WorldWideScience

Sample records for arable soils effects

  1. Organic residues - a resource for arable soils

    OpenAIRE

    Odlare, Monica

    2005-01-01

    An increased recirculation of urban organic residues to arable soils has several environmental benefits, but there is a need for reliable test systems to ensure that soil quality is maintained. In this thesis, soil microbial, chemical and physical properties were included in an integrated evaluation to reflect the positive and negative effects of amending arable soils with organic residues. Efficient statistical tools and methods to describe intrinsic spatial variation are important when eval...

  2. Effect of vegetation manipulation of abandoned arable land on soil microbial properties

    NARCIS (Netherlands)

    Maly, S.; Korthals, G.W.; Van Dijk, C.; Van der Putten, W.H.; De Boer, W.

    2000-01-01

    The effect of vegetation composition on various soil microbial properties in abandoned arable land was investigated 2 years after agricultural practice had terminated. Microbial numbers and processes were determined in five replicate plots of each of the following treatments: continued agricultural

  3. Soil organic 14C dynamics: effects of pasture installation on arable land

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Plicht, van der J.; Hassink, J.

    1998-01-01

    In a study addressing composition and recovery of soil carbon following pasture installation on arable land, radiocarbon isotope ratios were measured in size-and density-separated soil organic matter (SOM) fractions in a pasture and maize plot. The average soil carbon age increased with depth from 4

  4. Restoration of oak forest: Effects of former arable land use on soil chemistry and herb layer vegetation

    OpenAIRE

    Valtinat, Karin; Bruun, Hans Henrik; Brunet, Jörg

    2008-01-01

    Stands of pedunculate oak (Quercus robur) planted 50-80 years ago on two types of land (previously forested land and former arable fields) were compared regarding vegetation and soil. Former arable soils were characterized by a higher pH, higher nitrate concentration and higher soil density, but had lower organic matter content and lower ammonium concentration in the topsoil (0-5 cm). These differences, however, decreased with soil depth. Phosphorus concentration was consistently higher in fo...

  5. Assessment of cadmium (Cd) concentration in arable soil in China.

    Science.gov (United States)

    Zhang, Xiuying; Chen, Dongmei; Zhong, Taiyang; Zhang, Xiaomin; Cheng, Min; Li, Xinhui

    2015-04-01

    Cadmium (Cd) concentration in arable soil has drawn broad public attention due to its direct effect on Cd concentration in food. However, there have been few studies of surveying Cd accumulation on the national scale in China. This paper collected 486 studies of Cd concentrations in Chinese arable soil. The results showed that the average Cd concentration was 0.27 mg/kg, higher than its background value, indicating that Cd had been introduced into arable soil by human activity. The Cd concentrations in areas of mining and smelting, urban areas, and areas irrigated by wastewater were obviously higher than that in remote areas. Spatially, Cd concentrations were lower in the north than those in the south, and many hotspots existed throughout China due to mining and smelting activities. Most Cd in the arable soil were accumulated from external sources in all investigated provinces except Ningxia Hui Autonomous Region.

  6. Ecology of microarthropods in arable soil.

    NARCIS (Netherlands)

    Vreeken-Buijs, M.J.

    1998-01-01

    Soil microarthropods are all free-living mites and collembolans, living in the soil. The study presented in this thesis formed part of the Dutch Programme on Soil Ecology of Arable Farming Systems, an integrated multidisciplinary research programme, focused on the functioning of two differently mana

  7. Effect of almond shell biochar addition on the hydro-physical properties of an arable Central Valley soil

    Science.gov (United States)

    Lopez, V.; Ghezzehei, T. A.

    2014-12-01

    Biochar is composed of any carbonaceous matter pyrolyzed under low oxygen exposure. Its use as a soil amendment to address soil infertility has been accelerated by studies reporting positive effects of enhanced nutrient retention, cation exchange capacity, microbial activity, and vegetative growth over time. Biochar has also been considered as a carbon sequestration method because of its reported environmental persistence. While the aforementioned effects are positive benefits of biochar's use, its impact on soil physical properties and water flow are equally important in maintaining soil fertility. This study aims to show how soil physical and hydraulic properties change over time with biochar addition. To address these aims, we conducted a 9 week microcosm incubation experiment with local arable loamy sand soils amended with biochar. Biochar was created from locally collected almond shells and differs by pyrolysis temperatures (350°C, 700°C) and size (impact biochar addition on soil physical and hydraulic properties. Furthermore, it provides insight into whether or not converting local agricultural waste into biochar for soil use will be beneficial, especially in agricultural systems undergoing climate stress.

  8. Emissions of nitrous oxide from Irish arable soils: effects of tillage and reduced N input

    DEFF Research Database (Denmark)

    Abdalla, M.; Jones, M.B.; Ambus, Per;

    2010-01-01

    Nitrous oxide (N2O) flux measurements from an Irish spring barley field managed under conventional and reduced tillage and different N fertilizer applications at the Teagasc Oak Park Research Centre were made for two consecutive seasons. The aim was to investigate the efficacy of reduced tillage....... Reduced tillage had no significant effect on N2O fluxes from soils or crop grain yield. Multiple regression analysis revealed that soil moisture and an interaction between soil moisture and soil nitrate are the main significant factors affecting N2O flux. The derived emission factor was 0...

  9. Effect of Phosphate Addition on Cadmium Precipitation and Adsorption in Contaminated Arable Soil with a Low Concentration of Cadmium.

    Science.gov (United States)

    Kim, Sung Un; Owens, Vance N; Kim, Yong Gyun; Lee, Sang Mong; Park, Hyean Cheal; Kim, Keun Ki; Son, Hong Joo; Hong, Chang Oh

    2015-11-01

    The objectives of this study were to determine (1) the phosphorus (P) level required to induce cadmium (Cd) precipitation in a contaminated arable soil with low concentrations of Cd and (2) the primary mechanism of Cd immobilization at different P levels. Phosphorus was added at levels of 0 800, 1600, and 16,000 mg P kg(-1) to a soil containing 5.57 mg Cd kg(-1). The concentration of 1 M NH4OAc extractable Cd decreased significantly with P levels up to 1600 mg kg(-1) due to an increase in soil pH and negative charge of soil (psoil containing low levels of this heavy metal.

  10. VARIABILITY OF ARABLE AND FOREST SOILS PROPERTIES ON ERODED SLOPES

    Directory of Open Access Journals (Sweden)

    Paweł Wiśniewski

    2014-10-01

    Full Text Available The basic method of reducing soil and land erosion is a change of land use, for example, from arable to forest. Particularly effective as a protective role – according to the Polish law – soil-protecting forests. The thesis presents differences in the deformation of the basic soil properties on moraine slopes, depending on land use. There has been presented the function and the efficiency of the soil-protecting forests in erosion control. The soil cross section transects and soil analysis displayed that soil-protecting forests are making an essential soil cover protection from degradation, inter alia, limiting the decrease of humus content, reduction of upper soil horizons and soil pedons layer. On the afforested slopes it was stated some clear changes of grain size and chemical properties of soils in relation to adjacent slopes agriculturally used.

  11. Soil temperature manipulation to study global warming effects in arable land

    DEFF Research Database (Denmark)

    Patil, Raveendra H.; Laegdsmand, Mette; Olesen, Jørgen Eivind;

    2013-01-01

    in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005 oC between heated...... that of above-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  12. Soil Temperature Manipulation to Study Global Warming Effects in Arable Land

    DEFF Research Database (Denmark)

    Patil, R H; Laegdsmand, M; Olesen, Jørgen E;

    2013-01-01

    in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005℃ between heated and control......-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  13. EMISSIONS OF NITROUS OXIDE FROM ARABLE SOILS: EFFECTS OF TILLAGE REDUCED N INPUT AND CLIMATE CHANGE

    OpenAIRE

    Abdalla, M; Jones, M; Ambus, P.; M. Wattenbach; Smith, P; Williams, M.

    2012-01-01

    Nitrous oxide (N2O) flux measurements from an Irish spring barley field managed under conventional and reduced tillage and different N fertilizer rates at the Teagasc Oak Park Research Centre were made for two consecutive seasons. The aims were to investigate the efficacy of reduced tillage, reduced N fertilizer and climate change on N2O fluxes and emission factors and to study the relationship between crop yield and N-induced fluxes of N2O. The soil is a sandy loam with a pH of 7.4 and organ...

  14. Enhancement of late successional plants on ex-arable land by soil inoculations.

    Directory of Open Access Journals (Sweden)

    Vanesa Carbajo

    Full Text Available Restoration of species-rich grasslands on ex-arable land can help the conservation of biodiversity but faces three big challenges: absence of target plant propagules, high residual soil fertility and restoration of soil communities. Seed additions and top soil removal can solve some of these constraints, but restoring beneficial biotic soil conditions remains a challenge. Here we test the hypotheses that inoculation of soil from late secondary succession grasslands in arable receptor soil enhances performance of late successional plants, especially after top soil removal but pending on the added dose. To test this we grew mixtures of late successional plants in arable top (organic soil or in underlying mineral soil mixed with donor soil in small or large proportions. Donor soils were collected from different grasslands that had been under restoration for 5 to 41 years, or from semi-natural grassland that has not been used intensively. Donor soil addition, especially when collected from older restoration sites, increased plant community biomass without altering its evenness. In contrast, addition of soil from semi-natural grassland promoted plant community evenness, and hence its diversity, but reduced community biomass. Effects of donor soil additions were stronger in mineral than in organic soil and larger with bigger proportions added. The variation in plant community composition was explained best by the abundances of nematodes, ergosterol concentration and soil pH. We show that in controlled conditions inoculation of soil from secondary succession grassland into ex-arable land can strongly promote target plant species, and that the role of soil biota in promoting target plant species is greatest when added after top soil removal. Together our results point out that transplantation of later secondary succession soil can promote grassland restoration on ex-arable land.

  15. A RAINFALL SIMULATOR STUDY OF INFILTRATION INTO ARABLE SOILS

    NARCIS (Netherlands)

    WIERDA, A; VEEN, AWL

    1992-01-01

    Since Hortonian surface runoff is one possible mechanism for the fast transport of agricultural chemicals from arable soils to surface water, more information is needed on its significance in agricultural areas. The present study concerns the sandy soils of the Dutch Cover Sands area, and is based o

  16. Successional trajectories of soil nematode and plant communities in a chronosequence of ex-arable lands

    NARCIS (Netherlands)

    Kardol, P.; Bezemer, T.M.; Wal, van der A.; Putten, van der W.H.

    2005-01-01

    Conversion of arable land into semi-natural grassland or heath land is a common practice for restoring and conserving plant diversity. However, little is known about the effectiveness of land conversion for restoring and conserving taxonomic and functional diversity in the soil. We studied soil nema

  17. The soil quality concept and its importance in the study of Finnish arable soils

    OpenAIRE

    Palojärvi, Ansa; nuutinen, Visa

    2002-01-01

    Arable soil is a functional unit whose condition is vital to crop production, but also to ecosystems at large owing to the significant role of soil in global nutrient cycles and balances. The soil quality concept recognises the concern for the sustainability of current arable land use practices. It integrates soil chemical, physical and biological properties, and takes account of the interaction of soil with water and air. This paper reviews the soil quality concept and its applications and d...

  18. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann;

    2014-01-01

    ). In a winter wheat field in Denmark, soil CO2 concentrations were measured from 29 November 2011 to 14 June 2012 at upslope and footslope positions of a short catena (25 m). Carbon dioxide was measured at 20 and 40 cm soil depths (i.e., within and below the nominal plough layer) using the two measurement......; however, differences may occur in response to soil spatial variability. A better coverage of spatial variability is more easily addressed using manually operated systems whereas temporal variability can be covered using the automated system. Depending on the aim of the study, the two systems may be used...

  19. Topographic variability influences the carbon sequestration potential of arable soils

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Elsgaard, Lars; Thomsen, Ingrid Kaag;

    2012-01-01

    There is presently limited knowledge on the influence of field spatial variability on the carbon (C) sink-source relationships in arable landscapes. This is accompanied by the fact that our understanding of soil profile C dynamics is also limited. This study aimed at investigating how spatial...... position has been subject to soil erosion while the footslope position has been a depositional site; thus the subsoil at the footslope position was to a large extent a buried topsoil horizon. The topographic relationship between the upslope and footslope position made the latter a sink for soil C...

  20. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach.

    Science.gov (United States)

    Lentendu, Guillaume; Wubet, Tesfaye; Chatzinotas, Antonis; Wilhelm, Christian; Buscot, François; Schlegel, Martin

    2014-07-01

    To understand the fine-scale effects of changes in nutrient availability on eukaryotic soil microorganisms communities, a multiple barcoding approach was used to analyse soil samples from four different treatments in a long-term fertilization experiment. We performed PCR amplification on soil DNA with primer pairs specifically targeting the 18S rRNA genes of all eukaryotes and three protist groups (Cercozoa, Chrysophyceae-Synurophyceae and Kinetoplastida) as well as the ITS gene of fungi and the 23S plastid rRNA gene of photoautotrophic microorganisms. Amplicons were pyrosequenced, and a total of 88,706 quality filtered reads were clustered into 1232 operational taxonomic units (OTU) across the six data sets. Comparisons of the taxonomic coverage achieved based on overlapping assignment of OTUs revealed that half of the eukaryotic taxa identified were missed by the universal eukaryotic barcoding marker. There were only little differences in OTU richness observed between organic- (farmyard manure), mineral- and nonfertilized soils. However, the community compositions appeared to be strongly structured by organic fertilization in all data sets other than that generated using the universal eukaryotic 18S rRNA gene primers, whereas mineral fertilization had only a minor effect. In addition, a co-occurrence based network analysis revealed complex potential interaction patterns between OTUs from different trophic levels, for example between fungivorous flagellates and fungi. Our results demonstrate that changes in pH, moisture and organic nutrients availability caused shifts in the composition of eukaryotic microbial communities at multiple trophic levels.

  1. Effect of Conversion from Natural Grassland to Arable Land on Soil Carbon Reserve in the Argentinean Rolling Pampas

    Science.gov (United States)

    Andriulo, A. E.; Irizar, A. B.; Mary, B.; Wilson, M. G.

    2012-04-01

    The evaluation of the effect of land use change on accumulation of soil organic carbon (SOC) requires reliable data obtained from georeferenced sites with land use history records. The purpose of this study was to evaluate long term changes in the reserves of SOC in a typical Argiudol of the Pergamino series after the introduction of agriculture. Measures of soil organic carbon concentration and bulk density of Ap and A12 horizons were carried out in three sites of the Pergamino County (N of Buenos Aires province): a reference field with untilled pristine soil (33° 57' S; 60° 34' W), a field with 31 years (1980-2011) of agriculture (31Y) located next to the former, and a third field (33° 46' S; 60° 37' W) with 80 years (1910/1990) of agriculture (80Y). 31Y has been under continuous soybean cultivation with conventional tillage (CT) that consists of moldboard plow or double disk harrowing. At 80K the cultivation sequence was: 44 years of corn + 9 years of flax + 2 years of wheat + 17 years of wheat/soybean double cropping + 1 year of lentil; mostly under CT, some years under chisel plow during the 70's and a few years under zero tillage in soybean after wheat sown with conventional tillage during the 80's. Before the introduction of mechanical harvesting (1947) crop residues were burnt as well as the wheat stubble during the conventional double cropping period (1970-1980). Soil texture (23±1% clay, with predominance of illite) and field slopes (<0.5%) were similar in the three sites. Nitrogen and phosphorus fertilization rates were minimal due to the low crop response. The results are expressed in Mg ha-1 for an A soil horizon mass of 2500 Mg ha-1. The introduction of agriculture decreased SOC stock: 31Y varied from 68.3 to 40.1 Mg ha-1 (41.3% loss) and 80Y from 68.3 to 47.2 Mg ha-1 (30% loss). The SOC loss was the result of the mineralization of a large amount labile SOC present in the pristine soil and low annual additions of carbon issued from crop residue

  2. Remediation of degraded arable steppe soils in Moldova using vetch as green manure

    Science.gov (United States)

    Wiesmeier, M.; Lungu, M.; Hübner, R.; Cerbari, V.

    2015-05-01

    In the Republic of Moldova, non-sustainable arable farming led to severe degradation and erosion of fertile steppe soils (Chernozems). As a result, the Chernozems lost about 40% of their initial amounts of soil organic carbon (SOC). The aim of this study was to remediate degraded arable soils and promote carbon sequestration by implementation of cover cropping and green manuring in Moldova. Thereby, the suitability of the legume hairy vetch (Vicia sativa) as cover crop under the dry continental climate of Moldova was examined. At two experimental sites, the effect of cover cropping on chemical and physical soil properties as well as on yields of subsequent main crops was determined. The results showed a significant increase of SOC after incorporation of hairy vetch mainly due to increases of aggregate-occluded and mineral-associated OC. This was related to a high above- and belowground biomass production of hairy vetch associated with a high input of carbon and nitrogen into arable soils. A calculation of SOC stocks based on equivalent soil masses revealed a sequestration of around 3 t C ha-1yr-1 as a result of hairy vetch cover cropping. The buildup of SOC was associated with an improvement of the soil structure as indicated by a distinct decrease of bulk density and a relative increase of macroaggregates at the expense of microaggregates and clods. As a result, yields of subsequent main crops increased by around 20%. Our results indicated that hairy vetch is a promising cover crop to remediate degraded steppe soils, control soil erosion and sequester substantial amounts of atmospheric C in arable soils of Moldova.

  3. Spatial Distribution of Fungal Communities in an Arable Soil.

    Science.gov (United States)

    Moll, Julia; Hoppe, Björn; König, Stephan; Wubet, Tesfaye; Buscot, François; Krüger, Dirk

    2016-01-01

    Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF) to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a) ploughed soil in 0-10 cm, b) rooted soil in 40-50 cm, c) root-free soil in 60-70 cm soil depth and d) maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit), occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment. PMID:26840453

  4. Spatial Distribution of Fungal Communities in an Arable Soil.

    Directory of Open Access Journals (Sweden)

    Julia Moll

    Full Text Available Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a ploughed soil in 0-10 cm, b rooted soil in 40-50 cm, c root-free soil in 60-70 cm soil depth and d maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit, occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment.

  5. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    DEFF Research Database (Denmark)

    Suuster, E; Ritz, Christian; Roostalu, H;

    2012-01-01

    -horizon. Three soil properties were used in all of the developed models: soil type, physical clay content (particle size model predicted SOC concentrations with the smallest mean squared error (0.05%2), suggesting that a mixed-model approach......Soil organic carbon (SOC) concentration is an essential factor in biomass production and soil functioning. SOC concentration values are often obtained by prediction but the prediction accuracy depends much on the method used. Currently, there is a lack of evidence in the soil science literature...... as to the advantages and shortcomings of the different commonly used prediction methods. Therefore, we compared and evaluated the merits of the median approach, analysis of covariance, mixed models and random forests in the context of prediction of SOC concentrations of mineral soils under arable management in the A...

  6. Spatial patterns of soil organic carbon stocks in Estonian arable soils

    Science.gov (United States)

    Suuster, Elsa; Astover, Alar; Kõlli, Raimo; Roostalu, Hugo; Reintam, Endla; Penu, Priit

    2010-05-01

    Soil organic carbon (SOC) determines ecosystem functions, influencing soil fertility, soil physical, chemical and biological properties and crop productivity. Therefore the spatial pattern of SOC stocks and its appropriate management is important at various scales. Due to climate change and the contribution of carbon store in the soils, the national estimates of soil carbon stocks should be determined. Estonian soils have been well studied and mapped at a scale 1:10,000. Previous studies have estimated SOC stocks based on combinations of large groups of Estonian soils and the mean values of the soil profile database, but were not embedded into the geo-referenced databases. These studies have estimated SOC stocks of Estonian arable soils 122.3 Tg. Despite of available soil maps and databases, this information is still very poorly used for spatial soil modelling. The aim of current study is to assess and model spatial pattern of SOC stocks of arable soils on a pilot area Tartu County (area 3089 sq km). Estonian digital soil map and soil monitoring databases are providing a good opportunity to assess SOC stocks at various scales. The qualitative nature of the initial data from a soil map prohibits any straightforward use in modelling. Thus we have used several databases to construct models and linkages between soil properties that can be integrated into soil map. First step was to reorganize the soil map database (44,046 mapping units) so it can be used as an input to modelling. Arable areas were distinguished by a field layer of Agricultural Registers and Information Board, which provides precise information of current land use as it is the basis of paying CAP subsidies. The estimates of SOC content were found by using the arable land evaluation database of Tartu from the Estonian Land Board (comprising 950 sq km and 31,226 fields), where each soil type was assessed separately and average SOC content grouped by texture was derived. SOC content of epipedon varies in

  7. Restoration of species-rich grasslands on ex-arable land: seed addition outweighs soil fertility reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kardol, Paul [ORNL

    2008-01-01

    A common practice in biodiversity conservation is restoration of former species-rich grassland on ex-arable land. Major constraints for grassland restoration are high soil fertility and limited dispersal ability of plant species to target sites. Usually, studies focus on soil fertility or on methods to introduce plant seeds. However, the question is whether soil fertility reduction is always necessary for getting plant species established on target sites. In a three-year field experiment with ex-arable soil with intensive farming history, we tested single and combined effects of soil fertility reduction and sowing mid-successional plant species on plant community development and soil biological properties. A controlled microcosm study was performed to test short-term effects of soil fertility reduction measures on biomass production of mid-successional species. Soil fertility was manipulated by adding carbon (wood or straw) to incorporate plant-available nutrients into organic matter, or by removing nutrients through top soil removal (TSR). The sown species established successfully and their establishment was independent of carbon amendments. TSR reduced plant biomass, and effectively suppressed arable weeds, however, created a desert-like environment, inhibiting the effectiveness of sowing mid-successional plant species. Adding straw or wood resulted in short-term reduction of plant biomass, suggesting a temporal decrease in plant-available nutrients by microbial immobilisation. Straw and wood addition had little effects on soil biological properties, whereas TSR profoundly reduced numbers of bacteria, fungal biomass and nematode abundance. In conclusion, in ex-arable soils, on a short term sowing is more effective for grassland restoration than strategies aiming at soil fertility reduction.

  8. Humus form development of former arable soils under forest and fallow systems

    Science.gov (United States)

    Marcinkonis, Saulius

    2010-05-01

    Soil humus is a multi-component organic media and most dynamic part of soil, even humus amount itself under natural vegetation is relatively stable and predetermined by climatic conditions and landscape. Soil cultivation including common farming practices - mechanical soil tillage, use of mineral fertilizers (especially nitrogen) and ameliorants aimed to increase crop production. Agricultural soils beside many environmentally unfavorable more or less controlled processes of soil degradation (nutrient leaching, soil erosion) have unstable level and quality of soil humus (qualitative composition). These humus fluctuations are controlled through organic matter development processes - accelerating or inhabitation of mineralization and humification. During last decades economical drivers in Lithuania stimulated land uses changes (LUC) in less-favored farming areas with regions attributing to large proportions of low fertile soils, hilly landscape and ecological vulnerability. Prevailed types of LUC - arable land to grassland, land afforestration or land abandonment prompt agro ecosystems to return to land primeval state (under natural vegetation) and initial humus level through self-regulation. But listed transformations having own process drivers and prevailing soil humus development directions. Experimental field at the Voke branch of LIA was established (in 1995) and studies conducted with the aim to monitor soil properties transformation, to explore variation of soil quality under different stages of renaturalisation. The experiment was designed with four sites (treatments) on former arable land: 1) left as a cropland site (control) (I); 2) transformed to grassland (II); 3) uncultivated or transformed to fallow (III) and 4) pine afforested site (IV). Assuming 10 years of experimental results (1995-2004) it was concluded that transition of agricultural land characterized as complex of factors having strong effect on energy and nutrients turnover, however soil testing

  9. Anisotropy of Soil Hydraulic Properties Along Arable Slopes

    Institute of Scientific and Technical Information of China (English)

    JING Yuan-Shu; ZHANG Bin; A.THIMM; H.ZEPP

    2008-01-01

    The spatial variations of the soil hydraulic properties were mainly considered in vertical direction.The objectives of this study were to measure water-retention curves,θ(ψ),and unsaturated hydraulic conductivity functions,K(ψ),of the soils sampled at different slope positions in three directions,namely,in vertical direction,along the slope and along the contour,and to determine the effects of sampling direction and slope position of two soil catenas.At the upper slope positions,the surface soils (0-10 cm) sampled in the vertical direction had a lower soil water content,θ,at a certain soil water potential (-1500 kPa <ψ<-10 kPa) and had the greatest unsaturated hydraulic conductivity,K,at ψ> -10kPa.At the lower slope positions,K at ψ>-10 kPa was smaller in the vertical direction than in the direction along the slope.The deep soils (100-110 cm) had similar soil hydraulic properties in all the three directions.The anisotropic variations of the hydraulic properties of the surface soils were ascribed to the effects of natural wetting and drying cycles on the structural heterogeneity.These results suggested that the anisotropy of soil hydraulic properties might be significant in influencing soil water movement along the slope and need to be considered in modeling.

  10. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Science.gov (United States)

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies. PMID:24497947

  11. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Directory of Open Access Journals (Sweden)

    Judith Prommer

    Full Text Available Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  12. VARIABLE RATE APPLICATION OF SOIL HERBICIDES IN ARABLE CROPS: FROM THEORY TO PRACTICE.

    Science.gov (United States)

    Heijting, S; Kempenaar, C

    2014-01-01

    Soil herbicides are applied around crop emergence and kill germinating weeds in the surface layer of the soil. These herbicides play an important role in the chemical management of weeds in major arable crops. From an environmental point of view there is a clear need for smarter application of these chemicals. This paper presents research done in The Netherlands on Variable Rate Application (VRA) of soil herbicides by taking into account spatial variation of the soil. Herbicides adsorbed to soil parameters such as clay or organic matter are not available for herbicidal activity. Decision Support Rules (DSR) describe the relation between the soil parameter and herbicide dosage needed for effectively controlling weeds. Research methods such as greenhouse trials, models and on farm research to develop DSR are discussed and results are presented. Another important ingredient for VRA of soil herbicides is an accurate soil map of the field. Sampling and subsequent interpolation is costly. Soil scans measuring a proxy that is subsequently translated into soil properties such as clay fraction and soil organic matter content offer a quicker way to achieve such maps but validation is needed. DSR is applied to the soil map to get the variable dosage map. The farmer combines this map with the routing, spray volume and spray boom width in the Farm Management Information System (FMIS), resulting in a task file. This task file can subsequently be read by the board computer resulting in a VRA spray map. Reduction in soil herbicide depends on the DSR, the spatial variation and pattern of the soil, the spatial configuration of the routing and the technical advances of the spray equipment. Recently, within the framework the Programma Precisie Landbouw, first steps were made to test and implement this in practice. Currently, theory and practice of VRA of soil herbicides is developed within the research program IJKakker in close cooperation with pioneering farmers in The Netherlands

  13. In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil.

    Science.gov (United States)

    Nunan, N; Wu, K; Young, I M; Crawford, J W; Ritz, K

    2002-11-01

    Very little is known about the spatial organization of soil microbes across scales that are relevant both to microbial function and to field-based processes. The spatial distributions of microbes and microbially mediated activity have a high intrinsic variability. This can present problems when trying to quantify the effects of disturbance, management practices, or climate change on soil microbial systems and attendant function. A spatial sampling regime was implemented in an arable field. Cores of undisturbed soil were sampled from a 3 x 3 x 0.9 m volume of soil (topsoil and subsoil) and a biological thin section, in which the in situ distribution of bacteria could be quantified, prepared from each core. Geostatistical analysis was used to quantify the nature of spatial structure from micrometers to meters and spatial point pattern analysis to test for deviations from complete spatial randomness of mapped bacteria. Spatial structure in the topsoil was only found at the microscale (micrometers), whereas evidence for nested scales of spatial structure was found in the subsoil (at the microscale, and at the centimeter to meter scale). Geostatistical ranges of spatial structure at the micro scale were greater in the topsoil and tended to decrease with depth in the subsoil. Evidence for spatial aggregation in bacteria was stronger in the topsoil and also decreased with depth in the subsoil, though extremely high degrees of aggregation were found at very short distances in the deep subsoil. The data suggest that factors that regulate the distribution of bacteria in the subsoil operate at two scales, in contrast to one scale in the topsoil, and that bacterial patches are larger and more prevalent in the topsoil.

  14. Dynamics of organic carbon stock of Estonian arable and grassland peat soils

    Science.gov (United States)

    Kauer, Karin; Tammik, Kerttu; Penu, Priit

    2016-04-01

    Peat soils represent globally a major reserve of soil organic carbon (SOC). Estimation of changes in SOC stocks is important for understanding soil carbon sequestration and dynamics of greenhouse gas emissions. The aim of this study was to estimate the SOC stock of Estonian agricultural peat soils and SOC stock change depending on land use type (arable land and long-term grasslands (over 5 years)). The soils were classified as Histosols according to WRB classification. Generally the arable land was used for growing cereals, oilseed rape, legumes and used as ley in crop rotation. The main technique of soil cultivation was ploughing. During 2002-2015 the soil samples of 0-20 cm soil layer (one average soil sample per 1-5 ha) were collected. The SOC content was measured by NIRS method. The SOC stock was calculated by assuming that soil mean bulk density is 0.3 g cm-3. The SOC stock change in arable land was estimated during 3-13 years (N=91) and in grassland 4-13 year (N=163). The average SOC content of peat soils varied from 150.6 to 549.0 mg g-1. The initial SOC stock of arable land was 271.3 t ha-1 and of grassland 269.3 t ha-1. The SOC stock declined in arable peat soils faster (-2.57 t ha-1 y-1) compared to the changes in grassland peat soils (-0.67 t ha-1 y-1). According to the length of the study period the SOC stock change per year varied from -5.14 to 6.64 t ha-1 y-1 in grasslands and from -14.78 to 0.83 t ha-1 y-1 in arable land, although there was no clear relationship between the SOC stock change and the length of the study period. More detailed information about the properties of agricultural land and land use history is needed to analyse the causes of the SOC stock changes in agricultural peat soils. However, from the current research we can conclude that the SOC stock of arable and grassland peat soils is declining during the cultivation. These decreases are important to specify when considering the role of peat soils in atmospheric greenhouse gas

  15. Pollution of Flooded Arable Soils with Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs).

    Science.gov (United States)

    Ciesielczuk, Tomasz; Kusza, Grzegorz; Poluszyńska, Joanna; Kochanowska, Katarzyna

    2014-01-01

    Soils that are exposed to floodwaters because of shallow groundwater and periodical wetlands are, to a large extent, exposed to contamination by organic and inorganic compounds. These are mainly compounds that have drifted along with the inflow of heavily laden floodwater and are produced within the soil profile by the anaerobic transformation of organic matter. Heavy metals and polycyclic aromatic hydrocarbon (PAH) compounds are absorbed by the soil of the floodwaters, and moving in the soil profile, they pose a threat to groundwater. What is more, after a flood, they may be absorbed by the crops. This paper focuses on the effects of Odra River (Poland) floods, heavy metals, and PAHs on soil and the possibilities of the migration of these pollutants into the soil profile. In the tested sludge samples of floodwater and soil, there were no abnormal concentrations of heavy metals, but the flooding time positively affected the amount listed in the test samples. Concentrations of PAHs increased, but they also exceeded the standards for arable soils in the case of single compounds. PMID:25253915

  16. Relationship between magnetic parameters and heavy element contents of arable soil around a steel company, Nanjing

    Institute of Scientific and Technical Information of China (English)

    BLAHA; U; ROESLER; W; APPEL; E

    2010-01-01

    Magnetic parameters and element contents were determined in core NJ008 collected from the uppermost ca. 40 cm in a steel company in southwest Nanjing. The results showed that magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM) and anhysteretic remanent magnetization (ARM) were enhanced in the uppermost 20 cm, with a mean magnetic susceptibility value of 112.5×10-8 m3 kg-1. Below 20 cm, χ decreased sharply with a mean value of 27.8×10-8m3 kg-1. Low-coercivity minerals such as magnetite dominate in arable soils, while the relative content of antiferromagnetic minerals increases below 20 cm. Heavy metals (Ni, Cu, Fe, Pb, V, and Zn) have similar vertical trends as χ. Principal component analysis reveals common high loadings of the same factor for magnetic concentration parameters (χ, ARM, and SIRM) and elements (Ni, Cu, Fe, Pb, V, and Zn) with an excellent linear correlation (0.69≤R≤0.98) between them. Magnetic susceptibility of paddy soil core NJ013, which had the same parent material as NJ008 but was far from pollution sources, showed stable values of magnetic concentration parameters along the whole core. Absolute values correspond to the so-called magnetic background value (below 20 cm) of NJ008. This indicates that pesticide and fertilizer had little effect on magnetic signals of the upper part of core NJ008 and the extremely enhanced magnetic concentration parameters originate from the steel company emission. Although, the arable soil does not reveal the pollution history and transportation due to annual ploughing, the significant linear relationship between magnetic concentration parameters and heavy metal contents suggests that magnetic parameters can serve as a proxy for quickly detecting soil metallic pollution and estimating the extent of contamination.

  17. Plant litter decomposition and carbon sequestration for arable soils. Final report of works. April 2005

    International Nuclear Information System (INIS)

    The general objective of this project was to contribute to the evaluation of land use and management impacts on C sequestration and nitrogen dynamics in soils. The land used through the presence/absence of crops and their species, and the land management through tillage, localisation of crop residues, fertilizer applications,... are important factors that affect the dynamics of organic matters in soils, particularly the mineralization of C and N, the losses to the atmosphere and hydrosphere, the retention of carbon into the soil. This project was conducted by four research groups, three of them having expertise in nutrient cycling of three major agro-ecosystems (arable crops, grasslands, forests) and the fourth one having expertise in modelling long term effects of land use on C storage into the soils. Within this common project one major objective was to better understand the fate of plant litter entering the soil either as above litter or as root litter. The focus was put on two factors that particularly affect decomposition: the initial biochemical quality of plant litter, and the location of the decomposing litter. One innovative aspect of the project was the use of stable isotope as 13C for carbon, based on the use of enriched or depleted 13C material, the only option to assess the dynamics of 'new' C entering the soil on the short term, in order to reveal the effects of decomposition factors. Another aspect was the simultaneous study of C and N. The project consisted in experiments relevant for each agro-ecosystem, in forest, grassland and arable soils for which interactions between residue quality and nitrogen availability on the one hand, residue quality and location on the other hand, was investigated. A common experiment was set up to investigate the potential degradability of the various residue used (beech leaf rape straw, young rye, Lolium and dactylic roots) in a their original soils and in a single soil was assessed. Based on these experiments, the

  18. Modelling trace metal background to evaluate anthropogenic contamination in arable soils of south-western France

    OpenAIRE

    Redon, Paul-Olivier; Bur, Thomas; Guiresse, Maritxu; Probst, Jean-Luc; Toiser, Aurore; Revel, Jean-Claude; Jolivet, Claudy; Probst, Anne

    2013-01-01

    International audience The trace metal (TM) content in arable soils has been monitored across a region of France characterised by a large proportion of calcareous soils. Within this particular geological context, the objectives were to first determine the natural levels of trace metals in the soils and secondly, to assess which sites were significantly contaminated. Because no universal contamination assessment method is currently available, four different methods were applied and compared...

  19. Soil organic matter dynamics after the conversion of arable land to pasture

    NARCIS (Netherlands)

    Römkens, Paul F.A.M.; Plicht, Johannes van der; Hassink, Jan

    1999-01-01

    Conversion of arable land (maize) to pasture will affect the soil organic matter (SOM) content. Changes in the SOM content were studied using a size- and density-fractionation method and C-13 analysis. Twenty-six years of maize cropping had resulted in a depletion of carbon stored in the macro-organ

  20. Soil organic matter dynamics after the conversion of arable land to pasture

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Plicht, van der J.; Hassink, J.

    1999-01-01

    Conversion of arable land (maize) to pasture will affect the soil organic matter (SOM) content. Changes in the SOM content were studied using a size- and density-fractionation method and 13C analysis. Twenty-six years of maize cropping had resulted in a depletion of carbon stored in the macro-organi

  1. Soil Strength Characteristics Along an Arable Eroded Slope

    Institute of Scientific and Technical Information of China (English)

    PENG Xin-Hua; ZHANG Bin; ZHAO Qi-Guo; R. HORN

    2005-01-01

    Undisturbed soil cores were taken from different slope positions (upslope, backslope and footslope) and soil depths (0-15, 20-35 and 100-115 cm) in a soil catena derived from Quaternary red clay to determine the spatial changes in soil strength along the eroded slope and to evaluate an indicator to determine soil strength during compaction. Precompression stress, as an indicator of soil strength, significantly increased from topsoil layer to subsoil layer (P<0.05) and was affected by slope position. In the subsoil layer (20-35 cm), the precompression stress at the footslope position was significantly greater than at the backslope and upslope positions (P<0.05), while there were no significant differences at 0-15 and 100-115 cm. Precompression stress followed the spatial variation of soil clay content with soil depth and had a significant linear relationship with soil porosity (r2 = 0.40, P<0.01). Also, soil cohesion increased with increasing soil clay content.The precompression stress was significantly related to the applied stress corresponding to the highest change of pore water pressure (r2 = 0.69, P<0.01). These results suggested that soil strength induced by soil erosion and soil management varied spatially along the slope and the maximum change in pore water pressure during compaction could be an easy indicator to describe soil strength.

  2. Human Activity and Soil Fertility—Nutrients Depletion of Arable Soils in China

    Institute of Scientific and Technical Information of China (English)

    LURU-KUN

    1991-01-01

    The reserve of soil nutrients is limited.In case of irrational use of land,nutrients would be depleted sooner.Before the 1950s the low grain production in China was maintained only by expanding the cultivated area and by recycling of nutrients in agriculture.Calculation of nutrients balance showed that in the year of 1949 there were great deficits of N,P and K elements in agriculture of China.It revealed that there would have really been danger of soil nutrients exhaustion if such a situation had continued.Things have changed since the beginning of 1950s.The nutrients balance in agriculture has been getting better and better.In the year 1987 N and P balance got rid of their great deficits.But for K and deficit grew even larger.This resulted in a rapid expansion of soil area deficient in K in China since the mid 1970s.In spite of the fact that the P balance in the arable land of the whole country was positive,the field which did not receive P fertilizer had become deficient in P.So the area deficient in P also increased.It is stressed that great attention should be paid to the depletion of soil nutrients,especially K in the northern part of China where the soil is relatively rich in K.Of course,soil sulfur and microelements should be considered next.

  3. Microbial response to increasing temperatures during winter in arable soils

    Science.gov (United States)

    Lukas, Stefan; Potthoff, Martin; Joergensen, Rainer Georg

    2014-05-01

    Climate scenarios predict increasing temperatures and higher precipitation rates in late fall to early spring, both holding the potential to modify carbon and nutrient dynamics in soils by altering snow pack thickness and soil frost events. When soils are frozen, a small amount of unfrozen water allows microorganisms to remain active at temperatures down to -10 °C. We carried out a field experiment on the microbial use of maize straw. We compared soils of two different clay contents and used latitude as a proxy for climate. Microcosms with sieved soil were mixed with chopped maize leaf straw (C/N 17) at a rate of 1 mg C g-1 dry soil, un-amended microcosms served as control. Results indicated that C-mineralization rates were independent from clay content. However, the microbial use of maize derived nitrogen was only increased in the soil with 13% clay compared to 33% clay in the other soil. Microbial responses to climate changes can be expected to be very specific due to characteristics of the soil and/or the location.

  4. Earthworm impact on the global warming potential of a no-tillage arable soil

    Directory of Open Access Journals (Sweden)

    M. Nieminen

    2015-04-01

    Full Text Available We studied the effect of the deep-burrowing earthworm Lumbricus terrestris on the greenhouse gas (GHG fluxes and global warming potential (GWP of arable no-till soil using both field measurements and a controlled 15 week laboratory experiment. In the field, the emissions of nitrous oxide (N2O and carbon dioxide (CO2 were on average 43 and 32% higher in areas occupied by L. terrestris (the presence judged by the surface midden than in adjacent, unoccupied areas (with no midden. The fluxes of methane (CH4 were variable and had no consistent difference between the midden and non-midden areas. Removing the midden did not affect soil N2O and CO2 emissions. The laboratory results were consistent with the field observations in that the emissions of N2O and CO2 were on average 27 and 13% higher in mesocosms with than without L. terrestris. Higher emissions of N2O were most likely due to the higher content of mineral nitrogen and soil moisture under the middens, whereas L. terrestris respiration fully explained the observed increase in CO2 emissions. The activity of L. terrestris increased the GWP of field and laboratory soil by 50 and 18%, but only 6 and 2% of this increase was due to the enhanced N2O emission. Our results suggest that high N2O emissions commonly observed in no-tillage soils can partly be explained by the abundance of L. terrestris under no-till management and that L. terrestris can markedly regulate the climatic effects of different cultivation practises.

  5. Studies on mycoflora colonizing raw keratin wastes in arable soil

    Directory of Open Access Journals (Sweden)

    Teresa Korniłłowicz

    2014-08-01

    Full Text Available The present studies showed that feathers placed in soil demonstrated the succesion of physiologically differentiated communities of micromycetes. The first colonizers were sugar fungi. The second phase of feather colonization showed the prevalence of nutritively undeveloped polyphages and "root" celulolytic fungi. The final phase of colonization was dominated by keratinophilic fungi together with microflora that involved the forms known mainly for their strong proteolytic abilities. It was found that both the Chemical structure of substrate and soil properties with its pH determined the qualitative composition of fungal flora.

  6. Soil biological quality after 36 years of ley-arable cropping, permanent grassland and permanent arable cropping

    NARCIS (Netherlands)

    Eekeren, van N.J.M.; Bommele, L.; Bloem, J.; Schouten, T.; Rutgers, M.; Goede, de R.G.M.; Brussaard, L.; Reheul, D.

    2008-01-01

    Insight is needed into how management influences soil biota when sustainable grassland systems are developed. A crop rotation of grass and maize can be sustainable in terms of efficient nutrient use. However, there is lack of information on the effect of such a crop rotation on soil biological quali

  7. Linking above- and below-ground biodiversity: abundance and trophic complexity in soil as a response to experimental plant communities on abandoned arable land

    NARCIS (Netherlands)

    Korthals, G.W.; Smilauer, P.; Van Dijk, C.; Van der Putten, W.H.

    2001-01-01

    1. This study investigates the effects of experimental plant communities on different trophic levels in the soil food web of abandoned arable land. 2. In April 1996, a biodiversity experiment commenced using a continuation of agricultural crop rotation (CCR), spontaneous succession with naturally co

  8. Simulation of nitrogen dynamics and leaching from arable soils

    Science.gov (United States)

    Lotse, E. G.; Jabro, J. D.; Simmons, K. E.; Baker, D. E.

    1992-08-01

    The LEACHM model was evaluated using data from a field experiment conducted in Lancaster County, Pennsylvania, U.S.A. Many of the parameter input values were the means of determinations for soil samples from the field site. Measured nitrogen (N) uptake and nitrate (NO 3-N) storage in the soil profile, as well as mineralization and nitrification rates were higher in 1987 than in 1988. The measured N removal by crops was taken as the simulated N uptake. A reasonably good agreement between simulated and measured values was obtained for NO 3-N storage. However, higher rate constants had to be used for 1987 than for 1988 in order to match simulated with measured storage. The simulated soil solution NO 3-N concentrations at 1.2-m depth agreed quite well with those measured in porous cup water samples, except for the highest ammonium nitrate treatment. In general, the simulation results indicated that the LEACHM model described the nitrogen dynamics fairly well.

  9. Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils

    Science.gov (United States)

    Romdhane, Sana; Devers-Lamrani, Marion; Barthelmebs, Lise; Calvayrac, Christophe; Bertrand, Cédric; Cooper, Jean-François; Dayan, Franck E.; Martin-Laurent, Fabrice

    2016-01-01

    The ecotoxicological impact of leptospermone, a β-triketone bioherbicide, on the bacterial community of two arable soils was investigated. Soil microcosms were exposed to 0 × (control), 1 × or 10 × recommended dose of leptospermone. The β-triketone was moderately adsorbed to both soils (i.e.,: Kfa ~ 1.2 and Koc ~ 140 mL g−1). Its dissipation was lower in sterilized than in unsterilized soils suggesting that it was mainly influenced by biotic factors. Within 45 days, leptospermone disappeared almost entirely from one of the two soils (i.e., DT50 < 10 days), while 25% remained in the other. The composition of the microbial community assessed by qPCR targeting 11 microbial groups was found to be significantly modified in soil microcosms exposed to leptospermone. Pyrosequencing of 16S rRNA gene amplicons showed a shift in the bacterial community structure and a significant impact of leptospermone on the diversity of the soil bacterial community. Changes in the composition, and in the α- and β-diversity of microbial community were transient in the soil able to fully dissipate the leptospermone, but were persistent in the soil where β-triketone remained. To conclude the bacterial community of the two soils was sensitive to leptospermone and its resilience was observed only when leptospermone was fully dissipated. PMID:27252691

  10. Sorption, desorption and extraction of cadmium from some arable and forest soils

    International Nuclear Information System (INIS)

    The behavior of cadmium labeled with 109Cd in different depth horizons of arable and forest soils were studied under static (batch) conditions in three interconnected processes, which consist of sorption, desorption and extraction. In the sorption, Cd2+ was applied in the aqueous calcium nitrate solution. Both untreated soils and peroxide treated soils were used in order to remove organic matter from some of the soil samples used in parallel. The influence of the V/m ratio on the sorption coefficients was investigated in preliminary experiments with untreated soils. Contrary to the usually short-term sorption, a long-term sorption of cadmium was investigated in untreated and treated soil horizons, which lasted more than fortnight. Kinetic studies of sorption were carried out and cadmium concentration dependence in aqueous phase of the second order kinetic constants was observed. For evaluation of sorption and desorption processes Freundlich isotherms were used. It was found that the Freundlich adsorption intensity coefficient is more time dependent than the absorption capacity coefficient, and the sorption itself consists of rapid and slow processes according to the soil constituents. Desorption and extraction processes revealed the possibility of cadmium recovery from various soil horizons. Based on the obtained results two- or three-stage theory of cadmium retention in soils was proposed. Some new insight into the role of organic matter in the sorption/desorption process of cadmium is also presented. (author)

  11. [Study on Contents and Budgets of Cu, Zn and Cd in an Arable Soil Using AAS].

    Science.gov (United States)

    Zhao, Ying; Jiang, Chun-ming; Ma, Qiang; Zhou, Hua; Xu, Yong-gang; Yu, Wan-tai

    2015-12-01

    Based on a long-term experiment in Shenyang Experimental Station, the effect of manure application on the contents and budgets of Cu, Zn and Cd in the arable soil was studied. The experiment included four treatments: no mature addition (CK), mature addition 10 t · ha⁻¹ year⁻¹(M1), 25 t · ha⁻¹ year⁻¹ (M2), and 50 t · ha⁻¹ year⁻¹(M3). The result showed that Cu, Zn and Cd in soil were accumulated with manure application and prolongation of experiment, and the accumulative magnitude increased with increasing of manure application. The average annual growth rates of the heavy metals in the four treatments (CK, M1, M2, M3) were 2.83%, 6.56%, 7.54%, 8.96%; 0.03%, 3.44%, 4.53%, 6.64% and 1.51%, 8.01%, 10. 27%, 16. 08% for Cu, Zn and Cd, respectively. After six years of the experiment, the content of Cd in the M3 treatment was quite close to the threshold of Chinese Soil Quality Standard Grade III (1 mg · kg⁻¹, GB15618-1995). After 12 years of the experiment, the contents of Cu in the mature-amended treatments fell in the Chinese Soil Quality Standard Grade III, which should be paid more attention. Although the heavy metals in soil were gradually accumulated, the Cu, Zn and Cd levels in crop grain were still below the National Food Contamination Standards (GB2762-2005; GB13106-91; GB15199-94), indicating the contents of heavy metals in crop produced from contaminated soil might not exceed the corresponding standards. The contents of Cu, Zn and Cd in the straw were much greater than those in the grain. The removal of heavy metal by crop was in the order of M3 > M2 > M1 > CK. The average amounts of Cu, Zn and Cd annually removed from the soil in the four treatments (CK, M1, M2 and M3) were 35.68, 47.80, 63.65, 69.64; 249.14, 375.22, 375.16, 444.44, and 0.83, 1.39, 1.64, 1.66 g · ha⁻¹, respectively. The contents of heavy metals in organic manure varied in different years: the contents of Cu and Zn increased year by year, while Cd presented a

  12. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback

    OpenAIRE

    Jing, Jingying; Bezemer, T. Martijn; van der Putten, Wim H.

    2015-01-01

    Plant–soil feedback can affect plants that belong to the same (intraspecific feedback) or different species (interspecific feedback). However, little is known about how intra- and interspecific plant–soil feedbacks influence interspecific plant competition. Here, we used plants and soil from early-stage ex-arable fields to examine how intra- and interspecific plant–soil feedbacks affect the performance of 10 conditioning species and the focal species, Jacobaea vulgaris. Plants were grown alon...

  13. Modelling chemical and biological reactions during unsaturated flow in silty arable soils

    Science.gov (United States)

    Michel, Kerstin; Herrmann, Sandra; Ludwig, Bernard

    2010-05-01

    Ion dynamics in arable soils are strongly affected by the chemical and biological transformations triggered by fertilizer input. Hydrogeochemical models may improve our understanding of underlying processes. Our objective was to test the ability of the hydrogeochemical model PHREEQC2 in combination with the parameter optimization programme PEST to describe and predict chemical and biological processes in silty soils triggered by fertilizer application or acidification and to investigate the usefulness of different parameterization approaches. Three different experiments were carried out using undisturbed columns of two topsoils (0-25 cm) from Germany (Göttingen, GO) and from the Oman (Qasha', QA). The columns were irrigated at 10 oC with 3 mm day-1 for one year using 1 mM HCl (HCl experiment) and two fertilizer solutions with low (0.1 to 0.9 mmol L-1) and high concentrations (1.3 to 14.7 mmol L-1) of N (as NH4NO3), K, Ca and Mg. In the fertilization experiments (Fert1, Fert2), the columns were alternately irrigated with the two different solutions for variable time periods. One-dimensional transport and homogenous and heterogenous reactions were calculated using PHREEQC2. The Fert1 experiment was used for calibration. The models were validated using the Fert2 and HCl experiments. The models tested were model variant m1 with no adjustable parameters, model variant m2 in which nitrate concentrations in input solutions and cation exchange capacity were optimized for Fert1, and m3 in which additionally all cation exchange coefficients and ion concentrations in the initial solution were optimized. Model variant m1 failed to predict the concentrations of several cations for both soils (modelling efficiencies (EF) ≤ 0), since N dynamics were not considered adequately. Model variants m2 and m3 described (Fert1 treatment) and predicted (Fert2 and HCl treatment) pH, cation and NO3- concentrations generally more accurately for both soils. For nutrient cations, EF values

  14. Assessment on the Impact of Arable Land Protection Policies in a Rapidly Developing Region

    Directory of Open Access Journals (Sweden)

    Jiadan Li

    2016-05-01

    Full Text Available To investigate the effect of arable land protection policies in China, a practical framework that integrates geographic information systems (GIS, soil quality assessment and landscape metrics analysis was employed to track and analyze arable land transformations and landscape changes in response to rampant urbanization within the Ningbo region (China from 2005 to 2013. The results showed that arable land loss and degradation have continued, despite the development of a comprehensive legal framework for arable land protection. The implementation of arable land protection policies is judged to be effective, but not entirely successful, because it guarantees the overall amount of arable land but does not consider soil quality and spatial distribution. In addition, there are distinct variations in arable land change dynamics between two temporal intervals. From 2005–2009, the transformation of arable land was diversified, with intensified conversion among arable land, built-up land, water and orchards. Moreover, many new arable land parcels were adjacent to built-up land, and are in danger of being occupied again through urban sprawl. By 2009–2013, most of the arable land was occupied by urban expansion, whereas a majority of newly increased arable land was reclaimed from coastal tideland. Although the newly increased arable land was contiguous and far from the urban area, it is of poor quality and has limited use. The permanent loss of high-quality arable land due to intensified urban sprawl may threaten sustainable development and food security on a larger scale.

  15. Soil CO2 flux in relation to dissolved organic carbon, soil temperature and moisture in a subtropical arable soil of China

    Institute of Scientific and Technical Information of China (English)

    LOU Yun-sheng; LI Zhong-pei; ZHANG Tao-lin

    2003-01-01

    Soil CO2 emission from an arable soil was measured by closed chamber method to quantify year-round soil flux and to develop an equation to predict flux using soil temperature, dissolved organic carbon(DOC) and soil moisture content. Soil CO2 flux, soil temperature, DOC and soil moisture content were determined on selected days during the experiment from August 1999 to July 2000, at the Ecological Station of Red Soil, the Chinese Academy of Sciences, in a subtropical region of China. Soil CO2 fluxes were generally higher in summer and autumn than in winter and spring, and had a seasonal pattern more similar to soil temperature and DOC than soil moisture. The estimation was 2.23 kgCO2/(m2·a) for average annual soil CO2 flux. Regressed separately, the reasons for soil flux variability were 86.6% from soil temperature, 58.8% from DOC, and 26.3% from soil moisture, respectively. Regressed jointly, a multiple equation was developed by the above three variables that explained approximately 85.2% of the flux variance, however by stepwise regression, soil temperature was the dominant affecting soil flux. Based on the exponential equation developed from soil temperature, the predicted annual flux was 2.49 kgCO2/(m2·a), and essentially equal to the measured one. It is suggested the exponential relationship between soil flux and soil temperature could be used for accurately predicting soil CO2 flux from arable soil in subtropical regions of China.

  16. Emission of CO2 from the arable soils polluted by heavy metals of Baikal forest-steppe region

    International Nuclear Information System (INIS)

    The influence of arable soil contamination by heavy metals on C02 emission in Lake Baikal region had been studied during the period from 1992 till 2005. It was shown, that the way of agroecosystems response on technogenic impact vary from year to year following the changes in both the temperature and humidity. The contamination mostly resulted in soil organic matter mineralization increase and, consequently, increased carbon losses in the form of CO2.

  17. Soil organic carbon accumulation in afforested/abandoned arable fields in Taiwan

    Science.gov (United States)

    Lin, Yi-Han; Cheng, Chih-Hsin; Huang, Yu-Hsuan

    2016-04-01

    Afforestation or abandonment of arable fields has been proposed as a way to increase terrestrial carbon storage and mitigate anthropogenic carbon emissions. When the arable fields are afforested or abandoned, the accumulation in soil organic carbon (SOC) is a key pool to sequestrate carbon. However, high uncertainties still exist in the tropics and subtropics because of fast SOC turnover rates and variable land use managements in these areas. In this study, a total of eleven sites with afforested/abandoned age over 15 years and elevation ranging from 16 to 2,056 m were investigated. We examined the increments of SOC by comparing with the adjacent tilled (e.g. croplands) and non-tilled (e.g. tea plantation or orchards) fields in two sampling layers, 0 - 10 and 10 - 20 cm in depth. In addition, density fractionation of SOC was also conducted in order to differentiate SOC into light fraction, intra-aggregate fraction, and heavy fraction to gain more information about the mechanism of SOC sequestration. Our results indicated that the increments of SOC concentration and stock varied with elevation, land use management, and soil depth. For the sites with elevation below 500 m, the SOC concentration and stock in the abandoned fields were 14.3 ± 0.9 mg C g‑1 and 14.6 ± 4.6 Mg C ha‑1 higher than the adjacent tilled fields, and 10.2 ± 6.3 mg C g‑1and 6.4 ± 6.2 Mg C ha‑1 higher than the adjacent non-tilled fields for surface 0-10 cm. For the sites with elevation above 500 m, the SOC concentration in the abandoned arable fields were 22.8 ± 12.8 mg C g‑1 higher than the adjacent tilled fields, but the SOC stock might not be different due to high stone content in abandoned field. Moreover, the SOC concentration and stock in abandoned field were not different or even less than non-tilled fields where organic amendments were frequently applied. The increments of SOC for 10-20 cm soils were less evident than those for surface 0-10 cm soils, and the differences were

  18. Heavy metal contamination in arable soils and vegetables around a sulfuric acid factory, China

    International Nuclear Information System (INIS)

    This study was designed to investigate heavy metal (Tl, Pb, Cu, Zn, and Ni) contamination levels of arable soils and vegetables grown in the vicinity of a sulfuric acid factory in the Western Guangdong Province, China. Health risks associated with these metals by consumption of vegetables were assessed based on the hazard quotient (HQ). The soils show a most significant contamination of Tl, followed by Pb, Cu, Zn, and Ni. The heavy metal contents (μg/g, dry weight basis) in the edible parts of vegetables range from 5.60 to 105 for Tl, below detection limit to 227 for Pb, 5.0-30.0 for Cu, 10.0-82.9 for Zn, and 0.50-26.0 for Ni, mostly exceeding the proposed maximum permissible level in Germany or China. For the studied vegetables, the subterranean part generally bears higher contents of Tl and Zn than the aerial part, while the former has lower contents of Cu and Ni than the latter. In addition, the results reveal that Tl is the major risk contributor for the local people since its HQ values are mostly much higher than 1.0. The potential health risk of Tl pollution in the food chain and the issue of food safety should be highly concerned and kept under continued surveillance and control. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Impact of earthworm Lumbricus terrestris living sites on the greenhouse gas balance of no-till arable soil

    Science.gov (United States)

    Nieminen, M.; Hurme, T.; Mikola, J.; Regina, K.; Nuutinen, V.

    2015-09-01

    We studied the effect of the deep-burrowing earthworm Lumbricus terrestris on the greenhouse gas (GHG) fluxes and global warming potential (GWP) of arable no-till soil using both field measurements and a controlled 15-week laboratory experiment. In the field, the emissions of nitrous oxide (N2O) and carbon dioxide (CO2) were on average 43 and 32 % higher in areas occupied by L. terrestris (the presence judged by the surface midden) than in adjacent, unoccupied areas (with no midden). The fluxes of methane (CH4) were variable and had no consistent difference between the midden and non-midden areas. Removing the midden did not affect soil N2O and CO2 emissions. The laboratory results were consistent with the field observations in that the emissions of N2O and CO2 were on average 27 and 13 % higher in mesocosms with than without L. terrestris. Higher emissions of N2O were most likely due to the higher content of mineral nitrogen and soil moisture under the middens, whereas L. terrestris respiration fully explained the observed increase in CO2 emissions in the laboratory. In the field, the significantly elevated macrofaunal densities in the vicinity of middens likely contributed to the higher emissions from areas occupied by L. terrestris. The activity of L. terrestris increased the GWP of field and laboratory soil by 50 and 18 %, but only 6 and 2 % of this increase was due to the enhanced N2O emission. Our results suggest that high N2O emissions commonly observed in no-till soils can partly be explained by the abundance of L. terrestris under no-till management and that L. terrestris can markedly regulate the climatic effects of different cultivation practises.

  20. A compilation and meta-analysis of rainfall simulation data on arable soils

    Science.gov (United States)

    Fiener, P.; Seibert, S. P.; Auerswald, K.

    2011-10-01

    SummaryRainfall simulations are a useful and important tool in studying infiltration, surface runoff generation, soil erosion and nutrient as well as agro-chemical transport from arable land. Such simulations are time-consuming and costly and hence are usually only carried out under a limited variation of settings necessary to answer specific research questions. Therefore, it is difficult to use rainfall simulation data for hypothesis testing in a more general sense or to parameterize hydrological or erosion models applicable under a wider range of environmental conditions. To overcome these restrictions and to set-up a broader basis for following up studies, we analyzed, harmonized and filled gaps of a large set of existing rainfall simulations carried out by five different research groups in Germany. This covered 726 rainfall simulations (24,384 runoff measurements) carried out on 209 plots under a wide range of conditions for which 4 rain properties, 5 plot properties, 20 soil properties, 5 land use properties and 2 runoff properties were compiled. These data were quality controlled and made available for public use ( Seibert et al., 2011). The most important deficiencies were smoothed runoff measurements, missing time to ponding data, different soil descriptions including frequent gaps in stone content, inconsistent moisture measurements and sometimes rather rough measurements of surface cover. The calculation of the geometric mean particle diameter, time since tillage and the application of different site specific procedures supported harmonization and helped to overcome several of these deficiencies. A satisfying gap filling procedure was developed for time to ponding. The most important inconsistencies that could not be removed were different depths of moisture measurement. Hence, there is a need to define a set of basic variables that always should be measured and documented with defined standards to enable comparison between different studies, to assess

  1. Sensitive indicators of side-effects of pesticides on the epigeal fauna of arable land.

    NARCIS (Netherlands)

    Everts, J.W.

    1990-01-01

    The main objective of the present study was to evaluate the possible impact of pesticides on epigeal arthropods in arable land. It was also envisaged to develop a predictive model for possible undesirable effects of pesticides on the epigeal arthropod fauna using an indicator species from the field.

  2. The level of selenium and some other trace elements in different Libyan arable soils using instrumental neutron activation analysis.

    Science.gov (United States)

    El-Ghawi, U M; Al-Fakhri, S M; Al-Sadeq, A A; Bejey, M M; Doubali, K K

    2007-10-01

    Elemental analysis of soils from two different arable regions in Libya was carried out to measure the level of many trace elements. Instrumental neutron activation analysis was used for the determination of 10 elements, viz., (Ba, Ce, Co, Cr, Cs, Fe, Sc, Se, Th, and Zn), using their long-lived radionuclides. The accuracy of the measurements has been evaluated by analyzing two IAEA soil reference materials: IAEA Soil-7 and IAEA leak sediment SL-1; precision has been estimated by triplicate analysis of the sample and that of the reference material. Irradiations were carried out at the Tajura Research Center reactor, at 5-MW power level. It is clear that in the Libyan soil selenium concentration is somewhat lower than in other countries. The results show that trace metal concentrations in Libyan clay surface soil are higher than the sandy soil.

  3. Modeling greenhouse gas emissions and nutrient transport in managed arable soils with a fully coupled hydrology-biogeochemical modeling system

    Science.gov (United States)

    Haas, Edwin; Klatt, Steffen; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Breuer, Lutz

    2015-04-01

    The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in various virtual landscapes / catchment to demonstrate the capabilities of the modelling system. The modelling system was applied to simulate water and nutrient transport at the at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the

  4. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Knudsen, I.; Elmholt, S.;

    2002-01-01

    The objective was to investigate the relationship between soil suppression of seedling blight of barley caused by Fusarium culmorum (W.G. Smith) Sacc. and the soil cellulolytic activity of beta-glucosidase, cellobiohydrolase and endocellulase. Disease suppression was investigated in bioassays....... From the preliminary results obtained, it is proposed that the cellulolytic activity can be used as an enzymatic approach to study the microbial turnover of organic matter in soils and as indicator of seedling blight of barley caused by F. culmorum. (C) 2002 Elsevier Science B.V. All rights reserved....

  5. Farmers’ Sustainable Strategies for Soil Conservation on Sloping Arable Lands in the Upper Yangtze River Basin, China

    Directory of Open Access Journals (Sweden)

    Qiang Tang

    2014-07-01

    Full Text Available The Upper Yangtze River Basin comprises a densely-populated agricultural region with mountainous and hilly landforms. Intensive cultivation has been extended onto steep hillslopes, which constitute the principal source area for sediment production. Soil conservation on sloping arable lands is thus of utmost priority for persisting sustainable agricultural production and maintaining sound ecosystem services. Although there have been many soil conservation techniques, either promoted by the government or adopted by local farmers, the practiced area was very limited relative to the total area affected by soil erosion. This paper attempts to introduce four popular soil conservation measures on sloping arable lands in this region to enhance a broader scale of implementation, including hedgerow buffers, level trenches, sloping terraces and limited downslope tillage. These practices, although developed from local farmers’ indigenous knowledge for productive purposes, have well conformed to our contemporary understanding of soil erosion processes on sloping landscape affected by human disturbances, were of sound suitability to regional manual tillage agriculture and more trade-off-efficient on rill prevention, runoff harvest and nutrient management.

  6. Aboveground environment type, soil nutrient content and arbuscular mycorrhizal fungi explain establishment success of Centaurea jacea on ex-arable land and in late-successional grasslands

    OpenAIRE

    Eschen, René; Müller-Schärer, Heinz; Schaffner, Urs

    2009-01-01

    We studied the relative importance of the aboveground and belowground environment for survival and growth of emerged seedlings of Centaurea jacea to better understand the general difficulty of establishing late-successional species at restoration sites on ex-arable land. Potted seedlings growing on soil from six late-successional grasslands and from six ex-arable (restoration) sites were reciprocally exchanged, and survival and relative growth rate of the seedlings monitored. In addition, we ...

  7. Dynamics of {sup 14}C-labeled glucose and ammonium in saline arable soils

    Energy Technology Data Exchange (ETDEWEB)

    Vuelvas-Solorzano, Alma; Hernandez-Matehuala, Rosalina [Instituto Tecnologico de Celaya, Celaya Gto. (Mexico). Dept. de Ing. Bioquimica. Lab. de Bioingenieria; Conde-Barajas, Eloy; Cardenas-Manriquez, Marcela [Instituto Tecnologico de Celaya, Celaya Gto. (Mexico). Dept. de Ing. Ambiental. Lab. de Bioingenieria], e-mail: marcela@itc.mx; Luna-Guido, Marco L.; Dendooven, Luc [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav), D.F. (Mexico). Dept. de Biotecnologia y Bioingenieria. Lab. de Ecologia de Suelos], e-mail: dendoove@cinvestav.mx

    2009-07-15

    Organic matter dynamics and nutrient availability in saline agricultural soils of the State of Guanajuato might provide information for remediation strategies. {sup 14}C labeled glucose with or without 200 mg kg{sup -}1 of NH{sub 4} {sup +}-N soil was added to two clayey agricultural soils with different electrolytic conductivity (EC), i.e. 0.94 dS m{sup -}1 (low EC; LEC) and 6.72 dS m{sup -}1 (high EC; HEC), to investigate the effect of N availability and salt content on organic material decomposition. Inorganic N dynamics and production of CO{sub 2} and {sup 14}CO{sub 2} were monitored. Approximately 60 % of the glucose-{sup 14}C added to LEC soil evolved as {sup 14}CO{sub 2}, but only 20 % in HEC soil after the incubation period of 21 days. After one day, < 200 mg {sup 14}C was extractable from LEC soil, but > 500 mg {sup 14}C from HEC soil. No N mineralization occurred in the LEC and HEC soils and glucose addition reduced the concentrations of inorganic N in unamended soil and soil amended with NH{sub 4}{sup +}-N. The NO{sub 2}{sup -} and NO{sub 3}{sup -} concentrations were on average higher in LEC than in HEC soil, with exception of NO{sub 2}{sup -} in HEC amended with NH{sub 4}{sup +}-N. It was concluded that increases in soil EC reduced mineralization of the easily decomposable C substrate and resulted in N-depleted soil. (author)

  8. Structural properties of dissolved organic carbon in deep horizons of an arable soil.

    Science.gov (United States)

    Lavaud, A.; Croué, Jp; Berwick, L.; Steffens, M.; Chabbi, A.

    2010-05-01

    The objective of this work is to quantity the DOC that percolates in deep horizons of an arable soil, and to characterize the structural properties of the main fractions. The study was conducted on the long term observatory for environmental research- biogeochemical cycles and biodiversity Lusignan site-France. DOC collected using lysimeter plates inserted to a depth of 105 cm was fractionated into 3 fractions using the two column array of XAD-8 and XAD-4 resins. The HPO (hydrophobic) fraction (i.e. humic substances) isolated from the XAD-8 resin, the TPH (Transphilic) fraction from the XAD-4 resin and the HPI (hydrophilic) fraction which corresponds to the DOC that does not adsorbed onto the two resins under the acid condition used (pH 2). DOM adsorbed onto the resins is recovered with a 75%/25% acetonitrile/water mixture and lyophilized. The hydrophilic fraction is purified according the protocol proposed by Aiken and Leenheer (1993). The isolated fractions were subjected to several characterization tools: UV/Vis, fluorescence EEM, HPSEC/UV/DOC, 13C NMR, 14C dating, FT-IR, pyrolysis, thermochemolysis and MSSV GC/MS. The DOC content ranged from 1 to 2.5 mg / L between winter and the middle of spring and then to 4-5 mg / L in summer time. For all isolated fractions HPSEC analyses indicated the predominance of low molecular structures with a low aromatic character. Fluorescence EEM confirmed the non-humic character of the DOM. 13C-NMR spectra showed that the aromatic character decreased from HPO to TPH, and HPI character. Molecular size follows the same trend. HPI DOM was found to be strongly enriched in carboxyl groups. The 14C concentration of the HPO fraction corresponds to an apparent calibrated age around AD 1500. For the same fraction isolated from the 0 - 30 cm horizon, the measured 14C concentration 131.9 pMC corresponds to that in the atmosphere around AD 1978. Significant input of terpenoid derived organic matter was confirmed in the HPO fraction of DOC

  9. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types

    DEFF Research Database (Denmark)

    Chirinda, N.; Carter, Mette Sustmann; Albert, Kristian Rost;

    2010-01-01

    . The main objective of this study was to compare nitrous oxide (N2O) emissions from soil under winter wheat (Triticum aestivum L.) within three organic and one conventional cropping system that differed in type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study.......056). A positive effect (P = 0.03) of soil temperature was identified at Flakkebjerg, but the number of soil samplings was limited. Effects of cropping system on N2O emissions were not observed....

  10. National monitoring study in Denmark finds increased and critical levels of copper and zinc in arable soils fertilized with pig slurry.

    Science.gov (United States)

    Jensen, John; Larsen, Martin Mørk; Bak, Jesper

    2016-07-01

    The increasing consumption of copper and zinc in modern farming is linked to their documented benefit as growth promoting agents and usefulness for controlling diarrhoea. Copper and zinc are inert and non-degradable in the slurry and the environment and thereby introducing new challenges and concern. Therefore, a follow-up to pervious national soil monitoring programs on heavy metals was initiated in 2014 with special focus on the historical trends in soil concentrations of copper and zinc in Danish arable soils. Hereby it is possible to analyse trends for a 28 year period. Data shows that: 1) Amendment of soils with pig slurry has led to a significant increase in soil concentrations of copper and zinc, especially in the latest monitoring period from 1998 to 2014; 2) Predicted no-effect concentrations for soil dwelling species published by the European Union is exceeded for zinc in 45% of all soil samples, with the highest proportion on sandy soils; 3) The current use of zinc and copper in pig production may lead to leaching of metals, especially zinc, from fields fertilized with pig slurry in concentrations that may pose a risk to aquatic species. PMID:27107257

  11. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    Directory of Open Access Journals (Sweden)

    M. Sommer

    2011-03-01

    Full Text Available Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. We used the δ13C and δ15N isotopic signatures from two organic matter (OM fractions from soil to identify the likely binding mechanisms involved. We used OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1 OM separated chemically with sodium pyrophosphate (OM(PY and (2 OM stabilized in microstructures found in the chemical extraction residue (OM(ER. Furthermore, because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms within these soils. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established proxies of different binding mechanisms. Parsing soil OM into different fractions is a systematic method of dissection, however, we are primarily interested in how OM is bound in soil as a whole, requiring a means of re-assembly. Thus, we implemented the recent zonal framework described by Kleber et al. (2007 to relate our findings to undisturbed soil. The δ15N signature of OM fractions served as a reliable indicator for microbial processed carbon in both arable and forest land use types. The δ13C signature of OM fractions in arable sites did not correlate well with proxies of soil mineral properties while a consistent pattern of enrichment was seen in the δ13C of OM fractions in the forest sites. We found a significant difference in δ13C of pooled OM fractions between the forest and arable land use type although it was relatively small (<1‰. We found different binding mechanisms predominate in each land use type. The isotopic signatures of OM fractions from arable soils were highly related to the clay and silt size particles

  12. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    Science.gov (United States)

    Kayler, Z. E.; Kaiser, M.; Gessler, A.; Ellerbrock, R. H.; Sommer, M.

    2011-03-01

    Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. We used the δ13C and δ15N isotopic signatures from two organic matter (OM) fractions from soil to identify the likely binding mechanisms involved. We used OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1) OM separated chemically with sodium pyrophosphate (OM(PY)) and (2) OM stabilized in microstructures found in the chemical extraction residue (OM(ER)). Furthermore, because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms within these soils. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established proxies of different binding mechanisms. Parsing soil OM into different fractions is a systematic method of dissection, however, we are primarily interested in how OM is bound in soil as a whole, requiring a means of re-assembly. Thus, we implemented the recent zonal framework described by Kleber et al. (2007) to relate our findings to undisturbed soil. The δ15N signature of OM fractions served as a reliable indicator for microbial processed carbon in both arable and forest land use types. The δ13C signature of OM fractions in arable sites did not correlate well with proxies of soil mineral properties while a consistent pattern of enrichment was seen in the δ13C of OM fractions in the forest sites. We found a significant difference in δ13C of pooled OM fractions between the forest and arable land use type although it was relatively small (<1‰). We found different binding mechanisms predominate in each land use type. The isotopic signatures of OM fractions from arable soils were highly related to the clay and silt size particles amount while

  13. Soil organic matter composition along a slope in an erosion-affected arable landscape in North East Germany

    Science.gov (United States)

    Ellerbrock, Ruth, H.; Gerke, Horst, H.; Deumlich, Detlef

    2016-04-01

    In hummocky landscapes, soil erosion is forming truncated profiles at steep slope positions and colluvial soils in topographic depressions thereby affecting soil organic carbon (SOC) storage. However, the knowledge on the spatial distribution and composition of differently stable organic matter (OM) fractions in arable landscapes is still limited. Here, amount and composition of OM from top- and subsoil horizons at eroded, colluvic, and non -eroded slope positions were compared. The horizons were from a Luvisol at plateau (LV), an eroded Luvisol (eLV) at mid slope (6%slope gradient), a calcaric Regosol (caRG) at steep slope (13%), and a colluvic Regosol (coRG) at hollow position. Water soluble (OM-W) and pyrophosphate soluble (OM-PY) fractions were extracted sequentially. Soil samples, OM fractions, and extraction residues were analyzed with transmission Fourier transform infrared (FTIR) spectroscopy. The soluble fractions were 3% of SOC for OM-W and 15% of SOC for OM-PY. For topsoil samples, extract ion rates were independent of slope position. The highest intensities of both, C-H (alkyl groups) and C=O (carboxyl groups) absorption band, were found in FTIR spectra of OM-PY from top and subsoil horizons at the steep slope position (caRG). The C-H/C=O ratio in OM-PY decreased with increasing contents of oxalate soluble Fe and Al oxides from steep slope (0.25 for caRG-Ap) towards plateau, and hollow position (0.09 for coRG-Ap) except for the Bt -horizons. This relation is reflecting that the down slope-deposited Ap material, which is higher in poorly crystalline Fe an d Al oxides, consists of relatively stable OM. This OM is enriched in C=O groups that are known for their interaction with soil minerals. These OM-mineral interactions may help explaining C storage in arable soil landscapes.

  14. Soil types will alter the response of arable agroecosystems to future rainfall patterns

    Science.gov (United States)

    Zaller, J. G.; Schwarz, T.; Hall, R.; Ziss, E.; von Hohberg und Buchwald, C.; Hösch, J.; Baumgarten, A.

    2012-04-01

    Regional climate change scenarios for eastern Austria (pannonian region) predict fewer but heavier rains during the vegetation period without substantial changes in the total annual amount of rainfall. While many studies investigated the effects of rainfall patterns on ecosystem properties, very little is known on how different soil types might alter ecosystem responses. In order to test this, we conducted an experiment at the AGES lysimeter station using 18 3 m2 lysimeters where we simultaneously manipulated rainfall patterns according to regional climate scenarios (current vs. prognosticated rain) on the three main soil types of the region (sandy calcaric phaeozem, gleyic phaeozem and calcic chernozem). Lysimeters were cultivated according to good farming practice using crop varieties and crop rotations typically for the region. Here, we present results of the response of field peas (Pisum sativum) on important agricultural parameters. Lysimeters under progn. rain showed lower crop cover than under curr. rain while soil types had no effect. Total aboveground biomass production (comprising crops plus weeds) was significantly lower under progn. rain; sandy calcaric phaeozem showed the lowest plant biomass. Pea yields under progn. rain were substantially lower than under curr. rain; again, yields under sandy soils were lower than under the other two soil types. Root growth was significantly higher in progn. rain than in curr. rain; there was a trend towards less root growth in the gleyic soils. Mycorrhization of roots was not influenced by soil types, however under progn. rain colonization rates were lower than under curr. rain. Weed establishment and growth was increased under progn. rain in gleyic soils but decreased in the other soil types. Weed biomass was not affected by rainfall, however sandy soils had less weed biomass than the other soil types. Abundance of the insect pest pea moth (Cydia nigricana) was almost twice as high under progn. rain than under curr

  15. Effect of rural-urban migrants’ remittances on arable crop production in Delta State, Nigeria

    Directory of Open Access Journals (Sweden)

    Ofuoku Albert U.

    2015-01-01

    Full Text Available This study was conducted in Delta State, Nigeria, to investigate the effect of rural-urban remittances on arable crop production. Twenty percent (20% of the registered arable crop farmers in Delta State were selected to arrive at 131 respondents for the study. Questionnaire and structured interview schedule were used to collect data from the respondents. Descriptive and inferential statistics and contingency tables were used to treat the collected data. It was discovered that most (69.5% of rural-urban migrants were in the 11-30 age bracket. The remittances from rural farm households were far higher than the remittances from rural-urban migrants. The little remittances from the rural-urban migrants were added to the funds of the rural farm household, farm labour and inputs. The remittances from rural-urban migrants did not make any meaningful contribution to arable crop production. It was recommended that governments should make the rural areas attractive to young school learners/graduates, embark on enlightenment programme to expose the youths to agriculture related self-employment opportunities in the rural areas; and create enabling environment for the youths to operate as self-employed individuals in the rural areas.

  16. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Science.gov (United States)

    Demyan, M. S.; Rasche, F.; Schütt, M.; Smirnova, N.; Schulz, E.; Cadisch, G.

    2013-05-01

    An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA) in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS) is being proposed to rapidly characterize soil organic matter (SOM) to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2) in order to relate evolved gas (i.e., CO2) to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i) the Static Fertilization Experiment, Bad Lauchstädt (Chernozem), from treatments of farmyard manure (FYM), mineral fertilizer (NPK), their combination (FYM + NPK) and control without fertilizer inputs; (ii) Kraichgau; and (iii) Swabian Alb (Cambisols) areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM), sand and stable aggregates (Sa + A), silt and clay (Si + C), and NaOCl oxidized Si + C (rSOC) to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm-1) being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min-1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS) for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max). Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the Chernozem

  17. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Directory of Open Access Journals (Sweden)

    M. S. Demyan

    2013-05-01

    Full Text Available An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS is being proposed to rapidly characterize soil organic matter (SOM to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2 in order to relate evolved gas (i.e., CO2 to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i the Static Fertilization Experiment, Bad Lauchstädt (Chernozem, from treatments of farmyard manure (FYM, mineral fertilizer (NPK, their combination (FYM + NPK and control without fertilizer inputs; (ii Kraichgau; and (iii Swabian Alb (Cambisols areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM, sand and stable aggregates (Sa + A, silt and clay (Si + C, and NaOCl oxidized Si + C (rSOC to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm−1 being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min−1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max. Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the

  18. The Community Abundance and Diversity of Arable Soil Insect Community Following Different Fertilizer Treatments in Xinjiang,China

    Institute of Scientific and Technical Information of China (English)

    LIN Ying-hua; LIU Hua; ZHANG Shu-qing; ZHANG Fu-dao

    2008-01-01

    The soil insect community was studied in grey desert soil district in September 2004.90 soil samples and 100 pitfalls were collected from 10 treatments,i.e.,abandonment(Aband.),CK,N,NP,NK,PK,NPK,MNPK(fertilizer N:organic N=3:7),1.5MNPK,and SNPK.4 915 soil insects(128 unknown),as individuals belonging to 9 orders and 33 families,were obtained by pitfall traps and modified Tullgren methods.The results showed that,based on the number of individuals and groups,the macro fauna in total reached their peaks in abandonment,whereas meso and micro fauna in N and PK,respectively.Of the 10 treatments,the most dominant of soil insect composition was in MNPK and most evenness was N.The result by Kruskal-Wallis test indicated that the distribution of the arable soil insect was significantly impacted by different fertilizer treatments(X0.05(9)= 23.38,P <0.005),and soil insect group of the abandonment was significantly different from that of other fertilizer treatments.The soil insect community was divided into five groups by non-metricMDS analysis:(1)NPK,MNPK,1.5MNPK,CK,(2)NP and PK,(3)NK and N,(4)SNPK,and(5)abandonment,which indicated that distribution of soil insect was related to the character of the fertilizer.In the principal component analysis,two factors explained 98.51% of the total variation among the 10 treatments,and the factor one explained that N and SNPK positively affected soil insect community,whereas factor two explained that 1.5MNPK positively affected soil insect community,which showed that the diversified fertilizer did not evenly affect the soil insect community.

  19. Impact of manure-related DOM on sulfonamide transport in arable soils

    Science.gov (United States)

    Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina

    2016-09-01

    Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280 nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides.

  20. utilization of bio fertilizers and organic sources in arable soils under saline conditions using tracer technique

    International Nuclear Information System (INIS)

    Recently, more attention has been paid to conserve and save surrounding environment via minimizing the excessive use of chemical fertilizers and, in general, the agrochemicals applied in heavy quantities in agricultural agroecosystems. Therefore, the attention of most of agronomists was turned towards the use of so called clean agriculture or organic farming. Many of organic systems was pointed out such as the recycling of farm wastes i.e. crop residues, animal manure, organic conditioners for reclamation of soil and in the same time enhancement of plant growth and improving yield quality. The application of organic wastes combined with or without microbial inoculants to plant media are considered as a good management practice in any agricultural production system because it improves, plant quality and soil fertility. Therefore, we have the opportunity to conduct some experiments for achieving the clean agriculture approach, combating the adverse effects of salinity and avoiding the environmental pollution. Series of laboratory and greenhouse experiments were carried out to evaluate the impact of (1) potent isolated fungi (Aspergillus oryzae and Aspergillus terreus) on degrading plant residues (Leucaena and Acacia green parts), and (2) biofertilizers (Sinorhizobium meliloti, Azospirillum brasilense, and Pseudomonas aeruginosa) in assessing barley and spinach plants to combat salinity of soil and irrigation water.15N-tracer technique that considered unique and more reliable technique may benefits in clarifying the responsible mechanisms related to plant growth and gave us the opportunity to quantify the exact amounts of N derived from the different sources of nitrogen available to spinach and barley plants grown on sandy saline soil and irrigated with saline water.

  1. Farmers’ Sustainable Strategies for Soil Conservation on Sloping Arable Lands in the Upper Yangtze River Basin, China

    OpenAIRE

    Qiang Tang; Chansheng He; Xiubin He; Yuhai Bao; Ronghua Zhong; Anbang Wen

    2014-01-01

    The Upper Yangtze River Basin comprises a densely-populated agricultural region with mountainous and hilly landforms. Intensive cultivation has been extended onto steep hillslopes, which constitute the principal source area for sediment production. Soil conservation on sloping arable lands is thus of utmost priority for persisting sustainable agricultural production and maintaining sound ecosystem services. Although there have been many soil conservation techniques, either promoted by the gov...

  2. Pollution of Flooded Arable Soils with Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs)

    OpenAIRE

    Ciesielczuk, Tomasz; Kusza, Grzegorz; Poluszyńska, Joanna; Kochanowska, Katarzyna

    2014-01-01

    Soils that are exposed to floodwaters because of shallow groundwater and periodical wetlands are, to a large extent, exposed to contamination by organic and inorganic compounds. These are mainly compounds that have drifted along with the inflow of heavily laden floodwater and are produced within the soil profile by the anaerobic transformation of organic matter. Heavy metals and polycyclic aromatic hydrocarbon (PAH) compounds are absorbed by the soil of the floodwaters, and moving in the soil...

  3. Net sulfur mineralization potential in Swedish arable soils in relation to long-term treatment history and soil properties

    DEFF Research Database (Denmark)

    Boye, Kristin; Nilsson, S Ingvar; Eriksen, Jørgen

    2009-01-01

    The long-term treatment effect (since 1957-1966) of farmyard manure (FYM) application compared with crop residue incorporation was investigated in five soils (sandy loam to silty clay) with regards to the net sulfur (S) mineralization potential. An open incubation technique was used to determine...... accumulated net S mineralization (SAccMin) and a number of soil physical and chemical properties were determined. Treatments and soil differences in SAccMin, as well as correlations with soil variables, were tested with single and multivariate analyses. Long-term FYM application resulted in a significantly (p...... = 0.012) higher net S mineralization potential, although total amounts of C, N, and S were not significantly (p mineralization differed significantly (p 

  4. Physical protection of mineralizable C in aggregates from long-term pasture and arable soil

    NARCIS (Netherlands)

    Pulleman, M.M.; Marinissen, J.C.Y.

    2004-01-01

    Depending on agricultural management, soil aggregation can provide physical protection of organic matter against rapid decomposition. Within a given soil series, farm management affects the quality and quantity of organic inputs, soil disturbance and biological activity, and thereby the processes of

  5. Prediction of the P-leaching potential of arable soils in areas with high livestock densities

    Institute of Scientific and Technical Information of China (English)

    WERNER Wilfried; TRIMBORN Manfred; PIHL Uwe

    2006-01-01

    Due to long-term positive P-balances many surface soils in areas with high livestock density in Germany are oversupplied with available P, creating a potential for vertical P losses by leaching. In extensive studies to characterize the endangering of ground water to P pollution by chemical soil parameters it is shown that the available P content and the P concentration of the soil solution in the deeper soil layers, as indicators of the P-leaching potential, cannot be satisfactorily predicted from the available P content of the topsoils. The P equilibrium concentration in the soil solution directly above ground water table or the pipe drainage system highly depends on the relative saturation of the P-sorption capacity in this layer. A saturation index of <20% normally corresponds with Pequilibrium concentrations of <0.2 mg P/L. Phytoremediation may reduce the P leaching potential of P-enriched soils only over a very long period.

  6. Pore size distribution and amount of water available for plants in arable soils of Poland

    OpenAIRE

    Ostrowski J.; Walczak R.; Witkowska-Walczak B.

    2003-01-01

    The results of investigations on porosity and the amount of water available for plants in Polish soils are presented. The porosity and distribution of soil pores are strongly connected with the differentiation of the granulometric composition of Polish soils. The maximum of macropores is in the surface layer whereas the maximum of micropores is in the subsoil. The amount of water available for plants is relatively large, but the amount of water easily available for plants is very small and do...

  7. Spatial variability of specific surface area of arable soils in Poland

    Science.gov (United States)

    Sokolowski, S.; Sokolowska, Z.; Usowicz, B.

    2012-04-01

    Evaluation of soil spatial variability is an important issue in agrophysics and in environmental research. Knowledge of spatial variability of physico-chemical properties enables a better understanding of several processes that take place in soils. In particular, it is well known that mineralogical, organic, as well as particle-size compositions of soils vary in a wide range. Specific surface area of soils is one of the most significant characteristics of soils. It can be not only related to the type of soil, mainly to the content of clay, but also largely determines several physical and chemical properties of soils and is often used as a controlling factor in numerous biological processes. Knowledge of the specific surface area is necessary in calculating certain basic soil characteristics, such as the dielectric permeability of soil, water retention curve, water transport in the soil, cation exchange capacity and pesticide adsorption. The aim of the present study is two-fold. First, we carry out recognition of soil total specific surface area patterns in the territory of Poland and perform the investigation of features of its spatial variability. Next, semivariograms and fractal analysis are used to characterize and compare the spatial variability of soil specific surface area in two soil horizons (A and B). Specific surface area of about 1000 samples was determined by analyzing water vapor adsorption isotherms via the BET method. The collected data of the values of specific surface area of mineral soil representatives for the territory of Poland were then used to describe its spatial variability by employing geostatistical techniques and fractal theory. Using the data calculated for some selected points within the entire territory and along selected directions, the values of semivariance were determined. The slope of the regression line of the log-log plot of semi-variance versus the distance was used to estimate the fractal dimension, D. Specific surface area

  8. Long-term changes in organic matter of woodland soils cleared for arable cropping in Zimbabwe

    NARCIS (Netherlands)

    Zingore, S.; Manyame, C.; Nyamugafata, P.; Giller, K.E.

    2005-01-01

    Subsistence farmers in Africa depend largely on the soil organic matter to sustain crop productivity. Long-term changes in soil organic carbon and nitrogen were measured after woodland clearance for smallholder subsistence farming or for commercial farming. The contents of organic carbon and nitroge

  9. Speciation and distribution of P associated with Fe and Al oxides in aggregate-sized fraction of an arable soil

    Science.gov (United States)

    Jiang, X.; Bol, R.; Willbold, S.; Vereecken, H.; Klumpp, E.

    2015-11-01

    To maximize crop productivity fertilizer P is generally applied to arable soils, a significant proportion of which becomes stabilized by mineral components and in part subsequently becomes unavailable to plants. However, little is known about the relative contributions of the different organic and inorganic P bound to Fe/Al oxides in the smaller soil particles. Alkaline (NaOH-Na2EDTA) extraction with solution 31P-nuclear magnetic resonance (31P-NMR) spectroscopy is considered a reliable method for extracting and quantifying organic P and (some) inorganic P. However, any so-called residual P after the alkaline extraction has remained unidentified. Therefore, in the present study, the amorphous (a) and crystalline (c) Fe/Al oxide minerals and related P in soil aggregate-sized fractions (> 20, 2-20, 0.45-2 and citrate-bicarbonate (DCB, both a- and c-Fe/Al oxides). These soil aggregate-sized fractions with and without the oxalate and DCB pre-treatments were then sequentially extracted by alkaline extraction prior to solution 31P-NMR spectroscopy. This was done to quantify the P associated with a- and c-Fe/Al oxides in both alkaline extraction and the residual P of different soil aggregate-sized fractions. The results showed that overall P contents increased with decreasing size of the soil aggregate-sized fractions. However, the relative distribution and speciation of varying P forms were found to be independent of soil aggregate-size. The majority of alkaline-extractable P was in the a-Fe/Al oxide fraction (42-47 % of total P), most of which was ortho-phosphate (36-41 % of total P). Furthermore, still significant amounts of particularly monoester P were bound to these oxides. Intriguingly, however, Fe/Al oxides were not the main bonding sites for pyrophosphate. Residual P contained similar amounts of total P associated with both a- (11-15 % of total P) and c-Fe oxides (7-13 % of total P) in various aggregate-sized fractions, suggesting that it was likely occluded

  10. Biochar as a soil amendment: Impact on hydraulic and physical properties of an arable loamy sand soil

    OpenAIRE

    Lopez, Vivian Dominique

    2014-01-01

    Biochar is a form of pyrolyzed biomass utilized strictly for human created systems. It has been recognized as a plausible method to address issues related to atmospheric carbon increase and global change, in addition to food insecurity. This research explores the effectiveness of biochar as a soil amendment. This knowledge is necessary because the effects of drought have strengthened, flagging the necessity to develop sustainable methods that will address (1) water shortage and (2) the increa...

  11. Assessment Of Heavy Metal Contamination Of Arable Soils In Central Bekaa Plain, Lebanon

    International Nuclear Information System (INIS)

    The study area is located in the Bekaa plain of Lebanon totaling about 12753 ha. It lies between the eastern foothills of Mount Lebanon chain and expands across the Litani River towards the foothills of the eastern Anti-Lebanon Mountains. Its characteristics, i.e. natural terrain, climate and socio-economy, make it vulnerable especially due to soil pollution. This paper tries to identify the nature and level of soil pollution by heavy metals. Valley slopes represent a complex landform and lithology that contributed to the formation of different soil. Agriculture in the plain is being practiced mainly with cash, field crops and vegetables. Throughout the central part of the plain, groundwater table is abundant and relatively high (<1.0 m. locally) that multiplies the vulnerability of the soil-groundwater system. There are different sources of pollution, such as industrial (tanneries, batteries, leather manufacturing), solid and liquid wastes, and agricultural due to uncontrolled application of fertilizers, pesticides and insecticides. Meanwhile, no local criteria for land contamination with heavy metals are adapted yet. A total of 131 soil samples from 41 soil profiles were collected from sites representing different soil types and cropping systems. Additionally, five water samples were collected to get tentative idea about the extent of water contamination from surface and groundwater bodies. Soil samples were analyzed for physical and chemical properties and wet digested in aqua regia for the determination of the heavy metal content on the atomic absorption. Results of the total heavy metal content in the soils of the Central Bekaa showed normal values for main metals except Cr and Ni, which showed a relatively high level reaching, according to Eckamn Kloke, 1993-2000 criteria the tolerance level II. This is hazardous in an area of intensive vegetable production designed for fresh consumption. Point sources of pollution are equally found for Pb and Cd. The level

  12. Mobility of fertiliser-derived uranium in arable soils and its contribution to uranium concentrations in groundwater and tap water

    International Nuclear Information System (INIS)

    Phosphorus (P) mineral fertilisers are found to contain high concentrations of uranium (U) (up to 206 mg U kg-1) and other trace elements (TE), such as Cd, Pb, Ni, Cu, Zn, Th, Nb, Sr, V, and rare earth elements. The content of U and other trace elements is depended on the sedimentary of igneous origin of the rock phosphate. In this study, the production of P fertilisers has been shown to contaminate top soil horizons with U and other trace elements in the close vicinity of a factory located in Southern Brazil. In contrast to this point source, agricultural P fertilisation leads to a diffuse contamination of the agro-ecosystem with U and other fertiliser-derived trace elements on a large scale. Top soil horizons of arable land accumulate fertiliser-derived U. According to the geochemical behaviour of U(VI) species under oxidising conditions, the mobilisation capacity for U in top soil horizons is considered to be high, contrary to other fertiliser-derived heavy metals (e.g. Cd). Hence, it is assumed that U can be leached to shallow groundwater and can reach fresh water resources potentially used for drinking water supply. The aims of this study were to investigate the concentration of U and other contaminants in P fertilisers, to identify geochemical processes of fertiliser-derived U mobility and mobilisation from arable top soil horizons to the groundwater, and to evaluate the origin of U in German groundwater and tap water. This study presents the broadest recent data set on regional distribution of U concentrations in German tap water to which 76 % of the German population has access. The mean U concentration was 0.68 μg L-1, the median 0.50 μg L-1. 1.3 % or 1 million of the 80.6 million inhabitants in Germany are exposed to U concentrations in tap water which are higher than the German drinking water threshold limit of 10 μg L-1. The regional distribution of U concentrations largely agrees with the geological setting reported for mineral waters, however, in

  13. Carbon dynamics with prolonged arable cropping soils in the Dano district (Southwest Burkina-Faso)

    Science.gov (United States)

    Hounkpatin, Ozias; Welp, Gerhard; Amelung, Wulf

    2016-04-01

    The conversion of natural ecosystems into agricultural land affects the atmospheric CO2 concentration whose increase contributes to global warming. In the low activity clay soils (LAC) of the tropics, farming is largely dependent on the level of soil organic carbon (SOC) for sustainable crop production. In this study, we investigated the changes in SOC in Plinthosols along a cultivation chronosequence in the Dano district (Southwest Burkina-Faso). The chronosequence consisted of undisturbed savannah (Y0) and 11 agricultural fields with short and long histories of cultivation ranging from 1-year-old cropland to 29-year-old cropland (Y29). About 14 soil profiles were described and soil composite samples were taken per horizon. Particulate organic matter (POM) was fractionated according to particle size: fraction 2000 - 250 μm (POM1), 250 μm - 53 μm (POM2), 53 μm - 20 μm (POM3), and POM1 > POM3 > POM2 carbon no matter the duration of land use. However, SOC losses occurred not only in the labile C pools but also in the stabile nonPOM fraction with increasing duration of agricultural land use. Compared to the initial carbon content in the Y0 field, about 59% of carbon content loss occurred in the POM1 (> 250 μm), 53% in the POM2 (250 - 53 μm), 52 % in the POM3 (53 - 20 μm) and 47% in the nonPOM fraction (carbon was found as nonPOM, indicating that organo-mineral associations are a key parameter for carbon stabilization, its depletion with increasing cultivation intensity suggests that the destruction of aggregates in these fields increased the vulnerability of this pool to microbial degradation. Keywords: Soil organic carbon, Plinthosols, low activity clay soil, POM

  14. Studies on organic and in-organic biostimulants in bioremediation of diesel-contaminated arable soil.

    Science.gov (United States)

    Nwankwegu, Amechi S; Orji, Michael U; Onwosi, Chukwudi O

    2016-11-01

    In this study, use of inorganic fertilizer (N.P.K) was compared with organic manure (compost) in the bioremediation of diesel-polluted agricultural soil over a two-month period. Renewal by enhanced natural attenuation was used as control. The results revealed that total petroleum hydrocarbon removal from polluted soil was 71.40 ± 5.60% and 93.31 ± 3.60% for N.P.K and compost amended options, respectively. The control (natural attenuation) had 57.90 ± 3.98% of total petroleum hydrocarbon removed. Experimental data fitted second order kinetic model adequately for compost amended option. The fertilizer amended option was found to be 1.04 times slower (k2 = 4.00 ± 1.40 × 10(-7)gmg(-1)d(-1), half-life = 28.15 d) than compost amended option (k2 = 1.39 ± 0.54 × 10(-5) gmg(-1)d(-1), half-life = 8.10 d) but 1.21 times (20.6%) faster than the control (k2 = 2.57 ± 0.16 × 10(-7) gmg(-1)d(-1), half-life = 43.81 d). The hydrocarbon utilizers isolated from the diesel contaminated soil were: Bacillus nealsoni, Micrococcus luteus, Aspergillus awamori, and Fusarium proliferatum. The phytotoxicity test showed that germination indices for natural attenuation (control), fertilizer (NPK) and compost amended options were 34%, 56%, and 89%, respectively. PMID:27494315

  15. Relationship Between Soil Microbial Biomass C and N and Mineralizable Nitrogen in Some Arable Soils on Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    ZHOUJIANBIN; LISHENGXIU

    1998-01-01

    The chloroform fumigation-incubation metho was used to measur the soil microbial biomass C(SMBC) and N(SMBN) in 16 loessial soils sampled from Ansai,Yongshou and Yangling in Shaanxi Province.The SMBC ontents in the soils ranged from 75.9 to 301.0μg C g-1 with an average of 206.μgCg-1,accounting for 1.36%-6.24% of the total soil organic C with an average of 3.07%,and the SMBN contents from 0.51 to 68.40μg Ng-1 with an average of 29.4μg N g-1,accounting for 0.20%-5.65% of the total N in the soils with an average of 3.36%.A close relationship was found between SMBC and SMBN,and they both were positively correlated with total organic C, total N,NaOH hydrolizable N and mineralizable N.These results confirmed tha soil microbial biomass had a comparative role in nutrient cycles of soils.

  16. Analysis of Multi-Scale Changes in Arable Land and Scale Effects of the Driving Factors in the Loess Areas in Northern Shaanxi, China

    Directory of Open Access Journals (Sweden)

    Lina Zhong

    2014-04-01

    Full Text Available In this study, statistical data on the national economic and social development, including the year-end actual area of arable land, the crop yield per unit area and 10 factors, were obtained for the period between 1980 and 2010 and used to analyze the factors driving changes in the arable land of the Loess Plateau in northern Shaanxi, China. The following areas of arable land, which represent different spatial scales, were investigated: the Baota District, the city of Yan’an, and the Northern Shaanxi region. The scale effects of the factors driving the changes to the arable land were analyzed using a canonical correlation analysis and a principal component analysis. Because it was difficult to quantify the impact of the national government policies on the arable land changes, the contributions of the national government policies to the changes in arable land were analyzed qualitatively. The primary conclusions of the study were as follows: between 1980 and 2010, the arable land area decreased. The trends of the year-end actual arable land proportion of the total area in the northern Shaanxi region and Yan’an City were broadly consistent, whereas the proportion in the Baota District had no obvious similarity with the northern Shaanxi region and Yan’an City. Remarkably different factors were shown to influence the changes in the arable land at different scales. Environmental factors exerted a greater effect for smaller scale arable land areas (the Baota District. The effect of socio-economic development was a major driving factor for the changes in the arable land area at the city and regional scales. At smaller scales, population change, urbanization and socio-economic development affected the crop yield per unit area either directly or indirectly. Socio-economic development and the modernization of agricultural technology had a greater effect on the crop yield per unit area at the large-scales. Furthermore, the qualitative analysis

  17. Vertical distribution of soil organic carbon originated from a prior peatland in Greece and impacts on the landscape, after conversion to arable land

    Science.gov (United States)

    Kayrotis, Theodore; Charoulis, A.; Vavoulidou, E.; Tziouvalekas, M.

    2010-05-01

    The vertical distribution and the status of soil organic carbon (Corg.) in 66 surface and subsurface soil samples were investigated. These soils originated mainly from organic deposits of Philippoi (northern Greece) have been classified as Histosols and belong to the suborder of Saprists. The present study consisted of an area of 10,371 ha where about 90% of the soils are organic. The main crops are maize (Zea mays L.), sugar beets (Beta vulgaris L.), tobacco (Nicotiana tabacum L.), cotton (Gossypium hirsutum L.), tomatoes (Lycopersicon esculentum Mill.), and wheat (Triticum aestivum L.).The surface horizons consist mainly of well-humified organic materials mixed with mineral soil particles. Usually, they have moderate or insufficient drainage regime and conditions become favorable for microbial growth. Microbes decompose and transform the soil organic compounds into mineral forms, which are then available as nutrients for the crop. The organic matter was derived primarily from Cyperaceae (Cladium mariscus, various Carex species, etc.) and from decomposed residues of arable crops. The dominant features of these soils are the high content of organic matter and the obvious stratification of soil horizons. In contrast, most arable soils in Greece are characterized by low organic matter content. The stratification differentiates the physical and chemical properties and the groundwater table even during dry summers lies at depths,150 cm beneath surface. The Corg. content was high and varied greatly among the examined samples. In the surface layers ranged between 3.57 and 336.50 g kg2 (mean 199.26 g kg2) and between 22.10 and 401.10 g kg2 in the subsurface horizons (mean 258.89 g kg2). It can be argued that surface layers are drier and part of soil organic matter was seriously affected by the process of oxidation. At drier sites, soil subsidence was appeared as a consequence of soil organic matter oxidation. Increased contents were found in the northern part of the

  18. Health risks of thallium in contaminated arable soils and food crops irrigated with wastewater from a sulfuric acid plant in western Guangdong province, China.

    Science.gov (United States)

    Wang, Chunlin; Chen, Yongheng; Liu, Juan; Wang, Jin; Li, Xiangping; Zhang, Yongbo; Liu, Yimin

    2013-04-01

    Thallium (Tl) contamination in soils poses a significant threat to human health due to the high toxicity of Tl and its ready assimilation by crops. Consumption of food crops contaminated with Tl is a major food chain route for human exposure. The health risks of Tl in contaminated food crops irrigated with wastewater from a sulfuric acid factory were investigated in this paper. Results indicate that long-term Tl-containing wastewater irrigation resulted in Tl contamination of arable soils and crops. The pollution load index values indicated that the arable soils were moderately enriched with Tl. Tl was highly accumulated in the crops. The content of Tl in the edible plant portions of crops ranged from 1.2 mg/kg to 104.8 mg/kg, exceeding the recommended permissible limits for food crops. The daily intake of metals (DIM) values of Tl for both adults and children via the consumption of the food crops except soya beans were higher than the reference oral dose (RfD) limit recommend by the United States environmental protection agency (US-EPA). Health risk index (HRI) values were generally higher than 1, indicating that health risks associated with Tl exposure are significant and assumed to be dangerous to the health of local villagers. Therefore, much attention should be paid to avoid consumption of these Tl-contaminated crops that can cause great potential risks. PMID:23321363

  19. Health risks of thallium in contaminated arable soils and food crops irrigated with wastewater from a sulfuric acid plant in western Guangdong province, China.

    Science.gov (United States)

    Wang, Chunlin; Chen, Yongheng; Liu, Juan; Wang, Jin; Li, Xiangping; Zhang, Yongbo; Liu, Yimin

    2013-04-01

    Thallium (Tl) contamination in soils poses a significant threat to human health due to the high toxicity of Tl and its ready assimilation by crops. Consumption of food crops contaminated with Tl is a major food chain route for human exposure. The health risks of Tl in contaminated food crops irrigated with wastewater from a sulfuric acid factory were investigated in this paper. Results indicate that long-term Tl-containing wastewater irrigation resulted in Tl contamination of arable soils and crops. The pollution load index values indicated that the arable soils were moderately enriched with Tl. Tl was highly accumulated in the crops. The content of Tl in the edible plant portions of crops ranged from 1.2 mg/kg to 104.8 mg/kg, exceeding the recommended permissible limits for food crops. The daily intake of metals (DIM) values of Tl for both adults and children via the consumption of the food crops except soya beans were higher than the reference oral dose (RfD) limit recommend by the United States environmental protection agency (US-EPA). Health risk index (HRI) values were generally higher than 1, indicating that health risks associated with Tl exposure are significant and assumed to be dangerous to the health of local villagers. Therefore, much attention should be paid to avoid consumption of these Tl-contaminated crops that can cause great potential risks.

  20. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Directory of Open Access Journals (Sweden)

    M. S. Demyan

    2012-11-01

    Full Text Available An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA and qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS is being proposed to rapidly characterize soil organic matter (SOM to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2 in order to relate evolved gas to different qualities of soil organic matter (SOM. Soil samples were from three different sites, i.e. (i the Static Fertilization Experiment, Bad Lauchstädt (Chernozem from treatments of farmyard manure (FYM, mineral fertilizer (NPK, combination (FYM + NPK and control without fertilizer inputs, and cropped soils from the (ii Kraichgau and (iii Swabian Alb (Cambisols areas, Southwest Germany. Soils from Kraichgau and Swabian Alb were further fractionated into particulate organic matter (POM, sand and stable aggregates (Sa + A, silt and clay (Si + C, and NaOCl oxidized Si + C (rSOC to gain OM of different inferred stabilities. Fresh soil samples from the Kraichgau and Swabian Alb were incubated at 20 °C and 50% water holding capacity for 490 days in order to measure soil respiration under controlled conditions. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of carbon dioxide (2400 to 2200 cm−1 being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min−1 during an initial ramping time of 10 min and holding time of 10 min. Separately the heating chamber was placed in a diffuse reflectance chamber (DRIFTS for measuring the mid-infrared absorption of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 (2400

  1. Testing the sustainability of stockless arable organic farming on a fertile soil (Extension to OF0 145)

    OpenAIRE

    Cormack, Bill

    2002-01-01

    This work contributes to DEFRA’s policy objective of promoting a sustainable, competitive and safe food supply chain which meets consumers’ requirements. It helps to identify sound methods of organic farming, limiting factors and ways of overcoming them. To expand in the arable east of England, where the knowledge, infrastructure and capital for livestock are not available, viable stockless systems will be necessary. Projects OF0145 showed that in the first crop sequence after conversion, a s...

  2. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    Directory of Open Access Journals (Sweden)

    M. Sommer

    2011-10-01

    Full Text Available Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. Analysis of δ13C and δ15N isotopic signatures of stabilized OM fractions along with soil mineral characteristics may yield important information about OM-mineral associations and their processing history. We anlayzed the δ13C and δ15N isotopic signatures from two organic matter (OM fractions along with soil mineral proxies to identify the likely binding mechanisms involved. We analyzed OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1 OM separated chemically with sodium pyrophosphate (OM(PY and (2 OM occluded in micro-structures found in the chemical extraction residue (OM(ER. Because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established mineral and chemical proxies indicative for certain binding mechanisms. We found different mechanisms predominate in each land use type. For arable soils, the formation of OM(PY-Ca-mineral associations was identified as an important OM binding mechanism. Therefore, we hypothesize an increased stabilization of microbial processed OM(PY through Ca2+ interactions. In general, we found the forest soils to contain on average 10% more stabilized carbon relative to total carbon stocks, than the agricultural counter part. In forest soils, we found a positive relationship between isotopic signatures of OM(PY and the ratio of soil organic carbon content to soil surface area (SOC/SSA. This indicates that the OM(PY fractions of forest soils represent layers of slower exchange not directly attached to mineral surfaces. From the isotopic composition

  3. Plant litter decomposition and carbon sequestration for arable soils. Final report of works. April 2005; Biodegradation des litieres et sequestration du carbone dans les ecosystemes cultives et perennes. Rapport final des travaux Avril 2005

    Energy Technology Data Exchange (ETDEWEB)

    Recous, S.; Barrois, F.; Coppens, F.; Garnier, P.; Grehan, E. [Institut National de Recherches Agronomiques (INRA), Unite d' Agronomie Laon-Reims-Mons (France); Balesdent, J. [CNRS-CEA-Univ.de la Mediterranee, UMR 6191, Lab. d' Ecologie Microbienne de la Rhizosphere, 13 - Saint Paul lez Durance (France); Dambrine, E.; Zeller, B. [Institut National de Recherches Agronomiques (INRA), Unite Biogeochimie des Ecosystemes Forestiers, 54 - Nancy (France); Loiseau, P.; Personeni, E. [Institut National de Recherches Agronomiques (INRA), Unite d' Agronomie, 63 - Clermont-Ferrand (France)

    2002-07-01

    The general objective of this project was to contribute to the evaluation of land use and management impacts on C sequestration and nitrogen dynamics in soils. The land used through the presence/absence of crops and their species, and the land management through tillage, localisation of crop residues, fertilizer applications,... are important factors that affect the dynamics of organic matters in soils, particularly the mineralization of C and N, the losses to the atmosphere and hydrosphere, the retention of carbon into the soil. This project was conducted by four research groups, three of them having expertise in nutrient cycling of three major agro-ecosystems (arable crops, grasslands, forests) and the fourth one having expertise in modelling long term effects of land use on C storage into the soils. Within this common project one major objective was to better understand the fate of plant litter entering the soil either as above litter or as root litter. The focus was put on two factors that particularly affect decomposition: the initial biochemical quality of plant litter, and the location of the decomposing litter. One innovative aspect of the project was the use of stable isotope as {sup 13}C for carbon, based on the use of enriched or depleted {sup 13}C material, the only option to assess the dynamics of 'new' C entering the soil on the short term, in order to reveal the effects of decomposition factors. Another aspect was the simultaneous study of C and N. The project consisted in experiments relevant for each agro-ecosystem, in forest, grassland and arable soils for which interactions between residue quality and nitrogen availability on the one hand, residue quality and location on the other hand, was investigated. A common experiment was set up to investigate the potential degradability of the various residue used (beech leaf rape straw, young rye, Lolium and dactylic roots) in a their original soils and in a single soil was assessed. Based on

  4. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China.

    Science.gov (United States)

    Xun, Weibing; Zhao, Jun; Xue, Chao; Zhang, Guishan; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu

    2016-06-01

    Different fertilization managements of red soil, a kind of Ferralic Cambisol, strongly affected the soil properties and associated microbial communities. The association of the soil microbial community and functionality with long-term fertilization management in the unique low-productivity red soil ecosystem is important for both soil microbial ecology and agricultural production. Here, 454 pyrosequencing analysis of 16S recombinant ribonucleic acid genes and GeoChip4-NimbleGen-based functional gene analysis were used to study the soil bacterial community composition and functional genes involved in soil organic carbon degradation. Long-term nitrogen-containing chemical fertilization-induced soil acidification and fertility decline and significantly altered the soil bacterial community, whereas long-term organic fertilization and fallow management improved the soil quality and maintained the bacterial diversity. Short-term quicklime remediation of the acidified soils did not change the bacterial communities. Organic fertilization and fallow management supported eutrophic ecosystems, in which copiotrophic taxa increased in relative abundance and have a higher intensity of labile-C-degrading genes. However, long-term nitrogen-containing chemical fertilization treatments supported oligotrophic ecosystems, in which oligotrophic taxa increased in relative abundance and have a higher intensity of recalcitrant-C-degrading genes but a lower intensity of labile-C-degrading genes. Quicklime application increased the relative abundance of copiotrophic taxa and crop production, although these effects were utterly inadequate. This study provides insights into the interaction of soil bacterial communities, soil functionality and long-term fertilization management in the red soil ecosystem; these insights are important for improving the fertility of unique low-productivity red soil. PMID:26486414

  5. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China.

    Science.gov (United States)

    Xun, Weibing; Zhao, Jun; Xue, Chao; Zhang, Guishan; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu

    2016-06-01

    Different fertilization managements of red soil, a kind of Ferralic Cambisol, strongly affected the soil properties and associated microbial communities. The association of the soil microbial community and functionality with long-term fertilization management in the unique low-productivity red soil ecosystem is important for both soil microbial ecology and agricultural production. Here, 454 pyrosequencing analysis of 16S recombinant ribonucleic acid genes and GeoChip4-NimbleGen-based functional gene analysis were used to study the soil bacterial community composition and functional genes involved in soil organic carbon degradation. Long-term nitrogen-containing chemical fertilization-induced soil acidification and fertility decline and significantly altered the soil bacterial community, whereas long-term organic fertilization and fallow management improved the soil quality and maintained the bacterial diversity. Short-term quicklime remediation of the acidified soils did not change the bacterial communities. Organic fertilization and fallow management supported eutrophic ecosystems, in which copiotrophic taxa increased in relative abundance and have a higher intensity of labile-C-degrading genes. However, long-term nitrogen-containing chemical fertilization treatments supported oligotrophic ecosystems, in which oligotrophic taxa increased in relative abundance and have a higher intensity of recalcitrant-C-degrading genes but a lower intensity of labile-C-degrading genes. Quicklime application increased the relative abundance of copiotrophic taxa and crop production, although these effects were utterly inadequate. This study provides insights into the interaction of soil bacterial communities, soil functionality and long-term fertilization management in the red soil ecosystem; these insights are important for improving the fertility of unique low-productivity red soil.

  6. Bioavailability of 137Cs - geographical variability in Swedish forest- and arable soil. Construction of a database using GIS

    International Nuclear Information System (INIS)

    Soil acts as a sink for long-lived radionuclides such as 137Cs . The bioavailability and the plant root uptake of 137Cs are therefore influenced by chemical and physical characteristics of the soil. The aim of this study is to gather information about Swedish soil conditions, focusing on parameters known to influence the bioavailability of 137Cs and to indicate areas which may have a higher probability of containing persistent bioavailable 137Cs. This project was carried out in two parts. First, an information database on soil properties in Swedish forest and agricultural landscapes was constructed using GIS (Geographic Information System). Next, Swedish agricultural and forest soils were characterised according to low, intermediate and high estimated bioavailability of 137Cs. Agricultural soils were ranked according to clay and organic matter content; forest soils according to podzol, cambisol and peat. The physical and chemical properties of agricultural soils are quite different from forest soils. In contrast to forest soils, agricultural soils are characterised by reduced quantities of organic matter and a higher proportion of clay. Several investigations have indicated. a faster decline in 137Cs levels in agricultural soils when compared to forest soils. Due to these differences, these soil types are dealt with separately in this report

  7. Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe

    Directory of Open Access Journals (Sweden)

    A. Leip

    2008-01-01

    Full Text Available A comprehensive assessment of policy impact on greenhouse gas (GHG emissions from agricultural soils requires careful consideration of both socio-economic aspects and the environmental heterogeneity of the landscape. We developed a modelling framework that links the large-scale economic model for agriculture CAPRI (Common Agricultural Policy Regional Impact assessment with the biogeochemistry model DNDC (DeNitrification DeComposition to simulate GHG fluxes, carbon stock changes and the nitrogen budget of agricultural soils in Europe. The framework allows the ex-ante simulation of agricultural or agri-environmental policy impacts on a wide range of environmental problems such as climate change (GHG emissions, air pollution and groundwater pollution. Those environmental impacts can be analyzed in the context of economic and social indicators as calculated by the economic model. The methodology consists of four steps: (i definition of appropriate calculation units that can be considered as homogeneous in terms of economic behaviour and environmental response; (ii downscaling of regional agricultural statistics and farm management information from a CAPRI simulation run into the spatial calculation units; (iii designing environmental model scenarios and model runs; and finally (iv aggregating results for interpretation. We show the first results of the nitrogen budget in croplands in fourteen countries of the European Union and discuss possibilities to improve the detailed assessment of nitrogen and carbon fluxes from European arable soils.

  8. Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe

    Science.gov (United States)

    Leip, A.; Marchi, G.; Koeble, R.; Kempen, M.; Britz, W.; Li, C.

    2008-01-01

    A comprehensive assessment of policy impact on greenhouse gas (GHG) emissions from agricultural soils requires careful consideration of both socio-economic aspects and the environmental heterogeneity of the landscape. We developed a modelling framework that links the large-scale economic model for agriculture CAPRI (Common Agricultural Policy Regional Impact assessment) with the biogeochemistry model DNDC (DeNitrification DeComposition) to simulate GHG fluxes, carbon stock changes and the nitrogen budget of agricultural soils in Europe. The framework allows the ex-ante simulation of agricultural or agri-environmental policy impacts on a wide range of environmental problems such as climate change (GHG emissions), air pollution and groundwater pollution. Those environmental impacts can be analyzed in the context of economic and social indicators as calculated by the economic model. The methodology consists of four steps: (i) definition of appropriate calculation units that can be considered as homogeneous in terms of economic behaviour and environmental response; (ii) downscaling of regional agricultural statistics and farm management information from a CAPRI simulation run into the spatial calculation units; (iii) designing environmental model scenarios and model runs; and finally (iv) aggregating results for interpretation. We show the first results of the nitrogen budget in croplands in fourteen countries of the European Union and discuss possibilities to improve the detailed assessment of nitrogen and carbon fluxes from European arable soils.

  9. Dynamics of mineral N, water-soluble carbon and potential nitrification in band-steamed arable soil

    DEFF Research Database (Denmark)

    Elsgaard, Lars

    2010-01-01

    Steaming of narrow soil bands prior to sowing is a new technique that reduces the need for intra-row weeding in herbicide-free row crops. However, the steam treatment may eliminate both weed seeds and non-target soil organisms, thereby affecting the nutrient cycling in the soil. This study tested...

  10. Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria

    Science.gov (United States)

    Obiora, Smart C.; Chukwu, Anthony; Davies, Theophilus C.

    2016-04-01

    This study determined the heavy metals concentration in arable soils and associated food crops around the Pb-Zn mines in Enyigba, Nigeria, and metal transfer factors were calculated. Air-dried samples of the soils and food crops were analyzed for 8 known nutritional and toxic heavy metals by Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) method. Eighty seven percent of all the 20 sampled soils contain Pb in excess of the maximum allowable concentration (MAC) set by Canadian Environmental Quality Guideline (CCME) and European Union (EU) Standard, while Zn in thirty-one percent of the samples exceeded the CCME for MAC of 200 mg/kg. All the food crops, with the exception of yam tuber, contain Pb which exceeded the 0.43 mg/kg and 0.3 mg/kg MAC standards of EU and WHO/FAO respectively, with the leafy vegetables accumulating more Pb than the tubers. The metal transfer factors in the tubers and the leafy vegetables were in the order: Mo > Cu > Zn > Mn > As > Cd > Cr > Ni > Pb and Cd > Cu > Zn > Mn > Mo > As > Ni > Pb > Cr, respectively. Risk assessment studies revealed no health risk in surrounding populations for most of the heavy metals. However, Pb had a high health risk index (HRI) of 1.1 and 1.3, in adults and children, respectively for cassava tuber; Pb had HRI > 1 in lemon grass while Mn also had HRI > 1 in all the leafy vegetables for both adult and children. This high level of HRI for Pb and Mn is an indication that consumers of the food crops contaminated by these metals are at risk of health problems such as Alzheimers' disease and Manganism, associated with excessive intake of these metals. Further systematic monitoring of heavy metal fluxes in cultivable soils around the area of these mines is recommended.

  11. THE INFLUENCE OF MINIMUM TILLAGE SYSTEMS UPON THE SOIL PROPERTIES, YIELD AND ENERGY EFFICIENCY IN SOME ARABLE CROPS

    Directory of Open Access Journals (Sweden)

    Teodor RUSU

    2006-05-01

    Full Text Available The paper presents the influence of the conventional ploughing tillage technology in comparison with the minimum tillage, upon the soil properties, weed control, yield and energy efficiency in the case of maize (Zea mays L., soyabean (Glycine hispida L. and winter wheat (Triticum aestivum L. in a three years crop rotation. For all cultures within the crop rotation, the weed encroachment is maximum for the disc harrow and rotary harrow soil tillage, followed by the chisel and paraplow. The weed encroachment is minimum for the conventional ploughing tillage technology. The results of investigations showed that the yield is a conclusion soil tillage systems influence on soil properties, plant density assurance and on weed control.

  12. Application of biogas slurries from energy crops to arable soils and their impact on carbon and nitrogen dynamics

    OpenAIRE

    Sänger, Anja

    2012-01-01

    The use of renewable primary products as co-substrate or single substrate for biogas production has increased consistently over the last few years. Maize silage is the preferential energy crop used for fermentation due to its high methane (CH4) yield per hectare. Equally, the by-product, namely biogas slurry (BS), is used with increasing frequency as organic fertilizer to return nutrients to the soil and to maintain or increase the organic matter stocks and soil fertility. Studies concerning ...

  13. Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly

    OpenAIRE

    Kardol, P.; Cornips, N.J.; Van Kempen, M.M.L.; Bakx-Schotman, J.M.T.; Van der Putten, W.H.

    2007-01-01

    Plant–soil feedback affects performance and competitive ability of individual plants. However, the importance of plant–soil feedback in historical contingency processes and plant community dynamics is largely unknown. In microcosms, we tested how six early-successional plant species of secondary succession on ex-arable land induced plant-specific changes in soil community composition. Following one growth cycle of conditioning the soil community, soil feedback effects were assessed as plant p...

  14. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy;

    2010-01-01

    crops, respectively. Nevertheless, SOC levels in 2008 were similar across systems. The cumulative soil respiration for the period February to August 2008 ranged between 2 and 3 t CO2–C ha-1 and was correlated (r = 0.95) with average C inputs. In the organic cropping systems, pig slurry application...... and inclusion of catch crops generally increased soil respiration, PMN and PAO. At field capacity, relative gas diffusivity at 0–5 cm depth was >50% higher in the organic than the inorganic fertilizer-based system (P Crop yields in 2008 were generally lower in the low-input organic rotations than......Organic and conventional farming practices differ in the use of several management strategies, including use of catch crops, green manure, and fertilization, which may influence soil properties, greenhouse gas emissions and productivity of agroecosystems. An 11-yr-old field experiment on a sandy...

  15. Study of soil erosion dynamics on the arable lands of Lublin Upland using isotope techniques (137Cs)

    International Nuclear Information System (INIS)

    One of the consequences of agricultural activity are changes of significant element of the environment, that is terrain relief. Since sixties the radioactive isotope of cesium, 137Cs, is applied in the examination of the dynamics of the erosion processes. This method is based on the idea that the circulation of this isotope in the environment accompanies to physical transport of soil. Studies proved that cesium is firmly bond by adsorption complex of the soil. Chemical and biochemical processes have limited influence on the transportation of the cesium. By the examination of the horizontal changes of the total cesium activity one can determine a type and intensity of the processes responsible for its migration and thus the migration of the soil particles

  16. Direct and Indirect Short-term Effects of Biochar on Physical Characteristics of an Arable Sandy Loam

    DEFF Research Database (Denmark)

    Sun, Zhencai; Moldrup, Per; Elsgaard, Lars;

    2013-01-01

    application mechanistically affects soil physical characteristics is limited. This study investigated the effect of biochar application on soil structural and functional properties, including specific surface area, water retention, and gas transport parameters. Intact soil cores were taken from a field.......8), whereas gas transport parameters (air permeability, k(a), and gas diffusivity, D-p/D-o, where D-p is the gas diffusion coefficient in soil and D-o is the gas diffusion coefficient in free air) were measured between pF 2.0 and 3.0. Water retention under dry conditions and measured specific surface area......Biochar addition to agricultural soil is reported in several studies to reduce climate gas emissions, boost carbon storage, and improve soil fertility and crop productivity. These effects may be partly related to soil physical changes resulting from biochar amendment, but knowledge of how biochar...

  17. A method to assess ecosystem services developed from soil attributes with stakeholders and data of four arable farms

    NARCIS (Netherlands)

    Rutgers, M.; Wijnen, van H.J.; Schouten, A.J.; Mulder, C.; Kuiten, A.M.P.; Brussaard, L.; Breure, A.M.

    2012-01-01

    Ecosystem-service indicators and related accounting units are crucial for the development of decision frameworks for sustainable land management systems. With a management concept using ecosystem services, land-use expectations can be linked to quantifiable soil features in a defendable and transpar

  18. Adverse weather impacts on arable cropping systems

    Science.gov (United States)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining meteorological risks and subsequently relating the risk to the cropping calendar will be demonstrated for major arable crops in Belgium. Physically based crop models assist in understanding the links between adverse weather events, sensitive crop stages and crop damage

  19. New approaches to the conservation of rare arable plants in Germany

    Directory of Open Access Journals (Sweden)

    Albrecht, Harald

    2014-02-01

    Full Text Available Over the past decades, the rapid improvement of agricultural technology has caused a dramatic decrease of rare arable plants. This process has stimulated the development of various concepts to protect these species such as the field margin program or more recently the program ‘100 fields for biodiversity’. For fields with sandy or calcareous soils, management practices to conserve the specific arable flora are well explored. For occasionally wet sites, however, which may also harbour various threatened species, little is known about suitable site conditions and conservation management. Studying seven seasonally flooded field sites close to Parstein (Brandenburg showed that the flooding regime and particularly the duration of flooding strongly affect the composition of the apparent plant communities. Effects of different arable farming practices on the populations of the two target species Myosurus minimus and Elatine alsinastrum were less pronounced. Another urgent problem of arable plant conservation is that rare species frequently grow at sites where they are threatened by current cultivation. As management is less intense under organic farming, this system could provide suitable conditions for the conservation of threatened species. However, locally extinct species need to be actively reintroduced to overcome dispersal limitations. How these plants can be successfully established in fields under organic farming was studied in a field trial at Gräfelfing (Bavaria. Preliminary results on the winter annuals Legousia speculum-veneris and Consolida regalis indicate that rare arable plants can be successfully introduced to organic fields. Early autumn sowing and a low crop competition provide the most favourable conditions for their establishment. At reduced sowing rates, winter spelt allowed a much better establishment than winter rye. If the idea of transferring rare arable plants to organic farmland establishes in practice, results of this

  20. Modeling greenhouse gas emissions (CO2, N2O, CH4) from managed arable soils with a fully coupled hydrology-biogeochemical modeling system simulating water and nutrient transport and associated carbon and nitrogen cycling at catchment scale

    Science.gov (United States)

    Klatt, Steffen; Haas, Edwin; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Plesca, Ina; Breuer, Lutz; Zhu, Bo; Zhou, Minghua; Zhang, Wei; Zheng, Xunhua; Wlotzka, Martin; Heuveline, Vincent

    2014-05-01

    The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in a small catchment at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the evapotranspiration is based on Penman-Monteith. Biogeochemical processes are modelled by LandscapeDNDC, including soil microclimate, plant growth and biomass allocation

  1. Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management

    DEFF Research Database (Denmark)

    Askegaard, M; Olesen, Jørgen E; Rasmussen, Ilse Ankjær;

    2011-01-01

    in the manured treatments the application rate was lower than crop demand. The results identify management of crop and soil during autumn as the main determinant of N leaching. Nitrate leaching was lowest for a catch crop soil cover during autumn and winter (avg. 20 kg N ha−1), a soil cover of weeds......Two main challenges facing organic arable farming are the supply of nitrogen (N) to the crop and the control of perennial weeds. Nitrate leaching from different organic arable crop rotations was investigated over three consecutive four-year crop rotations in a field experiment at three locations...... in Denmark (12 years in total). The experimental treatments were: (i) crop rotation, (ii) catch crop and (iii) animal manure. Nitrate leaching was estimated from measured soil nitrate concentration in ceramic suction cells and modelled drainage. There were significant effects on annual N leaching of location...

  2. International bioenergymarkets - the effects of biofuelpolicies on agriculture and arable area; Kansainvaelinen bioenergiakauppa. Biopolttoainetavoitteiden vaikutukset maatalouteen ja viljelyalan kaeyttoeoen

    Energy Technology Data Exchange (ETDEWEB)

    Rintamaeki, H.; Aro-Heinilae, E.

    2012-11-01

    is based on corn and the oil seed affects the prices of foods and weakens access of especially the world's poorest to the food market. Biofuels production has increased so direct as indirect changes into the use of the land. Direct changes refer to the introduction of the new land to the biofuels production. The indirect changes in the use of the land can be the result from biofuels production displacing services or commodities (food, feed, fiber products) on land currently in production. It is supposed the growth of the arable land in the different biofuel scenarios being 1-4 per cent at a global level compared with a situation without the production of biofuels. Growth pressure of arable land remain moderate, however effects to food prices with firs generation biofuels are high, which dilutes food security. This comes crucial when taken into account pressure that comes from population growth, as well as the fact that effects allocates the most towards the most poor which use prominent share of their income for staple foodstuff purchase. Development of second generation biofuels, which production is based on byproduct and wastes or biomass that is cultivated in marginal lands, is essential to meet political biofuel targets in sustainable manner. (orig.)

  3. Effect of soil warming and rainfall patterns on soil N cycling in northern Europe

    DEFF Research Database (Denmark)

    Patil, Raveendra Hanumantagoud; Lægdsmand, Mette; Olesen, Jørgen Eivind;

    2010-01-01

    With climate change northern Europe is expected to experience extreme increase in air temperatures, particularly during the winter months, influencing soil temperatures in these regions. Climate change is also projected to influence the rainfall amount, and its inter- and intra-annual variability....... These changes may affect soil moisture regimes, soil water drainage, soil nitrogen (N) availability and N leaching to aquatic environment and N2O emissions to atmosphere. Thus it is important to study the effects of increased soil temperature and varying rainfall patterns on soil N cycling in arable land from...... temperate climates, which is a major source of N pollution. An open-field lysimeter study was carried out during 2008-2009 in Denmark on loamy sand soil (Typic Hapludult) with three factors: number of rainy days, rainfall amount and soil warming. Number of rainy days included the mean monthly rainy days...

  4. A Modeling Approach to Simulate Effects of Intercropping and Interspecific Competition in Arable Crops

    OpenAIRE

    Heike Knörzer; Simone Graeff-Hönninger; Bettina U. Müller; Hans-Peter Piepho; Wilhelm Claupein

    2010-01-01

    Interspecific competition between species influences their individual growth and performance. Neighborhood effects become especially important in intercropping systems, and modeling approaches could be a useful tool to simulate plant growth under different environmental conditions to help identify appropriate combinations of different crops while managing competition. This study gives an overview of different competition models and their underlying modeling approaches. To model intercropping ...

  5. Impacts of projected climate change on productivity and nitrogen leaching of crop rotations in arable and pig farming systems in Denmark

    DEFF Research Database (Denmark)

    Doltra, Jordi; Lægdsmand, Mette; Olesen, Jørgen E

    2014-01-01

    The effects of projected changes in climate and atmospheric CO2 concentration on productivity and nitrogen (N) leaching of characteristic arable and pig farming rotations in Denmark were investigated with the FASSET simulation model. The LARS weather generator was used to provide climatic data...... in Denmark, differing in soil and climate, and representative of the selected production systems. The CO2 effects were modelled using projected CO2 concentrations for the A1B emission scenario. Crop rotations were irrigated (sandy soil) and unirrigated (sandy loam soil), and all included systems...... rather than single crops for impact assessments. Potato and sugar beet in arable farming and grain maize in pig farming contributed most to the productivity increase in the future scenarios. The highest productivity was obtained in the arable system on the sandy loam soil, with an increase of 20...

  6. 典型农耕区棕壤水稳性团聚体及其有机碳特征%Characterization of Water Stable Aggregates and Organic Carbon in Typical Brown Arable Soil

    Institute of Scientific and Technical Information of China (English)

    任雅阁; 成杭新; 徐殿斗; 刘应汉; 刘飞; 欧阳宏; 刘志明; 马玲玲

    2013-01-01

    This paper was aimed at the distribution and composition of water stable aggregates together with organic carbons in brown soil in Shandong peninsula. The results showed that; The size distribution of water stable aggregates was as irregular "W" with two lower "shoulders". The microaggregates (< 250 μm) accounted for 51. 74% in arable soil and 51. 61% in uncultivated soil, respectively. The dispersion degree of soil particles was increased due to the cultivation disturbance and the smaller aggregates resisted the water erosion. The distribution of soil organic carbon(SOC) in soil predominately was constrained by the allocation of aggregates, which was increased with the decreasing of particle sizes. The average content of SOC in macroaggregates was 5. 98 g/kg in arable soil and 3. 48 g/kg in uncultivated soil, respectively. The content was 8. 05 g/kg for arable soil and 9. 11 g/kg for uncultivated soil in microaggregates, accounting for 55. 36% and 68. 58% of the total organic carbon content in soil, respectively. It was notable that the content of SOC in silt-clay microaggregates(<20 μm) was the highest(10. 97 g/kg and 11. 63 g/kg in arable and uncultivated soil, respectively), which could be regarded as the indicator for potential of SOC sequestration of brown soil in study areas. Fourier transform infrared spectroscopy (FTIR) resolve showed that organic carbon in microaggregates predominately consisted of stable aromatic and carbohydrate carbon.%对山东半岛棕壤区耕地和荒地土壤水稳性团聚体及其有机碳进行解析.结果表明:各级土壤团聚体质量比总体呈“两头低中间高”的不规则“W”形分布,耕地和荒地土壤微团聚体(<250μm)平均含量分别为51.74%和51.61%,耕种的扰动增加了土壤颗粒分散度,水流对大团聚体的破坏作用更大.有机碳分布受团聚体分配的制约,其含量随团聚体粒径减小而增加.耕地和荒地有机碳在大团聚体中平均含量分别为5

  7. Effect of Afforestation on Soil Properties and Mycorrhizal Formation

    Institute of Scientific and Technical Information of China (English)

    P. KAHLE; C. BAUM; B. BOELCKE

    2005-01-01

    A study was conducted on Cambisols in Northern Germany to analyze the effect of fast growing trees (Salix and Populus spp.) used in agroforestry on soil chemical and physical properties and also on endo- and ectomycorrhizal colonization measure the topsoil inventories at the very beginning and after six (GUL), seven (VIP) and ten (ROS) years of afforestation with fast growing trees. The effect on soil organic carbon, plant available nutrients, reaction, bulk density, porosity and water conditions was analyzed. Arable soils without tree coppice were used as controls. Additionally, the endoand ectomycorrhizal colonization of two Salix and two Populus clones were investigated at one site (GUL) in 2002. The amounts of organic carbon in the topsoil increased significantly (P<0.01) presumably induced by leaf and root litter and also by the lack of tillage. The soil bulk density significantly decreased and the porosity of the soil increased significantly (both P<0.01). The proportion of medium pores in the soil also rose significantly (P<0.05 and 0.01). Generally,afforestation of arable soils improved soil water retention. Ectomycorrhizas dominated the mycorrhizal formation of the Salix and Populus clones, with the accumulation of organic matter in the topsoil suspected of supporting the ectomycorrhizal formation. Thus, agroforestry with Salix and Populus spp. conspicuously affected chemical and additionally physical properties of the top layer of Cambisols within a period of six years.

  8. Effectiveness of the GAEC cross compliance standard Protection of permanent pasture: prohibition to convert permanent pasture into arable crops in avoiding habitat deterioration

    Directory of Open Access Journals (Sweden)

    Paola Ruda

    2011-08-01

    Full Text Available By the end of the 19th and beginning of the 20th century new developments in agricultural technology caused an intensification of the agricultural practices. Species adapted to the diversity of structures or resources of high naturalistic value farmlands, like permanent pasture, cannot survive under increasingly high intensity agricultural management. The Italian MD n.30125 dated 22/12/2009 (Standard 4.1 defines, among the measures for the protection of permanent pasture and avoidance the deterioration of habitats, the prohibition to convert permanent pasture into arable crops and to till with the exception of agricultural practices related to the renewal and/or thickening of the sward and to the drainage water management. Permanent pastures biodiversity performs key ecological services and if correctly assembled in time and space can lead to agroecosystems capable of sponsoring their own soil fertility, crop protection and productivity. The vegetative cover of permanent pasture prevents soil erosion, replenishes ground water and controls flooding by enhancing infiltration and reducing runoff. The changes of land use or some practices change insect community and vegetation diversity. Physical disturbance of the soil caused by tillage increases risk of erosion and reduces the recycling of nutrients and proper balance between organic matter, soil organism and plant diversity. Is necessary a habitat preservation policy because after a change, even a return to past management would not completely re-establish the complex structure of habitats.

  9. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  10. Prediction of the immediate effect of traffic on field soil qualities.

    NARCIS (Netherlands)

    Lerink, P.

    1994-01-01

    Field traffic by heavy machinery and transport vehicles is an integral part of modem arable crop production systems. The greater part of the field area is trafficked once or several times per year during the successive field operations. The traffic induced effect on the soil physical condition is of

  11. SoilEffects - start characterization of the experimental soil

    DEFF Research Database (Denmark)

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun;

    by ignition loss was 11.3 % in the grass and 6.6 % in the arable system. Analyzed by total-C measurements, the corresponding SOM values were 11.03 % and 5.97 %. In Norwegian soil, SOM values between 3 and 6 % are regarded as high humus contents (“moldrik”), whereas values between 6 and 12 % are regarded...

  12. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times.

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    Full Text Available Soil physicochemical properties, soil microbial biomass and bacterial community structures in a rice-wheat cropping system subjected to different fertilizer regimes were investigated in two seasons (June and October. All fertilizer regimes increased the soil microbial biomass carbon and nitrogen. Both fertilizer regime and time had a significant effect on soil physicochemical properties and bacterial community structure. The combined application of inorganic fertilizer and manure organic-inorganic fertilizer significantly enhanced the bacterial diversity in both seasons. The bacterial communities across all samples were dominated by Proteobacteria, Acidobacteria and Chloroflexi at the phylum level. Permutational multivariate analysis confirmed that both fertilizer treatment and season were significant factors in the variation of the composition of the bacterial community. Hierarchical cluster analysis based on Bray-Curtis distances further revealed that bacterial communities were separated primarily by season. The effect of fertilizer treatment is significant (P = 0.005 and accounts for 7.43% of the total variation in bacterial community. Soil nutrients (e.g., available K, total N, total P and organic matter rather than pH showed significant correlation with the majority of abundant taxa. In conclusion, both fertilizer treatment and seasonal changes affect soil properties, microbial biomass and bacterial community structure. The application of NPK plus manure organic-inorganic fertilizer may be a sound fertilizer practice for sustainable food production.

  13. Potential of temperate agricultural soils for carbon sequestration: A meta-analysis of land-use effects.

    Science.gov (United States)

    Kämpf, Immo; Hölzel, Norbert; Störrle, Maria; Broll, Gabriele; Kiehl, Kathrin

    2016-10-01

    Restoring depleted soil organic carbon (SOC) stocks of arable land to remove carbon from the atmosphere and offset fossil fuel emissions is a promising strategy for the mitigation of climate change. In agroecosystems conservational tillage practices and the abandonment of formerly plowed fields (ex-arable land) are shown to have the highest potential to sequester SOC. Nevertheless reported sequestration rates vary and the effects of environmental site conditions remain poorly understood. Our results are based on a meta-analysis of 273 paired SOC estimates from 65 publications which included only mineral soils from the temperate zone. SOC stocks of ex-arable grasslands with an average of 14years since abandonment were 18% larger compared to the SOC of arable land. Likewise, SOC stocks of never-plowed grassland plots were 11% larger than the SOC stocks of abandoned fields. The average sequestration rate was 0.72t Cha(-1)yr(-1). Semi-arid and sub-humid climate as well as low initial SOC stocks positively affected proportional SOC gains suggesting that the recovery of carbon stocks is not limited by low primary production. Therefore, the northward shift of cultivation areas in the temperate zone will lead to the abandonment of soils with high SOC recovery potential. However, if native soils are opened up elsewhere to compensate for yield losses due to abandonment the surplus of SOC in ex-arable land can easily be overcompensated by cultivation losses. PMID:27232969

  14. Effects of band-steaming on microbial activity and abundance in organic farming soil

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Jørgensen, Martin Heide; Elmholt, Susanne

    2010-01-01

    Band-steaming of arable soil at 80-90 degrees C kill off weed seeds prior to crop establishment which allows an extensive intra-row weed control. Here we evaluated the side-effects of in situ band-steaming on soil respiration, enzyme activities, and numbers of culturable bacteria and fungi...... in an organic field soil. The results showed that mechanical disturbance created by band-steaming could be neglected as a mediator of microbial changes. Also, soil pH and water content was unaffected by band-steaming. Effects of band-steaming on in situ soil respiration and basal respiration, respectively, were...

  15. Nitrate leaching and energy efficiency of stockless arable systems compared with mixed farming and a non-organic system on fertile soils in Northern Germany

    OpenAIRE

    Loges, Ralf; Kelm, Michael; Taube, Friedhelm

    2008-01-01

    Previous studies based on either small-scale plot experiments or modelling approaches, indicate a lower risk of nitrate leaching and a higher energy efficiency in organic than in conventional farming systems. Because there is still a lack of data measured at the farm scale, which also take farm type and farming practices into account, a comparison between an N-intensive non-organic, two organic all-arable crop rotations and a typical rotation of a mixed organic farm was carried out over a thr...

  16. Complementary effects of soil organism and plant propagule introductions in restoration of species-rich grassland communities.

    Energy Technology Data Exchange (ETDEWEB)

    Kardol, Paul [ORNL; Bezemer, T Martijn [Netherlands Institute of Ecology (NIOO-KNAW); van der Putten, Wim H. [Netherlands Institute of Ecology (NIOO-KNAW)

    2009-01-01

    A common practice in biodiversity conservation is restoration of former species-rich grassland on ex-arable land. Major constraints for grassland restoration are high soil fertility and limited dispersal ability of plant species to target sites. Usually, studies focus on soil fertility or on methods to introduce plant seeds. However, the question is whether soil fertility reduction is always necessary for getting plant species established on target sites. In a three-year field experiment with ex-arable soil with intensive farming history, we tested single and combined effects of soil fertility reduction and sowing mid-successional plant species on plant community development and soil biological properties. A controlled microcosm study was performed to test short-term effects of soil fertility reduction measures on biomass production of mid-successional species. Soil fertility was manipulated by adding carbon (wood or straw) to incorporate plant-available nutrients into organic matter, or by removing nutrients through top soil removal (TSR). The sown species established successfully and their establishment was independent of carbon amendments. TSR reduced plant biomass, and effectively suppressed arable weeds, however, created a desert-like environment, inhibiting the effectiveness of sowing mid-successional plant species. Adding straw or wood resulted in short-term reduction of plant biomass, suggesting a temporal decrease in plant-available nutrients by microbial immobilisation. Straw and wood addition had little effects on soil biological properties, whereas TSR profoundly reduced numbers of bacteria, fungal biomass and nematode abundance. In conclusion, in ex-arable soils, on a short term sowing is more effective for grassland restoration than strategies aiming at soil fertility reduction.

  17. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    OpenAIRE

    Hiel, MP.; Chélin, M.; Parvin, N.; Barbieux, S.; Degrune, F.; Lemtiri, A.; Colinet, G.; Degré, A.; Bodson, B.; Garré, S.

    2016-01-01

    Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop produ...

  18. Arable land increase in northern China: facts and findings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on investigations between 1986 and 1996 in the four provinces of northern China, major problems on land reclamation were discovered. The increase of arable land was mainly low quality fields from barren land and was susceptible to disertification and water-induced soil erosion. In the meantime, large area of grassland and forestland was lost or degraded, and original fertile arable land was occupied for residential and industrial use. As a result the environment deteriorated. This change was mainly caused by economic development, population growth, inferior natural conditions, and irrational management strategies. Finally some positive measures were suggested to stop this negative cycle.

  19. LIFE+IPNOA mobile prototype for the monitoring of soil N2O emissions from arable crops: first-year results on durum wheat

    Directory of Open Access Journals (Sweden)

    Simona Bosco

    2015-09-01

    Full Text Available Agricultural activities are co-responsible for the emission of the most important greenhouse gases: carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O. Development of methodologies to improve monitoring techniques for N2O are still needful. The LIFE+IPNOA project aims to improve the emissions monitoring of nitrous oxide from agricultural soils and to identify the agricultural practices that can limit N2O production. In order to achieve this objective, both a mobile and a stationary instrument were developed and validated. Several experimental field trials were set up in two different sites investigating the most representative crops of Tuscany (Central Italy, namely durum wheat, maize, sunflower, tomato and faba bean. The field trials were realized in order to test the effect on N2O emissions of key factors: tillage intensity, nitrogen fertiliser rate and irrigation. The field trial on durum wheat was set up in 2013 to test the effect of tillage intensity (minimum and conventional tillage and nitrogen fertilisation rate (0, 110, 170 kg N ha-1 on soil N2O flux. Monitoring was carried out using the IPNOA mobile prototype. Preliminary results on N2O emissions for the durum wheat growing season showed that mean daily N2O fluxes ranged from –0.13 to 6.43 mg m-2 day-1 and cumulative N2O-N emissions over the period ranged from 827 to 2340 g N2O-N ha-1. Tillage did not affect N2O flux while increasing nitrogen fertilisation rate resulted to significantly increase N2O emissions. The IPNOA mobile prototype performed well during this first year of monitoring, allowing to catch both very low fluxes and peaks on N2O emissions after nitrogen supply, showing a good suitability to the field conditions.

  20. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    OpenAIRE

    Kayler, Z.E.; Kaiser, M; Gessler, A.; Ellerbrock, R. H.; M. Sommer

    2011-01-01

    Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. Analysis of δ13C and δ15N isotopic signatures of stabilized OM fractions along with soil mineral characteristics may yield important information about OM-mineral associations and their processing history. We anlayzed the δ13C and δ15N isotopic signatures from two organic matter (OM) fractio...

  1. Archaeal Abundance across a pH Gradient in an Arable Soil and Its Relationship to Bacterial and Fungal Growth Rates

    OpenAIRE

    Bengtson, Per; Sterngren, Anna E.; Rousk, Johannes

    2012-01-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abund...

  2. Effect of afforestation of agricultural soils and tree species composition on soil physical characteristics changes

    Directory of Open Access Journals (Sweden)

    Vopravil Jan

    2014-03-01

    Full Text Available This paper deals with the evaluation of the effect of afforestation of previously arable land to soil characteristics changes. One of the main aims was to evaluate the effects of each forest species on the soil structure quality after afforestation. Soil samples were taken at two climatically distinct subregions within the Czech Republic. Based on the different site conditions, two study sites were chosen at each locality for a total of four research sites. Detailed soil survey and basic forest stand inventories were conducted at all four sites. The first locality was established in the Rychnov nad Kněžnou district in the Protected Landscape Area of the Orlické mountains (soil type a Haplic Cambisol. The second locality was established in the Prague-East district (soil type a Haplic Cambisol and a Haplic Stagnosol. Afforestation had a positive influence on the soil physical characteristics which are important for the maintenance of soil stability. Forest cover has a major influence on increasing the soil porosity, by decreasing the reduced bulk density and increasing capillary and gravitational pores, which is crucial. Afforestation was also found to be positively related to increases in soil organic matter content in different forms, both stable and unstable, and tendency of considerable soil organic matter accumulation not only in the layer of surface humus but also in the entire soil profiles of the research sites. The main contributor to soil improvement after afforestation is the formation of stable soil aggregates. This is typical also for spruce and pine cover.

  3. Effects of season and urea treatment on infection of stumps of Picea abies by Heterobasidion annosum in stands on former arable land

    Energy Technology Data Exchange (ETDEWEB)

    Brandtberg, P.O. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Research; Johansson, Martin [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology; Seeger, P. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Statistics

    1996-09-01

    Between 1986 and 1990, a series of thinnings were made in previously unthinned first rotation stands on former arable land located in the southern half of Sweden. The aim was to evaluate the effects of season and urea treatment on the frequency of infection of stumps of Norway spruce (Picea abies (L.) Karst.) by the root-rot fungus Heterobasidion annosum (Fr.) Bref. Untreated stumps, resulting from 60 thinnings (22-100 stumps each, altogether ca 3000 stumps) made at different times of year, were investigated 3-24 months after cutting to determine whether they were infected with H. annosum. On average only 2% of the stumps from thinnings made in November-February were infected, whereas the incidence of infection among stumps thinned in June-July was 34%. Two methods of treating stumps with urea to prevent stump infection by H. annosum after thinning were evaluated in terms of effectiveness. The freshly cut stumps were treated with a 20% urea solution, transformed to a gel by adding 0.2% carboxymethyl cellulose, or with a 30% urea solution. On average, the reduction in infection rate obtained was 62% with the first method and 85% with the latter. In a separate study involving a concentration series of urea, there was a considerable drop in protection efficiency, from 89% to 58%, when the concentration was decreased from 30% to 15%. 38 refs, 3 figs, 1 tab

  4. Assessment of Arable Soil Quality in Tongchuan City%铜川地区耕地土壤质量的初步评价

    Institute of Scientific and Technical Information of China (English)

    齐金生; 冯艳莉

    2011-01-01

    以陕西省煤炭基地的铜川市为研究对象,采集70个耕地样品,分析土壤有机质、碱解氮、速效磷等理化性质,并采用相关和主成分分析法对供试土壤的质量进行初步评价.结果表明,铜川市土壤有机质含量、碱解氮、速效磷含量均维持在较低水平,尚不能满足农业生产的需要,需采取合适措施进行培肥;钾含量稳中有升;土壤中的硫素不缺乏;主成分分析构建的土壤肥力系统可较好表征土壤肥力状况,据主成分综合得分将供试土样划分为高、中、低3类,分别占8.57%、54.28%和37.14%,可见铜川地区土壤肥力水平总体偏低;主成分的综合得分可以较好反映供试土样间肥力水平的差异.%By correlation and Principle Component Analyze (PCA). Soil quality was assessed in 70 soil samples in Tongchuan city as coal base in Shaanxi province after analyzed soil organic matter,available nitrogen, available phosphate etc. The results showed as follows, the content of organic matter, available nitrogen and available phosphate were lower to supply plant growth, it is needed to improve soil nutrient levels by fertilization. Potassium was better than other chemical properties so that it is distinguish to fertilize different plots. Sulfur was enough for plants to grow because of higher available sulfur. The soil fertility information system can be an good index to indicate soil fertility levels by PCA. The soil samples with higher, middle and lower fertility account for 8. 57%, 54. 28% and 37. 14% respectively of total 70 samples, which indicated that the soil fertility level was lower status in Tongchuan region. The composite scores can be a better index to indicate soil fertility levels among soil samples tested.

  5. Study on Soil Magnetic Effect

    Institute of Scientific and Technical Information of China (English)

    YIYAN-LI; LIUXIAO-YI

    1995-01-01

    A study on the effect of applied magnetic field was performed with six types of soils collected from northeastern China.Magnetic field was found to cause changes of soil physico-chemical properties and soil enzyme activities.An appropriate applied magnetic field could cut down soil zeta-potential,soil specific surface,soil water potential and soil swelling capacity;raise the charge density on soil colloids and the activities of invertase,hydrogen peroxidase and amylase in the soils;enhance soil aggregation and improve soil structural status and soil water-releasing capability.

  6. Simulating soil N2O emissions and heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Kracher, Daniela; Lægdsmand, Mette;

    2011-01-01

    winter wheat grown in three different organic and one inorganic fertilizer-based cropping system using two different models, i.e., MoBiLE-DNDC and FASSET. The two models were generally capable of simulating most seasonal trends of measured soil heterotrophic CO2 respiration and N2O emissions. Annual soil......Modelling of soil emissions of nitrous oxide (N2O) and carbon dioxide (CO2) is complicated by complex interactions between processes and factors influencing their production, consumption and transport. In this study N2O emissions and heterotrophic CO2 respiration were simulated from soils under...... heterotrophic CO2 respiration was underestimated by both models in all systems (about 10–30% by FASSET and 10–40% by MoBiLE-DNDC). Both models overestimated annual N2O emissions in all systems (about 10–580% by FASSET and 20–50% by MoBiLE-DNDC). In addition, both models had some problems in simulating soil...

  7. 利用AAS研究农田土壤Cu,Zn和Cd含量及收支平衡%Study on Contents and Budgets of Cu,Zn and Cd in an Arable Soil Using AAS

    Institute of Scientific and Technical Information of China (English)

    赵颖; 姜春明; 马强; 周桦; 徐永刚; 宇万太

    2015-01-01

    Based on a long-term experiment in Shenyang Experimental Station ,the effect of manure application on the contents and budgets of Cu ,Zn and Cd in the arable soil was studied .The experiment included four treatments :no mature addition (CK) ,mature addition 10 t・ha-1 year-1 (M1) ,25 t・ha-1 year-1 (M2) ,and 50 t・ha-1 year-1 (M3) .The result showed that Cu ,Zn and Cd in soil were accumulated with manure application and prolongation of experiment ,and the accumulative magni-tude increased with increasing of manure application .The average annual growth rates of the heavy metals in the four treatments (CK ,M1 ,M2 ,M3) were 2.83% ,6.56% ,7.54% ,8.96% ;0.03% ,3.44% ,4.53% ,6.64% and 1.51% ,8.01% , 10.27% ,16.08% for Cu ,Zn and Cd ,respectively .After six years of the experiment ,the content of Cd in the M3 treatment was quite close to the threshold of Chinese Soil Quality Standard Grade III (1 mg・kg -1 ,GB15618-1995) .After 12 years of the experiment ,the contents of Cu in the mature-amended treatments fell in the Chinese Soil Quality Standard Grade III ,which should be paid more attention .Although the heavy metals in soil were gradually accumulated ,the Cu ,Zn and Cd levels in crop grain were still below the National Food Contamination Standards (GB2762-2005 ;GB13106-91 ;GB15199-94) ,indicating the contents of heavy metals in crop produced from contaminated soil might not exceed the corresponding standards .The con-tents of Cu ,Zn and Cd in the straw were much greater than those in the grain .The removal of heavy metal by crop was in the order of M3>M2>M1> CK .The average amounts of Cu ,Zn and Cd annually removed from the soil in the four treatments (CK ,M1 ,M2 and M3) were 35.68 ,47.80 ,63.65 ,69.64 ;249.14 ,375.22 ,375.16 ,444.44 ,and 0.83 ,1.39 ,1.64 ,1.66 g・ha-1 ,respectively .The contents of heavy metals in organic manure varied in different years :the contents of Cu and Zn in-creased year by year ,while Cd presented a decreasing trend .The average

  8. Research on pH Buffer Capacity and Acidification Rate of Arable Brown Soil%耕地棕壤酸碱缓冲性能及酸化速率研究

    Institute of Scientific and Technical Information of China (English)

    沈月; 依艳丽; 张大庚; 粟杰; 依妍; 徐龙超

    2012-01-01

    Significant acidification has taken place in the arable brown soil of Liaoning province since the second soil general survey.The general mean of pH were declined from 6.42 to 5.73.Arable brown soil(0-20 cm) of the four typical areas in Liaoning province(Changtu,Shenyang,Wafangdian and Qingyuan) were used to study the pH buffer capacity,acidification rate and the influencing factors.The results showed that pH buffer capacity in the four areas were from 29.66 to 39.87 mmol/kg·pH unit.The pH buffer capacity of the north and middle area in Liaoning province were higher than the south and east area.The acidification of south area was the fastest with the value of 2.69 H+ kmol/(hm2·a),and the slowest happened in the east with the value of 1.44 H+ kmol/(hm2·a).The initial pH,cation exchange capacity,soil mechanical composition and organic matter were all the factors that affect the changes of soil pH buffer capacity.The texture in the north and middle area were silt loam soil,cation exchange capacity,base saturation and clay content were higher than that in the other two areas(south and east).Therefore,they had the higher pH buffer capacities.Fertilization and the other human factors that contribute to buffer capacity and acidification rate need to be further studied.%辽宁省耕地棕壤自第二次土壤普查以来酸化趋势明显,pH整体平均值从第二次普查时期的6.42降至5.73。对辽宁省4个典型地区(昌图、沈阳、瓦房店、清原)的耕地棕壤耕层(0-20cm)缓冲性能、酸化速率及其影响因素进行研究,结果表明:各地区酸碱缓冲容量变幅为29.66~39.87mmol/kg.pH unit,其中辽宁北部和中部地区酸碱缓冲容量明显高于辽南和辽东地区。酸化速率以辽南地区下降速率最快,其值为2.69H+kmol/(hm2.a),而速率最慢的地区为辽东,其酸化速率为1.44H+kmol/(hm2.a)。土壤初始pH、阳离子交换量、颗粒组成及有机质含量均

  9. Study on the Spatial Distribution of Arable Laye Soil Nutrient in Wenxian%文县耕层土壤养分空间分布研究

    Institute of Scientific and Technical Information of China (English)

    徐宏; 刘海娥; 王世来; 杨子凡

    2013-01-01

      根据空间插值的基本原理,使用Arcgis软件中kriging插值法,对2008年文县耕层土壤有机质、碱解氮、有效磷和速效钾实测数据进行空间插值,得到4种土壤养分的空间分布图。根据对各乡镇土壤养分丰缺分布状况的分析,使用Arcgis软件的分级功能,按照甘肃省耕层土壤养分分级标准,得出文县耕层土壤养分的空间分布为有机质、速效钾含量丰富,碱解氮、有效磷缺乏。%According to the basic principles of spatial interpolation, and the kriging interpolation Law of Arcgis software, analyzing the spatial interpolation on soil organic matter, nitrogen, available phosphorus and available potassium measured data in 2008, then obtaining the spatial distribution of the four kinds of soil nutrients . In the light of the analysis of the township soil nutrients distribution, using the classification function of Arcgis software, and The Gansu Province Soil Nutrient grading standards, finally drawing the conclusion that the spatial distribution of Wenxian soil nutrients was the contents of organic matter and available potassium are rich, but this area was lack of alkaline hydrolysis nitrogen and available phosphorus.

  10. Effect of land use change on soil organic carbon

    Directory of Open Access Journals (Sweden)

    Barančíková Gabriela

    2016-04-01

    Full Text Available The direction of changes and conversion of soil organic carbon (SOC is in most current ecosystems influenced by human activity. Soil Science and Conservation Research Institute is responsible for monitoring the agricultural soils in a five-year cycle. One part of the soil monitoring involves the determination of the soil organic carbon (SOC storage. Further, we followed the conversion of arable land on grassland during more than 20 years of monitoring period at some locations where changes in land use occurred. Ten places on basic network and 2 places on key monitoring localities in which arable land have been converted into grassland were identified. About 50 percent of studied soils converted into permanent grassland were Cambisols. The other converted soil types were Luvic Stagnosol, Stagnic Regosol, Mollic Fluvisol, and Stagnic Luvisol. The results showed that after the third monitoring cycle (2002, increase of SOC was observed in all the localities, with the change in land use. Statistical parameter (t-test confirmed significant differences between the set of average SOC values before and after the land use conversion. The chemical structure of humic acids (HA isolated from arable soil and permanent grassland indicated increasing of aliphatic carbon content in grassland HA. More aromatic and stabile were HA isolated from arable soils.

  11. Distinct germination response of endangered and common arable weeds to reduced water potential.

    Science.gov (United States)

    Rühl, A T; Eckstein, R L; Otte, A; Donath, T W

    2016-01-01

    Arable weeds are one of the most endangered species groups in Europe. Modern agriculture and intensive land-use management are the main causes of their dramatic decline. However, besides the changes in land use, climate change may further challenge the adaptability of arable weeds. Therefore, we investigated the response pattern of arable weeds to different water potential and temperature regimes during the phase of germination. We expected that endangered arable weeds would be more sensitive to differences in water availability and temperature than common arable weeds. To this end, we set up a climate chamber experiment where we exposed seeds of five familial pairs of common and endangered arable weed species to different temperatures (5/15, 10/20 °C) and water potentials (0.0 to -1.2 MPa). The results revealed a significant relationship between the reaction of arable weed species to water availability and their Red List status. The effects of reduced water availability on total germination, mean germination time and synchrony were significantly stronger in endangered than in common arable weeds. Therefore, global climate change may present a further threat to the survival of endangered arable weed species.

  12. 豫中褐土耕地土壤性质空间分异及质量评价%Spatial variation of soil properties and quality evaluation for arable Ustic Cambosols in central Henan Province

    Institute of Scientific and Technical Information of China (English)

    张学雷; 冯婉婉; 钟国敏

    2011-01-01

    showed that the arable Ustic Cambosols in study area was of good quality soil, over 95% of which ranked in good and medium classes and only less than 5% were in poor class.

  13. Fracciones de carbono orgánico en la capa arable: efecto de los sistemas de cultivo y fertilización nitrogenada Organic carbon fractions in the arable layer: cropping systems and nitrogen fertilization effects

    Directory of Open Access Journals (Sweden)

    Maximiliano J Eiza

    2005-07-01

    Full Text Available Nuestro objetivo fue evaluar el efecto de siete sistemas de cultivo (SC en un experimento de larga duración: pastura permanente (PP, agricultura permanente bajo siembra directa (SD (SD100 y labranza convencional (LC (LC100, rotación agricultura pastura (50%-50% del tiempo bajo SD (SD50 y LC (LC50, rotación agricultura pastura (75%-25% del tiempo bajo SD (SD75 y LC (LC75 y dos dosis de fertilización nitrogenada: 0 y 120 kg N ha-1, sobre el carbono orgánico total (COT y particulado (COP, para 0-20 cm en 1994 y para 0-5, 5-20 y 0-20 cm de profundidad en 2003. En 1994, los mayores COP y COT se asociaron a manejos con períodos agrícolas previos cortos. En 2003, se encontraron diferencias entre SC en COT en la capa de 0-5 cm de profundidad, siendo PP, LC50 y SD50 los tratamientos con mayor COT. El COP fue más alto bajo PP, LC50 y SD50 a 0-5 y 0-20 cm de profundidad. A 0-5 cm COP bajo SD fue significativamente mayor que bajo LC. A 5-20 cm de profundidad, las diferencias en COP no fueron claras entre SC aunque, tendió a disminuir con los años bajo agricultura. La fertilización determinó mayor COP a 5-20 y 0-20 cm de profundidad. Las diferencias en la variación entre 1994 y 2003 entre SC fueron significativas para COP y COT. Por otro lado, la variación relativa de COP fue más alta que la de las otras variables. Se concluye que las rotaciones cortas de agricultura-pastura, la SD y la fertilización nitrogenada mejoran el COP y el COT. Para las condiciones de este experimento, COP ha sido un indicador más sensible que COT y sería capaz de detectar los efectos de las prácticas de manejo.In the southeastern Buenos Aires Province (Argentina unsuitable combination of crop rotation and tillage systems (cropping systems, SC has reduced soil organic matter content. Our aim was to evaluate the effect of seven SC in a long term experiment (since 1976 started in 1994: permanent pasture (PP, permanent cropping under no tillage (SD (SD100 and

  14. Arable weed flora in the Western Siberian grain belt

    Directory of Open Access Journals (Sweden)

    Kämpf, Immo

    2016-02-01

    Full Text Available Between Ekaterinburg and Nowosibirsk, in the Western Siberian grain belt, spring wheat is grown on fertile Chernozem soils. Field and farm sizes are large but the land-use intensity per area is low compared to Central Europe. Fertilizers and pesticides are applied only in low to moderate quantities and yields range between 10 and 20 dt ha-1. We studied the arable weed flora in the northern forest steppe zone of Tyumen region using a randomized sampling design. Surprisingly, the species richness was only moderate, on average 9.8 ± 3.8 species per 100 m². Compared to weed communities of Bashkiria (Southern Ural and less intensively used arable land of Central Europe these numbers are rather low. Moreover, most of the recorded species were cosmopolitans or widely distributed throughout the temperate zone. We suggest that the land use intensity was high enough to reduce the density of a number of weed species in a way that they were not registered by our random sampling design. The limited conservational value of the weed vegetation of large grain fields in Tyumen leads to the conclusion that if intensification of land use is unavoidable, it should be directed to arable land and not to ex-arable land or ancient grassland, which is of higher conservation value.

  15. Adverse weather impacts on arable cropping systems

    Science.gov (United States)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining meteorological risks and subsequently relating the risk to the cropping calendar will be demonstrated for major arable crops in Belgium. Physically based crop models assist in understanding the links between adverse weather events, sensitive crop stages and crop damage. Financial support was obtained from Belspo under research contract SD/RI/03A.

  16. Comprehensive Evaluation of Unsafe State of Arable Land Resources:A Case Study of Chengdu City

    Institute of Scientific and Technical Information of China (English)

    Li; DENG; Jin; WEI

    2013-01-01

    We establish the unsafe state indicator system reflecting the unsafe state of arable land within the scope of the city. Using analytic hierarchy process and entropy method,we determine the weight of indicator; using linear weighted method,we conduct comprehensive evaluation of unsafe operation of arable land resource system in Chengdu City during the period 1999-2010. Through the unsafe state analysis,we draw the following conclusion: the share of arable land area in total land area,effective irrigation area,the area of low-yielding field,application rate of chemical fertilizer per unit area of arable land,and application rate of pesticide per unit area of arable land,are the key factors for easing the unsafe state in the short term. Finally we put forth the following recommendations: strengthening profound understanding of the seriousness of unsafe state of arable land; strengthening the basic arable land protection; continuing to tap the quality enhancement potential of arable land; consistently implementing the guideline and policy of " Combination of Use and Maintenance" .

  17. Managing Bioenergy Production on Arable Field Margins for Multiple Ecosystem Services: Challenges and Opportunities

    Science.gov (United States)

    Ferrarini, Andrea; Serra, Paolo; Amaducci, Stefano; Trevisan, Marco; Puglisi, Edoardo

    2013-04-01

    Growing crops for bioenergy is increasingly viewed as conflicting with food production. However, energy use continues to rise and food production requires fuel inputs, which have increased with intensification. The debate should shift from "food or fuel" to the more challenging target: how the increasing demand for food and energy can be met in the future, particularly when water and land availability will be limited. As for food crops, also for bioenergy crops it is questioned whether it is preferable to manage cultivation to enhance ecosystem services ("land sharing" strategy) or to grow crops with lower ecosystem services but higher yield, thereby requiring less land to meet bioenergy demand ("land sparing" strategy). Energy crop production systems differ greatly in the supply of ecosystem services. The use of perennial biomass (e.g. Switchgrass, Mischantus, Giant reed) for energy production is considered a promising way to reduce net carbon emissions and mitigate climate change. In addition, regulating and supporting ecosystem services could be provided when specific management of bioenergy crops is implemented. The idea of HEDGE-BIOMASS* project is to convert the arable field margins to bioenergy crop production fostering a win-win strategy at landscape level. Main objective of the project is to improve land management to generate environmental benefits and increase farmer income. The various options available in literature for an improved field boundary management are presented. The positive/unknown/negative effects of growing perennial bioenergy crops on field margins will be discussed relatively to the following soil-related ecosystem services: (I) biodiversity conservation and enhancement, (II) soil nutrient cycling, (III) climate regulation (reduction of GHG emissions and soil carbon sequestration/stabilization, (IV) water regulation (filtering and buffering), (V) erosion regulation, (VI) pollination and pest regulation. From the analysis of available

  18. Earthworm-induced distribution of organic matter in macro-aggregates from differently managed arable fields.

    NARCIS (Netherlands)

    Marinissen, J.C.Y.; Hillenaar, S.I.

    1997-01-01

    To study the influence of soil structure on organic matter decomposition, and the possible role of earthworms therein, aggregates of the size of earthworm casts (3-4.8 mm) were sieved from air-dry soil of three arable fields. Due to different management histories (in terms of manuring and pesticide

  19. Evaluation of Arable Land Reserve Resources and Analysis of Restrictive Factors: A Case Study of Hangjin Banner in Inner Mongolia

    Institute of Scientific and Technical Information of China (English)

    Xia; YANG; Xiangjun; YUN

    2015-01-01

    Taking land available for cultivation and mining land available for reclamation in Hangjin Banner of Inner Mongolia Autonomous Region,using land use database of 2012 as evaluation base,it made evaluation of arability of 677 021. 40 hm2 reserve land resources by the restrictive factor evaluation method. Besides,it analyzed main restrictive factors of arable land reserve resources in Hangjin Banner. Results indicate that the total area arable land reserve resources is 52 200. 02 hm2,accounting for 7. 71% of total area evaluated. Irrigation condition and soil thickness are major factors restricting development of arable land reserve resources in the study area. It is expected to provide reference for development of arable land reserve resources and land consolidation project in Hangjin Banner.

  20. Effect of acid rain on mercury leaching from forest yellow soil in Jinyun Mountain%酸雨对缙云山林地黄壤汞溶出的影响

    Institute of Scientific and Technical Information of China (English)

    李静; 魏世强; 杨学春

    2004-01-01

    Forest yellow soil and arable yellow soil in Jinyun Mountain were collected to study the effect of simulated acid rain(adjusted to pH 2.0, 3.0, 4.0 and 5.0) on the Hg leaching from soils by the methods of static extraction and dynamic leaching. The results showed that in forest yellow soils, surface accumulation of Hg occurred, and the accumulated Hg was easier to be leached out than that in arable yellow soil by acid rain. The amount of leached Hg was the largest at pH 4.0. To abate the risk of Hg pollution in water bodies by the Hg leaching from this forest soil, the Mountain should be closed, and timber-felling should be forbidden.

  1. [Effect of long-term fertilization on microbial community functional diversity in black soil].

    Science.gov (United States)

    Liu, Jing-xin; Chi, Feng-qin; Xu, Xiu-hong; Kuang, En-jun; Zhang, Jiu-ming; Su, Qing-rui; Zhou, Bao-ku

    2015-10-01

    In order to study the effects of long-term different fertilization on microbial community functional diversity in arable black. soil, we examined microbial metabolic activities in two soil la- yers (0-20 cm, 20-40 cm) under four treatments (CK, NPK, M, MNPK) from a 35-year continuous fertilization field at the Ministry of Agriculture Key Field Observation Station of Harbin Black Soil Ecology Environment using Biolog-ECO method. The results showed that: in the 0-20 cm soil layer, combined application of organic and inorganic fertilizer(MNPK) increased the rate of soil microbial carbon source utilization and community metabolism richness, diversity and dominance; In the 20-40 cm layer, these indices of the MNPK treatment was lower than that of the NPK treat- ment; while NPK treatment decreased soil microbial community metabolism evenness in both layers. Six groups of carbon sources used by soil microbes of all the treatments were different between the two soil layers, and the difference was significant among all treatments in each soil layer (P fertilization affected soil microbial community functional diversity in both tillage soil layer and down soil layers, and chemical fertilization alone had a larger influence on the microbial community functional diversity in the 20-40 cm layer. PMID:26995915

  2. Medium-term effect of perennial energy crops on soil organic carbon storage

    Directory of Open Access Journals (Sweden)

    Enrico Ceotto

    2011-11-01

    Full Text Available The scope of this study was to evaluate the effect of perennial energy crops on soil organic carbon (SOC storage. A field experiment was undertaken in 2002 at Anzola dell’Emilia in the lower Po Valley, Northern Italy. Five perennial energy crops were established on a land area which had been previously cultivated with arable crops for at least 20 years. The compared crops are: the herbaceous perennials giant reed and miscanthus, and the woody species poplar, willow and black locust, managed as short rotation coppice (SRC. SOC was measured in 2009, seven years after the start of the experiment, on an upper soil layer of 0.0-0.2 m and a lower soil layer of 0.2-0.4 m. The study aimed to compare the SOC storage of energy crops with alternative land use. Therefore, two adjacent areas were sampled in the same soil layers: i arable land in steady state, cultivated with rainfed annual crops; ii natural meadow established at the start of the experiment. The conversion of arable land into perennial energy crops resulted in SOC storage, in the upper soil layer (0.0-0.2 m ranging from 1150 to 1950 kg C ha-1 year-1 during the 7-year period. No significant differences were detected in SOC among crop species. We found no relationship between the harvested dry matter and the SOC storage. The conversion of arable land into perennial energy crops provides a substantial SOC sequestration benefit even when the hidden C cost of N industrial fertilizers is taken into account. While the SOC increased, the total N content in the soil remained fairly constant. This is probably due to the low rate of nitrogen applied to the perennial crops. However, our data are preliminary and the number of years in which the SOC continues to increase needs to be quantified, especially for the herbaceous species giant reed and miscanthus, with a supposedly long duration of the useful cropping cycle of 20 years or longer.

  3. Soil friability - Concept, Assessment and Effects of Soil Properties and Management

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl

    Soil friability is a key soil physical property yielding valuable information on the ease of productin a favorable seed- and root beds during tillage operations. Therefore, soil friability is acrucial soil property in relation to the ability of soil to support plant growth and to minimzethe energy...... required for tillage. The topic has interested farmers and soil scientiest for centuries, but is was the paper by Utomo and Dexter (1981) that significantly put the topic on the soil science agenda. The awareness of soil friability is growing, both in practiceand in soil science. This must be viewed...... in the light of the present renewed focus on global food security together with a focus on fossil fuel consumption and greenhouse gas emissions in crop production. Certainly, the demand for well-functioning, arable soils is rising to meet the global challenges....

  4. Effect of passages on the soil onto soil tillage quality

    OpenAIRE

    Kos, Jaroslav

    2011-01-01

    Effect of passages on the soil onto soil tillage quality in this study was assessed by selected parameters of soil tillage quality, which were soil aggregates diameter, cross surface soil, soil surface roughness, level of incorporation of crop residues, cover the surface of plant residues and soil penetration resistance. Variants were evaluated with controlled traffic on land, option without traffic and the option with random traffic. The results revealed that traffic should primarily affect ...

  5. Weed vegetation ecology of arable land in Salalah, Southern Oman

    OpenAIRE

    El-Sheikh, Mohamed A.

    2013-01-01

    This paper applies multivariate statistical methods to a data set of weed relevés from arable fields in two different habitat types of coastal and mountainous escarpments in Southern Oman. The objectives were to test the effect of environmental gradients, crop plants and time on weed species composition, to rank the importance of these particular factors, and to describe the patterns of species composition and diversity associated with these factors. Through the application of TWINSPAN, DCA a...

  6. Root and soil carbon distribution at shoulderslope and footslope positions of temperate toposequences cropped to winter wheat

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Roncossek, Svenja Doreen; Heckrath, Goswin Johann;

    2014-01-01

    Crop root residues are an important source of soil organic carbon (SOC) in arable systems. However, the spatial distribution of root biomass in arable systems remains largely unknown. In this study, we determined the spatial distribution of macro-root and shoot biomass of winter wheat at shoulder......Crop root residues are an important source of soil organic carbon (SOC) in arable systems. However, the spatial distribution of root biomass in arable systems remains largely unknown. In this study, we determined the spatial distribution of macro-root and shoot biomass of winter wheat...... to simulate or predict C dynamics and crop productivity should consider topography-controlled variations in root C input and SOC redistribution as well as their effects on soil properties, root growth and crop productivity....

  7. Using Tension Infiltrometry to Assess the Effect of Subsoil Compaction on Soil Hydraulic Properties

    Science.gov (United States)

    Schwen, Andreas; Carrick, Sam; Buchan, Graeme

    2010-05-01

    Soil compaction is a major cause of soil degradation all over the world. The related changes in soil physical parameters are of growing importance in agricultural production. To understand fully the effects of different degrees of subsoil compaction on the growth and yield of arable plants requires knowledge of changes in both the soil hydraulic conductivity function, and in the soil water retention curve. In the present study measurements of the hydraulic properties were obtained on an arable field in the Canterbury Plains, South Island, New Zealand. The soil is classified as Templeton silt loam. The uppermost 15 cm of the soil were removed and replaced following five contrasting subsoil treatments. The subsoil was either cultivated (loosened), untreated, or compacted using a heavy roller with three different steps of compaction. Five randomised replications of each subsoil treatment were established. At each of the 25 plots, infiltration measurements were obtained at two depths: on the soil surface and within the compacted soil layer at 18 cm depth. Tension infiltrometry was used, as this method allows the precise and in situ determination of the hydraulic properties at near-saturated conditions. These conditions coincide with flow activation in the macro porosity of the soil. Thus, this method is also suitable to determine the amount and distribution of macro pores, as well as preferential flow paths in soils. Only a few studies have measured the near-saturated parts of the retention and conductivity curves of Templeton soils. The supply tensions were -15 cm, -10 cm, -4 cm, -1 cm, and 0 cm. Undisturbed soil samples were taken with steel cores before each measurement in the vicinity of each measurement site, enabling measurement of the initial and saturated water contents in the laboratory. Post-measurement samples were also taken directly below the infiltration disc to measure the final water content. The cumulative infiltration together with the initial and

  8. Biofuel intercropping effects on soil carbon and microbial activity.

    Science.gov (United States)

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  9. Biofuel intercropping effects on soil carbon and microbial activity.

    Science.gov (United States)

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  10. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input

    DEFF Research Database (Denmark)

    Debosz, K.; Rasmussen, Peter Have; Pedersen, A. R.

    1999-01-01

    -OM). The cultivation systems differed in whether their source of fertiliser was mainly mineral or organic, in whether a winter cover crop was grown, and whether straw was mulched or removed. Sampling occurred at approximately monthly intervals, over a period of two years. Distinct temporal variations in microbial...... biomass C concentration and activity of extracellular enzymes of the cellulolytic complex were observed. The temporal pattern was generally similar in the low-OM and high-OM cultivation systems. Temporal variations may have been driven by environmental factors (e.g., temperature and moisture) and crop...

  11. Cadmium mobility and accumulation in soils of the European Communities

    NARCIS (Netherlands)

    Fraters B; van Beurden AUCJ

    1993-01-01

    In this overview of the effects of cadmium pollution on agricultural soils in the European Community, both the cadmium loads on agricultural land and the soil sensitivity to cadmium accumulation have been estimated. Cadmium loads have been estimated separately for arable land and grassland. The ef

  12. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils

    Science.gov (United States)

    Smith, K. A.; Thomson, P. E.; Clayton, H.; Mctaggart, I. P.; Conen, F.

    Nitrous oxide emissions were measured from several grassland and arable soils in the field, and from two of these soils and a forest soil transferred in large monoliths to a greenhouse. The effects of fertiliser N additions and of soil water content and temperature were investigated. Emissions were in the order grazed grassland>grassland cut for conservation>potatoes>cereal crops, and generally were higher than those from temperate natural ecosystems. Based on these data, agricultural soils constitute the major soil source of N 2O in the U.K. The highest emission recorded was 8 kg N 2O-N ha -1 over 10 months, from a grazed grassland site. Emissions varied from year to year, depending particularly on rainfall at the time of fertilisation. When soil mineral N was not limiting, exponential relationships between N 2O flux and both water-filled pore space (WFPS) and temperature were observed. The Q10 value for a sandy loam was 1.6, but ranged up to 12 for a clay loam soil at high WFPS. The high values were attributed to the increase in anaerobic zones where denitrification could take place, as respiratory demand for O 2 increased. A forest soil (peaty gley) showed an optimum water potential for N 2O emission. Diurnal fluctuations in emissions were associated with diurnal cycles in soil temperature, but with varying time lags, which could be explained by the N 2O being produced at different depths.

  13. Biochar amendment and greenhouse gas emissions from agricultural soils

    OpenAIRE

    Case, Sean

    2013-01-01

    The aim of this study was to investigate the effects of biochar amendment on soil greenhouse gas (GHG) emissions and to elucidate the mechanisms behind these effects. I investigated the suppression of soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions in a bioenergy and arable crop soil, at a range of temperatures and with or without wetting/drying cycles. More detailed investigation on the underlying mechanisms focused on soil N2O emissions. I tested how biochar alter...

  14. Species richness and weed abundance in the vegetation of arable field boundaries.

    NARCIS (Netherlands)

    Kleijn, D.

    1997-01-01

    In the modem arable landscape, the vegetation of perennial field boundaries have important ecological functions such as providing a habitat for farmland wildlife, providing overwintering sites for predatory insects, providing movement corridors, reducing soil erosion and acting as an agrochemical bu

  15. The Effect of Land Use Change on Transformation of Relief and Modification of Soils in Undulating Loess Area of East Poland

    Directory of Open Access Journals (Sweden)

    Jerzy Rejman

    2014-01-01

    Full Text Available The change of primary forest areas into arable land involves the transformation of relief and modification of soils. In this study, we hypothesized that relatively flat loess area was largely transformed after the change of land use due to erosion. The modifications in soil pedons and distribution of soil properties were studied after 185 years of arable land use. Structure of pedons and solum depth were measured in 128 and soil texture and soil organic carbon in 39 points. Results showed that soils of noneroded and eroded profiles occupied 14 and 50%, respectively, and depositional soils 36% of the area. As a consequence, the clay, silt, and SOC concentration varied greatly in the plowed layer and subsoil. The reconstructed profiles of eroded soils and depositional soils without the accumulation were used to develop the map of past relief. The average inclination of slopes decreased from 4.3 to 2.2°, and slopes >5° vanished in the present topography. Total erosion was 23.8 Mg ha−1 year−1. From that amount, 88% was deposited within the study area, and 12% was removed outside. The study confirmed the hypothesis of the significant effect of the land use change on relief and soils in loess areas.

  16. SoilEffects - start characterization of the experimental soil

    OpenAIRE

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun; Riley, Hugh

    2013-01-01

    This report describes the establishment, experimental plan and initial soil characteristics of the field experiment linked to the project “Effects of anaerobically digested manure on soil fertility - establishment of a long-term study under Norwegian conditions” (SoilEffects, 2010-14). The aim of the SoilEffects project is to identify potential risks and benefits for soil fertility when animal manure is anaerobically digested for biogas production. The field experiment was established on T...

  17. Effects of digestate on soil chemical and microbiological properties: A comparative study with compost and vermicompost.

    Science.gov (United States)

    Gómez-Brandón, María; Juárez, Marina Fernández-Delgado; Zangerle, Matthias; Insam, Heribert

    2016-01-25

    Anaerobic digestion has become increasingly popular as an alternative for recycling wastes from different origins. Consequently, biogas residues, most of them with unknown chemical and biological composition, accrue in large quantities and their application into soil has become a widespread agricultural practise. The aim of this study was to evaluate the effects of digestate application on the chemical and microbiological properties of an arable soil in comparison with untreated manure, compost and vermicompost. Once in the soil matrix either the addition of compost or digestate led to an increased nitrification rate, relative to unamended and manure-treated soil, after 15 and 60 days of incubation. Faecal coliform and E. coli colony forming units (CFUs) were not detected in any of the amended soils after 60 days. The highest number of Clostridium perfringens CFUs was recorded in manure-amended soil at the beginning of the experiment and after 15 days; whilst after 60 days the lowest CFU number was registered in digestate-treated soil. Denaturing gradient gel electrophoresis patterns also showed that besides the treatment the date of sampling could have contributed to modifications in the soil ammonia-oxidising bacteria community, thereby indicating that the soil itself may influence the community diversity more strongly than the treatments. PMID:26476314

  18. Quantitative Study on the Relationship between Arable Land and Its Influencing Factors in Southern Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    Bin; GUO; Lin; PEI

    2015-01-01

    With the Southern Loess Plateau as the object of study,we select the nonbiological factors( physical factors),biological factors and human factors that affect the landscape of arable land to build indicator system. Using GIS,we perform the visualization expression and hierarchical storage of influencing factors to build 1 km × 1 km integrated vector and raster database of arable land landscape pattern and its influencing factors. Using spatial regression analysis,we determine the quantitative relationship between arable land landscape and its influencing factors. The results show that the arable land in the Southern Loess Plateau is mainly distributed in the regions with high temperature,great average annual precipitation,high altitude,high soil N content,small slope,GDP per unit area of land,low ≥10℃ accumulated temperature,and short distance away from the rivers and roads. The study provides a scientific basis for clarifying the relationship between arable land landscape and its influencing factors.

  19. Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain

    Institute of Scientific and Technical Information of China (English)

    HUANG Ping; ZHANG Jia-bao; XIN Xiu-li; ZHU An-ning; ZHANG Cong-zhi; MA Dong-hao; ZHU Qiang-gen; YANG Shan; WU Sheng-jun

    2015-01-01

    Cropland productivity has been signiifcantly impacted by soil acidiifcation resulted from nitrogen (N) fertilization, especialy as a result of excess ammoniacal N input. With decades’ intensive agricultural cultivation and heavy chemical N input in the Huang-Huai-Hai Plain, the impact extent of induced proton input on soil pH in the long term was not yet clear. In this study, acidiifcation rates of different soil layers in the soil proifle (0–120 cm) were calculated by pH buffer capacity (pHBC) and net input of protons due to chemical N incorporation. Topsoil (0–20 cm) pH changes of a long-term fertilization ifeld (from 1989) were determined to validate the predicted values. The results showed that the acid and alkali buffer capacities varied signiifcantly in the soil proifle, averaged 692 and 39.8 mmolc kg–1 pH–1, respectively. A signiifcant (P<0.05) correlation was found between pHBC and the content of calcium carbonate. Based on the commonly used application rate of urea (500 kg N ha–1 yr–1), the induced proton input in this region was predicted to be 16.1 kmol ha–1 yr–1, and nitriifcation and plant uptake of nitrate were the most important mechanisms for proton producing and consuming, respectively. The acidiifcation rate of topsoil (0–20 cm) was estimated to be 0.01 unit pH yr–1 at the assumed N fertilization level. From 1989 to 2009, topsoil pH (0–20 cm) of the long-term fertilization ifeld decreased from 8.65 to 8.50 for the PK (phosphorus, 150 kg P2O5 ha–1 yr–1;potassium, 300 kg K2O ha–1 yr–1; without N fertilization), and 8.30 for NPK (nitrogen, 300 kg N ha–1 yr–1; phosphorus, 150 kg P2O5 ha–1 yr–1; potassium, 300 kg K2O ha–1 yr–1), respectively. Therefore, the apparent soil acidiifcation rate induced by N fertilization equaled to 0.01 unit pH yr–1, which can be a reference to the estimated result, considering the effect of atmospheric N deposition, crop biomass, ifeld management and plant uptake of other

  20. ANTHROPOGENIC EFFECTS ON SOIL MICROMYCETES

    Directory of Open Access Journals (Sweden)

    Dragutin A. Đukić

    2007-09-01

    Full Text Available This paper is a synthesis of long-term investigations based on the effect of different (mineral and organic fertilisers, heavy metals, contaminated irrigation water, nitrification inhibitor and detergents on the dynamics of soil fungi number. The investigations were performed at the Microbiology Department and trial fields of the Faculty of Agronomy in Cacak on smonitza and alluvium soils in field and greenhouse conditions. Maize, wheat, barley and red clover were used as test plants in these studies. The quantitative composition of the fungi in the soils investigated was determined by the Czapek selective agar dilution method. The study results show that the number of soil fungi was dependent on the type and rate of agrochemicals used, on the growing season and the soil zone the samples were taken from for the analysis. Lower nitrogen fertiliser rates (80 and 120 kg?ha-1 and organic fertilisers stimulated the development of soil fungi, unlike the rate of 150 kg?ha- 1. Heavy metals, mercury and cadmium in particular, as well as high rates of the N-serve nitrification inhibitor inhibited the development of this group of soil microorganisms. Generally, the adverse effect of contaminated irrigation water on the soil fungi was recorded in both soil types, and particularly in the smonitza under red clover. Low detergent (Meril concentrations did not have any significant effect on this group of microorganisms. In this respect, it can be concluded that the soil fungi number dynamics can be used in monitoring soils polluted by different toxinogenic substances.

  1. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland.

    Science.gov (United States)

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.

  2. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland.

    Directory of Open Access Journals (Sweden)

    Markus Lange

    Full Text Available Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs. In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.

  3. Bioavailability of {sup 137}Cs - geographical variability in Swedish forest- and arable soil. Construction of a database using GIS; Biotillgaenglighet av {sup 137}Cs - geografisk variation i svensk skogs- och aakermark. Uppbyggnad av databas med hjaelp av GIS

    Energy Technology Data Exchange (ETDEWEB)

    Heikkilae, Taina; Lindmark, Malin

    2000-12-01

    Soil acts as a sink for long-lived radionuclides such as {sup 137}Cs . The bioavailability and the plant root uptake of {sup 137}Cs are therefore influenced by chemical and physical characteristics of the soil. The aim of this study is to gather information about Swedish soil conditions, focusing on parameters known to influence the bioavailability of {sup 137}Cs and to indicate areas which may have a higher probability of containing persistent bioavailable {sup 137}Cs. This project was carried out in two parts. First, an information database on soil properties in Swedish forest and agricultural landscapes was constructed using GIS (Geographic Information System). Next, Swedish agricultural and forest soils were characterised according to low, intermediate and high estimated bioavailability of {sup 137}Cs. Agricultural soils were ranked according to clay and organic matter content; forest soils according to podzol, cambisol and peat. The physical and chemical properties of agricultural soils are quite different from forest soils. In contrast to forest soils, agricultural soils are characterised by reduced quantities of organic matter and a higher proportion of clay. Several investigations have indicated. a faster decline in {sup 137}Cs levels in agricultural soils when compared to forest soils. Due to these differences, these soil types are dealt with separately in this report.

  4. Anthrosols in Iron Age Shetland: Implications for Arable and Economic Activity

    DEFF Research Database (Denmark)

    2008-01-01

    The soils surrounding three Iron Age settlements on South Mainland, Shetland, were sampled and compared for indicators of soil amendment. Two of the sites (Old Scatness and Jarlshof) were on lower-lying, better-drained, sheltered land; the third (Clevigarth) was in an acid, exposed environment...... at a higher elevation. The hypothesis, based on previous regional assessments, soil thicknesses, and excavations at Old Scatness, was that the lowland sites would have heavily fertilized soils and that the thin upland soil would show little if any amendment. Our findings indicate that the Middle Iron Age...... soils at Old Scatness had extremely high phosphorus levels, while the soil at Jarlshof had lower levels of enhancement. At Clevigarth, where charcoal from the buried soil was 14C dated to the Neolithic and Bronze Age, there was no evidence of arable activity or soil amendment associated with the Iron...

  5. What are the effects of agricultural management on soil organic carbon in boreo-temperate systems?

    DEFF Research Database (Denmark)

    Haddaway, Neal R.; Hedlund, Katarina; Jackson, Louise E.;

    2015-01-01

    Background Soils contain the largest stock of organic carbon (C) in terrestrial ecosystems and changes in soil C stocks may significantly affect atmospheric CO2. A significant part of soil C is present in cultivated soils that occupy about 35 % of the global land surface. Agricultural intensifica...... management on SOC in arable systems of the warm temperate and snow climate zones (subset of temperate and continental climates: Köppen–Geiger Classification)....

  6. Effects of climate change and land management on soil organic carbon dynamics and carbon leaching in northwestern Europe

    Science.gov (United States)

    Stergiadi, Maria; van der Perk, Marcel; de Nijs, Ton C. M.; Bierkens, Marc F. P.

    2016-03-01

    Climate change and land management practices are projected to significantly affect soil organic carbon (SOC) dynamics and dissolved organic carbon (DOC) leaching from soils. In this modelling study, we adopted the Century model to simulate past (1906-2012), present, and future (2013-2100) SOC and DOC levels for sandy and loamy soils typical of northwestern European conditions under three land use types (forest, grassland, and arable land) and several future scenarios addressing climate change and land management change. To our knowledge, this is the first time that the Century model has been applied to assess the effects of climate change and land management on DOC concentrations and leaching rates, which, in combination with SOC, play a major role in metal transport through soil. The simulated current SOC levels were generally in line with the observed values for the different kinds of soil and land use types. The climate change scenarios result in a decrease in both SOC and DOC for the agricultural systems, whereas for the forest systems, SOC is projected to slightly increase and DOC to decrease. An analysis of the sole effects of changes in temperature and changes in precipitation showed that, for SOC, the temperature effect predominates over the precipitation effect, whereas for DOC the precipitation effect is more prominent. A reduction in the application rates of fertilisers under the land management scenario leads to a decrease in the SOC stocks and the DOC leaching rates for the arable land systems, but it has a negligible effect on SOC and DOC levels for the grassland systems. Our study demonstrated the ability of the Century model to simulate climate change and agricultural management effects on SOC dynamics and DOC leaching, providing a robust tool for the assessment of carbon sequestration and the implications for contaminant transport in soils.

  7. Investigation of biochar effects as a non-structural BMP on soil erosional properties using a rainfall simulator

    Science.gov (United States)

    Khademalrasoul, Ataallah; Kuhn, Nikolaus; Hu, Yaxian; Vangsø Iversen, Bo; Heckrath, Goswin

    2014-05-01

    Recent studies have shown the potential of biochar for improving overall soil quality including soil aggregation and structure. Erodibility is an inherent soil property that amongst others is highly dependent on soil organic matter content which affects aggregate stability and crusting during runoff events. We hypothesized that erodibility is reduced in biochar-amended soils and tested this in controlled rainfall-runoff simulations. The specific objectives of our study were (1) to compare runoff and sediment generation between a biochar and an unamended control treatment on an arable sandy loam soil and (2) to determine the effect of the biochar treatment on SOC erodibility. A field experiment with eight plots was established at Risø, Denmark, in 2011; four biochar-amended and four unamended control plots. Biochar produced from birch wood at 500 ºC was applied at a rate of 2 kg m-2, and plots had been harrowed and ploughed twice to a depth of 25 cm prior to sampling. In the laboratory soil samples from (0-20 cm) were analyzed for aggregate stability and soil organic carbon (SOC) content. Soil erosional properties were measured during 3.5 hour rainfall simulations using a round flume setup. Artificial rain was applied with a FullJet nozzle at a rate of 30 mm h-1. Biochar-amended soils showed significantly lower runoff and erosion rates compared to unamended soils, and correspondingly runoff coefficients in biochar-treated soils were lower than in control soils. Less SOC was eroded from biochar-amended soils resulting in lower SOC enrichment ratios in sediment from biochar-amended soils compared to unamended control soils. The results indicated that biochar already after a relatively short incubation period in the field can lead to reduced erodibility due to improved soil aggregation and aggregate stability. The results further suggested a direct biochar effect on surface roughness which leading to lower erosion.

  8. Effects of crop rotation and soil tillage on weeds in organic farming

    Directory of Open Access Journals (Sweden)

    Schulz, Franz

    2014-02-01

    Full Text Available An organic long-term field experiment with two factors has been carried out since 1998 at the experimental station Gladbacherhof, University of Giessen. Effects of 3 different farm types (with lifestock raising, stockless farming with rotational set-aside, stockless farming only cash crops combined with 4 tillage treatments (mouldboard plough, two-layer-plough, reduced tillage depth and tillage without plough on plants, soil and environment have been investigated. This article presents results on the coverage rate of arable wild plants (weed coverage, the range of weed species, the abundance of C. arvense (L. Scop. (Canada thistle and the weed phytomass during harvest time of the main crops dependent on farm type and soil tillage. It can be concluded that, compared to conventional economic weed thresholds, the weed coverage was generally relatively low and only limited ranges of species were found. Wild arable plants probably did not have any impact on yields of the cultivated plants due to intensive mechanical regulatory measures. In stockless organic farming without alfalfa-grass in the crop rotation Cirsium arvense (L. Scop. (Canada thistle might become a problem whereas this perennial root-weed does not seem to raise a long term problem in a soil tillage system without ploughing. In all treatments the abundance of weeds like Galium aparine L. (catchweed bedstraw and Stellaria media L. (chickweed was high. However, none of the farm types or soil tillage systems succeeded in providing evidence of promoting rare species or encouraging biodiversity. In order to achieve this special support measures should be implemented.

  9. Effects of long-term use of different farming systems on some physical, chemical and microbiological parameters of soil quality

    Science.gov (United States)

    Gajda, Anna M.; Czyż, Ewa A.; Dexter, Anthony R.

    2016-04-01

    The aim of this study was to compare the effects of different farming systems (organic, integrated, conventional and monoculture) on some soil properties as: bulk density, contents of readily-dispersible clay, organic matter and particulate organic matter, and enzymatic activity measured in terms of the intensity of fluorescein diacetate hydrolysis. Soil under permanent grass was used as a control. The study was conducted on the 20 years lasting field experiment. Samples of Haplic Luvisol soil were collected twice a year on fields under winter wheat from the layers of 0-5, 5-10, 15-20, and 30-35 cm. Within arable soils the soil under organic farming contained the greatest amount of organic matter, which influenced strongly the readily-dispersible clay content, especially in the layer of 5-20 cm. The readily-dispersible clay content in soil under organic farming was 3 times lower, as compared to the conventional and monoculture farming. The highest contents of particulate organic matter 6.2 and 3.5 mg g-1 air dry soil, on average were measured in the 0-5 cm layer of control soil and soil under organic farming, respectively. Also, soil under organic farming and control soil from the depth of 0-5 cm showed 2-2.5 times greater activity of microorganisms in fluorescein diacetate hydrolysis than soil under conventional and monoculture farming. Increase of concentration of organic matter in soil under organic farming decreased soil bulk density. Statistical analysis showed significant correlations between studied parameters of soil quality and confirmed their effectiveness as indicators of disturbances in soil environment.

  10. Effects of biochar on organic matter dynamics in unamended soils and soils amended with municipal solid waste compost and sewage sludge

    Science.gov (United States)

    Plaza, César; Giannetta, Beatrice; Fernández, José M.; López-de-Sá, Esther G.; Gascó, Gabriel; Méndez, Ana; Zaccone, Claudio

    2015-04-01

    Biochar is a loosely-defined C-rich solid byproduct obtained from biomass pyrolysis, which is intended for use as a soil amendment. A full understanding of the agronomic and environmental potential of biochar, especially its potential as a C sequestration strategy, requires a full understanding of its effects on native soil organic matter, as well as of its interactions with other organic amendments applied to soil. Here we determined the organic C distribution in an arable soil amended with biochar at rates of 0 and 20 t ha-1 in a factorial combination with two types of organic amendment (viz. municipal solid waste compost and sewage sludge) in a field experiment under Mediterranean conditions. The analysis of variance revealed that biochar and organic amendment factors increased significantly total organic C and mineral-associated organic C contents, and had little effect on intra-macroaggregate and intra-microaggregate organic C pools. Free soil organic C content was significantly affected by biochar application, but not by the organic amendments. Especially noteworthy were the interaction effects found between the biochar and organic amendment factors for mineral-associated organic C contents, which suggested a promoting action of biochar on C stabilization in organically-amended soils.

  11. Changes in the Structure of a Nigerian Soil under Different Land Management Practices

    Directory of Open Access Journals (Sweden)

    Joshua Olalekan Ogunwole

    2015-06-01

    Full Text Available Quantification of soil physical quality (SPQ and pore size distribution (PSD can assist understanding of how changes in land management practices influence dynamics of soil structure, and this understanding could greatly improve the predictability of soil physical behavior and crop yield. The objectives of this study were to measure the SPQ index under two different land management practices (the continuous arable cropping system and natural bush fallow system, and contrast the effects of these practices on the structure of PSD using soil water retention data. Soil water retention curves obtained from a pressure chamber were fitted to van Genuchten’s equation, setting m (= 1-1/n. Although values for soil bulk density were high, soils under the continuous arable cropping system had good SPQ, and maintained the capacity to support root development. However, soils under the natural bush fallow system had a worse structure than the continuous arable system, with restrictions in available water capacity. These two management systems had different PSDs. Results showed the inferiority of the natural bush fallow system with no traffic restriction (which is the common practice in relation to the continuous arable cropping system in regard to physical quality and structure.

  12. Coupling a high resolution soil erosion model with an agro-ecosystem model of SOC dynamics. An approach to assess the potential environmental effect of the new Common Agricultural Policy on soil degradation

    Science.gov (United States)

    Borrelli, Pasqualle; Paustian, Keith; Panagos, Panos; Jones, Arwyn; Schütt, Brigitta; Lugato, Emanuele

    2016-04-01

    At the European Union level, the main mechanisms to promote a more sustainable and environmentally friendly agriculture was introduced by the Common Agricultural Policy (CAP) reform in 2003, through the Cross-compliance. According to this new regulation, the farmer support payments were regulated with respect to environmental, animal welfare and food safety standards. This brought to the Good Agricultural and Environmental Conditions (GAEC), firstly established by Council Regulation No. 1782/2003 and subsequently Council Regulation (EC) No 73/2009. The prevention of soil erosion and maintenance of soil organic matter were two of GAEC requirements, which each Member State was obliged to address through national standards such as: i) minimal soil cover maintenance (GAEC 4); ii) minimum land management reflecting site specific conditions to limit soil loss (GAEC 5) and iii) maintenance of soil organic matter level through appropriate practices including ban on burning arable stubbles (GAEC 6). Although Member States are required to verify whether the farmers are compliant with the regulations (Cross-compliance), the environmental effect of Good Agricultural and Environmental Conditions (GAEC) applications on erosion and carbon budgets are still little known and studied. To investigate the potential impacts of the GAEC, we coupled a high resolution erosion model based on Revised Universal Soil Loss Equation (RUSLE) with the CENTURY biogeochemical model (Land Use Policy, 50, 408-421; 2016). The Italian arable land was selected as a study area, since it is well-known to be highly sensitive to soil erosion. Multi scenario modelling approach was undertaken, i.e., i) a baseline scenario without scenario excluding GAEC (pre 2003 period); ii) a present scenario including the current GAEC standards (post 2003 period), and iii) a technical potential scenario assuming that the GAEC standards were applied to the entire Italian arable land. The results show a 10.8% decrease, from

  13. Access to Arable Land by Rural Women in Cameroon

    Directory of Open Access Journals (Sweden)

    Fon, DE.

    2011-01-01

    Full Text Available This study examines rural women access to and control of agricultural production resources in arable small-scale sustainable agricultural production in a developing country setting. Specifically, the study addresses the women's level of accessibility and control of arable land in agricultural production in the North West Region of Cameroon. The objectives of the study were: (a to determine the extent to which rural women in the study area gain access to and control small-scale arable land; and (b to assess the degree of association between access to small-scale arable land by rural women and their level of control of the arable land. The study relied on a one-shot case study design. The method of data collection consisted surveying a randomly selected sample of 1,120 rural women involved in small-scale agricultural production in the study area. The data obtained from the survey were analyzed using the following statistical procedures: (1 frequency distribution, (2 correlation analysis, and (3 one way analysis of variance (ANOVA. The results revealed that rural women farmers do have access to arable land through their families, but do not control arable land, and there is no association between access to and control of arable land. The study recommends that developing countries involved in arable small-scale agricultural production, should consider adopting agricultural policies that include rural women in decision-making, implementation, and evaluation of agricultural production inputs and outcomes.

  14. Land-use change effects on soil quality in Montilla-Moriles DO, Southern Spain

    Science.gov (United States)

    Martín-Carrillo, M.; Parras-Alcántara, L.; Lozano-García, B.

    2013-02-01

    The agricultural Mediterranean areas are dedicated to arable crops (AC), but in the last few decades, a significant number of AC has a land use change (LUC) to olive grove cultivations (OG) and vineyards (V). A field study was conducted to determine the long-term effects (46 yr) of LUC (AC by OG and V) and to determine soil organic carbon (SOC), total nitrogen (TN), C:N ratio and their stratification across the soil entire profile, in Montilla-Moriles denomination of origin (DO), in Calcic-Chromic Luvisols (LVcc/cr), an area under semiarid Mediterranean conditions. The experimental design consisted of studying the LUC on one farm between 1965 and 2011. Originally, only AC was farmed in 1965, but OG and V were farmed up to now (2011). This LUC principally affected the thickness horizon, texture, bulk density, pH, organic matter, organic carbon, total nitrogen and C:N ratio. The LUC had a negative impact in the soil, affecting the SOC and TN stocks. The conversion from AC to V and OG involved the loss of the SOC stock (52.7% and 64.9% to V and OG, respectively) and the loss of the TN stock (42.6% and 38.1% to V and OG, respectively). With respect to the soil quality, the effect was opposite; 46 yr after LUC improved the soil quality, increasing the stratification ratio (in V and OG) of SOC, TN and C:N ratio.

  15. The performance of Botswana's traditional arable agriculture: growth rates and the impact of the accelerated rainfed arable programme (ARAP)

    OpenAIRE

    Seleka, Tebogo B.

    1999-01-01

    This study assesses the performance of Botswana's traditional arable agriculture for the 1968-90 period. Growth rate and arable sub-sector production models are specified and estimated to determine how the sub-sector performed over time, and to capture the impact of the Accelerated Rainfed Arable Programme (ARAP). Growth rate model results indicate that cultivated area increased by about 2.2% per year during the 1968-90 period. However, crop output remained unchanged and yields declined by ab...

  16. Carbon footprints of crops from organic and conventional arable crop rotations – using a life cycle assessment approach

    DEFF Research Database (Denmark)

    Knudsen, Marie Trydeman; Meyer-Aurich, A; Olesen, Jørgen E;

    2014-01-01

    was incorporated in the soil in the ‘Mulching’ rotation and removed and used for biogas production in the ‘Biogas’ rotation (and residues from biogas production were simulated to be returned to the field). A method was suggested for allocating effects of fertility building crops in life cycle assessments...... organic arable crop rotations with different sources of N supply. Data from long-term field experiments at three different locations in Denmark were used to analyse three different organic cropping systems (‘Slurry’, ‘Biogas’ and ‘Mulching’), one conventional cropping system (‘Conventional’) and a “No...... input” system as reference systems. The ‘Slurry’ and ‘Conventional’ rotations received slurry and mineral fertilizer, respectively, whereas the ‘No input’ was unfertilized. The ‘Mulching’ and ‘Biogas’ rotations had one year of grass-clover instead of a faba bean crop. The grass-clover biomass...

  17. Effects of environmental factors and soil properties on topographic variations of soil respiration

    Directory of Open Access Journals (Sweden)

    K. Tamai

    2009-11-01

    Full Text Available Soil respiration rates were measured along different parts of a slope in (a an evergreen forest with mature soil and (b a deciduous forest with immature soil. The effects of soil temperature, soil moisture, and soil properties on soil respiration rates were estimated individually, and the magnitudes of these effects were compared between the deciduous and evergreen forests. In the evergreen forest with mature soil, soil properties had the greatest effect on soil respiration rates, followed by soil moisture and soil temperature. These results may be explained by different properties of soils that matured under different environments. Thus, we argue that the low soil respiration rates in Plot L of the evergreen forest resulted from soil properties and not from wet soil conditions. In the deciduous forest, soil respiration rates were more strongly affected by soil moisture and soil temperature than by soil properties, which were likely due to the immaturity of the forest soil.

  18. Mathematical modeling of water fluxes in arable chernozems under different land use

    Science.gov (United States)

    Arkhangel'skaya, T. A.; Khokhlova, O. S.; Myakshina, T. N.

    2016-07-01

    The hydrologic regimes of arable chernozems were simulated for two plots located within a watershed. For the last fifty years continuous corn monoculture was practiced in one plot, and permanent bare fallow was practiced in the other plot. Carbonates are detected from a depth of 140-160 cm under corn and from 70-80 cm under bare fallow. The objective of the simulation study was to test the validity of the hypothesis that the shallower depth to carbonates under bare fallow is related to carbonate rise due to changes in the hydrologic regime of bare soil compared to soil under vegetation. Mathematical modeling using the HYDRUS-1D software and the FAO56 method confirmed that the hydrologic regimes of arable chernozems within the two plots are different. The soil water content under bare fallow is generally higher than that under corn. The downward soil water fluxes for the two plots are comparable. The upward soil water fluxes under bare fallow significantly exceed those under corn and affect a thicker soil layer. The changes in the hydrologic regimes of chernozems under bare fallow favor the upward movement of carbonates through both the direct transfer by upward water fluxes and the diffusion of ions.

  19. Effects of environmental factors and soil properties on topographic variations of soil respiration

    OpenAIRE

    Tamai, K

    2009-01-01

    Soil respiration rates were measured along different parts of a slope in (a) an evergreen forest with common brown forest soil and (b) a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soi...

  20. Uses of glyphosate in German arable farming – aspects of weed management and arable practice

    OpenAIRE

    Wiese, Armin; Schulte, Michael; Theuvsen, Ludwig

    2016-01-01

    Data on glyphosate use, personal attitudes and farm characteristics were collected in a Germany-wide inventory from 2026 farms. About 1700 farms could be analyzed in detail. Categories of glyphosate users were split into: non-users, low proportion users and high proportion users. The latter apply glyphosate on > 20% of their arable land are characterized by a high amount of non-inversion tillage, low labor effort and aboveaverage farm size. Perennial weeds play a less important role for glyph...

  1. Effectiveness of the GAEC standard of cross compliance Management of set aside on soil erosion control

    Directory of Open Access Journals (Sweden)

    Paolo Bazzoffi

    2011-08-01

    Full Text Available The GAEC standard Management of set aside is applied to arable lands subjected to set aside and kept non-cultivated throughout the year. The standard is also applied to other set aside areas eligible for direct payments. For the implementation of this Standard, the farmer must assure the presence of natural or artificial green cover on the surface throughout the year and adopt consistent agronomic practices as mowing, or other equivalent, in order to maintain the normal state of soil fertility, protect wildlife, prevent the formation of a potential inoculum of fires, especially during drought and prevent the spread of weeds. Up to the CAP Health Check the legislation on the set aside required the farmer to plough the soil by mid-May. Therefore, the natural vegetation cover could neither establish nor express its value against erosion throughout the year. Since mid 2004, cross compliance has banned ploughing of set aside surfaces. This novelty is very important in relation to the effectiveness of the standard in erosion control. In Italy there are only few studies carried out in the field that have measured the effect of set aside on soil erosion. The few existing experiments regarded the effect of set aside managed in accordance with the CAP dictates prior to the CAP Health Check. The results of case studies show very contrasting results regarding soil erosion on set aside plots managed through the annual ploughing in the period in which this rule remained in force. This finding can be explained by considering that most of soil erosion in the Mediterranean environment is determined by extreme events; so, set aside resulted ineffective in protecting the soil, when very erosive events occurred on bare soil (soil in seed bed condition after ploughing and harrowing or when the plant cover of soil was still scarce. In these conditions soil erosion rate resulted similar to that observed in the intensive cropping systems. On the contrary, for events

  2. Land-cover effects on soil organic carbon stocks in a European city.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R

    2014-02-15

    Soil is the vital foundation of terrestrial ecosystems storing water, nutrients, and almost three-quarters of the organic carbon stocks of the Earth's biomes. Soil organic carbon (SOC) stocks vary with land-cover and land-use change, with significant losses occurring through disturbance and cultivation. Although urbanisation is a growing contributor to land-use change globally, the effects of urban land-cover types on SOC stocks have not been studied for densely built cities. Additionally, there is a need to resolve the direction and extent to which greenspace management such as tree planting impacts on SOC concentrations. Here, we analyse the effect of land-cover (herbaceous, shrub or tree cover), on SOC stocks in domestic gardens and non-domestic greenspaces across a typical mid-sized U.K. city (Leicester, 73 km(2), 56% greenspace), and map citywide distribution of this ecosystem service. SOC was measured in topsoil and compared to surrounding extra-urban agricultural land. Average SOC storage in the city's greenspace was 9.9 kg m(-2), to 21 cm depth. SOC concentrations under trees and shrubs in domestic gardens were greater than all other land-covers, with total median storage of 13.5 kg m(-2) to 21 cm depth, more than 3 kg m(-2) greater than any other land-cover class in domestic and non-domestic greenspace and 5 kg m(-2) greater than in arable land. Land-cover did not significantly affect SOC concentrations in non-domestic greenspace, but values beneath trees were higher than under both pasture and arable land, whereas concentrations under shrub and herbaceous land-covers were only higher than arable fields. We conclude that although differences in greenspace management affect SOC stocks, trees only marginally increase these stocks in non-domestic greenspaces, but may enhance them in domestic gardens, and greenspace topsoils hold substantial SOC stores that require protection from further expansion of artificial surfaces e.g. patios and driveways. PMID

  3. Root Function in Nutrient Uptake and Soil Water Effect on NO3- -N and NH4+-N Migration

    Institute of Scientific and Technical Information of China (English)

    SONG Hai-xing; LI Sheng-xiu

    2006-01-01

    Root function in uptake of nutrients and the effect of soil water on the transfer and distribution of NO3--N in arable soil were studied using summer maize (Zea mays L. var. Shandan 9) as a testing crop. Results showed that root growth and water supply had a significant effect on NO3--N transfer and made NO3--N distributed evenly from bulk soil to rhizosphere soil. Under a natural condition with irrigation, the difference of NO3--N concentration at different distance points from a maize plant was smaller, while obvious difference of NO3--N concentration was observed under conditions of limited root growth space without irrigation. Whether root growth space was restricted or not, the content of soil NO3--N decreased gradually from 10 to 0 cm from the plant, being opposite to the root absorbing area in soils. When root-grown space was limited, changes of NO3--N concentration at different distances from a plant were similar to that of water content in tendency. Results showed that NO3--N could be transferred as solute to plant root systems with water uptake by plants.However, the transfer and distribution of NH4+-N were not influenced by root growth and soil water supply, being different to NO3--N.

  4. Possibilities for modelling the effect of compression on mechanical and physical properties of various Dutch soil types

    NARCIS (Netherlands)

    Perdok, U.D.; Kroesbergen, B.; Hoogmoed, W.B.

    2002-01-01

    The state of compactness of the arable soil layer changes during the growing season as a result of tillage and traction. The aim of this study was to assess and predict some soil mechanical and physical properties governing machine performance and crop response. The following mechanical properties w

  5. Correspondence of ectomycorrhizal diversity and colonisation of willows (Salix spp.) grown in short rotation coppice on arable sites and adjacent natural stands.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Toljander, Ylva K; Baum, Christel; Fransson, Petra M A; Taylor, Andy F S; Weih, Martin

    2012-11-01

    Willows (Salix spp.) are mycorrhizal tree species sometimes cultivated as short rotation coppice (SRC) on arable sites for energy purposes; they are also among the earliest plants colonising primary successional sites in natural stands. The objective of this study was to analyse the degree of colonisation and diversity of ectomycorrhizal (EM) communities on willows grown as SRC in arable soils and their adjacent natural or naturalized stands. Arable sites usually lack ectomycorrhizal host plants before the establishment of SRC, and adjacent natural or naturalized willow stands were hypothesized to be a leading source of ectomycorrhizal inoculum for the SRC. Three test sites including SRC stands (Salix viminalis, Salix dasyclados, and Salix schwerinii) and adjacent natural or naturalized (Salix caprea, Salix fragilis, and Salix × mollissima) stands in central Sweden were investigated on EM colonisation and morphotypes, and the fungal partners of 36 of the total 49 EM fungi morphotypes were identified using molecular tools. The frequency of mycorrhizas in the natural/naturalized stands was higher (two sites) or lower (one site) than in the corresponding cultivated stands. Correspondence analysis revealed that some EM taxa (e.g. Agaricales) were mostly associated with cultivated willows, while others (e.g. Thelephorales) were mostly found in natural/naturalized stands. In conclusion, we found strong effects of sites and willow genotype on EM fungi formation, but poor correspondence between the EM fungi abundance and diversity in SRC and their adjacent natural/naturalized stands. The underlying mechanism might be selective promotion of some EM fungi species by more effective spore dispersal.

  6. Correspondence of ectomycorrhizal diversity and colonisation of willows (Salix spp.) grown in short rotation coppice on arable sites and adjacent natural stands.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Toljander, Ylva K; Baum, Christel; Fransson, Petra M A; Taylor, Andy F S; Weih, Martin

    2012-11-01

    Willows (Salix spp.) are mycorrhizal tree species sometimes cultivated as short rotation coppice (SRC) on arable sites for energy purposes; they are also among the earliest plants colonising primary successional sites in natural stands. The objective of this study was to analyse the degree of colonisation and diversity of ectomycorrhizal (EM) communities on willows grown as SRC in arable soils and their adjacent natural or naturalized stands. Arable sites usually lack ectomycorrhizal host plants before the establishment of SRC, and adjacent natural or naturalized willow stands were hypothesized to be a leading source of ectomycorrhizal inoculum for the SRC. Three test sites including SRC stands (Salix viminalis, Salix dasyclados, and Salix schwerinii) and adjacent natural or naturalized (Salix caprea, Salix fragilis, and Salix × mollissima) stands in central Sweden were investigated on EM colonisation and morphotypes, and the fungal partners of 36 of the total 49 EM fungi morphotypes were identified using molecular tools. The frequency of mycorrhizas in the natural/naturalized stands was higher (two sites) or lower (one site) than in the corresponding cultivated stands. Correspondence analysis revealed that some EM taxa (e.g. Agaricales) were mostly associated with cultivated willows, while others (e.g. Thelephorales) were mostly found in natural/naturalized stands. In conclusion, we found strong effects of sites and willow genotype on EM fungi formation, but poor correspondence between the EM fungi abundance and diversity in SRC and their adjacent natural/naturalized stands. The underlying mechanism might be selective promotion of some EM fungi species by more effective spore dispersal. PMID:22415721

  7. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments

    DEFF Research Database (Denmark)

    Priemé, Anders; Wolsing, Martin

    2004-01-01

    Temporal and spatial variation of communities of soil denitrifying bacteria at sites receiving mineral fertilizer (60 and 120 kg N ha-1 year-1) and cattle manure (75 and 150 kg N ha-1 year-1) were explored using terminal restriction fragment length polymorphism (T-RFLP) analyses of PCR amplified...... nitrite reductase (nirK and nirS) gene fragments. The analyses were done three times during the year: in March, July and October. nirK gene fragments could be amplified in all three months, whereas nirS gene fragments could be amplified only in March. Analysis of similarities in T-RFLP patterns revealed...... a significant seasonal shift in the community structure of nirK-containing bacteria. Also, sites treated with mineral fertilizer or cattle manure showed different communities of nirK-containing denitrifying bacteria, since the T-RFLP patterns of soils treated with these fertilizers were significantly different...

  8. Effect of soil solarization on soil-borne pathogens

    International Nuclear Information System (INIS)

    Author.Soil solarization was conducted at three locations on the Lebanese coast. Maximum soil temperatures recorded were 53 and 48 celsius degrees at Jiyeh, 48.9, 46 and 43 celsius degrees at Naameh and 48, 45 and 43.5 celsius degrees at Khaldeh at 5, 15 and 25cm soil depths respectively. Mean soil temperatures recorded at 3pm were at Jiyeh 51.6, 47 and 46 celsius degrees compared to Naameh 47, 45 and 41 celsius degrees and Khaldeh 44, 42 and 41 celsius degrees at 5, 15 and 25 cm respectively. The mean temperature in solarized soils were 7.3 to 15 celsius degrees higher than those of the nonsolarized soils indicating a sustained increase of soil temperature in the solarized soils. The effect of soil solarization on artificially introduced fungal pathogens in the soil at Khaldeh, resulted in complete destruction of sclerotia of Sclerotinia spp. at three depths studied. However, with respect to the two other pathogens tested, solarization resulted in reduction of the viability of microsclerotia of Verticillium spp. by 99-79% and of Fusarium oxysporum f. sp. melonis inoculum by 88-54% at 5 and 15 cm respectively, but only by 45% and 14% reduction at 25 cm. This level of control is significant when it is compared to the percentage of control where the level of reduction of inoculum viability did not exceed 10% at any soil depth. As there were contradicting reports in the literature on nematodes, two field trials in greenhouses were conducted to study the possibility of integrating 2 methods for management on nematodes. Soil solarization alone or in combination with biological control of nematodes using Arthrobotrys spp. and Dactyl ella brocophaga to control the root-knot nematodes on two crops, tomato at Naameh and cucumber at Jiyeh were compared to Methyl Bromide treatment. It was evident that, even on a very susceptible crop like cucumber, the integration of biological control and soil solarization gave a good level of control similar to methyl bromide. Neither root

  9. Assessing soil carbon lability by near infrared spectroscopy and NaOCL oxidation

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Bruun, Sander; Jensen, Lars Stoumann;

    2009-01-01

    The feasibility of near infrared (NIR) spectroscopy for quantifying labile organic matter (OM) in arable soils and for predicting soil refractory OM fractions was tested on 37 soils varying in texture and soil carbon (C) content. Three sets of arable soils (0-20 cm depth) were sampled from 1) long...

  10. Modelling weed emergence patterns in arable weeds

    NARCIS (Netherlands)

    Vleeshouwers, L.M.; Kropff, M.J.

    2000-01-01

    A model was developed to simulate weed emergence patterns after soil cultivation. In the model, the consecutive processes of dormancy release, germination and pre-emergence growth were modelled in separate modules. Input variables of the model were: date of soil cultivation, soil temperature and soi

  11. Effects of amelioration measures concerning water availability, soil physical properties and growth of trees

    Science.gov (United States)

    Hümann, M.; Schneider, R.

    2009-04-01

    In many countries, surplus agricultural production and ecological problems due to intensive cultivation have increased the interest in afforestation of arable soils. These areas, which are designated for afforestation arrangements, often possess bad basic requirements for an effective growth of plants (marginal earning sites). The available soils are often poor in nutrients, extremely dry or very wet as well as compacted and skeletal. For preparing these territories in terms of an ecological and economic forest growth, as well as changing environmental conditions due to the climatic change (expected dryer summers and wetter winters), amelioration methods are appropriate i.e. increase of water availability, water storage capacity and soil physical properties. Therefore, deep loosening measures were applied in 1993 and 1994 on prospective afforestation sites in the German low mountain range (Eifel and Hunsrück). The plots have been subdivided and arranged by different loosening machines. 14 years after the experimental setup (2008) the areas became reinvestigated concerning the prevailing soil properties including different aspects of the water balance and the resulting plant development. The current deliverables thereby indicate that an afforestation on so called marginal earning sites develop much better through a previous soil physical improvement as on neighbouring plots without a treatment. Bulk densities have been decreased sustainably and water absorption as well as water storage capacity were increased effectively. Hence, positive effects regarding the landscape, the ecology and the economy can be reached by a successful operated deep loosening of the soil and due to that the enhanced fouling of the trees. Additionally the results of the accomplished researches have shown, that against the background of the climate change an adaption to modified environmental conditions could be much more easier for the adolescent trees on plots with improved basic

  12. Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil

    Science.gov (United States)

    Guan, X.-K.; Turner, N. C.; Song, L.; Gu, Y.-J.; Wang, T.-C.; Li, F.-M.

    2016-01-01

    Soil organic carbon (SOC) plays a vital role as both a sink for and source of atmospheric carbon. Revegetation of degraded arable land in China is expected to increase soil carbon sequestration, but the role of perennial legumes on soil carbon stocks in semiarid areas has not been quantified. In this study, we assessed the effect of alfalfa (Medicago sativa L.) and two locally adapted forage legumes, bush clover (Lespedeza davurica S.) and milk vetch (Astragalus adsurgens Pall.) on the SOC concentration and SOC stock accumulated annually over a 2 m soil profile. The results showed that the concentration of SOC in the bare soil decreased slightly over the 7 years, while 7 years of legume growth substantially increased the concentration of SOC over the 0-2.0 m soil depth. Over the 7-year growth period the SOC stocks increased by 24.1, 19.9 and 14.6 Mg C ha-1 under the alfalfa, bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha-1 in the bare soil. The sequestration of SOC in the 1-2 m depth of the soil accounted for 79, 68 and 74 % of the SOC sequestered in the 2 m deep soil profile under alfalfa, bush clover and milk vetch, respectively. Conversion of arable land to perennial legume pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.

  13. Effects of different management practices on fungal biodiversity in agricultural soils

    Science.gov (United States)

    Borriello, R.; Lumini, E.; Bonfante, P.; Bianciotto, V.

    2009-04-01

    Symbiotic associations between arbuscular mycorrhizal fungi (AMF) and plant roots are widespread in natural environments and provide a range of benefits to the host plant. These include improved nutrition, enhanced resistance to soil-borne pests, diseases, and drought, as well as tolerance to heavy metals. In addition, the presence of a well developed AMF hyphal network improve the soil structure. As obligate mutualistic symbionts these fungi colonize the roots of many agricultural crops and it is often claimed that agricultural practices (use of fertilizers and biocides, tillage, dominance of monocultures and the growing of non-mycorrhizal crops) are detrimental to AMF. As a result, agro ecosystems impoverished in AMF may not get the fully expected range of benefits from these fungi. Using molecular markers on DNA extracted directly from soil and roots we studied the effects of different management practices (tillage and nitrogen fertilization) on the AMF populations colonizing an experimental agro ecosystem in Central Italy. Fungi in roots and soil were identified by cloning and sequencing a region of ~550bp of the 18S rDNA and ~600bp of the 28S rDNA. In symbiosis with the maize roots we detected only members of Glomeraceae group A that showed decrement in number under nitrogen fertilization. Instead in soil were mainly present members of two AMF groups, respectively Gigasporaceae and Glomeraceae group A. In addition only the low input management practices preserve also members of Diversisporaceae and Glomeraceae group B. From our study we can conclude that agricultural practices can directly or indirectly influence AMF biodiversity. The result of this study highlight the importance and significant effects of the long term nitrogen fertilization and tillage practices on specific groups of fungi playing a key role in arable soils. The research was founded by Biodiversity Project (IPP-CNR) and by SOILSINK (FISR-MIUR)

  14. Microbial effect on soil hydraulic properties

    Science.gov (United States)

    Furman, Alex; Rosenzweig, Ravid; Volk, Elazar; Rosenkranz, Hella; Iden, Sascha; Durner, Wolfgang

    2014-05-01

    Although largely ignored, the soil contains large amount of biofilms (attached microbes) that can affect many processes. While biochemical processes are studied, biophysical processes receive only little attention. Biofilms may occupy some of the pore space, and by that affect the soil hydraulic properties. This effect on unsaturated soils, however, was not intensively studied. In this research we directly measure the hydraulic properties, namely the soil's unsaturated hydraulic conductivity function and retention curve, for soils containing real biofilm. To do that we inoculate soil with biofilm-forming bacteria and incubate it with sufficient amounts of nutrient until biofilm is formed. The hydraulic properties of the incubated soil are then measured using several techniques, including multi-step outflow and evaporation method. The longer measurements (evaporation method) are conducted under refrigeration conditions to minimize microbial activity during the experiment. The results show a clear effect of the biofilm, where the biofilm-affected soil (sandy loam in our case) behaves like a much finer soil. This qualitatively makes sense as the biofilm generates an effective pore size distribution that is characterized by smaller pores. However, the effect is much more complex and needs to be studied carefully considering (for example) dual porosity models. We compare our preliminary results with other experiments, including flow-through column experiments and experiments with biofilm analogues. Clearly a better understanding of the way microbial activity alters the hydraulic properties may help designing more efficient bioremediation, irrigation, and other soil-related processes.

  15. Fire effects on soils: the human dimension.

    Science.gov (United States)

    Santín, Cristina; Doerr, Stefan H

    2016-06-01

    Soils are among the most valuable non-renewable resources on the Earth. They support natural vegetation and human agro-ecosystems, represent the largest terrestrial organic carbon stock, and act as stores and filters for water. Mankind has impacted on soils from its early days in many different ways, with burning being the first human perturbation at landscape scales. Fire has long been used as a tool to fertilize soils and control plant growth, but it can also substantially change vegetation, enhance soil erosion and even cause desertification of previously productive areas. Indeed fire is now regarded by some as the seventh soil-forming factor. Here we explore the effects of fire on soils as influenced by human interference. Human-induced fires have shaped our landscape for thousands of years and they are currently the most common fires in many parts of the world. We first give an overview of fire effect on soils and then focus specifically on (i) how traditional land-use practices involving fire, such as slash-and-burn or vegetation clearing, have affected and still are affecting soils; (ii) the effects of more modern uses of fire, such as fuel reduction or ecological burns, on soils; and (iii) the ongoing and potential future effects on soils of the complex interactions between human-induced land cover changes, climate warming and fire dynamics.This article is part of the themed issue 'The interaction of fire and mankind'. PMID:27216528

  16. MYCOPOPULATION OF WEEDS IN ARABLE CROPS

    Directory of Open Access Journals (Sweden)

    Karolina Vrandečić

    2004-06-01

    Full Text Available A large number of weeds are alternative hosts to numerous pathogenic agents of fungus diseases to arable crops and they represent inoculum source to cultivated plants. The aim of our investigation was to determine weed mycopopulation, to establish pathogenicity of some fungi to cultivated plants as well as to choose potential parasites for biological control of weeds. During a two year investigation of weed mycopopulation obtained from root crops at five localities in East Slavonia and Baranya 32 fungus species were established at 25 weeds that were characterized by disease symptoms. Seven fungi species were determined on roots of 18 weeds, although there were no obvious disease symptoms. Obligated parasites along with 21 determined fungi are of Oomycetes, Plectomycetes and Hemibasidiomycetes genus. Facultative parasites from 18 determined fungus species are of Discomycetes, Pyrenomycetes, Coelomycetes and Hyphomycetes genus. Isolates of Sclerotinia sclerotiorum were tested for their pathogenicity to soybean. The results showed that there were no significant differences in pathogenicity of isolates in artificial conditions in laboratory. In natural conditions isolates from soybean were more pathogenic to soybean than the isolates from weeds. Experiments done with sunflower showed that the isolates from weeds were more pathogenic than isolates from sunflower. The isolates of Phomopsis/Diaporthe complex affected the length of germ, the length of necrosis and seed disease differently. Results showed that the isolates from weeds of Phomopsis species are pathogenic to soybean representing an important source of inoculum to soybean. Isolates of Fusarium species isolated from weeds were pathogenic for popcorn seedlings. Artificial infection of Abutilon theophrasti by Colletotrichum coccodes showed that foliar mass wilted earlier and whole plants died. For the first time in Croatia the presence of 14 fungus species was determined on 27 new hosts.

  17. An interdisciplinary approach towards improved understanding of soil deformation during compaction

    DEFF Research Database (Denmark)

    Keller, T.; Lamandé, Mathieu; Peth, S.;

    2013-01-01

    and deformation processes in arable soils remains limited. Yet such knowledge is essential for better predictions of effects of soil management practices such as agricultural field traffic on soil functioning. Concepts and theory used in agricultural soil mechanics (soil compaction and soil tillage) are often...... and validation of new soil compaction models. The integration of concepts underlying dynamic processes that modify soil pore spaces and bulk properties will improve the understanding of how soil management affect vital soil mechanical, hydraulic and ecological functions supporting plant growth.......Soil compaction not only reduces available pore volume in which fluids are stored, but it alters the arrangement of soil constituents and pore geometry, thereby adversely impacting fluid transport and a range of soil ecological functions. Quantitative understanding of stress transmission...

  18. Effects of sulfadiazine on soil bacterial communities

    DEFF Research Database (Denmark)

    Hangler, Martin

    and transport of SDZ at the interphase between dewatered SDZ-amended sewage sludge and soil. SDZ was not mineralized within sludge aggregates and travelled more than 10 mm into the surrounding soil. The strongest PICT response was observed in soils fertilized with organic fertilizers or inorganic NPK fertilizer...... to increasing SDZ-concentrations. Surprisingly, induced community tolerance was not detected either by [3H]-leucine incorporation or by quantification of two genes conferring resistance to sulfonamides. In contrast did SDZ-amendments lead to detection of PICT in soil samples from a long-term field experiment...... designed to test effects on soil quality of a range of different fertilizers in agriculture. In manuscript II extracted bacteria from soil samples representing a broad range of natural soil pH values were tested for their toxicity response to SDZ when amended at different assay pH. Toxicity clearly...

  19. Less or More Intensive Crop Arable Systems of Alentejo Region of Portugal: what is the sustainable option?

    Directory of Open Access Journals (Sweden)

    Carlos Marques

    2015-03-01

    Full Text Available Competitiveness of traditional arable crop system of Alentejo region of Portugal has been questioned for long. Discussion and research on the sustainability of the system has evolved on two contrasted alternative options for production technologies to traditional system. On the one hand reduced and no tillage systems aim to more extensive technical operations reducing costs and maintaining production, or even to increase it in the long run as soil fertility improves. On the other hand, input intensification using irrigation, as a complement in the last stage of crop cycle or always when needed, aimed to increase system production levels. To evaluate competitiveness and sustainability of arable crop system we evaluated traditional rotation technology and alternative no tillage and irrigation systems and analyze their farm economic results as well as their energy efficiency and environmental impacts. The analysis of the impact of no tillage and irrigation on arable land production system showed that both alternatives contributed to cost savings and profit earnings, energy savings and reduced GHG emissions, increasing physical and economic factor efficiency. Research and technological development of both options are worthwhile to promote competitiveness and sustainability of arable crop production systems of the Alentejo region in Portugal.

  20. Effect of the slope and initial moisture content on soil loss, aggregate and particle size distribution

    Science.gov (United States)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka

    2015-04-01

    Soil structure degradation has effect through the soil water balance and nutrient supply on the agricultural potential of an area. The soil erosion process comprises two phases: detachment and transport by water. To study the transport phase nozzle type laboratory-scale rainfall simulator was used with constant 80 mmhr-1 intensity on an arable haplic Cambisol. Measuring the aggregate and particle size distribution of the soil loss gives a good approach the erosion process. The primary objective of this study was to examine the sediment concentration, and detect the quality and quantity change of the soil loss during a single precipitation under six treatment combinations (recently tilled and crusty soil surface on two different slope steepness, inland inundation and drought soil conditions). Soil loss were collected continually, and separated per aggregate size fractions with sieves in three rounds during a rain to measure the weights. The particle size distribution was measured with Horiba LA-950 particle size analyzer. In general the ratio of the macro aggregates decreases and the ratio of the micro aggregates and clay fraction increases in the sediment with time during the precipitation due to the raindrop impact. Sediment concentration depends on the slope steepness, as from steeper slopes the runoff can transport bigger amount of sediment, but from the tilled surface bigger aggregates were washing down. Micro aggregate fraction is one of the indicators of good soil structure. The degradation of micro aggregates occurs in steeper slopes and the most erosive time period depends on the micromorphology of the surface. And while the aggregate size distribution of the soil loss of the treatments shows high variety of distribution and differs from the original soil, the particle size distribution of each aggregate size fraction shows similar trends except the 50-250 µm fraction where the fine sand fraction is dominating instead of the loam. This anomaly may be

  1. Effect of effective microorganisms on soil physical properties

    International Nuclear Information System (INIS)

    Effective Microorganisms solution is being used in various parts of Sindh as fertilizer substitute in the agriculture fields since years. Soils of two locations at Bozdar Wada Khairpur Mir's and Nawazabad farm Mirpurkhas were surveyed. Soil samples were collected at a depth of 0.6 and 6-12 inches. Using analytical methods, given in the Laboratory manual for Soil Analysis, carried out the Physico-chemical analysis. The comparative study of 20-Acre land area of both soils, the one treated with EM (Effective Microorganisms) technology and the other without treatment was carried out. The soil color, soil texture/Particle size analysis, soil moisture, bulk density, soil pH, Electric conductivity, and organic matter were determined. The analysis showed positive results, and it is observed that the quality of the soil was improved by using EM technology. (author)

  2. Calibration of effective soil hydraulic parameters of heterogeneous soil profiles

    NARCIS (Netherlands)

    Jhorar, R.K.; Dam, van J.C.; Bastiaanssen, W.G.M.; Feddes, R.A.

    2004-01-01

    Distributed hydrological models are useful tools to analyse the performance of irrigation systems at different levels. For the successful application of these models, it is imperative that effective soil hydraulic parameters at the scale of model application are known. The majority of previous studi

  3. EFFECTS OF SOIL FAUNA ON LITTER DECOMPOSITION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Forest litter is the physical makeup part of forest ecosystem. The rate of decomposition of forest litter is low in temperate and cool temperate zones. There is important significance to search and utilize the function of soil animals, in order to probe the material circulation and energy flow in forest ecosystem. We selected three kinds of mesh bag with different mesh size, in which, large pore mesh bag is large enough to permit the activities of all kinds of soil animals, medium mesh bag is designed to exclude the function of soil macrofauna, while small mesh bag is small enough to exclude the effects of any kind of soil animals as far as possible. The decomposition time is three years. The studying results show that: the decomposing speed of the bags with big meshes, under functions of all kinds of soil animals, faster than the bags with medium meshes, under functions of medium and small soil animals, as well as the bags with small meshes that excluding all possibility of functions of soil animals; in the process of decomposition of litter, relationship of the litter lost weight with number of soil animals is not obvious clearly; the degree of functions of soil animals to soft litter higher than hard litter; according to the analysis of diversity index, no regular changes will happen to the diversity of soil animals as the time of decomposing samples lengthen.

  4. Uses of glyphosate in German arable farming – aspects of weed management and arable practice

    Directory of Open Access Journals (Sweden)

    Wiese, Armin

    2016-02-01

    Full Text Available Data on glyphosate use, personal attitudes and farm characteristics were collected in a Germany-wide inventory from 2026 farms. About 1700 farms could be analyzed in detail. Categories of glyphosate users were split into: non-users, low proportion users and high proportion users. The latter apply glyphosate on > 20% of their arable land are characterized by a high amount of non-inversion tillage, low labor effort and aboveaverage farm size. Perennial weeds play a less important role for glyphosate use than managing weed populations that are regarded as less susceptible to regular herbicides. Non-users and users of glyphosate differ in their attitude towards the benefits of glyphosate and the amount of glyphosate use in agriculture.

  5. The influence of soluble carbon and nitrogen fertilizer on nitric oxide and nitrous oxide emissions from two contrasting agricultural soils

    OpenAIRE

    Sánchez Martín, Laura; Vallejo Garcia, Antonio; Dick, Jan; Skiba, Ute M.

    2008-01-01

    Contradictory effects of simultaneous available organic C and N sources on nitrous oxide (N2O), carbon dioxide (CO2) and nitric oxide (NO) fluxes are reported in the literature. In order to clarify this controversy, laboratory experiments were conduced on two different soils, a semiarid arable soil from Spain (soil I, pH ¼ 7.5, 0.8%C) and a grassland soil from Scotland (soil II, pH ¼ 5.5, 4.1%C). Soils were incubated at two different moisture contents, at a water filled pore space (WFPS) of 9...

  6. Effects of soil fumigants on methanotrophic activity

    Science.gov (United States)

    Negative impacts on methane (CH4) oxidation capacity have already been observed for a variety of agronomic practices, but effect of soil fumigation on CH4 oxidation has not been investigated. Fumigation is a common practice in agricultural crop and nursery seedling protection. Soils from various agr...

  7. Effect of land use change on soil properties and functions

    Science.gov (United States)

    Tonutare, Tonu; Kõlli, Raimo; Köster, Tiina; Rannik, Kaire; Szajdak, Lech; Shanskiy, Merrit

    2014-05-01

    , and pedo-ecological conditions. LUC from natural to arable is accompanied by different regulations: (1) regular restoration of plant available nutrition elements' stocks in soil, (2) regulation (if needed) of water regime of gleyed and gley soils, (3) optimizing of soil actual acidity by liming, and (4) forming a suitable for crops seed bed instead of natural epipedon. Principal changes are occurred in fabric and agrochemical properties of topsoil and in soil functioning. The connected with LUC changes in soil functioning are: (1) increase of openness level of chemical elements cycling and nutrition elements concentration in phytomass, and (2) decrease of total phytomass, species diversity, amount of annual falling litter and content of mortmass in soil cover. These changes lead to decreasing of biological control on soil resources, flux of energy and substances to soil processes, and volume of cycling. At the same time the intensity of organic matter decomposition and outflow of nutrition elements are increased. All these changes are resulted by alteration of food chains and exhausting of nutrition elements' stocks. The changes in soil functioning (decrease or increase of productivity) depend much on soil type. The aspects of functioning, which do not changed with LUC are chemical-textural potential of soil cover and functioning character of subsoil. The sound matching of soil and plant cover is of decisive importance for sustainable functioning of ecosystem and in attaining a good environmental status of the area.

  8. Influence of conservation tillage and zero tillage on arable weeds in organic faba bean production

    Directory of Open Access Journals (Sweden)

    Jung, Rüdiger

    2016-02-01

    Full Text Available The field experiments were conducted in 2008, 2009 and 2010 on a Gleyic Cambisol near Goettingen, Lower Saxony, Germany. A crop sequence of summer barley, winter cover crops (intercropped oat and sunflower and summer faba bean was examined under organic farming conditions. Emphasis was given to the studying of arable weeds in faba beans. However, enhancing symbiotic nitrogen fixation of summer faba beans by accumulation of soil-nitrogen by winter cover crops was a second objective in these experiments. The faba bean field plots had been cultivated with three different tillage systems: 1. zero tillage, sowing with cross-slottechnique, 2. conservation tillage (wing share cultivator, rotary harrow sowing with cross-slot-technique and 3. conventional tillage with mouldboard plough followed by rotary harrow, sowing with precision monoseeder. In plots with zero tillage preceding cover crops were left as mulch on the soil surface. Cover crops accumulated adequate nitrogen amounts and following faba beans reacted with significant increase (up to 10% in symbiotic nitrogen fixation. Maximum of arable weed biomass was observed in zero tillage-plots at the end of May or early in June. The abundance of the predominant weed wild mustard (Sinapis arvensis increased with tillage intensity, whereas the abundance of creeping thistle (Cirsium arvense increased in 2010 with decreasing tillage intensity. Average grain yield of faba beans was low with only 3.0 and 2.4 t ha-1 in 2009 and 2010, respectively.

  9. Glyphosate applications on arable fields considerably coincide with migrating amphibians.

    Science.gov (United States)

    Berger, Gert; Graef, Frieder; Pfeffer, Holger

    2013-01-01

    Glyphosate usage is increasing worldwide and the application schemes of this herbicide are currently changing. Amphibians migrating through arable fields may be harmed by Glyphosate applied to field crops. We investigated the population-based temporal coincidence of four amphibian species with Glyphosate from 2006 to 2008. Depending on a) age- and species-specific main migration periods, b) crop species, c) Glyphosate application mode for crops, and d) the presumed DT50 value (12 days or 47 days) of Glyphosate, we calculated up to 100% coincidence with Glyphosate. The amphibians regularly co-occur with pre-sowing/pre-emerging Glyphosate applications to maize in spring and with stubble management prior to crop sowing in late summer and autumn. Siccation treatment in summer coincides only with early pond-leaving juveniles. We suggest in-depth investigations of both acute and long-term effects of Glyphosate applications on amphibian populations not only focussed on exposure during aquatic periods but also terrestrial life stages.

  10. Weed vegetation ecology of arable land in Salalah, Southern Oman.

    Science.gov (United States)

    El-Sheikh, Mohamed A

    2013-07-01

    This paper applies multivariate statistical methods to a data set of weed relevés from arable fields in two different habitat types of coastal and mountainous escarpments in Southern Oman. The objectives were to test the effect of environmental gradients, crop plants and time on weed species composition, to rank the importance of these particular factors, and to describe the patterns of species composition and diversity associated with these factors. Through the application of TWINSPAN, DCA and CCA programs on data relating to 102 species recorded in 28 plots and farms distributed in the study area, six plant communities were identified: I- Dichanthium micranthum, II- Cynodon dactylon-D. micranthum, III- Convolvulus arvensis, IV- C. dactylon-Sonchus oleraceus, V- Amaranthus viridis and VI- Suaeda aegyptiaca-Achyranthes aspera. The ordination process (CCA) provided a sequence of plant communities and species diversity that correlated with some anthropogenic factors, physiographic variables and crop types. Therefore, length of time since farm construction, disturbance levels and altitude are the most important factors related to the occurrence of the species. The perennial species correlated with the more degraded mountain areas of new farm stands, whereas most of the annuals correlated with old lowland and less disturbed farms. PMID:23961246

  11. Contamination of urban garden soils with copper and boron

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D.

    1966-06-04

    Spectrochemical analyses of garden soils sampled in the Edinburgh and Dundee areas indicate that there is substantial contamination of urban soils with copper and boron. These soils were analyzed spectrochemically with respect to total copper and water-extractable boron content with the view of comparing the levels obtained in urban areas with levels in arable soils in rural areas. The results indicate that urban garden soils contain about four times as much copper and two to three times as much water-soluble boron as rural arable soils. The existence of such a marked disparity between the levels of two potentially toxic elements in urban and rural areas is evidence of slow poisoning of the soil environment in built-up areas and is cause for concern. While the major source of contamination of soils with copper and boron is still a matter for speculation, it is probable that the addition of soot to garden soils and the fall-out of sooty material in built-up areas where atmospheric pollution is a problem make a substantial contribution to the water-extractable boron content of urban soils. Three samples of soot from domestic chimneys, obtained from independent sources, were found on analysis to contain 640, 650 and 555 p.p.m. water-extractable boron, and it is evident that the addition to soil of even small amounts of soot with a boron content of this order would have a marked effect on its water-extractable boron content.

  12. Transformation of upper part soil profile of sod-podzolic light loamy soils under the conditions of long-term soil improvement

    Directory of Open Access Journals (Sweden)

    Nikolay S. Matyuk

    2013-01-01

    Full Text Available Arable sod-podzolic soils have the definite characteristics inherited from the virgin soils and obtained during the modern process of soil genesis under the influence of mankind activity. In arable soils hydrothermal conditions, biological turnover of nutrients change significantly that connected with their taking out with the yield and the compensation with mineral and organic fertilizers. The period of agricultural treatment of the soils indicates the total influence of the intensification factors and causes the changes in characteristics, regimes and fertility not only of arable layer, but lower layers of the upper part of soil profile (0-100 cm.

  13. Effect of Biochar on Soil Physical Characteristics

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad;

    characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C...... and B plots were placed in a mixed sequence (C-B-C-B-C-B-C-B) and at the same time the eight plots formed a natural pH gradient ranging from pH 7.7 to 6.3. We determined bulk density, saturated hydraulic conductivity (K-sat), soil water retention characteristics, soil-air permeability, and soil-gas......Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...

  14. Climate change impact research on arable weeds – data, methods and applications at various scale levels

    Directory of Open Access Journals (Sweden)

    Breitsameter, Laura

    2014-02-01

    Full Text Available In the past years, a large number of studies have examined various aspects of possible consequences of climate change for the biology and damage potential of arable weeds. However, there are merely a few examples that have comprehensively investigated individual weed species or arable crop systems within a clearly delimited geographical area. In the frame of the research co-operation KLIFF (Climate change impact and adaptation research for Lower Saxony, we tested an approach that combines a number of methods to span several scale levels and types of environmental factors, which was intended to provide as accurate as possible an estimate of the potential distribution and performance of individual arable weed species under the predicted future climate conditions. This approach was put to practice for the species Abutilon theophrasti, Amaranthus retroflexus, Echinochloa crus-galli, Datura stramonium, Iva xanthiifolia and Setaria viridis. We combined projections of the potential future distribution of the individual weed species based on a correlative distribution modelling approach (regional scale level with pot experiments (local scale level on the vegetative and generative performance of these species under climatic conditions predicted for the end of the current century for Lower Saxony. A synopsis revealed that the results obtained from the different approaches corresponded to a large extent. For A. retroflexus, D. stramonium, E. crus-galli, and S. viridis, both approaches indicated a neutral or positive effect of the predicted future climate on their potential distribution and performance, whereas the opposite was found for I. xanthiifolia. Merely for A. theophrasti, results of the two methods did not fully concur. Altogether, our results highlight that investigating climate change impact on weeds by combining several methods to span several scale levels allows fitting various data sets to a comprehensive picture for a delimited region. It has

  15. Soil erosion survey using remote sensing images

    Science.gov (United States)

    Jakab, Gergely; Kertész, Ádám; Madarász, Balázs; Pálinkás, Melinda; Tóth, Adrienn

    2016-04-01

    Soil erosion is one of the most effective soil degradation processes reducing crop production on arable fields significantly. It also leads to serious environmental hazards such as eutrophication, mud and flesh floods. Beyond the processes there is an urgent need to survey and descript the current degree of erosion of arable lands in order to provide adequate land use techniques and mitigate the harmful effects. Surveying soil erosion is a very time consuming process since soil loss and deposition take place next to each other resulting a rather diverse erosion pattern even within a plot. Remote sensing is a possible way to determine the degree of soil erosion without special efforts taken in the field. The application of images can provide high resolution erosion maps of almost any type of arable fields. The method is based on the identification of the origin of the surface soil layer, i.e. whether it represents an originally deeper laying horizon (e.g. B horizon), or the parent material. A case study was carried out on a Cambisol formed on loess parent material. The soil and the parent rock have various reflectance spectra in the visible range, so this strip was used for the investigations. For map creation "training sites" were used in ArcMap environment. The obtained results suggest that the method is highly effective and useful, however, other properties like moisture content and plant cover can limit automated application. In this case new training sites are needed. The study was supported by the National Research, Development and Innovation Office (NKFIH),), project Nr. 108755 and the support is gratefully acknowledged here. G. Jakab was supported by the János Bolyai Fellowship.

  16. Effects of environmental factors and soil properties on topographic variations of soil respiration

    Directory of Open Access Journals (Sweden)

    K. Tamai

    2010-03-01

    Full Text Available Soil respiration rates were measured along different parts of a slope in (a an evergreen forest with common brown forest soil and (b a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soil moisture and soil temperature. These results may be explained by the fact that different soil properties matured within different environments. It can be argued that the low soil respiration rates in the low parts of the slope in the evergreen forest resulted from soil properties and not from wet soil conditions. In the deciduous forest, soil respiration rates were more strongly affected by soil moisture and soil temperature than by soil properties. These effects were likely due to the immaturity of the forest soil.

  17. Afforestation effects on soil carbon

    DEFF Research Database (Denmark)

    Bárcena, Teresa G

    Understanding carbon (C) dynamics has become increasingly important due to the major role of C in global warming. Soils store the largest amount of organic C in the biosphere; therefore, changes in this compartment can have a large impact on the C storage of an ecosystem. Land-use change is a main...... driver of changes in soil organic carbon (SOC) pools worldwide. In Europe, afforestation (i.e. the establishment of new forest on non-forested land), is a major land-use change driven by economic and environmental interests due to its role as a C sequestration tool following the ratification of the Kyoto...

  18. Effects of soil moisture content and tractor wheeling intensity on traffic-induced soil compaction

    OpenAIRE

    AHMADI, Iman; GHAUR, Hossein

    2015-01-01

    Soil compaction causes deleterious effects on physical and mechanical proprieties of agricultural soils. In order to investigate the effect of soil moisture content and tractor wheeling intensity on traffic-induced soil compaction, this study was carried out on a field with clay loam soil. Soil dry bulk density and hydraulic conductivity as well as emergence percentage of corn seedlings and dry mass of the sampled mature plants were considered the dependent variables of the experiment. Ind...

  19. Arsenic Content in Arable Land of the Ząbkowice District

    Directory of Open Access Journals (Sweden)

    Kaszubkiewicz Jarosław

    2014-06-01

    Full Text Available The aim of this study was to determine the content of arsenic in soils used for agriculture in the Ząbkowicki district. The content of arsenic in collected soil samples ranged 1.1-569.5 mg·kg-1. The standard for arable lands of Group B has been exceeded in 24 out of 231 test points. The highest concentrations occurred in the Złoty Stok commune. This is due to the output of arsenic and gold in this area. Exceeding the standard also occurred in neighboring communes: Kamieniec Ząbkowicki and Ziębice. This is due to the blowing and washing pollutions form the source of contamination, the arsenic mines in the Złoty Stok commune.

  20. Effect of cryogel on soil properties

    Science.gov (United States)

    Altunina, L. K.; Fufaeva, M. S.; Filatov, D. A.; Svarovskaya, L. I.; Rozhdestvenskii, E. A.; Gan-Erdene, T.

    2014-05-01

    Samples from the A1 and A1A2 horizons of sandy loamy gray forest soil containing 3.1% organic matter have been mixed with a 5% solution of polyvinyl alcohol (PVA) at a ratio of 7 : 1 under laboratory conditions. The samples were frozen at -20°C in a refrigerator; after a freezing-thawing cycle, the evaporation of water from their surface, their thermal conductivity coefficient, their elasticity modulus, and other properties were studied. It has been experimentally found that the thermal conductivity coefficient of cryostructured soil is lower than that of common soil by 25%. It has been shown that the cryostructured soil retains water for a longer time and that the water evaporation rate from its surface is significantly lower compared to the control soil. Cryogel has no negative effect on the catalase activity of soil; it changes the physical properties of soils and positively affects the population of indigenous soil microflora and the growth of the sown plants.

  1. Application of Remote Sensing and GIS Technology to the Study of Desertification of Arable Lands in North Shaanxi, China

    Institute of Scientific and Technical Information of China (English)

    Mushtak Talib Jabbar; HU Guangdao; ZHANG Zhenfei

    2004-01-01

    The policy of the Chinese government concerning the horizontal expansion of the cultivated land through the reclamation of desert soils result in a total increase of 665.985 km2 during the period 1987-1999 in North Shaanxi. This increase is less than the loss in arable land by urbanization. The accelerated rate of change in agricultural areas calls for more rapid surveys of urbanization and loss of arable land. Remote sensing has a number of advantages over ground-based methods for such surveys. The multi-scale concept of remote sensing data help us study the problem in four towns. Several maps were produced to analyze the situation of urban coverage in different times. The evaluation of the status, rate and risk of urbanization are based on an accepted average of urban increase as 2% of population growth per year.

  2. Simulating the impacts of land use in northwest Europe on Net Ecosystem Exchange (NEE): the role of arable ecosystems, grasslands and forest plantations in climate change mitigation.

    Science.gov (United States)

    Abdalla, Mohamed; Saunders, Matthew; Hastings, Astley; Williams, Mike; Smith, Pete; Osborne, Bruce; Lanigan, Gary; Jones, Mike B

    2013-11-01

    In this study, we compared measured and simulated Net Ecosystem Exchange (NEE) values from three wide spread ecosystems in the southeast of Ireland (forest, arable and grassland), and investigated the suitability of the DNDC (the DeNitrification-DeComposition) model to estimate present and future NEE. Although, the field-DNDC version overestimated NEE at temperatures >5 °C, forest-DNDC under-estimated NEE at temperatures >5 °C. The results suggest that the field/forest DNDC models can successfully estimate changes in seasonal and annual NEE from these ecosystems. Differences in NEE were found to be primarily land cover specific. The annual NEE was similar for the grassland and arable sites, but due to the contribution of exported carbon, the soil carbon increased at the grassland site and decreased at the arable site. The NEE of the forest site was an order of magnitude larger than that of the grassland or arable ecosystems, with large amounts of carbon stored in woody biomass and the soil. The average annual NEE, GPP and Reco values over the measurement period were -904, 2379 and 1475 g C m(-2) (forest plantations), -189, 906 and 715 g C m(-2) (arable systems) and -212, 1653 and 1444 g C m(-2) (grasslands), respectively. The average RMSE values were 3.8 g C m(-2) (forest plantations), 0.12 g C m(-2) (arable systems) and 0.21 g C m(-2) (grasslands). When these models were run with climate change scenarios to 2060, predictions show that all three ecosystems will continue to operate as carbon sinks. Further, climate change may decrease the carbon sink strength in the forest plantations by up to 50%. This study supports the use of the DNDC model as a valid tool to predict the consequences of climate change on NEE from different ecosystems. PMID:23384575

  3. Purchase of Catastrophe Insurance by Dutch Dairy and Arable Farmers

    NARCIS (Netherlands)

    Ogurtsov, V.; Asseldonk, van M.A.P.M.; Huirne, R.B.M.

    2009-01-01

    This article analyzed the impact of risk perception, risk attitude, and other farmer personal and farm characteristics on the actual purchase of catastrophe insurance by Dutch dairy and arable farmers. The specific catastrophe insurance types considered were hail–fire–storm insurance for buildings,

  4. Perception of biodiversity in arable production systems in the Netherlands

    NARCIS (Netherlands)

    Stilma, E.S.C.; Smit, A.B.; Geerling-Eiff, F.A.; Struik, P.C.; Vosman, B.J.; Korevaar, H.

    2009-01-01

    Until recently, arable production systems in the Netherlands were solely based on their production function, while ecological and societal functions were not or hardly taken into account. However, the Netherlands is a small and densely populated country that requires a well-planned management of the

  5. Peatlands under cultivation for arable crops; a new area estimate for Ireland

    Science.gov (United States)

    Donlan, Jennifer; Byrne, Ken

    2015-04-01

    Peatlands cover 20% of the Irish landscape and store between 53% and 61% of total soil carbon stocks. Eighty percent of these have been drained for peat cutting, afforestation and conversion to agricultural use. As a signatory to the United Nations framework Convention on Climate Change, Ireland is required to make an annual inventory of greenhouse gas emissions and sinks in the agricultural sector. While guidelines on the compilation of such inventories are provided by the IPCC 2006 Guidelines, reporting at higher Tiers requires the collection of national specific information including the accuracy of inventories. Total land area (including accuracy estimates) and national emission factors are lacking for agricultural activity on drained organic soils i.e. converted peatlands. Locations of organic (peat) soils under cultivation were identified using a map overlay analysis and existing geographic data on peat habitats and agricultural activities. The result was 3688 ha of land cultivated for arable crops overlaid areas classified as peatland. A design-based accuracy assessment and probability sampling method were chosen to assess the accuracy of the overlay. The focus of the analysis was on the accuracy of the peat data. The agricultural data was considered quite robust, so it was used to limit the area included in the assessment. Ground truthing was carried out at randomly chosen locations within areas mapped as 1) areas cultivated for arable crops and 2) peat habitats or a 100m buffer surrounding those areas. Sixty-nine sites were sampled and an error matrix was constructed comparing the map classification at the sample location to the samples taken there. The overall accuracy was 77%. There was a high producer's accuracy (84%) and a low user's accuracy (28%) for the peat category. Area estimate of peatlands under cultivation for arable crops was 1235 ± 784 ha. Future policies will require the identification of strategies to reduce greenhouse gas emissions and

  6. Driving Factors and Model of Change in Arable Land Area in China

    OpenAIRE

    Lei, Zhanbo; Du, Haowen

    2009-01-01

    We analyze the characteristics of the change in arable land area in China according to the change data of arable land area and other relevant data from the year 1996 to 2006, and adopt Factor Analysis Method and Stepwise Regression Method to carry out quantitative analysis on the driving factors of arable land change of China. We also establish the regression model of driving factors and arable land area. Finally, some corresponding suggestions are put forward.

  7. Long-term effects of soil management on ecosystem services and soil loss estimation in olive grove top soils

    NARCIS (Netherlands)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Keesstra, Saskia; Cerdà, Artemi; Brevik, Eric C.

    2016-01-01

    Soil management has important effects on soil properties, runoff, soil losses and soil quality. Traditional olive grove (OG) management is based on reduced tree density, canopy size shaped by pruning and weed control by ploughing. In addition, over the last several decades, herbicide use has been

  8. Effect of Land Use on Soil Degradation and Soil Productivity Decline on Alfisols and Ultisols in Ogun State in South Western, Nigeria

    OpenAIRE

    Bolarinwa Ayoola Senjobi; Olayiwola Ayoade Ogunkunle

    2010-01-01

    One of the critical factors influencing land degradation is land use. However, the extent to which land use influences land degradation has not been fully ascertained in the southwestern part of Nigeria (i.e. particularly in Ogun State). Thus, this study was designed to assess the extent to which land use influences crop productivity in Ogun State. Two major soil types identified at the site were Alfisols and Ultisols. Within these, three land use types (LUT) were identified: arable crop - La...

  9. Non-invasive observation of the shallow soil profile stratification and its effect on soil water regime

    Science.gov (United States)

    Jeřábek, Jakub; Zumr, David

    2016-04-01

    Arable soils are exhibited to many stresses resulting in changes of the soil structure and properties at various scales. The most affected layer is the topsoil, which is periodically disrupted and consolidated due to tillage, rapid crop growth and changing weather conditions. The compacted layer often forms below the topsoil as a result of the pressure induced by the agriculture machinery and because of the finest particles caught on the divide between the tilled soil and untreated subsoil. The compacted layer is rather homogeneous, but there are features of different sizes, such as wheel tracks, till drainage shafts, local depressions, wormholes or cracks which redirect the water flow pathways or allow water to percolate into deeper horizon. The data acquisition targeting the spatial evaluation of the soil structure is, however, complicated. In this study, we utilize electrical resistance tomography in combination with penetration resistance tests and compare the results with complementary measured soil characteristics. Soil profile samples were taken to gain more complex information of soil physical characteristics possibly influencing the soil resistivity. We tried to relate the observed features to previous management activities at the field. Results showed, that the proposed technique can be used to compacted layer identification, but the information about its macroscopic heterogeneities is only in qualitative manner. The research was performed within the framework of a postdoctoral project granted by Czech Science Foundation No. 13-20388P and internal CTU project.

  10. Plant species richness and composition in the arable land of Kosovo

    Directory of Open Access Journals (Sweden)

    A. Mehmeti

    2009-03-01

    Full Text Available This study investigates today’s plant species richness and composition in cultivated and recently abandoned arable land of Kosovo. Relationships between these aspects of vegetation and both environmental features and agricultural management measures are studied at the regional and plot scale. In 2006, 432 vegetation relevés with a standard plot size of 25 m² were recorded in cultivated fields. In 2007, data collection focussed on 41 plots in arable fields that had been abandoned the year before. With respect to the environment, data analysis accounts for topography, soil base-richness and moisture, and geographic location. As to the management, crops and weed control are considered. A total number of 235 species was documented. In comparison to literature dating back to about 1980, the regional weed flora considerably changed. At the plot scale, today’s weed flora of Kosovo is fairly species-poor and species composition is rather uniform between plots. According to General Regression Model analyses, Indicator Species Analyses and Detrended Correspondence Analyses, species richness and composition mainly differ between crops and weed management, with highest mean species richness in recently abandoned and lowest in herbicide-treated maize fields.

  11. Urban tree effects on soil organic carbon.

    Directory of Open Access Journals (Sweden)

    Jill L Edmondson

    Full Text Available Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  12. Urban tree effects on soil organic carbon.

    Science.gov (United States)

    Edmondson, Jill L; O'Sullivan, Odhran S; Inger, Richard; Potter, Jonathan; McHugh, Nicola; Gaston, Kevin J; Leake, Jonathan R

    2014-01-01

    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered. PMID:25003872

  13. Effects of Biochar Amendment on Soil Properties and Soil Carbon Sequestration

    Science.gov (United States)

    Zhang, R.; Zhu, S.

    2015-12-01

    Biochar addition to soils potentially affects various soil properties and soil carbon sequestration, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties as well as soil carbon sequestration. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates and the amount of soil carbon storage.

  14. Economic assessment of alternatives for glyphosate application in arable farming

    OpenAIRE

    Kehlenbeck, Hella; Saltzmann, Jovanka; Schwarz, Jürgen; Zwerger, Peter; Nordmeyer, Henning

    2016-01-01

    Application and sales of herbicides with glyphosate have strongly increased in Germany during the past 10 years. This has raised a number of questions and discussions concerning glyphosate use. Therefore, this paper identifies and evaluates alternatives with an efficacy almost equivalent to glyphosate for different treatmentareas in terms of economic consequences for farms in comparison to glyphosate use by way of example. With the help of exemplary crop rotations uses in arable farming fo...

  15. Uses of glyphosate in German arable farming – operational aspects

    OpenAIRE

    Wiese, Armin; Schulte, Michael; Theuvsen, Ludwig; Steinmann, Horst-Henning

    2016-01-01

    Glyphosate is the most frequently used herbicide active ingredient in Germany. Studies regarding its usage in non-GMO arable farming are still rare even though it plays an important role in several agronomic situations. Therefore, we conducted a comprehensive survey, which was carried out among conventional German farms in Winter 2014/2015. Based on the results of this survey we analyzed via cluster analysis how types of farms differ in terms of glyphosate usage. An illustration of seven clus...

  16. Effect of Different Vegetation Types on the Rhizosphere Soil Microbial Community Structure in the Loess Plateau of China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chao; LIU Guo-bin; XUE Sha; and XIAO Lie

    2013-01-01

    The Loess Plateau in China is one of the most eroded areas in the world. Accordingly, vegetation restoration has been implemented in this area over the past two decades to remedy the soil degradation problem. Understanding the microbial community structure is essential for the sustainability of ecosystems and for the reclamation of degraded arable land. This study aimed to determine the effect of different vegetation types on microbial processes and community structure in rhizosphere soils in the Loess Plateau. The six vegetation types were as follows:two natural grassland (Artemisia capillaries and Heteropappus altaicus), two artificial grassland (Astragalus adsurgens and Panicum virgatum), and two artificial shrubland (Caragana korshinskii and Hippophae rhamnoides) species. The microbial community structure and functional diversity were examined by analyzing the phospholipid fatty acids (PLFAs) and community-level physiological profiles. The results showed that rhizosphere soil sampled from the H. altaicus and A. capillaries plots had the highest values of microbial biomass C, average well color development of carbon resources, Gram-negative (G-) bacterial PLFA, bacterial PLFA, total PLFA, Shannon richness, and Shannon evenness, as well as the lowest metabolic quotient. Soil sampled from the H. rhamnoides plots had the highest metabolic quotient and Gram-positive (G+) bacterial PLFA, and soil sampled from the A. adsurgens and A. capillaries plots had the highest fungal PLFA and fungal:bacterial PLFA ratio. Correlation analysis indicated a signiifcant positive relationship among the microbial biomass C, G- bacterial PLFA, bacterial PLFA, and total PLFA. In conclusion, plant species under arid climatic conditions signiifcantly affected the microbial community structure in rhizosphere soil. Among the studied plants, natural grassland species generated the most favorable microbial conditions.

  17. Grass-clover undersowing affects nitrogen dynamics in a grain legume–cereal arable cropping system

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Mundus, Simon; Jensen, Erik Steen

    2012-01-01

    A field experiment was carried out in an arable organic cropping system and included a sequence with sole cropped fababean (Vicia faba L.), lupin (Lupinus angustifolius L.), pea (Pisum sativum L.), oat (Avena sativa L.) and pea–oat intercropping with or without an undersown perennial ryegrass...... N2 fixation and 15N labeling technique to determine the fate of pea and oat residue N recovery in the subsequent crop. The subsequent spring wheat and winter triticale crop yields were not significantly affected by the previous main crop, but a significant effect of catch crop undersowing...

  18. Uses of glyphosate in German arable farming – operational aspects

    Directory of Open Access Journals (Sweden)

    Wiese, Armin

    2016-02-01

    Full Text Available Glyphosate is the most frequently used herbicide active ingredient in Germany. Studies regarding its usage in non-GMO arable farming are still rare even though it plays an important role in several agronomic situations. Therefore, we conducted a comprehensive survey, which was carried out among conventional German farms in Winter 2014/2015. Based on the results of this survey we analyzed via cluster analysis how types of farms differ in terms of glyphosate usage. An illustration of seven clusters allows deep insights into arable farm structures. The farm types can be distinguished regarding their tillage system and similar to this differentiation also concerning their intensity of glyphosate application. Furthermore, it becomes obvious that farm clusters with a higher level of glyphosate usage are characterized by a lower number of labourers per hectare, more arable land and/or enhanced cover cropping. Moreover, groups of farmers who rely more on glyphosate are more likely to state that they need glyphosate for herbicide resistance management. Farmers’ assessments of the economic importance of glyphosate usage vary depending on the type of farm. By means of the farm clusters, the most important situations of glyphosate usage can be further analyzed economically and scenarios for impact assessments can be made.

  19. Patterns of bryophyte diversity in arable fields of Lithuania

    Directory of Open Access Journals (Sweden)

    Danguolė Andriušaitytė

    2013-03-01

    Full Text Available The paper presents research data on bryophyte diversity in arable land throughout the territory of Lithuania. The bryoflora was analyzed regarding systematic structure and morphological forms, life-history strategies, mode of reproduction and frequency of species. Bryophyte diversity in arable fields of Lithuania was compared with that of Slovakia and the British Isles, which are positioned in different geographical regions of Europe. A total of 97 species of bryophytes of 25 families and 48 genera were ascertained. Dominance of acrocarpous mosses and thalloid liverworts, high representation of Pottiaceae, Bryaceae, Mielichhoferiaceae and Ricciaceae families as well as Bryum, Dicranella, Pohlia and Riccia genera, wide distribution of annual shuttles and ephemeral colonists, high reproduction effort of the species (frequent sporophytes and asexual propagules were specific features of the bryophytes of the studied habitats as a result of adaptations to regular disturbances. The distribution of species into six frequency groups seemed to be uneven. The most abundant group of species with the lowest frequency (1–3 records covered 53.6% of all species. The group contained about 90% of all many-year potential life span species recorded in the habitat. Species with short life span were distributed quite evenly throughout frequency groups. No regionally-specific species were ascertained in the studied habitat. Most of arable-land-specific species recorded in Lithuania is distributed throughout different regions of Europe.

  20. Estimation of the density of the clay-organic complex in soil

    Science.gov (United States)

    Czyż, Ewa A.; Dexter, Anthony R.

    2016-01-01

    Soil bulk density was investigated as a function of soil contents of clay and organic matter in arable agricultural soils at a range of locations. The contents of clay and organic matter were used in an algorithmic procedure to calculate the amounts of clay-organic complex in the soils. Values of soil bulk density as a function of soil organic matter content were used to estimate the amount of pore space occupied by unit amount of complex. These estimations show that the effective density of the clay-organic matter complex is very low with a mean value of 0.17 ± 0.04 g ml-1 in arable soils. This value is much smaller than the soil bulk density and smaller than any of the other components of the soil considered separately (with the exception of the gas content). This low value suggests that the clay-soil complex has an extremely porous and open structure. When the complex is considered as a separate phase in soil, it can account for the observed reduction of bulk density with increasing content of organic matter.

  1. Effects of Skidder Passes and Slope on Soil Disturbance in Two Soil Water Contents

    OpenAIRE

    Naghdi, Ramin; Solgi, Ahmad

    2014-01-01

    Skidding operations induce changes in soil physical properties, which have the potential to impact soil sustainability and forest productivity. Our objective was to investigate the effects of traffic frequency, trail slope, and soil moisture content on soil compaction, total porosity and rut depth. Treatments included a combination of three different traffic intensities (3, 7, and 14 passes), three levels of slopes ( 20%), and two levels of soil moisture content (18% and 32...

  2. [Priming Effects of Soil Moisture on Soil Respiration Under Different Tillage Practices].

    Science.gov (United States)

    Zhang, Yan; Liang, Ai-zhen; Zhang, Xiao-ping; Chen, Sheng-long; Sun, Bing-jie; Liu, Si-yi

    2016-03-15

    In the early stage of an incubation experiment, soil respiration has a sensitive response to different levels of soil moisture. To investigate the effects of soil moisture on soil respiration under different tillage practices, we designed an incubation trial using air-dried soil samples collected from tillage experiment station established on black soils in 2001. The tillage experiment consisted of no-tillage (NT), ridge tillage (RT), and conventional tillage (CT). According to field capacity (water-holding capacity, WHC), we set nine moisture levels including 30%, 60%, 90%, 120%, 150%, 180%, 210%, 240%, 270% WHC. During the 22-day short-term incubation, soil CO₂ emission was measured. In the early stage of incubation, the priming effects occurred under all tillage practices. There were positive correlations between soil respiration and soil moisture. In addition to drought and flood conditions, soil CO₂ fluxes followed the order of NT > RT > CT. We fitted the relationship between soil moisture and soil CO₂ fluxes under different tillage practices. In the range of 30%-270% WHC, soil CO₂ fluxes and soil moisture fitted a quadratic regression equation under NT, and linear regression equations under RT and CT. Under the conditions of 30%-210% WHC of both NT and RT, soil CO₂ fluxes and soil moisture were well fitted by the logarithmic equation with fitting coefficient R² = 0.966 and 0.956, respectively.

  3. Effects of lignin on nitrification in soil

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The effects of two lignins isolated from black liquor from pulping process on nitrification in soils after addition of urea, (NH4)2SO4 and (NH4)2HPO4 were investigated by incubation at 20 or 30℃ for 7 or 14d. The effects of lignin on nitrous oxide emissions from soil were also determined. Results showed that both lignins were more effective for inhibiting nitrification of NH4+-N as (NH4)2SO4 or (NH4)2HPO4 as compared to urea-N. The effectiveness of lignin on nitrification was markedly affected by different soil type and temperature. Nitrous oxide emissions from soil declined when lignin was used. Urea plus 20 and 50 g/kg lignin reduced N2O emissions by about 83% and 96%, respectively, while (NH4)2HPO4 plus 20 and 50 g/kg lignin respectively reduced emissions by 83% and 93%. Because of its low cost and nonhazardous characteristics, lignin has potential value as a fertilizer amendment to improve N fertilizer efficiency.

  4. [Characteristics of nutrient loss by runoff in sloping arable land of yellow-brown under different rainfall intensities].

    Science.gov (United States)

    Chen, Ling; Liu, De-Fu; Song, Lin-Xu; Cui, Yu-Jie; Zhang, Gei

    2013-06-01

    In order to investigate the loss characteristics of N and P through surface flow and interflow under different rainfall intensities, a field experiment was conducted on the sloping arable land covered by typical yellow-brown soils inXiangxi River watershed by artificial rainfall. The results showed that the discharge of surface flow, total runoff and sediment increased with the increase of rain intensity, while the interflow was negatively correlated with rain intensity under the same total rainfall. TN, DN and DP were all flushed at the very beginning in surface flow underdifferent rainfall intensities; TP fluctuated and kept consistent in surface flow without obvious downtrend. While TN, DN and DP in interflow kept relatively stable in the whole runoff process, TP was high at the early stage, then rapidly decreased with time and kept steady finally. P was directly influenced by rainfall intensity, its concentration in the runoff increased with the increase of the rainfall intensity, the average concentration of N and P both exceeded the threshold of eutrophication of freshwater. The higher the amount of P loss was, the higher the rain intensity. The change of N loss was the opposite. The contribution rate of TN loss carried by surface flow increased from 36.5% to 57.6% with the increase of rainfall intensity, but surface flow was the primary form of P loss which contributed above 90.0%. Thus, it is crucial to control interflow in order to reduce N loss. In addition, measures should be taken to effectively manage soil erosion to mitigate P loss. The proportion of dissolved nitrogen in surface flow elevated with the decrease of rainfall intensity, but in interflow, dissolved form was predominant. P was exported mainly in the form of particulate under different rainfall intensities and runoff conditions.

  5. Effects of physical soil crusts on infiltration and splash erosion in three typical Chinese soils

    Institute of Scientific and Technical Information of China (English)

    Chong-feng BU; Shu-fang WU; Kai-bao YANG

    2014-01-01

    Physical soil crusts likely have significant effects on infiltration and soil erosion, however, little is known on whether the effects of the crusts change during a rainfall event. Further, there is a lack of discussions on the differences among the crusting effects of different soil types. The objectives of this study are as follows: (i) to study the effects of soil crusts on infiltration, runoff, and splash erosion using three typical soils in China, (ii) to distinguish the different effects on hydrology and erosion of the three soils and discuss the primary reasons for these differences, and (iii) to understand the variations in real soil shear strength of the three soils during rainfall events and mathematically model the effects of the crusts on soil erosion. This study showed that the soil crusts delayed the onset of infiltration by 5 to 15 min and reduced the total amount of infiltration by 42.9 to 53.4%during rainfall events. For a purple soil and a loess soil, the initial crust increased the runoff by 2.8%and 3.4%, respectively, and reduced the splash erosion by 3.1% and 8.9%, respectively. For a black soil, the soil crust increased the runoff by 42.9%and unexpectedly increased the splash erosion by 95.2%. In general, the effects of crusts on the purple and loess soils were similar and negligible, but the effects were significant for the black soil. The soil shear strength decreased dynamically and gradually during the rainfall events, and the values of crusted soils were higher than those of incrusted soils, especially during the early stage of the rainfall. Mathematical models were developed to describe the effects of soil crusts on the splash erosion for the three soils as follows:purple soil, 0.384Fc =0.002t− ; black soil, 3.060Fc =−0.022t+ ; and loess soil, Fc =0.233 ln t−1.239 . Combined with the equation 1)Rc=Fc⋅(Ruc− , the splash erosion of the crusted soil can be predicted over time.

  6. [Effect of Biochar Application on Soil Aggregates Distribution and Moisture Retention in Orchard Soil].

    Science.gov (United States)

    An, Yan; Ji, Qiang; Zhao, Shi-xiang; Wang, Xu-dong

    2016-01-15

    Applying biochar to soil has been considered to be one of the important practices in improving soil properties and increasing carbon sequestration. In order to investigate the effects of biochar application on soil aggregates distribution and its organic matter content and soil moisture constant in different size aggregates, various particle-size fractions of soil aggregates were obtained with the dry-screening method. The results showed that, compared to the treatment without biochar (CK), the application of biochar reduced the mass content of 5-8 mm and soil aggregates at 0-10 cm soil horizon, while increased the content of 1-2 mm and 2-5 mm soil aggregates at this horizon, and the content of 1-2 mm aggregates significantly increased along with the rates of biochar application. The mean diameter of soil aggregates was reduced by biochar application at 0-10 cm soil horizon. However, the effect of biochar application on the mean diameter of soil aggregates at 10-20 cm soil horizon was not significant. Compared to CK, biochar application significantly increased soil organic carbon content in aggregates, especially in 1-2 mm aggregates which was increased by > 70% compared to CK. Both the water holding capacity and soil porosity were significantly increased by biochar application. Furthermore, the neutral biochar was more effective than alkaline biochar in increasing soil moisture.

  7. A soil mechanics approach to study soil compaction and traffic effect on the preconsolidation pressure of tropical soils

    International Nuclear Information System (INIS)

    Several researchers have already demonstrated the causes and the effects of soil compaction. These studies showed that the soil compaction is a limiting factor in the agricultural production. The attributes of the soil conventionally monitored has not been capable to quantify the load support capacity of the soil, not allowing to foresee the levels of pressures that can be applied to the soils at different moisture conditions without additional soil compaction (structure degradation) happens. The researches done in the soil compressive behaviour of some tropical soils indicate that the pre-compression stress may be used as an alternative measure of the load support capacity and as a quantitative indicator of the structure sustainability of the tropical soils

  8. EFFECT OF ELECTRIC FERTILIZER ON SOIL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    WANG Ya-qin; WANG Ji-hong

    2004-01-01

    Electric fertilizer, I. E. Exerting electric field on plants during growing season instead of chemical fertilizer, is a kind of physical fertilizer, and the third kind of fertilizer with developmental prospect after inorganic fertilizer and organic fertilizer. For the purpose of studying the changes of physical and chemical properties of soil after exerting electric field, five treatments with different applications of chemical fertilizer were arranged on the black soil in Yushu City of Jilin Province by randomized block method, and electric field was exerted on plants every ten days during the growing season. Through sample analysis the paper arrives at following conclusions: 1) Exerting electric field can make soil's granular structure increase, bulk density decrease, moisture capacity increase,thus improving the perviousness of soil. 2) Exerting electric field can make microorganism's number increase and activity strengthen, thus activating nutrient and increasing organic matter content. 3) Exerting electric field with 0.1A medium has the best effect. So the chemical fertilizer can be saved. Therefore, we can say that the application of electric fertilizer is favorable for decreasing chemical poison, improving soil, relaxing the contradiction between the supply and demand of chemical fertilizer, and decreasing production cost of agriculture and forestry.

  9. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    Science.gov (United States)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  10. Number and Effectiveness of Pea Rhizobia in Danish Soils

    DEFF Research Database (Denmark)

    Engvild, K.C.

    1989-01-01

    Most of 44 Danish soils tested contain between 1000 and 10 000 pea rhizobia (Rhizobium leguminosarum biovar viceae) per gram. Pea rhizobia were not detected in acid moor and forest soils. Only one case of failed nodulation in peas in the field has been noted, in spots in a reclaimed sandy heath...... moor at pH 4.7. Soil suspensions of nine of the soils were tested as inoculum in large outdoor pot cultures of peas grown to maturity in nitrogen free vermiculture. One soil approached the effectiveness of commercial inoculants, and four soils were quite effective. Two reclaimed soils and two...

  11. Seasonal changes in soil water repellency and their effect on soil CO2 fluxes

    Science.gov (United States)

    Urbanek, Emilia; Qassem, Khalid

    2016-04-01

    Soil water repellency (SWR) is a seasonally variable phenomenon controlled by moisture content and at the same time a regulator of the distribution and conductivity of water in the soil. The distribution and availability of water in soil is also an important factor for microbial activity, decomposition of soil organic matter and exchange of gases like CO2 and CH4 between the soil and the atmosphere. It has been therefore hypothesised that SWR by restricting water availability in soil can affect the production and the transport of CO2 in the soil and between the soil and the atmosphere. This study investigates the effect of seasonal changes in soil moisture and water repellency on CO2 fluxes from soil. The study was conducted for 3 year at four grassland and pine forest sites in the UK with contrasting precipitation. The results show the temporal changes in soil moisture content and SWR are affected by rainfall intensity and the length of dry periods between the storms. Soils exposed to very high annual rainfall (>1200mm) can still exhibit high levels of SWR for relatively long periods of time. The spatial variation in soil moisture resulting from SWR affects soil CO2 fluxes, but the most profound effect is visible during and immediately after the rainfall events. Keywords: soil water repellency, CO2 flux, hydrophobicity, preferential flow, gas exchange, rainfall

  12. Effects of soil compaction on the relationships between nematodes, grass production and soil physical properties

    NARCIS (Netherlands)

    Bouwman, L.A.; Arts, W.B.M.

    2000-01-01

    As farm machinery has become heavier, concern has grown about its direct effects on soil physical conditions and its indirect effects on crop yields and soil biota. To study the relationships between these parameters, non-grazed temporary grassland plots on a loamy sand soil were subjected to full-w

  13. Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon

    Institute of Scientific and Technical Information of China (English)

    YIN Yun-feng; HE Xin-hua; GAO Ren; MA Hong-liang; YANG Yu-sheng

    2014-01-01

    Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of 13C-labelled rice straw or its pyrolysed biochar at 250 or 350°C to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC;microbial biomass C, MBC;and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25°C. Four treatments were examined as (1) the control soil without amendment (Soil);(2) soil plus 13C-labelled rice straw (Soil+Straw);(3) soil plus 250°C biochar (Soil+B250) and (4) soil plus 350°C biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and d13C (1 742-1 877‰). Among treatments, signiifcant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw>Soil+B250>Soil+B350, whilst signiifcant higher SOC from the new C as Soil+B250>Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, signiifcant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst signiifcant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.

  14. The effect of intrinsic soil properties on soil quality assessments

    Directory of Open Access Journals (Sweden)

    Alessandro Samuel-Rosa

    2013-10-01

    Full Text Available The assessment of soil quality is based on indicators and indices derived from soil properties. However, intrinsic soil properties may interfere with other soil properties that vary under different land uses and are used to calculate the indices. The aim of this study was to assess the extent to which intrinsic soil properties (clay and iron oxide contents explain variable soil properties (sum of bases, potential acidity, organic carbon, total porosity, and bulk density under different land uses (native forest, no-tillage and conventional agriculture on small family farms in Southern Brazil. The results showed that the five properties evaluated can be included in soil quality assessments and are not influenced by the clay and iron oxide contents. It was concluded that for little weathered 1:1 and 2:1 phyllosilicate rich-soils, if the difference between the maximum and the minimum clay content under the different land uses is less than about 200 g kg-1 and the iron oxide content less than about 15 g kg-1, the physico-chemical soil properties in the surface layer are determined mostly by the land use.

  15. Investigation of biochar effects as a non-structural BMP on soil erosional properties using a rainfall simulator

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Kuhn, Nikolaus J; Hu, Yaxian;

    runoff events. We hypothesized that erodibility is reduced in biochar-amended soils and tested this in controlled rainfall-runoff simulations. The specific objectives of our study were (1) to compare runoff and sediment generation between a biochar and an unamended control treatment on an arable sandy......, and plots had been harrowed and ploughed twice to a depth of 25 cm prior to sampling. In the laboratory soil samples from (0-20 cm) were analyzed for aggregate stability and soil organic carbon (SOC) content. Soil erosional properties were measured during 3.5 hour rainfall simulations using a round flume...... setup. Artificial rain was applied with a FullJet nozzle at a rate of 30 mm h-1. Biochar-amended soils showed significantly lower runoff and erosion rates compared to unamended soils, and correspondingly runoff coefficients in biochar-treated soils were lower than in control soils. Less SOC was eroded...

  16. Effects of fire ash on soil water retention

    NARCIS (Netherlands)

    Stoof, C.R.; Wesseling, J.G.; Ritsema, C.J.

    2010-01-01

    Despite the pronounced effect of fire on soil hydrological systems, information on the direct effect of fire on soil water retention characteristics is limited and contradictory. To increase understanding in this area, the effect of fire on soil water retention was evaluated using laboratory burning

  17. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration

    DEFF Research Database (Denmark)

    Lellei-Kovács, Eszter; Kovács-Láng, Edit; Botta-Dukát, Zoltán;

    2011-01-01

    Ecosystem carbon exchange is poorly understood in low-productivity, semiarid habitats. Here we studied the controls of soil temperature and moisture on soil respiration in climate change field experiment in a sandy forest-steppe. Soil CO2 efflux was measured monthly from April to November in 2003......–2008 on plots receiving either rain exclusion or nocturnal warming, or serving as ambient control. Based on this dataset, we developed and compared empirical models of temperature and moisture effects on soil respiration. Results suggest that in this semiarid ecosystem the main controlling factor for soil...... CO2 efflux is soil temperature, while soil moisture has less, although significant effect on soil respiration. Clear thresholds for moisture effects on temperature sensitivity were identified at 0.6, 4.0 and 7.0vol% by almost each model, which relate well to other known limits for biological activity...

  18. Effect of Two Halophyte Plants Irrigated with Saline Water on Soil Salinization under Different Soil Type

    International Nuclear Information System (INIS)

    A lysimeter experiment was conducted to evaluate the impact of saline water irrigation at three levels namely, fresh water (0.3), 4 and 8 dS/m on salt accumulation and its effect on different soil types. The tested halophyte plants were Kallar grass and Atriplex (Salt bush). The tested soil types were sandy, calcareous and clayey soils. Irrigating the soil with saline water (either 4 or 8 dS/m) resulted in increasing salinity levels in soil profile with different orders of magnitude, depending on the soil type layer and the cultivated plant. Kallar grass seems limit the accumulation of salts in soil profile, compared to Atriplex at any tested soil. This may be attributed to its root effect on soil profile such as dispersed soil matrix and improved soil structure, which provide channels for solute movement through the profile under halophyte cultivation. Calculating the SAR average values for each irrigation treatment (18 values) showed significant increase in soil SAR values, especially under Kallar grass compared to Atriplex. The highest SAR values were observed in the case of clayey soil. However, the relevant SAR values under Atriplex cultivation were always lower. Values for SAR were always higher in the saline clayey > calcareous > sandy soils

  19. Effects of myclobutanil on soil microbial biomass, respiration, and soil nitrogen transformations.

    Science.gov (United States)

    Ju, Chao; Xu, Jun; Wu, Xiaohu; Dong, Fengshou; Liu, Xingang; Zheng, Yongquan

    2016-01-01

    A 3-month-long experiment was conducted to ascertain the effects of different concentrations of myclobutanil (0.4 mg kg(-1) soil [T1]; 1.2 mg kg(-1) soil [T3]; and 4 mg kg(-1) soil [T10]) on soil microbial biomass, respiration, and soil nitrogen transformations using two typical agricultural soils (Henan fluvo-aquic soil and Shanxi cinnamon soil). Soil was sampled after 7, 15, 30, 60, and 90 days of incubation to determine myclobutanil concentration and microbial parameters: soil basal respiration (RB), microbial biomass carbon (MBC) and nitrogen (MBN), NO(-)3-N and NH(+)4-N concentrations, and gene abundance of total bacteria, N2-fixing bacteria, fungi, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB). The half-lives of the different doses of myclobutanil varied from 20.3 to 69.3 d in the Henan soil and from 99 to 138.6 d in the Shanxi soil. In the Henan soil, the three treatments caused different degrees of short-term inhibition of RB and MBC, NH(+)4-N, and gene abundance of total bacteria, fungi, N2-fixing bacteria, AOA, and AOB, with the exception of a brief increase in NO(-)3-N content during the T10 treatment. The MBN (immobilized nitrogen) was not affected. In the Shanxi soil, MBC, the populations of total bacteria, fungi, and N2-fixing bacteria, and NH(+)4-N concentration were not significantly affected by myclobutanil. The RB and MBN were decreased transitorily in the T10 treatment. The NO(-)3-N concentrations and the abundance of both AOA and AOB were erratically stimulated by myclobutanil. Regardless of whether stimulation or suppression occurred, the effects of myclobutanil on the two soil types were short term. In summary, myclobutanil had no long-term negative effects on the soil microbial biomass, respiration, and soil nitrogen transformations in the two types of soil, even at 10-fold the recommended dosage.

  20. Long-term effects of soil management on ecosystem services and soil loss estimation in olive grove top soils.

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Keesstra, Saskia; Cerdà, Artemi; Brevik, Eric C

    2016-11-15

    Soil management has important effects on soil properties, runoff, soil losses and soil quality. Traditional olive grove (OG) management is based on reduced tree density, canopy size shaped by pruning and weed control by ploughing. In addition, over the last several decades, herbicide use has been introduced into conventional OG management. These management strategies cause the soil surface to be almost bare and subsequently high erosion rates take place. To avoid these high erosion rates several soil management strategies can be applied. In this study, three strategies were assessed in OG with conventional tillage in three plots of 1ha each. Soil properties were measured and soil erosion rates were estimated by means of the RUSLE model. One plot was managed with no amendments (control), and the other two were treated with olive leaves mulch and oil mill pomace applied yearly from 2003 until 2013. The control plot experienced the greatest soil loss while the use of olive leaves as mulch and olive mill pomace as an amendment resulted in a soil loss reduction of 89.4% and 65.4% respectively (assuming a 5% slope). In addition, the chemical and physical soil properties were improved with the amendments. This combined effect will created a higher quality soil over the long term that it is more resilient to erosion and can provide better ecosystem services, as its functions are improved.

  1. Probabilistic models of spatial fluctuations of edaphic properties in native soils in steppe zone of Western Siberia

    OpenAIRE

    Mikheeva, Irina

    2013-01-01

    Fluctuations of properties in an individuum (pedon) of a chestnut soil under different use (virgin soil, unirrigated arable soil, and irrigated arable soil) were quantitatively evaluated. It was shown that these fluctuations make up to 20-40% of the property changeability in an elementary soil area.  Probability distribution functions (pdf) with high p-values were considered as probabilistic models of soil properties.  Analysis of pdf regularities gives clear and stable information about diff...

  2. Soil degradation and amendment effects on soil properties, microbial communities, and plant growth

    Science.gov (United States)

    Gebhardt, M.; Fehmi, J. S.; Rasmussen, C.; Gallery, R. E.

    2015-12-01

    Human activities that disrupt soil properties are fundamentally changing ecosystems. Soil degradation, caused by anthropogenic disturbance can decrease microbial abundance and activity, leading to changes in nutrient availability, soil organic matter, and plant establishment. The addition of amendments to disturbed soils have the potential ameliorate these negative consequences. We studied the effects of soil degradation, via an autoclave heat shock method, and the addition of amendments (biochar and woodchips) on microbial activity, soil carbon and nitrogen availability, microbial biomass carbon and nitrogen content, and plant growth of ten plant species native to the semi-arid southwestern US. Relative to non-degraded soils, microbial activity, measured via extracellular enzyme assays, was significantly lower for all seven substrates assayed. These soils also had significantly lower amounts of carbon assimilated into microbial biomass but no change in microbial biomass nitrogen. Soil degradation had no effect on plant biomass. Amendments caused changes in microbial activity: biochar-amended soils had significant increases in potential activity with five of the seven substrates measured; woodchip amended soils had significant increases with two. Soil carbon increased with both amendments but this was not reflected in a significant change in microbial biomass carbon. Biochar-amended soils had increases in soil nitrogen availability but neither amendment caused changes in microbial biomass nitrogen. Biochar amendments had no significant effect on above- or belowground plant biomass while woodchips significantly decreased aboveground plant biomass. Results show that soil degradation decreases microbial activity and changes nutrient dynamics, but these are not reflected in changes in plant growth. Amendments provide nutrient sources and change soil pore space, which cause microbial activities to fluctuate and may, in the case of woodchips, increase plant drought

  3. A specialist-generalist classification of the arable flora and its response to changes in agricultural practices

    Directory of Open Access Journals (Sweden)

    Fried Guillaume

    2010-09-01

    Full Text Available Abstract Background Theory in ecology points out the potential link between the degree of specialisation of organisms and their responses to disturbances and suggests that this could be a key element for understanding the assembly of communities. We evaluated this question for the arable weed flora as this group has scarcely been the focus of ecological studies so far and because weeds are restricted to habitats characterised by very high degrees of disturbance. As such, weeds offer a case study to ask how specialization relates to abundance and distribution of species in relation to the varying disturbance regimes occurring in arable crops. Results We used data derived from an extensive national monitoring network of approximately 700 arable fields scattered across France to quantify the degree of specialisation of 152 weed species using six different ecological methods. We then explored the impact of the level of disturbance occurring in arable fields by comparing the degree of specialisation of weed communities in contrasting field situations. The classification of species as specialist or generalist was consistent between different ecological indices. When applied on a large-scale data set across France, this classification highlighted that monoculture harbour significantly more specialists than crop rotations, suggesting that crop rotation increases abundance of generalist species rather than sets of species that are each specialised to the individual crop types grown in the rotation. Applied to a diachronic dataset, the classification also shows that the proportion of specialist weed species has significantly decreased in cultivated fields over the last 30 years which suggests a biotic homogenization of agricultural landscapes. Conclusions This study shows that the concept of generalist/specialist species is particularly relevant to understand the effect of anthropogenic disturbances on the evolution of plant community composition and that

  4. The effects of the physical and chemical properties of soils on the spectral reflectance of soils

    Science.gov (United States)

    Montgomery, O. L.; Baumgardner, M. F.

    1974-01-01

    The effects of organic matter, free iron oxides, texture, moisture content, and cation exchange capacity on the spectral reflectance of soils were investigated along with techniques for differentiating soil orders by computer analysis of multispectral data. By collecting soil samples of benchmark soils from the different climatic regions within the United States and using the extended wavelength field spectroradiometer to obtain reflectance values and curves for each sample, average curves were constructed for each soil order. Results indicate that multispectral analysis may be a valuable tool for delineating and quantifying differences between soils.

  5. Effect of Irrigation Water Quality on Soil Hydraulic Conductivity

    Institute of Scientific and Technical Information of China (English)

    XIAOZHEN-HUA; B.PRENDERGAST; 等

    1992-01-01

    The effect of irrigation water quality on unsaturated hydraulic conductivity (HC) of undisturbed soil in field was studied.Results show that within the operating soil suction range (0-1.6 KPa) of disc permeameters,the higher the electric conductivity (EC) of irrigation water,the higher the soil HC became.The soil HC doubled when EC increased from 0.1 to 6.0ds m-1.High sodium-adsorption ratio(SAR) of irrigation water would have an unfavorable effect on soil HC.Soil HC decreased with the increasing of SAR,especially in the case of higher soil suction.An interaction existed between the effects of EC and SAR of irrigation water on soil HC.The HC of unsaturated soil dependent upon the macropores in surface soil decreased by one order of magnitude with 1 KPa increase of soil suction.In the study on the effect of very low soluble salt concentration (EC=0.1 ds m-1 of irrigation water on soil HC,soil HC was found to be lowered by 30% as a consequence of blocking up of some continuous pores by the dispersed and migrated clay particles.Nonlinear successive regression analysis and significance test show that the effects of EC and SAR of irrigation water on soil HC reached the extremely significant level.

  6. Soil biochar amendments: type and dose effects

    Science.gov (United States)

    Ojeda, G.; Domene, X.; Mattana, S.; Sousa, J. P.; Ortiz, O.; Andres, P.; Alcañiz, J. M.

    2012-04-01

    Biochar is an organic material produced via the pyrolysis of C-based biomass, which is increasingly being recognized by scientists and policy makers for its potential role in carbon sequestration, reducing greenhouse gas emissions, waste mitigation, and as a soil amendment. Recent studies indicated that biochar improves soil fertility through its positive influence on physical-chemical properties, since not only improves water retention, aggregation and permeability, but its high charge density can also hold large amounts of nutrients, increasing crop production. However, it was observed that combustion temperature could affects the degree of aromaticity and the size of aromatic sheets, which in turns determine short-term mineralization rates. To reconcile the different decompasibility observations of biochar, it has sugested that physical protection and interactions with soil minerals play a significant part in biochar stability. In this context, it has initiated one pilot studies which aims to assess the effects of biochar application on physical and chemical properties of agricultural soil under Mediterranean conditions, such as changes in aggregate formation, intra-aggregate carbon sequestration and chemistry of soil water. In the present study, different clases of biochar produced from fast, slow and gasification pyrolisis of vegetal (pine, poplar) and dried sludge biomass, were applied at 1% of biochar-C to mesocosmos of an agricultural soil. Preliminary, it must be pointed out that slow and gasification pyrolisis changes the proportion of particles < 2 mm in diameter, from 10% (original materials) to almost 100%. In contrast, slow pyrolisis not modifies significantly biochar granulometry. As a consequence, bulk density of poplar and pine splinters decreases after fast pyrolisis. Regarding to organic carbon contents of biochar, all biochars obtained from plant biomass presented percentagens of total organic carbon (TOC) between 70 - 90%, while biochar

  7. Outdoor Terrestrial Model Ecosystems are suitable to detect pesticide effects on soil fauna: design and method development.

    Science.gov (United States)

    Scholz-Starke, B; Nikolakis, A; Leicher, T; Lechelt-Kunze, C; Heimbach, F; Theissen, B; Toschki, A; Ratte, H T; Schäffer, A; Ross-Nickoll, M

    2011-11-01

    Terrestrial Model Ecosystems (TME) were developed as one higher-tier option to detect and assess effects of pesticides on soil communities in a 1 year study using lindane (gamma-HCH) as a persistent and toxic reference pesticide. TME contained intact soil cores (diameter 300 mm, height 400 mm) including indigenous soil communities of undisturbed grassland. Forty units were placed outdoors between spring 2005 and 2006. The TME experiment was designed to provide data that fulfill the requirements of the revised European regulation on plant protection products (regulation 1107/2009/EEC replacing guideline 91/414/EC) with a focus on structural endpoints such as soil organisms and their community structure in case higher-tier evaluation is triggered. The key objective was to evaluate the dynamics and stability of species-diverse microarthropod communities of undisturbed grassland over at least 1 year after application. In grassland soils, less selection pressure towards insensitive species compared to arable land was presumed. Sufficient numbers of organisms and numerous TME replicates ensured that a statistical evaluation could be performed to estimate the sensitivity of the organisms upon application of lindane applied at high rates of 7.5 and 75 kg ai/ha. The application rates resulted in nominal concentrations of 10 and 100 mg ai/kg dry soil referred to the top 5 cm soil layer of 10 TME each; 20 untreated TME served as controls and were used to study the natural dynamics and the variability of populations under field conditions. Results showed that the grassland from which the soil cores were sampled contained communities of soil organisms marked by typical diversity of improved grassland. Lindane applied at excessive rates caused clear dose-related and long-lasting effects on the communities of microarthropods. On the contrary, lumbricids, the total feeding activity (bait lamina) and the growth of plant biomass were not affected up to 1 year after application

  8. Challenges in the development of analytical soil compaction models

    DEFF Research Database (Denmark)

    Keller, Thomas; Lamandé, Mathieu

    2010-01-01

    data and model simulations. The upper model boundary condition (i.e. contact area and stresses at the tyre-soil interface) is highly influential in stress propagation, but knowledge on the effects of loading and soil conditions on the upper model boundary condition is inadequate. The accuracy of stress...... transducers and therefore of stress measurements is not well known, despite numerous studies on stress in the soil profile below agricultural tyres. Although arable soils are characterised by distinct soil layers with different mechanical properties, analytical models rely on a one-layer approach with regard......Soil compaction can cause a number of environmental and agronomic problems (e.g. flooding, erosion, leaching of agrochemicals to recipient waters, emission of greenhouse gases to the atmosphere, crop yield losses), resulting in significant economic damage to society and agriculture. Strategies...

  9. Soil compaction and structural morphology under tractor wheelings

    Science.gov (United States)

    Shanahan, Peter; Quinton, John; Binley, Andrew; Silgram, Martyn

    2010-05-01

    Compaction of cultivated soils is a major problem for agriculture in terms of yield decline and sustainable soil resource management. Tramline wheelings exacerbate runoff and increase erosion from arable land. The UK Department for Environment, Food and Rural Affairs (Defra) LINK Project - a joint venture between agri-business, land managers and research groups - is currently evaluating a number of methods for alleviating compaction in tractor wheelings across a range of soil types in England. Using innovative applications of agri-geophysics (e.g. ground penetrating radar, electrical resistivity, acoustics and x-ray tomography), this current project aims to determine relationships between properties derived from geophysical methods (e.g. soil moisture, porosity), soil compaction and structural morphology. Such relationships are important for a clearer understanding of hydrological and biogeochemical processes in compacted soils, to address land management practices and develop cost-effective mitigation measures. Our poster will present some early results of this study.

  10. How historical copper contamination affects soil structure and mobilization and transport of colloids

    DEFF Research Database (Denmark)

    Paradelo, Marcos; Møldrup, Per; Holmstrup, Martin;

    Copper is accumulated in soils due to human activities such as mining industry, agriculture practises, or waste deposals. High concentrations of copper can affect plants and soil organisms, and subsequently the soil structure and its inner space architecture. In this work we investigated the effect...... of copper concentration on the movement of an inert tracer, tritium, and the mobilization and transport of colloid particles in undisturbed soil cores (10 cm diameter and 8 cm height). The cores were sampled along a copper gradient of 21 to 3837 mg Cu kg-1 soil on an abandoned arable soil polluted by copper...... between 0.01 to 0.43 pore volumes, with longer times for the most contaminated point, likely related with its higher soil density and lower air permeability. The copper pollution affected colloid and tracer transport in the soil columns. The release of colloids especially in the most contaminated points...

  11. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    NARCIS (Netherlands)

    Oyelami, A.O.; Okere, U.V.; Orwin, K.; Deyn, de G.B.; Jones, K.C.; Semple, K.T.

    2013-01-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of 14C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing difference

  12. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Dongmei, E-mail: dmzhou@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang Quanying; Wu Danya [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm{sup -1} of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  13. ESTIMATION OF SOIL-PROTECTIVE SYSTEM WITH USE OF BIORESOURCES OF AGRICULTURE ON THE BASIS OF USE OF AGROCENOSIS ON THE GREY FOREST SOILS

    Directory of Open Access Journals (Sweden)

    Irina RUSAKOVA

    2013-12-01

    Full Text Available The experimental data of long-term researches establishing high efficiency of soil-protective system of agriculture with use of bioresources on biological and humus in condition of arable grey forest soil has been presented.

  14. ESTIMATION OF SOIL-PROTECTIVE SYSTEM WITH USE OF BIORESOURCES OF AGRICULTURE ON THE BASIS OF USE OF AGROCENOSIS ON THE GREY FOREST SOILS

    OpenAIRE

    Irina RUSAKOVA

    2013-01-01

    The experimental data of long-term researches establishing high efficiency of soil-protective system of agriculture with use of bioresources on biological and humus in condition of arable grey forest soil has been presented.

  15. Effects of poultry manure on soil biochemical properties in phthalic acid esters contaminated soil.

    Science.gov (United States)

    Gao, Jun; Qin, Xiaojian; Ren, Xuqin; Zhou, Haifeng

    2015-12-01

    This study aimed to evaluate the effects of poultry manure (PM) on soil biological properties in DBP- and DEHP-contaminated soils. An indoor incubation experiment was conducted. Soil microbial biomass C (Cmic), soil enzymatic activities, and microbial phospholipid fatty acid (PLFA) concentrations were measured during incubation period. The results indicated that except alkaline phosphatase activity, DBP and DEHP had negative effects on Cmic, dehydrogenase, urease, protease activities, and contents of total PLFA. However, 5 % PM treatment alleviated the negative effects of PAEs on the above biochemical parameters. In DBP-contaminated soil, 5 % PM amendment even resulted in dehydroenase activity and Cmic content increasing by 17.8 and 11.8 % on the day 15 of incubation, respectively. During the incubation periods, the total PLFA contents decreased maximumly by 17.2 and 11.6 % in DBP- and DEHP-contaminated soils without PM amendments, respectively. Compared with those in uncontaminated soil, the total PLFA contents increased slightly and the value of bacPLFA/fugalPLFA increased significantly in PAE-contaminated soils with 5 % PM amendment. Nevertheless, in both contaminated soils, the effects of 5 % PM amendment on the biochemical parameters were not observed with 10 % PM amendment. In 10 % PM-amended soils, DBP and DEHP had little effect on Cmic, soil enzymatic activities, and microbial community composition. At the end of incubation, the effects of PAEs on these parameters disappeared, irrespective of PM amendment. The application of PM ameliorated the negative effect of PAEs on soil biological environment. However, further work is needed to study the effect of PM on soil microbial gene expression in order to explain the change mechanisms of soil biological properties.

  16. Effects of drought on forest soil structure and hydrological soil functions

    Science.gov (United States)

    Gimbel, K.; Puhlmann, H.; Weiler, M.

    2012-04-01

    Climate change is predicted to severely affect precipitation patterns across central Europe. Soil structure is closely linked to the activity of soil microbiota and plant roots, which modify flow pathways along roots, organic matter and water repellence of soils. Through shrinkage and fracturing of soil aggregates, soil structure is also responding to changing climate (in particular drought) conditions. We investigate the possible effects on biogeochemical and hydropedological processes in response to predicted future reduced precipitation, and the interaction of these processes with the biodiversity of the forest understorey and soil biota. The hypotheses of this study are: (i) drought causes a change in soil structure, which affects hydrological soil functions (water infiltration, uptake and redistribution); (ii) changes in rooting patterns and microbial community composition, in response to drought, influence the hydrological soil functions. To test our hypotheses, we built adaptive roofing systems on nine sites in Germany, which allow a flexible reduction of precipitation in order to achieve the long-term minimum precipitation of a site. Here we present first measurements of our repeated measuring/sampling campaign, which will be conducted over a period of three years. The aim of our experiments is to analyze soil pore architecture and related flow and transport behaviour with dye tracer sprinkling experiments, soil column experiments with stable isotope (deuterium, oxygen-18) enriched water, computed tomography at soil monoliths (~70 l) and multi-step outflow experiments with 100 ml soil cores. Finally, we sketch our idea how to relate the observed temporal changes of soil structure and hydrological soil functions to the observed dynamics of hydrometeorological site conditions, soil moisture and desiccation as well as changes in rooting patterns, herb layer and soil microbiotic communities. The results of this study may help to assess future behavior of the

  17. Assessing Tillage Effects on Soil Hydraulic Properties via Inverse Parameter Estimation using Tension Infiltrometry

    Science.gov (United States)

    Schwen, Andreas; Bodner, Gernot; Loiskandl, Willibald

    2010-05-01

    Hydraulic properties are key factors controlling water and solute movement in soils. While several recent studies have focused on the assessment of the spatial variability of hydraulic properties, the temporal dynamics are commonly not taken into account, primarily because its measurement is costly and time-consuming. However, there is extensive empirical evidence that these properties are subject to temporal changes, particularly in the near-saturated range where soil structure strongly influences water flow. One main source of temporal variability is soil tillage. It can improve macroporosity by loosening the soil and thereby changing the pore-size distribution. Since these modifications are quite unstable over time, the pore space partially collapses after tillage. This effect should be largest for conventional tillage (CT), where the soil is ploughed after harvest every year. Assessing the effect of different tillage treatments on the temporal variability of hydraulic properties requires adequate measurement techniques. Tension infiltrometry has become a popular and convenient method providing not only the hydraulic conductivity function but also the soil rentention properties. The inverse estimation of parameters from infiltration measurements remains challenging, despite some progress since the first approach of Šimůnek et al. (1998). Measured data like the cumulative infiltration, the initial and final volumetric water content, as well as independently measured retention data from soil core analysis with laboratory methods, have to be considered to find an optimum solution describing the soil's pore space. In the present study we analysed tension infiltration measurements obtained several times between August 2008 and December 2009 on an arable field in the Moravian Basin, Lower Austria. The tillage treatments were conventional tillage including ploughing (CT), reduced tillage with chisel only (RT), and no-tillage treatment using a direct seeding

  18. Application of the Radionuclide Technique and other Methods for Assessing the Effectiveness of Soil Conservation Measures at the Novosil Study Site, Orel Region, Central Russia

    International Nuclear Information System (INIS)

    In the present paper, the findings are presented of a detailed study about the long term (70-75 years) effectiveness of soil conservation measures, which was conducted at the Novosil study site located in the Orel region of the Central Russian Plain. At the Novosil Experimental station, three pairs of transects of different morphology were selected on relatively steep arable farmland. One transect in each pair underwent introduction of soil conservation measures in the past, while the other was kept under regular cultivation. On all three transects under soil conservation practices artificial terraces were installed in combination with forest belts located parallel to the topography contour lines and spaced at approximately 100 m from each other. The construction of terraces and tree planting was initiated in 1932. The 137Cs and 210Pbex radioisotopes were used as tracers for the quantitative assessment of long term soil conservation effectiveness within each pair of transects. Simultaneously soil profile morphology method and empirically based erosion modelling were used to complement the datasets collected by using fallout radionuclide techniques. The study, based on soil profile morphology and 137Cs based methods, concluded that slopes with soil-protective measures are characterized by a reduction of the average annual soil redistribution rates by 25-80%. Good coincidence of the spatial patterns of soil redistribution rates provided by these two techniques suggests general reliability of the results. Observed discrepancies in values obtained can be attributed to differences in temporal resolution of methods as well as to possible influence of individual extreme events on results yielded by the 137Cs method. However, more significant decrease of average soil degradation rates on slopes under soil conservation practices (up to 70-75% for each pair of slopes) was predicted by empirically based modelling. This substantial differences between predicted and directly

  19. Effects of Lanthanum on Hydrolytic Enzyme Activities in Red Soil

    Institute of Scientific and Technical Information of China (English)

    褚海燕; 朱建国; 谢祖彬; 李振高; 曹志洪; 曾青; 林先贵

    2002-01-01

    The effects of La on some hydrolytic enzyme activities in red soil were studied in incubation and pot culture experiments. In the incubation experiment, La slightly stimulates the activities of urease and acidic phosphatase in soil and strongly stimulates sucrase activity in soil. In the pot culture experiment, La stimulates the activities of urease, acidic phosphatase and sucrase to different degrees. The stimulative effects of rare earth elements (REE) on hydrolytic enzyme activities in soil may result in increasing yield of crops.

  20. The Balanced Scorecard as a Management Tool for Arable Farming

    Directory of Open Access Journals (Sweden)

    Margit Paustian

    2015-07-01

    Full Text Available Management requirements for crop farming are high and will rise in the future. Arable farms are challenged by volatile markets, growing administrative burdens, increasing operating costs and growing competition for land. Management skills have become much more important for farmers in recent years and this trend will continue in the future. There are numerous instruments like accounting software or crop field cards integrated in daily management practice, but there is a deficiency of a fully integrated management system to give an overview of all areas of the farming business. This gap can be closed by the management tool Balanced Scorecard (BSC that provides an overview of all production and management activities on a farm. Therefore, with the aim to transfer the BSC concept to crop farming, German farmers and agricultural advisors were surveyed to get insights into the success factors and key performance indicators in the four BSC perspectives they consider most relevant for the operational success of arable farms. By the use of a cluster analysis, three different farm types were identified according to their visions and strategies. For the three farm types the key performance indicators that the respondents considered most relevant for farm performance were figured out. Implementation of the BSC to crop farming can result in a big benefit for management practice. The BSC focuses vision and long-term strategy with the main goal to ensure consistency of the farm and increase farm performance.

  1. Buffer zone water repellency: effects of the management practice

    OpenAIRE

    Rasa, Kimmo; Räty, Mari; Nikolenko, Olga; Horn, Rainer; Yli-Halla, Markku; Uusi-Kämppä, Jaana; Pietola, Liisa

    2006-01-01

    Water repellency index R was measured in a heavy clay and a sandy loam, used as arable land or buffer zone (BZ). Further, effect of management practise and ageing of BZs were studied. Water repellency was proved to be a common phenomenon on these soils. Harvesting and grazing increased water repellency as does ageing.Low water repellency is supposed to prevent preferential flows and provide evenly distributed water infiltration pattern through large soil volume, which favours nutrient retention.

  2. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.;

    2015-01-01

    nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used......Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero...... valent iron particles in a two-compartment cell is tested and compared to a more conventional combination of electrokinetic remediation and nZVI in a three-compartment cell. In the new two-compartment cell, the soil is suspended and stirred simultaneously with the addition of zero valent iron...

  3. Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology.

    Science.gov (United States)

    Gómez, Isidoro; Rodríguez-Morgado, Bruno; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel

    2014-05-30

    We performed a laboratory study on the effect of oxyfluorfen at a rate of 4lha(-1) on biological properties of a soil amended with four organic wastes (two biostimulants/biofertilizers, obtained from rice bran, RB1 and RB2; municipal solid waste, MSW; and sheep manure, SM). Soil was mixed with SM at a rate of 1%, MSW at a rate of 0.52%, RB1 at a rate of 0.39% and RB2 at a rate of 0.30%, in order to apply the same amount of organic matter to the soil. The enzymatic activities and microbial community in the soil were determined during the incubation times. The application of RB1 and RB2 to soil without oxyfluorfen increased the enzymatic activities and biodiversity, peaking at day 10 of the incubation period. This stimulation was higher in the soil amended with RB2 than in that amended with RB1. In SM and CF-amended soils, the stimulation of enzymatic activities and soil biodiversity increased during the experiment. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly the low molecular weight protein content easily assimilated by soil microorganisms and the higher fat content in the biostimulants/biofertilizers are responsible for the lower inhibition of these soil biological properties. PMID:24742665

  4. Prediction of the long term accumulation and leaching of zinc in Dutch agricultural soils: a risk assessment study

    OpenAIRE

    Vries, de, H.J.C.; Römkens, P.F.A.M.; Voogd, J.C.H.

    2004-01-01

    A dynamic model was used to predict future soil Zn concentrations at ongoing present Zn inputs until steady state is reached (Predicted Effect Concentrations at steady state or PEC steady state) in comparison to the Predicted No Effect Concentration (PNEC) of Zn. The main aim of this report is to evaluate whether the current load of zinc to soils in different forms of land use (arable land, pasture) and soil types leads to an exceedance of the PNECs, and if so at what time scale. Results show...

  5. Prediction of soil effects on GPR signatures

    NARCIS (Netherlands)

    Rhebergen, J.B.; Lensen, H.A.; Wijk, C.V. van; Hendrickx, J.M.H.; Dam, R. van; Borchers, B.

    2004-01-01

    In previous work we have shown that GPR signatures are affected by soil texture and soil water content. In this contribution we will use a three dimensional electromagnetic model and a hydrological soil model to explore in more detail the relationships between GPR signatures, soil physical condition

  6. Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis

    Directory of Open Access Journals (Sweden)

    Hualin Xie

    2014-05-01

    Full Text Available The level of arable land-use intensity has important impacts on food security and rural sustainable development. Using the emergy method, we investigate the spatial disparities and driving forces of arable land-use intensity in China from 1999 to 2008 at the national, regional and provincial levels. The empirical results show that chemical fertilizer was the largest component of agricultural inputs and that agricultural diesel oil recorded the highest growth rate. The degree of heterogeneities in arable land-use intensity in China showed a decreasing trend, which resulted mainly from the differences among the eastern, northeastern, central and western regions. The regional disparities in labor, pesticides and plastic sheeting decreased from 1999 to 2008. The per capita annual net incomes of household operations and the agricultural policies had a significant positive correlation with total inputs, fertilizer inputs, pesticide inputs and agricultural plastic sheeting. In addition, the nonagricultural population had a greater impact on agricultural plastic sheeting. Finally, we suggest that there is an urgent need to focus on the effects of chemical fertilizer and pesticide inputs on the ecological environment. Agricultural support policies should be introduced for the poor agricultural production provinces.

  7. Effect of Different Vegetation Systems on Soil Erosion and Soil Nutrients in Red Soil Region of Southeastern China

    Institute of Scientific and Technical Information of China (English)

    TIAN GUANGMING; WANG FEIER; CHEN YINGXU; HE YUNFENG; FU QINGLIN; S.KUMAR; LIN QI

    2003-01-01

    The effect of different vegetation systems including bamboo plantation (BP), forest ecosystem (CF),citrus orchard (Ctr) and farmland (FL) on erosion and nutrients of red soil were investigated in hilly region of southeastern China to find effective control measures for soil erosion. The results showed that all the vegetation systems could significantly reduce soil erosion and nutrient losses compared to bare land (Br).The ability of different vegetation systems to conserve soil and water was in the order of Ctr > BP > CF > FL > Br. Vegetation could also improve soil fertility. The soil organic matter, total N and total P contents were much higher in all the vegetation systems than in bare land, especially for the top soils. Vegetation systems improved soil physical properties remarkably. Compared to the bare land, soil organic matter, TP,TK and available K, especially soil microbial biomass C, N and P, increased under all the vegetation covers.However, they were still much lower than expected, thus these biological measurements are still needed to be carried out continuously.

  8. Soil Fragmentation and Friability. Effects of Soil Water and Soil Management

    OpenAIRE

    Munkholm, Lars J

    2002-01-01

    Soil fragmentation is a primary aim in most tillage operations in order to create a soil environment favourable for crop establishment and growth. Soils vary around the world from those exhibiting a self-mulching nature to those of a hardsetting nature. These extremes have been reported for Australian and other tropical and subtropical soils. In humid temperate climates, soil tillage is generally needed in order to produce a favourable environment for crop establishment and growth. The ease o...

  9. Helianthus annuus: A new important element of the non-arable and arable flora in Serbia&apos;s region of southern Banat

    OpenAIRE

    Stanković-Kalezić R.; Kojić M.; Vrbničanin S.; Radivojević Lj.

    2007-01-01

    Four species of the Helianthus genus have been found in the non-arable and arable communities in Vojvodina and Serbia, namely: H. annuus, H. tuberosus, H. decapetalus and H. scaberimus. Studies conducted hitherto have shown that Helianthus annuus has the highest frequency in all weed phytocoenoses examined so far. The spreading of H. decapetalus and H. scaberimus, introduced to Vojvodina from the neighboring Hungary and Romania, has still not assumed alarming proportions in quantitative terms...

  10. Land use and land management effects on soil organic carbon stock in Mediterranean agricultural areas (Southern Spain)

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2014-05-01

    INTRODUCTION Soils play a key role in the carbon geochemical cycle. Agriculture contributes to carbon sequestration through photosynthesis and the incorporation of carbon into carbohydrates. Soil management is one of the best tools for climate change mitigation. Small increases or decreases in soil carbon content due to changes in land use or management practices, may result in a significant net exchange of carbon between the soil carbon pool and the atmosphere. In the last decades arable crops (AC) have been transformed into olive grove cultivations (OG) or vineyards (V) in Mediterranean areas. A field study was conducted to determine long-term effects of land use change (LUC) (AC by OG and V) on soil organic carbon (SOC), total nitrogen (TN), C:N ratio and their stratification in Calcic-Chromic Luvisols (LVcc/cr) in Mediterranean conditions. MATERIAL AND METHODS An unirrigated farm in Montilla-Moriles (Córdoba, Spain) cultivated under conventional tillage (animal power with lightweight reversible plows and non-mineral fertilization or pesticides) was selected for study in 1965. In 1966, the farm was divided into three plots with three different uses (AC, OG and V). The preliminary analyses were realized in 1965 for AC (AC1), and the second analyses were realized in 2011 for AC (AC2 - winter crop rotation with annual wheat and barley, receiving mineral fertilization or pesticides), OG (annual passes with disk harrow and cultivator in the spring, followed by a tine harrow in the summer receiving mineral fertilization and weed control with residual herbicides), and V (with three or five chisel passes a year from early spring to early autumn with mineral fertilization or pesticides.). In all cases (AC1, AC2, OG and V) were collected soil entire profiles. Soil properties determined were: soil particle size, bulk density, SOC, TN, C:N ratio, stocks and SRs. The statistical significance of the differences in the variables between land use practices was tested using the

  11. The effect of soil type on the bioremediation of petroleum contaminated soils.

    Science.gov (United States)

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil.

  12. The effect of soil type on the bioremediation of petroleum contaminated soils.

    Science.gov (United States)

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil. PMID:27233045

  13. Effects of composite soil with feldspathic sandstone and sand on soil aggregates and organic carbon

    Science.gov (United States)

    Li, J.; Han, J. C.; Zhang, Y.; Lei, G. Y.; Wang, H. Y.; Zhu, D. W.

    2016-08-01

    The case was to study the effects of soils with different proportions of feldspathic sandstone and sand on soil stability and organic carbon at 0-30 cm soil depth with four different ratios(C1, C2, C3 and C4), They were used to prepare the composite soil in Fu Ping, Shaanxi Province of China, then the soil aggregates distribution, WASR, MWD, GMD, D valueand and organic carbon content were measured and analysed.The results showed : the soil stability of C1, C2 and C3 was better than C4, i.e., the composition could improve the soil stability. With the increasing of the planting years, the contents of soil aggregates with the size >0.25 mm and MWD, GMD and SOC increased for each treatment at 0- 30 cm soil depth, which was contrary to D values. WASR of C2 was significantly higher than others (p<0.05) after 3-year planting. The significant logarithmic relationships were found between the D values and the ratios in C1, C2 and C3. Besides C1 and C2 could increase the stability and content of large soil aggregates to improve soil structure; C2 could significantly increase the SOC than others at 0- 30 cm soil depth.

  14. No-till bioenergy cropping systems effect on soil aeration

    Science.gov (United States)

    Bioenergy cropping systems have been proposed as a way to enhance United States energy security. However, research on soil quality, such as the effects of maize stover harvesting on soil aeration and the relationships to soil structure and water, associated with bioenergy cropping systems has been l...

  15. [Effects of soil temperature and moisture on soil respiration in different forest types in Changbai Mountain].

    Science.gov (United States)

    Wang, Miao; Ji, Lanzhu; Li, Qiurong; Liu, Yanqiu

    2003-08-01

    The effects of soil temperature (0, 5, 15, 25, 35 degrees C) and water content on soil respiration in three forest types in Changbai Mountain were evaluated in laboratory condition. The results indicated that the soil respiration rate was positively correlated to soil temperature from 0 to 35 degrees C and it increased with soil water content from 0.21 to 0.37 kg.kg-1. The soil respiration rate decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types and the highest was in broad leaf Korean pine forest, then in erman's birch forest, and it was the lowest in dark coniferous forest. The optimal condition for soil respiration in broad-leaved Korean pine forest was at 35 degrees C under 0.37 kg.kg-1 water content, and it was at 25 degrees C under 0.21 kg.kg-1 in dark coniferous forest and at 35 degrees C under 0.37 kg.kg-1 water content in erman's birch forest. Because the forests of broad leaf Korean pine, dark coniferous and erman's birch are located at various altitudes, the soil temperatures had 4-5 degrees C variation in different forest types during the same period. The soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and they were higher in mountain grass forest soil than those in brown pine mountain soil. PMID:14655349

  16. Recent changes of arable weeds flora and management as a basis for future adaptations

    Directory of Open Access Journals (Sweden)

    Breitsameter, Laura

    2014-02-01

    Full Text Available In the course of the past decennia, numerous shifts of the arable weeds flora have been observed as a result of climate change and of changes of land use and agricultural management practice. These shifts necessitate appropriate adaptations of weed management. The present study depicts alterations of the arable weeds flora of Lower Saxony based on data from two different sources, and describes recent changes of arable weeds management. We firstly conducted a questionnaire-based survey among plant protection consultants and experts of agronomy and plant protection in industry and the federal agriculture authorities. This survey was aimed at identifying which weed taxa have gained or lost relevance for management, and which tendencies with regard to their relevance is expected according to expert knowledge. In addition, the experts were asked for information on possible adaptations and challenges of weed management expected for the future. Secondly, we used protocols of plant protection trails published by the Lower Saxony chamber of agriculture in order to determine alterations of the weed management practice since the 1980s. The screened data gave a clear indication of an increase of the relevance during the past 30 years for a number of weed taxa, in particular for several millet taxa, Geranium species, Alopecurus myosuroides and Chenopodium album. In the evaluation of changes of the relevance of individual weed taxa, the impact of climate change cannot be segregated from effects of altered agricultural practices, which are in turn themselves influenced by climate change. Records of the agricultural practice have pointed out shifts in herbicide application dates which parallel altered sowing dates, e. g., an increase in the frequency of herbicide application in autumn rather than in spring for winter wheat. The recent shifts of weed flora and management practices can serve as a basis for the development of management adaptations for the future

  17. Effects of glyphosate on soil microbial communities and its mineralization in a Mississippi soil.

    Science.gov (United States)

    Weaver, Mark A; Krutz, L Jason; Zablotowicz, Robert M; Reddy, Krishna N

    2007-04-01

    Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] has enabled highly effective and economical weed control. The concomitant increased application of glyphosate could lead to shifts in the soil microbial community. The objective of these experiments was to evaluate the effects of glyphosate on soil microbial community structure, function and activity. Field assessments on soil microbial communities were conducted on a silt loam soil near Stoneville, MS, USA. Surface soil was collected at time of planting, before initial glyphosate application and 14 days after two post-emergence glyphosate applications. Microbial community fatty acid methyl esters (FAMEs) were analyzed from these soil samples and soybean rhizospheres. Principal component analysis of the total FAME profile revealed no differentiation between field treatments, although the relative abundance of several individual fatty acids differed significantly. There was no significant herbicide effect in bulk soil or rhizosphere soils. Collectively, these findings indicate that glyphosate caused no meaningful whole microbial community shifts in this time period, even when applied at greater than label rates. Laboratory experiments, including up to threefold label rates of glyphosate, resulted in up to a 19% reduction in soil hydrolytic activity and small, brief (glyphosate was mineralized when applied at threefold field rates, with about 9% forming bound residues. These results indicate that glyphosate has only small and transient effects on the soil microbial community, even when applied at greater than field rates.

  18. Effect of discrete fibre reinforcement on soil tensile strength

    OpenAIRE

    Jian Li; Chaosheng Tang; Deying Wang; Xiangjun Pei; Bin Shi

    2014-01-01

    The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to determine the tensile strength characteristics of fibre reinforced soil. The effects...

  19. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; S. C. Obiora

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  20. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  1. Influence of effective stress on swelling pressure of expansive soils

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available The volume change and shear strength behaviour of soils are controlled by the effective stress. Recent advances in unsaturated soil mechanics have shown that the effective stress as applicable to unsaturated soils is equal to the difference between the externally applied stress and the suction stress. The latter can be established based on the soil-water characteristic curve (SWCC of the soil. In the present study, the evolution of swelling pressure in compacted bentonite-sand mixtures was investigated. Comparisons were made between magnitudes of applied suction, suction stress, and swelling pressure.

  2. Effects of Cd and Pb pollution on soil enzymatic activities and soil microbiota

    Institute of Scientific and Technical Information of China (English)

    LIU Shuqing; YANG Zhixin; WANG Xiaomin; ZHANG Xiaogui; GAO Rutai; LIU Xia

    2007-01-01

    Based on a representative sampling method and pot experiment with different concentrations of Cd and Pd,the enzymatic activities(urease,phosphatase,catalase,invertase),population of bacteria,fungus and actinomycete in the soil,the Cd and Pd pollution status of soil samples(from the wastewater-irrigated area of Baoding suburb)were appraised.Unitary linear and nonlinear curve-fitting optimization models were applied in the research,and the relationship between Pb and Cd causing pollution and enzymatic activities of the tested soils were discussed.The research may provide a theoretical basis for protecting the environment in the region of Baiyangdian Lake,Hebei province,prevent soil pollution,and ascertain biochemical indexes,which reflect soil heavy metal pollution levels.The research results indicated that:(1)there was obvious accumulation of Pb and Cd in the wastewater-irrigated area,also the accumulation in wastewater-irrigated soil is more than that in fresh water-irrigated soil,and accumulation on surface layer was more than that in the lower layer.Pb and Cd contents in the tested soils exceeded the standards of soil background values for some major cities at home and abroad and the world soil Cd and Pb contents range.This means that the tested soil had reached a lightly polluted level;(2)there existed an obvious negative correlation between soil enzymatic activities and Pb and Cd contents in wastewaterirrigated soil,where the soil urease and catalase activities decreased obviously with the increase of Pb and Cd contents in soil.Therefore,the urease and catalase can be considered as biochemical indexes that reflect the degree of soil Pb and Cd pollution;(3)the pot experiments indicated that the influence of Cd on soil enzymatic activities was greater than that of Pb.Generally,the effect of Cd on soil phosphatase,urease,catalase is more obvious than that on invertase,while Pb has a more obvious effect on invertase than Cd;(4)pot experiments of triple cropping

  3. Geochemistry Of Lead In Contaminated Soils: Effects Of Soil Physico-Chemical Properties

    Science.gov (United States)

    Saminathan, S.; Sarkar, D.; Datta, R.; Andra, S. P.

    2006-05-01

    Lead (Pb) is an environmental contaminant with proven human health effects. When assessing human health risks associated with Pb, one of the most common exposure pathways typically evaluated is soil ingestion by children. However, bioaccessibility of Pb primarily depends on the solubility and hence, the geochemical form of Pb, which in turn is a function of site specific soil chemistry. Certain fractions of ingested soil-Pb may not dissociate during digestion in the gastro-intestinal tract, and hence, may not be available for transport across the intestinal membrane. Therefore, this study is being currently performed to assess the geochemical forms and bioaccessibility of Pb in soils with varying physico-chemical properties. In order to elucidate the level of Pb that can be ingested and assimilated by humans, an in-vitro model that simulates the physiological conditions of the human digestive system has been developed and is being used in this study. Four different types of soils from the Immokalee (an acid sandy soil with minimal Pb retention potential), Millhopper (a sandy loam with high Fe/Al content), Pahokee (a muck soil with more than 80% soil organic matter), and Tobosa series (an alkaline soil with high clay content) were artificially contaminated with Pb as lead nitrate at the rate equivalent to 0, 400, 800, and 1200 mg/kg dry soil. Analysis of soils by a sequential extraction method at time zero (immediately after spiking) showed that Immokalee and Millhopper soils had the highest amount of Pb in exchangeable form, whereas Pahokee and Tobosa soils had higher percentages of carbonate-bound and Fe/Al-bound Pb. The results of in-vitro experiment at time zero showed that majority of Pb was dissolved in the acidic stomach environment in Immokalee, Millhopper, and Tobosa, whereas it was in the intestinal phase in Pahokee soils. Because the soil system is not in equilibrium at time zero, the effect of soil properties on Pb geochemistry is not clear as yet. The

  4. Effects of soil moisture content and tractor wheeling intensity on traffic-induced soil compaction

    Directory of Open Access Journals (Sweden)

    Iman AHMADI

    2015-12-01

    Full Text Available Soil compaction causes deleterious effects on physical and mechanical proprieties of agricultural soils. In order to investigate the effect of soil moisture content and tractor wheeling intensity on traffic-induced soil compaction, this study was carried out on a field with clay loam soil. Soil dry bulk density and hydraulic conductivity as well as emergence percentage of corn seedlings and dry mass of the sampled mature plants were considered the dependent variables of the experiment. Independent variables consisted of soil moisture content with five levels (12, 15, 17, 19, and 21%, traffic intensity with three levels (four, two, and zero passes of tractor wheel (tractor model: John Deere 3350 from the entire area of the plot, and soil sampling depth with three levels (0-10, 10-20, and 20-30 cm. According to the results of this study, gradual increase in soil water content generally resulted in an increase in soil bulk density; moreover, increasing the tractor wheeling intensity from 0 to 4 passes increased bulk density by 13%. Furthermore, the driest soil water content had the highest and the wettest soil water content had the lowest emergence percentage of corn seedlings among the treatments; moreover, traffic intensity treatment inversely affected the emergence percentage of corn seedlings and the dry mass of mature plants. To sum up, these results indicate that, for improving water permeability and reducing dry bulk density of the examined clay loam soil, as well as better emergence of corn seedlings and ultimately increasing crop yield, it is recommended to avoid wheeling when soil moisture content is high, reduce the number of machinery wheel passes from the farm as low as possible, and restrict the wheel passes to fixed strips along the field, whenever possible.

  5. To be or not to be - common and endangered arable weed species in the face of Global Climate Change

    OpenAIRE

    Rühl, Anna Theresa; Donath, Tobias W.; Eckstein, R. Lutz; Otte, Annette

    2014-01-01

    Arable weeds are one of the most endangered species groups in Europe. Modern agriculture and intensive land use management with the application of herbicides and fertilisers, enhanced seed cleaning, simplified crop rotations and abandonment of marginal arable sites are the main causes for the continuous decline of arable weeds. However, besides these changes in land use also global climate change may challenge the adaptability of arable weeds. Most scientists agree that the frequency of extre...

  6. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    Directory of Open Access Journals (Sweden)

    G. U. Chibuike

    2014-01-01

    Full Text Available Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

  7. The effects of PAH contamination on soil invertebrate communities

    Energy Technology Data Exchange (ETDEWEB)

    Snow-Ashbrook, J.L.; Erstfeld, K.M. [Rutgers Univ., New Brunswick, NJ (United States). Dept. of Environmental Sciences

    1995-12-31

    Soils were collected from an abandoned industrial site to study the effects of historic polycyclic aromatic hydrocarbons (PAHs) on soil invertebrate communities. Nematode abundance and diversity, microarthropod abundance (orders Collembola and Acarina) and earthworm growth were evaluated. Physical and chemical characteristics of soils may affect both invertebrate community structure and the mobility/bioavailability of pollutants in soils. Soil characteristics were measured and included with PAH data in multiple regression analyses to identify factors which influences the responses observed in the soil invertebrate community. Positive associations were observed between eight invertebrate community endpoints and soil PAH content. For all of these endpoints but one, a higher degree of variability was explained when both PAH content and soil characteristics were considered. It is theorized that the positive response to soil PAH content may be the result of an increased abundance of PAH-degrading soil microbes. Increased microbial abundance could stimulate invertebrate communities by providing a direct food source or increasing the abundance of microbially-produced nutrients. These results suggest that both PAH content and soil characteristics significantly influenced the soil invertebrate community. It is not clear whether these factors influenced the invertebrate community independently, or whether differences in soil characteristics affected the community response by influencing the mobility or bioavailability of PAHs.

  8. Effects of Soil and Air Drying Methods on Soil Plasticity of Different Cities of Pakistan

    Directory of Open Access Journals (Sweden)

    Aashan Ijaz

    2014-12-01

    Full Text Available Atterberg Limits were initially defined in 1911, by Albert Atterberg, a Swedish scientist. Their purposes are to classifying cohesive soils and determine engineering properties of soils. According to ASTM, all the soils tested by Atterberg limits should be oven dried, it is because drying the soils in different degree will alter their properties significantly. Some of the physical properties of soils will undergo changes that appear to be permanent. Therefore, the soil samples should be in natural or air-dried form. However, in reality, due to time constraint and other factors, many will run the tests by using soil samples that are prepared by oven drying method. They assumed that there is no difference between the results of two types of drying method. However, in reality, the properties of soil will be affected and thus give a misleading result. The objective of this study is to determine the effect of two drying methods, air-drying method and oven drying method, on the soil plasticity. Six soil samples from different cities were tested. These tests include sieve analysis, specific gravity test, hydrometer analysis, Plastic limit and liquid limit test. Conclusively, the oven drying method could not replace the air-drying method in soil preparation for both Atterberg limits tests.

  9. How much Nitrous Oxide is produced in cultivation of biofuels on arable land in Sweden?; Hur mycket lustgas blir det vid odling av biobraenslen paa aakermark i Sverige?

    Energy Technology Data Exchange (ETDEWEB)

    Kasimir Klemedtsson, Aasa (Univ. of Goeteborg, Dept. of Earth Sciences, Goeteborg (Sweden). Physical Geography)

    2010-03-15

    Several methods that can be used to estimate the emission of nitrous oxide from arable land are discussed, all of them with their pros and cons. 1 The base for all estimation methods is field measurements, well executed with a technique designed for the production of high quality data. Published field data of good quality were collected from areas in north Europe and America, both from grain and rape crops and unfertilised grasslands where natural background emission is assumed. The compilation shows that grasslands emit in average 0.3 +- 0.1 kg N{sub 2}O-N/ha/year. In crop systems where a high amount of nitrogen is repeatedly added to the soil, the soil N store will contribute to N{sub 2}O emission coming years. This is one reason why emission is higher for unfertilised arable land (where nitrogen have been added previous years) compared to unfertilised grassland, 1 +- 0.1 kg N{sub 2}O-N/ha/year. Fertilised arable lands have higher emission, in average around 3 kg N{sub 2}O-N/ha/year. In comparison, field measurements in Sweden have shown lower emission, 0.6 and 2 kg N{sub 2}O-N/ha/year from clay and sandy soil respectively. 2 The IPCC method is the best known, where the emission from arable land is estimated as a function of added nitrogen. In reality there is no correlation between a low N-addition and the emission of nitrous oxide since the N-addition needs to be high to have influence on the nitrous oxide emission..25 or the new factor 1% of added N has been used in many LCA's as an estimator for nitrous oxide and the uncertainty span of 0,3 and 3% is seldom used. The method underestimates the size of nitrous oxide emission in many systems and cannot estimate a true emission from individual fields. 3 Globally there is a connection between the increase in reactive nitrogen and the increase of atmospheric nitrous oxide, which is the base for a method suggested by Crutzen et al. Nitrous oxide emission has been estimated to be 3-5% of both biological nitrogen

  10. How much Nitrous Oxide is produced in cultivation of biofuels on arable land in Sweden?; Hur mycket lustgas blir det vid odling av biobraenslen paa aakermark i Sverige?

    Energy Technology Data Exchange (ETDEWEB)

    Kasimir Klemedtsson, Aasa (Univ. of Goeteborg, Dept. of Earth Sciences, Goeteborg (Sweden). Physical Geography)

    2010-03-15

    Several methods that can be used to estimate the emission of nitrous oxide from arable land are discussed, all of them with their pros and cons. 1 The base for all estimation methods is field measurements, well executed with a technique designed for the production of high quality data. Published field data of good quality were collected from areas in north Europe and America, both from grain and rape crops and unfertilised grasslands where natural background emission is assumed. The compilation shows that grasslands emit in average 0.3 +- 0.1 kg N{sub 2}O-N/ha/year. In crop systems where a high amount of nitrogen is repeatedly added to the soil, the soil N store will contribute to N{sub 2}O emission coming years. This is one reason why emission is higher for unfertilised arable land (where nitrogen have been added previous years) compared to unfertilised grassland, 1 +- 0.1 kg N{sub 2}O-N/ha/year. Fertilised arable lands have higher emission, in average around 3 kg N{sub 2}O-N/ha/year. In comparison, field measurements in Sweden have shown lower emission, 0.6 and 2 kg N{sub 2}O-N/ha/year from clay and sandy soil respectively. 2 The IPCC method is the best known, where the emission from arable land is estimated as a function of added nitrogen. In reality there is no correlation between a low N-addition and the emission of nitrous oxide since the N-addition needs to be high to have influence on the nitrous oxide emission..25 or the new factor 1% of added N has been used in many LCA's as an estimator for nitrous oxide and the uncertainty span of 0,3 and 3% is seldom used. The method underestimates the size of nitrous oxide emission in many systems and cannot estimate a true emission from individual fields. 3 Globally there is a connection between the increase in reactive nitrogen and the increase of atmospheric nitrous oxide, which is the base for a method suggested by Crutzen et al. Nitrous oxide emission has been estimated to be 3-5% of both biological nitrogen

  11. Effects of harvesting and soil disturbance on soil CO2 efflux from a jack pine forest

    International Nuclear Information System (INIS)

    This study measured the effects of organic matter removal and soil compaction on soil surface carbon dioxide (CO2) efflux (F) from a coarse-textured jack pine forest. F represents the major source of carbon dioxide loss from forests and is highly responsive to both soil temperature and soil moisture in jack pine stands. An analytical framework was developed for deriving biologically based empirical response functions to assess the importance of factors controlling F treatment responses and to model treatment effects. Treatments included stem-only harvest (OM0C0); full-tree harvest (OM1C0); full-tree harvest with surface soil removal (OM2C0); full-tree harvest with surface soil removal and soil compaction (OM2C2); and uncut forest. Three to 5 years after harvest, growing-season F was similar following stem-only and full-tree logging compared with uncut forest. It was much greater than in harvested areas with surface soil removal. Mean F and calculated F at 10 degrees C under non-limiting soil moisture conditions (F10) were greatest in treatments with intact organic surfaces. F10 showed a strong linear relationship with detrital production in harvested plots, with total near-surface carbon in all plots, and was positively correlated with ground cover. F increased exponentially with soil temperature and responded parabolically to relative soil water content. F was often low in May in the uncut forest because of cold soils, but then attained rates equivalent to those of the OM0C0 and OM1C0. The trends reflect treatment effects on substrate availability, rooting density and soil temperature and moisture. In general, F was influenced more by post harvest removal of surface organic horizons rather than by clear-cut harvesting. 71 refs., 4 tabs., 5 figs

  12. Progress in Significant Soil Science Fields of China over the Last Three Decades: A Review

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qi-Guo; HE Ji-Zheng; YAN Xiao-Yuan; ZHANG Bin; ZHANG Gan-Lin; CAI Zu-Cong

    2011-01-01

    Due to continuous decreases in arable land area and continuous population increases, Chinese soil scientists face great challenges in meeting food demands, mitigating adverse environmental impacts, and sustaining or enhancing soil productivity under intensive agriculture.With the aim of promoting the application of soil science knowledge, this paper reviews the achievements of Chinese scientists in soil resource use and management, soil fertility, global change mitigation and soil biology over the last 30 years.During this period, soil resource science has provided essential support for the use and exploitation of Chinese soil resources, and has itself developed through introduction of new theories such as Soil Taxonomy and new technologies such us remote sensing.Soil fertility science has contributed to the alleviation and elimination of impeding physical and chemical factors that constrain availability of essential nutrients and water in soils, the understanding of nutrient cycling in agroecosystems, and the increase in nutrient use efficiency for sustainable crop production.Chinese soil scientists have contributed to the understanding of the cropland's role in global change, particularly to the understanding of methane and nitrous oxide emission from rice fields and the effect of elevated carbon dioxide and ozone on rice-wheat system.Soil biology research has progressed in biological N fixation, distribution of fauna in Chinese soils, and bioremediation of polluted soils.A new generation of soil scientists has arisen in the last three decades.The gaps between research and application in these soil science fields are also discussed.

  13. Reintroduction of rare arable plants by seed transfer. What are the optimal sowing rates?

    Science.gov (United States)

    Lang, Marion; Prestele, Julia; Fischer, Christina; Kollmann, Johannes; Albrecht, Harald

    2016-08-01

    During the past decades, agro-biodiversity has markedly declined and some species are close to extinction in large parts of Europe. Reintroduction of rare arable plant species in suitable habitats could counteract this negative trend. The study investigates optimal sowing rates of three endangered species (Legousia speculum-veneris (L.) Chaix, Consolida regalis Gray, and Lithospermum arvense L.), in terms of establishment success, seed production, and crop yield losses.A field experiment with partial additive design was performed in an organically managed winter rye stand with study species added in ten sowing rates of 5-10,000 seeds m(-2). They were sown as a single species or as a three-species mixture (pure vs. mixed sowing) and with vs. without removal of spontaneous weeds. Winter rye was sown at a fixed rate of 350 grains m(-2). Performance of the study species was assessed as plant establishment and seed production. Crop response was determined as grain yield.Plant numbers and seed production were significantly affected by the sowing rate, but not by sowing type (pure vs. mixed sowing of the three study species), and weed removal. All rare arable plant species established and reproduced at sowing rates >25 seeds m(-2), with best performance of L. speculum-veneris. Negative density effects occurred to some extent for plant establishment and more markedly for seed production.The impact of the three study species on crop yield followed sigmoidal functions. Depending on the species, a yield loss of 10% occurred at >100 seeds m(-2). Synthesis and applications: The study shows that reintroduction of rare arable plants by seed transfer is a suitable method to establish them on extensively managed fields, for example, in organic farms with low nutrient level and without mechanical weed control. Sowing rates of 100 seeds m(-2) for C. regalis and L. arvense, and 50 seeds m(-2) for L. speculum-veneris are recommended, to achieve successful establishment

  14. Effects of spatial distribution of soil parameters on soil moisture retrieval from passive microwave remote sensing

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tao; ZHANG LiXin; JIANG LingMei; ZHAO ShaoJie; ZHAO TianJie; LI YunQing

    2012-01-01

    In this paper,we studied the effect of spatial distribution of soil parameters on passive soil moisture retrieval at pixel scale First,we evaluated the forward microwave emission model and soil moisture retrieval algorithm accuracy through the observation of field experiments.Then,we used soil parameters in different spatial distribution patterns,including random,normal,and uniform distribution,to determine the different levels of heterogeneity on soil moisture retrieval,in order to seek the relationship between heterogeneity and soil moisture retrieval error.Finally,we conducted a controlled heterogeneity effect experiment measurements using a Truck-mounted Multi-frequency Radiometer (TMMR) to validate our simulation results,This work has proved that the soil moisture retrieval algorithm had a high accuracy (RMSE=0.049 cm3 cm-3) and can satisfy the need of this research.The simulation brightness temperatures match well with observations,with RMSE=9.89 K.At passive microwave remote sensing pixel scale,soil parameters with different spatial distribution patterns could have different levels of error on soil moisture estimation.Overall,we found that soil moisture with a random distribution in a satellite pixel scale can cause the largest error,with a normal distribution being the second,and a unifbrm dismbution the least due to the smallest heterogeneity.

  15. Effects of Soil properties on phosphorus subsurface migration in sandy soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-Kui

    2008-01-01

    The soil factors influencing the potential migration of dissolved and particulate phosphorus (P) from structurallyweak sandy subsoils were evaluated by means of soil column leaching experiments.Soil colloids were extracted from two types of soils to make the colloid-bound forms of P solution.Eight sandy soils with diverse properties were collected for packing soil columns.The effects of influent solutions varying in concentrations of colloids,P,and electrolyte,on the transport of P and quality of leachates were characterized.P migration in the soils was soil property-dependent.High soil electrical conductivity values retarded the mobility of colloids and transportability of colloid-associated P (particulate P).Soil electrical conductivity was negatively correlated with colloids and reactive particulate P (RPP) concentrations in the leachates,whereas,the total reactive P (TRP) and dissolved reactive P (DRP) concentrations in the leachates were mainly controlled by the P adsorption capacity and the P levels in the subsoil.The reactive particulate P in the leachates was positively correlated with the colloidal concentration.Increased colloidal concentration in the influent could significantly increase the colloidal concentration in the leachates.Elevated P concentration in the influent had little effect on P recovery in the leachates,but it resulted in significant increases in the absolute P concentration in the leachates.

  16. Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil

    Institute of Scientific and Technical Information of China (English)

    Qian Kuimei; Wang Liping; Yin Ningning

    2012-01-01

    A series of pot experiments and field trials were carried out to evaluate the effects of arbuscular mycorrhizal fungi (AMF) on activities of soil enzymes and carbon sequestration capacity in reclaimed mine soil.A complex substrate of coal gangue,fly ash and sludge was used as reclaimed mine soil,and ryegrass was planted with AMF inoculation to construct a plant-complex substrate-microbe ecological restoration system.The changes to the soil organic carbon (SOC),activities of soil enzymes and glomalin-related soil protein (GRSP) were measured and the effects of AMF on activities of soil enzymes and carbon sequestration capacity in reclaimed mine soil were analyzed.The results show that the contents of GRSP (total glomalin (TG) and easily extractable glomalin (EEG)),SOC and activities of enzymes increased,and the increments were higher in the AMF inoculation treated plant-complex substrate-microbe ecological restoration systems than those with no AMF inoculated treatments after 12 months of ryegrass growth.TG,EEG and soil enzyme activity have a significant positive correlation,and the correlative coefficient was 0.427-0.573; SOC and TG,EEG have a significant positive correlation (p < 0.01 ),indicating that AMF plays an important role in carbon sequestration of reclaimed mine soils.

  17. EFFECTS OF SOIL CRUSTING ON SOIL MOISTURE, RUNOFF AND EROSION: FIELD OBSERVATIONS

    Institute of Scientific and Technical Information of China (English)

    Tongxin ZHU

    2002-01-01

    Soil crusting may have significant impacts on infiltration, runoff generation and erosion in agricultural lands or semi-arid and arid soils. The previous investigations on soil crusting were often conducted under simulated rainfall conditions. This study aims to evaluate the effects of soil crusting on soil moisture during inter-storm periods and soil and water losses during storm periods under natural rainfalls. The study site was located in the Loess Plateau of China. Four plots with a uniform slope and size were selected. Soil crusts were kept intact on the two plots throughout the monitoring periods of 1999 and 2000,but were broken after each rain storm event on the other two plots. Soil moisture was measured on all plots with an interval of one week at three depths and total event runoff and sediment discharges were measured in each storm. It was found that no marked difference in soil moisture and runoff exists between the crusted and uncrusted plots. This is because the rapid development of new crusts on the uncrusted plots during the storm events. However, the erosion rate on the uncrusted plots was significantly higher than that on the crusted plots, which was mainly caused by the disturbance of the surface soils on the uncrusted plots. This study questions the effectiveness of a common agricultural practice in the Loess Plateau, hoeing lands after rainfall, in reducing runoff and erosion.

  18. Effect of Particle Size and Soil Compaction on Gas Transport Parameters in Variably Saturated, Sandy Soils

    DEFF Research Database (Denmark)

    Hamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken;

    2009-01-01

    The soil gas diffusion coefficient (Dp) and air permeability (ka) and their dependency on soil air content ( ) control gas diffusion and advection in soils. This study investigated the effects of average particle size (D50) and dry bulk density ( b) on Dp and ka for six sandy soils under variably...... saturated conditions. Data showed that particle size markedly affects the effective diameter of the drained pores active in leading gas through the sample at –100 cm H2O of soil water matric potential (calculated from Dp and ka) as well as the average pore diameter at half saturation (calculated from...... the water retention curve), both exhibiting similar and exponential relationships with D50. Under variably saturated conditions, higher Dp and ka in coarser sand (larger D50) were observed due to rapid gas diffusion and advection through the less tortuous large-pore networks. In addition, soil compaction...

  19. The destination of arable land in a marginal agricultural landscape in South Portugal: an exploration of land use change determinants

    NARCIS (Netherlands)

    Doorn, van A.M.; Bakker, M.M.

    2007-01-01

    This research attempts to investigate what drives three conversions of arable land during the period 1985¿2000 in a marginal agricultural landscape in Southern Portugal: afforestation of arable land, abandonment of arable land and regeneration of the agro-silvo-pastoral system. This was done by expl

  20. Soil carbon dioxide emission from intensively cultivated black soil in Northeast China. Nitrogen fertilization effect

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Kang [Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture; Graduate University of Chinese Academy of Sciences, Beijing (China); Ding, Weixin; Cai, Zucong [Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture; Wang, Yufeng; Zhang, Xilin; Zhou, Baoku [Heilongjiang Academy of Agricultural Sciences, Harbin (China). Inst. of Soil and Fertilizer

    2012-08-15

    Purpose: The aim of this study was to understand the effect of nitrogen fertilization on soil respiration and native soil organic carbon (SOC) decomposition and to identify the key factor affecting soil respiration in a cultivated black soil. Materials and methods: A field experiment was conducted at the Harbin State Key Agroecological Experimental Station, China. The study consisted of four treatments: unplanted and N-unfertilized soil (U0), unplanted soil treated with 225 kg N ha{sup -1} (UN), maize planted and N-unfertilized soil (P0), and planted soil fertilized with 225 kg N ha{sup -1} (PN). Soil CO{sub 2} and N{sub 2}O fluxes were measured using the static closed chamber method. Results and discussion: Cumulative CO{sub 2} emissions during the maize growing season with the U0, UN, P0, and PN treatments were 1.29, 1.04, 2.30 and 2.27 Mg C ha{sup -1}, respectively, indicating that N fertilization significantly reduced the decomposition of native SOC. However, no marked effect on soil respiration in planted soil was observed because the increase of rhizosphere respiration caused by N addition was counteracted by the reduction of native SOC decomposition. Soil CO{sub 2} fluxes were significantly affected by soil temperature but not by soil moisture. The temperature sensitivity (Q{sub 10}) of soil respiration was 2.16-2.47 for unplanted soil but increased to 3.16-3.44 in planted soil. N addition reduced the Q{sub 10} of native SOC decomposition possibly due to low labile organic C but increased the Q{sub 10} of soil respiration due to the stimulation of maize growth. The estimated annual CO{sub 2} emission in N-fertilized soil was 1.28 Mg C ha{sup -1} and was replenished by the residual stubble, roots, and exudates. In contrast, the lost C (1.53 Mg C ha{sup -1}) in N-unfertilized soil was not completely supplemented by maize residues, resulting in a reduction of SOC. Although N fertilization significantly increased N{sub 2}O emissions, the global warming potential

  1. Effect of Lanthanum on Major Microbial Populations in Red Soil

    Institute of Scientific and Technical Information of China (English)

    CHUHAIYAN; WANGJUNHUA; 等

    2001-01-01

    Pure culture and pot culture experiments were carried out to study the effect of lanthanum(La)on bacteria,actinomyces and fungus,and some microbial physiological groups,nitrifir,azotobacter and phos-phobacteria in a red soil taken form the Ecological Experimental Station of Red Soil,the Chinese Academy of Sciences,Jiangxi Province.LaCl3 was added into media at levels of 0,25,50,100,150,200,250 and 500 mg L-1 in the pure culture experiment ,and into soil samples in porcelain pots before rice growing at levles of 0,6,30,150,300,600 and 900 mg kg-1 dry soil in the pot culture experiment.The populations of the three soil microbes in the pure cultre experiment decreased with the addition level of La,indicating that La was toxic to the soil microbes in pure culture ,and the sensitivity of the 3 major mircrobial types to La was in a decreasing order of actinomyces>bacteria>fungus.In the pot experiment,La had slightly stimulaive effect on soil bacteria and actinomyces when applied at olw concentrations while had inhibitory effect on soil bacteria,actinomyces and fungus at high concentrations.When the concentration of La Was low,soil azotobacter was stimulated slightly while soil nitrifier was stimulated strongly and the maximum increase was up to 50%.When the concentration of La was highy,both soil aztobacter and nitrifier ware inhibited ,and the inhibition of La to the nitrifier increased with La conentration,La added at all the levels had stimulative effect on soil inorgaic and organic phosphobacteria.Among the 4 physiological groups,soil nitrifier was most sensitive to La,so,it migh be reasonble to assume that soil nitrifier was a sensitive indicator for evaluating the biological and environmental effects of rare earths.

  2. Effect of Soil Structure Interaction on Torsional Response of Structure Supported by Asymmetric Soil Foundation System

    OpenAIRE

    Fangyuan Zhou; Xuezhang Wen; Hongping Zhu

    2016-01-01

    The torsional response of a structure supported by asymmetric foundation was investigated in this study. Several types of the asymmetric soil foundation system were employed to analyze the effect of soil structure interaction on torsional response of the superstructure. It can be concluded from the study that torsional response would be generated for a structure supported by asymmetric soil foundation system under horizontal seismic excitation, and the generated torsional response of the supe...

  3. Effect of Fluctuating Temperatures on Forest Soil Nitrogen Minerealization

    Institute of Scientific and Technical Information of China (English)

    LIAOLIPING; P.INESON

    1997-01-01

    Nitrogen mineralization in forest soil wa studied in laboratory by incubating undisturbed soil cores enclosed within PVC columns at different temperatures to compare the effect of flucttuating temperature with that of constant temperaature,and to find out whether soil nitrification shows linearity over time .The results showed that there was no significant difference between soil nitrification at fluctuating temperature and that at constant temperature,and suggested that it must be careful to make the conclusion that soil nitrification has linearity over time.

  4. Soil Management Effects on Gas Fluxes from an Organic Soil Agricultural System

    Science.gov (United States)

    Jennewein, S. P.; Bhadha, J. H.; Lang, T. A.; Singh, M.; Daroub, S. H.; McCray, M.

    2015-12-01

    The role of soil management on gas flux isn't well understood for Histosols of the Everglades Agricultural Area (EAA) of southern Florida. The region is responsible for roughly half of sugarcane (Saccharum spp. hybrids) production in the USA along with supplying winter vegetable crops to the eastern USA. Future productivity in the EAA is jeopardized by soil subsidence resulting from oxidation of organic matter. Establishing the role of tillage, water-table depth, nitrogen fertilizer, and soil depth on gas flux will help determine how effective various managements are on conserving soil. Ongoing lysimeter and field studies examined effects of management practices (water-table, tillage, and nitrogen fertilizer), and soil depth on, gas emission and microbial biomass. The trials were set in Belle Glade, FL, on Lauderhill muck (Lithic Haplosaprists). Results to be presented include soil microbial biomass and soil gas (CO2, CH4, and N2O) flux. This study provides insight into management effectiveness and agriculture sustainability on shallow muck soils of the EAA and will help farmers mitigate problems associated with soil subsidence and seasonally high water-tables.

  5. Simulation of Runoff Concentration on Arable Fields and the Impact of Adapted Tillage Practises

    Science.gov (United States)

    Winter, F.; Disse, M.

    2012-04-01

    Conservational tillage can reduce runoff on arable fields. Due to crop residues remaining on the fields a seasonal constant ground cover is achieved. This additional soil cover not only decreases the drying of the topsoil but also reduces the mechanical impact of raindrops and the possibly resulting soil crust. Further implications of the mulch layer can be observed during heavy precipitation events and occurring surface runoff. The natural roughness of the ground surface is further increased and thus the flow velocity is decreased, resulting in an enhanced ability of runoff to infiltrate into the soil (so called Runon-Infiltration). The hydrological model system WaSiM-ETH hitherto simulates runoff concentration by a flow time grid in the catchment, which is derived from topographical features of the catchment during the preprocessing analysis. The retention of both surface runoff and interflow is modelled by a single reservoir in every discrete flow time zone until the outlet of a subcatchment is reached. For a more detailed analysis of the flow paths in catchments of the lower mesoscale (small-scale variation in runoff generation and its temporal distribution in detail. Therefore the assessment of adapted tillage systems can be derived. On singular fields of the Scheyern research farm north-west of Munich it can be shown how different crops and tillage practises can influence runoff generation and concentration during single heavy precipitation events. From the simulation of individual events in agricultural areas of the lower mesoscale hydrologically susceptible areas can be identified and the positive impact of an adapted agricultural management on runoff generation and concentration can be quantifed.

  6. Effects of extreme drought on agriculture soil and sustainability of different drought soil

    Directory of Open Access Journals (Sweden)

    S. M. Geng

    2014-01-01

    Full Text Available Content of microbial biomass carbon was selected as indicator for identifying effects of extreme drought on agriculture soil ecosystem. Through a series of prototype observation experiments, changing tendencies of microbial biomass carbon content and the proportion of microbial biomass carbon in soil organic carbon were identified. The optimum mass water content of soil for microbial biomass carbon was 19.5% and the demarcation point of microbial biomass carbon to drought was 14.3%, which could be used to demonstrate alters and degradation of soil ecosystem as well as the irrigation requirement of crops. We evaluated sustainability of different drought soil ecosystems after experiencing rainstorm with rehabilitation. The results suggested that soil ecosystem which was interfered by moderate drought could recover and its tolerance to drought was improved, as well as its function and activity. Soil ecosystem could barely recover from severe drought and could not adapt to severe drought stress. Soil ecosystem could not restore from extreme drought within a few days, the function and structure were damaged. We came to the conclusion that mass water content of soil should kept above 10% to avoid destroying function and structure while soil ecosystem would better be watered when mass water content was lower than 14.3% in order to maintain high productivity.

  7. Process and mechanism of arable land change in Hebei Province during the past 50 years

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hebei Province is one of the regions with most densely population, fastest economic growth and most intensive land use in China. The contradiction of land shortage sharpened by high-speed economic development with population growth has become a serious problem, which has restricted regional sustainable development. This paper revealed the basic process, regional differences of change and the gravity center of arable land area according to the long-series statistical data of arable land during the past 50 years. On the basis of the above mentioned, the major driving forces that influence the changes of the arable land are discussed. The research results indicate that there is a trend of obvious fluctuating decrease in arable land area during the last 50 years. The changes of aruble land area undergo the process from increase to sharp decrease to gently decrease.The regional disparity of change in arable land area is very notable and the gravity center of arable land area moves to the northeast 49.22 km. Regarding the decrease in arable land, the direct driving forces include adjustments of agricultural structure and reclamation, and indirect driving forces include advance in technology, economic interest and population growth etc.

  8. Conservation agriculture effects on soil pore characteristics

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Abdollahi, Lotfollah

    Conservation tillage in combination with crop rotation, residue management and cover crops are key components of conservation agriculture. A positive long-term effect of applying all components of conservation agriculture on soil structural quality is expected. However, there is a lack...... ploughing to a depth of 20 cm (MP), harrowing to a depth of 8-10 cm (H) and direct drilling (D). Minimally disturbed core samples were taken at 4-8, 12-16 and 18-27 cm depths 11 years after experimental start. Water retention characteristics were measured for a range of matric potential ranging from -10...... air permeability and pore continuity index. Generally, residue input, especially when combined with direct drilling at the Foulum site, decreased bulk density and the volume of blocked air porosity, and increased air-filled porosity, volumetric water content, air permeability and gas diffusivity. Our...

  9. Stimulatory effects of arsenic-tolerant soil fungi on plant growth promotion and soil properties.

    Science.gov (United States)

    Srivastava, Pankaj Kumar; Shenoy, Belle Damodara; Gupta, Manjul; Vaish, Aradhana; Mannan, Shivee; Singh, Nandita; Tewari, Shri Krishna; Tripathi, Rudra Deo

    2012-01-01

    Fifteen fungi were obtained from arsenic-contaminated agricultural fields in West Bengal, India and examined for their arsenic tolerance and removal ability in our previous study. Of these, the four best arsenic-remediating isolates were tested for plant growth promotion effects on rice and pea in the present study. A greenhouse-based pot experiment was conducted using soil inocula of individual fungi. The results indicated a significant (PLasiodiplodia. These fungi improved soil nutrient content and enhanced plant growth. These fungi may be used as bioinoculants for plant growth promotion and improved soil properties in arsenic-contaminated agricultural soils. PMID:23047145

  10. Effect of soil coarseness on soil base cations and available micronutrients in a semi-arid sandy grassland

    OpenAIRE

    Lü, Linyou; Wang, Ruzhen; Liu, Heyong; Yin, Jinfei; Xiao, Jiangtao; Wang, Zhengwen; Zhao, Yan; Yu, Guoqing; Han, Xingguo; Jiang, Yong

    2016-01-01

    Soil coarseness is the main process decreasing soil organic matter and threatening the productivity of sandy grasslands. Previous studies demonstrated negative effect of soil coarseness on soil carbon storage, but less is known about how soil base cations (exchangeable Ca, Mg, K, and Na) and available micronutrients (available Fe, Mn, Cu, and Zn) response to soil coarseness. In a semi-arid grassland of Northern China, a field experiment was initiated in 2011 to mimic the eff...

  11. Electrodialytic Remediation of Pb Contaminated Soil - Effects of Soil Properties and Pb Distribution

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Jensen, Pernille Erland

    1999-01-01

    The aim of this work was to investigate the effects of soil properties and Pb distribution on the electrodialytic remediation of Pb contaminated soil. Two naturally Pb contaminated soils were compared with respect to total Pb content, Pb distribution, pH, carbonate content, clay content and organic...... matter, and an electrodialytic remediation experiment was made on each soil.It was concluded that soil pH was the most important factor limiting the mobilisation of Pb. In one of the remediation experiments it was possible to mobilise and reduce the amount of Pb significantly, whereas in the other only...... a small amount of the initial Pb was mobilised at similar experimental conditions. A high buffering capacity of one of the soils, which was partly due to a high carbonate content, led to a bad remediation result....

  12. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity.

    Science.gov (United States)

    Gutiérrez, Carmen; Fernández, Carlos; Escuer, Miguel; Campos-Herrera, Raquel; Beltrán Rodríguez, M Eulalia; Carbonell, Gregoria; Rodríguez Martín, Jose Antonio

    2016-06-01

    Among soil organisms, nematodes are seen as the most promising candidates for bioindications of soil health. We hypothesized that the soil nematode community structure would differ in three land use areas (agricultural, forest and industrial soils), be modulated by soil parameters (N, P, K, pH, SOM, CaCO3, granulometric fraction, etc.), and strongly affected by high levels of heavy metals (Cd, Pb, Zn, Cr, Ni, Cu, and Hg) and emerging contaminants (pharmaceuticals and personal care products, PPCPs). Although these pollutants did not significantly affect the total number of free-living nematodes, diversity and structure community indices vastly altered. Our data showed that whereas nematodes with r-strategy were tolerant, genera with k-strategy were negatively affected by the selected pollutants. These effects diminished in soils with high levels of heavy metals given their adaptation to the historical pollution in this area, but not to emerging pollutants like PPCPs. PMID:26895540

  13. The effect of soil on cork quality

    Science.gov (United States)

    Pestana, Miguel; Gomes, Alberto

    2014-10-01

    The present work aimed to contribute for a better knowledge regarding soil features as cork quality indicators for stoppers. Cork sampling was made in eight Cork oak stands (montados de sobreiro) located in different Plio-Plistocene sedimentary formations of Península de Setúbal and Carbonic shistes from paleozoic periods in Saw Grândola, both in southern Tagus River region The samples used to classify the cork as stopper for wine bottles were obtained in eight cork oak stands located in “Península de Setúbal”, south of the River Tagus, covering soils of different types of sandstones of the Plio-plistocene In each stand, we randomly chose five circular plots with 30 m radius. Five trees with same stripping conditions determined by the dendrometric features: HD (height stipping, PBH (perimeter at breaster height), and percentage canopy cover, trees vegetative condition (defoliation degree) stand features (density), and site conditions (soil type and orientation). In the center of each plot a pit was open to characterize the soil profile and to classify the soil of each plot sampling. Cork quality for stoppers was evaluated according to porosity, pores/per cm 2 and thickness. The soil was characterized according to morphological soil profile features (lithology, soil profound and soil horizons) and chemical soil surface horizon features (organic matter, pH, macro and micronutrients availability). Based on the variables studied and using the numerical taxonomy, we settled relationships between the cork quality and some soil features. The results indicate: (1) high correlation between the cork caliber and boron, caption exchange capacity, total nitrogen, exchange acidity and exchangeable magnesium, potassium, calcium and sodium in soils of theirs cork oaks; (2) the cork porosity is correlated with the number of pores/cm2 and magnesium; (3) the other soil features have a lower correlation with the caliber, porosity and the number of pores per cm2.

  14. The effect of soil on cork quality

    Directory of Open Access Journals (Sweden)

    Miguel Nugent Pestana

    2014-10-01

    Full Text Available The present work aimed to contribute for a better knowledge regarding soil features as cork quality indicators for stoppers.Cork sampling was made in eight Cork oak stands (montados de sobreiro located in different Plio-Plistocene sedimentary formations of Península de Setúbal and Carbonic shistes from paleozoic periods in Saw Grândola, both in southern Tagus River regionThe samples used to classify the cork as stopper for wine bottles were obtained in eight cork oak stands located in Península de Setúbal, south of the River Tagus, covering soils of different types of sandstones of the Plio-plistoceneIn each stand, we randomly chose five circular plots with 30 m radius. Five trees with same stripping conditions determined by the dendrometric features: HD (height stipping, PBH (perimeter at breaster height, and percentage canopy cover, trees vegetative condition (defoliation degree stand features (density, and site conditions (soil type and orientation. In the center of each plot a pit was open to characterize the soil profile and to classify the soil of each plot sampling.Cork quality for stoppers was evaluated according to porosity, pores/per cm 2 and thickness. The soil was characterized according to morphological soil profile features (lithology, soil profound and soil horizons and chemical soil surface horizon features (organic matter, pH, macro and micronutrients availability.Based on the variables studied and using the numerical taxonomy, we settled relationships between the cork quality and some soil features. The results indicate: (1 high correlation between the cork caliber and boron, caption exchange capacity, total nitrogen, exchange acidity and exchangeable magnesium, potassium, calcium and sodium in soils of theirs cork oaks; (2 the cork porosity is correlated with the number of pores/cm2 and magnesium; (3 the other soil features have a lower correlation with the caliber, porosity and the number of pores per cm2.

  15. Effects of waterlogging on the soil structure of some Italian soils in relation to the GAEC cross-compliance standard Maintenance of farm channel networks and field convexity

    Directory of Open Access Journals (Sweden)

    Paolo Bazzoffi

    2011-08-01

    Full Text Available The aim of this work is to assess the effectiveness of the cross-compliance standard Maintenance of farm channel networks and field convexity with respect to the environmental objective to maintain soil structure through appropriate measures indicated in Annex IV of REG. EC 1782/03. This GAEC standard concerns arable land and obliges the farmer to maintain the farm channel network and the convex shape of fields with a view to the management and preservation of temporary drainage ditches and permanent channels along the edges of the fields, in order to ensure their efficacy and function in draining away water. Experiments have confirmed that maintaining the farm channel networks and giving fields a convex shape has a positive effect in predisposing the soil to ideal conditions for the preservation of its structure. In particular, we have used the data of a newly conducted laboratory study on the effects of the duration of waterlogging on the stability of soil structure, as well as the results of several studies carried out in the past with the following goals: i assessment of the effects of soil moisture various levels on the stability of the structure; ii assessment of the effects of several wetting and drying cycles on aggregate stability; iii determination of aggregate stability under the influence of freezing and thawing under different soil moisture conditions; iv determination of aggregate stability with an increasing number of freeze/thaw cycles (0, 1, 3, 5, 11 cycles at field capacity moisture. The tests during which the soil was subjected to freezing and thawing were carried out taking into account the fact that during winter waterlogged soil may freeze, leading to a structure breakdown, due to the expansion of water into the pores during the freezing phase. In general, the results showed that in soils that are sandy and rich in rock fragments, rapid moisture penetration leads to significant disaggregation phenomena compared with soils

  16. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type.

    Science.gov (United States)

    Gomes, Helena I; Dias-Ferreira, Celia; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2015-07-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero valent iron particles in a two-compartment cell is tested and compared to a more conventional combination of electrokinetic remediation and nZVI in a three-compartment cell. In the new two-compartment cell, the soil is suspended and stirred simultaneously with the addition of zero valent iron nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two-compartment and the three-compartment cell, respectively. The highest removal with Soil 2 were 58% and 45%, in the two-compartment and the three-compartment cell, respectively, in the experiments without direct current. The pH of the soil suspension in the two-compartment treatment appears to be a determining factor for the PCB dechlorination, and this cell allowed a uniform distribution of the nanoparticles in the soil, while there was iron accumulation in the injection reservoir in the three-compartment cell. PMID:25841071

  17. Soil Surface Sealing Effect on Soil Moisture at a Semiarid Hillslope: Implications for Remote Sensing Estimation

    Directory of Open Access Journals (Sweden)

    Shai Sela

    2014-08-01

    Full Text Available Robust estimation of soil moisture using microwave remote sensing depends on extensive ground sampling for calibration and validation of the data. Soil surface sealing is a frequent phenomenon in dry environments. It modulates soil moisture close to the soil surface and, thus, has the potential to affect the retrieval of soil moisture from microwave remote sensing and the validation of these data based on ground observations. We addressed this issue using a physically-based modeling approach that accounts explicitly for surface sealing at the hillslope scale. Simulated mean soil moisture at the respective layers corresponding to both the ground validation probe and the radar beam’s typical effective penetration depth were considered. A cyclic pattern was found in which, as compared to an unsealed profile, the seal layer intensifies the bias in validation during rainfall events and substantially reduces it during subsequent drying periods. The analysis of this cyclic pattern showed that, accounting for soil moisture dynamics at the soil surface, the optimal time for soil sampling following a rainfall event is a few hours in the case of an unsealed system and a few days in the case of a sealed one. Surface sealing was found to increase the temporal stability of soil moisture. In both sealed and unsealed systems, the greatest temporal stability was observed at positions with moderate slope inclination. Soil porosity was the best predictor of soil moisture temporal stability, indicating that prior knowledge regarding the soil texture distribution is crucial for the application of remote sensing validation schemes.

  18. Independent variations of plant and soil mixtures reveal soil feedback effects on plant community overyielding

    NARCIS (Netherlands)

    Hendriks, M.; Mommer, L.; Caluwe, de H.; Smit-Tiekstra, A.E.; Putten, van der W.H.; Kroon, de H.

    2013-01-01

    1. Recent studies have shown that the positive relationship between plant diversity and plant biomass ('overyielding') can be explained by soil pathogens depressing productivity more in low than in high diverse plant communities. However, tests of such soil effects in field studies were constrained

  19. Independent variations of plant and soil mixtures reveal soil feedback effects on plant community overyielding

    NARCIS (Netherlands)

    Hendriks, M.; Mommer, L.; De Caluwe, H.; Smit-Tiekstra, A.E.; Van der Putten, W.H.; De Kroon, H.

    2013-01-01

    * Recent studies have shown that the positive relationship between plant diversity and plant biomass (‘overyielding’) can be explained by soil pathogens depressing productivity more in low than in high diverse plant communities. However, tests of such soil effects in field studies were constrained b

  20. Soil Fauna Alter the Effects of Litter Composition on Nitrogen Cycling in a Mineral Soil

    Science.gov (United States)

    Plant chemical composition and the soil community are known to influence litter and soil organic matter decomposition. Although these two factors are likely to interact, their mechanisms and outcomes of interaction are not well understood. Studies of their interactive effects are...

  1. Effect of Tillage on Soil Hydraulic Conductivity in Two Contrasting Soil Textures

    Science.gov (United States)

    Tillage profoundly affects soil physical and hydraulic properties. It is essential to select a tillage system that sustains the soil hydraulic properties required for successful growth of agricultural crops. We compared effects of conventional tillage (CT) and strip tillage (ST) systems on field-sat...

  2. Clay mineral type effect on bacterial enteropathogen survival in soil.

    Science.gov (United States)

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific.

  3. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  4. Reconciling pesticide reduction with economic and environmental sustainability in arable farming.

    Directory of Open Access Journals (Sweden)

    Martin Lechenet

    Full Text Available Reducing pesticide use is one of the high-priority targets in the quest for a sustainable agriculture. Until now, most studies dealing with pesticide use reduction have compared a limited number of experimental prototypes. Here we assessed the sustainability of 48 arable cropping systems from two major agricultural regions of France, including conventional, integrated and organic systems, with a wide range of pesticide use intensities and management (crop rotation, soil tillage, cultivars, fertilization, etc.. We assessed cropping system sustainability using a set of economic, environmental and social indicators. We failed to detect any positive correlation between pesticide use intensity and both productivity (when organic farms were excluded and profitability. In addition, there was no relationship between pesticide use and workload. We found that crop rotation diversity was higher in cropping systems with low pesticide use, which would support the important role of crop rotation diversity in integrated and organic strategies. In comparison to conventional systems, integrated strategies showed a decrease in the use of both pesticides and nitrogen fertilizers, they consumed less energy and were frequently more energy efficient. Integrated systems therefore appeared as the best compromise in sustainability trade-offs. Our results could be used to re-design current cropping systems, by promoting diversified crop rotations and the combination of a wide range of available techniques contributing to pest management.

  5. Reconciling pesticide reduction with economic and environmental sustainability in arable farming.

    Science.gov (United States)

    Lechenet, Martin; Bretagnolle, Vincent; Bockstaller, Christian; Boissinot, François; Petit, Marie-Sophie; Petit, Sandrine; Munier-Jolain, Nicolas M

    2014-01-01

    Reducing pesticide use is one of the high-priority targets in the quest for a sustainable agriculture. Until now, most studies dealing with pesticide use reduction have compared a limited number of experimental prototypes. Here we assessed the sustainability of 48 arable cropping systems from two major agricultural regions of France, including conventional, integrated and organic systems, with a wide range of pesticide use intensities and management (crop rotation, soil tillage, cultivars, fertilization, etc.). We assessed cropping system sustainability using a set of economic, environmental and social indicators. We failed to detect any positive correlation between pesticide use intensity and both productivity (when organic farms were excluded) and profitability. In addition, there was no relationship between pesticide use and workload. We found that crop rotation diversity was higher in cropping systems with low pesticide use, which would support the important role of crop rotation diversity in integrated and organic strategies. In comparison to conventional systems, integrated strategies showed a decrease in the use of both pesticides and nitrogen fertilizers, they consumed less energy and were frequently more energy efficient. Integrated systems therefore appeared as the best compromise in sustainability trade-offs. Our results could be used to re-design current cropping systems, by promoting diversified crop rotations and the combination of a wide range of available techniques contributing to pest management. PMID:24887494

  6. Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China.

    Science.gov (United States)

    Dong, Wenyi; Zhang, Xinyu; Wang, Huimin; Dai, Xiaoqin; Sun, Xiaomin; Qiu, Weiwen; Yang, Fengting

    2012-01-01

    Appropriate fertilizer application is an important management practice to improve soil fertility and quality in the red soil regions of China. In the present study, we examined the effects of five fertilization treatments [these were: no fertilizer (CK), rice straw return (SR), chemical fertilizer (NPK), organic manure (OM) and green manure (GM)] on soil pH, soil organic carbon (SOC), total nitrogen (TN), C/N ratio and available nutrients (AN, AP and AK) contents in the plowed layer (0-20 cm) of paddy soil from 1998 to 2009 in Jiangxi Province, southern China. Results showed that the soil pH was the lowest with an average of 5.33 units in CK and was significantly higher in NPK (5.89 units) and OM (5.63 units) treatments (Pfertilizers have remarkably improved SOC and TN values compared with the CK, Specifically, the OM treatment resulted in the highest SOC and TN concentrations (72.5% and 51.2% higher than CK) and NPK treatment increased the SOC and TN contents by 22.0% and 17.8% compared with CK. The average amounts of C/N ratio ranged from 9.66 to 10.98 in different treatments, and reached the highest in OM treatment (Pfertility in this region and K fertilizer should be simultaneously applied considering the soil K contents. Considering the long-term fertilizer efficiency, our results also suggest that annual straw returning application could improve soil fertility in this trial region.

  7. Effect of soil coarseness on soil base cations and available micronutrients in a semi-arid sandy grassland

    Science.gov (United States)

    Lü, Linyou; Wang, Ruzhen; Liu, Heyong; Yin, Jinfei; Xiao, Jiangtao; Wang, Zhengwen; Zhao, Yan; Yu, Guoqing; Han, Xingguo; Jiang, Yong

    2016-04-01

    Soil coarseness is the main process decreasing soil organic matter and threatening the productivity of sandy grasslands. Previous studies demonstrated negative effect of soil coarseness on soil carbon storage, but less is known about how soil base cations (exchangeable Ca, Mg, K, and Na) and available micronutrients (available Fe, Mn, Cu, and Zn) response to soil coarseness. In a semi-arid grassland of Northern China, a field experiment was initiated in 2011 to mimic the effect of soil coarseness on soil base cations and available micronutrients by mixing soil with different mass proportions of sand: 0 % coarse elements (C0), 10 % (C10), 30 % (C30), 50 % (C50), and 70 % (C70). Soil coarseness significantly increased soil pH in three soil depths of 0-10, 10-20 and 20-40 cm with the highest pH values detected in C50 and C70 treatments. Soil fine particles (smaller than 0.25 mm) significantly decreased with the degree of soil coarseness. Exchangeable Ca and Mg concentrations significantly decreased with soil coarseness degree by up to 29.8 % (in C70) and 47.5 % (in C70), respectively, across three soil depths. Soil available Fe, Mn, and Cu significantly decreased with soil coarseness degree by 62.5, 45.4, and 44.4 %, respectively. As affected by soil coarseness, the increase of soil pH, decrease of soil fine particles (including clay), and decline in soil organic matter were the main driving factors for the decrease of exchangeable base cations (except K) and available micronutrients (except Zn) through soil profile. Developed under soil coarseness, the loss and redistribution of base cations and available micronutrients along soil depths might pose a threat to ecosystem productivity of this sandy grassland.

  8. Elevated CO2 Effects on Mercury Content of Forest Soils

    Science.gov (United States)

    Natali, S. M.; Lerdau, M.; Sañudo-Wilhelmy, S. A.

    2006-12-01

    Fossil fuel combustion is the primary anthropogenic source of both CO2 and mercury (Hg) to the atmosphere. Terrestrial vegetation can act as a conduit for transferring atmospheric Hg into soils and freshwater systems. While the effects of CO2 on both terrestrial plants and soils have been well-studied, the impacts of these CO2 induced changes on Hg cycling are unknown. We found that elevated CO2 resulted in increased Hg concentration in forest soils. Soil Hg concentration in the top 20cm of soils was 26% greater and total Hg content was 22% greater under elevated CO2 (ambient + 200ppmv), relative to ambient at two FACE sites: Duke Forest, NC and Oak Ridge, TN. However, there was no significant CO2 effect on Hg inputs via leaf litter. Soil Hg was significantly correlated with soil organic matter and acidity, suggesting that CO2 mediated changes in soil properties may be affecting soil Hg content. Elevated atmospheric CO2 has the potential to increase the Hg trapping efficiency of soils, with still unknown effects on terrestrial and aquatic ecosystem function.

  9. Effect of soil in nutrient cycle assessment at dairy farms

    Science.gov (United States)

    van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne

    2016-04-01

    Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.

  10. Soil inoculation steers restoration of terrestrial ecosystems.

    Science.gov (United States)

    Wubs, E R Jasper; van der Putten, Wim H; Bosch, Machiel; Bezemer, T Martijn

    2016-01-01

    Many natural ecosystems have been degraded because of human activities(1,2) and need to be restored so that biodiversity is protected. However, restoration can take decades and restoration activities are often unsuccessful(3) because of abiotic constraints (for example, eutrophication, acidification) and unfavourable biotic conditions (for example, competition or adverse soil community composition). A key question is what manageable factors prevent transition from degraded to restored ecosystems and what interventions are required for successful restoration(2,4). Experiments have shown that the soil community is an important driver of plant community development(5-8), suggesting that manipulation of the soil community is key to successful restoration of terrestrial ecosystems(3,9). Here we examine a large-scale, six-year-old field experiment on ex-arable land and show that application of soil inocula not only promotes ecosystem restoration, but that different origins of soil inocula can steer the plant community development towards different target communities, varying from grassland to heathland vegetation. The impact of soil inoculation on plant and soil community composition was most pronounced when the topsoil layer was removed, whereas effects were less strong, but still significant, when the soil inocula were introduced into intact topsoil. Therefore, soil inoculation is a powerful tool to both restore disturbed terrestrial ecosystems and steer plant community development. PMID:27398907

  11. Ecological effects of atmospheric nitrogen deposition on soil enzyme activity

    Institute of Scientific and Technical Information of China (English)

    WANG Cong-yan; Lv Yan-na; LIU Xue-yan Liu; WANG Lei

    2013-01-01

    The continuing increase in human activities is causing global changes such as increased deposition of atmospheric nitrogen.There is considerable interest in understanding the effects of increasing atmospheric nitrogen deposition on soil enzyme activities,specifically in terms of global nitrogen cycling and its potential future contribution to global climate change.This paper summarizes the ecological effects of atmospheric nitrogen deposition on soil enzyme activities,including size-effects,stage-effects,site-effects,and the effects of different levels and forms of atmospheric nitrogen deposition.We discuss needs for further research on the relationship between atmospheric nitrogen deposition and soil enzymes.

  12. Effect of Organic Pollutants on Migration of Radionuclides in Soil

    International Nuclear Information System (INIS)

    The aim of this thesis is to study the effect of organic pollutants on the mobility of selected heavy metal (pb2+) and radionuclide (60 Co) in an Egyptian agricultural soil and in a clay fraction separated from the soil. The effect of presence of natural organic compounds such as humic acid is also studied

  13. Effects of pumice mining on soil quality

    Science.gov (United States)

    Cruz-Ruíz, A.; Cruz-Ruíz, E.; Vaca, R.; Del Aguila, P.; Lugo, J.

    2016-01-01

    Mexico is the world's fourth most important maize producer; hence, there is a need to maintain soil quality for sustainable production in the upcoming years. Pumice mining is a superficial operation that modifies large areas in central Mexico. The main aim was to assess the present state of agricultural soils differing in elapsed time since pumice mining (0-15 years) in a representative area of the Calimaya region in the State of Mexico. The study sites in 0, 1, 4, 10, and 15 year old reclaimed soils were compared with an adjacent undisturbed site. Our results indicate that gravimetric moisture content, water hold capacity, bulk density, available phosphorus, total nitrogen, soil organic carbon, microbial biomass carbon and phosphatase and urease activity were greatly impacted by disturbance. A general trend of recovery towards the undisturbed condition with reclamation age was found after disturbance, the recovery of soil total N being faster than soil organic C. The soil quality indicators were selected using principal component analysis (PCA), correlations and multiple linear regressions. The first three components gathered explain 76.4 % of the total variability. The obtained results revealed that the most appropriate indicators to diagnose the quality of the soils were urease, available phosphorus and bulk density and minor total nitrogen. According to linear score analysis and the additive index, the soils showed a recuperation starting from 4 years of pumice extraction.

  14. Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development

    DEFF Research Database (Denmark)

    Schrijver, An de; Frenne, Pieter de; Staelens, Jeroen;

    2012-01-01

    -depth understanding of tree species-specific effects on soil acidification is therefore crucial, particularly in view of the predicted global increases in acidifying nitrogen (N) deposition. Here, we report soil acidification rates in a chronosequence of broadleaved deciduous forests planted on former arable land......A change in land use from agriculture to forest generally increases soil acidity. However, it remains unclear to what extent plant traits can enhance or mitigate soil acidification caused by atmospheric deposition. Soil acidification is detrimental for the survival of many species. An in...... in Belgium. This region receives one of the highest loads of potentially acidifying atmospheric deposition in Europe, which allowed us to study a ‘worst case scenario’. We show that less than four decades of forest development caused significant soil acidification. Atmospheric deposition undoubtedly...

  15. Soil humidity effect in the rate of nitrogen mineralization

    International Nuclear Information System (INIS)

    The soil moisture has a significant effect in the rates of N mineralization, being observed large values when the moisture is close to the Field Capacity. This work aimed to evaluated the influence of the soil moisture in the gross rates of N mineralization in a TRE clay soil. It was sampled cores of soil, with pvc rings. A randomized design with five treatments and four replications was used: T1- constant soil moisture of 9% (w/w; water mass for soil mass); T2 - constant soil moisture of 14% (w/w); T3 - constant soil moisture of 28% (w/w); T3 - constant soil moisture of 19% (m/m); T4 - constant soil moisture of 23% (w/w) and T5 - moisture of 28% (w/w). The gross rates of N mineralization for time period of 0-5 days were 0,31; 1,81; 1,66; 3,19 and 2,04 mg kg -1 day -1 and for the interval of time of 0-10 days were 0,33; 0,96, 0,96, 0,94 and 1,17 mg kg -1 day-1, respectively, for the treatments T1; T2; T3; T4 and T5. It was verified that the gross N mineralization was influenced by water content of soil. (author)

  16. Effect of biochar produced at different pyrolysis temperature on the soil respiration of abandoned mine soil

    Science.gov (United States)

    Kim, Yong Seong; Kim, Juhee; Hwang, Wonjae; Hyun, Seunghun

    2015-04-01

    Contaminated soils near an abandoned mine site included the high acidic mine tailing have received great interest due to potential risk to human health, because leachable elements in low pH continuously release from mine site soil with ground water and precipitation event. Biochar, which is the obtained pyrolysis process of biomass, is used as a soil amendments and carbon storage. Especially, many researchers report that the biochar application to soil show increasing soil pH, CEC, adsorption capacity of various elements, as well as, enhanced microbial activity. Therefore, biochar application to contaminated soil near abandoned mine site is expected to have a positive effects on management of these site and soils through the decreased leachability of contaminants. However, effects of biochar application to these site on the soil respiration, as a common measure of soil health, are poorly understood. The objective of this study is to evaluate the effects of biochar application to abandoned mine site soil on the microbial activity with soil respiration test. Biochar was obtained from giant Miscanthus in a slow pyrolysis process (heating rate of 10° C min-1 and N2 gas flow rate of 1.2 L min-1) at the temperature of 400° C (BC4) and 700° C (BC7), respectively. All biochar samples were prepared with grinding and sieving for particle size control (150~500μm). Soil sample was collected from abandoned mine site at Korea (36° 58'N, 128° 10'E). Main contaminants of this soil were As (12.5 g kg-1), Pb (7.3 g kg-1), and Zn (1.1 g kg-1). Biochars were applied (5% by dry weight) to the soil (final mixture weight were 800g), and then moisture contents were adjusted to 100% field capacity (-0.33 bar) in the respirometer with vacuum pump. CO2 efflux of each samples was continuously assessed using continuous aeration system (air flow rate 25 cc min-1) using air cylinder during 130hr (at 20° C and darkness condition). The CO2 emitted from the samples were carried to the

  17. Effects of biochar blends on microbial community composition in two coastal plain soils

    Science.gov (United States)

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure....

  18. The sealing of soils and its effect on soil-gas migration

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, J.; Schott, B. [Essen Univ., Essen (Germany). Dept. of Geology

    1999-08-01

    The influence of a sealed soil on soil-gas migration is described by using {sup 222}Rn as a natural tracer. It is shown that {sup 222}Rn is focused to the rims of anthropogenic scaling, like asphalt or concrete. At a test site, the sealing effect was investigated in detail by using a radon-tight foil. A model to understand the soil-gas migration in dependence on the degree of sealing is developed. This study enhance the knowledge about the migration of hazardous gases in the soil, like methane or the carcinogenic {sup 222}Rn itself. Additionally, the sealing effect can be used to increase efficiency of soil venting systems.

  19. [Effects of soil compositions on sorption and desorption behavior of tetrachloroethylene in soil].

    Science.gov (United States)

    Hu, Lin; Qiu, Zhao-Fu; He, Long; Dou, Ying; Lü, Shu-Guang; Sui, Qian; Lin, Kuang-Fei

    2013-12-01

    Sorption and desorption play an important role in the transport and the fate of tetrachloroethylene (PCE) in soil. In order to examine influences of different soil compositions on PCE sorption-desorption, equilibrium batch experiments were carried out using four sorbents (natural soil with 2.23% total organic carbon (TOC), H2O2-treated soil, 375 degrees C-treated soil and 600 degrees C-treated soil) with different initial PCE liquid concentrations (c0). The effects of main parameters (TOC, soft carbon, hard carbon, minerals, c0) on PCE sorption-desorption were investigated. At 16 degrees C, when c0 was increased from 5 to 80 mg x L(-1), the results showed that sorption and desorption isotherms of PCE on four sorbents can be best described by the Freundlich model (r2 > 0.96). The sorption contribution rate of SOM was higher than 60% in natural soil, and hard carbon was the main influencing factor,while the desorption contribution rate of SOM was close to that of minerals in natural soil, and soft carbon accounted for more than 80% in the total desorption contribution rate of SOM. In addition, the higher the c0, the higher the sorption contribution rate of PCE in hard carbon and desorption contribution rate of PCE in soft carbon and minerals were. Moreover, desorption of PCE from four sorbents exhibited hysteresis, and hard carbon played a remarkable role in the hysteresis of natural soil.

  20. Effects of soil management in vineyard on soil physical and chemical characteristics

    Directory of Open Access Journals (Sweden)

    Linares Rubén

    2014-01-01

    Full Text Available Cover crops in Mediterranean vineyards are scarcely used due to water competition between the cover crop and the grapevine; however, bare soil management through tillage or herbicides tends to have negative effects on the soil over time (organic matter decrease, soil structure and soil fertility degradation, compaction, etc. The objective of this study was to understand how soil management affects soil fertility, compaction and infiltration over time. To this end, two bare soil techniques were compared, tillage (TT and total herbicide (HT with two cover crops; annual cereal (CT and annual grass (AGT, established for 8 years. CT treatment showed the highest organic matter content, having the biggest amount of biomass incorporated into the soil. The annual adventitious vegetation in TT treatment (568 kg dry matter ha-1 that was incorporated into the soil, kept the organic matter content higher than HT levels and close to AGT level, in spite of the greater aboveground annual biomass production of this treatment (3632 kg dry matter ha-1 whereas only its roots were incorporated into the soil. TT presented the highest bulk density under the tractor track lines and a greatest resistance to penetration (at 0.2 m depth. AGT presented bulk density values (upper 0.4 m lower than TT and penetration resistance in CT lower (at 0.20 m depth than TT too. The HT decreased water infiltration due to a superficial crust generated for this treatment. These results indicate that the use of annual grass cover can be a good choice of soil management in Mediterranean climate due to soil quality improvement, with low competition and simple management.

  1. Comparison of energetic productivity in differently renaturalized arable land

    Science.gov (United States)

    Kazlauskaite-Jadzevice, Asta; Marcinkonis, Saulius; Baksiene, Eugenija

    2014-05-01

    Soil renaturalization or ecological recovery has been studied from local to global scales. On a global scale - it's one of the ways of carbon fixation, preservation of natural diversity, locally - renaturalization processes help to solve problems of damaged (eroded and polluted) and infertile soils areas. Efficient land use can improve soil structure and therefore be attractive as a renewable energy resource that can encourage thermal energy, fuel production and installation of new technologies. Soil renaturalization is very important not only in that it helps to decrease the impact on the environment, but it can produce higher energy value of biomass at a lower cost. The aim of this study is to evaluate and compare different renaturalization methods through analyzing biomass yields and chemical composition (pine afforested, fallowing, manage grassland - Alfalfa and cropland) carried out during almost two decades (1995 - 2012). The four stationary experimental sites were set up in 1995 in Vilnius district, Lithuania. Common sandy soils prevail in the region, and the agronomic value of soil is very low. All sites were arranged in one row (the divided sides is 400 m2 each). Managed grassland and cropland areas were subdivided into fertilized and unfertilized subplots. The size of the subdivided plots was 200 m2 each. Gross productions (straw, grain, hay, pine biomass) was recalculated into total energy amount (in the calculationswere used K. Neringa and R. Siman equation) expressed in MJ and the site's productivity data compared. Gross productions total energy amount of pine afforestration was recalculated into trees volume using diameter (DBH), height and density of pines. Observed data suggest that the difference between fertilized and unfertilized plots in the cropland site was on average 1.62 times and made up an average of 20 339 MJ y-1 ha-1. The grassland site was characterized by higher productivity and a bigger difference of total energy between fertilized

  2. Effect of Magnetic Field on Enzyme Activities in Main Soils of Northeast China

    Institute of Scientific and Technical Information of China (English)

    LIUXIAOYI; YIYANLI; 等

    1996-01-01

    Soil enzyme activities as affected by applied magnetic field were studied with three main soils (brown soil,black soil and albic soil) collected from Northeast China,Appropriate intensities of magnetic field could obviously enhance the activities of hydrogen peroxidases,invertases,amylases and phosphatases in the three soils,although the effect varied with types and water regimes of the soils.Increasing times of magnetic treatment could multiple its good effect on the activities of hydrogen peroxidases in soils.

  3. Impacts of fractal features of soil on moisture infiltration capacity of typical stands in Jinyun mountain of Chongqing city

    Institute of Scientific and Technical Information of China (English)

    WANG Yujie; WANG Yunqi

    2007-01-01

    The soil structure was expressed with fractal dimensions of particle size distribution (PSD),aggregate size distribution (ASD),and soil pore size distribution (SPD).The effect of soil fractal features on soil infiltration velocity and process was studied.The result of the fractal feature shows that fractal dimensions of PSD are obviously greater than those of ASD and SPD,and in different soil genetic horizons,the fractal dimension of ASD has the greatest variability,and shows a downtrend on the top-to-bottom genetic horizon.According to the soil infiltration process curve,the infiltration process was divided into three phases:(1) the initial phase (0-5 rain),(2) the transition phase (5-30 min),and (3)the stable phase (30-180 min).In the initial phase of infiltration,the soil structure of soil genetic horizon A was the major influencing factor;in the transition phase of infiltration,the pore distribution of soil horizon AB and soil structure of horizon B were the major influencing factors;in the stable phase of infiltration,the soil structure of horizon C was the major influencing factor to the infiltration velocity.Soil infiltration process is influenced comprehensively by soil PSD,ASD,and SPD.In the overall soil water infiltration,the infiltration in shrub forest land was much faster than that in other land uses,and in the initial infiltration phase,arable land soil infiltration was much faster than that in forest land,and in the stable infiltration phase,the infiltration velocity in forest land was faster than that in arable land.

  4. Effects of silicate application on soil fertility and wheat yield

    OpenAIRE

    Marcos Vinícius Mansano Sarto; Maria do Carmo Lana; Leandro Rampim; Jean Sérgio Rosset; Jaqueline Rocha Wobeto

    2015-01-01

    An improvement in soil chemical properties and crop development with silicate application has been confirmed in several plant species. The effects of silicate application on soil chemical properties and wheat growth were investigated in the present study. The experiment was carried out in 8-L plastic pots in a greenhouse. Treatments were arranged in a randomized block design in a 3 × 5 factorial: three soils [Rhodic Acrudox (Ox1), Rhodic Hapludox (Ox2) and Arenic Hapludult (Ult)] and five sil...

  5. Effects of water addition on soil arthropods and soil characteristics in a precipitation-limited environment

    Science.gov (United States)

    Chikoski, Jennifer M.; Ferguson, Steven H.; Meyer, Lense

    2006-09-01

    We investigated the effect of water addition and season on soil arthropod abundance and soil characteristics (%C, %N, C:N, moisture, pH). The experimental design consisted of 24 groups of five boxes distributed within a small aspen stand in Saskatchewan, Canada. The boxes depressed the soil to create a habitat with suitable microclimate for soil arthropods, and by overturning boxes we counted soil arthropods during weekly surveys from April to September 1999. Soil samples were collected at two-month intervals and water was added once per week to half of the plots. Of the eleven recognizable taxonomic units identified, only mites (Acari) and springtails (Collembola) responded to water addition by increasing abundance, whereas ants decreased in abundance with water addition. During summer, springtail numbers increased with water addition, whereas pH was a stronger determinant of mite abundance. In autumn, springtails were positively correlated with water and negatively correlated with mites, whereas mite abundance was negatively correlated with increasing C:N ratio, positively correlated to water addition, and negatively correlated with springtail abundance. Although both mite and springtail numbers decreased in autumn with a decrease in soil moisture, mites became more abundant than springtails suggesting a predator-prey (mite-springtail) relationship. Water had a significant effect on both springtails and mites in summer and autumn supporting the assertion that prairie soil communities are water limited.

  6. Potential effects of vinasse as a soil amendment to control runoff and soil loss

    Science.gov (United States)

    Hazbavi, Z.; Sadeghi, S. H. R.

    2016-02-01

    Application of organic materials are well known as environmental practices in soil restoration, preserving soil organic matter and recovering degraded soils of arid and semiarid lands. Therefore, the present research focused on evaluating the effectiveness of vinasse, a byproduct mainly of the sugar-ethanol industry, on soil conservation under simulated rainfall. Vinasse can be recycled as a soil amendment due to its organic matter content. Accordingly, the laboratory experiments were conducted by using 0.25 m2 experimental plots at 20 % slope and rainfall intensity of 72 mm h-1 with 0.5 h duration. The effect of vinasse was investigated on runoff and soil loss control. Experiments were set up as a control (with no amendment) and three treated plots with doses of 0.5, 1, and 1.5 L m-2 of vinasse subjected to simulated rainfall. Laboratory results indicated that vinasse at different levels could not significantly (P > 0.05) decrease the runoff amount and soil loss rate in the study plots compared to untreated plots. The average amounts of minimum runoff volume and soil loss were about 3985 mL and 46 g for the study plot at a 1 L m-2 level of vinasse application.

  7. Effects of Multiple Soil Conditioners on a Mine Site Acid Sulfate Soil for Vetiver Growth

    Institute of Scientific and Technical Information of China (English)

    LIN Chu-Xia; LONG Xin-Xian; XU Song-Jun; CHU Cheng-Xing; MAI Shao-Zhi; JIANG Dian

    2004-01-01

    A pot experiment was conducted to investigate the effects of various soil treatments on the growth of vetiver grass ( Vetiveria zizanioides (L.) Nash) with the objective of formulating appropriate soil media for use in sulfide-bearing mined areas. An acidic mine site acid sulfate soil (pH 2.8) was treated with different soil conditioner formula including hydrated lime, red mud (bauxite residues), zeolitic rock powder, biosolids and a compound fertilizer. Soils treated with red mud and hydrated lime corrected soil acidity and reduced or eliminated metal toxicity enabling the establishment of vetiver grass.Although over-liming affected growth, some seedlings of vetiver survived the initial strong alkaline conditions. Addition of appropriate amounts of zeolitic rock powder also enhanced growth, but over-application caused detrimental effects. In this experiment, soil medium with the best growth performance of vetiver was 50 g of red mud, 10 g of lime, 30 g of zeolitic rock powder and 30 g of biosolids with 2000 g of mine soils (100% survival rate with the greatest biomass and number of new shoots), but adding a chemical fertilizer to this media adversely impacted plant growth. In addition, a high application rate of biosolids resulted in poorer growth of vetiver, compared to a moderate application rate.

  8. Biochar and biological carbon cycling in temperate soils

    Science.gov (United States)

    McCormack, S. A.; Vanbergen, A. J.; Bardgett, R. D.; Hopkins, D. W.; Ostle, N.

    2012-04-01

    Production of biochar, the recalcitrant residue formed by pyrolysis of plant matter, is suggested as a means of increasing storage of stable carbon (C) in the soil (1). Biochar has also been shown to act as a soil conditioner, increasing the productivity of certain crops by reducing nutrient leaching and improving soil water-holding capacity. However, the response of soil carbon pools to biochar addition is not yet well understood. Studies have shown that biochar has highly variable effects on microbial C cycling and thus on soil C storage (2,3,4). This discrepancy may be partially explained by the response of soil invertebrates, which occupy higher trophic levels and regulate microbial activity. This research aims to understand the role of soil invertebrates (i.e. Collembola and nematode worms) in biochar-mediated changes to soil C dynamics across a range of plant-soil communities. An open-air, pot-based mesocosm experiment was established in May, 2011 at the Centre for Ecology and Hydrology, Edinburgh. Three treatments were included in a fully-factorial design: biochar (presence [2 % w/w] or absence), soil type (arable sandy, arable sandy loam, grassland sandy loam), and vegetation type (Hordeum vulgare, Lolium perenne, unvegetated). Monitored parameters include: invertebrate and microbial species composition, soil C fluxes (CO2 and trace gas evolution, leachate C content, primary productivity and soil C content), and soil conditions (pH, moisture content and water-holding capacity). Preliminary results indicate that biochar-induced changes to soil invertebrate communities and processes are affected by pre-existing soil characteristics, and that soil texture in particular may be an important determinant of soil response to biochar addition. 1. Lehmann, 2007. A handful of carbon. Nature 447, 143-144. 2. Liang et al., 2010. Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry 41, 206-213. 3. Van Zwieten et al., 2010. Influence of

  9. Economic assessment of alternatives for glyphosate application in arable farming

    Directory of Open Access Journals (Sweden)

    Kehlenbeck, Hella

    2016-02-01

    Full Text Available Application and sales of herbicides with glyphosate have strongly increased in Germany during the past 10 years. This has raised a number of questions and discussions concerning glyphosate use. Therefore, this paper identifies and evaluates alternatives with an efficacy almost equivalent to glyphosate for different treatmentareas in terms of economic consequences for farms in comparison to glyphosate use by way of example. With the help of exemplary crop rotations uses in arable farming for winter wheat, winter oilseed rape, winter barley, maize and summer barley were analyzed. Within a “worst case scenario” a complete abandonment of glyphosate applications was assumed. Different tillage systems (plough, no-plough were considered. The only alternatives with an efficacy almost equivalent to glyphosate were mechanical measures. For the analyzed treatment-areas (desiccation, pre-sowing, stubble no approved and efficient chemical alternative could be identified. The economic advantages and disadvantages of substituting glyphosate by mechanical alternatives were strongly depending on the treatment-area, the efficacy concerning yield expectations (in comparison to glyphosate use, the tillage system, the necessity of grain drying as well as further operational factors such as the availability of sufficient field work days and mechanical equipment.

  10. Reclamation and Management of Saline and Alkali Soils

    DEFF Research Database (Denmark)

    Singh, Anoop; Katiyar, D.; Agrawal, S.B.

    2014-01-01

    of saline and alkali soils is old but its magnitude and intensity have been increasing because of poor land and water management practices. The proper land management by way of its reclamation involves physical, chemical and biological means, which are site specific and their integration is highly desirable......Soil is the most precious natural resource and thus requires proper management. Estimates show that the world as a whole is losing at least 3.0 ha of arable land every minute due to salinization or sodification. In India about 7.0 M ha land is affected by salinity and alkalinity. The problem...... to combat with the problem. The present review is an attempt to emphasize the problem of salinity and alkalinity of soils, its effect on plants and application of physical, chemical and biological methods of soil reclamation along with management issues...

  11. European Perspectives on the Adoption of Non-Chemical Weed Management in Reduced Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, B.; Munier-Jolan, N.; Schwarz, J.;

    2012-01-01

    consumption appears to be slightly higher as compared to plough based cropping systems. Annual grass weeds and stickywilly often constitute the principal weed problems when the soil is not inverted because crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign...... cropping systems to allow for more diversification of the crop rotations to combat these weed problems with less herbicide input. Cover crops, stubble management strategies and tactics that strengthen crop growth relative to weed growth are also seen as important components in future IPM systems......Non-inversion tillage with tine or disc based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape (canola) and maize (corn) in Europe. However, new regulations on pesticide use may hinder further...

  12. Effects of soil compaction and organic carbon content on preferential flow in loamy field soils

    DEFF Research Database (Denmark)

    Soares, Antonio; Møldrup, Per; Vendelboe, Anders Lindblad;

    2015-01-01

    © 2015 Wolters Kluwer Health, Inc. Preferential flowand transport throughmacropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction...

  13. Relation between N input and nitrate concentration of groundwater on arable farms

    NARCIS (Netherlands)

    Erp, van P.J.; Boumans, L.M.J.; Kloet, C.J.; Oenema, O.; Duijvenbooden, van W.

    1990-01-01

    A statistically significant relation was found between the NO3--N concentration of the shallow groundwater under intensively farmed arable fields in the northern Netherlands and the surplus of N (N supply minus N removal via crops), groundwater level

  14. IInfluence of Arable Land Size on Tractor Utilization on Family Farms

    Directory of Open Access Journals (Sweden)

    L. Šumanovac

    1997-12-01

    Full Text Available Influence of arable land size on utilization degree, number of working hours during a year and on a total tractor power for ten chosen family farms was investigated in this paper. Family farms which have larger arable land at their disposal considerably better utilize agricultural aggregates, especially A category tractors whereas at the same time utilization of B category tractors is significantly less, so, coefficient of correlation amounts to R=0,8635 and determination R2=0,7457. Suitable coefficients for B category tractors are R=0,9739 i.e. R2=0,948. Influence of arable land size is considerably expressed on utilization of higher categories tractor capacities. Influence of arable land size on required number of tractor working hours is defined by correlation coefficient of R=0,9097 and determination coefficient R2=0,7588.

  15. Soil temperature effect in calculating attenuation and retardation factors.

    Science.gov (United States)

    Paraiba, Lourival Costa; Spadotto, Claudio Aparecido

    2002-09-01

    The effect of annual variation of daily average soil temperature, at different depths, in calculating pesticides ranking indexes retardation factor and attenuation factor is presented. The retardation factor and attenuation factor are two site-specific pesticide numbers, frequently used as screening indicator indexes for pesticide groundwater contamination potential. Generally, in the calculation of these two factors are not included the soil temperature effect on the parameters involved in its calculation. It is well known that the soil temperature affects the pesticide degradation rate, water-air partition coefficient and water-soil partition coefficient. These three parameters are components of the retardation factor and attenuation factor and contribute to determine the pesticide behavior in the environment. The Arrhenius equation, van't Hoff equation and Clausius-Clapeyron equation are used in this work for estimating the soil temperature effect on the pesticide degradation rate, water-air partition coefficient and soil-water partition coefficient, respectively. These dependence relationships, between results of calculating attenuation and retardation factors and the soil temperature at different depths, can aid to understand the potential pesticide groundwater contamination on different weather conditions. Numerical results will be presented with pesticides atrazine and lindane in a soil profile with 20 degrees C constant temperature, minimum and maximum surface temperatures varying and spreading in the soil profile between -5 and 30 degrees C and between 15 and 45 degrees C. PMID:12222785

  16. Soil Terpene Emissions in a Subalpine Coniferous Forest: Tree Species, Soil Temperature and Moisture Effects

    Science.gov (United States)

    Asensio, D.; Duhl, T.; Greenberg, J.; Guenther, A. B.; Monson, R. K.

    2010-12-01

    Some studies have shown soils can contribute significantly to the canopy level fluxes of volatile organic compounds (VOCs) in some ecosystem types during some seasons. Yet patterns of soil VOCs fluxes as well as controls are poorly known and so the potential importance of soil VOCs emissions on the total global BVOCs emissions from terrestrial sources remains unclear. We measured soil terpene emission at a high-elevation, mixed conifer, subalpine forest site at the Niwot Ridge Ameriflux Site in Colorado. Given the important role of terpenes on the formation of secondary organic aerosols and given that high amounts of terpenes are produced and stored in coniferous tissues (e. g. roots and litter) we focused only on these compounds in this study. The objectives were to quantify soil terpene flux and its contribution to the canopy level flux and to identify environmental variables controlling soil terpene emissions in this forest, such as tree species, tree species density, total soil organic matter content, soil temperature and soil moisture . During the summer 2009 (August), soil terpene emission rates were measured in soil chambers regularly distributed in a 200 x 200 m area around the flux tower. To test the effect of the tree species on soil emissions, additional chambers were placed on relative pure stands of each one of the representative species. The average total monoterterpene emission rate during August 2009 was 21 μg C m-2 h-1. These emissions represent 9% of the total terpene canopy fluxes reported in this forest during the same period on previous summers (August 2007, 238 μg C m-2 h-1). The range of monoterpene emission was found to be high; emissions went up to 368 μg C m-2 h-1 under specific conditions. Total sesquiterpene emissions were much lower than monoterpenes (0.04 ± 0.01 μg C m-2 h-1). Due to the high variability found, no clear effect of the space distribution was identified. However, soil terpene emissions were significantly affected by

  17. Inhibitory Effect of Soil Micropores and Small Mesopores on Phosphate Extraction From Soils

    OpenAIRE

    Watanabe, Tetsuhiro; Hase, Emiko; Funakawa, Shinya; Kosaki, Takashi

    2015-01-01

    Slow release of added phosphate in soils is of fundamental importance for plant nutrition and pollution in aqueous environments. The diffusion of phosphate in micropores and mesopores after desorption from the inside surface of pores is the most likely mechanism for the slow release. There are limited experimental data on the effects of micropores and mesopores, and differences in the effects of these pores among various soil types have not been reported. Phosphate extractability was characte...

  18. Influencing factors on regional differences in glyphosate use in North German arable farming

    OpenAIRE

    Andert, Sabine; Bürger, Jana; Gerowitt, Bärbel

    2016-01-01

    Glyphosate is the worldwide mostly used herbicide substance. Glyphosate use in arable cropping is under strong discussion in scientific and public communities. In the present study, we investigated the use of glyphosate from 15 farms in four districts in North German arable farming from 2005 until 2014. Objective of our research is to reveal influencing factors on glyphosate use intensity. The farm structures differ between two West districts (Diepholz, Uelzen) and two East districts (Fläm...

  19. IInfluence of Arable Land Size on Tractor Utilization on Family Farms

    OpenAIRE

    L. Šumanovac; V. Par; D. Brkić; T. Jurić

    1997-01-01

    Influence of arable land size on utilization degree, number of working hours during a year and on a total tractor power for ten chosen family farms was investigated in this paper. Family farms which have larger arable land at their disposal considerably better utilize agricultural aggregates, especially A category tractors whereas at the same time utilization of B category tractors is significantly less, so, coefficient of correlation amounts to R=0,8635 and determination R2=0,7457. Suitable ...

  20. Long-Term Effect of Different Carbon Management Strategies on Water Flow and Related Processes for Three Loamy Soils

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Schjønning, Per; de Jonge, Lis Wollesen;

    2013-01-01

    The decline in organic matter of arable land, induced and accelerated by modern agriculture, has been identified as a threat to sustained soil quality. In this article, we studied strategies to counter this decrease by building up soil organic carbon (SOC) levels in the soils using several...... on preferential flow and loss of colloids during heavy irrigation events. The field sites were all under long-term management and therefore represent up to 30 years of pairwise different management strategies. One field in each field pair was managed with a more C-repleting strategy (HighC) than the other (Low......C). Only small differences in SOC contents were identified, and none of the management strategies had succeeded in building up SOC pools large enough to saturate the soil with C. Only at one field site was the content of water-dispersible colloids lower in the HighC than the LowC treatment. Preferential...

  1. Effect of discrete fibre reinforcement on soil tensile strength

    Institute of Scientific and Technical Information of China (English)

    Jian Li; Chaosheng Tang; Deying Wang; Xiangjun Pei; Bin Shi

    2014-01-01

    The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to deter-mine the tensile strength characteristics of fibre reinforced soil. The effects of fibre content, dry density and water content on the tensile strength were studied. The results indicate that the developed test apparatus was applicable in determining tensile strength of soils. Fibre inclusion can significantly in-crease soil tensile strength and soil tensile failure ductility. The tensile strength basically increases with increasing fibre content. As the fibre content increases from 0%to 0.2%, the tensile strength increases by 65.7%. The tensile strength of fibre reinforced soil increases with increasing dry density and decreases with decreasing water content. For instance, the tensile strength at a dry density of 1.7 Mg/m3 is 2.8 times higher than that at 1.4 Mg/m3. It decreases by 30% as the water content increases from 14.5% to 20.5%. Furthermore, it is observed that the tensile strength of fibre reinforced soil is dominated by fibre pull-out resistance, depending on the interfacial mechanical interaction between fibre surface and soil matrix.

  2. Effect of discrete fibre reinforcement on soil tensile strength

    Directory of Open Access Journals (Sweden)

    Jian Li

    2014-04-01

    Full Text Available The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to determine the tensile strength characteristics of fibre reinforced soil. The effects of fibre content, dry density and water content on the tensile strength were studied. The results indicate that the developed test apparatus was applicable in determining tensile strength of soils. Fibre inclusion can significantly increase soil tensile strength and soil tensile failure ductility. The tensile strength basically increases with increasing fibre content. As the fibre content increases from 0% to 0.2%, the tensile strength increases by 65.7%. The tensile strength of fibre reinforced soil increases with increasing dry density and decreases with decreasing water content. For instance, the tensile strength at a dry density of 1.7 Mg/m3 is 2.8 times higher than that at 1.4 Mg/m3. It decreases by 30% as the water content increases from 14.5% to 20.5%. Furthermore, it is observed that the tensile strength of fibre reinforced soil is dominated by fibre pull-out resistance, depending on the interfacial mechanical interaction between fibre surface and soil matrix.

  3. Effect of heavy metals on soil fungi

    Science.gov (United States)

    Sosak-Świderska, Bożena

    2010-05-01

    Fungi constitute a high proportion of the microbial biomass in soil.Being widespread in soil their large surface-to-volume ratio and high metabolic activity, fungi can contribute significantly to heavy metal dynamics in soil. At neutral pH heavy metals in soils tend to be immobilized to precipitation and/or absorption to cation exchange sites of clay minerals. In the acidic soils, metals are more mobile and enter food webs easier. Microbial production of acids and chelating agents can mobilize to toxic metals. Mobilization is often by uptake and intracellular accumulation of the heavy metlas, and in this way, the bioavailability of metals towards other organisms can be more reduced. Fungi were isolated from soils from Upper Silesia in Poland and belonged to widespread genera: Aspergillus, Cladosporium, Penicillium and Trichoderma. Fungi from different taxonomic groups differ greatly in their tolerance to heavy metals. This could be related to their wall structure and chemistry as well as biochemical and physiological characteristics of fungi. Localization of metals in fungal cells was studied using electron microscopy analysis. Metal biosorption in the cell wall can be complex as melanin granules. Fungal vacuoles have an important role in the regulation of the cytosolic concentration of metal ions, and may contribute to heavy metal tolerance.In polluted soils with heavy metals, fungal species composition can be changed and their physiological activity can be changed, too.

  4. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).

    Science.gov (United States)

    Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial

  5. Effect of land-use change on soil organic carbon stocks in the Eastern Usambara Mountain (Tanzania)

    Science.gov (United States)

    Kirsten, Maximilian; Kaaya, Abel; Klinger, Thomas; Feger, Karl-Heinz

    2014-05-01

    A soil organic carbon (SOC) inventory, covering 10 sites with 5 different land-use systems (primary forest, secondary forest, tea plantation, home garden, and cropland) was conducted in the tropical monsoonal Eastern Usambara Mountains (EUM), NE Tanzania. At all sites the environmental factors such as climate and parent material, for soil formation (gneiss), as well as elevation and slope position are highly comparable. The evergreen submontane primary rain forest, which still exists in vast areas in the EUM and the well-known land-use history there provide nearly optimal conditions for the assessment of land-use change effects on soil properties, notably the SOC stocks. We collected horizon-wise samples from soil pit profiles. In addition, samples from fixed depth-intervals were taken from 8 augering points located systematically around each soil pit. The sampling scheme yielded a unique set of soil information (pedological, chemical, and physical) that favours a reliable assessment of SOC stocks and future analytical work on SOM quality and binding mechanisms. The investigated soils are characterized by high clay contents, which increase with depth. Soil pH varies between 3.5 and 5.4 over all land-use systems and horizons, higher pH values could be detected for the agricultural systems in the topsoil, the differences between agricultural and forest systems decrease in the subsoil. The potential cation exchange capacity is in most cases Organic carbon (C) stocks in the soils from the investigated land-use systems cover a wide range between 17.1 and 24.2 kg m-2 (0-100 cm). Variability is even high in the subset of the 3 primary forests. Statistically significant differences between the forest and cropland systems occur in the uppermost depth interval 0-10 cm. Furthermore, the primary forests have higher, but not significantly different SOC stocks in the topsoil (0-40 cm) compared with the cropland systems. In all investigated soils the SOC stocks for the entire

  6. Stability analysis of slopes of expansive soils considering rainfall effect

    Institute of Scientific and Technical Information of China (English)

    ZHU Fang-cai

    2007-01-01

    Typical failure types of slopes of expansive soils are divided to two kinds: slip in surface layer and slip in shallow layer. Based on total strength law of expansive soils, the relationship between its water content and shear strength inculding cohesion and friction angle, was studied in detail. Acoording to change of water content and depth effect during rainfall, distribution of shear strength in slopes of expansive soils was analyzed. Finally,with a slope of expansive soils in Nanning city of Guangxi Autonomous Region of China as a case, safety factor and slip surface was studied.

  7. Effect of Body Force on Consolidation in Unsaturated Soils

    Science.gov (United States)

    Chao, N. C.; Lo, W. C.; Lee, J. W.

    2015-12-01

    Soil consolidation is a transient process by which soil volume is decreased due to the coupling between deformation of a porous medium and interstitial fluid flows. The influence of body force has been conventionally ignored in the consolidation theory of poroelasticity for either saturated or unsaturated soils. In the current study, gravity effect is well taken into account in the coupled diffusion equations derived by Lo et al. (2014) for describing one-dimensional consolidation in unsaturated soils, thus leading to additional first-order time-derivative terms. Finite-difference approach is used to solve those equations. Numerical calculations are then conducted with respect to various initial water saturations and soil heights for unsaturated clays as illustrative examples. The result is compared to that typically obtained with neglecting body forces to quantify the impact of gravity on consolidation in unsaturated soils.

  8. Effect of soil texture on phytoremediation of arsenic-contaminated soils

    Science.gov (United States)

    Pallud, C. E.; Matzen, S. L.; Olson, A.

    2015-12-01

    Soil arsenic (As) contamination is a global problem, resulting in part from anthropogenic activities, including the use of arsenical pesticides and treated wood, mining, and irrigated agriculture. Phytoextraction using the hyperaccumulating fern Pteris vittata is a promising new technology to remediate soils with shallow arsenic contamination with minimal site disturbance. However, many challenges still lie ahead for a global application of phytoremediation. For example, remediation times using P. vittata are on the order of decades. In addition, most research on As phytoextraction with P. vittata has examined As removal from sandy soils, where As is more available, with little research focusing on As removal from clayey soils, where As is less available. The objective of this study is to determine the effects of soil texture and soil fertilization on As extraction by P. vittata, to optimize remediation efficiency and decrease remediation time under complex field conditions. A field study was established 2.5 years ago in an abandoned railroad grade contaminated with As (average 85.5 mg kg-1) with texture varying from sandy loam to silty clay loam. Organic N, inorganic N, organic P, inorganic P, and compost were applied to separate sub-plots; control ferns were grown in untreated soil. In a parallel greenhouse experiment, ferns were grown in sandy loam soil extracted from the field (180 mg As kg-1), with similar treatments as those used at the field site, plus a high phosphate treatment and treatments with arbuscular mycorrhizal fungi. In the field study, fern mortality was 24% higher in clayey soil than in sandy soil due to waterlogging, while As was primarily associated with sandy soil. Results from the sandy loam soil indicate that soil treatments did not significantly increase As phytoextraction, which was lower in phosphate-treated ferns than in control ferns, both in the field and greenhouse study. Under greenhouse conditions, ferns treated with organic N were

  9. Soil Insect Diversity and Abundance Following Different Fertilizer Treatments on the Loess Plateau of China

    Institute of Scientific and Technical Information of China (English)

    LIN Ying-hua; LU Ping; YANG Xue-yun; ZHANG Fu-dao

    2013-01-01

    The presence of abundant and diverse communities of macro-arthropods is considered an indicator of sustainability in agroecosystems. This study was designed to investigate the effects of different fertilizer treatments on abundance and diversity of insects of arable loess soil on the Loess Plateau of China. These regimes included a control with no fertilizer addition or manure, treatments with application of mineral fertilizers (N, NK, NP, PK, NPK), treatments with NPK in combination with organic materials such as wheat straw or maize stalk, treatments with two rates of organic manure application;and different crop rotations (Rot.1:winter wheat summer maize;Rot.2:winter wheat summer maize soybean intercropping;and Rot.3:winter wheat or rapeseed summer maize soybean intercropping). Soil macro-arthropods were collected from the plough layer (0-20 cm) and sorted by hand after each harvest in June and October 2001 and 2002. A total of 3 132 individuals were collected, from 7 orders and 55 families, dominated by Formicidae (61.72%) and Staphylinidae (14.24%). The results showed that individuals and groups were significantly influenced by sampling dates, while groups were significantly influenced by the fertilization treatments. Soil insect biodiversity, as determined by the Shannon index, was significantly influenced by fertilization and sampling dates. The abundance of soil insects was positively and significantly correlated with soil moisture content in October 2002. Nitrogen, phosphorus and potassium fertilizers and incorporation of organic materials were favorable factors for abundance and diversity in arable loess soil.

  10. Comparative Analysis on Eco-Efficiency of Arable Land Ecological Footprint in Hubei

    Institute of Scientific and Technical Information of China (English)

    CHENG Bihai; WANG Qing; LIU Jianxing

    2006-01-01

    This paper uses the ecological footprint model to make comparison of the eco-efficiency of arable land ecological footprint in different years in Hubei Province, and makes comparison of that in Hubei and some countries. The results indicate that, since 1965, the eco-efficiency of arable land ecological footprint in Hubei has been improved year by year. However, the efficiency of arable land ecological footprint, compared with some other areas in the world, is much lower. In 1965, average eco-efficiency of world arable land ecological footprint is 3 421 US dollar/hm2 while that of Hubei Province is 134 US dollar/hm2, about 1/26 of the world's average level. The eco-efficiency of arable land ecological footprint for 2003 in Hubei Province, however, has become about 1/9 of the world's average level for the same year. Finally the author puts forward the ways to raise the eco-efficiency of arable land ecological footprint.

  11. On arable land changes in Shandong Province and their driving forces

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The decrease of total cultivated area and the lower per capitaavailable arable land resource are now serious problems in Shandong Province, a major agricultural province in China. These problems will become more serious along with the further development of economy. In this paper,based on the statistical information at provincial and county levels, the changes of arable land in Shandong Province and their driving forces during the last 50 years are analyzed. The general changing trends of arable land and per capita available arable land are reducing, and the trends of decrease will continue when the economy is developing. The result of GIS spatial analysis shows that the change of the arable land use in Shandong Province has a regional difference. Eight variables having influences on cultivated land change are analyzed by principal component analysis. The results show that the dynamic development of economy, pressure of social system and progress of scientific techniques in agriculture are the main causes for cultivated land reduction. The principal factors which can be considered as driving forces for arable land change include per capita net living space, total population and per ha grain yield. By using regressive equation, along with analysis on population growth and economic development, cultivated areas in Shandong Province in 2005 and 2010 are predicted respectively. The predicted cultivated areas in Shandong will be 6435.47 thousand hain 2005 and 6336.23 thousand ha in 2010 respectively.

  12. Impact of regression methods on improved effects of soil structure on soil water retention estimates

    Science.gov (United States)

    Nguyen, Phuong Minh; De Pue, Jan; Le, Khoa Van; Cornelis, Wim

    2015-06-01

    Increasing the accuracy of pedotransfer functions (PTFs), an indirect method for predicting non-readily available soil features such as soil water retention characteristics (SWRC), is of crucial importance for large scale agro-hydrological modeling. Adding significant predictors (i.e., soil structure), and implementing more flexible regression algorithms are among the main strategies of PTFs improvement. The aim of this study was to investigate whether the improved effect of categorical soil structure information on estimating soil-water content at various matric potentials, which has been reported in literature, could be enduringly captured by regression techniques other than the usually applied linear regression. Two data mining techniques, i.e., Support Vector Machines (SVM), and k-Nearest Neighbors (kNN), which have been recently introduced as promising tools for PTF development, were utilized to test if the incorporation of soil structure will improve PTF's accuracy under a context of rather limited training data. The results show that incorporating descriptive soil structure information, i.e., massive, structured and structureless, as grouping criterion can improve the accuracy of PTFs derived by SVM approach in the range of matric potential of -6 to -33 kPa (average RMSE decreased up to 0.005 m3 m-3 after grouping, depending on matric potentials). The improvement was primarily attributed to the outperformance of SVM-PTFs calibrated on structureless soils. No improvement was obtained with kNN technique, at least not in our study in which the data set became limited in size after grouping. Since there is an impact of regression techniques on the improved effect of incorporating qualitative soil structure information, selecting a proper technique will help to maximize the combined influence of flexible regression algorithms and soil structure information on PTF accuracy.

  13. Nitrous oxide and nitrate concentration in under-drainage from arable fields subject to diffuse pollution mitigation measures

    Science.gov (United States)

    Hama-Aziz, Zanist; Hiscock, Kevin; Adams, Christopher; Reid, Brian

    2016-04-01

    Atmospheric nitrous oxide concentrations are increasing by 0.3% annually and a major source of this greenhouse gas is agriculture. Indirect emissions of nitrous oxide (e.g. from groundwater and surface water) account for about quarter of total nitrous oxide emissions. However, these indirect emissions are subject to uncertainty, mainly due to the range in reported emission factors. It's hypothesised in this study that cover cropping and implementing reduced (direct drill) cultivation in intensive arable systems will reduce dissolved nitrate concentration and subsequently indirect nitrous oxide emissions. To test the hypothesis, seven fields with a total area of 102 ha in the Wensum catchment in eastern England have been chosen for experimentation together with two fields (41 ha) under conventional cultivation (deep inversion ploughing) for comparison. Water samples from field under-drainage have been collected for nitrate and nitrous oxide measurement on a weekly basis from April 2013 for two years from both cultivation areas. A purge and trap preparation line connected to a Shimadzu GC-8A gas chromatograph fitted with an electron capture detector was used for dissolved nitrous oxide analysis. Results revealed that with an oilseed radish cover crop present, the mean concentration of nitrate, which is the predominant form of N, was significantly depleted from 13.9 mg N L-1 to 2.5 mg N L-1. However, slightly higher mean nitrous oxide concentrations under the cover crop of 2.61 μg N L-1 compared to bare fields of 2.23 μg N L-1 were observed. Different inversion intensity of soil tended to have no effect on nitrous oxide and nitrate concentrations. The predominant production mechanism for nitrous oxide was nitrification process and the significant reduction of nitrate was due to plant uptake rather than denitrification. It is concluded that although cover cropping might cause a slight increase of indirect nitrous oxide emission, it can be a highly effective

  14. Effect of biosolid waste compost on soil respiration in salt-affected soils

    Science.gov (United States)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    respiration, compost, electrical conductivity, salinization, Bac-Trac References: Abdelbasset Lakhdar, Mokded Rabhi, Tahar Ghnaya, Francesco Montemurro, Naceur Jedidi , Chedly Abdelly. Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials 171 (2009) pp 29-37. M. Tejada, C. Garcia, J.L. Gonzalez , M.T. Hernandez . Use of organic amendment as a strategy for saline soil remediation:Influence on the physical, chemical and biological properties of soil. Soil Biology & Biochemistry 38 (2006) pp 1413-1421. I. Gomez; J.M. Disla Soriano; J. Navarro-Pedreño; F. García-Orenes; M.B. Almendro-Candel; M.M. Jordan. Quantification of soil respiration in different saline soil of Alicante (Spain). EGU General Assembly (2012). Viena. Ed. Geophysycal Research Abstracts. Vol 14 EGU2012-2399,(2012). (Acknowledgements: This work was supported by the Spanish MICINN. Project Ref.: CGL2009-11194)

  15. ACID RAIN AND SOIL MICROBIAL ACTIVITY: EFFECTS AND THEIR MECHANISMS

    Science.gov (United States)

    In the investigation, our aim was to determine if acid rain affects soil microbial activity and to identify possible mechanisms of observed effects. A Sierran forest soil (pH 6.4) planted with Ponderosa pine seedlings was exposed to simulated rain (pH 2.0, 3.0, 4.0 and 5.6) with ...

  16. Overview of different aspects of climate change effects on soils.

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2014-08-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2 and create organic carbon (C) that is either reprocessed to CO2 or stored in soils, are the subject of active current investigations with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries and identifies key research needs required to understand the effects of climate change on soils.

  17. Overview of different aspects of climate change effects on soils

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-08-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2 and create organic carbon (C) that is either reprocessed to CO2 or stored in soils, are the subject of active current investigations with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries and identifies key research needs required to understand the effects of climate change on soils.

  18. Soil Mineralogy and Substrate Quality Effects on Microbial Priming

    Science.gov (United States)

    Finley, B. K.; Rasmussen, C.; Dijkstra, P.; Schwartz, E.; Mau, R. L.; Liu, X. J. A.; Hungate, B. A.

    2014-12-01

    Soil carbon (C) cycling can slow or accelerate in response to new C inputs from fresh organic matter. This change in native C mineralization, known as the "microbial priming effect," is difficult to predict because the underlying mechanisms of priming are still poorly understood. We hypothesized that soil mineral assemblage, specifically short-range-order (SRO) minerals, influences microbial responses to different quality C substrate inputs. To test this, we added 350 μg C g-1soil weekly of an artificial root exudates mixture primarily comprised of glucose, sucrose, lactate and fructose (a simple C source) or ground ponderosa pine litter (a complex C source) for six weeks to three soil types from similar ecosystems derived from different parent material. The soils, from andesite, basalt, and granite parent materials, had decreasing abundance in SRO minerals, respectively. We found that the simple C substrate induced 63 ±16.3% greater positive priming than the complex C across all soil types. The quantity of soil SRO materials was negatively correlated with soil respiration, but positively correlated with priming. The lowest SRO soil amended with litter primed the least (14 ± 11 μgCO2-C g-1), while the largest priming effect occurring in the highest SRO soil amended with simple substrate (246 ± 18 μgCO2-C g-1). Our results indicate that higher SRO mineral content could accelerate microorganisms' capacity to mineralize native soil organic carbon and respond more strongly to labile C inputs. However, while all treatments exhibited positive priming, the amount of C added over the six-week incubation was greater than total CO2 respired. This suggests that despite a relative stimulation of native C mineralization, these soils act as C sinks rather than sources in response to fresh organic matter inputs.

  19. Importance of Soil Quality in Environment Protection

    Directory of Open Access Journals (Sweden)

    Márta Birkás

    2007-03-01

    Full Text Available Soil quality can be characterised by the harmony between it’s physical and biological state and the fertility. From the practical crop production viewpoint, some important contrasting factors of soil quality are: (1 soil looseness – compaction; (2 aggregation – clod and dust formation; friable structure – smeared or cracked structure; (3 organic material: conservation – decrease; (4 soil moisture: conservation – loss; water transmission – water-logging; (5 at least soil condition as a result of the long term effect of land use moderates or strengthens climatic harm. In our long-term research project practical soil quality factors were examined in arable field and experimental conditions. We state that prevention of the soil quality deterioration can be done by the developing and maintaining harmony between land use and environment. Elements of the soil quality conditions such as looseness, aggregation, workability, organic matter, water transport are examined and the improving methods are suggested. Tillage and production factors which can be adopted to alleviate the harmful climatic impacts are also summarised.

  20. Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites

    NARCIS (Netherlands)

    Thomson, Bruce C.; Tisserant, Emilie; Plassart, Pierre; Uroz, Stéphane; Griffiths, Rob I.; Hannula, S. Emilia; Buée, Marc; Mougel, Christophe; Ranjard, Lionel; Van Veen, Johannes A.; Martin, Francis; Bailey, Mark J.; Lemanceau, Philippe

    2015-01-01

    Abstract Intensive land use practices necessary for providing food and raw materials are known to have a deleterious effect on soil. However, the effects such practices have on soil microbes are less well understood. To investigate the effects of land use intensification on soil microbial communitie

  1. Effects of Soil Oxygen Conditions and Soil pH on Remediation of DDT-contaminated Soil by Laccase from White Rot Fungi

    OpenAIRE

    Yuechun Zhao; Xiaoyun Yi

    2010-01-01

    High residues of DDT in agricultural soils are of concern because they present serious threats to food security and human health. This article focuses on remediation of DDT-contaminated soil using laccase under different soil oxygen and soil pH conditions. The laboratory experiment results showed significant effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase at the end of a 25-d incubation period. This study found the positive correlation between ...

  2. Effect of soil contamination with azadirachtin on dehydrogenase and catalase activity of soil

    Directory of Open Access Journals (Sweden)

    Rıdvan Kızılkaya

    2012-07-01

    Full Text Available nsecticides are used in modern agriculture in large quantities to control pests and increase crop yield. Their use, however, has resulted in the disruption of ecosystems because of the effects on non-target soil microorganisms, some environmental problems, and decreasing soil fertility. These negative effects of synthetic pesticides on the environment have led to the search for alternative means of pest control. One such alternative is use of natural plant products such as azadirachtin that have pesticidal activity. The aim of this experiment was to study the effect of soil contamination by azadirachtin (C35H44O16 on dehydrogenase (DHA and catalase activity (CA of soil under field conditions in Perm, Russia. The tests were conducted on loamy soil (pHH2O 6.7, ECH2O 0.213 dSm-1, organic carbon 0.99%, to which the following quantities of azadirachtin were added: 0, 15, 30 and 60 mL da-1 of soil. Experimental design was randomized plot design with three replications. The DHA and CA analyses were performed 7, 14 and 21 days after the field experiment was established. The results of field experiment showed that azadirachtin had a positive influence on the DHA and CA at different soil sampling times. The increased doses of azadirachtin applied resulted in the higher level of DHA and CA in soil. The soil DHA and CA showed the highest activity on the 21th day after 60 mL azadirachtin da-1 application doses.

  3. Effect of pineapple cropping on soil chemical and physical changes in Tha-yang soil series, Petchaburi province

    Directory of Open Access Journals (Sweden)

    Isuwan, A.

    2007-03-01

    Full Text Available The experiment was conducted to investigate the effect of pineapple cropping on chemical and physical property changes of Tha-yang soil series, located on Tumbon Nong-ya-plong, Amphor Nong-yaplong,Petchaburi province. The experimental treatments were the different pineapple cropping soil ages arranged in a completely randomized design, consisting of undisturbed soil (year 0 and pineapple croppingsoil ages of 1, 4 and 8 years with 4 replications each. Soil samples were separated according to the soil level, namely Top-soil (0-15 cm. and Sub-soil (15-30 cm. for chemical and physical evaluation. The results showedthat soil chemical properties such as pH, OM, CEC, exchangeable Ca and Mg were decreased significantly (in both Top- and Sub-soil level, whereas available P and S were increased significantly in the 4-year soilsamples when compared with undisturbed soil. However, soil physical properties were not significantly different among cropping age treatments, except for clay particle in Top-soil which increased in the 4-year soil samples when compared with the 1-year soil samples and undisturbed soil. The results revealed thatpineapple cropping notably reduced soil fertility. As a result, soil resource management and plant nutrient management strategies must be carefully planned and implemented for sustainable pineapple production.

  4. Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils.

    Science.gov (United States)

    Pannu, Ravinder; Siciliano, Steven D; O'Driscoll, Nelson J

    2014-10-01

    Soils are a source of elemental mercury (Hg(0)) to the atmosphere, however the effects of soil temperature and moisture on Hg(0) formation is not well defined. This research quantifies the effect of varying soil temperature (278-303 K), moisture (15-80% water filled pore space (WFPS)) and sterilization on the kinetics of Hg(0) formation in forested soils of Nova Scotia, Canada. Both, the logarithm of cumulative mass of Hg(0) formed in soils and the reduction rate constants (k values) increased with temperature and moisture respectively. Sterilizing soils significantly (p < 0.05, n = 10) decreased the percent of total Hg reduced to Hg(0). We describe the fundamentals of Hg(0) formation in soils and our results highlight two key processes: (i) a fast abiotic process that peaks at 45% WFPS and depletes a small pool of Hg(0) and; (ii) a slower, rate limiting biotic process that generates a large pool of reducible Hg(II). PMID:25016467

  5. Earthworm assemblages in an ecotone between forest and arable field and their relations with soil properties Comunidades de minhocas em um ecótono entre floresta e campo arável e suas relações com as propriedades do solo

    Directory of Open Access Journals (Sweden)

    Josef Zeithaml

    2009-08-01

    Full Text Available The objective of this work was to assess the effects of a forest-field ecotone on earthworm assemblages. Five sites (blocks differing in the type of crop rotation used in the field were studied in Central Bohemia, Czech Republic. In each block, sampling was carried out in seven parallel rows perpendicular to a transect from a forest (oak or oak-pine to the centre of a field, both in spring and autumn 2001-2003. Individual rows were located in the forest (5 m from the edge, in the forest edge, and in the field (at 5, 10, 25, 50 and 100 m distances from the forest edge. The density and biomass of earthworms were lowest in the forest, increased markedly in the forest edge, decreased again at 5 or 10 m distance from the forest edge and then continuously increased along the distance to the field boundary. The highest number of species was found in the forest edge and in the field boundary. Individual species differed in their distribution along the transect. Both density and biomass of earthworms were correlated with distance from forest edge, soil organic matter content, soil porosity, and water infiltration rate.O objetivo deste trabalho foi avaliar os efeitos de um ecótono entre floresta e campo arável sobre comunidades de minhocas. Cinco locais (blocos com diferentes tipos de rotação de culturas utilizados no campo foram estudados na Boêmia Central, República Tcheca. Em cada bloco, amostragens foram feitas em sete linhas paralelas perpendiculares a um transecto de floresta (carvalho ou carvalho e pinheiro, em direção ao centro de um campo, na primavera e no outono de 2001-2003. Linhas individuais foram marcadas na floresta (a 5 m da borda, na borda da floresta e no campo (a 5, 10, 25, 50 e 100 m da borda da floresta. A densidade e biomassa das minhocas foi menor na floresta, aumentou marcadamente na borda da floresta, decaiu novamente a 5 ou 10 m de distância da borda da floresta e aumentou continuamente com a distância até o limite do

  6. Effects of 24 Years of Conservation Tillage Systems on Soil Organic Carbon and Soil Productivity

    OpenAIRE

    Olson, Kenneth R.; Stephen A. Ebelhar; James M. Lang

    2013-01-01

    The 24-year study was conducted in southern Illinois (USA) on land similar to that being removed from Conservation Reserve Program (CRP) to evaluate the effects of conservation tillage systems on: (1) amount and rates of soil organic carbon (SOC) storage and retention, (2) the long-term corn and soybean yields, and (3) maintenance and restoration of soil productivity of previously eroded soils. The no-till (NT) plots did store and retain 7.8 Mg C ha−1 more and chisel plow (CP) −1.6 Mg C ha−1 ...

  7. Effect of Soil Structure Interaction on Torsional Response of Structure Supported by Asymmetric Soil Foundation System

    Directory of Open Access Journals (Sweden)

    Fangyuan Zhou

    2016-01-01

    Full Text Available The torsional response of a structure supported by asymmetric foundation was investigated in this study. Several types of the asymmetric soil foundation system were employed to analyze the effect of soil structure interaction on torsional response of the superstructure. It can be concluded from the study that torsional response would be generated for a structure supported by asymmetric soil foundation system under horizontal seismic excitation, and the generated torsional response of the superstructure changed with the degree of the asymmetry of the foundation.

  8. Effects of Biochar amendments on soil chemistry

    Science.gov (United States)

    Mukherjee, A.; Zimmerman, A. R.

    2009-12-01

    Humans have been transforming soil composition, both accidentally and purposefully, for centuries. For example, terra preta soils found in Amazonia that are greatly enriched in organic carbon and phosphorus and have enhanced fertility relative to the surrounding depleted oxisols, seem to have been deliberately created by native pre-Colombian Indians through the addition of combusted biomass, or biochar. Biochar amendment has gained attention recently as a way to enhance soil carbon sequestration while increasing soil fertility. It may also have adsorptive properties that are useful for pollution control. Our research examines the chemical and morphological properties of biochar with the goals of understanding the origin of terra preta, as well as how biochar can best be put to use as a soil amendment. Biochar was produced from a range of parent biomass types (hardwoods, softwoods and grasses) and under a range of combustion conditions (250 to 650 oC, under air and N2). Surface areas, determined by gas sorptometry, ranged from 3 to 394 m2g-1 (for N2) and from 129 to 345 m2g-1 (for CO2) and were found to generally increase with increasing pyrolysis temperature. The pH of the biochars ranged from 1.8 to 4.5, from 6.2 to 8.7, and from 6.2 to 9.2 for the 250, 400, and 650 oC biochars, respectively, and did not vary consistently with parent biomass types. Cation exchange capacity (CEC), determined using K+ exchange, ranged between 5 to 60 cmolc kg-1, higher than most soils, and generally increased with charring temperature. Anion exchange capacity (AEC) was low or undetectable. Lastly, the isoelectric point of the chars, determined using a zeta potential analyzer, ranged from a pH of 1.3 to 1.5, indicating that the biochar surfaces will be predominantly negatively charged in soil solutions. These data are complimentary and show that, when added to soil, biochar, particularly those produced at higher temperatures, would function as a cation exchanger system. The acid

  9. Effect of Soil Tillage Practices on Dynamic of Bacterial Communities in Soil

    Directory of Open Access Journals (Sweden)

    Mirna Mrkonjić Fuka

    2016-03-01

    Full Text Available Several studies have indicated that intensive tillage has notable effect on properties of the soil microbiota that may influence numerous important soils functions, e.g. mobilization of nutrients or change of the overall emission rates of greenhouse gases. Therefore, the aim of our study was to investigate dynamic of microbial communities in soil planted with soybean under different tillage systems. Moreover, abundance of populations harboring the nitrous- oxide reductase gene (nosZ as an indicator for potential shift s in N2O emission rates was studied. The study was established at chernozem soil of Northern Baranja region in Republic of Croatia as completely randomized block design of four replicate plots for each tillage system in three years experiment. The soil was managed as followed: CT - conventional tillage (moldboard ploughing at 25-30 cm depth, DH - multiple discs harrowing (10-15 cm depth, and NT – no-tillage system. Soil samples were collected in summer and autumn in year 2003. Our results suggested that the reduction of tillage had no effects on the bacterial community structure. This might be a result of the very dry climatic conditions at the investigated site and /or a result of plant species effect (soybean. Slight effects of the tillage management became visible at least when samples were taken in autumn for microbes harboring the N2O reductase gene, indicating that there might be shift s in denitrification pattern in response to changes in tillage practice.

  10. Effects of Nitrogen Fertilizer,Soil Moisture and Temperature on Methane Oxidation in Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    YANXIAOYUAN; CAIZUCONG

    1996-01-01

    Effects of nitrogen fertilizer,soil mosture and temperature and temperature on methane oxidation in paddy soil were investigated under laboratory conditions.Addition of 0.05 g N kg-1 soil as NH4Cl strongly inhibited methane oxidation and addition of the same rate of KCl also inhibited the oxidation but with more slight effect,suggesting that the inhibitory effect was partly caused by increase in osmotic potential in microorganism cell,Not only NH4+ but also NO3- greatly affected methane oxidation.Urea did not affect methane oxidation in paddy soil in the first two days of incubation,but strong inhibitory effect was observed afterwards.Methane was oxidized in the treated soil with an optimum moisture of 280 g kg-1 ,and air-drying inhibited methane oxidation entirely.The optimum temperature of methane oxidation was about 30℃ in paddy soil.while no methane oxidation was observed at 5℃or 50℃。

  11. Effect of long-term compost and inorganic fertilizer application on background N2O and fertilizer-induced N2O emissions from an intensively cultivated soil.

    Science.gov (United States)

    Ding, Weixin; Luo, Jiafa; Li, Jie; Yu, Hongyan; Fan, Jianling; Liu, Deyan

    2013-11-01

    The influence of inorganic fertilizer and compost on background nitrous oxide (N2O) and fertilizer-induced N2O emissions were examined over a maize-wheat rotation year from June 2008 to May 2009 in a fluvo-aquic soil in Henan Province of China where a field experiment had been established in 1989 to evaluate the long-term effects of manure and fertilizer on soil organic status. The study involved five treatments: compost (OM), fertilizer NPK (nitrogen-phosphorus-potassium, NPK), half compost N plus half fertilizer N (HOM), fertilizer NK (NK), and control without any fertilizer (CK). The natural logarithms of the background N2O fluxes were significantly (P<0.05) correlated with soil temperature, but not with soil moisture, during the maize or wheat growing season. The 18-year application of compost alone and inorganic fertilizer not only significantly (P<0.05) increased soil organic carbon (SOC) by 152% and 10-43% (respectively), but also increased background N2O emissions by 106% and 48-76% (respectively) compared with the control. Total N in soils was a better indicator for predicting annual background N2O emission than SOC. The estimated emission factor (EF) of mineralized N, calculated by dividing annual N2O emission by mineralized N was 0.13-0.19%, significantly (P<0.05) lower than the EF of added N (0.30-0.39%). The annual N2O emission in the NPK, HOM and OM soils amended with 300 kg ha(-1) organic or inorganic N was 1427, 1325 and 1178 g N ha(-1), respectively. There was a significant (P<0.05) difference between the NPK and OM. The results of this study indicate that soil indigenous N was less efficiently converted into N2O compared with exogenous N. Increasing SOC by compost application, then partially increasing N supply to crops instead of adding inorganic N fertilizer, may be an effective measure to mitigate N2O emissions from arable soils in the North China plain. PMID:23229048

  12. Effects of organic and inorganic amendments on soil erodibility

    Directory of Open Access Journals (Sweden)

    Nutullah Özdemir

    2015-10-01

    Full Text Available The objective of the present investigation is to find out the effect of incorporating of various organic and inorganic matter sources such as lime (L, zeolit (Z, polyacrylamide (PAM and biosolid (BS on the instability index. A bulk surface (0–20 cm depth soil sample was taken from Samsun, in northern part of Turkey. Some soil properties were determined as follows; fine in texture, modarete in organic matter content, low in pH and free of alkaline problem. The soil samples were treated with the inorganic and organic materials at four different levels including the control treatments in a randomized factorial block design. The soil samples were incubated for ten weeks. After the incubation period, corn was grown in all pots. The results can be summarized as organic and inorganic matter treatments increased structure stability and decreased soil erodibility. Effectiveness of the treatments varied depending on the types and levels of organic and inorganic materials.

  13. Application of mesotrione at different doses in an amended soil: Dissipation and effect on the soil microbial biomass and activity.

    Science.gov (United States)

    Pose-Juan, Eva; Sánchez-Martín, María Jesús; Herrero-Hernández, Eliseo; Rodríguez-Cruz, María Sonia

    2015-12-01

    The aim of this work was to estimate the dissipation of mesotrione applied at three doses (2, 10 and 50 mg kg(-1) dw) in an unamended agricultural soil, and this same soil amended with two organic residues (green compost (C) and sewage sludge (SS)). The effects of herbicide and organic residue on the abundance and activity of soil microbial communities were also assessed by determining soil microbial parameters such as biomass, dehydrogenase activity (DHA), and respiration. Lower dissipation rates were observed for a higher herbicide dose. The highest half-life (DT50) values were observed in the SS-amended soil for the three herbicide doses applied. Biomass values increased in the amended soils compared to the unamended one in all the cases studied, and increased over the incubation period in the SS-amended soil. DHA mean values significantly decreased in the SS-amended soil, and increased in the C-amended soil compared to the unamended ones, under all conditions. At time 0 days, respiration values were significantly higher in SS-amended soils (untreated and treated with mesotrione) than in the unamended and C-amended soils. The effect of mesotrione on soil biomass, DHA and respiration was different depending on incubation time and soil amendment and herbicide dose applied. The results support the need to consider the possible non-target effects of pesticides and organic amendments simultaneously applied on soil microbial communities to prevent negative impacts on soil quality. PMID:26188530

  14. Passive microwave sensing of soil moisture content - The effects of soil bulk density and surface roughness

    Science.gov (United States)

    Wang, J. R.

    1983-01-01

    Microwave radiometric measurements over bare fields of different surface roughness were made at frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence, as well as the possible time variation, of surface roughness. An increase in surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time-series observations over a given field indicate that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. The variation of surface roughness increases the uncertainty of remote soil moisture estimates by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which is an important factor in the interpretation of radiometric data.

  15. Erosion effects on water and DOC/DIC fluxes in soils from a hummocky ground moraine landscape

    Science.gov (United States)

    Herbrich, Marcus; Gerke, Horst H.; Sommer, Michael

    2015-04-01

    In the arable hummocky ground moraine soil landscape, an erosion-induced spatial differentiation of soil types can be observed. Unknown is how the water flow and solute transport is affected by soil-crop interactions depending on properties of differently-developed soil horizons. The objective was to analyze these interactions and by comparing lysimeter-based measured water and solute balances for Luvisol soil monoliths extracted from differently-eroded slope locations. For a 3-years measurement period, differences in cumulative seepage water drainage of more than 76 % were observed between most and least eroded Luvisol. Although the soil types were identical, these data indicated characteristic erosion-induced spatial differentiation in the water balance of the landscape. Because the concentrations of dissolved organic carbon (DOC) and of dissolved inorganic carbon (DIC) were relatively similar for all lysimeters at the bottom (1.4 m soil depth), the DOC/DIC leaching was dominated by differences in water fluxes in this observation period (04/2011-04/2014). Results suggest that water and solute balances are depending on the degree of erosion-induced soil profile modifications. Hence for the landscape scale analysis of the landscape water and solute balances, not only the distributed soil types but also erosion-induced modifications with a single soil type should be considered.

  16. Biochar: an effective amendment for remediating contaminated soil.

    Science.gov (United States)

    Kong, Lu-Lu; Liu, Wei-Tao; Zhou, Qi-Xing

    2014-01-01

    Biochar is a carbon-rich material derived from incomplete combustion of biomass.Applying biochar as an amendment to treat contaminated soils is receiving increasing attention, and is a promising way to improve soil quality. Heavy metals are persistent and are not environmentally biodegradable. However, they can be stabilized in soil by adding biochar. Moreover, biochar is considered to be a predominant sorptive agent for organic pollutants, having a removal efficiency of about 1 order of magnitude higher than does soil/sediment organic matter or their precursor substances alone.When trying to stabilize organic and inorganic pollutants in soil, several features of biochar' s sorption capacity should be considered, viz., the nature of the pollutants to be remediated, how the biochar is prepared, and the complexity of the soil systemin which biochar may be used. In addition, a significant portion of the biochar or some of its components that are used to remediate soils do change over time through abiotic oxidation and microbial decomposition. This change process is commonly referred to as "aging:" Biochar "aging" in nature is inevitable, and aged biochar exhibits an effect that is totally different than non-aged biochar on stabilizing heavy metals and organic contaminants in soils.Studies that have been performed to date on the use of biochar to remediate contaminated soil are insufficient to allow its use for wide-scale field application.Therefore, considerable new data are necessary to expand both our understanding of how biochar performs in the field, and where it can be best used in the future for soil remediation. For example, how biochar and soil biota (microbial and faunal communities)interact in soils is still poorly understood. Moreover, studies are needed on how to best remove new species of heavy metals, and on how biochar aging affects sorption capacity are also needed. PMID:24162093

  17. Temperature Effect on Boron Adsorption—Desorption Kinetics in Soils

    Institute of Scientific and Technical Information of China (English)

    ZHUDUANWEI; SHILEI; 等

    1999-01-01

    The effect of temperature on the properties of boron adsorption-desorption in brown-red soil,yellowbrown soil and calcareous alluvial soil of Hubei Province was investigated with the mobile displacement technique.The experimental data of B adsorption-desorption amounts and reaction time at 25 and 40℃ were fitted by the zero-order,first-order and parabolic diffusion kinetic equations.The adsorption process was in conformity with the parabolic diffusion law at both the temperatures,and the values of rate constant of the parabolic diffusion equation in B adsorption were 0.138,0.124 and 0.105 mg kg-1 min-1/2 at 25℃,and 0.147,0.146and 0.135mg kg-1 min1/2 at 40℃ for the brown-red soil,yellow-brown soil,and calcareous alluvial soil,respectively,The relationship between amount of B desorption and reaction time could be well described by the first-order kinetic equation,and the corresponding values of rate constant were 0.0422,0.0563 and 0.0384min-1 at 25℃,and 0.0408,0.0423 and 0.0401min-1 at 40℃ for the brown-red soil,the yellow-brown soil and the calcareous alluvial soil,respectively.Therefore,the desorption process of B might be related to the amount of B adsorbed in soil,The higher th temperature,the lower the amount of B adsorption of the same soil in the same reaction time,The values of the apparent activation energy of B adsorption in the three soils calculated with the rate constants of parabolic diffusion equation were 3.27,8.44 and 12.99 kJ mol-1,respectively,based on the experimental data of B adsorption amounts and reaction time at and 40℃.

  18. Effects of Soil Salinity on Sucrose Metabolism in Cotton Fiber.

    Science.gov (United States)

    Peng, Jun; Zhang, Lei; Liu, Jingran; Luo, Junyu; Zhao, Xinhua; Dong, Helin; Ma, Yan; Sui, Ning; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    Cotton (Gosspium hirsutum L.) is classified as a salt tolerant crop. However, its yield and fiber quality are negatively affected by soil salinity. Studies on the enzymatic differences in sucrose metabolism under different soil salinity levels are lacking. Therefore, field experiments, using two cotton cultivars, CCRI-79 (salt-tolerant) and Simian 3 (salt-sensitive), were conducted in 2013 and 2014 at three different salinity levels (1.15 dS m-1 [low soil salinity], 6.00 dS m-1 [medium soil salinity], and 11.46 dS m-1 [high soil salinity]). The objective was to elucidate the effects of soil salinity on sucrose content and the activity of key enzymes that are related to sucrose metabolism in cotton fiber. Results showed that as the soil salinity increased, cellulose content, sucrose content, and sucrose transformation rate declined; the decreases in cellulose content and sucrose transformation rate caused by the increase in soil salinity were more in Simian 3 than those in CCRI-79. With increase in soil salinity, activities of sucrose metabolism enzymes sucrose phophate synthase (SPS), acidic invertase, and alkaline invertase were decreased, whereas sucrose synthase (SuSy) activity increased. However, the changes displayed in the SuSy and SPS activities in response to increase in soil salinity were different and the differences were large between the two cotton cultivars. These results illustrated that suppressed cellulose synthesis and sucrose metabolism under high soil salinity were mainly due to the change in SPS, SuSy, and invertase activities, and the difference in cellulose synthesis and sucrose metabolism in fiber for the two cotton cultivars in response to soil salinity was determined mainly by both SuSy and SPS activities. PMID:27227773

  19. Effects of Soil Salinity on Sucrose Metabolism in Cotton Fiber.

    Directory of Open Access Journals (Sweden)

    Jun Peng

    Full Text Available Cotton (Gosspium hirsutum L. is classified as a salt tolerant crop. However, its yield and fiber quality are negatively affected by soil salinity. Studies on the enzymatic differences in sucrose metabolism under different soil salinity levels are lacking. Therefore, field experiments, using two cotton cultivars, CCRI-79 (salt-tolerant and Simian 3 (salt-sensitive, were conducted in 2013 and 2014 at three different salinity levels (1.15 dS m-1 [low soil salinity], 6.00 dS m-1 [medium soil salinity], and 11.46 dS m-1 [high soil salinity]. The objective was to elucidate the effects of soil salinity on sucrose content and the activity of key enzymes that are related to sucrose metabolism in cotton fiber. Results showed that as the soil salinity increased, cellulose content, sucrose content, and sucrose transformation rate declined; the decreases in cellulose content and sucrose transformation rate caused by the increase in soil salinity were more in Simian 3 than those in CCRI-79. With increase in soil salinity, activities of sucrose metabolism enzymes sucrose phophate synthase (SPS, acidic invertase, and alkaline invertase were decreased, whereas sucrose synthase (SuSy activity increased. However, the changes displayed in the SuSy and SPS activities in response to increase in soil salinity were different and the differences were large between the two cotton cultivars. These results illustrated that suppressed cellulose synthesis and sucrose metabolism under high soil salinity were mainly due to the change in SPS, SuSy, and invertase activities, and the difference in cellulose synthesis and sucrose metabolism in fiber for the two cotton cultivars in response to soil salinity was determined mainly by both SuSy and SPS activities.

  20. Effect of Lanthanum on Major Microbial Populationsin Red Soil

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Pure culture and pot culture experiments were carried out to study theeffect of lanthanum (La) on bacteria, actinomyces and fungus, and somemicrobial physiological groups, nitrifier, azotobacter andphosphobacteria, in a red soil taken form the Ecological ExperimentalStation of Red Soil, the Chinese Academy of Sciences, Jiangxi Province.LaCl{3 was added into media at levels of 0, 25, 50, 100, 150,200, 250 and 500 mg L-1 in the pure culture experiment, and intosoil samples in porcelain pots before rice growing at levels of 0, 6,30, 150, 300, 600 and 900 mg kg-1 dry soil in the pot cultureexperiment. Thepopulations of the three soil microbes in the pure culture experimentdecreased with the addition level of La, indicating that La was toxicto the soil microbes in pure culture, and the sensitivity of the 3major microbial types to La was in a decreasing order ofactinomyces > bacteria > fungus. In the pot experiment, Lahad slightly stimulative effect on soil bacteria and actinomyces whenapplied at low concentrations while had inhibitory effect on soilbacteria, actinomyces and fungus at high concentrations. When theconcentration of La was low, soil azotobacter was stimulated slightlywhile soil nitrifier was stimulated strongly and the maximum increasewas up to 50%. When the concentration of La was high, both soilazotobacter and nitrifier were inhibited, and the inhibition of La tothe nitrifier increased with La concentration. La added at all thelevels had stimulative effect on soil inorganic and organicphosphobacteria. Among the 4 physiological groups, soil nitrifier wasmost sensitive to La, so, it might be reasonable to assume that soilnitrifier was a sensitive indicator for evaluating the biological andenvironmental effects of rare earths.

  1. Effects of Soil Moisture on the Temperature Sensitivity of Soil Heterotrophic Respiration: A Laboratory Incubation Study

    OpenAIRE

    Weiping Zhou; Dafeng Hui; Weijun Shen

    2014-01-01

    The temperature sensitivity (Q10) of soil heterotrophic respiration (Rh) is an important ecological model parameter and may vary with temperature and moisture. While Q10 generally decreases with increasing temperature, the moisture effects on Q10 have been controversial. To address this, we conducted a 90-day laboratory incubation experiment using a subtropical forest soil with a full factorial combination of five moisture levels (20%, 40%, 60%, 80%, and 100% water holding capacity - WHC) and...

  2. [Effects of Green Manure Intercropping and Straw Mulching on Winter Rape Rhizosphere Soil Organic Carbon and Soil Respiration].

    Science.gov (United States)

    Zhou, Quan; Wang, Long-chang; Xiong, Ying; Zhang, Sai; Du, Juan; Zhao, Lin-lu

    2016-03-15

    Under the background of global warming, the farmland soil respiration has become the main way of agricultural carbon emissions. And green manure has great potential to curb greenhouse gas emissions and achieve energy conservation and emissions reduction. However, in purple soil region of Southwest, China, soil respiration under green manure remains unclear, especially in the winter and intercropping. Through the green manure ( Chinese milk vetch) intercropping with rape, therefore, we compared the effects of rape rhizosphere under straw mulching. The soil organic carbon and soil respiration were examined. The results showed, compared with straw mulching, root separation was the major influencing factors of soil organic carbon on rape rhizosphere. Soil organic carbon was significantly decreased by root interaction. In addition, straw mulching promoted while green manure intercropping inhibited the soil respiration. Soil respiration presented the general characteristics of fall-rise-fall due to the strong influence of rape growth period. Therefore, it showed a cubic curve relationship with soil temperature. PMID:27337908

  3. [Effects of Green Manure Intercropping and Straw Mulching on Winter Rape Rhizosphere Soil Organic Carbon and Soil Respiration].

    Science.gov (United States)

    Zhou, Quan; Wang, Long-chang; Xiong, Ying; Zhang, Sai; Du, Juan; Zhao, Lin-lu

    2016-03-15

    Under the background of global warming, the farmland soil respiration has become the main way of agricultural carbon emissions. And green manure has great potential to curb greenhouse gas emissions and achieve energy conservation and emissions reduction. However, in purple soil region of Southwest, China, soil respiration under green manure remains unclear, especially in the winter and intercropping. Through the green manure ( Chinese milk vetch) intercropping with rape, therefore, we compared the effects of rape rhizosphere under straw mulching. The soil organic carbon and soil respiration were examined. The results showed, compared with straw mulching, root separation was the major influencing factors of soil organic carbon on rape rhizosphere. Soil organic carbon was significantly decreased by root interaction. In addition, straw mulching promoted while green manure intercropping inhibited the soil respiration. Soil respiration presented the general characteristics of fall-rise-fall due to the strong influence of rape growth period. Therefore, it showed a cubic curve relationship with soil temperature.

  4. Effect of elevated CO2 on chlorpyriphos degradation and soil microbial activities in tropical rice soil.

    Science.gov (United States)

    Adak, Totan; Munda, Sushmita; Kumar, Upendra; Berliner, J; Pokhare, Somnath S; Jambhulkar, N N; Jena, M

    2016-02-01

    Impact of elevated CO2 on chlorpyriphos degradation, microbial biomass carbon, and enzymatic activities in rice soil was investigated. Rice (variety Naveen, Indica type) was grown under four conditions, namely, chambered control, elevated CO2 (550 ppm), elevated CO2 (700 ppm) in open-top chambers and open field. Chlorpyriphos was sprayed at 500 g a.i. ha(-1) at maximum tillering stage. Chlorpyriphos degraded rapidly from rice soils, and 88.4% of initially applied chlorpyriphos was lost from the rice soil maintained under elevated CO2 (700 ppm) by day 5 of spray, whereas the loss was 80.7% from open field rice soil. Half-life values of chlorpyriphos under different conditions ranged from 2.4 to 1.7 days with minimum half-life recorded with two elevated CO2 treatments. Increased CO2 concentration led to increase in temperature (1.2 to 1.8 °C) that played a critical role in chlorpyriphos persistence. Microbial biomass carbon and soil enzymatic activities specifically, dehydrogenase, fluorescien diacetate hydrolase, urease, acid phosphatase, and alkaline phosphatase responded positively to elevated CO2 concentrations. Generally, the enzyme activities were highly correlated with each other. Irrespective of the level of CO2, short-term negative influence of chlorpyriphos was observed on soil enzymes till day 7 of spray. Knowledge obtained from this study highlights that the elevated CO2 may negatively influence persistence of pesticide but will have positive effects on soil enzyme activities. PMID:26790432

  5. Effects of Accelerated Soil Erosion on Soil Nutrient Loss After Deforestation on the Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    ZHENG Fen-Li

    2005-01-01

    Soil erosion and nutrient losses on newly-deforested lands in the Ziwuling Region on the Loess Plateau of China were monitored to quantitatively evaluate the effects of accelerated soil erosion, caused by deforestation, on organic matter,nitrogen and phosphorus losses. Eight natural runoff plots were established on the loessial hill slopes representing different erosion patterns of dominant erosion processes including sheet, rill and shallow gully (similar to ephemeral gully). Sediment samples were collected after each erosive rainfall event. Results showed that soil nutrients losses increased with an increase of erosion intensity. Linear relations between the losses of organic matter, total N, NH4-N, and available P and erosion intensity were found. Nutrient content per unit amount of eroded sediment decreased from the sheet to the shallow gully erosion zones, whereas total nutrient loss increased. Compared with topsoil, nutrients in eroded sediment were enriched,especially available P and NH4-N. The intensity of soil nutrient losses was also closely related to soil erosion intensity and pattern with the most severe soil erosion and nutrient loss occurring in the shallow gully channels on loessial hill slopes.These research findings will help to improve the understanding of the relation between accelerated erosion process after deforestation and soil quality degradation and to design better eco-environmental rehabilitation schemes for the Loess Plateau.

  6. Effect of elevated CO2 on chlorpyriphos degradation and soil microbial activities in tropical rice soil.

    Science.gov (United States)

    Adak, Totan; Munda, Sushmita; Kumar, Upendra; Berliner, J; Pokhare, Somnath S; Jambhulkar, N N; Jena, M

    2016-02-01

    Impact of elevated CO2 on chlorpyriphos degradation, microbial biomass carbon, and enzymatic activities in rice soil was investigated. Rice (variety Naveen, Indica type) was grown under four conditions, namely, chambered control, elevated CO2 (550 ppm), elevated CO2 (700 ppm) in open-top chambers and open field. Chlorpyriphos was sprayed at 500 g a.i. ha(-1) at maximum tillering stage. Chlorpyriphos degraded rapidly from rice soils, and 88.4% of initially applied chlorpyriphos was lost from the rice soil maintained under elevated CO2 (700 ppm) by day 5 of spray, whereas the loss was 80.7% from open field rice soil. Half-life values of chlorpyriphos under different conditions ranged from 2.4 to 1.7 days with minimum half-life recorded with two elevated CO2 treatments. Increased CO2 concentration led to increase in temperature (1.2 to 1.8 °C) that played a critical role in chlorpyriphos persistence. Microbial biomass carbon and soil enzymatic activities specifically, dehydrogenase, fluorescien diacetate hydrolase, urease, acid phosphatase, and alkaline phosphatase responded positively to elevated CO2 concentrations. Generally, the enzyme activities were highly correlated with each other. Irrespective of the level of CO2, short-term negative influence of chlorpyriphos was observed on soil enzymes till day 7 of spray. Knowledge obtained from this study highlights that the elevated CO2 may negatively influence persistence of pesticide but will have positive effects on soil enzyme activities.

  7. A New Mechanism of Canopy Effect in Unsaturated Freezing Soils

    Directory of Open Access Journals (Sweden)

    Teng Jidong

    2016-01-01

    Full Text Available Canopy effect refers to the phenomenon where moisture accumulates underneath an impervious cover. Field observation reveals that canopy effect can take place in relatively dry soils where the groundwater table is deep and can lead to full saturation of the soil immediately underneath the impervious cover. On the other hand, numerical analysis based on existing theories of heat and mass transfer in unsaturated soils can only reproduce a minor amount of moisture accumulation due to an impervious cover, particularly when the groundwater table is relatively deep. In attempt to explain the observed canopy effect in field, this paper proposes a new mechanism of moisture accumulation in unsaturated freezing soils: vapour transfer in such a soil is accelerated by the process of vapour-ice desublimation. A new approach for modelling moisture and heat movements is proposed, in which the phase change of evaporation, condensation and de-sublimation of vapor flow are taken into account. The computed results show that the proposed model can indeed reproduce the unusual moisture accumulation observed in relatively dry soils. The results also demonstrate that soil freezing fed by vapour transfer can result in a water content close to full saturation. Since vapour transfer is seldom considered in geotechnical design, the canopy effect deserves more attention during construction and earth works in cold and arid regions.

  8. Ukraine : Soil Fertility to Strengthen Climate Resilience

    OpenAIRE

    Fileccia, Turi; Guadagni, Maurizio; Hovhera, Vasyl; Bernoux, MARTIAL,

    2014-01-01

    Ukraine is renowned as the breadbasket of Europe thanks to its black soils ( Chernozem black because of the high organic matter content) which offer exceptional agronomic conditions. One-third of the worldwide stock of the fertile black soils, which cover more than half of Ukraine s arable land, a large variety of climatic zones, and favourable temperature and moisture regimes, offers att...

  9. Effects of near soil surface characteristics on soil detachment by overland flow in a natural succession grassland

    Science.gov (United States)

    Vegetation restoration probably has great effects on the process of soil detachment. This study was conducted to investigate the effects of near soil surface characteristics on soil detachment by overland flow in a 7-year naturally restored grassland. Four treatments were designed to characterize th...

  10. Temporal and soil management effects on soil infiltration and water content in a hillslope vineyard

    Science.gov (United States)

    Biddoccu, Marcella; Ferraris, Stefano; Cavallo, Eugenio

    2015-04-01

    The maintenance of bare soil in the vineyard's inter-rows with tillage, as well as other mechanized operations which increase the vehicle traffic, expose the soil to degradation, favoring overland flow and further threats as compaction, reduction of soil water holding capacity and water infiltration. Water infiltration is strongly controlled by field-saturated hydraulic conductivity, which depends primarily on soil texture and structure, and it is characterized by high spatial and temporal variability. Beyond the currently adopted soil management, some major causes in variability of infiltration rates are the history of cultivation and the structure of the first centimeters of the vineyard's soil. A study was carried out in two experimental vineyard plots included in the 'Tenuta Cannona Experimental Vine and Wine Centre of Regione Piemonte', located in NW Italy. The study was addressed to evaluate the temporal variations of the field-saturated hydraulic conductivity, in relation to the soil management adopted in the inter-rows of a hillslope vineyard. The investigation was carried out in a vineyard comparing the adoption of two different soil managements in the inter-rows: 1) conventional tillage and 2) controlled grass cover. Several series of double-ring of infiltration tests were carried out during a 2-years period of observation, using the simplified falling head technique (SFH). In order to take into account the effect of tractor traffic, the tests were done both inside the the track, the portion of soil affected by the transit of tractor wheels or tracks, and outside the track. Before the execution of each test, bulk density and initial soil water content close to the investigated area were determined. Relations among infiltration behavior and these parameters were analyzed. Field-saturated hydraulic conductivity (Kfs) at different sampling dates showed high variability, especially in the vineyard with cultivated soil. Indeed, highest infiltration rates were

  11. Fate and transport of selected estrogen compounds in Hawaii soils: Effect of soil type and macropores

    Science.gov (United States)

    D'Alessio, Matteo; Vasudevan, Dharni; Lichwa, Joseph; Mohanty, Sanjay K.; Ray, Chittaranjan

    2014-10-01

    The fate and transport of estrogen compounds in the environment is of increasing concern due to their potential impact on freshwater organisms, ecosystems and human health. The behavior of these compounds in batch experiments suggests low mobility, while field studies indicate the persistence of estrogen compounds in the soil with the possibility of migration to surface water as well as groundwater. To better understand the movement of these chemicals through soils, we examined their transport in three different Hawaiian soils and two aqueous matrices. The three different soils used were an Oxisol, a Mollisol and a cinder, characterized by different mineralogical properties and collected at depths of 60-90 cm and 210-240 cm. Two liquid matrices were used; deionized (DI) water containing calcium chloride (CaCl2), and recycled water collected from a wastewater treatment facility. The experiments were conducted in packed and structured columns. Non-equilibrium conditions were observed during the study, especially in the structured soil. This is believed to be primarily related to the presence of macropores in the soil. The presence of macropores resulted in reduced contact time between soil and estrogens, which facilitated their transport. We found that the organic carbon content and mineralogical composition of the soils had a profound effect on the transport of the estrogens. The mobility of estrone (E1) and 17β-estradiol (E2) was greater in cinder than in the other soils. In column experiments with recycled water, earlier breakthrough peaks and longer tails of estrogens were produced compared to those observed using DI water. The use of recycled water for agricultural purposes and the siting of septic tanks and cesspools should be critically reviewed in light of these findings, especially in areas where groundwater is the primary source of potable water, such as Hawaii.

  12. Fate and transport of selected estrogen compounds in Hawaii soils: effect of soil type and macropores.

    Science.gov (United States)

    D'Alessio, Matteo; Vasudevan, Dharni; Lichwa, Joseph; Mohanty, Sanjay K; Ray, Chittaranjan

    2014-10-01

    The fate and transport of estrogen compounds in the environment is of increasing concern due to their potential impact on freshwater organisms, ecosystems and human health. The behavior of these compounds in batch experiments suggests low mobility, while field studies indicate the persistence of estrogen compounds in the soil with the possibility of migration to surface water as well as groundwater. To better understand the movement of these chemicals through soils, we examined their transport in three different Hawaiian soils and two aqueous matrices. The three different soils used were an Oxisol, a Mollisol and a cinder, characterized by different mineralogical properties and collected at depths of 60-90 cm and 210-240 cm. Two liquid matrices were used; deionized (DI) water containing calcium chloride (CaCl2), and recycled water collected from a wastewater treatment facility. The experiments were conducted in packed and structured columns. Non-equilibrium conditions were observed during the study, especially in the structured soil. This is believed to be primarily related to the presence of macropores in the soil. The presence of macropores resulted in reduced contact time between soil and estrogens, which facilitated their transport. We found that the organic carbon content and mineralogical composition of the soils had a profound effect on the transport of the estrogens. The mobility of estrone (E1) and 17β-estradiol (E2) was greater in cinder than in the other soils. In column experiments with recycled water, earlier breakthrough peaks and longer tails of estrogens were produced compared to those observed using DI water. The use of recycled water for agricultural purposes and the siting of septic tanks and cesspools should be critically reviewed in light of these findings, especially in areas where groundwater is the primary source of potable water, such as Hawaii.

  13. Soil erosion risk as a measure of the effects of land pattern changes on runoff processes in the landscape – case studies from Lower Austria and Central Bohemia

    Science.gov (United States)

    Devátý, Jan; Strauss, Peter; Hoesl, Rosemarie; Dostal, Tomas; Krása, Josef

    2015-04-01

    Changes in land use, landscape structure and agricultural technologies affect number of soil characteristics as well as rainfall-runoff processes in the landscape. Soil erosion and sediment transport can be easily used for documentation and quantification of the impacts of land use development in time. Extent and structure of arable land within a landscape is driven by technological, social and political, factors and differs between countries. However land structure development is more or less natural process and is driven under normal conditions mainly by climatic and economic forces, the effects of political development is very well documented on different sides of the former iron curtain. There is unique chance to compare the trends in historical development during different historical periods given by both of economic and political forces and to search for optimum land structure, using rainfall-runoff processes as a measure. Land structure analysis and soil erosion risk assessment was carried out for two areas of interest and series of historical periods: • Lower Austrian municipality of Kleinweikersdorf (580 ha) - 1822, 1945, 1966, 1990, 2008 • part of Botic river watershed in Central Bohemia (810 ha) - 1841, 1953, 1971, 1989, 2003, 2013 Land use delimitation and field plots spatial definition was digitized from available data sources (Historical Cadastral maps and aerial photographs). Changes in crop properties and management practices were also taken into account based on historical information. Comparison between time periods shows that political actions can cause substantial impact on field plot sizes. At the Austrian area of interest the number of arable field plot continually decreases from 1203 (in 1822) to 371 (in 2008) whereas at the Czech area of interest the initial number of 469 parcels (in 1841) decreases to 32 (in 1989) and then rises again in the last two time periods. While the trend of rising average parcel size in Austria is continuous

  14. Biochar Soil Amendment Effects on Arsenic Availability to Mountain Brome ().

    Science.gov (United States)

    Strawn, Daniel G; Rigby, April C; Baker, Leslie L; Coleman, Mark D; Koch, Iris

    2015-07-01

    Biochar is a renewable energy byproduct that shows promise for remediating contaminated mine sites. A common contaminant at mine sites is arsenic (As). In this study, the effects of biochar amendments to a mine-contaminated soil on As concentrations in mountain brome ( Nees ex Steud.) were investigated. In the biochar-amended soil, mountain brome had greater root biomass and decreased root and shoot As concentrations. X-ray absorption near-edge structure spectroscopy results showed that arsenate [As(V)] is the predominant species in both the nonamended and biochar-amended soils. Soil extraction tests that measure phosphate and arsenate availability to plants failed to accurately predict plant tissue As concentrations, suggesting the arsenate bioavailability behavior in the soils is distinct from phosphate. Results from this study indicate that biochar will be a beneficial amendment to As-contaminated mine sites for remediation. PMID:26437113

  15. Global Change Effects on Plant-Soil Interactions

    DEFF Research Database (Denmark)

    Dam, Marie

    Global change is expected to increasingly affect composition and functioning of soil communities. In terrestrial ecosystems, the plant-soil interactions will be of particular importance for the ecosystem response, including feed-back responses that may further increase climate change. The aim...... (Paper III). Furthermore, by way of meta-analysis, the role of organisms in global change effects on ecosystem function is modelled (Paper IV). Among CO2, warming and summer drought, CO2 is the factor most consistently impacting soil organisms. CO2 increases abundance of microorganisms and nematodes...... of this dissertation has been to determine how soil food web structure and function is affected when the quantity and quality of plant input is altered under global change. By studying the abundance and composition of soil organisms, particularly those in the rhizosphere, closely associated with living plants, we...

  16. Effect of corylus clusters on the physicochemical properties of soil

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Soil sample plots were specified and the soil in layer A0, A1 and AB were collected in MaoershanForest Experiment Farm of Northeast Forestry University for study of the effect of corylus clusters on soil in 1999. The result shows that the pH value, contents of organic matter, total nitrogen, alkali-discomposed nitrogen and total phosphorus under the corylus clusters are higher than that under the non-corylus clusters, except the available phosphorus content. The number of soil granular aggregates or the water stable aggregates under corylus clusters is more than that under the non-corylus clusters. The corylus clusters play an important role in improving the physicochemical properties of the soil, which should be conserved and developed in the forestry production.

  17. Earthworms and priming of soil organic matter - The impact of food sources, food preferences and fauna - microbiota interactions

    Science.gov (United States)

    Potthoff, Martin; Wichern, Florian; Dyckmans, Jens; Joergensen, Rainer Georg

    2016-04-01

    Earthworms deeply interact with the processes of soil organic matter turnover in soil. Stabilization of carbon by soil aggregation and in the humus fraction of SOM are well known processes related to earthworm activity and burrowing. However, recent research on priming effects showed inconsistent effects for the impact of earthworm activity. Endogeic earthworms can induce apparent as well as true positive priming effects. The main finding is almost always that earthworm increase the CO2 production from soil. The sources of this carbon release can vary and seem to depend on a complex interaction of quantity and quality of available carbon sources including added substrates like straw or other compounds, food preferences and feeding behavior of earthworms, and soil properties. Referring to recent studies on earthworm effects on soil carbon storage and release (mainly Eck et al. 2015 Priming effects of Aporrectodea caliginosa on young rhizodeposits and old soil organic matter following wheat straw addition, European Journal of Soil Biology 70:38-45; Zareitalabad et al. 2010 Decomposition of 15N-labelled maize leaves in soil affected by endogeic geophagous Aporrectodea caliginosa, Soil Biology and Biochemistry 42(2):276-282; and Potthoff et al. 2001 Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought, Soil Biology and Biochemistry 33(4):583-591) we summaries the knowledge on earthworms and priming and come up with a conceptual approach and further research needs.

  18. Land-use change and management effects on carbon sequestration in soils of Russia's South Taiga zone

    International Nuclear Information System (INIS)

    The impact of land use change and management on soil C sequestration was investigated during the 1980s-1990s on gray forest soils in Pushchino, and on the soddy-podzolic soil in Prioksko-Terrasny Biosphere Reserve, Moscow Region, Russia (54 deg 50 min N, 37 deg 35 min E). Mean annual rates of C sequestration after establishment of perennials (layer 0-60 cm) were 63-182 g C/m2 and 22-43 g C/m2 for gray forest and soddy-podzolic soils, respectively. Grassing resulted in higher soil C accumulation than afforestation. Cutting and application of NPK fertilisers increased soil C accumulation, but newly formed soil organic matter was less resistant to decomposition than in unfertilised soil. Preliminary calculations of C sequestration due to abandonment of arable land in Russia since the early 1990s suggest that total C accumulation in soil and the plant biomass could represent about one tenth of industrial CO2 emissions

  19. Short rotation coppice improve the phosphorus (P) supply of arable land through translocation of P from subsoil to topsoil

    Science.gov (United States)

    Doering, K.; Kaupenjohann, M.

    2011-12-01

    Even if the agricultural use of P will not increase during the next decades, the stock of phosphorous (P) in global mineral deposits is predicted to last for only less than 50 to 100 years. This will cause a much more severe problem than the shortage of fossil energy because P as an element essential to all life is not substitutable through any other material. Thus, efforts have to be made to close the P-cycle and it will in the near future be no more justifiable to disperse P or dump it at places where it cannot be recovered from. Additionally, new resources of P have to be explored to cover increasing P demand and to compensate for inevitable losses. Subsoil, which is hardly explored by arable crops may contain such P reserves. Deep rooting perennial plants like trees have access to these P resources and may be used to introduce subsoil P into the agricultural P cycle. Using literature data we followed the question to what extent the introduction of short rotation coppice of energy - Populus, Salix and Robinia into the agricultural crop rotation could support the P supply to annual food crops. Leaf litter of Populs, Salix and Robinia will transfer 3 to 13, 5 to 12 and 5 to 12 kg P and ha-1 a-1 to the soil surface, respectively. The large variation is mainly explained by site conditions (soil and climate). Assuming that 30 % of the nutrient requirement of the trees is assimilated from the subsoil, 1 to 5 kg of P ha-1 a-1 may be translocated to the topsoil. The knowledge about root content of P of the three tree species is very scarce. Based on information about other broadleaf trees, we consider that root litter may transfer amounts of P to the topsoil similar to leaf litter. Thus, in total the annual translocation of subsoil-P to the topsoil may range between 2 to 10 kg ha-1 in short rotation plantations. These amounts are far below the annual P removal from soils through food crops which may range from 20 to 40 kg P ha-1 a-1. Therefore subsoil P cannot replace P

  20. Legacy effects of grassland management on soil carbon to depth.

    Science.gov (United States)

    Ward, Susan E; Smart, Simon M; Quirk, Helen; Tallowin, Jerry R B; Mortimer, Simon R; Shiel, Robert S; Wilby, Andrew; Bardgett, Richard D

    2016-08-01

    The importance of managing land to optimize carbon sequestration for climate change mitigation is widely recognized, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large-scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grassland soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in subsurface soil below 30 cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30 cm. Total stocks of soil carbon (t ha(-1) ) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha(-1) in surface soils (0-30 cm), and 13.7 t ha(-1) in soils from 30 to 100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management. PMID:26854892

  1. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  2. Effect of manure on glyphosate and trifluralin mineralization in soil.

    Science.gov (United States)

    Reimer, M; Farenhorst, A; Gaultier, J

    2005-01-01

    Manure additions to soil may alter soil chemical, physical, and biological characteristics, and thereby change pesticide fate processes in soil. This is the first study to examine the impact of liquid hog manure amendments on glyphosate and trifluralin mineralization in soil. Experiments were conducted in soil microcosms in the laboratory for a total of 332 (glyphosate) and 430 (trifluralin) days. The rate and amount of mineralization of both glyphosate and trifluralin were significantly influenced by the additions of fresh manure to soil in the laboratory and by the history of manure applications in the field. However, the maximum difference in herbicide mineralization between soils that were free of manure application and those amended with manure in the field or in the laboratory was only 6.1% and 7.3% of that initially applied, for trifluralin and glyphosate, respectively. Therefore, we conclude that liquid hog manure application to soil will have no significant effect on the mineralization of glyphosate and trifluralin under field conditions.

  3. Heavy Metal Mobility in Polluted Soils: Effect of Different Treatments

    Directory of Open Access Journals (Sweden)

    Marta S. Zubillaga

    2008-01-01

    Full Text Available The effects of biosolid compost and phytoremediation applied on the leaching of cadmium, copper, lead and zinc, through the different horizons of a superficially polluted soil were determined. The soil was from the Province of Buenos Aires, Argentina. It was contaminated with cadmium copper, lead and zinc. Leaching columns were used with three different horizons: A: 0.12 m A horizon, B: 0.12 m horizon A+0.15 Bt horizon and C: 0.12 m A horizon+0.15 m Bt horizon+0.13 m BC horizon. The treatments were i. Witness (contaminated soil, II. contaminated soil+plants (Plant, III. contaminated soil+50 Mg has-1 biosolid compost (Compost and iv. contaminated soil+50 Mg has-1 biosolid compost+plants (Compost-Plant. The leached ones were gathered after incorporating to the columns the following volumes of water A: 1000 mL, B: 1200 mL and C: 2000 mL. Leachates were obtained out after harvesting vegetal material. It was found that horizon Bt presents a barrier to metal leaching. Both concentration of clay and type of clay appears to immobilize heavy metals in those soils. The clay content over 40% and/or 53.4 g smectite g-1 soils reduce the heavy metal leaching. The application of organic amendment or occurrence of plant eventually used in remediation techniques did not influence on the leaching of metals.

  4. [Effect of temperature on methane production and oxidation in soils].

    Science.gov (United States)

    Ding, Weixin; Cai, Zucong

    2003-04-01

    The influence of temperature and its mechanism on methane production and oxidation in soils were reviewed in this paper. Temperature can alter the soil ability to produce methane through changing types of dominant methanogens in archaeal community. Dominant methanogen is Methanosarcinaceae at higher temperature which can utilize both H2/CO2 and acetate as the precursor to produce methane, while Methanosaetaceae at lower temperature which only use acetate as the precursor and produce far less methane than do Methanosarcinaceae. Increasing soil temperature apparently raises soil ability to produce methane, which is called temperature effectiveness and expressed as Q10 with a range from 1.5 to 28 and an average of 4.1. There is an obviously positive correlation between temperature effectiveness (Q10) on methane production and substrate content. As compared to methane production, effect of temperature on methane oxidation is lower, which may be related to the strong affinity of methanotrophs for methane.

  5. Effects of Different Types of Sludge on Soil Microbial Properties: A Field Experiment on Degraded Mediterranean Soils

    Institute of Scientific and Technical Information of China (English)

    D.TARRAS(O)N; G.OJEDA; O.ORTIZ; J.M.ALCA(N)IZ

    2010-01-01

    T The recycling of suitable organic wastes can enhance soil fertility via effects on soil physical, chemical and biological properties. To compare the effects of digested (DS), thermally dried (TDS) and composted dewatered (CDS) sewage sludge on soil microbiological properties, an experiment was conducted at field sites for more than one year (401 d) when applied to two Mediterranean degraded soils (loam and loamy sand soils). All three types of sewage sludge had a significant effect on measured parameters. In a short time, the plots of both loamy sand and loam soils amended with TDS showed the highest microbial basal respiration (loam soil: P < 0.01; loamy sand soil: P < 0.001) and carbon mineralization coefficient (loam soil: P < 0.01; loamy sand soil: P < 0.001). Furthermore, on loamy sand soil, the plots amended with TDS showed the highest microbial metabolic quotient (qCO2) (P < 0.05). This study revealed that the addition of sludge caused transient non-equilibrium effects on almost all soil microbial properties. However, there were no differences one year later because the remaining organic carbon was stable and quite similar in all treatments. These results may have practical implications for the rehabilitation of degraded soils.

  6. Updating soil CO2 emission experiments to assess climate change effects and extracellular soil respiration

    Science.gov (United States)

    Vidal Vazquez, Eva; Paz Ferreiro, Jorge

    2014-05-01

    Experimental work is an essential component in training future soil scientists. Soil CO2 emission is a key issue because of the potential impacts of this process on the greenhouse effect. The amount of organic carbon stored in soils worldwide is about 1600 gigatons (Gt) compared to 750 Gt in the atmosphere mostly in the form of CO2. Thus, if soil respiration increased slightly so that just 10% of the soil carbon pool was converted to CO2, atmospheric CO2 concentrations in the atmosphere could increase by one-fifth. General circulation model predictions indicate atmosphere warming between 2 and 5°C (IPCC 2007) and precipitation changes ranging from about -15 to +30%. Traditionally, release of CO2 was thought to occur only in an intracellular environment; however, recently CO2 emissions have been in irradiated soil, in the absence of microorganisms (Maire et al., 2013). Moreover, soil plays a role in the stabilization of respiration enzymes promoting CO2 release after microorganism death. Here, we propose to improve CO2 emission experiments commonly used in soil biology to investigate: 1) effects of climatic factors on soil CO2 emissions, and 2) rates of extracellular respiration in soils and how these rates are affected by environmental factors. Experiment designed to assess the effect of climate change can be conducted either in field conditions under different ecosystems (forest, grassland, cropland) or in a greenhouse using simple soil chambers. The interactions of climate change in CO2 emissions are investigated using climate-manipulation experiment that can be adapted to field or greenhouse conditions (e.g. Mc Daniel et al., 2013). The experimental design includes a control plot (without soil temperature and rain manipulation) a warming treatment as well as wetting and/or drying treatments. Plots are warmed to the target temperature by procedures such as infrared heaters (field) or radiant cable (greenhouse). To analyze extracellular respiration, rates of CO2

  7. Possible changes to arable crop yields by 2050.

    Science.gov (United States)

    Jaggard, Keith W; Qi, Aiming; Ober, Eric S

    2010-09-27

    By 2050, the world population is likely to be 9.1 billion, the CO(2) concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2 degrees C. In these conditions, what contribution can increased crop yield make to feeding the world? CO(2) enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO(2)-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations. PMID:20713388

  8. The Dynamic Change in the Total Arable Land and its Driving Forces in Tongling City of Anhui Province

    Institute of Scientific and Technical Information of China (English)

    Yan; LI; Zhongxiang; YU

    2014-01-01

    According to Anhui Statistical Yearbook( 2003-2012) and the second national land survey data,this article analyzes the current situation of land use and the dynamic change in the total arable land in Tongling City. On the basis of this,using grey relational analysis,this article analyzes the driving forces for arable land changes in Tongling City. Studies show that population growth,the improvement of level of urbanization and the rapid development of the economy are the main driving forces for arable land changes. Based on the findings,the strategies are put forth in order to ensure the dynamic balance of total arable land.

  9. Influence of Robinia pseudoacacia short rotation coppice on soil physical properties

    Science.gov (United States)

    Xavier, Morvan; Isabelle, Bertrand; Gwenaelle, Gibaud

    2015-04-01

    Human activities can lead to the degradation of soil physical properties. For instance, machinery traffic across the land can induce the development of compacted areas at the wheel tracks. It leads to a decrease in porosity which results in a decrease of the hydraulic conductivity, and therefore, prevents water infiltration and promotes surface runoff. Land use, soil management and soil cover also have a significant influence on soil physical properties (Kodesova et al., 2011). In the arable land, surface runoff and soil erosion are enhanced by the absence of soil cover for part of the year and by the decrease of aggregate stability due to a decline of soil organic matter. In that context, few studies focused on the effects of a Robinia pseudoacacia short rotation coppice (SRC) on soil physical properties. Therefore, this study aims to determine the effect of the conversion of a grassland in a SRC on soil physical properties. These properties have also been compared to those of arable land and natural forest. For that, in several plots of the experimental farm of Grignon (30 km west of Paris, France), different measurements were performed: i) soil water retention on a pressure plate apparatus for 7 water potential between 0 and 1500 kPa, ii) bulk density using the method for gravelly and rocky soil recommended by the USDA, iii) aggregate stability using the method described in Le Bissonnais (1996), and iv) soil hydraulic conductivity using a Guelph permeameter. All these measurements were performed on the same soil type and on different land uses: arable land (AL), grassland (GL), natural forest (NF) and short rotation coppice (SRC) of Robinia pseudoacacia planted 5 years ago. Soil water retention measurements are still under progress and will be presented in congress. Bulk density measurements of the AL, GL and SRC are not significantly different. They ranged from 1.32 to 1.42. Only the NF measurements are significantly lower than the other (0.97). Aggregate

  10. Effect of soil type and soil management on soil physical, chemical and biological properties in commercial organic olive orchards in Southern Spain

    Science.gov (United States)

    Gomez, Jose Alfonso; Auxiliadora Soriano, Maria; Montes-Borrego, Miguel; Navas, Juan Antonio; Landa, Blanca B.

    2014-05-01

    One of the objectives of organic agriculture is to maintain and improve soil quality, while simultaneously producing an adequate yield. A key element in organic olive production is soil management, which properly implemented can optimize the use of rainfall water enhancing infiltration rates and controlling competition for soil water by weeds. There are different soil management strategies: eg. weed mowing (M), green manure with surface tillage in spring (T), or combination with animal grazing among the trees (G). That variability in soil management combined with the large variability in soil types on which organic olive trees are grown in Southern Spain, difficult the evaluation of the impact of different soil management on soil properties, and yield as well as its interpretation in terms of improvement of soil quality. This communications presents the results and analysis of soil physical, chemical and biological properties on 58 soils in Southern Spain during 2005 and 2006, and analyzed and evaluated in different studies since them. Those 58 soils were sampled in 46 certified commercial organic olive orchards with four soil types as well as 12 undisturbed areas with natural vegetation near the olive orchards. The four soil types considered were Eutric Regosol (RGeu, n= 16), Eutric Cambisol (CMeu, n=16), Calcaric Regosol (RGca, n=13 soils sampled) and Calcic Cambisol (CMcc), and the soil management systems (SMS) include were 10 light tillage (LT), 16 sheep grazing (G), 10 tillage (T), 10 mechanical mowing (M), and 12 undisturbed areas covered by natural vegetation (NV-C and NV-S). Our results indicate that soil management had a significant effect on olive yield as well as on key soil properties. Among these soil properties are physical ones, such as infiltration rate or bulk density, chemical ones, especially organic carbon concentration, and biological ones such as soil microbial respiration and bacterial community composition. Superimpose to that soil

  11. Effects of heavy metal pollution on soil microbial biomass

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    This paper reviews the effects of heavy metals on microbial biomass in metal-polluted soils. Laboratory and field investigations where metals were applied ass inorganic or organic salts demonstrated a significant decline in the size of s oil microbial biomass. In most of the cases, negative effects were evident at metal concentrations below the European Community's (EC) current permissible metal levels in the soil. Application of metal-enriched sludges and composts caused significant inhibition of microbial biomass at surprisingly modest concentrations of metals in the soil that were indeed smaller than those likely to decrease the growth of sensitive crop species. On the whole, relative toxicity of metals decreased in the order of Cd>Cu>Zn>Pb, but a few exceptions to this trend also existed. A significant decline in the biomass carbon to organic carbon ratio(Cmin/Corg) in metal-polluted soils indicated that this parameter can serve as a good indicator of the toxicity of metals on soil microflora. The knowledge regarding the response of soil biota to metal interactions and the factors affecting metal toxicity to soil microorganisms is still very limited and warrants further study.

  12. Dry heat effects on survival of indigenous soil particle microflora and particle viability studies of Kennedy Space Center soil

    Science.gov (United States)

    Ruschmeyer, O. R.; Pflug, I. J.; Gove, R.; Heisserer, Y.

    1975-01-01

    Research efforts were concentrated on attempts to obtain data concerning the dry heat resistance of particle microflora in Kennedy Space Center soil samples. The in situ dry heat resistance profiles at selected temperatures for the aggregate microflora on soil particles of certain size ranges were determined. Viability profiles of older soil samples were compared with more recently stored soil samples. The effect of increased particle numbers on viability profiles after dry heat treatment was investigated. These soil particle viability data for various temperatures and times provide information on the soil microflora response to heat treatment and are useful in making selections for spacecraft sterilization cycles.

  13. Climate change effects on soil microarthropod abundance and community structure

    Energy Technology Data Exchange (ETDEWEB)

    Kardol, Paul [ORNL; Reynolds, W. Nicholas [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL; Classen, Aimee T [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Long-term ecosystem responses to climate change strongly depend on how the soil subsystem and its inhabitants respond to these perturbations. Using open-top chambers, we studied the response of soil microarthropods to single and combined effects of ambient and elevated atmospheric [CO{sub 2}], ambient and elevated temperatures and changes in precipitation in constructed old-fields in Tennessee, USA. Microarthropods were assessed five years after treatments were initiated and samples were collected in both November and June. Across treatments, mites and collembola were the most dominant microarthropod groups collected. We did not detect any treatment effects on microarthropod abundance. In November, but not in June, microarthropod richness, however, was affected by the climate change treatments. In November, total microarthropod richness was lower in dry than in wet treatments, and in ambient temperature treatments, richness was higher under elevated [CO{sub 2}] than under ambient [CO{sub 2}]. Differential responses of individual taxa to the climate change treatments resulted in shifts in community composition. In general, the precipitation and warming treatments explained most of the variation in comm