki, M.; Nagaoka, K.; Tsumori, K.; Ito, Y.; Ikeda, K.; Nakano, H.; Osakabe, M.; Takeiri, Y.; Kaneko, O.

    2016-11-01

    The upgraded millimeter-wave interferometer with the frequency of 70 GHz is installed on a large-scaled negative ion source. Measurable line-averaged electron density is from 2 × 1015 to 3 × 1018 m-3 in front of the plasma grid. Several improvements such as the change to shorter wavelength probing with low noise, the installation of special ordered horn antenna, the signal modulation for a high accuracy digital phase detection, the insertion of insulator, and so on, are carried out for the measurement during the beam extraction by applying high voltage. The line-averaged electron density is successfully measured and it is found that it increases linearly with the arc power and drops suddenly at the beam extraction.

  10. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    CERN Document Server

    Panteleev, V N; Barzakh, A E; Fedorov, D V; Ivanov, V S; Moroz, F V; Orlov, S Y; Seliverstov, D M; Stroe, L; Tecchio, L B; Volkov, Y M

    2003-01-01

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed.

  11. Low resistivity Ga-doped ZnO thin films of less than 100 nm thickness prepared by ion plating with direct current arc discharge

    OpenAIRE

    2007-01-01

    Low resistivity Ga-doped ZnO films were prepared on a glass substrate by ion plating with direct current arc discharge. Thickness dependent changes in the electrical properties of the films are reported, focusing on the thin films of less than 100 nm thickness. Structural analyses showed that the thinnest film of 30 nm thickness consists of well-oriented columnar grains normal to the substrate, and the resistivity was as low as 4.4×10−4 Ω cm. The changes in lattice strain and c-axis fluctuati...

  12. THE EFFECTS OF PULSE BIAS VOLTAGE AND N2 PARTIAL PRESSURE ON TiAIN FILMS OF ARC ION PLATING (AIP)

    Institute of Scientific and Technical Information of China (English)

    M.S. Li; S.L. Zhu; Fuhui Wang; C. Sun; L.S. Wen

    2001-01-01

    Owing to the characteristics of arc ion plating(AIP) technique, the structure and com-position of TiAlN films can be tailored by controlling of various parameters such ascompositions of target materials, N2 partial pressure, substrate bias and so on. ln thisstudy, several titanium aluminum nitride films were deposited on 1Cr11Ni2 W2Mo Vsteel for compressor blade of areo-engine under different d.c pulse bias voltage and ni-trogen partial pressure. The effects of substrate pulse bias and nitrogen partial pressureon the deposition rate, droplet formation, microstruture and elemental component ofthe films were investigated.

  13. Uniform H(-) ion beam extraction in a large negative ion source with a tent-shaped magnetic filter.

    Science.gov (United States)

    Tobari, H; Hanada, M; Kashiwagi, M; Taniguchi, M; Umeda, N; Watanabe, K; Inoue, T; Sakamoto, K; Takado, N

    2008-02-01

    Based on previous studies on the spatial uniformity of the negative ion beam, the external magnetic filter was replaced to a novel tent-shaped magnetic filter in the JAEA 10 A negative ion source. The line-cusp field configuration on the source chamber was also changed to form a symmetric magnetic field like many of positive ion sources aiming at high proton yield. This magnetic field configuration allows fast electrons emitted from filament cathodes to rotate azimuthally inside the source chamber. The source configuration thus prevents localization of fast electrons due to their B x grad B drift in the filter field. As a result, the H(-) ion beam profile extracted from a wide region of 340 x 170 mm(2) showed reduction of standard deviation from 16% in the original to 7.9% with the tent filter. The negative ion source with the tent filter satisfied the requirement of the beam uniformity for a large negative ion source in the ITER neutral beam injection.

  14. Predictive ion source control using artificial neural network for RFT-30 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Young Bae, E-mail: ybkong@kaeri.re.kr; Hur, Min Goo; Lee, Eun Je; Park, Jeong Hoon; Park, Yong Dae; Yang, Seung Dae

    2016-01-11

    An RFT-30 cyclotron is a 30 MeV proton accelerator for radioisotope production and fundamental research. The ion source of the RFT-30 cyclotron creates plasma from hydrogen gas and transports an ion beam into the center region of the cyclotron. Ion source control is used to search source parameters for best quality of the ion beam. Ion source control in a real system is a difficult and time consuming task, and the operator should search the source parameters by manipulating the cyclotron directly. In this paper, we propose an artificial neural network based predictive control approach for the RFT-30 ion source. The proposed approach constructs the ion source model by using an artificial neural network and finds the optimized parameters with the simulated annealing algorithm. To analyze the performance of the proposed approach, we evaluated the simulations with the experimental data of the ion source. The performance results show that the proposed approach can provide an efficient way to analyze and control the ion source of the RFT-30 cyclotron.

  15. Dynamics of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    Science.gov (United States)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.; Ji, Qing; Persaud, Arun; Seidl, Peter A.; Schenkel, Thomas

    2016-10-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams. Here we present experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a FEPS plasma. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Near-complete charge neutralization is established 5 μs after the driving pulse is applied to the FEPS, and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub- μs surface discharge. Measurements of current flow in the driving circuit of the FEPS suggest that plasma can be generated for tens of μs after the high voltage pulse is applied. This is confirmed by fast photography of the plasma in the 1-meter long FEPS on NDCX-II, where effective charge neutralization of the beam was achieved with the optimized FEPS timing. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0209CH11466 (PPPL) and DE-AC0205CH11231 (LBNL).

  16. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  17. Cathodic Arcs From Fractal Spots to Energetic Condensation

    CERN Document Server

    Anders, Andre

    2009-01-01

    Emphasizes the fractal character of cathode spots, and describes strongly fluctuating plasma properties such as the presence of multiply charged ions that move with supersonic velocity. This book also deals with issues, such as arc source construction, and macroparticle removal. It is intended for scientists, practitioners, and students alike

  18. Advances in surface ion suppression from RILIS: Towards the Time-of-Flight Laser Ion Source (ToF-LIS)

    CERN Document Server

    Rothe, S; Crepieux, B; Day Goodacre, T; Fedosseev, V N; Giles, T; Marsh, B A; Ramos, J P; Rossel, R E

    2016-01-01

    We present results from the development towards the Time-of-Flight Laser Ion Source (ToF-LIS) aiming for the suppression of isobaric contaminants through fast beam gating. The capability to characterize high resistance ion sources has been successfully demonstrated. A ninefold selectivity gain has been achieved through suppression of surface ionized potassium, while maintaining >90% transmission for laser-ionized gallium using a thin wall graphite ionizer cavity combined with a fast beam gate. Initial results from the investigation of glassy carbon as a potential hot cavity ion source are presented. Power-cycle tests of a newly designed mount for fragile ion source cavities indicates its capability to survive the thermal stress expected during operation in an ISOLDE target unit. Finally, we introduce fast ion beam switching at a rate of 10 kHz using the ISOLDE ion beam switchyard as a new concept for ion beam distribution and conclude by highlighting the potential applications of this ion beam multiplexing te...

  19. Advances in surface ion suppression from RILIS: Towards the Time-of-Flight Laser Ion Source (ToF-LIS)

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, S., E-mail: sebastian.rothe@cern.ch [CERN, Geneva (Switzerland); Catherall, R.; Crepieux, B. [CERN, Geneva (Switzerland); Day Goodacre, T. [CERN, Geneva (Switzerland); School of Physics and Astronomy, The University of Manchester, Manchester (United Kingdom); Fedosseev, V.N.; Giles, T.; Marsh, B.A. [CERN, Geneva (Switzerland); Ramos, J.P. [CERN, Geneva (Switzerland); Laboratory of Powder Technology, EPFL, Lausanne (Switzerland); Rossel, R.E. [CERN, Geneva (Switzerland); Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany); Faculty of Design, Computer Science and Media, Hochschule RheinMain, Wiesbaden (Germany)

    2016-06-01

    We present results from the development towards the Time-of-Flight Laser Ion Source (ToF-LIS) aiming for the suppression of isobaric contaminants through fast beam gating. The capability to characterize high resistance ion sources has been successfully demonstrated. A ninefold selectivity gain has been achieved through suppression of surface ionized potassium, while maintaining >90% transmission for laser-ionized gallium using a thin wall graphite ionizer cavity combined with a fast beam gate. Initial results from the investigation of glassy carbon as a potential hot cavity ion source are presented. Power-cycle tests of a newly designed mount for fragile ion source cavities indicates its capability to survive the thermal stress expected during operation in an ISOLDE target unit. Finally, we introduce fast ion beam switching at a rate of 10 kHz using the ISOLDE ion beam switchyard as a new concept for ion beam distribution and conclude by highlighting the potential applications of this ion beam multiplexing technique.

  20. Production of intense highly charged ion beams by IMP 14.5 GHz electron cyclotron resonance ion source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new 14.5 GHz Electron Cyclotron Resonance (ECR) ion source has been constructed over the last two years. The source was designed and tested by making use of the latest results from ECR ion source development, such as high mirror magnetic field, large plasma volume, and biased probe. 140μA of O7+, 185μA of Ar11+ and 50 μA of Xe26+ could be produced with a RF power of 800 W. The intense beams of highly charged metallic ions are produced by means of the method of a metal evaporation oven and volatile compound through axial access. The test results are 130μA of Ca11+, 70μA of Ca12+ and 65μA of Fe10+. The ion source has been put into operation for the cyclotron at the Institute of Modern Physics (IMP).

  1. Time evolution of negative ion profile in a large cesiated negative ion source applicable to fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, M., E-mail: yoshida.masafumi@jaea.go.jp; Hanada, M.; Kojima, A.; Kashiwagi, M.; Umeda, N.; Hiratsuka, J.; Ichikawa, M.; Watanabe, K. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Grisham, L.R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Tsumori, K.; Kisaki, M. [National Institute for Fusion Science, Toki, Gifu 509-5792 (Japan)

    2016-02-15

    To understand the physics of the cesium (Cs) recycling in the large Cs-seeded negative ion sources relevant to ITER and JT-60SA with ion extraction area of 45-60 cm × 110-120 cm, the time evolution of the negative ion profile was precisely measured in JT-60SA where the ion extraction area is longitudinally segmented into 5. The Cs was seeded from the oven at 180 °C to the ion source. After 1 g of Cs input, surface production of the negative ions appeared only in the central segment where a Cs nozzle was located. Up to 2 g of Cs, the negative ion profile was longitudinally expanded over full ion extraction area. The measured time evolution of the negative ion profile has the similar tendency of distribution of the Cs atoms that is calculated. From the results, it is suggested that Cs atom distribution is correlated with the formation of the negative ion profile.

  2. Status report on ECR ion sources at HIMAC

    NARCIS (Netherlands)

    Kitagawa, A; Muramatsu, M; Sasaki, M; Yamada, S; Sakuma, T; Sasaki, N; Takahashi, H; Takasugi, W; Yamamoto, M; Biri, S; Sudlitz, K; Drentje, AG

    2004-01-01

    The Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS) is the first heavy-ion accelerator complex dedicated to cancer therapy. Over 1600 patients have already been treated with 140-400 MeV/amu carbon beams since 1994. The production of carbon ion

  3. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Vondrasek, R.; Kutsaev, Sergey [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Delahaye, P.; Maunoury, L. [Grand Accelerateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Blvd Henri Becquerel, 14076 Caen (France)

    2012-11-15

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.

  4. The optimization of molybdenum back contact films for Cu(In,Ga)Se{sub 2} solar cells by the cathodic arc ion plating method

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Ki, E-mail: choyk@kitech.re.kr [Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Gang Sam; Song, Young Sik; Lim, Tae Hong [Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Jung, Donggeun [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-12-02

    Molybdenum back contact films for Cu(In,Ga)Se{sub 2} (CIGS) solar cells have been deposited using DC magnetron sputtering methods. The electronic pathway properties of the molybdenum film have been highly dependent on the working gas pressure in magnetron sputtering, which should be carefully controlled to obtain high conductivity and adhesion. A coating method, cathodic arc ion plating, was used for molybdenum back contact electrode fabrication. The aim of this work was to find a metallization method for CIGS solar cells, which has less sensitivity on the working pressure. The resistivity, grain size, growth structures, stress, and efficiency of the films in CIGS solar cells were investigated. The results reveal that the growth structures of the molybdenum films mainly affect the conductivity. The lowest electrical resistivity of the ion-plated molybdenum films was 6.9 μΩ-cm at a pressure of 0.7 Pa. The electrical resistivity variation showed a gently increasing slope with linearity under a working gas pressure of 13.3 Pa. However, a high value of the residual stress of over 1.3 GPa was measured. In order to reduce stress, titanium film was selected as the buffer layer material, and the back contact films were optimized by double-layer coating of two kinds of hetero-materials with arc ion plating. CIGS solar cells prepared molybdenum films to measure the efficiency and to examine the effects of the back contact electrode. The resistivity, grain size, and surface morphology of molybdenum films were measured by four-point probe, X-ray diffraction, and a scanning electron microscope. The residual stress of the films was calculated from differences in bending curvatures measured using a laser beam. - Highlights: • Molybdenum back contact films for Cu(In,Ga)Se{sub 2} solar cells were prepared by the cathodic arc ion plating. • The lowest electrical resistivity of molybdenum film was 6.9 μΩ-cm. • Titanium buffer layer reduced the compressive residual stress

  5. Formation of Sn-M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    Science.gov (United States)

    Gao, Song; Huang, Hao; Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing; Cao, Guozhong

    2016-10-01

    A direct current arc-discharge method was applied to prepare the Sn-M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn-M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn-Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g-1/366.6 mA h g-1) and optimal cycle stability (a specific reversible capacity of 240 mA h g-1 maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process.

  6. RF-driven ion source with a back-streaming electron dump

    Science.gov (United States)

    Kwan, Joe; Ji, Qing

    2014-05-20

    A novel ion source is described having an improved lifetime. The ion source, in one embodiment, is a proton source, including an external RF antenna mounted to an RF window. To prevent backstreaming electrons formed in the beam column from striking the RF window, a back streaming electron dump is provided, which in one embodiment is formed of a cylindrical tube, open at one end to the ion source chamber and capped at its other end by a metal plug. The plug, maintained at the same electrical potential as the source, captures these backstreaming electrons, and thus prevents localized heating of the window, which due to said heating, might otherwise cause window damage.

  7. Study of ion beam transport from the SECRAL electron cyclotron resonance ion source at the Institute of Modern Physics.

    Science.gov (United States)

    Cao, Y; Lu, W; Zhang, W H; Sha, S; Yang, Y; Ma, B H; Wang, H; Zhu, Y H; Guo, J W; Fang, X; Lin, S H; Li, X X; Feng, Y C; Li, J Y; Zhao, H Y; Ma, H Y; Zhang, X Z; Guo, X H; Wu, Q; Sun, L T; Zhao, H W; Xie, D Z

    2012-02-01

    Ion beam transport from the Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) electron cyclotron resonance ion source was studied at the Institute of Modern Physics during 2010. Particle-in-cell simulations and experimental results have shown that both space charge and magnetic aberrations lead to a larger beam envelope and emittance growth. In the existing SECRAL extraction beam line, it has been shown that raising the solenoid lens magnetic field reduces aberrations in the subsequent dipole and results in lower emittance. Detailed beam emittance measurements are presented in this paper.

  8. Isotopic gradient along the new hebrides arc (Vanuatu, SW Pacific). Collision of the d`entrecasteaux zone and heterogeneity of mantle sources; Gradient isotopique le long de l`arc des nouvelles hebrides (Vanuatu, Pacifique sud-ouest). Collision de la zone d`entrecasteaux et heterogeneite des sources mantelliques

    Energy Technology Data Exchange (ETDEWEB)

    Laporte, Ch.; Cluzel, D. [Universite Francaise du Pacifique, Noumea, Nouvelle-Caledonie, 98 - Noumea (France); Laporte, Ch.; Briqueu, L. [Montpellier-2 Univ., 34 (France); Eissen, J.Ph. [ORSTOM, 29 - Plouzane (France)

    1998-01-01

    The recent volcanic activity of the New Hebrides arc (Vanuatu) has been influenced by the collision with the d`Entrecasteaux Zone, the composition of which remains uncertain. New trace elements and isotopic data from these lavas allow previous interpretations of compositional gradients along the arc to be qualified. The geochemical compositions of lavas display abrupt changes from calc-alkaline compositions straight in front of the collision zone, to arc-tholeiites on both sides. In contrast, isotopic compositions display a progressive variation related to less and less enriched sources away from the collision zone, evolving toward `normal` MORB-type sources. Such a trend suggests that two types of contamination have occurred in front of the collision zone, a magmatic contamination due to the subduction of an older lithosphere ({sup 206}Pb/{sup 204}Pb trend) and contamination by an `enriched-type` mantle component (Dupal feature). (authors) 17 refs.

  9. Effect of deposition parameters on mechanical properties of TiN films coated on 2A12 aluminum alloys by arc ion plating (AIP)

    Institute of Scientific and Technical Information of China (English)

    AWAD Samir Hamid; QIAN Han-cheng

    2005-01-01

    TiN films were deposited on 2A12 aluminum alloy by arc ion plating (AIP). The Vickers hardness of the films deposited at different bias voltages and different nitrogen gas pressures, and that of the substrate were measured. The surface roughness of the TiN films diposited at -30 V and -80 V respectively and at different nitrogen gas pressure was measured also. The mass loss of TiN films deposited at 0 V, -30 V and -80 V respectively were analyzed in dry sand rubber wheel abrasive wear tests and wet ones in comparison with uncoated Al alloy and austenitic stainless steel (AISI 316L). It is revealed that the highest hardness of the TiN film is obtained at a bias voltage of -30 V and a N2 gas pressure of 0.5 Pa. The surface roughness of the film is larger at -80 V than that at -30 V and reduces as the increase of the N2 gas pressure. The mass loss of TiN-film coated 2A12 aluminum alloy is remarkably less than that of uncoated Al alloy and also that of AISI 316L, which indicates that the abrasive wear rate is greatly reduced by the application of TiN coating. TiN coating deposited by arc ion plating (AIP) technique on aluminum alloy can be a potential coating for machine parts requiring preciseness and lightness.

  10. Study on the ECR Ion Source and Application Technology of the Charged Particle Beam

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Lee, K. W.; Jin, J. T.; and others

    2012-12-15

    Recently, Korea has launched the world's top class heavy ion accelerator project, and for the machine it is necessary to develop related physic and technology for the high charge state beam including a 28 GHz superconducting ECR ion source. This study is prepared to support this activity including transport of TRIAC(Tokai Radioactive Accelerator Complex) and development of ECR ion source technology. TRIAC, which was developed by KEK Japan, was a one of a heavy ion accelerator. This work is especially necessary to support the originality of the experiments with the heavy ion accelerator in the future in Korea. New accelerator DIAC will be used to support Korea Rare Isotope Accelerator project, and also will be applied to other heavy ion beam physics and engineering research. Based on the conceptual design results of the 28 GHz superconducting ECR ion source, an engineering design and construction will be started from next fiscal year.

  11. Study of the feasibility of distributed cathodic arc as a plasma source for development of the technology for plasma separation of SNF and radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Amirov, R. Kh.; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A., E-mail: ravus46@yandex.ru; Yartsev, I. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-12-15

    One of the key problems in the development of plasma separation technology is designing a plasma source which uses condensed spent nuclear fuel (SNF) or nuclear wastes as a raw material. This paper covers the experimental study of the evaporation and ionization of model materials (gadolinium, niobium oxide, and titanium oxide). For these purposes, a vacuum arc with a heated cathode on the studied material was initiated and its parameters in different regimes were studied. During the experiment, the cathode temperature, arc current, arc voltage, and plasma radiation spectra were measured, and also probe measurements were carried out. It was found that the increase in the cathode heating power leads to the decrease in the arc voltage (to 3 V). This fact makes it possible to reduce the electron energy and achieve singly ionized plasma with a high degree of ionization to fulfill one of the requirements for plasma separation of SNF. This finding is supported by the analysis of the plasma radiation spectrum and the results of the probe diagnostics.

  12. A study on the design of hexapole in an 18-GHz ECR ion source for heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan; Wei, Shaoqing; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Choi, Suk Jin [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-06-15

    High charge state electron cyclotron resonance (ECR) ion source is important on the performance of heavy ion accelerators. In this paper, a low temperature superconductor (LTS) was used to make a hexapole coil for an 18-GHz ECR ion source. Several hexapole structures, including racetrack, graded racetrack, and saddle were implemented and analyzed for the hexapole-in-solenoid ECR ion source system. Under the appropriate radial confinement field, the smaller outer radius of hexapole can be better for the solenoid design. Saddle hexapole was selected by comparing the wire length, maximum outer radius of the hexapole, the Lorentz force at the end part of the hexapole and the maximum magnetic field in the coil. Based on saddle hexapole, a new design for hexapoles, the snake hexapole, was developed in this paper. By comparative analysis of the Lorentz force at the end part of the saddle and snake hexapoles, the snake hexapole is much better in the ECR ion source system. The suggested design for the ECR ion source with the snake hexapole is presented in this paper.

  13. Proceedings of the workshop on ion source issues relevant to a pulsed spallation neutron source: Part 2 workshop presentations

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, L.; Leung, Ka-Ngo; Alonso, J. [eds.

    1994-10-01

    As part of the Lawrence Berkeley Laboratory Pulsed Spallation Source study, this Workshop was convened to address ion-source technology`s present status with respect to the next-generation Pulsed Spallation Source in the 1-5 MW range for the neutron scattering community. Considerations of Low Energy Beam Transport (LEBT) parameters and designs were included in the discussions throughout the Workshop. Ion-source requirements and actually-achieved performances were assessed, resulting in a determination of research and development requirements to bridge the gap. Part 1 of these Proceedings summarizes the Workshop; Part 2 contains viewgraphs of Workshop presentations.

  14. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    CERN Document Server

    Shornikov, A.

    2016-01-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  15. A preliminary study of the electron cyclotron resonance ion source for the RAON injector

    Science.gov (United States)

    Hong, I. S.; Kim, Y.; Choi, S. J.; Heo, J. I.; Jin, H. C.; Park, B. S.

    2016-09-01

    We have built and tested an electron cyclotron resonance (ECR) ion source for the Rare Isotope Accelerator of Newness (RAON) injector. Fully superconducting magnets were developed for the ECR ion source. First, an oxygen plasma was ignited, and a preliminary highly-charged oxygen beam was extracted. Next, a 100 μA beam current of oxygen 5+ was extracted when a 1 kW microwave power was injected using a 28 GHz gyrotron. Finally, an off-site test facility was proposed to test the components of the injector by using heavy-ion beams generated by the ECR ion source.

  16. Characterization of volume type ion source for $p$, $H_2^+$ and $H_3^+$ beams

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    Recently, there is an increasing need for $H_{2}^+$ and $H_{3}^+$ ion sources. One example are ion therapy facilities, where $C^{4+}$ and $H_{3}^+$ ion beams along the linac are of great interest. Another example is a $H_{2}^+$ test beam for linacs finally operated with intense deuteron beams. At Frankfurt, a simple proton ion source is needed to test a new kind of beam injection into a magnetic storage ring\\cite{EPAC08}\\cite{EPAC06}. This article describes a volume type ion source which can deliver upto $3.05~mA$ beam current at $10~keV$ in stable dc operation. It is a hot filament driven ion source which can provide high fractions of $p$, $H_{2}^+$ or $H_{3}^+$, depending on the operation settings.

  17. A preliminary study of a negative hydrogen PIG-type ion source for the compact cyclotron

    Institute of Scientific and Technical Information of China (English)

    YANG Zhen; LONG Ji-Dong; DONG Pan; WANG Tao; WEI Tao; HE Xiao-Zhong; ZHANG Kai-Zhi; SHI Jin-Shui

    2012-01-01

    A Penning ion gauge (PIG)-type ion source has been used for the generation of negative hydrogen ions (H-) as the internal ion source of the compact cyclotron.The discharge characteristics of the ion source are systematically studied for hydrogen operation at different discharge currents and gas flow rates on the prototype cyclotron.The preliminary study results for the low DC voltage H- extraction measurements are presented in this paper.The H- beam current is measured by the order of magnitude from several tens to hundreds of microamperes at different parameter conditions.The discussion and analysis for the experimental results are good for improving the design and working stability of the ion source.

  18. Main magnetic focus ion source: Basic principles, theoretical predictions and experimental confirmations

    Science.gov (United States)

    Ovsyannikov, V. P.; Nefiodov, A. V.

    2016-03-01

    It is proposed to produce highly charged ions in the local potential traps formed by the rippled electron beam in a focusing magnetic field. In this method, extremely high electron current densities can be attained on short length of the ion trap. The design of very compact ion sources of the new generation is presented. The computer simulations predict that for such ions as, for example, Ne8+ and Xe44+, the intensities of about 109 and 106 ions per second, respectively, can be obtained. The experiments with pilot example of the ion source confirm efficiency of the suggested method. The X-ray emission from Ir59+, Xe44+ and Ar16+ ions was detected. The control over depth of the local ion trap is shown to be feasible.

  19. Formation of multi-charged ion beams by focusing effect of mid-electrode on electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Youta, E-mail: imai@nf.eie.eng.osaka-u.ac.jp; Kimura, Daiju; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2014-02-15

    We are constructing a tandem type electron cyclotron resonance ion source (ECRIS) and a beam line for extracting ion beams. The ion beam is extracted from the second stage by an accel-decel extraction system with a single-hole and the ion beam current on each electrode is measured. The total ion beam current is measured by a faraday cup downstream the extraction electrodes. We measure these currents as a function of the mid-electrode potential. We also change the gap length between electrodes and perform similar measurement. The behaviors of these currents obtained experimentally against the mid-electrode potential show qualitatively good agreement with a simple theoretical consideration including sheath potential effects. The effect of mid-electrode potential is very useful for decreasing the beam loss for enhancing ion beam current extracted from ECRIS.

  20. Laserspray ionization on a commercial atmospheric pressure-MALDI mass spectrometer ion source: selecting singly or multiply charged ions.

    Science.gov (United States)

    McEwen, Charles N; Larsen, Barbara S; Trimpin, Sarah

    2010-06-15

    Multiply charged ions, similar to those obtained with electrospray ionization, are produced at atmospheric pressure (AP) using standard MALDI conditions of laser fluence and reflective geometry. Further, the charge state can be switched to singly charged ions nearly instantaneously by changing the voltage applied to the MALDI target plate. Under normal AP-MALDI operating conditions in which a voltage is applied to the target plate, primarily singly charged ions are observed, but at or near zero volts, highly charged ions are observed for peptides and proteins. Thus, switching between singly and multiply charged ions requires only manipulation of a single voltage. As in ESI, multiple charging, produced using the AP-MALDI source, allows compounds with molecular weights beyond the mass-to-charge limit of the mass spectrometer to be observed and improves the fragmentation relative to singly charged ions.

  1. A close-coupling multi-antenna type radio frequency driven ion source.

    Science.gov (United States)

    Oka, Y; Shoji, T

    2012-02-01

    A newly close coupling multi-antenna type radio frequency driven ion source is tested for the purpose of essentially improving plasma coupling on the basis of our old type ion source, which reuses a NNBI (negative ion source for neutral beam injection) ion source used in 1∕5th scale of the Large Helical Device NNBI. The ion source and the antenna structure are described, and the efficient plasma production in terms of the positive ion saturation current (the current density) is studied. The source is made of a metal-walled plasma chamber which is desirable from the point of view of the structural toughness for fusion and industrial application, etc. At around 160 kW of rf input power, the ion saturation current density successfully reaches the 5 A∕cm(2) level with a gas pressure of 0.6-2 Pa in hydrogen for 10 ms pulse duration. The rf power efficiency of the plasma production with a close coupling configuration of the antenna is improved substantially compared to that with the previous antenna unit in the old type ion source. The power efficiency is assessed as competing with that of other types of sources.

  2. Development of Yttrium alloy ion source and its application in nanofabrication

    CERN Document Server

    Kukharchyk, Nadezhda; Mazarov, Swetlana; Bushev, Pavel; Wieck, Andreas; Mazarov, Paul

    2016-01-01

    We present a new YAuSi Liquid Metal Alloy Ion Source (LMAIS), generating focused ion beams of yttrium ions, and its prospective applications for nanofabrication, sample preparation, lithographic and implantation processes. Working parameters of the AuSiY LMAIS are similar to other gold-silicon based LMAIS. We found anomalously high emission current of triple charged Yttrium ions. Influence of Yttrium implantation on optical qualities of the implanted ion-ensembles is shown in luminescence of co-implanted Erbium ions.

  3. Development of yttrium alloy ion source and its application in nanofabrication

    Science.gov (United States)

    Kukharchyk, Nadezhda; Neumann, Ronna; Mazarov, Swetlana; Bushev, Pavel; Wieck, Andreas D.; Mazarov, Paul

    2016-12-01

    We present a new YAuSi Liquid Metal Alloy Ion Source (LMAIS) generating focused ion beams of yttrium ions, and its prospective applications for nanofabrication, sample preparation, lithographic and implantation processes. Working parameters of the AuSiY LMAIS are similar to other gold-silicon based LMAIS. We found anomalously high emission current of triple charged yttrium ions. Influence of yttrium implantation on optical qualities of the implanted ion-ensembles is shown in luminescence of co-implanted Erbium ions.

  4. Design of triode extraction system for a dual hollow cathode ion source

    Institute of Scientific and Technical Information of China (English)

    WANG Jing-Hui; ZHU Kun; ZHAO Wei-Jiang; LIU Ke-Xin

    2011-01-01

    A triode extraction system is designed for a dual hollow cathode ion source being developed at the Institute of Heavy Ion Physics,Peking University.Basic parameters of the plasma are selected after examining the operation principle of the ion source,then the triode extraction system is designed and optimized by using software PBGUNS (for Particle Beam GUN Simulations).The physical design of the system is given in this paper.

  5. MAGNETIC FIELD GRADIENT EFFECTS ON ION FLUX BEHAVIORS IN ECR PLASMA SOURCES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The available electron cyclotron resonance plasma source has been simulated in two-dimensional configuration space (z, r) and three-dimensional velocity space (Vz, Vr Vθ). The simulation is focused on the magnetic field gradient effects on ion flux behaviors in electron cyclotron resonance plasma sources. The simulation results show that, when the magnetic field gradients increase, electron temperature, plasma density, ionization rate, and ion flux in Zdirection would decrease, while ion energy and plasma potential would increase.

  6. Main Magnetic Focus Ion Source: I. Basic principles and theoretical predictions

    CERN Document Server

    Ovsyannikov, V P

    2015-01-01

    It is proposed to produce highly charged ions in the local potential traps formed by the rippled electron beam in a focusing magnetic field. In this method, the extremely high electron current densities can be attained on short length of the ion trap. The design the very compact ion sources is feasible. For such ions as, for example, Ne${}^{8+}$ and Xe${}^{44+}$, the intensities of about $10^9$ and $10^6$ particles per second, respectively, can be obtained.

  7. Study on the microwave ion source of 100-MeV proton linac

    CERN Document Server

    Kwon, Hyeok-Jung

    2016-01-01

    A microwave ion source is used as an ion source of 100-MeV proton accelerator at Korea Multipurpose Accelerator Complex (KOMAC). The specifications of the ion source are 50 keV in energy and 20 mA in peak current. The plasma is operated in CW mode using magnetron and the pulse beam is extracted using semiconductor switch located in the extraction power supply. The beam characteristics were measured based on the pulse voltage and current. A test stand was also installed to study the beam characteristics of the ion source in off-line. In this paper, the pulse beam characteristics of the ion source are presented and the installation of the test stand is reported.

  8. Boron ion beam production with the supernanogan ECR ion source for the CERN BIO-LEIR facility

    CERN Document Server

    Stafford-Haworth, J; Scrivens, R; Toivanen, V; Röhrich, J

    2014-01-01

    To deliver B3+ ions for medical research the compounds decaborane and m-carborane were tested using the metal ions from volatile compounds (MIVOC) method with the Supernanogan 14.5 GHz ECR ion source. Using decaborane the source delivered less than 10 A intensity of B3+ and after operation large deposits of material were found inside the source. Using m-carborane 50 A of B3+ were delivered without support gas. For m-carborane, helium and oxygen support gasses were also tested, and the effects of different source tuning parameters are discussed. The average consumption of m-carborane was 0:1 mg/Ah over all operation.

  9. Kr II and Xe II axial velocity distribution functions in a cross-field ion source

    Science.gov (United States)

    Lejeune, A.; Bourgeois, G.; Mazouffre, S.

    2012-07-01

    Laser induced fluorescence measurements were carried out in a cross-field ion source to examine the behaviour of the axial ion velocity distribution functions (VDFs) in the expanding plasma. In the present paper, we focus on the axial VDFs of Kr II and Xe II ions. We examine the contourplots in a 1D-phase space (x,vx) representation in front of the exhaust channel and along the centerline of the ion source. The main ion beam, whose momentum corresponds to the ions that are accelerated through the whole potential drop, is observed. A secondary structure reveals the ions coming from the opposite side of the channel. We show that the formation of the neutralized ion flow is governed by the annular geometry. The assumption of a collisionless shock or a double layer due to supersonic beam interaction is not necessary. A non-negligible fraction of slow ions originates in local ionization or charge-exchange collision events between ions of the expanding plasma and atoms of the background residual gas. Slow ions that are produced near the centerline in the vicinity of the exit plane are accelerated toward the source body with a negative velocity leading to a high sputtering of front face. On the contrary, the ions that are produced in the vicinity of the channel exit plane are partially accelerated by the extended electric field.

  10. Nonlinear ion dynamics in Hall thruster plasma source by ion transit-time instability

    Science.gov (United States)

    Lim, Youbong; Choe, Wonho; Mazouffre, Stéphane; Park, Jae Sun; Kim, Holak; Seon, Jongho; Garrigues, L.

    2017-03-01

    High-energy tail formation in an ion energy distribution function (IEDF) is explained in a Hall thruster plasma with the stationary crossed electric and magnetic fields whose discharge current is oscillated at the ion transit-time scale with a frequency of 360 kHz. Among ions in different charge states, singly charged Xe ions (Xe+) have an IEDF that is significantly broadened and shifted toward the high-energy side, which contributes to tail formation in the entire IEDF. Analytical and numerical investigations confirm that the IEDF tail is due to nonlinear ion dynamics in the ion transit-time oscillation.

  11. Measurement of beam characteristics from C{sup 6+} laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, A., E-mail: aki.yamag@toshiba.co.jp; Sako, K.; Sato, K. [Toshiba Corporation, Yokohama 230-0045 (Japan); Hayashizaki, N. [Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Hattori, T. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2014-02-15

    We developed a C{sup 6+} laser ion source for a heavy-ion accelerator. A carbon target was irradiated with a Q-switched Nd:YAG laser (1064 nm wavelength, 1.4 J maximum laser energy, 10 ns pulse duration) to generate a high-density plasma. The laser ion source employed a rotating carbon target for continuous operation. Ion beams were extracted from the plasma through a drift space using a direct plasma injection scheme [B. Yu. Sharkov, A. V. Shumshurov, V. P. Dubenkow, O. B. Shamaev, and A. A. Golubev, Rev. Sci. Instrum. 63, 2841 (1992)] up to a maximum voltage of 40 kV. We measured the characteristics of the ion beams from the laser ion source and present the results of experiments here.

  12. Optimum plasma grid bias for a negative hydrogen ion source operation with Cs

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, Marthe, E-mail: marthe.bacal@lpp.polytechnique.fr [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Sasao, Mamiko [R& D Promotion Organization, Doshisha University, Kamigyoku, Kyoto 602-8580 (Japan); Wada, Motoi [School of Science and Engineering, Doshisha University, Kyotonabe, Kyoto 610-0321 (Japan); McAdams, Roy [CCFE, Culham Science Center, Abingdon, Oxfordshire 0X14 3DB (United Kingdom)

    2016-02-15

    The functions of a biased plasma grid of a negative hydrogen (H{sup −}) ion source for both pure volume and Cs seeded operations are reexamined. Proper control of the plasma grid bias in pure volume sources yields: enhancement of the extracted negative ion current, reduction of the co-extracted electron current, flattening of the spatial distribution of plasma potential across the filter magnetic field, change in recycling from hydrogen atomic/molecular ions to atomic/molecular neutrals, and enhanced concentration of H{sup −} ions near the plasma grid. These functions are maintained in the sources seeded with Cs with additional direct emission of negative ions under positive ion and neutral hydrogen bombardment onto the plasma electrode.

  13. Development and characterization of a high-reliability, extended-lifetime H- ion source

    Science.gov (United States)

    Becerra, Gabriel; Barrows, Preston; Sherman, Joseph

    2015-11-01

    Phoenix Nuclear Labs (PNL) has designed and constructed a long-lifetime, negative hydrogen (H-) ion source, in partnership with Fermilab for an ion beam injector servicing future Intensity Frontier particle accelerators. The specifications for the low-energy beam transport (LEBT) section are 5-10 mA of continuous H- ion current at 30 keV with 99% continuous uptime at PNL. Positive ions and hyperthermal neutrals drift toward a low-work-function surface, where a fraction is converted into H- hydrogen ions, which are subsequently extracted into a low-energy beam using electrostatic lenses. A magnetic filter preferentially removes high-energy electrons emitted by the source plasma, in order to mitigate H- ion destruction via electron-impact detachment. The design of the source subsystems and preliminary diagnostic results will be presented.

  14. A carbon-cluster laser ion source for TRIGA-TRAP

    Energy Technology Data Exchange (ETDEWEB)

    Smorra, C; Eberhardt, K [Johannes Gutenberg-Universitaet Mainz, Institut fuer Kernchemie, Fritz-Strassmann Weg 2, D-55128 Mainz (Germany); Blaum, K [Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg (Germany); Eibach, M; Ketelaer, J; Ketter, J; Knuth, K [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik, Staudingerweg 7, D-55128 Mainz (Germany); Nagy, Sz, E-mail: smorrac@uni-mainz.d [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2009-08-14

    A new laser ablation ion source was developed and tested for the Penning trap mass spectrometer TRIGA-TRAP in order to provide carbon-cluster ions for absolute mass calibration. Ions of different cluster sizes up to C{sup +}{sub 24} were successfully produced, covering the mass range up to the heavy actinide elements. The ions were captured in a Penning trap, and their time-of-flight cyclotron resonances recorded in order to determine their cyclotron frequency. Furthermore, the same ion source was used to produce GdO{sup +} ions from a gadolinium target in sufficient amount for mass spectrometry purposes. The design of the source and its characteristics are presented.

  15. A gapless micro-dielectric-barrier-discharge ion source for analytical applications

    CERN Document Server

    Coy, Stephen L; Eiceman, Gary A; Kanik, Isik

    2016-01-01

    Use of dielectric barrier discharge (DBD) as an ion source for sensitive chemical analysis is uncommon because barrier discharges generate excess noise due to spatial and temporal instability. This design uses contacted, crossed glass-coated micro-wires to focus the field into a gradually vanishing gap, suppressing spatial and temporal variability, reducing pressure, temperature, and humidity effects, stabilizing discharge initiation and limiting chemical fragmentation. Positive-ion-mode proton transfer, chemical fragmentation from a micro-discharge, and NO+ adducts combine to allow broad chemical sensitivity. We analyze noise properties of the ion source and report chemical responsivity for a wide range of volatile organic compounds. Source noise spectral density is compared for three systems: the contacted coated wires source, a gapped dielectric barrier discharge source, and a 5 mCi Ni-63 radioactive source. The crossed-wires source shows noise properties approaching those of the white-noise Ni-63 source, ...

  16. An inductively heated hot cavity catcher laser ion source

    CERN Document Server

    Reponen, M; Pohjalainen, I; Rothe, S; Savonen, M; Sonnenschein, V; Voss, A

    2015-01-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Agisotopes. A proof-of-principle experiment has been realized by implanting primary 107Ag21+ ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z94Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusio...

  17. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP)

    Science.gov (United States)

    Sun, L.; Lu, W.; Feng, Y. C.; Zhang, W. H.; Zhang, X. Z.; Cao, Y.; Zhao, Y. Y.; Wu, W.; Yang, T. J.; Zhao, B.; Zhao, H. W.; Ma, L. Z.; Xia, J. W.; Xie, D.

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe27+, 236 eμA Xe30+, and 64 eμA Xe35+. Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi30+ and 202 eμA U33+ have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  18. Space-charge-dominated mass spectrometry ion sources: Modeling and sensitivity.

    Science.gov (United States)

    Busman, M; Sunner, J; Vogel, C R

    1991-01-01

    The factors determining the sensitivity of space-charge-dominated (SCD) unipolar ion sources, such as electrospray (ESP) and corona atmospheric pressure ionization (API) have been studied theoretically. The most important parameters are the ion density and ion drift time in the vicinity of the sampling orifice. These are obtained by solving a system of differential equations, "the space-charge problem." For some simple geometries, analytical solutions are known. For a more realistic "needle-in-can" geometry, a solution to the space-charge problem was obtained using a finite-element method. The results illustrate some general characteristics of SCD ion sources. It is shown that for typical operating conditions the minimum voltage required to overcome the space-charge effect in corona API or ESP ion sources constitutes a dominant or significant fraction of total applied voltage. Further, the electric field and the ion density in the region of the ion-sampling orifice as well as the ion residence time in the source are determined mainly by the space charge. Finally, absolute sensitivities of corona API ion sources were calculated by using a geometry-independent treatment of space charge.

  19. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP).

    Science.gov (United States)

    Sun, L; Lu, W; Feng, Y C; Zhang, W H; Zhang, X Z; Cao, Y; Zhao, Y Y; Wu, W; Yang, T J; Zhao, B; Zhao, H W; Ma, L Z; Xia, J W; Xie, D

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe(27+), 236 eμA Xe(30+), and 64 eμA Xe(35+). Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi(30+) and 202 eμA U(33+) have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  20. Effects of source temperature and characteristics on the optical emission from a gallium liquid metal ion source

    Energy Technology Data Exchange (ETDEWEB)

    Hornsey, R.I.; Marriott, P.

    1989-05-14

    The light emitted from the region close to the tip of an emitting liquid metal ion source has been observed. It is shown that at high currents the light intensity rises almost as the cube of the current, but that the optical emission also depends on the source characteristics. A model based on the break-up of charged droplets is proposed to account for these results, thermal evaporation being found to be insignificant. Measurements of the effects of source temperature on light emission are also presented. From these measurements it is demonstrated that field ionisation cannot be responsible for the distortion of the total ion energy distribution seen at elevated temperatures. (author).