WorldWideScience

Sample records for arabidopsis transcriptome profiling1woa

  1. Programming of Plant Leaf Senescence with Temporal and Inter-Organellar Coordination of Transcriptome in Arabidopsis.

    Science.gov (United States)

    Woo, Hye Ryun; Koo, Hee Jung; Kim, Jeongsik; Jeong, Hyobin; Yang, Jin Ok; Lee, Il Hwan; Jun, Ji Hyung; Choi, Seung Hee; Park, Su Jin; Kang, Byeongsoo; Kim, You Wang; Phee, Bong-Kwan; Kim, Jin Hee; Seo, Chaehwa; Park, Charny; Kim, Sang Cheol; Park, Seongjin; Lee, Byungwook; Lee, Sanghyuk; Hwang, Daehee; Nam, Hong Gil; Lim, Pyung Ok

    2016-05-01

    Plant leaves, harvesting light energy and fixing CO2, are a major source of foods on the earth. Leaves undergo developmental and physiological shifts during their lifespan, ending with senescence and death. We characterized the key regulatory features of the leaf transcriptome during aging by analyzing total- and small-RNA transcriptomes throughout the lifespan of Arabidopsis (Arabidopsis thaliana) leaves at multidimensions, including age, RNA-type, and organelle. Intriguingly, senescing leaves showed more coordinated temporal changes in transcriptomes than growing leaves, with sophisticated regulatory networks comprising transcription factors and diverse small regulatory RNAs. The chloroplast transcriptome, but not the mitochondrial transcriptome, showed major changes during leaf aging, with a strongly shared expression pattern of nuclear transcripts encoding chloroplast-targeted proteins. Thus, unlike animal aging, leaf senescence proceeds with tight temporal and distinct interorganellar coordination of various transcriptomes that would be critical for the highly regulated degeneration and nutrient recycling contributing to plant fitness and productivity. PMID:26966169

  2. A spatial dissection of the Arabidopsis floral transcriptome by MPSS

    Directory of Open Access Journals (Sweden)

    Sanchez-Leon Nidia

    2008-04-01

    Full Text Available Abstract Background We have further characterized floral organ-localized gene expression in the inflorescence of Arabidopsis thaliana by comparison of massively parallel signature sequencing (MPSS data. Six libraries of RNA sequence tags from immature inflorescence tissues were constructed and matched to their respective loci in the annotated Arabidopsis genome. These signature libraries survey the floral transcriptome of wild-type tissue as well as the floral homeotic mutants, apetala1, apetala3, agamous, a superman/apetala1 double mutant, and differentiated ovules dissected from the gynoecia of wild-type inflorescences. Comparing and contrasting these MPSS floral expression libraries enabled demarcation of transcripts enriched in the petals, stamens, stigma-style, gynoecia, and those with predicted enrichment within the sepal/sepal-petals, petal-stamens, or gynoecia-stamens. Results By comparison of expression libraries, a total of 572 genes were found to have organ-enriched expression within the inflorescence. The bulk of characterized organ-enriched transcript diversity was noted in the gynoecia and stamens, whereas fewer genes demonstrated sepal or petal-localized expression. Validation of the computational analyses was performed by comparison with previously published expression data, in situ hybridizations, promoter-reporter fusions, and reverse transcription PCR. A number of well-characterized genes were accurately delineated within our system of transcript filtration. Moreover, empirical validations confirm MPSS predictions for several genes with previously uncharacterized expression patterns. Conclusion This extensive MPSS analysis confirms and supplements prior microarray floral expression studies and illustrates the utility of sequence survey-based expression analysis in functional genomics. Spatial floral expression data accrued by MPSS and similar methods will be advantageous in the elucidation of more comprehensive genetic

  3. Transcriptome response analysis of Arabidopsis thaliana to leafminer (Liriomyza huidobrensis

    Directory of Open Access Journals (Sweden)

    Zhang Sufang

    2012-12-01

    Full Text Available Abstract Background Plants have evolved a complicated resistance system and exhibit a variety of defense patterns in response to different attackers. Previous studies have shown that responses of plants to chewing insects and phloem-feeding insects are significantly different. Less is known, however, regarding molecular responses to leafminer insects. To investigate plant transcriptome response to leafminers, we selected the leafminer Liriomyza huidobrensis, which has a special feeding pattern more similar to pathogen damage than that of chewing insects, as a model insect, and Arabidopsis thaliana as a response plant. Results We first investigated local and systemic responses of A. thaliana to leafminer feeding using an Affymetrix ATH1 genome array. Genes related to metabolic processes and stimulus responses were highly regulated. Most systemically-induced genes formed a subset of the local response genes. We then downloaded gene expression data from online databases and used hierarchical clustering to explore relationships among gene expression patterns in A. thaliana damaged by different attackers. Conclusions Our results demonstrate that plant response patterns are strongly coupled to damage patterns of attackers.

  4. Multiple reference genomes and transcriptomes for Arabidopsis thaliana

    KAUST Repository

    Gan, Xiangchao

    2011-08-28

    Genetic differences between Arabidopsis thaliana accessions underlie the plants extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions. ©2011 Macmillan Publishers Limited. All rights reserved.

  5. Comprehensive Transcriptome Analysis of Auxin Responses in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Ivan A.Paponov; Martina Paponov; William Teale; Margit Menges; Sohini Chakrabortee; James A.H.Murray; Klaus Palme

    2008-01-01

    In plants,the hormone auxin shapes gene expression to regulate growth and development.Despite the detailed characterization of auxin-inducible genes,a comprehensive overview of the temporal and spatial dynamics of auxinregulated gene expression is lacking.Here,we analyze transcriptome data from many publicly available Arabidopsis profiling experiments and assess tissue-specific gene expression both in response to auxin concentration and exposure time and in relation to other plant growth regulators.Our analysis shows that the primary response to auxin over a wide range of auxin application conditions and in specific tissues comprises almost exclusively the up-regulation of genes and identifies the most robust auxin marker genes.Tissue-specific auxin responses correlate with differential expression of Aux/IAA genes and the subsequent regulation of context- and sequence-specific patterns of gene expression.Changes in transcript levels were consistent with a distinct sequence of conjugation,increased transport capacity and down-regulation of biosynthesis in the temperance of high cellular auxin concentrations.Our data show that auxin regulates genes associated with the biosynthesis,catabolism and signaling pathways of other phytohormones.We present a transcriptional overview of the auxin response.Specific interactions between auxin and other phytohormones are highlighted,particularly the regulation of their metabolism.Our analysis provides a roadmap for auxin-dependent processes that underpins the concept of an 'auxin code'-a tissue-specific fingerprint of gene expression that initiates specific developmental processes.

  6. Programming of Plant Leaf Senescence with Temporal and Inter-Organellar Coordination of Transcriptome in Arabidopsis1[OPEN

    Science.gov (United States)

    Koo, Hee Jung; Kim, Jeongsik; Jeong, Hyobin; Yang, Jin Ok; Lee, Il Hwan; Jun, Ji Hyung; Choi, Seung Hee; Park, Su Jin; Kang, Byeongsoo; Kim, You Wang; Phee, Bong-Kwan; Kim, Jin Hee; Seo, Chaehwa; Park, Charny; Kim, Sang Cheol; Park, Seongjin; Lee, Byungwook; Lee, Sanghyuk; Hwang, Daehee; Lim, Pyung Ok

    2016-01-01

    Plant leaves, harvesting light energy and fixing CO2, are a major source of foods on the earth. Leaves undergo developmental and physiological shifts during their lifespan, ending with senescence and death. We characterized the key regulatory features of the leaf transcriptome during aging by analyzing total- and small-RNA transcriptomes throughout the lifespan of Arabidopsis (Arabidopsis thaliana) leaves at multidimensions, including age, RNA-type, and organelle. Intriguingly, senescing leaves showed more coordinated temporal changes in transcriptomes than growing leaves, with sophisticated regulatory networks comprising transcription factors and diverse small regulatory RNAs. The chloroplast transcriptome, but not the mitochondrial transcriptome, showed major changes during leaf aging, with a strongly shared expression pattern of nuclear transcripts encoding chloroplast-targeted proteins. Thus, unlike animal aging, leaf senescence proceeds with tight temporal and distinct interorganellar coordination of various transcriptomes that would be critical for the highly regulated degeneration and nutrient recycling contributing to plant fitness and productivity. PMID:26966169

  7. Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana

    OpenAIRE

    Yonekura-Sakakibara, Keiko; Fukushima, Atsushi; Nakabayashi, Ryo; Hanada, Kousuke; Matsuda, Fumio; Sugawara, Satoko; Inoue, Eri; Kuromori, Takashi; ITO, Takuya; Shinozaki, Kazuo; Wangwattana, Bunyapa; Yamazaki, Mami; Saito, Kazuki

    2011-01-01

    To identify candidate genes involved in Arabidopsis flavonoid biosynthesis, we applied transcriptome coexpression analysis and independent component analyses with 1388 microarray data from publicly available databases. Two glycosyltransferases, UGT79B1 and UGT84A2 were found to cluster with anthocyanin biosynthetic genes. Anthocyanin was drastically reduced in ugt79b1 knockout mutants. Recombinant UGT79B1 protein converted cyanidin 3-O-glucoside to cyanidin 3-O-xylosyl(1→2)glucoside. UGT79B1 ...

  8. Comparative transcriptome and proteome analysis to reveal the biosynthesis of gold nanoparticles in Arabidopsis

    Science.gov (United States)

    Tiwari, Manish; Krishnamurthy, Sneha; Shukla, Devesh; Kiiskila, Jeffrey; Jain, Ajay; Datta, Rupali; Sharma, Nilesh; Sahi, Shivendra V.

    2016-01-01

    A large number of plants have been tested and exploited in search of a green chemistry approach for the fabrication of gold or other precious metal nanomaterials. Despite the potential of plant based methods, very little is known about the underlying biochemical reactions and genes involved in the biotransformation mechanism of AuCl4 into gold nanoparticles (AuNPs). In this research, we thus focused on studying the effect of Au on growth and nanoparticles formation by analyses of transcriptome, proteome and ionome shift in Arabidopsis. Au exposure favored the growth of Arabidopsis seedling and induced formation of nanoparticles in root and shoot, as indicated by optical and hyperspectral imaging. Root transcriptome analysis demonstrated the differential expression of the members of WRKY, MYB and BHLH gene families, which are involved in the Fe and other essential metals homeostasis. The proteome analysis revealed that Glutathione S-transferases were induced in the shoot and suggested its potential role in the biosynthesis AuNPs. This study also demonstrated the role of plant hormone auxin in determining the Au induced root system architecture. This is the first study using an integrated approach to understand the in planta biotransformation of KAuCl4 into AuNPs. PMID:26902325

  9. PageRank-based identification of signaling crosstalk from transcriptomics data: the case of Arabidopsis thaliana.

    Science.gov (United States)

    Omranian, Nooshin; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2012-04-01

    The levels of cellular organization, from gene transcription to translation to protein-protein interaction and metabolism, operate via tightly regulated mutual interactions, facilitating organismal adaptability and various stress responses. Characterizing the mutual interactions between genes, transcription factors, and proteins involved in signaling, termed crosstalk, is therefore crucial for understanding and controlling cells' functionality. We aim at using high-throughput transcriptomics data to discover previously unknown links between signaling networks. We propose and analyze a novel method for crosstalk identification which relies on transcriptomics data and overcomes the lack of complete information for signaling pathways in Arabidopsis thaliana. Our method first employs a network-based transformation of the results from the statistical analysis of differential gene expression in given groups of experiments under different signal-inducing conditions. The stationary distribution of a random walk (similar to the PageRank algorithm) on the constructed network is then used to determine the putative transcripts interrelating different signaling pathways. With the help of the proposed method, we analyze a transcriptomics data set including experiments from four different stresses/signals: nitrate, sulfur, iron, and hormones. We identified promising gene candidates, downstream of the transcription factors (TFs), associated to signaling crosstalk, which were validated through literature mining. In addition, we conduct a comparative analysis with the only other available method in this field which used a biclustering-based approach. Surprisingly, the biclustering-based approach fails to robustly identify any candidate genes involved in the crosstalk of the analyzed signals. We demonstrate that our proposed method is more robust in identifying gene candidates involved downstream of the signaling crosstalk for species for which large transcriptomics data sets

  10. Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress

    OpenAIRE

    Schmid, Christoph; Bauer, Sibylle; Müller, Benedikt; Bartelheimer, Maik

    2013-01-01

    Root-root interactions are much more sophisticated than previously thought, yet the mechanisms of belowground neighbor perception remain largely obscure. Genome-wide transcriptome analyses allow detailed insight into plant reactions to environmental cues. A root interaction trial was set up to explore both morphological and whole genome transcriptional responses in roots of Arabidopsis thaliana in the presence or absence of an inferior competitor, Hieracium pilosella. Neighbor perception was ...

  11. Meta-analysis and meta-regression of transcriptomic responses to water stress in Arabidopsis.

    Science.gov (United States)

    Rest, Joshua S; Wilkins, Olivia; Yuan, Wei; Purugganan, Michael D; Gurevitch, Jessica

    2016-02-01

    The large amounts of transcriptome data available for Arabidopsis thaliana make a compelling case for the need to generalize results across studies and extract the most robust and meaningful information possible from them. The results of various studies seeking to identify water stress-responsive genes only partially overlap. The aim of this work was to combine transcriptomic studies in a systematic way that identifies commonalities in response, taking into account variation among studies due to batch effects as well as sampling variation, while also identifying the effect of study-specific variables, such as the method of applying water stress, and the part of the plant the mRNA was extracted from. We used meta-analysis, the quantitative synthesis of independent research results, to summarize expression responses to water stress across studies, and meta-regression to model the contribution of covariates that may affect gene expression. We found that some genes with small but consistent differential responses become evident only when results are synthesized across experiments, and are missed in individual studies. We also identified genes with expression responses that are attributable to use of different plant parts and alternative methods for inducing water stress. Our results indicate that meta-analysis and meta-regression provide a powerful approach for identifying a robust gene set that is less sensitive to idiosyncratic results and for quantifying study characteristics that result in contrasting gene expression responses across studies. Combining meta-analysis with individual analyses may contribute to a richer understanding of the biology of water stress responses, and may prove valuable in other gene expression studies. PMID:26756945

  12. Effect of prior drought and pathogen stress on Arabidopsis transcriptome changes to caterpillar herbivory.

    Science.gov (United States)

    Davila Olivas, Nelson H; Coolen, Silvia; Huang, Pingping; Severing, Edouard; van Verk, Marcel C; Hickman, Richard; Wittenberg, Alexander H J; de Vos, Martin; Prins, Marcel; van Loon, Joop J A; Aarts, Mark G M; van Wees, Saskia C M; Pieterse, Corné M J; Dicke, Marcel

    2016-06-01

    In nature, plants are exposed to biotic and abiotic stresses that often occur simultaneously. Therefore, plant responses to combinations of stresses are most representative of how plants respond to stresses. We used RNAseq to assess temporal changes in the transcriptome of Arabidopsis thaliana to herbivory by Pieris rapae caterpillars, either alone or in combination with prior exposure to drought or infection with the necrotrophic fungus Botrytis cinerea. Pre-exposure to drought stress or Botrytis infection resulted in a significantly different timing of the caterpillar-induced transcriptional changes. Additionally, the combination of drought and P. rapae induced an extensive downregulation of A. thaliana genes involved in defence against pathogens. Despite a more substantial growth reduction observed for plants exposed to drought plus P. rapae feeding compared with P. rapae feeding alone, this did not affect weight increase of this specialist caterpillar. Plants respond to combined stresses with phenotypic and transcriptional changes that differ from the single stress situation. The effect of a previous exposure to drought or B. cinerea infection on transcriptional changes to caterpillars is largely overridden by the stress imposed by caterpillars, indicating that plants shift their response to the most recent stress applied. PMID:26847575

  13. Machine learning-based differential network analysis: a study of stress-responsive transcriptomes in Arabidopsis.

    Science.gov (United States)

    Ma, Chuang; Xin, Mingming; Feldmann, Kenneth A; Wang, Xiangfeng

    2014-02-01

    Machine learning (ML) is an intelligent data mining technique that builds a prediction model based on the learning of prior knowledge to recognize patterns in large-scale data sets. We present an ML-based methodology for transcriptome analysis via comparison of gene coexpression networks, implemented as an R package called machine learning-based differential network analysis (mlDNA) and apply this method to reanalyze a set of abiotic stress expression data in Arabidopsis thaliana. The mlDNA first used a ML-based filtering process to remove nonexpressed, constitutively expressed, or non-stress-responsive "noninformative" genes prior to network construction, through learning the patterns of 32 expression characteristics of known stress-related genes. The retained "informative" genes were subsequently analyzed by ML-based network comparison to predict candidate stress-related genes showing expression and network differences between control and stress networks, based on 33 network topological characteristics. Comparative evaluation of the network-centric and gene-centric analytic methods showed that mlDNA substantially outperformed traditional statistical testing-based differential expression analysis at identifying stress-related genes, with markedly improved prediction accuracy. To experimentally validate the mlDNA predictions, we selected 89 candidates out of the 1784 predicted salt stress-related genes with available SALK T-DNA mutagenesis lines for phenotypic screening and identified two previously unreported genes, mutants of which showed salt-sensitive phenotypes. PMID:24520154

  14. Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress.

    Science.gov (United States)

    Schmid, Christoph; Bauer, Sibylle; Müller, Benedikt; Bartelheimer, Maik

    2013-01-01

    Root-root interactions are much more sophisticated than previously thought, yet the mechanisms of belowground neighbor perception remain largely obscure. Genome-wide transcriptome analyses allow detailed insight into plant reactions to environmental cues. A root interaction trial was set up to explore both morphological and whole genome transcriptional responses in roots of Arabidopsis thaliana in the presence or absence of an inferior competitor, Hieracium pilosella. Neighbor perception was indicated by Arabidopsis roots predominantly growing away from the neighbor (segregation), while solitary plants placed more roots toward the middle of the pot. Total biomass remained unaffected. Database comparisons in transcriptome analysis revealed considerable similarity between Arabidopsis root reactions to neighbors and reactions to pathogens. Detailed analyses of the functional category "biotic stress" using MapMan tools found the sub-category "pathogenesis-related proteins" highly significantly induced. A comparison to a study on intraspecific competition brought forward a core of genes consistently involved in reactions to neighbor roots. We conclude that beyond resource depletion roots perceive neighboring roots or their associated microorganisms by a relatively uniform mechanism that involves the strong induction of pathogenesis-related proteins. In an ecological context the findings reveal that belowground neighbor detection may occur independently of resource depletion, allowing for a time advantage for the root to prepare for potential interactions. PMID:23967000

  15. Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    April N Wynn

    Full Text Available In flowering plants the gynoecium is the female reproductive structure. In Arabidopsis thaliana ovules initiate within the developing gynoecium from meristematic tissue located along the margins of the floral carpels. When fertilized the ovules will develop into seeds. SEUSS (SEU and AINTEGUMENTA (ANT encode transcriptional regulators that are critical for the proper formation of ovules from the carpel margin meristem (CMM. The synergistic loss of ovule initiation observed in the seu ant double mutant suggests that SEU and ANT share overlapping functions during CMM development. However the molecular mechanism underlying this synergistic interaction is unknown. Using the ATH1 transcriptomics platform we identified transcripts that were differentially expressed in seu ant double mutant relative to wild type and single mutant gynoecia. In particular we sought to identify transcripts whose expression was dependent on the coordinated activities of the SEU and ANT gene products. Our analysis identifies a diverse set of transcripts that display altered expression in the seu ant double mutant tissues. The analysis of overrepresented Gene Ontology classifications suggests a preponderance of transcriptional regulators including multiple members of the REPRODUCTIVE MERISTEMS (REM and GROWTH-REGULATING FACTOR (GRF families are mis-regulated in the seu ant gynoecia. Our in situ hybridization analyses indicate that many of these genes are preferentially expressed within the developing CMM. This study is the first step toward a detailed description of the transcriptional regulatory hierarchies that control the development of the CMM and ovule initiation. Understanding the regulatory hierarchy controlled by SEU and ANT will clarify the molecular mechanism of the functional redundancy of these two genes and illuminate the developmental and molecular events required for CMM development and ovule initiation.

  16. The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation

    KAUST Repository

    Woo, Jongchan

    2012-05-03

    Background: Over application of phosphate fertilizers in modern agriculture contaminates waterways and disrupts natural ecosystems. Nevertheless, this is a common practice among farmers, especially in developing countries as abundant fertilizers are believed to boost crop yields. The study of plant phosphate metabolism and its underlying genetic pathways is key to discovering methods of efficient fertilizer usage. The work presented here describes a genome-wide resource on the molecular dynamics underpinning the response and recovery in roots and shoots of Arabidopsis thaliana to phosphate-starvation.Results: Genome-wide profiling by micro- and tiling-arrays (accessible from GEO: GSE34004) revealed minimal overlap between root and shoot transcriptomes suggesting two independent phosphate-starvation regulons. Novel gene expression patterns were detected for over 1000 candidates and were classified as either initial, persistent, or latent responders. Comparative analysis to AtGenExpress identified cohorts of genes co-regulated across multiple stimuli. The hormone ABA displayed a dominant role in regulating many phosphate-responsive candidates. Analysis of co-regulation enabled the determination of specific versus generic members of closely related gene families with respect to phosphate-starvation. Thus, among others, we showed that PHR1-regulated members of closely related phosphate-responsive families (PHT1;1, PHT1;7-9, SPX1-3, and PHO1;H1) display greater specificity to phosphate-starvation than their more generic counterparts. Conclusion: Our results uncover much larger, staged responses to phosphate-starvation than previously described. To our knowledge, this work describes the most complete genome-wide data on plant nutrient stress to-date. 2012 Woo et al.; licensee BioMed Central Ltd.

  17. Transcriptomic analysis of Arabidopsis overexpressing flowering locus T driven by a meristem-specific promoter that induces early flowering.

    Science.gov (United States)

    Duplat-Bermúdez, L; Ruiz-Medrano, R; Landsman, D; Mariño-Ramírez, L; Xoconostle-Cázares, B

    2016-08-10

    Here we analyzed in leaves the effect of FT overexpression driven by meristem-specific KNAT1 gene homolog of Arabidopsis thaliana (Lincoln et al., 1994; Long et al., 1996) on the transcriptomic response during plant development. Our results demonstrated that meristematic FT overexpression generates a phenotype with an early flowering independent of photoperiod when compared with wild type (WT) plants. Arabidopsis FT-overexpressor lines (AtFTOE) did not show significant differences compared with WT lines neither in leaf number nor in rosette diameter up to day 21, when AtFTOE flowered. After this period AtFTOE plants started flower production and no new rosette leaves were produced. Additionally, WT plants continued on vegetative stage up to day 40, producing 12-14 rosette leaves before flowering. Transcriptomic analysis of rosette leaves studied by sequencing Illumina RNA-seq allowed us to determine the differential expression in mature leaf rosette of 3652 genes, being 626 of them up-regulated and 3026 down-regulated. Overexpressed genes related with flowering showed up-regulated transcription factors such as MADS-box that are known as flowering markers in meristem and which overexpression has been related with meristem identity preservation and the transition from vegetative to floral stage. Genes related with sugar transport have shown a higher demand of monosaccharides derived from the hydrolysis of sucrose to glucose and probably fructose, which can also be influenced by reproductive stage of AtFTOE plants. PMID:27154816

  18. Transcriptomic analysis of Arabidopsis overexpressing flowering locus T driven by a meristem-specific promoter that induces early flowering

    Science.gov (United States)

    Duplat-Bermúdez, L.; Ruiz-Medrano, R.; Landsman, D.; Mariño-Ramírez, L.; Xoconostle-Cázares, B.

    2016-01-01

    Here we analyzed in leaves the effect of FT overexpression driven by meristem-specific KNAT1 gene homolog of Arabidopsis thaliana (Lincoln et al., 1994; Long et al., 1996) on the transcriptomic response during plant development. Our results demonstrated that meristematic FT overexpression generates a phenotype with an early flowering independent of photoperiod when compared with wild type (WT) plants. Arabidopsis FT-overexpressor lines (AtFTOE) did not show significant differences compared with WT lines neither in leaf number nor in rosette diameter up to day 21, when AtFTOE flowered. After this period AtFTOE plants started flower production and no new rosette leaves were produced. Additionally, WT plants continued on vegetative stage up to day 40, producing 12–14 rosette leaves before flowering. Transcriptomic analysis of rosette leaves studied by sequencing Illumina RNA-seq allowed us to determine the differential expression in mature leaf rosette of 3652 genes, being 626 of them up-regulated and 3026 down-regulated. Overexpressed genes related with flowering showed up-regulated transcription factors such as MADS-box that are known as flowering markers in meristem and which overexpression has been related with meristem identity preservation and the transition from vegetative to floral stage. Genes related with sugar transport have shown a higher demand of monosaccharides derived from the hydrolysis of sucrose to glucose and probably fructose, which can also be influenced by reproductive stage of AtFTOE plants. PMID:27154816

  19. A straightforward and reliable method for bacterial in planta transcriptomics: application to the Dickeya dadantii/Arabidopsis thaliana pathosystem.

    Science.gov (United States)

    Chapelle, Emilie; Alunni, Benoît; Malfatti, Pierrette; Solier, Lucie; Pédron, Jacques; Kraepiel, Yvan; Van Gijsegem, Frédérique

    2015-04-01

    Transcriptome analysis of bacterial pathogens is a powerful approach to identify and study the expression patterns of genes during host infection. However, analysis of the early stages of bacterial virulence at the genome scale is lacking with respect to understanding of plant-pathogen interactions and diseases, especially during foliar infection. This is mainly due to both the low ratio of bacterial cells to plant material at the beginning of infection, and the high contamination by chloroplastic material. Here we describe a reliable and straightforward method for bacterial cell purification from infected leaf tissues, effective even if only a small amount of bacteria is present relative to plant material. The efficiency of this method for transcriptomic analysis was validated by analysing the expression profiles of the phytopathogenic enterobacterium Dickeya dadantii, a soft rot disease-causing agent, during the first hours of infection of the model host plant Arabidopsis thaliana. Transcriptome profiles of epiphytic bacteria and bacteria colonizing host tissues were compared, allowing identification of approximately 100 differentially expressed genes. Requiring no specific equipment, cost-friendly and easily transferable to other pathosystems, this method should be of great interest for many other plant-bacteria interaction studies. PMID:25740271

  20. Root and shoot performance of Arabidopsis thaliana exposed to elevated CO2: A physiologic, metabolic and transcriptomic response.

    Science.gov (United States)

    Jauregui, Iván; Aparicio-Tejo, Pedro M; Avila, Concepción; Rueda-López, Marina; Aranjuelo, Iker

    2015-09-15

    The responsiveness of C3 plants to raised atmospheric [CO2] levels has been frequently described as constrained by photosynthetic downregulation. The main goal of the current study was to characterize the shoot-root relationship and its implications in plant responsiveness under elevated [CO2] conditions. For this purpose, Arabidopsis thaliana plants were exposed to elevated [CO2] (800ppm versus 400ppm [CO2]) and fertilized with a mixed (NH4NO3) nitrogen source. Plant growth, physiology, metabolite and transcriptomic characterizations were carried out at the root and shoot levels. Plant growth under elevated [CO2] conditions was doubled due to increased photosynthetic rates and gas exchange measurements revealed that these plants maintain higher photosynthetic rates over extended periods of time. This positive response of photosynthetic rates to elevated [CO2] was caused by the maintenance of leaf protein and Rubisco concentrations at control levels alongside enhanced energy efficiency. The increased levels of leaf carbohydrates, organic acids and amino acids supported the augmented respiration rates of plants under elevated [CO2]. A transcriptomic analysis allowed the identification of photoassimilate allocation and remobilization as fundamental process used by the plants to maintain the outstanding photosynthetic performance. Moreover, based on the relationship between plant carbon status and hormone functioning, the transcriptomic analyses provided an explanation of why phenology accelerates under elevated [CO2] conditions. PMID:26519814

  1. Transcriptome sequencing of Crucihimalaya himalaica (Brassicaceae) reveals how Arabidopsis close relative adapt to the Qinghai-Tibet Plateau.

    Science.gov (United States)

    Qiao, Qin; Wang, Qia; Han, Xi; Guan, Yanlong; Sun, Hang; Zhong, Yang; Huang, Jinling; Zhang, Ticao

    2016-01-01

    The extreme environment of the Qinghai-Tibet Plateau (QTP) provides an ideal natural laboratory for studies on adaptive evolution. Few genome/transcriptome based studies have been conducted on how plants adapt to the environments of QTP compared to numerous studies on vertebrates. Crucihimalaya himalaica is a close relative of Arabidopsis with typical QTP distribution, and is hoped to be a new model system to study speciation and ecological adaptation in extreme environment. In this study, we de novo generated a transcriptome sequence of C. himalaica, with a total of 49,438 unigenes. Compared to five relatives, 10,487 orthogroups were shared by all six species, and 4,286 orthogroups contain putative single copy gene. Further analysis identified 487 extremely significantly positively selected genes (PSGs) in C. himalaica transcriptome. Theses PSGs were enriched in functions related to specific adaptation traits, such as response to radiation, DNA repair, nitrogen metabolism, and stabilization of membrane. These functions are responsible for the adaptation of C. himalaica to the high radiation, soil depletion and low temperature environments on QTP. Our findings indicate that C. himalaica has evolved complex strategies for adapting to the extreme environments on QTP and provide novel insights into genetic mechanisms of highland adaptation in plants. PMID:26906946

  2. Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101

    NARCIS (Netherlands)

    Mortel, van de J.E.; Vos, de R.C.H.; Dekkers, E.; Pineda, A.; Guillod, L.; Bouwmeester, K.; Loon, van J.J.A.; Dicke, M.; Raaijmakers, J.M.

    2012-01-01

    Systemic resistance induced in plants by nonpathogenic rhizobacteria is typically effective against multiple pathogens. Here, we show that root-colonizing Pseudomonas fluorescens strain SS101 (Pf.SS101) enhanced resistance in Arabidopsis (Arabidopsis thaliana) against several bacterial pathogens, in

  3. Pre-exposure of Arabidopsis to the abiotic or biotic environmental stimuli “chilling” or “insect eggs” exhibits different transcriptomic responses to herbivory

    Science.gov (United States)

    Firtzlaff, Vivien; Oberländer, Jana; Geiselhardt, Sven; Hilker, Monika; Kunze, Reinhard

    2016-01-01

    Plants can retain information about environmental stress and thus, prepare themselves for impending stress. In nature, it happens that environmental stimuli like ‘cold’ and ‘insect egg deposition’ precede insect herbivory. Both these stimuli are known to elicit transcriptomic changes in Arabidposis thaliana. It is unknown, however, whether they affect the plant’s anti-herbivore defence and feeding-induced transcriptome when they end prior to herbivory. Here we investigated the transcriptomic response of Arabidopsis to feeding by Pieris brassicae larvae after prior exposure to cold or oviposition. The transcriptome of plants that experienced a five-day-chilling period (4 °C) was not fully reset to the pre-chilling state after deacclimation (20 °C) for one day and responded differently to herbivory than that of chilling-inexperienced plants. In contrast, when after a five-day-lasting oviposition period the eggs were removed, one day later the transcriptome and, consistently, also its response to herbivory resembled that of egg-free plants. Larval performance was unaffected by previous exposure of plants to cold and to eggs, thus indicating P. brassicae tolerance to cold-mediated plant transcriptomic changes. Our results show strong differences in the persistence of the plant’s transcriptomic state after removal of different environmental cues, and consequently differential effects on the transcriptomic response to later herbivory. PMID:27329974

  4. Pre-exposure of Arabidopsis to the abiotic or biotic environmental stimuli "chilling" or "insect eggs" exhibits different transcriptomic responses to herbivory.

    Science.gov (United States)

    Firtzlaff, Vivien; Oberländer, Jana; Geiselhardt, Sven; Hilker, Monika; Kunze, Reinhard

    2016-01-01

    Plants can retain information about environmental stress and thus, prepare themselves for impending stress. In nature, it happens that environmental stimuli like 'cold' and 'insect egg deposition' precede insect herbivory. Both these stimuli are known to elicit transcriptomic changes in Arabidposis thaliana. It is unknown, however, whether they affect the plant's anti-herbivore defence and feeding-induced transcriptome when they end prior to herbivory. Here we investigated the transcriptomic response of Arabidopsis to feeding by Pieris brassicae larvae after prior exposure to cold or oviposition. The transcriptome of plants that experienced a five-day-chilling period (4 °C) was not fully reset to the pre-chilling state after deacclimation (20 °C) for one day and responded differently to herbivory than that of chilling-inexperienced plants. In contrast, when after a five-day-lasting oviposition period the eggs were removed, one day later the transcriptome and, consistently, also its response to herbivory resembled that of egg-free plants. Larval performance was unaffected by previous exposure of plants to cold and to eggs, thus indicating P. brassicae tolerance to cold-mediated plant transcriptomic changes. Our results show strong differences in the persistence of the plant's transcriptomic state after removal of different environmental cues, and consequently differential effects on the transcriptomic response to later herbivory. PMID:27329974

  5. Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome

    Directory of Open Access Journals (Sweden)

    Eric eRuelland

    2014-11-01

    Full Text Available Basal phosphoinositide-dependent phospholipase C (PI-PLC activity controls gene expression in Arabidopsis suspension cells and seedlings. PI-PLC catalyzes the production of phosphorylated inositol and diacylglycerol (DAG from phosphoinositides. It is not known how PI-PLC regulates the transcriptome although the action of DAG-kinase (DGK on DAG immediately downstream from PI-PLC is responsible for some of the regulation. We previously established a list of genes whose expression is affected in the presence of PI-PLC inhibitors. Here this list of genes was used as a signature in similarity searches of curated plant hormone response transcriptome data. The strongest correlations obtained with the inhibited PI-PLC signature were with salicylic acid (SA treatments. We confirm here that in Arabidopsis suspension cells SA treatment leads to an increase in phosphoinositides, then demonstrate that SA leads to a significant 20% decrease in phosphatidic acid, indicative of a decrease in PI-PLC products. Previous sets of microarray data were re-assessed. The SA response of one set of genes was dependent on phosphoinositides. Alterations in the levels of a second set of genes, mostly SA-repressed genes, could be related to decreases in PI-PLC products that occur in response to SA action. Together, the two groups of genes comprise at least 40% of all SA-responsive genes. Overall these two groups of genes are distinct in the functional categories of the proteins they encode, their promoter cis-elements and their regulation by DGK or phospholipase D. SA-regulated genes dependent on phosphoinositides are typical SA response genes while those with an SA response that is possibly dependent on PI-PLC products are less SA-specific. We propose a model in which SA inhibits PI-PLC activity and alters levels of PI-PLC products and substrates, thereby regulating gene expression divergently.

  6. The Arabidopsis Root Transcriptome by Serial Analysis of Gene Expression. Gene Identification Using the Genome Sequence1

    Science.gov (United States)

    Fizames, Cécile; Muños, Stéphane; Cazettes, Céline; Nacry, Philippe; Boucherez, Jossia; Gaymard, Frédéric; Piquemal, David; Delorme, Valérie; Commes, Thérèse; Doumas, Patrick; Cooke, Richard; Marti, Jacques; Sentenac, Hervé; Gojon, Alain

    2004-01-01

    Large-scale identification of genes expressed in roots of the model plant Arabidopsis was performed by serial analysis of gene expression (SAGE), on a total of 144,083 sequenced tags, representing at least 15,964 different mRNAs. For tag to gene assignment, we developed a computational approach based on 26,620 genes annotated from the complete sequence of the genome. The procedure selected warrants the identification of the genes corresponding to the majority of the tags found experimentally, with a high level of reliability, and provides a reference database for SAGE studies in Arabidopsis. This new resource allowed us to characterize the expression of more than 3,000 genes, for which there is no expressed sequence tag (EST) or cDNA in the databases. Moreover, 85% of the tags were specific for one gene. To illustrate this advantage of SAGE for functional genomics, we show that our data allow an unambiguous analysis of most of the individual genes belonging to 12 different ion transporter multigene families. These results indicate that, compared with EST-based tag to gene assignment, the use of the annotated genome sequence greatly improves gene identification in SAGE studies. However, more than 6,000 different tags remained with no gene match, suggesting that a significant proportion of transcripts present in the roots originate from yet unknown or wrongly annotated genes. The root transcriptome characterized in this study markedly differs from those obtained in other organs, and provides a unique resource for investigating the functional specificities of the root system. As an example of the use of SAGE for transcript profiling in Arabidopsis, we report here the identification of 270 genes differentially expressed between roots of plants grown either with NO3- or NH4NO3 as N source. PMID:14730065

  7. Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate.

    Directory of Open Access Journals (Sweden)

    Anne M Visscher

    Full Text Available BACKGROUND: Martian regolith (unconsolidated surface material is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. METHODOLOGY AND PRINCIPAL FINDINGS: Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO(4.7H(2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO(4.7H(2O (magnesium sulfate stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO(4.7H(2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment. CONCLUSIONS/SIGNIFICANCE: The results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster

  8. Transcriptome analysis of intraspecific competition in Arabidopsis thaliana reveals organ-specific signatures related to nutrient acquisition and general stress response pathways.

    OpenAIRE

    Masclaux Frédéric G.; Bruessow Friederike; Schweizer Fabian; Gouhier-Darimont Caroline; Keller Laurent; Reymond Philippe

    2012-01-01

    Abstract Background Plants are sessile and therefore have to perceive and adjust to changes in their environment. The presence of neighbours leads to a competitive situation where resources and space will be limited. Complex adaptive responses to such situation are poorly understood at the molecular level. Results Using microarrays, we analysed whole-genome expression changes in Arabidopsis thaliana plants subjected to intraspecific competition. The leaf and root transcriptome was strongly al...

  9. Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella xylostella larvae reveals signatures of stress response, secondary metabolism, and signalling

    Directory of Open Access Journals (Sweden)

    Aeschliman Dana S

    2008-04-01

    Full Text Available Abstract Background Plants are exposed to attack from a large variety of herbivores. Feeding insects can induce substantial changes of the host plant transcriptome. Arabidopsis thaliana has been established as a relevant system for the discovery of genes associated with response to herbivory, including genes for specialized (i.e. secondary metabolism as well as genes involved in plant-insect defence signalling. Results Using a 70-mer oligonulceotide microarray covering 26,090 gene-specific elements, we monitored changes of the Arabidopsis leaf transcriptome in response to feeding by diamond back moth (DBM; Plutella xylostella larvae. Analysis of samples from a time course of one hour to 24 hours following onset of DBM feeding revealed almost three thousand (2,881 array elements (including 2,671 genes with AGI annotations that were differentially expressed (>2-fold; p[t-test] Pieris rapae, Frankliniella occidentalis, Bemisia tabaci,Myzus persicae, and Brevicoryne brassicae. Conclusion Arabidopsis responds to feeding DBM larvae with a drastic reprogramming of the transcriptome, which has considerable overlap with the response induced by other insect herbivores. Based on a meta-analysis of microarray data we identified groups of transcription factors that are either affected by multiple forms of biotic or abiotic stress including DBM feeding or, alternatively, were responsive to DBM herbivory but not to most other forms of stress.

  10. SAGE ANALYSIS OF TRANSCRIPTOME RESPONSES IN ARABIDOPSIS ROOTS EXPOSED TO 2,4,6-TRINITROTOLUENE

    Science.gov (United States)

    Serial Analysis of Gene Expression (SAGE) was used to profile transcript levels in Arabidopsis thaliana roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and ea...

  11. Genome wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (AuCl(-) 4) treatment.

    Science.gov (United States)

    Shukla, Devesh; Krishnamurthy, Sneha; Sahi, Shivendra V

    2014-01-01

    The unique physico-chemical properties of gold nanoparticles (AuNPs) find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl(-) 4 In this study, we carried out global transcriptome analysis in root tissue of Arabidopsis grown for 12- h in presence of gold solution (HAuCl4) using the novel unbiased Affymetrix exon array. Transcriptomics analysis revealed differential regulation of a total of 704 genes and 4900 exons. Of these, 492 and 212 genes were up- and downregulated, respectively. The validation of the expressed key genes, such as glutathione-S-transferases, auxin responsive genes, cytochrome P450 82C2, methyl transferases, transducin (G protein beta subunit), ERF transcription factor, ABC, and MATE transporters, was carried out through quantitative RT-PCR. These key genes demonstrated specific induction under AuCl4(-) treatment relative to other heavy metals, suggesting a unique plant-gold interaction. GO enrichment analysis reveals the upregulation of processes like oxidative stress, glutathione binding, metal binding, transport, and plant hormonal responses. Changes predicted in biochemical pathways indicated major modulation in glutathione mediated detoxification, flavones and derivatives, and plant hormone biosynthesis. Motif search analysis identified a highly significant enriched motif, ACGT, which is an abscisic acid responsive core element (ABRE), suggesting the possibility of ABA- mediated signaling. Identification of abscisic acid response element (ABRE) points to the operation of a predominant signaling mechanism in response to AuCl(-) 4 exposure. Overall, this study presents a useful picture of plant-gold interaction with an identification of candidate genes

  12. Genome Wide Transcriptome Analysis reveals ABA mediated response in Arabidopsis during Gold (AuCl4- treatment

    Directory of Open Access Journals (Sweden)

    Devesh eShukla

    2014-11-01

    Full Text Available The unique physico-chemical properties of gold nanoparticles (AuNPs find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl4- In this study, we carried out global transcriptome analysis in root tissue of Arabidopsis grown for 12- hours in presence of gold solution (HAuCl4 using the novel unbiased Affymetrix exon array. Transcriptomics analysis revealed differential regulation of a total of 704 genes and 4900 exons. Of these, 492 and 212 genes were up- and downregulated, respectively. The validation of the expressed key genes, such as glutathione-S-transferases, auxin responsive genes, cytochrome P450 82C2, methyl transferases, transducin (G protein beta subunit, ERF transcription factor, ABC, and MATE transporters, was carried out through quantitative RT-PCR. These key genes demonstrated specific induction under AuCl4- treatment relative to other heavy metals, suggesting a unique plant-gold interaction. GO enrichment analysis reveals the upregulation of processes like oxidative stress, glutathione binding, metal binding, transport, and plant hormonal responses. Changes predicted in biochemical pathways indicated major modulation in glutathione mediated detoxification, flavones and derivatives, and plant hormone biosynthesis. Motif search analysis identified a highly significant enriched motif, ACGT, which is an abscisic acid responsive core element (ABRE, suggesting the possibility of ABA- mediated signaling. Identification of abscisic acid response element (ABRE points to the operation of a predominant signaling mechanism in response to AuCl4- exposure. Overall, this study presents a useful picture of plant-gold interaction with an identification of

  13. Moderate drought causes dramatic floral transcriptomic reprogramming to ensure successful reproductive development in Arabidopsis

    OpenAIRE

    Ma, Xuan; Sukiran, Noor Liyana; Ma, Hong; Su, Zhao

    2014-01-01

    Background Drought is a major constraint that leads to extensive losses to agricultural yield worldwide. The potential yield is largely determined during inflorescence development. However, to date, most investigations on plant response to drought have focused on vegetative development. This study describes the morphological changes of reproductive development and the comparison of transcriptomes under various drought conditions. Results The plants grown were studied under two drought conditi...

  14. Transcriptome profiling in Arabidopsis inflorescence stems grown under hypergravity in terms of cell walls and plant hormones

    Science.gov (United States)

    Tamaoki, D.; Karahara, I.; Nishiuchi, T.; De Oliveira, S.; Schreiber, L.; Wakasugi, T.; Yamada, K.; Yamaguchi, K.; Kamisaka, S.

    2009-07-01

    Land plants rely on lignified secondary cell walls in supporting their body weight on the Earth. Although gravity influences the formation of the secondary cell walls, the regulatory mechanism of their formation by gravity is not yet understood. We carried out a comprehensive analysis of gene expression in inflorescence stems of Arabidopsis thaliana L. using microarray (22 K) to identify genes whose expression is modulated under hypergravity condition (300 g). Total RNA was isolated from the basal region of inflorescence stems of plants grown for 24 h at 300 g or 1 g. Microarray analysis showed that hypergravity up-regulated the expression of 403 genes to more than 2-fold. Hypergravity up-regulated the genes responsible for the biosynthesis or modification of cell wall components such as lignin, xyloglucan, pectin and structural proteins. In addition, hypergravity altered the expression of genes related to the biosynthesis of plant hormones such as auxin and ethylene and that of genes encoding hormone-responsive proteins. Our transcriptome profiling indicates that hypergravity influences the formation of secondary cell walls by modulating the pattern of gene expression, and that auxin and/or ethylene play an important role in signaling hypergravity stimulus.

  15. Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc supply

    Directory of Open Access Journals (Sweden)

    Herlânder Azevedo

    2016-03-01

    Full Text Available Deficiency of the micronutrient zinc is a widespread condition in agricultural soils, causing a negative impact on crop quality and yield. Nevertheless, there is an insufficient knowledge on the regulatory and molecular mechanisms underlying the plant response to inadequate zinc nutrition [1]. This information should contribute to the development of plant-based solutions with improved nutrient-use-efficiency traits in crops. Previously, the transcription factors bZIP19 and bZIP23 were identified as essential regulators of the response to zinc deficiency in Arabidopsis thaliana [2]. A microarray experiment comparing gene expression between roots of wild-type and the mutant bzip19 bzip23, exposed to zinc deficiency, led to the identification of differentially expressed genes related with zinc homeostasis, namely its transport and plant internal translocation [2]. Here, we provide the detailed methodology, bioinformatics analysis and quality controls related to the microarray gene expression profiling published by Assunção and co-workers [2]. Most significantly, the present dataset comprises new experimental variables, including analysis of shoot tissue, and zinc sufficiency and excess supply. Thus, it expands from 8 to 42 microarrays hybridizations, which have been deposited at the Gene Expression Omnibus (GEO under the accession number GSE77286. Overall, it provides a resource for research on the molecular basis and regulatory events of the plant response to zinc supply, emphasizing the importance of Arabidopsis bZIP19 and bZIP23 transcription factors.

  16. Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments

    Directory of Open Access Journals (Sweden)

    Javier eCanales

    2014-02-01

    Full Text Available Nitrogen (N is an essential macronutrient for plant growth and development. Plants adapt to changes in N availability partly by changes in global gene expression. We integrated publicly available root microarray data under contrasting nitrate conditions to identify new genes and functions important for adaptive nitrate responses in Arabidopsis thaliana roots. Overall, more than two thousand genes exhibited changes in expression in response to nitrate treatments in Arabidopsis thaliana root organs. Global regulation of gene expression by nitrate depends largely on the experimental context. However, despite significant differences from experiment to experiment in the identity of regulated genes, there is a robust nitrate response of specific biological functions. Integrative gene network analysis uncovered relationships between nitrate-responsive genes and eleven highly co-expressed gene clusters (modules. Four of these gene network modules have robust nitrate responsive functions such as transport, signaling and metabolism. Network analysis hypothesized G2-like transcription factors are key regulatory factors controlling transport and signaling functions. Our meta-analysis highlights the role of biological processes not studied before in the context of the nitrate response such as root hair development and provides testable hypothesis to advance our understanding of nitrate responses in plants.

  17. Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism

    DEFF Research Database (Denmark)

    Muller, Renate; Morant, Marc; Jarmer, Hanne Østergaard;

    2007-01-01

    factors individually. The genes exhibiting interactions form three main clusters with different response patterns and functionality of genes. One cluster (cluster 1) most likely represents a regulatory program to support increased growth and development when both P and carbohydrates are ample. Another...... cluster (cluster 3) represents genes induced to alleviate P starvation and these are further induced by carbohydrate accumulation. Thus, interactions between P and Suc reveal two different signaling programs and novel interactions in gene regulation in response to environmental factors. cis......-Regulatory elements were analyzed for each factor and for interaction clusters. PHR1 binding sites were more frequent in promoters of P-regulated genes as compared to the entire Arabidopsis genome, and E2F and PHR1 binding sites were more frequent in interaction clusters 1 and 3, respectively....

  18. Complementarity of medium-throughput in situ RNA hybridization and tissue-specific transcriptomics: case study of Arabidopsis seed development kinetics.

    Science.gov (United States)

    Francoz, Edith; Ranocha, Philippe; Pernot, Clémentine; Ru, Aurélie Le; Pacquit, Valérie; Dunand, Christophe; Burlat, Vincent

    2016-01-01

    The rationale of this study is to compare and integrate two heterologous datasets intended to unravel the spatiotemporal specificities of gene expression in a rapidly growing and complex organ. We implemented medium-throughput RNA in situ hybridization (ISH) for 39 genes mainly corresponding to cell wall proteins for which we have particular interest, selected (i) on their sequence identity (24 class III peroxidase multigenic family members and 15 additional genes used as positive controls) and (ii) on their expression levels in a publicly available Arabidopsis thaliana seed tissue-specific transcriptomics study. The specificity of the hybridization signals was carefully studied, and ISH results obtained for the 39 selected genes were systematically compared with tissue-specific transcriptomics for 5 seed developmental stages. Integration of results illustrates the complementarity of both datasets. The tissue-specific transcriptomics provides high-throughput possibilities whereas ISH provides high spatial resolution. Moreover, depending on the tissues and the developmental stages considered, one or the other technique appears more sensitive than the other. For each tissue/developmental stage, we finally determined tissue-specific transcriptomic threshold values compatible with the spatiotemporally-specific detection limits of ISH for lists of hundreds to tens-of-thousands of genes. PMID:27095274

  19. Transcriptome Analysis of Induced Systemic Drought Tolerance Elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Song-Mi Cho

    2013-06-01

    Full Text Available Root colonization by Pseudomonas chlororaphis O6 induces systemic drought tolerance in Arabidopsis thaliana. Microarray analysis was performed using the 22,800-gene Affymetrix GeneChips to identify differentially-expressed genes from plants colonized with or without P. chlororaphis O6 under drought stressed conditions or normal growth conditions. Root colonization in plants grown under regular irrigation condition increased transcript accumulation from genes associated with defense, response to reactive oxygen species, and auxin- and jasmonic acid-responsive genes, but decreased transcription factors associated with ethylene and abscisic acid signaling. The cluster of genes involved in plant disease resistance were up-regulated, but the set of drought signaling response genes were down-regulated in the P. chlororaphis O6-colonized under drought stress plants compared to those of the drought stressed plants without bacterial treatment. Transcripts of the jasmonic acid-marker genes, VSP1 and pdf-1.2, the salicylic acid regulated gene, PR-1, and the ethylene-response gene, HEL, also were up-regulated in plants colonized by P. chlororaphis O6, but differed in their responsiveness to drought stress. These data show how gene expression in plants lacking adequate water can be remarkably influenced by microbial colonization leading to plant protection, and the activation of the plant defense signal pathway induced by root colonization of P. chlororaphis O6 might be a key element for induced systemic tolerance by microbes.

  20. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    Directory of Open Access Journals (Sweden)

    Zhao Zhixin

    2011-05-01

    Full Text Available Abstract Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA. ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and

  1. Transcriptome analysis of intraspecific competition in Arabidopsis thaliana reveals organ-specific signatures related to nutrient acquisition and general stress response pathways

    Directory of Open Access Journals (Sweden)

    Masclaux Frédéric G

    2012-11-01

    Full Text Available Abstract Background Plants are sessile and therefore have to perceive and adjust to changes in their environment. The presence of neighbours leads to a competitive situation where resources and space will be limited. Complex adaptive responses to such situation are poorly understood at the molecular level. Results Using microarrays, we analysed whole-genome expression changes in Arabidopsis thaliana plants subjected to intraspecific competition. The leaf and root transcriptome was strongly altered by competition. Differentially expressed genes were enriched in genes involved in nutrient deficiency (mainly N, P, K, perception of light quality, and responses to abiotic and biotic stresses. Interestingly, performance of the generalist insect Spodoptera littoralis on densely grown plants was significantly reduced, suggesting that plants under competition display enhanced resistance to herbivory. Conclusions This study provides a comprehensive list of genes whose expression is affected by intraspecific competition in Arabidopsis. The outcome is a unique response that involves genes related to light, nutrient deficiency, abiotic stress, and defence responses.

  2. Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress

    OpenAIRE

    Sultana eRasheed; Khurram eBashir; Akihiro eMatsui; Maho eTanaka; Motoaki eSeki

    2016-01-01

    Drought stress has a negative impact on crop yield. Thus, understanding the molecular mechanisms responsible for plant drought stress tolerance is essential for improving this beneficial trait in crops. In the current study, a transcriptional analysis was conducted of gene regulatory networks in roots of soil-grown Arabidopsis plants in response to a drought stress treatment. A microarray analysis of drought-stressed roots and shoots was performed at 0, 1, 3, 5, 7 and 9 days. Results indicat...

  3. Integrative study of Arabidopsis thaliana metabolomic and transcriptomic data with the interactive MarVis-Graph software

    OpenAIRE

    Manuel Landesfeind; Alexander Kaever; Kirstin Feussner; Corinna Thurow; Christiane Gatz; Ivo Feussner; Peter Meinicke

    2014-01-01

    State of the art high-throughput technologies allow comprehensive experimental studies of organism metabolism and induce the need for a convenient presentation of large heterogeneous datasets. Especially, the combined analysis and visualization of data from different high-throughput technologies remains a key challenge in bioinformatics. We present here the MarVis-Graph software for integrative analysis of metabolic and transcriptomic data. All experimental data is investigated in terms of th...

  4. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2.

    Science.gov (United States)

    Cai, Suqin; Lashbrook, Coralie C

    2008-03-01

    Organ detachment requires cell separation within abscission zones (AZs). Physiological studies have established that ethylene and auxin contribute to cell separation control. Genetic analyses of abscission mutants have defined ethylene-independent detachment regulators. Functional genomic strategies leading to global understandings of abscission have awaited methods for isolating AZ cells of low abundance and very small size. Here, we couple laser capture microdissection of Arabidopsis thaliana stamen AZs and GeneChip profiling to reveal the AZ transcriptome responding to a developmental shedding cue. Analyses focus on 551 AZ genes (AZ(551)) regulated at the highest statistical significance (P Gene Ontology Consortium functional categories for cell wall modifying proteins, extracellular regulators, and nuclear-residing transcription factors. Promoter-beta-glucuronidase expression of one transcription factor candidate, ZINC FINGER PROTEIN2 (AtZFP2), was elevated in stamen, petal, and sepal AZs. Flower parts of transgenic lines overexpressing AtZFP2 exhibited asynchronous and delayed abscission. Abscission defects were accompanied by altered floral morphology limiting pollination and fertility. Hand-pollination restored transgenic fruit development but not the rapid abscission seen in wild-type plants, demonstrating that pollination does not assure normal rates of detachment. In wild-type stamen AZs, AtZFP2 is significantly up-regulated postanthesis. Phenotype data from transgene overexpression studies suggest that AtZFP2 participates in processes that directly or indirectly influence organ shed. PMID:18192438

  5. Transcriptome Analysis of Arabidopsis Wild-Type and g13-sst sim Trichomes Identifies Four Additional Genes Required for Trichome Development

    Institute of Scientific and Technical Information of China (English)

    M.David Marks; Jonathan R Wenger; Edward Gilding; Ross Jilk; Richard A.Dixon

    2009-01-01

    Transcriptome analyses have been performed on mature trichomes isolated from wild-type Arabidopsis leaves and on leaf trichomes isolated from the g13-sst sire double mutant,which exhibit many attributes of immature trichomes.The mature trichome profile contained many highly expressed genes involved in cell wall synthesis,protein turnover,and abiotic stress response.The most highly expressed genes in the g13-sst sim profile encoded ribosomal proteins and other proteins involved in translation.Comparative analyses showed that all but one of the genes encoding transcription factors previously found to be important for trichome formation,and many other trichome-important genes,were preferentially expressed in g13-sstsim trichomes.The analysis of genes preferentially expressed in g13-sstsim led to the identification of four additional genes required for normal trichome development.One of these was the HDG2 gene,which is a member of the HD-ZIP IV transcription factor gene family.Mutations in this gene did not alter trichome expansion,but did alter mature trichome cell walls.Mutations in BLT resulted in a loss of trichome branch formation.The relationship between bit and the phenotypically identical mutant,sti,was explored.Mutations in PEL3,which was previously shown to be required for development of the leaf cuticle,resulted in the occasional tangling of expanding trichomes.Mutations in another gene encoding a protein with an unknown function altered trichome branch formation.

  6. Genome Wide Transcriptome Analysis reveals ABA mediated response in Arabidopsis during Gold (AuCl4-) treatment

    OpenAIRE

    Devesh eShukla; Sneha eKrishnamurthy; Shivendra Vikram Sahi

    2014-01-01

    The unique physico-chemical properties of gold nanoparticles (AuNPs) find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl4- In this study, we carried out global transcriptome analysis in root tissue ...

  7. Genome wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (AuCl− 4) treatment

    OpenAIRE

    Shukla, Devesh; Krishnamurthy, Sneha; Shivendra V. Sahi

    2014-01-01

    The unique physico-chemical properties of gold nanoparticles (AuNPs) find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl− 4 In this study, we carried out global transcriptome analysis in root tissue ...

  8. Genome wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (AuCl−4) treatment

    OpenAIRE

    Shukla, Devesh; Krishnamurthy, Sneha; Shivendra V. Sahi

    2014-01-01

    The unique physico-chemical properties of gold nanoparticles (AuNPs) find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl−4 In this study, we carried out global transcriptome analysis in root tissue o...

  9. Early transcriptomic response of Arabidopsis thaliana to polymetallic contamination: implications for the identification of potential biomarkers of metal exposure.

    Science.gov (United States)

    Gómez-Sagasti, María T; Barrutia, Oihana; Ribas, Griselda; Garbisu, Carlos; Becerril, José M

    2016-05-01

    Heavy metal contaminated sites are frequently characterized by the simultaneous presence of several heavy metals. However, many studies report metal-induced plant responses after long-term exposure to just one metal. By contrast, whole genome expression microarrays were employed here to investigate the early (3 h) transcriptional responses of Arabidopsis thaliana plants exposed to polymetallic treatment (Pb, Hg, Cu, Cd, Co, Ni, Zn, and Mn) at low (L) and high (H) concentrations. After 3 h of exposure to polymetallic treatment, a total of 1315 noticeably (≥2-fold) and significantly (P sulphur and nitrogen transport were also modulated. RT-qPCR analysis of four downregulated (AOP2, SAUR16, BBX31, and MTPC3) and upregulated genes (ASN1, DIN2, BT2, and EXL5), markedly responsive to both L and H treatments, validated our microarray data and suggested the potential of some of these genes (AOP2, SAUR16, ASN1, and DIN2) as early biomarkers of metal exposure. Relevant changes in gene expression occur as early as 3 h after exposure to polymetallic treatment. Four genes deserve further studies as novel putative biomarkers of early metal exposure and also owing to their potential implications in stress-related mechanisms: sulphur balance (AOP2), phytohormone regulation of plant growth and development (SAUR16), ammonium detoxification (ASN1) and senescence (DIN2). PMID:27118254

  10. Transcriptomic signatures of transfer cells in early developing nematode feeding cells of Arabidopsis focused on auxin and ethylene signalling.

    Directory of Open Access Journals (Sweden)

    Javier eCabrera

    2014-03-01

    Full Text Available Phyto-endoparasitic nematodes induce specialized feeding cells (NFCs in their hosts, termed syncytia and giant cells (GCs for cyst and root-knot nematodes, respectively. They differ in their ontogeny and global transcriptional signatures, but both develop cell wall ingrowths to facilitate high rates of apoplastic/symplastic solute exchange showing transfer cell (TC characteristics. Regulatory signals for TC differentiation are not still well known. The two-component signalling system (2CS and reactive oxygen species are proposed as inductors of TC identity, while, 2CSs-related genes are not major contributors to differential gene expression in early developing NFCs. Additionally, transcriptomic and functional studies have assigned a major role to auxin and ethylene as regulatory signals on early developing TCs. Genes encoding proteins with similar functions expressed in both early developing NFCs and typical TCs are putatively involved in upstream or downstream responses mediated by auxin and ethylene. Yet, no function directly associated to the TCs identity of NFCs, such as the formation of cell wall ingrowths is described for most of them. Thus we reviewed similarities between transcriptional changes observed during the early stages of NFCs formation and those described during differentiation of TCs to hypothesize about putative signals leading to TC-like differentiation of NFCs with particular emphasis on auxin an ethylene.

  11. Pre-exposure of Arabidopsis to the abiotic or biotic environmental stimuli “chilling” or “insect eggs” exhibits different transcriptomic responses to herbivory

    OpenAIRE

    Vivien Firtzlaff; Jana Oberländer; Sven Geiselhardt; Monika Hilker; Reinhard Kunze

    2016-01-01

    Plants can retain information about environmental stress and thus, prepare themselves for impending stress. In nature, it happens that environmental stimuli like ‘cold’ and ‘insect egg deposition’ precede insect herbivory. Both these stimuli are known to elicit transcriptomic changes in Arabidposis thaliana. It is unknown, however, whether they affect the plant’s anti-herbivore defence and feeding-induced transcriptome when they end prior to herbivory. Here we investigated the transcriptomic ...

  12. 拟南芥转or基因突变体转录组及表型分析%TRANSCRIPTOME AND PHENOTYPE ANALYSES OF or GENE TRANSGENIC ARABIDOPSIS MUTANT

    Institute of Scientific and Technical Information of China (English)

    门潇; 孙天虎; 杨永华

    2012-01-01

    构建了拟南芥orange(or)过表达突变体和相应的对照组,通过比较它们在色素含量、转录组、表型等方面的变化,发现or在绿色组织(拟南芥叶子、茎等)中也能起到提高类胡萝卜素含量的作用,且突变体类胡萝卜素合成途径的基因转录水平没有显著变化,但是很多防卫胁迫相关基因转录水平上调,说明突变体中存在胁迫环境.对不同生长条件下突变体幼苗下胚轴的测量等表明or突变体对光尤其是蓝光变得十分敏感.本研究分析比较了or在不同组织中的效应,为or应用于改良作物类胡萝卜素含量的基因工程和进一步揭示or的作用机制提供了参考.%It is known that orange(or) gene mutation leads to increased carotenoids content in plants.To elucidate the detailed mechanisms involved,Arabidopsis plants with over-expressed or and vector-only control were generated.Pigment content,transcriptome profile and mutant phenotypes were investigated.It was found that or was functional in green tissues,such as leaves and stems,although less functional than in non-green tissues.No major changes in transcription pattern were found for genes involved in carotenoids biosynthesis,but resistance-related genes,such as ZAT,were up-regulated,implying stressed environment in or mutants.Hypocotyl length measurements under different light conditions suggested that the or mutant became sensitive to light especially to blue light.Carotenoids enhancement of or in different plant tissues was analyzed,providing a reference for genetic engineering using or to improve nutritional status of crops,and for future work to uncover or regulatory mechanisms.

  13. Transcriptome and metabolome analysis of plant sulphate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulphur, nitrogen and phosphorus nutritional responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Monika eBielecka

    2015-01-01

    Full Text Available Sulphur is an essential macronutrient for plant growth and development. Reaching a thorough understanding of the molecular basis for changes in plant metabolism depending on the sulphur-nutritional status at the systems level will advance our basic knowledge and help target future crop improvement. Although the transcriptional responses induced by sulphate starvation have been studied in the past, knowledge of the regulation of sulphur metabolism is still fragmentary. This work focuses on the discovery of candidates for regulatory genes such as transcription factors (TFs using ‘omics technologies. For this purpose a short term sulphate-starvation / re-supply approach was used. ATH1 microarray studies and metabolite determinations yielded 21 TFs which responded more than 2-fold at the transcriptional level to sulphate starvation. Categorization by response behaviors under sulphate-starvation / re-supply and other nutrient starvations such as nitrate and phosphate allowed determination of whether the TF genes are specific for or common between distinct mineral nutrient depletions. Extending this co-behavior analysis to the whole transcriptome data set enabled prediction of putative downstream genes. Additionally, combinations of transcriptome and metabolome data allowed identification of relationships between TFs and downstream responses, namely, expression changes in biosynthetic genes and subsequent metabolic responses. Effect chains on glucosinolate and polyamine biosynthesis are discussed in detail. The knowledge gained from this study provides a blueprint for an integrated analysis of transcriptomics and metabolomics and application for the identification of uncharacterized genes.

  14. Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome

    Directory of Open Access Journals (Sweden)

    Størseth Trond R

    2010-03-01

    mutant. Conclusions Analysis of the glu1-2 transcriptome reveals extensive changes in gene expression profiles revealing the importance of Fd-GOGAT1, and indirectly the central role of glutamate, in plant development. Besides the effect on genes involved in glutamate synthesis and transformation, the glu1-2 mutant transcriptome was characterised by an extensive secondary response including the downregulation of photosynthesis-related pathways and the induction of genes and pathways involved in the plant response to a multitude of stresses.

  15. Large-Scale Public Transcriptomic Data Mining Reveals a Tight Connection between the Transport of Nitrogen and Other Transport Processes in Arabidopsis.

    Science.gov (United States)

    He, Fei; Karve, Abhijit A; Maslov, Sergei; Babst, Benjamin A

    2016-01-01

    Movement of nitrogen to the plant tissues where it is needed for growth is an important contribution to nitrogen use efficiency. However, we have very limited knowledge about the mechanisms of nitrogen transport. Loading of nitrogen into the xylem and/or phloem by transporter proteins is likely important, but there are several families of genes that encode transporters of nitrogenous molecules (collectively referred to as N transporters here), each comprised of many gene members. In this study, we leveraged publicly available microarray data of Arabidopsis to investigate the gene networks of N transporters to elucidate their possible biological roles. First, we showed that tissue-specificity of nitrogen (N) transporters was well reflected among the public microarray data. Then, we built coexpression networks of N transporters, which showed relationships between N transporters and particular aspects of plant metabolism, such as phenylpropanoid biosynthesis and carbohydrate metabolism. Furthermore, genes associated with several biological pathways were found to be tightly coexpressed with N transporters in different tissues. Our coexpression networks provide information at the systems-level that will serve as a resource for future investigation of nitrogen transport systems in plants, including candidate gene clusters that may work together in related biological roles. PMID:27563305

  16. Effects of the Herbicide Imazethapyr on Photosynthesis in PGR5- and NDH-Deficient Arabidopsis thaliana at the Biochemical, Transcriptomic, and Proteomic Levels.

    Science.gov (United States)

    Sun, Chongchong; Chen, Si; Jin, Yujian; Song, Hao; Ruan, Songlin; Fu, Zhengwei; Asad, Muhammad Asad Ullah; Qian, Haifeng

    2016-06-01

    Photosynthesis is a very important metabolic pathway for plant growth and crop yield. This report investigated the effect of the herbicide imazethapyr on photosynthesis in the Arabidopsis thaliana pnsB3 mutant (a defect in the NDH pathway) and pgr5 mutant (a defect in the PGR5 pathway) to determine which cyclic electron transport chain (CET) of the NDH and PGR5 pathways is more important for protecting the photosynthetic system under herbicide stress. The results showed that 20 μg/L imazethapyr markedly inhibited the growth of the three ecotypes of A. thaliana and produced more anthocyanins and reactive oxygen species (ROS), particularly in the pgr5 mutant. The chlorophyll fluorescence results showed that PSII was severely damaged in the pgr5 mutant. Additionally, the CET was significantly stimulated to protect the photosynthetic system from light damage in Wt and the pnsB3 mutant but not the pgr5 mutant. The real-time PCR analysis indicated that imazethapyr treatment considerably decreased the transcript levels of most photosynthesis-related genes in the three treated groups. Several genes in the PGR5 pathway were significantly induced in the pnsB3 mutant, but no genes in the NDH pathway were induced in the pgr5 mutant. The gene transcription analysis showed that the pgr5 mutant cannot compensate for the deficit in the PGR5 pathway by stimulating the NDH pathway, whereas the pnsB3 mutant can compensate for the deficit in the CET cycle by regulating the PGR5 pathway. The iTRAQ analyses also showed that the photosynthesis system, glycolysis, and TCA cycle suffered the most severe damage in the pgr5 mutant. All of these results showed that the PGR5 pathway is more critical for electron transfer around PSI than the NDH pathway to resist herbicide stress. PMID:27215288

  17. Plant transcriptomics and responses to environmental stress: an overview

    Indian Academy of Sciences (India)

    Sameen Ruqia Imadi; Alvina Gul Kazi; Mohammad Abass Ahanger; Salih Gucel; Parvaiz Ahmad

    2015-09-01

    Different stresses include nutrient deficiency, pathogen attack, exposure to toxic chemicals etc. Transcriptomic studies have been mainly applied to only a few plant species including the model plant, Arabidopsis thaliana. These studies have provided valuable insights into the genetic networks of plant stress responses. Transcriptomics applied to cash crops including barley, rice, sugarcane, wheat and maize have further helped in understanding physiological and molecular responses in terms of genome sequence, gene regulation, gene differentiation, posttranscriptional modifications and gene splicing. On the other hand, comparative transcriptomics has provided more information about plant’s response to diverse stresses. Thus, transcriptomics, together with other biotechnological approaches helps in development of stress tolerance in crops against the climate change.

  18. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  19. Identification of molecular processes needed for vascular formation through transcriptome analysis of different vascular systems

    OpenAIRE

    Xu, Peng; Kong, Yimeng; Li, Xuan; Li, Laigeng

    2013-01-01

    Background Vascular system formation has been studied through molecular and genetic approaches in Arabidopsis, a herbaceous dicot that is used as a model system. Different vascular systems have developed in other plants such as crops and trees. Uncovering shared mechanisms underlying vascular development by transcriptome analysis of different vascular systems may help to transfer knowledge acquired from Arabidopsis to other economically important species. Results Conserved vascular genes and ...

  20. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome

    OpenAIRE

    Honaas, Loren A.; Wafula, Eric K; Wickett, Norman J.; Der, Joshua P; ZHANG Yeting; Edger, Patrick P.; Altman, Naomi S; Pires, J Chris; Leebens-Mack, James H.; dePamphilis, Claude W

    2016-01-01

    Whereas de novo assemblies of RNA-Seq data are being published for a growing number of species across the tree of life, there are currently no broadly accepted methods for evaluating such assemblies. Here we present a detailed comparison of 99 transcriptome assemblies, generated with 6 de novo assemblers including CLC, Trinity, SOAP, Oases, ABySS and NextGENe. Controlled analyses of de novo assemblies for Arabidopsis thaliana and Oryza sativa transcriptomes provide new insights into the stren...

  1. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome.

    Science.gov (United States)

    Honaas, Loren A; Wafula, Eric K; Wickett, Norman J; Der, Joshua P; Zhang, Yeting; Edger, Patrick P; Altman, Naomi S; Pires, J Chris; Leebens-Mack, James H; dePamphilis, Claude W

    2016-01-01

    Whereas de novo assemblies of RNA-Seq data are being published for a growing number of species across the tree of life, there are currently no broadly accepted methods for evaluating such assemblies. Here we present a detailed comparison of 99 transcriptome assemblies, generated with 6 de novo assemblers including CLC, Trinity, SOAP, Oases, ABySS and NextGENe. Controlled analyses of de novo assemblies for Arabidopsis thaliana and Oryza sativa transcriptomes provide new insights into the strengths and limitations of transcriptome assembly strategies. We find that the leading assemblers generate reassuringly accurate assemblies for the majority of transcripts. At the same time, we find a propensity for assemblers to fail to fully assemble highly expressed genes. Surprisingly, the instance of true chimeric assemblies is very low for all assemblers. Normalized libraries are reduced in highly abundant transcripts, but they also lack 1000s of low abundance transcripts. We conclude that the quality of de novo transcriptome assemblies is best assessed through consideration of a combination of metrics: 1) proportion of reads mapping to an assembly 2) recovery of conserved, widely expressed genes, 3) N50 length statistics, and 4) the total number of unigenes. We provide benchmark Illumina transcriptome data and introduce SCERNA, a broadly applicable modular protocol for de novo assembly improvement. Finally, our de novo assembly of the Arabidopsis leaf transcriptome revealed ~20 putative Arabidopsis genes lacking in the current annotation. PMID:26731733

  2. Transcriptome analysis of secondary cell wall development in Medicago truncatula

    OpenAIRE

    Wang, Huanzhong; Yang, Jung Hyun; Chen, Fang; Torres-Jerez, Ivone; Tang, Yuhong; Wang, Mingyi; Du, Qian; Cheng, Xiaofei; Wen, Jiangqi; Dixon, Richard

    2016-01-01

    Background Legumes are important to humans by providing food, feed and raw materials for industrial utilizations. Some legumes, such as alfalfa, are potential bioenergy crops due to their high biomass productivity. Global transcriptional profiling has been successfully used to identify genes and regulatory pathways in secondary cell wall thickening in Arabidopsis, but such transcriptome data is lacking in legumes. Results A systematic microarray assay and high through-put real time PCR analys...

  3. Dataset of Arabidopsis plants that overexpress FT driven by a meristem-specific KNAT1 promoter

    OpenAIRE

    Duplat-Bermúdez, L.; Ruiz-Medrano, R.; Landsman, D.; Mariño-Ramírez, L; Xoconostle-Cázares, B.

    2016-01-01

    In this dataset we integrated figures comparing leaf number and rosette diameter in three Arabidopsis FT overexpressor lines (AtFTOE) driven by KNAT1 promoter, “A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis” [5], vs Wild Type (WT) Arabidopsis plats. Also, presented in the tables are some transcriptomic data obtained by RNA-seq Illumina HiSeq from rosette leaves of Arabidopsis plants of AtFTOE 2.1 line vs WT with accession numbers SRR2094583 and S...

  4. Individual vs. combinatorial effect of elevated CO2 conditions and salinity stress on Arabidopsis thaliana liquid cultures: Comparing the early molecular response using time-series transcriptomic and metabolomic analyses

    Directory of Open Access Journals (Sweden)

    Dutta Bhaskar

    2010-12-01

    Full Text Available Abstract Background In this study, we investigated the individual and combinatorial effect of elevated CO2 conditions and salinity stress on the dynamics of both the transcriptional and metabolic physiology of Arabidopsis thaliana liquid hydroponic cultures over the first 30 hours of continuous treatment. Both perturbations are of particular interest in plant and agro-biotechnological applications. Moreover, within the timeframe of this experiment, they are expected to affect plant growth to opposite directions. Thus, a major objective was to investigate whether this expected "divergence" was valid for the individual perturbations and to study how it is manifested under the combined stress at two molecular levels of cellular function, using high-throughput analyses. Results We observed that a high salinity has stronger effect than elevated CO2 at both the transcriptional and metabolic levels, b the transcriptional responses to the salinity and combined stresses exhibit strong similarity, implying a robust transcriptional machinery acting to the salinity stress independent of the co-occurrence of elevated CO2, c the combinatorial effect of the two perturbations on the metabolic physiology is milder than of the salinity stress alone. Metabolomic analysis suggested that the beneficial role of elevated CO2 on salt-stressed plants within the timeframe of this study should be attributed to the provided additional resources; these allow the plants to respond to high salinity without having to forfeit other major metabolic functions, and d 9 h-12 h and 24 h of treatment coincide with significant changes in the metabolic physiology under any of the investigated stresses. Significant differences between the acute and longer term responses were observed at both molecular levels. Conclusions This study contributes large-scale dynamic omic data from two levels of cellular function for a plant system under various stresses. It provides an additional example

  5. Web services for transcriptomics

    NARCIS (Netherlands)

    Neerincx, P.

    2009-01-01

    Transcriptomics is part of a family of disciplines focussing on high throughput molecular biology experiments. In the case of transcriptomics, scientists study the expression of genes resulting in transcripts. These transcripts can either perform a biological function themselves or function as messe

  6. Probing the reproducibility of leaf growth and molecular phenotypes: A comparison of three Arabidopsis accessions cultivated in ten laboratories

    OpenAIRE

    Massonnet, Catherine; Vile, Denis; Fabre, Juliette; Hannah, Matthew A; Caldana, C.; Lisec, J.; Beemster, G.T.S.; Meyer, R. C.; Messerli, G.; Gronlund, J.T.; Perkovic, J.; Wigmore, E.; May, S.; Bevan, M. W.; Meyer, Christian

    2010-01-01

    A major goal of the life sciences is to understand how molecular processes control phenotypes. Because understanding biological systems relies on the work of multiple laboratories, biologists implicitly assume that organisms with the same genotype will display similar phenotypes when grown in comparable conditions. We investigated to what extent this holds true for leaf growth variables and metabolite and transcriptome profiles of three Arabidopsis (Arabidopsis thaliana) genotypes grown in 10...

  7. Transcriptome response to nitrogen starvation in rice

    Indian Academy of Sciences (India)

    Hongmei Cai; Yongen Lu; Weibo Xie; Tong Zhu; Xingming Lian

    2012-09-01

    Nitrogen is an essential mineral nutrient required for plant growth and development. Insufficient nitrogen (N) supply triggers extensive physiological and biochemical changes in plants. In this study, we used Affymetrix GeneChip rice genome arrays to analyse the dynamics of rice transcriptome under N starvation. N starvation induced or suppressed transcription of 3518 genes, representing 10.88% of the genome. These changes, mostly transient, affected various cellular metabolic pathways, including stress response, primary and secondary metabolism, molecular transport, regulatory process and organismal development. 462 or 13.1% transcripts for N starvation expressed similarly in root and shoot. Comparative analysis between rice and Arabidopsis identified 73 orthologous groups that responded to N starvation, demonstrated the existence of conserved N stress coupling mechanism among plants. Additional analysis of transcription profiles of microRNAs revealed differential expression of miR399 and miR530 under N starvation, suggesting their potential roles in plant nutrient homeostasis.

  8. Transcriptome 2002 Conference

    Energy Technology Data Exchange (ETDEWEB)

    Quackenbush, John

    2002-01-01

    The Transcriptome 2002 meeting was held March 11-13, 2002 in Seattle, Washington with attendance by more than 300 scientists representing the international community. The scientific program was developed by an international organizing committee. In association with the main meeting, an Image Consortium invitational meeting was organized by Charles Auffray of CNRS and held with approximately 40 participants immediately following the conclusion of the Transcriptome meeting.

  9. Next-generation transcriptome assembly

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey A.; Wang, Zhong

    2011-09-01

    Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalog of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies-along with some perspectives on transcriptome assembly in the near future.

  10. The transcriptomics of an experimentally evolved plant-virus interaction.

    Science.gov (United States)

    Hillung, Julia; García-García, Francisco; Dopazo, Joaquín; Cuevas, José M; Elena, Santiago F

    2016-01-01

    Models of plant-virus interaction assume that the ability of a virus to infect a host genotype depends on the matching between virulence and resistance genes. Recently, we evolved tobacco etch potyvirus (TEV) lineages on different ecotypes of Arabidopsis thaliana, and found that some ecotypes selected for specialist viruses whereas others selected for generalists. Here we sought to evaluate the transcriptomic basis of such relationships. We have characterized the transcriptomic responses of five ecotypes infected with the ancestral and evolved viruses. Genes and functional categories differentially expressed by plants infected with local TEV isolates were identified, showing heterogeneous responses among ecotypes, although significant parallelism existed among lineages evolved in the same ecotype. Although genes involved in immune responses were altered upon infection, other functional groups were also pervasively over-represented, suggesting that plant resistance genes were not the only drivers of viral adaptation. Finally, the transcriptomic consequences of infection with the generalist and specialist lineages were compared. Whilst the generalist induced very similar perturbations in the transcriptomes of the different ecotypes, the perturbations induced by the specialist were divergent. Plant defense mechanisms were activated when the infecting virus was specialist but they were down-regulated when infecting with generalist. PMID:27113435

  11. Dataset of Arabidopsis plants that overexpress FT driven by a meristem-specific KNAT1 promoter.

    Science.gov (United States)

    Duplat-Bermúdez, L; Ruiz-Medrano, R; Landsman, D; Mariño-Ramírez, L; Xoconostle-Cázares, B

    2016-09-01

    In this dataset we integrated figures comparing leaf number and rosette diameter in three Arabidopsis FT overexpressor lines (AtFTOE) driven by KNAT1 promoter, "A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis" [5], vs Wild Type (WT) Arabidopsis plats. Also, presented in the tables are some transcriptomic data obtained by RNA-seq Illumina HiSeq from rosette leaves of Arabidopsis plants of AtFTOE 2.1 line vs WT with accession numbers SRR2094583 and SRR2094587 for AtFTOE replicates 1-3 and AtWT for control replicates 1-2 respectively. Raw data of paired-end sequences are located in the public repository of the National Center for Biotechnology Information of the National Library of Medicine, National Institutes of Health, United States of America, Bethesda, MD, USA as Sequence Read Archive (SRA). Performed analyses of differential expression genes are visualized by Mapman and presented in figures. "Transcriptomic analysis of Arabidopsis overexpressing flowering locus T driven by a meristem-specific promoter that induces early flowering" [2], described the interpretation and discussion of the obtained data. PMID:27366785

  12. A reference map of the Arabidopsis thaliana mature pollen proteome

    International Nuclear Information System (INIS)

    The male gametophyte (or pollen) plays an obligatory role during sexual reproduction of higher plants. The extremely reduced complexity of this organ renders pollen a valuable experimental system for studying fundamental aspects of plant biology such as cell fate determination, cell-cell interactions, cell polarity, and tip-growth. Here, we present the first reference map of the mature pollen proteome of the dicotyledonous model plant species, Arabidopsis thaliana. Based on two-dimensional gel electrophoresis, matrix-assisted laser desorption/ionization time-of-flight, and electrospray quadrupole time-of-flight mass spectrometry, we reproducibly identified 121 different proteins in 145 individual spots. The presence, subcellular localization, and functional classification of the identified proteins are discussed in relation to the pollen transcriptome and the full protein complement encoded by the nuclear Arabidopsis genome

  13. Comparative transcriptomics as a tool for the identification of root branching genes in maize.

    Science.gov (United States)

    Jansen, Leentje; Hollunder, Jens; Roberts, Ianto; Forestan, Cristian; Fonteyne, Philippe; Van Quickenborne, Charlotte; Zhen, Rui-Guang; McKersie, Bryan; Parizot, Boris; Beeckman, Tom

    2013-12-01

    The root system is fundamental for plant development, is crucial for overall plant growth and is recently being recognized as the key for future crop productivity improvement. A major determinant of root system architecture is the initiation of lateral roots. While knowledge of the genetic and molecular mechanisms regulating lateral root initiation has mainly been achieved in the dicotyledonous plant Arabidopsis thaliana, only scarce data are available for major crop species, generally monocotyledonous plants. The existence of both similarities and differences at the morphological and anatomical level between plant species from both clades raises the question whether regulation of lateral root initiation may or may not be conserved through evolution. Here, we performed a targeted genome-wide transcriptome analysis during lateral root initiation both in primary and in adventitious roots of Zea mays and found evidence for the existence of common transcriptional regulation. Further, based on a comparative analysis with Arabidopsis transcriptome data, a core of genes putatively conserved across angiosperms could be identified. Therefore, it is plausible that common regulatory mechanisms for lateral root initiation are at play in maize and Arabidopsis, a finding that might encourage the extrapolation of knowledge obtained in Arabidopsis to crop species at the level of root system architecture. PMID:23941360

  14. Bemisia tabaci B-Arabidopsis Interactions Examined by Electrical Penetration Graphs

    OpenAIRE

    Zhou, Jaclyn Shuzhen

    2014-01-01

    In the absence of strong resistance mechanisms to control the world-wide pest Bemisia tabaci B, new methods for control must be derived from understanding the plant innate immune response to whiteflies. Using four Arabidopsis defense-signaling mutants, transcriptome and hormone treatment studies, it was shown that B. tabaci B activates SA-regulated defenses, suppresses JA-regulated defenses, and the JA-defenses are effective in slowing whitefly nymphal development. Here we used the Ele...

  15. Cancer Reduces Transcriptome Specialization

    Science.gov (United States)

    Martínez, Octavio; Reyes-Valdés, M. Humberto; Herrera-Estrella, Luis

    2010-01-01

    A central goal of cancer biology is to understand how cells from this family of genetic diseases undergo specific morphological and physiological changes and regress to a de-regulated state of the cell cycle. The fact that tumors are unable to perform most of the specific functions of the original tissue led us to hypothesize that the degree of specialization of the transcriptome of cancerous tissues must be less than their normal counterparts. With the aid of information theory tools, we analyzed four datasets derived from transcriptomes of normal and tumor tissues to quantitatively test the hypothesis that cancer reduces transcriptome specialization. Here, we show that the transcriptional specialization of a tumor is significantly less than the corresponding normal tissue and comparable with the specialization of dedifferentiated embryonic stem cells. Furthermore, we demonstrate that the drop in specialization in cancerous tissues is largely due to a decrease in expression of genes that are highly specific to the normal organ. This approach gives us a better understanding of carcinogenesis and offers new tools for the identification of genes that are highly influential in cancer progression. PMID:20454660

  16. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism.

    Science.gov (United States)

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-09-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1. PMID:26149570

  17. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.

    Science.gov (United States)

    Nguyen, Huu T; Silva, Jillian E; Podicheti, Ram; Macrander, Jason; Yang, Wenyu; Nazarenus, Tara J; Nam, Jeong-Won; Jaworski, Jan G; Lu, Chaofu; Scheffler, Brian E; Mockaitis, Keithanne; Cahoon, Edgar B

    2013-08-01

    Camelina (Camelina sativa), a Brassicaceae oilseed, has received recent interest as a biofuel crop and production platform for industrial oils. Limiting wider production of camelina for these uses is the need to improve the quality and content of the seed protein-rich meal and oil, which is enriched in oxidatively unstable polyunsaturated fatty acids that are deleterious for biodiesel. To identify candidate genes for meal and oil quality improvement, a transcriptome reference was built from 2047 Sanger ESTs and more than 2 million 454-derived sequence reads, representing genes expressed in developing camelina seeds. The transcriptome of approximately 60K transcripts from 22 597 putative genes includes camelina homologues of nearly all known seed-expressed genes, suggesting a high level of completeness and usefulness of the reference. These sequences included candidates for 12S (cruciferins) and 2S (napins) seed storage proteins (SSPs) and nearly all known lipid genes, which have been compiled into an accessible database. To demonstrate the utility of the transcriptome for seed quality modification, seed-specific RNAi lines deficient in napins were generated by targeting 2S SSP genes, and high oleic acid oil lines were obtained by targeting FATTY ACID DESATURASE 2 (FAD2) and FATTY ACID ELONGASE 1 (FAE1). The high sequence identity between Arabidopsis thaliana and camelina genes was also exploited to engineer high oleic lines by RNAi with Arabidopsis FAD2 and FAE1 sequences. It is expected that these transcriptomic data will be useful for breeding and engineering of additional camelina seed traits and for translating findings from the model Arabidopsis to an oilseed crop. PMID:23551501

  18. Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis.

    Science.gov (United States)

    He, Fei; Yoo, Shinjae; Wang, Daifeng; Kumari, Sunita; Gerstein, Mark; Ware, Doreen; Maslov, Sergei

    2016-06-01

    Transcriptome data sets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by a lack of metadata or differences in annotation styles of different labs. In this study, we carefully selected and integrated 6057 Arabidopsis microarray expression samples from 304 experiments deposited to the Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI). Metadata such as tissue type, growth conditions and developmental stage were manually curated for each sample. We then studied the global expression landscape of the integrated data set and found that samples of the same tissue tend to be more similar to each other than to samples of other tissues, even in different growth conditions or developmental stages. Root has the most distinct transcriptome, compared with aerial tissues, but the transcriptome of cultured root is more similar to the transcriptome of aerial tissues, as the cultured root samples lost their cellular identity. Using a simple computational classification method, we showed that the tissue type of a sample can be successfully predicted based on its expression profile, opening the door for automatic metadata extraction and facilitating the re-use of plant transcriptome data. As a proof of principle, we applied our automated annotation pipeline to 708 RNA-seq samples from public repositories and verified the accuracy of our predictions with sample metadata provided by the authors. PMID:27015116

  19. The regulatory PII protein controls arginine biosynthesis in Arabidopsis.

    Science.gov (United States)

    Ferrario-Méry, Sylvie; Besin, Evelyne; Pichon, Olivier; Meyer, Christian; Hodges, Michael

    2006-04-01

    In higher plants, PII is a nuclear-encoded plastid protein which is homologous to bacterial PII signalling proteins known to be involved in the regulation of nitrogen metabolism. A reduced ornithine, citrulline and arginine accumulation was observed in two Arabidopsis PII knock-out mutants in response to NH4+ resupply after N starvation. This difference could be explained by the regulation of a key enzyme of the arginine biosynthesis pathway, N-acetyl glutamate kinase (NAGK) by PII. In vitro assays using purified recombinant proteins showed the catalytic activation of Arabidopsis NAGK by PII giving the first evidence of a physiological role of the PII protein in higher plants. Using Arabidopsis transcriptome microarray (CATMA) and RT-PCR analyses, it was found that none of the genes involved in the arginine biosynthetic or catabolic pathways were differentially expressed in a PII knock-out mutant background. In conclusion, the observed changes in metabolite levels can be explained by the reduced activation of NAGK by PII. PMID:16545809

  20. Comparison of next generation sequencing technologies for transcriptome characterization

    Directory of Open Access Journals (Sweden)

    Soltis Douglas E

    2009-08-01

    Full Text Available Abstract Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19. We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica and the magnoliid avocado (Persea americana using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB, 119,518 (88.7% mapped exactly to known exons, while 1,117 (0.8% mapped to introns, 11,524 (8.6% spanned annotated intron/exon boundaries, and 3,066 (2.3% extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance

  1. TCW: transcriptome computational workbench.

    Directory of Open Access Journals (Sweden)

    Carol Soderlund

    Full Text Available BACKGROUND: The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. METHODOLOGY: The Transcriptome Computational Workbench (TCW provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms. The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina or assembling long sequences (e.g. Sanger, 454, transcripts, annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. CONCLUSION: It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the

  2. Arabidopsis in Wageningen

    OpenAIRE

    Koornneef, M

    2013-01-01

    Arabidopsis thaliana is the plant species that in the past 25 years has developed into the major model species in plant biology research. This was due to its properties such as short generation time, its small genome and its easiness to be transformed. Wageningen University has played an important role in the development of this model, based on interdisciplinary collaborations using genetics as a major tool to investigate aspects of physiology, development, plant-microbe interactions and evol...

  3. G2 Checkpoint Responses in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Anne

    2013-03-18

    This project focused on the mechanism and biological significance of the G2 arrest response to replication stress in plants. We employed both forward and reverse genetic approaches to identify genes required for this response. A total of 3 different postdocs, 5 undergraduates, and 2 graduate students participated in the project. We identified several genes required for damage response in plants, including homologs of genes previously identified in animals (ATM and ATR), novel, a plant-specific genes (SOG1) and a gene known in animals but previously thought to be missing from the Arabidopsis genome (ATRIP). We characterized the transcriptome of gamma-irradiated plants, and found that plants, unlike animals, express a robust transcriptional response to damage, involving genes that regulate the cell cycle and DNA metabolism. This response requires both ATM and the transcription factor SOG1. We found that both ATM and ATR play a role in meiosis in plants. We also found that plants have a cell-type-specific programmed cell death response to ionizing radiation and UV light, and that this response requires ATR, ATM, and SOG1. These results were published in a series of 5 papers.

  4. High-throughput sequencing of black pepper root transcriptome

    Directory of Open Access Journals (Sweden)

    Gordo Sheila MC

    2012-09-01

    Full Text Available Abstract Background Black pepper (Piper nigrum L. is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host’s root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. Results The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant’s root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. Conclusions This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.

  5. Oomycete transcriptomics database: A resource for oomycete transcriptomes

    Directory of Open Access Journals (Sweden)

    Tripathy Sucheta

    2012-07-01

    Full Text Available Abstract Background Oomycete pathogens have attracted significant attention in recent years due to their economic impact. With improving sequencing technologies, large amounts of oomycete transcriptomics data are now available which have great biological utility. A known bottleneck with next generation sequencing data however lies with their analysis, interpretation, organization, storage and visualization. A number of efforts have been made in this respect resulting in development of a myriad of resources. Most of the existing NGS browsers work as standalone applications that need processed data to be uploaded to the browser locally for visualization. At the same time, several oomycete EST databases such as PFGD, ESTAP and SPC, are not available anymore, so there is an immediate need for a database resource that can store and disseminate this legacy information in addition to NGS data. Description Oomycetes Transcriptomics Database is an integrated transcriptome and EST data resource for oomycete pathogens. The database currently stores processed ABI SOLiD transcript sequences from Phytophthora sojae and its host soybean (P. sojae mycelia, healthy soybean and P. sojae-infected soybean as well as Illumina transcript sequences from five Hyaloperonospora arabidopsidis libraries. In addition to those resources, it has also a complete set of Sanger EST sequences from P. sojae, P. infestans and H. arabidopsidis grown under various conditions. A web-based transcriptome browser was created for visualization of assembled transcripts, their mapping to the reference genome, expression profiling and depth of read coverage for particular locations on the genome. The transcriptome browser merges EST-derived contigs with NGS-derived assembled transcripts on the fly and displays the consensus. OTD possesses strong query features and the database interacts with the VBI Microbial Database as well as the Phytophthora Transcriptomics Database. Conclusion Oomycete

  6. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole;

    2002-01-01

    unclear whether callose synthases can also produce cellulose and whether plant cellulose synthases may also produce beta-1,3-glucans. We describe here an Arabidopsis gene, AtGsl5, encoding a plasma membrane-localized protein homologous to yeast beta-1,3-glucan synthase whose expression partially......Beta-1,3-glucan polymers are major structural components of fungal cell walls, while cellulosic beta-1,4-glucan is the predominant polysaccharide in plant cell walls. Plant beta-1,3-glucan, called callose, is produced in pollen and in response to pathogen attack and wounding, but it has been...

  7. Photorepair mutants of Arabidopsis

    International Nuclear Information System (INIS)

    UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6-4) pyrimidinone dimer (6-4 product). Although Escherichia coli and Saccharomyces cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosophila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6-4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6-4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6-4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system

  8. Paradoxornis webbianus bulomachus Transcriptome or Gene expression [

    Lifescience Database Archive (English)

    Full Text Available Study Type Sample Organism Sequencing Platform Transcriptome Analysis Paradoxornis web...e Length Download SRR392516 SRS259594 Transcriptome Analysis Paradoxornis webbian...t/Resources DRASearch - DDBJ/DRA ENA Browser - EBI/ENA Paradoxornis webbianus bulomachus Transcriptome or Gene expression ...

  9. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    DEFF Research Database (Denmark)

    Barah, Pankaj; Jayavelu, Naresh Doni; Rasmussen, Simon;

    2013-01-01

    available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about......BACKGROUND: Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking....... RESULTS: In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes...

  10. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  11. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes.

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C; Fan, Chuanzhu

    2016-09-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  12. A bioinformatics approach to investigate the function of non specific lipid transfer proteins in Arabidopsis thaliana

    OpenAIRE

    Jayachandra Pandiyan, Muneeswaran

    2010-01-01

    Plant non specific lipid transfer proteins (nsLTPs) enhance in vitro transfer of phospholipids between membranes. Our analysis exploited the large amount of Arabidopsis transcriptome data in public databases to learn more about the function of nsLTPs. The analysis revealed that some nsLTPs are expressed only in roots, some are seed specific, and others are specific for tissues above ground whereas certain nsLTPs show a more general expression pattern. Only few nsLTPs showed a strong up or dow...

  13. Molecular characterization of the submergence response of Arabidopsis thaliana ecotype Columbia

    DEFF Research Database (Denmark)

    Lee, S.C.; Mustroph, A.; Sasidaharan, R.;

    2011-01-01

    A detailed description of the molecular response of Arabidopsis thaliana to submergence can aid the identification of genes that are critical to flooding survival. • Rosette-stage plants were fully submerged in complete darkness and shoot and root tissue was harvested separately after the O2...... partial pressure of the petiole and root had stabilized at c. 6 and 0.1 kPa, respectively. As controls, plants were untreated or exposed to darkness. Following quantitative profiling of cellular mRNAs with the Affymetrix ATH1 platform, changes in the transcriptome in response to submergence, early...

  14. Unique Features of the m6A Methylome in Arabidopsis thaliana

    OpenAIRE

    Luo, Guan-Zheng; MacQueen, Alice; Zheng, Guanqun; Duan, Hongchao; Dore, Louis C; Lu, Zhike; LIU Jun; Chen, Kai; Jia, Guifang; Bergelson, Joy; He, Chuan

    2014-01-01

    Recent discoveries of reversible N 6-methyladenosine (m6A) methylation on messenger RNA (mRNA) and mapping of m6A methylomes in mammals and yeast have revealed potential regulatory functions of this RNA modification. In plants, defects in m6A methyltransferase cause an embryo-lethal phenotype, suggesting a critical role of m6A in plant development. Here, we profile m6A transcriptome-wide in two accessions of Arabidopsis thaliana and reveal that m6A is a highly conserved modification of mRNA i...

  15. Abundant protein phosphorylation potentially regulates Arabidopsis anther development.

    Science.gov (United States)

    Ye, Juanying; Zhang, Zaibao; You, Chenjiang; Zhang, Xumin; Lu, Jianan; Ma, Hong

    2016-09-01

    As the male reproductive organ of flowering plants, the stamen consists of the anther and filament. Previous studies on stamen development mainly focused on single gene functions by genetic methods or gene expression changes using comparative transcriptomic approaches, especially in model plants such as Arabidopsis thaliana However, studies on Arabidopsis anther protein expression and post-translational modifications are still lacking. Here we report proteomic and phosphoproteomic studies on developing Arabidopsis anthers at stages 4-7 and 8-12. We identified 3908 high-confidence phosphorylation sites corresponding to 1637 phosphoproteins. Among the 1637 phosphoproteins, 493 were newly identified, with 952 phosphorylation sites. Phosphopeptide enrichment prior to LC-MS analysis facilitated the identification of low-abundance proteins and regulatory proteins, thereby increasing the coverage of proteomic analysis, and facilitated the analysis of more regulatory proteins. Thirty-nine serine and six threonine phosphorylation motifs were uncovered from the anther phosphoproteome and further analysis supports that phosphorylation of casein kinase II, mitogen-activated protein kinases, and 14-3-3 proteins is a key regulatory mechanism in anther development. Phosphorylated residues were preferentially located in variable protein regions among family members, but they were they were conserved across angiosperms in general. Moreover, phosphorylation might reduce activity of reactive oxygen species scavenging enzymes and hamper brassinosteroid signaling in early anther development. Most of the novel phosphoproteins showed tissue-specific expression in the anther according to previous microarray data. This study provides a community resource with information on the abundance and phosphorylation status of thousands of proteins in developing anthers, contributing to understanding post-translational regulatory mechanisms during anther development. PMID:27531888

  16. AtRD22 and AtUSPL1, Members of the Plant-Specific BURP Domain Family Involved in Arabidopsis thaliana Drought Tolerance

    OpenAIRE

    Harshavardhan, Vokkaliga Thammegowda; Van Son, Le; Seiler, Christiane; Junker, Astrid; Weigelt-Fischer, Kathleen; Klukas, Christian; Altmann, Thomas; Sreenivasulu, Nese; Bäumlein, Helmut; Kuhlmann, Markus

    2014-01-01

    Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of the Arabidopsis thaliana BURP (BNM2, USP, RD22 and polygalacturonase isozyme) domain-containing gene family, has been characterized. Both genes are up-regulated as part of the abscisic acid (ABA) me...

  17. De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum

    Directory of Open Access Journals (Sweden)

    Wickett Norman J

    2011-02-01

    Full Text Available Abstract Background Because of their phylogenetic position and unique characteristics of their biology and life cycle, ferns represent an important lineage for studying the evolution of land plants. Large and complex genomes in ferns combined with the absence of economically important species have been a barrier to the development of genomic resources. However, high throughput sequencing technologies are now being widely applied to non-model species. We leveraged the Roche 454 GS-FLX Titanium pyrosequencing platform in sequencing the gametophyte transcriptome of bracken fern (Pteridium aquilinum to develop genomic resources for evolutionary studies. Results 681,722 quality and adapter trimmed reads totaling 254 Mbp were assembled de novo into 56,256 unique sequences (i.e. unigenes with a mean length of 547.2 bp and a total assembly size of 30.8 Mbp with an average read-depth coverage of 7.0×. We estimate that 87% of the complete transcriptome has been sequenced and that all transcripts have been tagged. 61.8% of the unigenes had blastx hits in the NCBI nr protein database, representing 22,596 unique best hits. The longest open reading frame in 52.2% of the unigenes had positive domain matches in InterProScan searches. We assigned 46.2% of the unigenes with a GO functional annotation and 16.0% with an enzyme code annotation. Enzyme codes were used to retrieve and color KEGG pathway maps. A comparative genomics approach revealed a substantial proportion of genes expressed in bracken gametophytes to be shared across the genomes of Arabidopsis, Selaginella and Physcomitrella, and identified a substantial number of potentially novel fern genes. By comparing the list of Arabidopsis genes identified by blast with a list of gametophyte-specific Arabidopsis genes taken from the literature, we identified a set of potentially conserved gametophyte specific genes. We screened unigenes for repetitive sequences to identify 548 potentially-amplifiable simple

  18. Evaluation of Monocot and Eudicot Divergence Using the Sugarcane Transcriptome1[w

    Science.gov (United States)

    Vincentz, Michel; Cara, Frank A.A.; Okura, Vagner K.; da Silva, Felipe R.; Pedrosa, Guilherme L.; Hemerly, Adriana S.; Capella, Adriana N.; Marins, Mozart; Ferreira, Paulo C.; França, Suzelei C.; Grivet, Laurent; Vettore, Andre L.; Kemper, Edson L.; Burnquist, Willian L.; Targon, Maria L.P.; Siqueira, Walter J.; Kuramae, Eiko E.; Marino, Celso L.; Camargo, Luis E.A.; Carrer, Helaine; Coutinho, Luis L.; Furlan, Luiz R.; Lemos, Manoel V.F.; Nunes, Luiz R.; Gomes, Suely L.; Santelli, Roberto V.; Goldman, Maria H.; Bacci, Maurício; Giglioti, Eder A.; Thiemann, Otávio H.; Silva, Flávio H.; Van Sluys, Marie-Anne; Nobrega, Francisco G.; Arruda, Paulo; Menck, Carlos F.M.

    2004-01-01

    Over 40,000 sugarcane (Saccharum officinarum) consensus sequences assembled from 237,954 expressed sequence tags were compared with the protein and DNA sequences from other angiosperms, including the genomes of Arabidopsis and rice (Oryza sativa). Approximately two-thirds of the sugarcane transcriptome have similar sequences in Arabidopsis. These sequences may represent a core set of proteins or protein domains that are conserved among monocots and eudicots and probably encode for essential angiosperm functions. The remaining sequences represent putative monocot-specific genetic material, one-half of which were found only in sugarcane. These monocot-specific cDNAs represent either novelties or, in many cases, fast-evolving sequences that diverged substantially from their eudicot homologs. The wide comparative genome analysis presented here provides information on the evolutionary changes that underlie the divergence of monocots and eudicots. Our comparative analysis also led to the identification of several not yet annotated putative genes and possible gene loss events in Arabidopsis. PMID:15020759

  19. Comparative Transcriptome Analysis of Two Ascophyllum nodosum Extract Biostimulants: Same Seaweed but Different.

    Science.gov (United States)

    Goñi, Oscar; Fort, Antoine; Quille, Patrick; McKeown, Peter C; Spillane, Charles; O'Connell, Shane

    2016-04-13

    Biostimulants for crop management are gaining increased attention with continued demand for increased crop yields. Seaweed extracts represent one category of biostimulant, with Ascophyllum nodosum extracts (ANE) widely used for yield and quality enhancement. This study investigated how the composition of two ANE biostimulants (ANE A and ANE B) affects plant mRNA transcriptomes, using the model plant Arabidopsis thaliana. Using Affymetrix Ath1 microarrays, significant heterogeneity was detected between the ANE biostimulants in terms of their impacts on the mRNA transcriptome of A. thaliana plants, which accumulated significantly more biomass than untreated controls. Genes dysregulated by the ANE biostimulants are associated with a wide array of predicted biological processes, molecular functions, and subcellular distributions. ANE A dysregulated 4.47% of the transcriptome, whereas ANE B dysregulated 0.87%. The compositions of both ANEs were significantly different, with a 4-fold difference in polyphenol levels, the largest observed. The standardization of the composition of ANE biostimulants represents a challenge for providing consistent effects on plant gene expression and biostimulation. PMID:27010818

  20. Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling.

    Science.gov (United States)

    Juntawong, Piyada; Sirikhachornkit, Anchalee; Pimjan, Rachaneeporn; Sonthirod, Chutima; Sangsrakru, Duangjai; Yoocha, Thippawan; Tangphatsornruang, Sithichoke; Srinives, Peerasak

    2014-01-01

    Jatropha (Jatropha curcas) is a promising oil-seed crop for biodiesel production. However, the species is highly sensitive to waterlogging, which can result in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in Jatropha remain elusive. Here, the transcriptome adjustment of Jatropha roots to waterlogging was examined by high-throughput RNA-sequencing (RNA-seq). The results indicated that 24 h of waterlogging caused significant changes in mRNA abundance of 1968 genes. Comprehensive gene ontology and functional enrichment analysis of root transcriptome revealed that waterlogging promoted responses to hypoxia and anaerobic respiration. On the other hand, the stress inhibited carbohydrate synthesis, cell wall biogenesis, and growth. The results also highlighted the roles of ethylene, nitrate, and nitric oxide in waterlogging acclimation. In addition, transcriptome profiling identified 85 waterlogging-induced transcription factors including members of AP2/ERF, MYB, and WRKY families implying that reprogramming of gene expression is a vital mechanism for waterlogging acclimation. Comparative analysis of differentially regulated transcripts in response to waterlogging among Arabidopsis, gray poplar, Jatropha, and rice further revealed not only conserved but species-specific regulation. Our findings unraveled the molecular responses to waterlogging in Jatropha and provided new perspectives for developing a waterlogging tolerant cultivar in the future. PMID:25520726

  1. Transcriptomics and disease vector control

    Directory of Open Access Journals (Sweden)

    Ranson Hilary

    2010-05-01

    Full Text Available Abstract Next-generation sequencing can be used to compare transcriptomes under different conditions. A study in BMC Genomics applies this approach to investigating the effects of exposure to a range of xenobiotics on changes in gene expression in the larvae of Aedes aegypti, the mosquito vector of dengue fever. See research article http://www.biomedcentral.com/1471-2164/11/216

  2. Transcriptomic changes in brain development

    OpenAIRE

    Dillman, Allissa A.; Cookson, Mark R.

    2014-01-01

    The transcriptome changes hugely during development of the brain. Whole genes, alternate exons and single base pair changes related to RNA editing all show differences between embryonic and mature brain. Collectively, these changes control proteomic diversity as the brain develops. Additionally, there are many changes in non-coding RNAs (miRNA and lncRNA) that interact with mRNA to influence the overall transcriptional landscape. Here we will discuss what is known about such changes in brain ...

  3. Tricks to translating TB transcriptomics.

    Science.gov (United States)

    Deffur, Armin; Wilkinson, Robert J; Coussens, Anna K

    2015-05-01

    Transcriptomics and other high-throughput methods are increasingly applied to questions relating to tuberculosis (TB) pathogenesis. Whole blood transcriptomics has repeatedly been applied to define correlates of TB risk and has produced new insight into the late stage of disease pathogenesis. In a novel approach, authors of a recently published study in Science Translational Medicine applied complex data analysis of existing TB transcriptomic datasets, and in vitro models, in an attempt to identify correlates of protection in TB, which are crucially required for the development of novel TB diagnostics and therapeutics to halt this global epidemic. Utilizing latent TB infection (LTBI) as a surrogate of protection, they identified IL-32 as a mediator of interferon gamma (IFNγ)-vitamin D dependent antimicrobial immunity and a marker of LTBI. Here, we provide a review of all TB whole-blood transcriptomic studies to date in the context of identifying correlates of protection, discuss potential pitfalls of combining complex analyses originating from such studies, the importance of detailed metadata to interpret differential patient classification algorithms, the effect of differing circulating cell populations between patient groups on the interpretation of resulting biomarkers and we decipher weighted gene co-expression network analysis (WGCNA), a recently developed systems biology tool which holds promise of identifying novel pathway interactions in disease pathogenesis. In conclusion, we propose the development of an integrated OMICS platform and open access to detailed metadata, in order for the TB research community to leverage the vast array of OMICS data being generated with the aim of unraveling the holy grail of TB research: correlates of protection. PMID:26046091

  4. Transcriptional consequence and impaired gametogenesis with high-grade aneuploidy in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Kuan-Lin Lo

    Full Text Available Aneuploidy features a numerical chromosome variant that the number of chromosomes in the nucleus of a cell is not an exact multiple of the haploid number, which may have an impact on morphology and gene expression. Here we report a tertiary trisomy uncovered by characterizing a T-DNA insertion mutant (aur2-1/+ in the Arabidopsis (Arabidopsis thaliana AURORA2 locus. Whole-genome analysis with DNA tiling arrays revealed a chromosomal translocation linked to the aur2-1 allele, which collectively accounted for a tertiary trisomy 2. Morphologic, cytogenetic and genetic analyses of aur2-1 progeny showed impaired male and female gametogenesis to various degrees and a tight association of the aur2-1 allele with the tertiary trisomy that was preferentially inherited. Transcriptome analysis showed overlapping and distinct gene expression profiles between primary and tertiary trisomy 2 plants, particularly genes involved in response to stress and various types of external and internal stimuli. Additionally, transcriptome and gene ontology analyses revealed an overrepresentation of nuclear-encoded organelle-related genes functionally involved in plastids, mitochondria and peroxisomes that were differentially expressed in at least three if not all Arabidopsis trisomics. These observations support a previous hypothesis that aneuploid cells have higher energy requirement to overcome the detrimental effects of an unbalanced genome. Moreover, our findings extend the knowledge of the complex nature of the T-DNA insertion event influencing plant genomic integrity by creating high-grade trisomy. Finally, gene expression profiling results provide useful information for future research to compare primary and tertiary trisomics for the effects of aneuploidy on plant cell physiology.

  5. Using Transcriptomics to Understand the Wheat Genome

    Science.gov (United States)

    Wheat (Triticum aestivum L.) is one of the most important food crops in the world, and transcriptomics studies of this crop promise to reveal the expression dynamics of genes that control many agriculturally important traits. In this review of wheat transcriptomics research, the current status of tr...

  6. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Directory of Open Access Journals (Sweden)

    Pankaj Barah

    Full Text Available BACKGROUND: Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth during insect Brevicoryne brassicae (B. brassicae henceforth and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. RESULTS: The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA, jasmonic acid (JA, ethylene (ET and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. CONCLUSIONS: Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between

  7. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    Science.gov (United States)

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. PMID:27194709

  8. Transcriptome sequencing goals, assembly, and assessment.

    Science.gov (United States)

    Wheat, Christopher W; Vogel, Heiko

    2011-01-01

    Transcriptome sequencing provides quick, direct access to the mRNA. With this information, one can design primers for PCR of thousands of different genes, SNP markers, probes for microarrays and qPCR, or just use the sequence data itself in comparative studies. Transcriptome sequencing, while getting cheaper, is still an expensive endeavor, with an examination of data quality and its assembly infrequently performed in depth. Here, we outline many of the important issues we think need consideration when starting a transcriptome sequencing project. We also walk the reader through a detailed analysis of an example transcriptome dataset, highlighting the importance of both within-dataset analysis and comparative inferences. Our hope is that with greater attention focused upon assessing assembly performance, advances in transcriptome assembly will increase as prices continue to drop and new technologies, such as Illumina sequencing, start to be used. PMID:22065435

  9. Small RNA transcriptomes of mangroves evolve adaptively in extreme environments.

    Science.gov (United States)

    Wen, Ming; Lin, Xingqin; Xie, Munan; Wang, Yushuai; Shen, Xu; Liufu, Zhongqi; Wu, Chung-I; Shi, Suhua; Tang, Tian

    2016-01-01

    MicroRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs) are key players in plant stress responses. Here, we present the sRNA transcriptomes of mangroves Bruguiera gymnorrhiza and Kandelia candel. Comparative computational analyses and target predictions revealed that mangroves exhibit distinct sRNA regulatory networks that differ from those of glycophytes. A total of 32 known and three novel miRNA families were identified. Conserved and mangrove-specific miRNA targets were predicted; the latter were widely involved in stress responses. The known miRNAs showed differential expression between the mangroves and glycophytes, reminiscent of the adaptive stress-responsive changes in Arabidopsis. B. gymnorrhiza possessed highly abundant but less conserved TAS3 trans-acting siRNAs (tasiRNAs) in addition to tasiR-ARFs, with expanded potential targets. Our results indicate that the evolutionary alteration of sRNA expression levels and the rewiring of sRNA-regulatory networks are important mechanisms underlying stress adaptation. We also identified sRNAs that are involved in salt and/or drought tolerance and nutrient homeostasis as possible contributors to mangrove success in stressful environments. PMID:27278626

  10. Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species.

    Directory of Open Access Journals (Sweden)

    Elsa Góngora-Castillo

    Full Text Available The natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs, includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin, hypertension (reserpine, ajmalicine, malaria (quinine, and as analgesics (7-hydroxymitragynine. Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways. To address these limitations, we generated large-scale transcriptome sequence and expression profiles for three species of Asterids that produce medicinally important MIAs: Camptotheca acuminata, Catharanthus roseus, and Rauvolfia serpentina. Using next generation sequencing technology, we sampled the transcriptomes of these species across a diverse set of developmental tissues, and in the case of C. roseus, in cultured cells and roots following elicitor treatment. Through an iterative assembly process, we generated robust transcriptome assemblies for all three species with a substantial number of the assembled transcripts being full or near-full length. The majority of transcripts had a related sequence in either UniRef100, the Arabidopsis thaliana predicted proteome, or the Pfam protein domain database; however, we also identified transcripts that lacked similarity with entries in either database and thereby lack a known function. Representation of known genes within the MIA biosynthetic pathway was robust. As a diverse set of tissues and treatments were surveyed, expression abundances of transcripts in the three species could be estimated to reveal transcripts associated with development and response to elicitor treatment. Together, these transcriptomes and expression abundance matrices provide a rich resource

  11. Methodological approaches for using synchrotron X-ray fluorescence (SXRF) imaging as a tool in ionomics: Examples from Arabidopsis thaliana

    Science.gov (United States)

    Hindt, Maria; Socha, Amanda L.; Zuber, Hélène

    2013-01-01

    Here we present approaches for using multi-elemental imaging (specifically synchrotron X-ray fluorescence microscopy, SXRF) in ionomics, with examples using the model plant Arabidopsis thaliana. The complexity of each approach depends on the amount of a priori information available for the gene and/or phenotype being studied. Three approaches are outlined, which apply to experimental situations where a gene of interest has been identified but has an unknown phenotype (Phenotyping), an unidentified gene is associated with a known phenotype (Gene Cloning) and finally, a Screening approach, where both gene and phenotype are unknown. These approaches make use of open-access, online databases with which plant molecular genetics researchers working in the model plant Arabidopsis will be familiar, in particular the Ionomics Hub and online transcriptomic databases such as the Arabidopsis eFP browser. The approaches and examples we describe are based on the assumption that altering the expression of ion transporters can result in changes in elemental distribution. We provide methodological details on using elemental imaging to aid or accelerate gene functional characterization by narrowing down the search for candidate genes to the tissues in which elemental distributions are altered. We use synchrotron X-ray microprobes as a technique of choice, which can now be used to image all parts of an Arabidopsis plant in a hydrated state. We present elemental images of leaves, stem, root, siliques and germinating hypocotyls. PMID:23912758

  12. Transcriptomic changes in brain development

    Science.gov (United States)

    Dillman, Allissa A.; Cookson, Mark R.

    2015-01-01

    The transcriptome changes hugely during development of the brain. Whole genes, alternate exons and single base pair changes related to RNA editing all show differences between embryonic and mature brain. Collectively, these changes control proteomic diversity as the brain develops. Additionally, there are many changes in non-coding RNAs (miRNA and lncRNA) that interact with mRNA to influence the overall transcriptional landscape. Here we will discuss what is known about such changes in brain development, particularly focussing on high throughput approaches and how those can be used to infer mechanisms by which gene expression is controlled in the brain as it matures. PMID:25172477

  13. The olfactory transcriptomes of mice.

    Science.gov (United States)

    Ibarra-Soria, Ximena; Levitin, Maria O; Saraiva, Luis R; Logan, Darren W

    2014-09-01

    The olfactory (OR) and vomeronasal receptor (VR) repertoires are collectively encoded by 1700 genes and pseudogenes in the mouse genome. Most OR and VR genes were identified by comparative genomic techniques and therefore, in many of those cases, only their protein coding sequences are defined. Some also lack experimental support, due in part to the similarity between them and their monogenic, cell-specific expression in olfactory tissues. Here we use deep RNA sequencing, expression microarray and quantitative RT-PCR in both the vomeronasal organ and whole olfactory mucosa to quantify their full transcriptomes in multiple male and female mice. We find evidence of expression for all VR, and almost all OR genes that are annotated as functional in the reference genome, and use the data to generate over 1100 new, multi-exonic, significantly extended receptor gene annotations. We find that OR and VR genes are neither equally nor randomly expressed, but have reproducible distributions of abundance in both tissues. The olfactory transcriptomes are only minimally different between males and females, suggesting altered gene expression at the periphery is unlikely to underpin the striking sexual dimorphism in olfactory-mediated behavior. Finally, we present evidence that hundreds of novel, putatively protein-coding genes are expressed in these highly specialized olfactory tissues, and carry out a proof-of-principle validation. Taken together, these data provide a comprehensive, quantitative catalog of the genes that mediate olfactory perception and pheromone-evoked behavior at the periphery. PMID:25187969

  14. The olfactory transcriptomes of mice.

    Directory of Open Access Journals (Sweden)

    Ximena Ibarra-Soria

    2014-09-01

    Full Text Available The olfactory (OR and vomeronasal receptor (VR repertoires are collectively encoded by 1700 genes and pseudogenes in the mouse genome. Most OR and VR genes were identified by comparative genomic techniques and therefore, in many of those cases, only their protein coding sequences are defined. Some also lack experimental support, due in part to the similarity between them and their monogenic, cell-specific expression in olfactory tissues. Here we use deep RNA sequencing, expression microarray and quantitative RT-PCR in both the vomeronasal organ and whole olfactory mucosa to quantify their full transcriptomes in multiple male and female mice. We find evidence of expression for all VR, and almost all OR genes that are annotated as functional in the reference genome, and use the data to generate over 1100 new, multi-exonic, significantly extended receptor gene annotations. We find that OR and VR genes are neither equally nor randomly expressed, but have reproducible distributions of abundance in both tissues. The olfactory transcriptomes are only minimally different between males and females, suggesting altered gene expression at the periphery is unlikely to underpin the striking sexual dimorphism in olfactory-mediated behavior. Finally, we present evidence that hundreds of novel, putatively protein-coding genes are expressed in these highly specialized olfactory tissues, and carry out a proof-of-principle validation. Taken together, these data provide a comprehensive, quantitative catalog of the genes that mediate olfactory perception and pheromone-evoked behavior at the periphery.

  15. Developmental transcriptome of Aplysia californica'

    KAUST Repository

    Heyland, Andreas

    2010-12-06

    Genome-wide transcriptional changes in development provide important insight into mechanisms underlying growth, differentiation, and patterning. However, such large-scale developmental studies have been limited to a few representatives of Ecdysozoans and Chordates. Here, we characterize transcriptomes of embryonic, larval, and metamorphic development in the marine mollusc Aplysia californica and reveal novel molecular components associated with life history transitions. Specifically, we identify more than 20 signal peptides, putative hormones, and transcription factors in association with early development and metamorphic stages-many of which seem to be evolutionarily conserved elements of signal transduction pathways. We also characterize genes related to biomineralization-a critical process of molluscan development. In summary, our experiment provides the first large-scale survey of gene expression in mollusc development, and complements previous studies on the regulatory mechanisms underlying body plan patterning and the formation of larval and juvenile structures. This study serves as a resource for further functional annotation of transcripts and genes in Aplysia, specifically and molluscs in general. A comparison of the Aplysia developmental transcriptome with similar studies in the zebra fish Danio rerio, the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans, and other studies on molluscs suggests an overall highly divergent pattern of gene regulatory mechanisms that are likely a consequence of the different developmental modes of these organisms. © 2010 Wiley-Liss, Inc., A Wiley Company.

  16. Arabidopsis thaliana—Aphid Interaction

    OpenAIRE

    Louis, Joe; Singh, Vijay,; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide impor...

  17. Selenium Speciation in Arabidopsis Thaliana

    OpenAIRE

    Wang, Xiaoou

    2011-01-01

    Selenium has been proved as an essential micronutrient and is beneficial to animals and humans. It is a structural component of the important antioxidant enzyme, glutathione peroxidase, which catalyzes reactions to detoxify reactive oxygen species. However, the essentiality of Se in plants remains controversial and the protective role of Se in plants has rarely been investigated. In this study, Arabidopsis thaliana was grown in controlled environments having selenate or selenite enriched medi...

  18. Stem cell organization in Arabidopsis

    OpenAIRE

    Wendrich, J.R.

    2016-01-01

    Growth of plant tissues and organs depends on continuous production of new cells, by niches of stem cells. Stem cells typically divide to give rise to one differentiating daughter and one non-differentiating daughter. This constant process of self-renewal ensures that the niches of stem cells or meristems stay active throughout plant-life. Specification of stem cells occurs very early during development of the emrbyo and they are maintained during later stages. The Arabidopsis embryo is a hig...

  19. Comparative cDNA-AFLP analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea.

    Science.gov (United States)

    Craciun, Adrian Radu; Courbot, Mikael; Bourgis, Fabienne; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2006-01-01

    Cadmium (Cd) tolerance seems to be a constitutive species-level trait in Arabidopsis halleri. In order to identify genes potentially implicated in Cd tolerance, a backcross (BC1) segregating population was produced from crosses between A. halleri ssp. halleri and its closest non-tolerant relative A. lyrata ssp. petraea. The most sensitive and tolerant genotypes of the BC1 were analysed on a transcriptome-wide scale by cDNA-amplified fragment length polymorphism (AFLP). A hundred and thirty-four genes expressed more in the root of tolerant genotypes than in sensitive genotypes were identified. Most of the identified genes showed no regulation in their expression when exposed to Cd in a hydroponic culture medium and belonged to diverse functional classes, including reactive oxygen species (ROS) detoxification, cellular repair, metal sequestration, water transport, signal transduction, transcription regulation, and protein degradation, which are discussed. PMID:16916885

  20. An International Bioinformatics Infrastructure to Underpin the Arabidopsis Community

    Science.gov (United States)

    The future bioinformatics needs of the Arabidopsis community as well as those of other scientific communities that depend on Arabidopsis resources were discussed at a pair of recent meetings held by the Multinational Arabidopsis Steering Committee (MASC) and the North American Arabidopsis Steering C...

  1. Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers.

    Science.gov (United States)

    Marco, Francisco; Alcázar, Rubén; Tiburcio, Antonio F; Carrasco, Pedro

    2011-11-01

    Plant development and productivity are negatively regulated by adverse environmental conditions. The identification of stress-regulatory genes, networks, and signaling molecules should allow the development of novel strategies to obtain tolerant plants. Polyamines (PAs) are polycationic compounds with a recognized role in plant growth and development, as well as in abiotic and biotic stress responses. During the last years, knowledge on PA functions has been achieved using genetically modified plants with altered PA levels. In this review, we combine the information obtained from global transcriptome analyses in transgenic Arabidopsis plants with altered putrescine or spermine levels. Comparison of common and specific gene networks affected by elevation of endogenous PAs, support the view that these compounds actively participate in stress signaling through intricate crosstalks with abscisic acid (ABA), Ca(2+) signaling and other hormonal pathways in plant defense and development. PMID:22011340

  2. Arabidopsis CDS blastp result: AK106750 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106750 002-115-C09 At4g15560.1 1-deoxy-D-xylulose 5-phosphate synthase, putative / 1-deoxyxylu ... phate synthase, putative / DXP-synthase, putative (DEF ) (CLA1) identical to SP|Q38854 Probable 1-deoxy-D- ... (DXPS). [Mouse-ear cress] {Arabidopsis thaliana}, DEF ... (def icient in photosynthesis) protein [Arabidopsis ...

  3. Arabidopsis CDS blastp result: AK104851 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104851 001-043-A10 At4g15560.1 1-deoxy-D-xylulose 5-phosphate synthase, putative / 1-deoxyxylu ... phate synthase, putative / DXP-synthase, putative (DEF ) (CLA1) identical to SP|Q38854 Probable 1-deoxy-D- ... (DXPS). [Mouse-ear cress] {Arabidopsis thaliana}, DEF ... (def icient in photosynthesis) protein [Arabidopsis ...

  4. Arabidopsis CDS blastp result: AK100909 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100909 J023132G24 At4g15560.1 1-deoxy-D-xylulose 5-phosphate synthase, putative / 1-deoxyxylul ... phate synthase, putative / DXP-synthase, putative (DEF ) (CLA1) identical to SP|Q38854 Probable 1-deoxy-D- ... (DXPS). [Mouse-ear cress] {Arabidopsis thaliana}, DEF ... (def icient in photosynthesis) protein [Arabidopsis ...

  5. Arabidopsis CDS blastp result: AK058950 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058950 001-020-A07 At4g15560.1 1-deoxy-D-xylulose 5-phosphate synthase, putative / 1-deoxyxylu ... phate synthase, putative / DXP-synthase, putative (DEF ) (CLA1) identical to SP|Q38854 Probable 1-deoxy-D- ... (DXPS). [Mouse-ear cress] {Arabidopsis thaliana}, DEF ... (def icient in photosynthesis) protein [Arabidopsis ...

  6. Arabidopsis CDS blastp result: AK059821 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059821 006-205-D11 At4g15560.1 1-deoxy-D-xylulose 5-phosphate synthase, putative / 1-deoxyxylu ... phate synthase, putative / DXP-synthase, putative (DEF ) (CLA1) identical to SP|Q38854 Probable 1-deoxy-D- ... (DXPS). [Mouse-ear cress] {Arabidopsis thaliana}, DEF ... (def icient in photosynthesis) protein [Arabidopsis ...

  7. Arabidopsis CDS blastp result: AK064944 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064944 J013000P14 At4g15560.1 1-deoxy-D-xylulose 5-phosphate synthase, putative / 1-deoxyxylul ... phate synthase, putative / DXP-synthase, putative (DEF ) (CLA1) identical to SP|Q38854 Probable 1-deoxy-D- ... (DXPS). [Mouse-ear cress] {Arabidopsis thaliana}, DEF ... (def icient in photosynthesis) protein [Arabidopsis ...

  8. Arabidopsis CDS blastp result: AK068400 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068400 J013151M04 At3g45810.1 ferric reductase-like transmembrane component family protein sim ... ilar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ... EMBL:AF055357 [gi:3242789], similar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ...

  9. Arabidopsis CDS blastp result: AK066013 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066013 J013047I12 At3g45810.1 ferric reductase-like transmembrane component family protein sim ... ilar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ... EMBL:AF055357 [gi:3242789], similar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ...

  10. Arabidopsis CDS blastp result: AK100241 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100241 J023054P13 At3g45810.1 ferric reductase-like transmembrane component family protein sim ... ilar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ... EMBL:AF055357 [gi:3242789], similar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ...

  11. Arabidopsis CDS blastp result: AK318553 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK318553 J075145A22 At3g45810.1 68416.m04958 ferric reductase-like transmembrane component famil ... y protein similar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ... EMBL:AF055357 [gi:3242789], similar to respiratory burst ... oxidase protein D RbohD from Arabidopsis thaliana, ...

  12. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    Science.gov (United States)

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR RLK) genetic…

  13. Comparative transcriptomics in the Triticeae

    Directory of Open Access Journals (Sweden)

    Waugh Robbie

    2009-06-01

    Full Text Available Abstract Background Barley and particularly wheat are two grass species of immense agricultural importance. In spite of polyploidization events within the latter, studies have shown that genotypically and phenotypically these species are very closely related and, indeed, fertile hybrids can be created by interbreeding. The advent of two genome-scale Affymetrix GeneChips now allows studies of the comparison of their transcriptomes. Results We have used the Wheat GeneChip to create a "gene expression atlas" for the wheat transcriptome (cv. Chinese Spring. For this, we chose mRNA from a range of tissues and developmental stages closely mirroring a comparable study carried out for barley (cv. Morex using the Barley1 GeneChip. This, together with large-scale clustering of the probesets from the two GeneChips into "homologous groups", has allowed us to perform a genomic-scale comparative study of expression patterns in these two species. We explore the influence of the polyploidy of wheat on the results obtained with the Wheat GeneChip and quantify the correlation between conservation in gene sequence and gene expression in wheat and barley. In addition, we show how the conservation of expression patterns can be used to elucidate, probeset by probeset, the reliability of the Wheat GeneChip. Conclusion While there are many differences in expression on the level of individual genes and tissues, we demonstrate that the wheat and barley transcriptomes appear highly correlated. This finding is significant not only because given small evolutionary distance between the two species it is widely expected, but also because it demonstrates that it is possible to use the two GeneChips for comparative studies. This is the case even though their probeset composition reflects rather different design principles as well as, of course, the present incomplete knowledge of the gene content of the two species. We also show that, in general, the Wheat GeneChip is not able

  14. Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions.

    Science.gov (United States)

    Kawakatsu, Taiji; Huang, Shao-Shan Carol; Jupe, Florian; Sasaki, Eriko; Schmitz, Robert J; Urich, Mark A; Castanon, Rosa; Nery, Joseph R; Barragan, Cesar; He, Yupeng; Chen, Huaming; Dubin, Manu; Lee, Cheng-Ruei; Wang, Congmao; Bemm, Felix; Becker, Claude; O'Neil, Ryan; O'Malley, Ronan C; Quarless, Danjuma X; Schork, Nicholas J; Weigel, Detlef; Nordborg, Magnus; Ecker, Joseph R

    2016-07-14

    The epigenome orchestrates genome accessibility, functionality, and three-dimensional structure. Because epigenetic variation can impact transcription and thus phenotypes, it may contribute to adaptation. Here, we report 1,107 high-quality single-base resolution methylomes and 1,203 transcriptomes from the 1001 Genomes collection of Arabidopsis thaliana. Although the genetic basis of methylation variation is highly complex, geographic origin is a major predictor of genome-wide DNA methylation levels and of altered gene expression caused by epialleles. Comparison to cistrome and epicistrome datasets identifies associations between transcription factor binding sites, methylation, nucleotide variation, and co-expression modules. Physical maps for nine of the most diverse genomes reveal how transposons and other structural variants shape the epigenome, with dramatic effects on immunity genes. The 1001 Epigenomes Project provides a comprehensive resource for understanding how variation in DNA methylation contributes to molecular and non-molecular phenotypes in natural populations of the most studied model plant. PMID:27419873

  15. Integration of transcriptomics and metabonomics

    DEFF Research Database (Denmark)

    Bjerrum, Jacob Tveiten; Rantalainen, Mattias; Wang, Yulan;

    2014-01-01

    A systems biology approach to multi-faceted diseases has provided an opportunity to establish a holistic understanding of the processes at play. Thus, the current study merges transcriptomics and metabonomics data in order to improve diagnostics, biomarker identification and to explore the...... possibilities of a molecular phenotyping of ulcerative colitis (UC) patients. Biopsies were obtained from the descending colon of 43 UC patients (22 active UC and 21 quiescent UC) and 15 controls. Genome-wide gene expression analyses were performed using Affymetrix GeneChip Human Genome U133 Plus 2.0. Metabolic...... performance was evaluated using nested Monte Carlo cross-validation. The prediction performance of the merged data sets and that of relative small (<20 variables) multivariate biomarker panels suggest that it is possible to discriminate between active UC, quiescent UC, and controls; between patients with or...

  16. Characterization of the Asian Citrus Psyllid Transcriptome

    OpenAIRE

    Reese, Justin; Christenson, Matthew K.; Leng, Nan; Saha, Surya; Cantarel, Brandi; Lindeberg, Magdalen; Tamborindeguy, Cecilia; MacCarthy, Justin; Weaver, Daniel; Trease, Andrew J.; Ready, Steven V.; Davis, Vincent M.; McCormick, Courtney; Haudenschild, Christian; Han, Shunsheng

    2014-01-01

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is a vector for the causative agents of Huanglongbing, which threatens citrus production worldwide. This study reports and discusses the first D. citri transcriptomes, encompassing the three main life stages of D. citri, egg, nymph and adult. The transcriptomes were annotated using Gene Ontology (GO) and insecticide-related genes within each life stage were identified to aid the development of future D. citri insectici...

  17. Integrative investigation of metabolic and transcriptomic data

    OpenAIRE

    Önsan Z İlsen; Hayes Andrew; Kırdar Betül; Pir Pınar; Ülgen Kutlu Ö; Oliver Stephen G

    2006-01-01

    Abstract Background New analysis methods are being developed to integrate data from transcriptome, proteome, interactome, metabolome, and other investigative approaches. At the same time, existing methods are being modified to serve the objectives of systems biology and permit the interpretation of the huge datasets currently being generated by high-throughput methods. Results Transcriptomic and metabolic data from chemostat fermentors were collected with the aim of investigating the relation...

  18. Integrative investigation of metabolic and transcriptomic data

    Directory of Open Access Journals (Sweden)

    Önsan Z İlsen

    2006-04-01

    Full Text Available Abstract Background New analysis methods are being developed to integrate data from transcriptome, proteome, interactome, metabolome, and other investigative approaches. At the same time, existing methods are being modified to serve the objectives of systems biology and permit the interpretation of the huge datasets currently being generated by high-throughput methods. Results Transcriptomic and metabolic data from chemostat fermentors were collected with the aim of investigating the relationship between these two data sets. The variation in transcriptome data in response to three physiological or genetic perturbations (medium composition, growth rate, and specific gene deletions was investigated using linear modelling, and open reading-frames (ORFs whose expression changed significantly in response to these perturbations were identified. Assuming that the metabolic profile is a function of the transcriptome profile, expression levels of the different ORFs were used to model the metabolic variables via Partial Least Squares (Projection to Latent Structures – PLS using PLS toolbox in Matlab. Conclusion The experimental design allowed the analyses to discriminate between the effects which the growth medium, dilution rate, and the deletion of specific genes had on the transcriptome and metabolite profiles. Metabolite data were modelled as a function of the transcriptome to determine their congruence. The genes that are involved in central carbon metabolism of yeast cells were found to be the ORFs with the most significant contribution to the model.

  19. Dynamics of membrane potential variation and gene expression induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Irene Bricchi

    Full Text Available BACKGROUND: Biotic stress induced by various herbivores and pathogens invokes plant responses involving different defense mechanisms. However, we do not know whether different biotic stresses share a common response or which signaling pathways are involved in responses to different biotic stresses. We investigated the common and specific responses of Arabidopsis thaliana to three biotic stress agents: Spodoptera littoralis, Myzus persicae, and the pathogen Pseudomonas syringae. METHODOLOGY/PRINCIPAL FINDINGS: We used electrophysiology to determine the plasma membrane potential (V(m and we performed a gene microarray transcriptome analysis on Arabidopsis upon either herbivory or bacterial infection. V(m depolarization was induced by insect attack; however, the response was much more rapid to S. littoralis (30 min -2 h than to M. persicae (4-6 h. M. persicae differentially regulated almost 10-fold more genes than by S. littoralis with an opposite regulation. M. persicae modulated genes involved in flavonoid, fatty acid, hormone, drug transport and chitin metabolism. S. littoralis regulated responses to heat, transcription and ion transport. The latest Vm depolarization (16 h was found for P. syringae. The pathogen regulated responses to salicylate, jasmonate and to microorganisms. Despite this late response, the number of genes differentially regulated by P. syringae was closer to those regulated by S. littoralis than by M. persicae. CONCLUSIONS/SIGNIFICANCE: Arabidopsis plasma membranes respond with a V(m depolarization at times depending on the nature of biotic attack which allow setting a time point for comparative genome-wide analysis. A clear relationship between V(m depolarization and gene expression was found. At V(m depolarization timing, M. persicae regulates a wider array of Arabidopsis genes with a clear and distinct regulation than S. littoralis. An almost completely opposite regulation was observed between the aphid and the pathogen

  20. De novo characterization of the alligator weed (Alternanthera philoxeroides) transcriptome illuminates gene expression under potassium deprivation

    Indian Academy of Sciences (India)

    Liqin Li; Li Xu; Xiyao Wang; Gang Pan; Liming Lu

    2015-03-01

    As one of the three macronutrients, potassium participates in many physiological processes in plant life cycle. Recently, potassium-dependent transcriptome analysis has been reported in Arabidopsis, rice and soybean. Alligator weed is well known, particularly for its strong ability to accumulate potassium. However, the molecular mechanism that underlies potassium starvation responses has not yet been described. In this study, we used Illumina (Solexa) sequencing technology to analyse the root transcriptome information of alligator weed under low potassium stress. Further analysis suggested that 9253 differentially expressed genes (DEGs) were upregulated, and 2138 DEGs were downregulated after seven days of potassium deficiency. These factors included 121 transcription factors, 108 kinases, 136 transporters and 178 genes that were related to stress. Twelve transcription factors were randomly selected for further analysis. The expression level of each transcription factor was confirmed by quantitative RT-PCR, and the results of this secondary analysis were consistent with the results of Solexa sequencing. Enrichment analysis indicated that 10,993 DEGs were assigned to 54 gene ontology terms and 123 KEGG pathways. Approximately 24% of DEGs belong to the metabolic, ribosome and biosynthesis of secondary metabolite KEGG pathways. Our results provide a comprehensive analysis of the gene regulatory network of alligator weed under low potassium stress, and afford a valuable resource for genetic and genomic research on plant potassium deficiency.

  1. Summarizing and exploring data of a decade of cytokinin-related transcriptomics

    Directory of Open Access Journals (Sweden)

    Wolfram G Brenner

    2015-02-01

    Full Text Available The genome-wide transcriptional response of the model organism Arabidopsis thaliana to cytokinin has been investigated by different research groups as soon as large-scale transcriptomic techniques became affordable. Over the last ten years many transcriptomic datasets related to cytokinin have been generated using different technological platforms, some of which are published only in databases, culminating in an RNA sequencing experiment. Two approaches have been made to establish a core set of cytokinin-regulated transcripts by meta-analysis of these datasets using different preferences regarding their selection. Here we add another meta-analysis derived from an independent microarray platform (CATMA, combine all the meta-analyses available with RNAseq data in order to establish an advanced core set of cytokinin-regulated transcripts, and compare the results with the regulation of orthologous rice genes by cytokinin. We discuss the functions of some of the less known cytokinin-regulated genes indicating areas deserving further research to explore cytokinin function. Finally, we investigate the promoters of the core set of cytokinin-induced genes for the abundance and distribution of known cytokinin-responsive cis elements and identify a set of novel candidate motifs.

  2. Transcriptomes of Plant Gametophytes Have a Higher Proportion of Rapidly Evolving and Young Genes than Sporophytes.

    Science.gov (United States)

    Gossmann, Toni I; Saleh, Dounia; Schmid, Marc W; Spence, Michael A; Schmid, Karl J

    2016-07-01

    Reproductive traits in plants tend to evolve rapidly due to various causes that include plant-pollinator coevolution and pollen competition, but the genomic basis of reproductive trait evolution is still largely unknown. To characterize evolutionary patterns of genome wide gene expression in reproductive tissues in the gametophyte and to compare them to developmental stages of the sporophyte, we analyzed evolutionary conservation and genetic diversity of protein-coding genes using microarray-based transcriptome data from three plant species, Arabidopsis thaliana, rice (Oryza sativa), and soybean (Glycine max). In all three species a significant shift in gene expression occurs during gametogenesis in which genes of younger evolutionary age and higher genetic diversity contribute significantly more to the transcriptome than in other stages. We refer to this phenomenon as "evolutionary bulge" during plant reproductive development because it differentiates the gametophyte from the sporophyte. We show that multiple, not mutually exclusive, causes may explain the bulge pattern, most prominently reduced tissue complexity of the gametophyte, a varying extent of selection on reproductive traits during gametogenesis as well as differences between male and female tissues. This highlights the importance of plant reproduction for understanding evolutionary forces determining the relationship of genomic and phenotypic variation in plants. PMID:26956888

  3. A Transcriptome Atlas of Physcomitrella patens Provides Insights into the Evolution and Development of Land Plants.

    Science.gov (United States)

    Ortiz-Ramírez, Carlos; Hernandez-Coronado, Marcela; Thamm, Anna; Catarino, Bruno; Wang, Mingyi; Dolan, Liam; Feijó, José A; Becker, Jörg D

    2016-02-01

    Identifying the genetic mechanisms that underpin the evolution of new organ and tissue systems is an aim of evolutionary developmental biology. Comparative functional genetic studies between angiosperms and bryophytes can define those genetic changes that were responsible for developmental innovations. Here, we report the generation of a transcriptome atlas covering most phases in the life cycle of the model bryophyte Physcomitrella patens, including detailed sporophyte developmental progression. We identified a comprehensive set of sporophyte-specific transcription factors, and found that many of these genes have homologs in angiosperms that function in developmental processes such as flowering and shoot branching. Deletion of the PpTCP5 transcription factor results in development of supernumerary sporangia attached to a single seta, suggesting that it negatively regulates branching in the moss sporophyte. Given that TCP genes repress branching in angiosperms, we suggest that this activity is ancient. Finally, comparison of P. patens and Arabidopsis thaliana transcriptomes led us to the identification of a conserved core of transcription factors expressed in tip-growing cells. We identified modifications in the expression patterns of these genes that could account for developmental differences between P. patens tip-growing cells and A. thaliana pollen tubes and root hairs. PMID:26687813

  4. Does ploidy level directly control cell size? Counterevidence from Arabidopsis genetics.

    Directory of Open Access Journals (Sweden)

    Hirokazu Tsukaya

    Full Text Available Ploidy level affects cell size in many organisms, and ploidy-dependent cell enlargement has been used to breed many useful organisms. However, how polyploidy affects cell size remains unknown. Previous studies have explored changes in transcriptome data caused by polyploidy, but have not been successful. The most naïve theory explaining ploidy-dependent cell enlargement is that increases in gene copy number increase the amount of protein, which in turn increases the cell volume. This hypothesis can be evaluated by examining whether any strains, mutants, or transgenics show the same cell size before and after a tetraploidization event. I performed this experiment by tetraploidizing various mutants and transgenics of Arabidopsis thaliana, which show a wide range in cell size, and found that the ploidy-dependent increase in cell volume is genetically regulated. This result is not in agreement with the theory described above.

  5. Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress.

    Science.gov (United States)

    Vojta, Petr; Kokáš, Filip; Husičková, Alexandra; Grúz, Jiří; Bergougnoux, Veronique; Marchetti, Cintia F; Jiskrová, Eva; Ježilová, Eliška; Mik, Václav; Ikeda, Yoshihisa; Galuszka, Petr

    2016-09-25

    Cytokinin plant hormones have been shown to play an important role in plant response to abiotic stresses. Herein, we expand upon the findings of Pospíšilová et al. [30] regarding preparation of novel transgenic barley lines overexpressing cytokinin dehydrogenase 1 gene from Arabidopsis under the control of mild root-specific promotor of maize β-glycosidase. These lines showed drought-tolerant phenotype mainly due to alteration of root architecture and stronger lignification of root tissue. A detailed transcriptomic analysis of roots of transgenic plants subjected to revitalization after drought stress revealed attenuated response through the HvHK3 cytokinin receptor and up-regulation of two transcription factors implicated in stress responses and abscisic acid sensitivity. Increased expression of several genes involved in the phenylpropanoid pathway as well as of genes encoding arogenate dehydratase/lyase participating in phenylalanine synthesis was found in roots during revitalization. Although more precursors of lignin synthesis were present in roots after drought stress, final lignin accumulation did not change compared to that in plants grown under optimal conditions. Changes in transcriptome indicated a higher auxin turnover in transgenic roots. The same analysis in leaves revealed that genes encoding putative enzymes responsible for production of jasmonates and other volatile compounds were up-regulated. Although transgenic barley leaves showed lower chlorophyll content and down-regulation of genes encoding proteins involved in photosynthesis than did wild-type plants when cultivated under optimal conditions, they did show a tendency to return to initial photochemical activities faster than did wild-type leaves when re-watered after severe drought stress. In contrast to optimal conditions, comparative transcriptomic analysis of revitalized leaves displayed up-regulation of genes encoding enzymes and proteins involved in photosynthesis, and especially

  6. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing

    Directory of Open Access Journals (Sweden)

    Bräutigam Andrea

    2011-05-01

    Full Text Available Abstract Background The garden pea, Pisum sativum, is among the best-investigated legume plants and of significant agro-commercial relevance. Pisum sativum has a large and complex genome and accordingly few comprehensive genomic resources exist. Results We analyzed the pea transcriptome at the highest possible amount of accuracy by current technology. We used next generation sequencing with the Roche/454 platform and evaluated and compared a variety of approaches, including diverse tissue libraries, normalization, alternative sequencing technologies, saturation estimation and diverse assembly strategies. We generated libraries from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings, comprising a total of 450 megabases. Libraries were assembled into 324,428 unigenes in a first pass assembly. A second pass assembly reduced the amount to 81,449 unigenes but caused a significant number of chimeras. Analyses of the assemblies identified the assembly step as a major possibility for improvement. By recording frequencies of Arabidopsis orthologs hit by randomly drawn reads and fitting parameters of the saturation curve we concluded that sequencing was exhaustive. For leaf libraries we found normalization allows partial recovery of expression strength aside the desired effect of increased coverage. Based on theoretical and biological considerations we concluded that the sequence reads in the database tagged the vast majority of transcripts in the aerial tissues. A pathway representation analysis showed the merits of sampling multiple aerial tissues to increase the number of tagged genes. All results have been made available as a fully annotated database in fasta format. Conclusions We conclude that the approach taken resulted in a high quality - dataset which serves well as a first comprehensive reference set for the model legume pea. We suggest future deep sequencing transcriptome projects of species

  7. Improper excess light energy dissipation in Arabidopsis results in a metabolic reprogramming

    Directory of Open Access Journals (Sweden)

    Moritz Thomas

    2009-01-01

    Full Text Available Abstract Background Plant performance is affected by the level of expression of PsbS, a key photoprotective protein involved in the process of feedback de-excitation (FDE, or the qE component of non-photochemical quenching, NPQ. Results In studies presented here, under constant laboratory conditions the metabolite profiles of leaves of wild-type Arabidopsis thaliana and plants lacking or overexpressing PsbS were very similar, but under natural conditions their differences in levels of PsbS expression were associated with major changes in metabolite profiles. Some carbohydrates and amino acids differed ten-fold in abundance between PsbS-lacking mutants and over-expressers, with wild-type plants having intermediate amounts, showing that a metabolic shift had occurred. The transcriptomes of the genotypes also varied under field conditions, and the genes induced in plants lacking PsbS were similar to those reportedly induced in plants exposed to ozone stress or treated with methyl jasmonate (MeJA. Genes involved in the biosynthesis of JA were up-regulated, and enzymes involved in this pathway accumulated. JA levels in the undamaged leaves of field-grown plants did not differ between wild-type and PsbS-lacking mutants, but they were higher in the mutants when they were exposed to herbivory. Conclusion These findings suggest that lack of FDE results in increased photooxidative stress in the chloroplasts of Arabidopsis plants grown in the field, which elicits a response at the transcriptome level, causing a redirection of metabolism from growth towards defence that resembles a MeJA/JA response.

  8. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status

    KAUST Repository

    Lu, Shiyou

    2012-05-25

    Mutation of the ECERIFERUM9 (CER9) gene in Arabidopsis (Arabidopsis thaliana) causes elevated amounts of 18-carbon-length cutin monomers and a dramatic shift in the cuticular wax profile (especially on leaves) toward the very-long-chain free fatty acids tetracosanoic acid (C24) and hexacosanoic acid (C26). Relative to the wild type, cer9 mutants exhibit elevated cuticle membrane thickness over epidermal cells and cuticular ledges with increased occlusion of the stomatal pore. The cuticular phenotypes of cer9 are associated with delayed onset of wilting in plants experiencing water deficit, lower transpiration rates, and improved water use efficiency measured as carbon isotope discrimination. The CER9 protein thus encodes a novel determinant of plant drought tolerance-associated traits, one whose deficiency elevates cutin synthesis, redistributes wax composition, and suppresses transpiration. Map-based cloning identified CER9, and sequence analysis predicted that it encodes an E3 ubiquitin ligase homologous to yeast Doa10 (previously shown to target endoplasmic reticulum proteins for proteasomal degradation). To further elucidate CER9 function, the impact of CER9 deficiency on interactions with other genes was examined using double mutant and transcriptome analyses. For both wax and cutin, cer9 showed mostly additive effects with cer6, long-chain acyl-CoA synthetase1 (lacs1), and lacs2 and revealed its role in early steps of both wax and cutin synthetic pathways. Transcriptome analysis revealed that the cer9 mutation affected diverse cellular processes, with primary impact on genes associated with diverse stress responses. The discovery of CER9 lays new groundwork for developing novel cuticle-based strategies for improving the drought tolerance and water use efficiency of crop plants. © 2012 American Society of Plant Biologists. All Rights Reserved.

  9. Habitat-Associated Life History and Stress-Tolerance Variation in Arabidopsis arenosa.

    Science.gov (United States)

    Baduel, Pierre; Arnold, Brian; Weisman, Cara M; Hunter, Ben; Bomblies, Kirsten

    2016-05-01

    Weediness in ephemeral plants is commonly characterized by rapid cycling, prolific all-in flowering, and loss of perenniality. Many species made transitions to weediness of this sort, which can be advantageous in high-disturbance or human-associated habitats. The molecular basis of this shift, however, remains mostly mysterious. Here, we use transcriptome sequencing, genome resequencing scans for selection, and stress tolerance assays to study a weedy population of the otherwise nonweedy Arabidopsis arenosa, an obligately outbreeding relative of Arabidopsis thaliana Although weedy A. arenosa is widespread, a single genetic lineage colonized railways throughout central and northern Europe. We show that railway plants, in contrast to plants from sheltered outcrops in hill/mountain regions, are rapid cycling, have lost the vernalization requirement, show prolific flowering, and do not return to vegetative growth. Comparing transcriptomes of railway and mountain plants across time courses with and without vernalization, we found that railway plants have sharply abrogated vernalization responsiveness and high constitutive expression of heat- and cold-responsive genes. Railway plants also have strong constitutive heat shock and freezing tolerance compared with mountain plants, where tolerance must be induced. We found 20 genes with good evidence of selection in the railway population. One of these, LATE ELONGATED HYPOCOTYL, is known in A. thaliana to regulate many stress-response genes that we found to be differentially regulated among the distinct habitats. Our data suggest that, beyond life history regulation, other traits like basal stress tolerance also are associated with the evolution of weediness in A. arenosa. PMID:26941193

  10. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Dobrá, Jana; Černý, M.; Štorchová, Helena; Dobrev, Petre; Skalák, J.; Jedelský, P.L.; Lukšanová, Hana; Gaudinová, Alena; Pešek, Bedřich; Malbeck, Jiří; Vaněk, Tomáš; Brzobohatý, Břetislav; Vaňková, Radomíra

    2015-01-01

    Roč. 231, FEB 2015 (2015), s. 52-61. ISSN 0168-9452 R&D Projects: GA ČR GA206/09/2062; GA MŠk(CZ) LH11048; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:61389030 ; RVO:68081707 Keywords : Abscisic acid * Cytokinin * Heat stress Subject RIV: ED - Physiology Impact factor: 3.607, year: 2014

  11. Transcriptomics and knockout mutant analysis of rhizobacteria-mediated induced systemic resistance in Arabidopsis

    OpenAIRE

    Verhagen, B.W.M.

    2004-01-01

    A classic example of induced resistance is triggered after infection by a necrotizing pathogen, rendering uninfected,distal parts more resistant to subsequent pathogen attack, and is often referred to as systemic acquired resistance (SAR). A phenotypically comparable type of induced resistance is triggered after root colonization of plants by selected strains of non-pathogenic Pseudomonas spp., and is often called induced systemic resistance (ISR). In contrast to pathogen-induced SAR, rhizoba...

  12. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    Nuez Fernando

    2011-02-01

    Full Text Available Abstract Background Cucurbita pepo belongs to the Cucurbitaceae family. The "Zucchini" types rank among the highest-valued vegetables worldwide, and other C. pepo and related Cucurbita spp., are food staples and rich sources of fat and vitamins. A broad range of genomic tools are today available for other cucurbits that have become models for the study of different metabolic processes. However, these tools are still lacking in the Cucurbita genus, thus limiting gene discovery and the process of breeding. Results We report the generation of a total of 512,751 C. pepo EST sequences, using 454 GS FLX Titanium technology. ESTs were obtained from normalized cDNA libraries (root, leaves, and flower tissue prepared using two varieties with contrasting phenotypes for plant, flowering and fruit traits, representing the two C. pepo subspecies: subsp. pepo cv. Zucchini and subsp. ovifera cv Scallop. De novo assembling was performed to generate a collection of 49,610 Cucurbita unigenes (average length of 626 bp that represent the first transcriptome of the species. Over 60% of the unigenes were functionally annotated and assigned to one or more Gene Ontology terms. The distributions of Cucurbita unigenes followed similar tendencies than that reported for Arabidopsis or melon, suggesting that the dataset may represent the whole Cucurbita transcriptome. About 34% unigenes were detected to have known orthologs of Arabidopsis or melon, including genes potentially involved in disease resistance, flowering and fruit quality. Furthermore, a set of 1,882 unigenes with SSR motifs and 9,043 high confidence SNPs between Zucchini and Scallop were identified, of which 3,538 SNPs met criteria for use with high throughput genotyping platforms, and 144 could be detected as CAPS. A set of markers were validated, being 80% of them polymorphic in a set of variable C. pepo and C. moschata accessions. Conclusion We present the first broad survey of gene sequences and allelic

  13. [Transcriptome analysis of Dunaliella viridis].

    Science.gov (United States)

    Zhu, Shuaiqi; Gong, Yifu; Hang, Yuqing; Liu, Hao; Wang, Heyu

    2015-08-01

    In order to understand the gene information, function, haloduric pathway (glycerolipid metabolism) and related key genes for Dunaliella viridis, we used Illumina HiSeqTM 2000 high-throughput sequencing technology to sequence its transcriptome. Trinity soft was used to assemble the data to form transcripts. Based on the Clusters of Orthologous Groups (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG ) databases, we carried out functional annotation and classification, pathway annotation, and the opening reading fragment (ORF) sequence prediction of transcripts. The key genes in the glycerolipid metabolism were analyzed. The results suggested that 81,593 transcripts were found, and 77,117 ORF sequences were predicted, accounting for 94.50% of all transcripts. COG classification results showed that 16,569 transcripts were assigned to 24 categories. GO classification annotated 76,436 transcripts. The number of transcripts for biologcial processes was 30,678, accounting for 40.14% of all transcripts. KEGG pathway analysis showed that 26,428 transcripts were annotated to 317 pathways, and 131 pathways were related to metabolism, accounting for 41.32% of all annotated pathways. Only one transcript was annotated as coding the key enzyme dihydroxyacetone kinase involved in the glycerolipid pathway. This enzyme could be related to glycerol biosynthesis under salt stress. This study further improved the gene information and laid the foundation of metabolic pathway research for Dunaliella viridis. PMID:26266786

  14. Arabidopsis CDS blastp result: AK119708 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119708 002-157-E08 At1g28330.1 dormancy-associated protein, putative (DRM1) identical to dormancy...-associated protein [Arabidopsis thaliana] GI:2995990; similar to dormancy-associated protei

  15. Arabidopsis CDS blastp result: AK060981 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060981 006-202-H08 At1g28330.1 dormancy-associated protein, putative (DRM1) identical to dormancy...-associated protein [Arabidopsis thaliana] GI:2995990; similar to dormancy-associated protei

  16. Arabidopsis CDS blastp result: AK111736 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111736 J023047L09 At1g68370.1 gravity -responsive protein / altered response to gravity ... protein ... (ARG1) identical to Altered Response to Gravity ... [Arabidopsis thaliana] GI:4249662; contains Pfam p ...

  17. Arabidopsis CDS blastp result: AK070093 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070093 J023041M10 At2g39290.1 phosphatidylglycerolphosphate synthase (PGS1) identical to phosphati...dylglycerolphosphate synthase GI:13365519 from [Arabidopsis thaliana] 7e-78 ...

  18. Arabidopsis CDS blastp result: AK060009 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060009 006-302-D03 At2g39290.1 phosphatidylglycerolphosphate synthase (PGS1) identical to phosphati...dylglycerolphosphate synthase GI:13365519 from [Arabidopsis thaliana] 8e-71 ...

  19. Arabidopsis CDS blastp result: AK058419 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058419 001-015-D06 At4g16280.3 flowering time ... control protein / FCA gamma (FCA) identical to S ... P|O04425 Flowering time ... control protein FCA {Arabidopsis thaliana}; four a ...

  20. Arabidopsis CDS blastp result: AK073225 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073225 J033023C04 At4g16280.3 flowering time ... control protein / FCA gamma (FCA) identical to SP ... |O04425 Flowering time ... control protein FCA {Arabidopsis thaliana}; four a ...

  1. Arabidopsis CDS blastp result: AK102695 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102695 J033103F21 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  2. Arabidopsis CDS blastp result: AK102134 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102134 J033085F12 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  3. Arabidopsis CDS blastp result: AK066835 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066835 J013087I16 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-171 ...

  4. Arabidopsis CDS blastp result: AK065259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065259 J013002J18 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  5. Arabidopsis CDS blastp result: AK100523 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100523 J023100P04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  6. Arabidopsis CDS blastp result: AK288065 [KOME

    Lifescience Database Archive (English)

    Full Text Available al to sulfate tansporter Sultr1;3 [Arabidopsis thaliana] GI:10716805; contains Pfam profile PF00916: Sulfate... transporter family; contains Pfam profile PF01740: STAS domain; contains TIGRfam profile TIGR00815: sulfate permease 1e-145 ...

  7. Arabidopsis CDS blastp result: AK288002 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288002 J075110B01 At1g68510.1 68414.m07826 LOB domain protein 42 ... / lateral organ boundaries do ... main protein 42 ... (LBD42 ) identical to LOB DOMAIN 42 ... [Arabidopsis th ...

  8. Arabidopsis CDS blastp result: AK241043 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 2e-41 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  9. Arabidopsis CDS blastp result: AK243135 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 7e-43 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  10. Arabidopsis CDS blastp result: AK111785 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111785 J023089N11 At5g62310.1 incomplete root hair ... elongation (IRE) / protein kinase, putative ... nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  11. Arabidopsis CDS blastp result: AK243050 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243050 J100011E04 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  12. Arabidopsis CDS blastp result: AK242758 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242758 J090051H03 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  13. Arabidopsis CDS blastp result: AK242717 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242717 J090043H19 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  14. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  15. Arabidopsis CDS blastp result: AK242638 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242638 J090023J02 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  16. Arabidopsis CDS blastp result: AK242651 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242651 J090026B08 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  17. Arabidopsis CDS blastp result: AK287631 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287631 J065073J24 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  18. Arabidopsis CDS blastp result: AK288923 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288923 J090081P06 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  19. Arabidopsis CDS blastp result: AK242271 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242271 J075187A19 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  20. Arabidopsis CDS blastp result: AK242681 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242681 J090032N04 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  1. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  2. Arabidopsis CDS blastp result: AK241519 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241519 J065170E12 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  3. Arabidopsis CDS blastp result: AK240655 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240655 J023135E11 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  4. Arabidopsis CDS blastp result: AK242733 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242733 J090047O22 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  5. Arabidopsis CDS blastp result: AK242859 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242859 J090073L24 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  6. Arabidopsis CDS blastp result: AK243187 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243187 J100039E11 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  7. Arabidopsis CDS blastp result: AK242550 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242550 J080319D10 At2g35630.1 68415.m04369 microtubule organization 1 protein (MO...R1) identical to microtubule organization 1 protein GI:14317953 from [Arabidopsis thaliana] 5e-44 ...

  8. Arabidopsis CDS blastp result: AK101368 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101368 J033035L13 At5g24270.1 calcineurin B-like protein, putative / calcium sensor ... homolog (S ... OS3) identical to calcium sensor ... homolog [Arabidopsis thaliana] GI:3309575; similar ...

  9. Arabidopsis CDS blastp result: AK111570 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111570 J013071C24 At5g24270.1 calcineurin B-like protein, putative / calcium sensor ... homolog (S ... OS3) identical to calcium sensor ... homolog [Arabidopsis thaliana] GI:3309575; similar ...

  10. Arabidopsis CDS blastp result: AK243065 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243065 J100015N03 At5g24270.1 68418.m02855 calcineurin B-like protein, putative / calcium sensor ... or homolog (SOS3) identical to calcium sensor ... homolog [Arabidopsis thaliana] GI:3309575; similar ...

  11. The fifth international conference on Arabidopsis research

    Energy Technology Data Exchange (ETDEWEB)

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  12. Arabidopsis CDS blastp result: AK070528 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070528 J023060D13 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manganese ... supe ... roxide dismutase (MSD1) identical to manganese ... superoxide dismutase [Arabidopsis thaliana] gi|327 ...

  13. Arabidopsis CDS blastp result: AK119904 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119904 002-182-A05 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manganese ... sup ... eroxide dismutase (MSD1) identical to manganese ... superoxide dismutase [Arabidopsis thaliana] gi|327 ...

  14. Arabidopsis CDS blastp result: AK104030 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104030 001-020-C01 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manganese ... sup ... eroxide dismutase (MSD1) identical to manganese ... superoxide dismutase [Arabidopsis thaliana] gi|327 ...

  15. Arabidopsis CDS blastp result: AK104160 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104160 006-211-E09 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manganese ... sup ... eroxide dismutase (MSD1) identical to manganese ... superoxide dismutase [Arabidopsis thaliana] gi|327 ...

  16. Arabidopsis CDS blastp result: AK287459 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287459 J043019O07 At4g37000.1 68417.m05242 accelerated cell death ... 2 (ACD2) identical to accele ... rated cell death ... 2 (ACD2) GI:12484129 from [Arabidopsis thaliana] 4 ...

  17. Arabidopsis CDS blastp result: AK288034 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288034 J075140H07 At4g37000.1 68417.m05242 accelerated cell death ... 2 (ACD2) identical to accele ... rated cell death ... 2 (ACD2) GI:12484129 from [Arabidopsis thaliana] 5 ...

  18. Arabidopsis CDS blastp result: AK111576 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111576 J013075J23 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly id...entical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profile

  19. Arabidopsis CDS blastp result: AK120838 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120838 J023022B11 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly id...entical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profile

  20. Arabidopsis CDS blastp result: AK111921 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111921 001-013-A10 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly i...dentical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profil

  1. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    LENUS (Irish Health Repository)

    McKeown, Peter C

    2011-08-12

    confirmed via allele-specific transcript analysis across a range of different accessions. Differentially methylated regions were identified adjacent to ATCDC48 and PDE120, which may represent candidate imprinting control regions. Finally, we demonstrate that expression levels of these three genes in vegetative tissues are MET1-dependent, while their uniparental maternal expression in the seed is not dependent on MET1. Conclusions Using a cDNA-AFLP transcriptome profiling approach, we have identified three genes, ATCDC48, PDE120 and MS5-like which represent novel maternally expressed imprinted genes in the Arabidopsis thaliana seed. The extent of overlap between our cDNA-AFLP screen for maternally expressed imprinted genes, and other screens for imprinted and endosperm-expressed genes is discussed.

  2. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    Directory of Open Access Journals (Sweden)

    Wennblom Trevor J

    2011-08-01

    seeds was confirmed via allele-specific transcript analysis across a range of different accessions. Differentially methylated regions were identified adjacent to ATCDC48 and PDE120, which may represent candidate imprinting control regions. Finally, we demonstrate that expression levels of these three genes in vegetative tissues are MET1-dependent, while their uniparental maternal expression in the seed is not dependent on MET1. Conclusions Using a cDNA-AFLP transcriptome profiling approach, we have identified three genes, ATCDC48, PDE120 and MS5-like which represent novel maternally expressed imprinted genes in the Arabidopsis thaliana seed. The extent of overlap between our cDNA-AFLP screen for maternally expressed imprinted genes, and other screens for imprinted and endosperm-expressed genes is discussed.

  3. Arabidopsis CDS blastp result: AK073140 [KOME

    Lifescience Database Archive (English)

    Full Text Available me 4 (EC 3.1.3.16) {Arabidopsis thaliana}, phosphoprotein phosphatase 1 GI:166801 (Arabidopsis thaliana); contains a Ser/Thr protein...AK073140 J033022I01 At2g39840.1 serine/threonine protein phosphatase PP1 isozyme 4 (TOPP4) / phosphoprotein... phosphatase 1 identical to SP|P48484 Serine/threonine protein phosphatase PP1 isozy... phosphatase signature (PDOC00115); contains a metallo-phosphoesterase motif (QDOC50185) 1e-168 ...

  4. Arabidopsis CDS blastp result: AK120439 [KOME

    Lifescience Database Archive (English)

    Full Text Available me 4 (EC 3.1.3.16) {Arabidopsis thaliana}, phosphoprotein phosphatase 1 GI:166801 (Arabidopsis thaliana); contains a Ser/Thr protein...AK120439 J013098H20 At2g39840.1 serine/threonine protein phosphatase PP1 isozyme 4 (TOPP4) / phosphoprotein... phosphatase 1 identical to SP|P48484 Serine/threonine protein phosphatase PP1 isozy... phosphatase signature (PDOC00115); contains a metallo-phosphoesterase motif (QDOC50185) 1e-154 ...

  5. Arabidopsis CDS blastp result: AK121378 [KOME

    Lifescience Database Archive (English)

    Full Text Available me 4 (EC 3.1.3.16) {Arabidopsis thaliana}, phosphoprotein phosphatase 1 GI:166801 (Arabidopsis thaliana); contains a Ser/Thr protein...AK121378 J023127F14 At2g39840.1 serine/threonine protein phosphatase PP1 isozyme 4 (TOPP4) / phosphoprotein... phosphatase 1 identical to SP|P48484 Serine/threonine protein phosphatase PP1 isozy... phosphatase signature (PDOC00115); contains a metallo-phosphoesterase motif (QDOC50185) 1e-142 ...

  6. Arabidopsis CDS blastp result: AK063856 [KOME

    Lifescience Database Archive (English)

    Full Text Available yme 4 (EC 3.1.3.16) {Arabidopsis thaliana}, phosphoprotein phosphatase 1 GI:166801 (Arabidopsis thaliana); contains a Ser/Thr protein...AK063856 001-122-D05 At2g39840.1 serine/threonine protein phosphatase PP1 isozyme 4 (TOPP4) / phosphoprotein... phosphatase 1 identical to SP|P48484 Serine/threonine protein phosphatase PP1 isoz... phosphatase signature (PDOC00115); contains a metallo-phosphoesterase motif (QDOC50185) 6e-46 ...

  7. Terpene Specialized Metabolism in Arabidopsis thaliana

    OpenAIRE

    Tholl, Dorothea; Lee, Sungbeom

    2011-01-01

    Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mech...

  8. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis

    OpenAIRE

    Li, Wenli; Turner, Amy; Aggarwal, Praful; Matter, Andrea; Storvick, Erin; Donna K Arnett; Broeckel, Ulrich

    2015-01-01

    Background Whole transcriptome sequencing (RNA-seq) represents a powerful approach for whole transcriptome gene expression analysis. However, RNA-seq carries a few limitations, e.g., the requirement of a significant amount of input RNA and complications led by non-specific mapping of short reads. The Ion AmpliSeq™ Transcriptome Human Gene Expression Kit (AmpliSeq) was recently introduced by Life Technologies as a whole-transcriptome, targeted gene quantification kit to overcome these limitati...

  9. Repression of Lateral Organ Boundary Genes by PENNYWISE and POUND-FOOLISH Is Essential for Meristem Maintenance and Flowering in Arabidopsis.

    Science.gov (United States)

    Khan, Madiha; Ragni, Laura; Tabb, Paul; Salasini, Brenda C; Chatfield, Steven; Datla, Raju; Lock, John; Kuai, Xiahezi; Després, Charles; Proveniers, Marcel; Yongguo, Cao; Xiang, Daoquan; Morin, Halima; Rullière, Jean-Pierre; Citerne, Sylvie; Hepworth, Shelley R; Pautot, Véronique

    2015-11-01

    In the model plant Arabidopsis (Arabidopsis thaliana), endogenous and environmental signals acting on the shoot apical meristem cause acquisition of inflorescence meristem fate. This results in changed patterns of aerial development seen as the transition from making leaves to the production of flowers separated by elongated internodes. Two related BEL1-like homeobox genes, PENNYWISE (PNY) and POUND-FOOLISH (PNF), fulfill this transition. Loss of function of these genes impairs stem cell maintenance and blocks internode elongation and flowering. We show here that pny pnf apices misexpress lateral organ boundary genes BLADE-ON-PETIOLE1/2 (BOP1/2) and KNOTTED-LIKE FROM ARABIDOPSIS THALIANA6 (KNAT6) together with ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1). Inactivation of genes in this module fully rescues pny pnf defects. We further show that BOP1 directly activates ATH1, whereas activation of KNAT6 is indirect. The pny pnf restoration correlates with renewed accumulation of transcripts conferring floral meristem identity, including FD, SQUAMOSA PROMOTER-BINDING PROTEIN LIKE genes, LEAFY, and APETALA1. To gain insight into how this module blocks flowering, we analyzed the transcriptome of BOP1-overexpressing plants. Our data suggest a central role for the microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE-microRNA172 module in integrating stress signals conferred in part by promotion of jasmonic acid biosynthesis. These data reveal a potential mechanism by which repression of lateral organ boundary genes by PNY-PNF is essential for flowering. PMID:26417006

  10. Characterization of Putative cis-Regulatory Elements in Genes Preferentially Expressed in Arabidopsis Male Meiocytes

    Directory of Open Access Journals (Sweden)

    Junhua Li

    2014-01-01

    Full Text Available Meiosis is essential for plant reproduction because it is the process during which homologous chromosome pairing, synapsis, and meiotic recombination occur. The meiotic transcriptome is difficult to investigate because of the size of meiocytes and the confines of anther lobes. The recent development of isolation techniques has enabled the characterization of transcriptional profiles in male meiocytes of Arabidopsis. Gene expression in male meiocytes shows unique features. The direct interaction of transcription factors (TFs with DNA regulatory sequences forms the basis for the specificity of transcriptional regulation. Here, we identified putative cis-regulatory elements (CREs associated with male meiocyte-expressed genes using in silico tools. The upstream regions (1 kb of the top 50 genes preferentially expressed in Arabidopsis meiocytes possessed conserved motifs. These motifs are putative binding sites of TFs, some of which share common functions, such as roles in cell division. In combination with cell-type-specific analysis, our findings could be a substantial aid for the identification and experimental verification of the protein-DNA interactions for the specific TFs that drive gene expression in meiocytes.

  11. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis.

    Science.gov (United States)

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping

    2016-04-01

    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 (-) were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis. PMID:27162276

  12. Growth Media Induces Variation in Cell Wall Associated Gene Expression in Arabidopsis thaliana Pollen Tube

    Directory of Open Access Journals (Sweden)

    Mário Luís da Costa

    2013-06-01

    Full Text Available The influence of three different pollen germination media on the transcript profile of Arabidopsis pollen tubes has been assessed by real-time PCR on a selection of cell wall related genes, and by a statistical analysis of microarray Arabidopsis pollen tube data sets. The qPCR assays have shown remarkable differences on the transcript levels of specific genes depending upon the formulation of the germination medium used. With the aid of principal component analysis performed on existing microarray data, a subset of genes has been identified that is more prone to produce diverging transcript levels. A functional classification of those genes showed that the clusters with higher number of members were those for hydrolase activity (based in molecular function and for cell wall (based in cellular component. Taken together, these results may indicate that the nutrient composition of the pollen germination media influences pollen tube metabolism and that caution must be taken when interpreting transcriptomic data of pollen tubes.

  13. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis

    Science.gov (United States)

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping

    2016-01-01

    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 − were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis.

  14. Inference of the Genetic Network Regulating Lateral Root Initiation in Arabidopsis thaliana

    KAUST Repository

    Muraro, D.

    2013-01-01

    Regulation of gene expression is crucial for organism growth, and it is one of the challenges in systems biology to reconstruct the underlying regulatory biological networks from transcriptomic data. The formation of lateral roots in Arabidopsis thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based on different approaches, for which ready-to-use software is available. We show that their performance improves with the network size and the inclusion of mutants. We then analyze two sets of genes, whose activity is likely to be relevant to lateral root initiation in Arabidopsis, and assess causality of their regulatory interactions by integrating sequence analysis with the intersection of the results of the best performing methods on time series and mutants. The methods applied capture known interactions between genes that are candidate regulators at early stages of development. The network inferred from genes significantly expressed during lateral root formation exhibits distinct scale free, small world and hierarchical properties and the nodes with a high out-degree may warrant further investigation. © 2004-2012 IEEE.

  15. Peroxidation due to cryoprotectant treatment is a vital factor for cell survival in Arabidopsis cryopreservation.

    Science.gov (United States)

    Ren, Li; Zhang, Di; Jiang, Xiang-Ning; Gai, Ying; Wang, Wei-Ming; Reed, Barbara M; Shen, Xiao-Hui

    2013-11-01

    Cryopreservation can be a safe and cost-effective tool for the long-term storage of plant germplasm. In Arabidopsis, the ability to recover from cryogenic treatment was lost as growth progressed. Growth could be restored in 48-h seedlings, whereas 72-h seedlings died after cryogenic treatment. Why seedling age and survival are negatively correlated is an interesting issue. A comparative transcriptomics was performed to screen differentially expressed genes between 48- and 72-h seedlings after exposure to cryoprotectant. Among differentially expressed genes, oxidative stress response genes played important roles in cryoprotectant treatment, and peroxidation was a key factor related to cell survival. Seedlings underwent more peroxidation at 72-h than at 48-h. A comprehensive analysis indicated that peroxidation injured membrane systems leading to photophosphorylation and oxidative phosphorylation damage. Furthermore, the apoptosis-like events were found in cryogenic treatment of Arabidopsis seedlings. 48- and 72-h seedlings underwent different degrees of membrane lipid peroxidation during cryoprotectant treatment, and reducing the injury of oxidative stress was an important factor to successful cryopreservation. This study provided a novel insight of genetic regulatory mechanisms in cryopreservation, and established an excellent model to test and evaluate the effect of exogenous antioxidants and conventional cryoprotectants in plant cryopreservation. PMID:24094052

  16. The Human Transcriptome: An Unfinished Story

    Directory of Open Access Journals (Sweden)

    Mihaela Pertea

    2012-06-01

    Full Text Available Despite recent technological advances, the study of the human transcriptome is still in its early stages. Here we provide an overview of the complex human transcriptomic landscape, present the bioinformatics challenges posed by the vast quantities of transcriptomic data, and discuss some of the studies that have tried to determine how much of the human genome is transcribed. Recent evidence has suggested that more than 90% of the human genome is transcribed into RNA. However, this view has been strongly contested by groups of scientists who argued that many of the observed transcripts are simply the result of transcriptional noise. In this review, we conclude that the full extent of transcription remains an open question that will not be fully addressed until we decipher the complete range and biological diversity of the transcribed genomic sequences.

  17. On the Origin of De Novo Genes in Arabidopsis thaliana Populations.

    Science.gov (United States)

    Li, Zi-Wen; Chen, Xi; Wu, Qiong; Hagmann, Jörg; Han, Ting-Shen; Zou, Yu-Pan; Ge, Song; Guo, Ya-Long

    2016-01-01

    De novo genes, which originate from ancestral nongenic sequences, are one of the most important sources of protein-coding genes. This origination process is crucial for the adaptation of organisms. However, how de novo genes arise and become fixed in a population or species remains largely unknown. Here, we identified 782 de novo genes from the model plant Arabidopsis thaliana and divided them into three types based on the availability of translational evidence, transcriptional evidence, and neither transcriptional nor translational evidence for their origin. Importantly, by integrating multiple types of omics data, including data from genomes, epigenomes, transcriptomes, and translatomes, we found that epigenetic modifications (DNA methylation and histone modification) play an important role in the origination process of de novo genes. Intriguingly, using the transcriptomes and methylomes from the same population of 84 accessions, we found that de novo genes that are transcribed in approximately half of the total accessions within the population are highly methylated, with lower levels of transcription than those transcribed at other frequencies within the population. We hypothesized that, during the origin of de novo gene alleles, those neutralized to low expression states via DNA methylation have relatively high probabilities of spreading and becoming fixed in a population. Our results highlight the process underlying the origin of de novo genes at the population level, as well as the importance of DNA methylation in this process. PMID:27401176

  18. Integrating roots into a whole plant network of flowering time genes in Arabidopsis thaliana.

    Science.gov (United States)

    Bouché, Frédéric; D'Aloia, Maria; Tocquin, Pierre; Lobet, Guillaume; Detry, Nathalie; Périlleux, Claire

    2016-01-01

    Molecular data concerning the involvement of roots in the genetic pathways regulating floral transition are lacking. In this study, we performed global analyses of the root transcriptome in Arabidopsis in order to identify flowering time genes that are expressed in the roots and genes that are differentially expressed in the roots during the induction of flowering. Data mining of public microarray experiments uncovered that about 200 genes whose mutations are reported to alter flowering time are expressed in the roots (i.e. were detected in more than 50% of the microarrays). However, only a few flowering integrator genes passed the analysis cutoff. Comparison of root transcriptome in short days and during synchronized induction of flowering by a single 22-h long day revealed that 595 genes were differentially expressed. Enrichment analyses of differentially expressed genes in root tissues, gene ontology categories, and cis-regulatory elements converged towards sugar signaling. We concluded that roots are integrated in systemic signaling, whereby carbon supply coordinates growth at the whole plant level during the induction of flowering. This coordination could involve the root circadian clock and cytokinin biosynthesis as a feed forward loop towards the shoot. PMID:27352932

  19. Arabidopsis Heterotrimeric G-protein Regulates Cell Wall Defense and Resistance to Necrotrophic Fungi

    Institute of Scientific and Technical Information of China (English)

    Magdalena Delcado-Cerezo; Paul Schulze-Lefert; Shauna Somerville; José Manuel Estevez; Staffan Persson; Antonio Molina; Clara Sánchez-Rodríguez; Viviana Escudero; Eva Miedes; Paula Virginia Fernández; Lucía Jordá; Camilo Hernández-Blanco; Andrea Sánchez-Vallet; Pawel Bednarek

    2012-01-01

    The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi.The agb1 mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens.Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2).Accordingly,we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina.To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance,we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P cucumerina.This analysis,together with metabolomic studies,demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi,such as the salicylic acid,jasmonic acid,ethylene,abscisic acid,and tryptophan-derived metabolites signaling,as these pathways were not impaired in agb1 and agg1 agg2 mutants.Notably,many mis-regulated genes in agb1 plants were related with cell wall functions,which was also the case in agg1 agg2 mutant.Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants,and that mutant walls had similar FTIR spectratypes,which differed from that of wild-type plants.The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.

  20. Molecular and biochemical characterizations of the monoacylglycerol lipase gene family of Arabidopsis thaliana.

    Science.gov (United States)

    Kim, Ryeo Jin; Kim, Hae Jin; Shim, Donghwan; Suh, Mi Chung

    2016-03-01

    Monoacylglycerol lipase (MAGL) catalyzes the last step of triacylglycerol breakdown, which is the hydrolysis of monoacylglycerol (MAG) to fatty acid and glycerol. Arabidopsis harbors over 270 genes annotated as 'lipase', the largest class of acyl lipid metabolism genes that have not been characterized experimentally. In this study, computational modeling suggested that 16 Arabidopsis putative MAGLs (AtMAGLs) have a three-dimensional structure that is similar to a human MAGL. Heterologous expression and enzyme assays indicated that 11 of the 16 encoded proteins indeed possess MAG lipase activity. Additionally, AtMAGL4 displayed hydrolase activity with lysophosphatidylcholine and lysophosphatidylethanolamine (LPE) substrates and AtMAGL1 and 2 utilized LPE as a substrate. All recombinant AtMAGLs preferred MAG substrates with unsaturated fatty acids over saturated fatty acids and AtMAGL8 exhibited the highest hydrolase activities with MAG containing 20:1 fatty acids. Except for AtMAGL4, -14 and -16, all AtMAGLs showed similar activity with both sn-1 and sn-2 MAG isomers. Spatial, temporal and stress-induced expression of the 16 AtMAGL genes was analyzed by transcriptome analyses. AtMAGL:eYFP fusion proteins provided initial evidence that AtMAGL1, -3, -6, -7, -8, -11, -13, -14 and -16 are targeted to the endoplasmic reticulum and/or Golgi network, AtMAGL10, -12 and -15 to the cytosol and AtMAGL2, -4 and -5 to the chloroplasts. Furthermore, AtMAGL8 was associated with the surface of oil bodies in germinating seeds and leaves accumulating oil bodies. This study provides the broad characterization of one of the least well-understood groups of Arabidopsis lipid-related enzymes and will be useful for better understanding their roles in planta. PMID:26932457

  1. Transcriptomic response to differentiation induction

    Directory of Open Access Journals (Sweden)

    Dimitrov DS

    2006-02-01

    Full Text Available Abstract Background Microarrays used for gene expression studies yield large amounts of data. The processing of such data typically leads to lists of differentially-regulated genes. A common terminal data analysis step is to map pathways of potentially interrelated genes. Methods We applied a transcriptomics analysis tool to elucidate the underlying pathways of leukocyte maturation at the genomic level in an established cellular model of leukemia by examining time-course data in two subclones of U-937 cells. Leukemias such as Acute Promyelocytic Leukemia (APL are characterized by a block in the hematopoietic stem cell maturation program at a point when expansion of clones which should be destined to mature into terminally-differentiated effector cells get locked into endless proliferation with few cells reaching maturation. Treatment with retinoic acid, depending on the precise genomic abnormality, often releases the responsible promyelocytes from this blockade but clinically can yield adverse sequellae in terms of potentially lethal side effects, referred to as retinoic acid syndrome. Results Briefly, the list of genes for temporal patterns of expression was pasted into the ABCC GRID Promoter TFSite Comparison Page website tool and the outputs for each pattern were examined for possible coordinated regulation by shared regelems (regulatory elements. We found it informative to use this novel web tool for identifying, on a genomic scale, genes regulated by drug treatment. Conclusion Improvement is needed in understanding the nature of the mutations responsible for controlling the maturation process and how these genes regulate downstream effects if there is to be better targeting of chemical interventions. Expanded implementation of the techniques and results reported here may better direct future efforts to improve treatment for diseases not restricted to APL.

  2. Effect of Mitochondrial Dysfunction on Carbon Metabolism and Gene Expression in Flower Tissues of Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Maria V.Busi; Maria E.Gomez-Lobato; Sebastian P.Rius; Valeria R.Turowski; Paula Casati; Eduardo J.Zabaleta; Diego F.Gomez-Casati; Alejandro Araya

    2011-01-01

    We characterized the transcriptomic response of transgenic plants carrying a mitochondrial dysfunction induced by the expression of the unedited form of the ATP synthase subunit 9.The u-ATP9 transgene driven by A9 and APETALA3 promoters induce mitochondrial dysfunction revealed by a decrease jn both oxygen uptake and adenine nucleotides(ATP,ADP)levels without changes in the ATP/ADP ratio.Furthermore,we measured an increase in ROS accumulation and a decrease in glutathione and ascorbate levels with a concomitant oxidative stress response.The transcriptome analysis of young Arabidopsis flowers,validated by Qrt-PCR and enzymatic or functional tests,showed dramatic changes in u-ATP9 plants.Both lines display a modification in the expression of various genes involved in carbon,lipid,and cell wall metabolism,suggesting that an important metabolic readjustment occurs in plants with a mitochondrial dysfunction.Interestingly,transcript levels involved in mitochondrial respiration,protein synthesis,and degradation are affected.Moreover,the Ievels of several mRNAs encoding for transcription factors and DNA binding proteins were also changed.Some of them are involved in stress and hormone responses,suggesting that several signaling pathways overlap.Indeed,the transcriptome data revealed that the mitochondrial dysfunction dramatically alters the expression of genes involved in signaling pathways,including those related to ethylene,absicic acid,and auxin signal transduction.Our data suggest that the mitochondrial dysfunction model used in this report may be usefuI to uncover the retrograde signaling mechanism between the nucleus and mitochondria in plant cells.

  3. CSR1, the sole target of imidazolinone herbicide in Arabidopsis thaliana.

    Science.gov (United States)

    Manabe, Yuzuki; Tinker, Nicholas; Colville, Adam; Miki, Brian

    2007-09-01

    The imidazolinone-tolerant mutant of Arabidopsis thaliana, csr1-2(D), carries a mutation equivalent to that found in commercially available Clearfield crops. Despite their widespread usage, the mechanism by which Clearfield crops gain imidazolinone herbicide tolerance has not yet been fully characterized. Transcription profiling of imazapyr (an imidazolinone herbicide)-treated wild-type and csr1-2(D) mutant plants using Affymetrix ATH1 GeneChip microarrays was performed to elucidate further the biochemical and genetic mechanisms of imidazolinone resistance. In wild-type shoots, the genes which responded earliest to imazapyr treatment were detoxification-related genes which have also been shown to be induced by other abiotic stresses. Early-response genes included steroid sulfotransferase (ST) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), as well as members of the glycosyltransferase, glutathione transferase (GST), cytochrome P450, ATP-binding cassette (ABC) transporter, multidrug and toxin extrusion (MATE) and alternative oxidase (AOX) protein families. Later stages of the imazapyr response involved regulation of genes participating in biosynthesis of amino acids, secondary metabolites and tRNA. In contrast to the dynamic changes in the transcriptome profile observed in imazapyr-treated wild-type plants, the transcriptome of csr1-2(D) did not exhibit significant changes following imazapyr treatment, compared with mock-treated csr1-2(D). Further, no substantial difference was observed between wild-type and csr1-2(D) transcriptomes in the absence of imazapyr treatment. These results indicate that CSR1 is the sole target of imidazolinone and that the csr1-2(D) mutation has little or no detrimental effect on whole-plant fitness. PMID:17693453

  4. Comparability of imazapyr-resistant Arabidopsis created by transgenesis and mutagenesis.

    Science.gov (United States)

    Schnell, Jaimie; Labbé, Hélène; Kovinich, Nik; Manabe, Yuzuki; Miki, Brian

    2012-12-01

    The Arabidopsis CSR1 gene codes for the enzyme acetohydroxyacid synthase (AHAS, EC 2.2.1.6), also known as acetolactate synthase, which catalyzes the first step in branched-chain amino acid biosynthesis. It is inhibited by several classes of herbicides, including the imidazolinone herbicides, such as imazapyr; however, a substitution mutation in csr1-2 (Ser-653-Asn) confers selective resistance to the imidazolinones. The transcriptome of csr1-2 seedlings grown in the presence of imazapyr has been shown in a previous study (Manabe in Plant Cell Physiol 48:1340-1358, 2007) to be identical to that of wild-type seedlings indicating that AHAS is the sole target of imazapyr and that the mutation is not associated with pleiotropic effects detectable by transcriptome analysis. In this study, a lethal null mutant, csr1-7, created by a T-DNA insertion into the CSR1 gene was complemented with a randomly-inserted 35S/CSR1-2/NOS transgene in a subsequent genetic transformation event. A comparison of the csr1-2 substitution mutant with the transgenic lines revealed that all were resistant to imazapyr; however, the transgenic lines yielded significantly higher levels of resistance and greater biomass accumulation in the presence of imazapyr. Microarray analysis revealed few differences in their transcriptomes. The most notable was a sevenfold to tenfold elevation in the CSR1-2 transcript level. The data indicate that transgenesis did not create significant unintended pleiotropic effects on gene expression and that the mutant and transgenic lines were highly similar, except for the level of herbicide resistance. PMID:22430369

  5. Advances in Arabidopsis research in China from 2006 to 2007

    Institute of Scientific and Technical Information of China (English)

    LIANG Yan; ZUO JianRu; YANG WeiCai

    2007-01-01

    @@ Arabidopsis thaliana, a model plant species, has a number of advantages over other plant species as an experimental organism due to many of its genetic and genomic features. The Chinese Arabidopsis community has made significant contributions to plant biology research in recent years[1,2]. In 2006, studies of plant biology in China received more attention than ever before, especially those pertaining to Arabidopsis research. Here we briefly summarize recent advances in Arabidopsis research in China.

  6. Large-scale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology

    Directory of Open Access Journals (Sweden)

    Ramina Angelo

    2008-07-01

    Full Text Available Abstract Background After 10-year-use of AFLP (Amplified Fragment Length Polymorphism technology for DNA fingerprinting and mRNA profiling, large repertories of genome- and transcriptome-derived sequences are available in public databases for model, crop and tree species. AFLP marker systems have been and are being extensively exploited for genome scanning and gene mapping, as well as cDNA-AFLP for transcriptome profiling and differentially expressed gene cloning. The evaluation, annotation and classification of genomic markers and expressed transcripts would be of great utility for both functional genomics and systems biology research in plants. This may be achieved by means of the Gene Ontology (GO, consisting in three structured vocabularies (i.e. ontologies describing genes, transcripts and proteins of any organism in terms of their associated cellular component, biological process and molecular function in a species-independent manner. In this paper, the functional annotation of about 8,000 AFLP-derived ESTs retrieved in the NCBI databases was carried out by using GO terminology. Results Descriptive statistics on the type, size and nature of gene sequences obtained by means of AFLP technology were calculated. The gene products associated with mRNA transcripts were then classified according to the three main GO vocabularies. A comparison of the functional content of cDNA-AFLP records was also performed by splitting the sequence dataset into monocots and dicots and by comparing them to all annotated ESTs of Arabidopsis and rice, respectively. On the whole, the statistical parameters adopted for the in silico AFLP-derived transcriptome-anchored sequence analysis proved to be critical for obtaining reliable GO results. Such an exhaustive annotation may offer a suitable platform for functional genomics, particularly useful in non-model species. Conclusion Reliable GO annotations of AFLP-derived sequences can be gathered through the optimization

  7. Identification and analysis of common bean (Phaseolus vulgaris L. transcriptomes by massively parallel pyrosequencing

    Directory of Open Access Journals (Sweden)

    Thimmapuram Jyothi

    2011-10-01

    Full Text Available Abstract Background Common bean (Phaseolus vulgaris is the most important food legume in the world. Although this crop is very important to both the developed and developing world as a means of dietary protein supply, resources available in common bean are limited. Global transcriptome analysis is important to better understand gene expression, genetic variation, and gene structure annotation in addition to other important features. However, the number and description of common bean sequences are very limited, which greatly inhibits genome and transcriptome research. Here we used 454 pyrosequencing to obtain a substantial transcriptome dataset for common bean. Results We obtained 1,692,972 reads with an average read length of 207 nucleotides (nt. These reads were assembled into 59,295 unigenes including 39,572 contigs and 19,723 singletons, in addition to 35,328 singletons less than 100 bp. Comparing the unigenes to common bean ESTs deposited in GenBank, we found that 53.40% or 31,664 of these unigenes had no matches to this dataset and can be considered as new common bean transcripts. Functional annotation of the unigenes carried out by Gene Ontology assignments from hits to Arabidopsis and soybean indicated coverage of a broad range of GO categories. The common bean unigenes were also compared to the bean bacterial artificial chromosome (BAC end sequences, and a total of 21% of the unigenes (12,724 including 9,199 contigs and 3,256 singletons match to the 8,823 BAC-end sequences. In addition, a large number of simple sequence repeats (SSRs and transcription factors were also identified in this study. Conclusions This work provides the first large scale identification of the common bean transcriptome derived by 454 pyrosequencing. This research has resulted in a 150% increase in the number of Phaseolus vulgaris ESTs. The dataset obtained through this analysis will provide a platform for functional genomics in common bean and related legumes and

  8. The transcriptome landscape of early maize meiosis

    Science.gov (United States)

    Meiosis, particularly meiotic recombination, is a major factor affecting yield and breeding of plants. To gain insight into the transcriptome landscape during early initiation steps of meiotic recombination, we profiled early prophase I meiocytes from maize using RNA-seq. Our analyses of genes prefe...

  9. Global daily dynamics of the pineal transcriptome

    DEFF Research Database (Denmark)

    Bustos, Diego M; Bailey, Michael J; Sugden, David;

    2011-01-01

    Transcriptome profiling of the pineal gland has revealed night/day differences in the expression of a major fraction of the genes active in this tissue, with two-thirds of these being nocturnal increases. A set of over 600 transcripts exhibit two-fold to >100-fold daily differences in abundance...

  10. Scrimer: designing primers from transcriptome data

    Czech Academy of Sciences Publication Activity Database

    Mořkovský, Libor; Pačes, Jan; Rídl, Jakub; Reifová, R.

    2015-01-01

    Roč. 15, č. 6 (2015), s. 1415-1420. ISSN 1755-098X R&D Projects: GA MŠk EE2.3.20.0303 Institutional support: RVO:68081766 ; RVO:68378050 Keywords : next-generation sequencing * primer design * SNaPshot * SNP genotyping * transcriptome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.712, year: 2014

  11. Mastitis associated transcriptomic disruptions in cattle

    Science.gov (United States)

    Mastitis is ranked as the top disease for dairy cattle based on traditional cost analysis. Greater than 100 organisms from a broad phylogenetic spectrum are able to cause bovine mastitis. Transcriptomic characterization facilitates our understanding of host-pathogen relations and provides mechanisti...

  12. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  13. Recent Progress in Arabidopsis Research in China: A Preface

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Xu

    2006-01-01

    @@ In 2002, a workshop on Arabidopsis research in China was held in Shanghai, when a small group of Chinese plant scientists was working on this model species. Since then, we have witnessed the rapid growth of Arabidopsis research in China. This special issue of Journal of Integrative Plant Biology is dedicated exclusively to the Fourth Workshop on Arabidopsis Research in China, scheduled on November 30, 2005, in Beijing. In addition to reports collected in this special issue, the Chinese Arabidopsis community has been able to make significant contributions to many research fields. Here, I briefly summarize recent advances in Arabidopsis research in China.

  14. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  15. Arabidopsis CDS blastp result: AK243152 [KOME

    Lifescience Database Archive (English)

    Full Text Available ase PP1 isozyme 4 (EC 3.1.3.16) {Arabidopsis thaliana}, phosphoprotein phosphatase 1 GI:166801 (Arabidopsis thaliana); contains...P1 isozyme 4 (TOPP4) / phosphoprotein phosphatase 1 identical to SP|P48484 Serine/threonine protein phosphat... a Ser/Thr protein phosphatase signature (PDOC00115); contains a metallo-phosphoesterase motif (QDOC50185) 1e-154 ... ...AK243152 J100032N02 At2g39840.1 68415.m04893 serine/threonine protein phosphatase P

  16. Arabidopsis CDS blastp result: AK288069 [KOME

    Lifescience Database Archive (English)

    Full Text Available ase PP1 isozyme 4 (EC 3.1.3.16) {Arabidopsis thaliana}, phosphoprotein phosphatase 1 GI:166801 (Arabidopsis thaliana); contains...P1 isozyme 4 (TOPP4) / phosphoprotein phosphatase 1 identical to SP|P48484 Serine/threonine protein phosphat... a Ser/Thr protein phosphatase signature (PDOC00115); contains a metallo-phosphoesterase motif (QDOC50185) 6e-70 ... ...AK288069 J075158N05 At2g39840.1 68415.m04893 serine/threonine protein phosphatase P

  17. Gibberellins control fruit patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-10-01

    The Arabidopsis basic helix-loop-helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning. PMID:20889713

  18. Analysis of Whole Transcriptome Sequencing Data: Workflow and Software.

    Science.gov (United States)

    Yang, In Seok; Kim, Sangwoo

    2015-12-01

    RNA is a polymeric molecule implicated in various biological processes, such as the coding, decoding, regulation, and expression of genes. Numerous studies have examined RNA features using whole transcriptome sequencing (RNA-seq) approaches. RNA-seq is a powerful technique for characterizing and quantifying the transcriptome and accelerates the development of bioinformatics software. In this review, we introduce routine RNA-seq workflow together with related software, focusing particularly on transcriptome reconstruction and expression quantification. PMID:26865842

  19. Applications of new sequencing technologies for transcriptome analysis.

    Science.gov (United States)

    Morozova, Olena; Hirst, Martin; Marra, Marco A

    2009-01-01

    Transcriptome analysis has been a key area of biological inquiry for decades. Over the years, research in the field has progressed from candidate gene-based detection of RNAs using Northern blotting to high-throughput expression profiling driven by the advent of microarrays. Next-generation sequencing technologies have revolutionized transcriptomics by providing opportunities for multidimensional examinations of cellular transcriptomes in which high-throughput expression data are obtained at a single-base resolution. PMID:19715439

  20. Novel Approaches for Fungal Transcriptomics from Host Samples

    OpenAIRE

    Amorim-Vaz, Sara; Sanglard, Dominique

    2016-01-01

    Candida albicans adaptation to the host requires a profound reprogramming of the fungal transcriptome as compared to in vitro laboratory conditions. A detailed knowledge of the C. albicans transcriptome during the infection process is necessary in order to understand which of the fungal genes are important for host adaptation. Such genes could be thought of as potential targets for antifungal therapy. The acquisition of the C. albicans transcriptome is, however, technically challenging due to...

  1. Novel software package for cross-platform transcriptome analysis (CPTRA)

    OpenAIRE

    2009-01-01

    Background Next-generation sequencing techniques enable several novel transcriptome profiling approaches. Recent studies indicated that digital gene expression profiling based on short sequence tags has superior performance as compared to other transcriptome analysis platforms including microarrays. However, the transcriptomic analysis with tag-based methods often depends on available genome sequence. The use of tag-based methods in species without genome sequence should be complemented by ot...

  2. A Specific Transcriptome Signature for Guard Cells from the C4 Plant Gynandropsis gynandra.

    Science.gov (United States)

    Aubry, Sylvain; Aresheva, Olga; Reyna-Llorens, Ivan; Smith-Unna, Richard D; Hibberd, Julian M; Genty, Bernard

    2016-03-01

    C4 photosynthesis represents an excellent example of convergent evolution that results in the optimization of both carbon and water usage by plants. In C4 plants, a carbon-concentrating mechanism divided between bundle sheath and mesophyll cells increases photosynthetic efficiency. Compared with C3 leaves, the carbon-concentrating mechanism of C4 plants allows photosynthetic operation at lower stomatal conductance, and as a consequence, transpiration is reduced. Here, we characterize transcriptomes from guard cells in C3 Tareneya hassleriana and C4 Gynandropsis gynandra belonging to the Cleomaceae. While approximately 60% of Gene Ontology terms previously associated with guard cells from the C3 model Arabidopsis (Arabidopsis thaliana) are conserved, there is much less overlap between patterns of individual gene expression. Most ion and CO2 signaling modules appear unchanged at the transcript level in guard cells from C3 and C4 species, but major variations in transcripts associated with carbon-related pathways known to influence stomatal behavior were detected. Genes associated with C4 photosynthesis were more highly expressed in guard cells of C4 compared with C3 leaves. Furthermore, we detected two major patterns of cell-specific C4 gene expression within the C4 leaf. In the first, genes previously associated with preferential expression in the bundle sheath showed continually decreasing expression from bundle sheath to mesophyll to guard cells. In the second, expression was maximal in the mesophyll compared with both guard cells and bundle sheath. These data imply that at least two gene regulatory networks act to coordinate gene expression across the bundle sheath, mesophyll, and guard cells in the C4 leaf. PMID:26818731

  3. A Specific Transcriptome Signature for Guard Cells from the C4 Plant Gynandropsis gynandra1[OPEN

    Science.gov (United States)

    Aresheva, Olga; Reyna-Llorens, Ivan; Genty, Bernard

    2016-01-01

    C4 photosynthesis represents an excellent example of convergent evolution that results in the optimization of both carbon and water usage by plants. In C4 plants, a carbon-concentrating mechanism divided between bundle sheath and mesophyll cells increases photosynthetic efficiency. Compared with C3 leaves, the carbon-concentrating mechanism of C4 plants allows photosynthetic operation at lower stomatal conductance, and as a consequence, transpiration is reduced. Here, we characterize transcriptomes from guard cells in C3 Tareneya hassleriana and C4 Gynandropsis gynandra belonging to the Cleomaceae. While approximately 60% of Gene Ontology terms previously associated with guard cells from the C3 model Arabidopsis (Arabidopsis thaliana) are conserved, there is much less overlap between patterns of individual gene expression. Most ion and CO2 signaling modules appear unchanged at the transcript level in guard cells from C3 and C4 species, but major variations in transcripts associated with carbon-related pathways known to influence stomatal behavior were detected. Genes associated with C4 photosynthesis were more highly expressed in guard cells of C4 compared with C3 leaves. Furthermore, we detected two major patterns of cell-specific C4 gene expression within the C4 leaf. In the first, genes previously associated with preferential expression in the bundle sheath showed continually decreasing expression from bundle sheath to mesophyll to guard cells. In the second, expression was maximal in the mesophyll compared with both guard cells and bundle sheath. These data imply that at least two gene regulatory networks act to coordinate gene expression across the bundle sheath, mesophyll, and guard cells in the C4 leaf. PMID:26818731

  4. Oscillating Transcriptome during Rice-Magnaporthe Interaction.

    Science.gov (United States)

    Sharma, T R; Das, Alok; Thakur, Shallu; Devanna, B N; Singh, Pankaj Kumar; Jain, Priyanka; Vijayan, Joshitha; Kumar, Shrawan

    2016-01-01

    Rice blast disease caused by the fungus, Magnaporthe oryzae, is one of the most devastating diseases of rice. Deciphering molecular mechanism of host-pathogen interactions is of great importance in devising disease management strategies. Transcription being the first step for gene regulation in eukaryotes, basic understanding of the transcriptome is sine qua non for devising effective management strategy. The availability of genome sequences of rice and M. oryzae has facilitated the process to a large extent. The current review summarizes recent understanding of rice-blast pathosystem, application of transcriptomics approaches to understand the interactions employing different platforms, major determinants in the interaction and possibility of using certain candidate for conditioning enhanced disease resistance (Effector Triggered Immunity and PAMP Triggered Immunity) and downstream signalling in rice. A better understanding of the interaction elements and effective strategies hold potential to reduce yield losses in rice caused by M. oryzae. PMID:26363736

  5. Crx broadly modulates the pineal transcriptome

    DEFF Research Database (Denmark)

    Rovsing, Louise; Clokie, Samuel; Bustos, Diego M;

    2011-01-01

    microarray and qRTPCR technology, thereby extending previous studies on selected genes (Furukawa et al. 1999). Deletion of Crx was not found to alter pineal morphology, but was found to broadly modulate the mouse pineal transcriptome, characterized by a > 2-fold down-regulation of 543 genes and a > 2-fold up-regulation...... of 745 genes (p < 0.05). Of these, one of the most highly up-regulated (18-fold) was Hoxc4, a member of the Hox gene family, members of which are known to control gene expression cascades. During a 24-h period, a set of 51 genes exhibited differential day/night expression in pineal glands of wild...... influences differential night/day gene expression in this tissue. Some effects of Crx deletion on the pineal transcriptome might be mediated by Hoxc4 up-regulation....

  6. Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia, a carnivorous plant with a minimal genome

    Directory of Open Access Journals (Sweden)

    Herrera-Estrella Alfredo

    2011-06-01

    Full Text Available Abstract Background The carnivorous plant Utricularia gibba (bladderwort is remarkable in having a minute genome, which at ca. 80 megabases is approximately half that of Arabidopsis. Bladderworts show an incredible diversity of forms surrounding a defined theme: tiny, bladder-like suction traps on terrestrial, epiphytic, or aquatic plants with a diversity of unusual vegetative forms. Utricularia plants, which are rootless, are also anomalous in physiological features (respiration and carbon distribution, and highly enhanced molecular evolutionary rates in chloroplast, mitochondrial and nuclear ribosomal sequences. Despite great interest in the genus, no genomic resources exist for Utricularia, and the substitution rate increase has received limited study. Results Here we describe the sequencing and analysis of the Utricularia gibba transcriptome. Three different organs were surveyed, the traps, the vegetative shoot bodies, and the inflorescence stems. We also examined the bladderwort transcriptome under diverse stress conditions. We detail aspects of functional classification, tissue similarity, nitrogen and phosphorus metabolism, respiration, DNA repair, and detoxification of reactive oxygen species (ROS. Long contigs of plastid and mitochondrial genomes, as well as sequences for 100 individual nuclear genes, were compared with those of other plants to better establish information on molecular evolutionary rates. Conclusion The Utricularia transcriptome provides a detailed genomic window into processes occurring in a carnivorous plant. It contains a deep representation of the complex metabolic pathways that characterize a putative minimal plant genome, permitting its use as a source of genomic information to explore the structural, functional, and evolutionary diversity of the genus. Vegetative shoots and traps are the most similar organs by functional classification of their transcriptome, the traps expressing hydrolytic enzymes for prey

  7. Global Dynamic Transcriptome Programming of Rapeseed (Brassica napus L.) Anther at Different Development Stages

    Science.gov (United States)

    Li, Zhanjie; Zhang, Peipei; Lv, Jinyang; Cheng, Yufeng; Cui, Jianmin; Zhao, Huixian; Hu, Shengwu

    2016-01-01

    Rapeseed (Brassica napus L.) is an important oil crop worldwide and exhibits significant heterosis. Effective pollination control systems, which are closely linked to anther development, are a prerequisite for utilizing heterosis. The anther, which is the male organ in flowering plants, undergoes many metabolic processes during development. Although the gene expression patterns underlying pollen development are well studied in model plant Arabidopsis, the regulatory networks of genome-wide gene expression during rapeseed anther development is poorly understood, especially regarding metabolic regulations. In this study, we systematically analyzed metabolic processes occurring during anther development in rapeseed using ultrastructural observation and global transcriptome analysis. Anther ultrastructure exhibited that numerous cellular organelles abundant with metabolic materials, such as elaioplast, tapetosomes, plastids (containing starch deposits) etc. appeared, accompanied with anther structural alterations during anther development, suggesting many metabolic processes occurring. Global transcriptome analysis revealed dynamic changes in gene expression during anther development that corresponded to dynamic functional alterations between early and late anther developmental stages. The early stage anthers preferentially expressed genes involved in lipid metabolism that are related to pollen extine formation as well as elaioplast and tapetosome biosynthesis, whereas the late stage anthers expressed genes associated with carbohydrate metabolism to form pollen intine and to accumulate starch in mature pollen grains. Finally, a predictive gene regulatory module responsible for early pollen extine formation was generated. Taken together, this analysis provides a comprehensive understanding of dynamic gene expression programming of metabolic processes in the rapeseed anther, especially with respect to lipid and carbohydrate metabolism during pollen development. PMID

  8. Deep sequencing-based analysis of the Cymbidium ensifolium floral transcriptome.

    Directory of Open Access Journals (Sweden)

    Xiaobai Li

    Full Text Available Cymbidium ensifolium is a Chinese Cymbidium with an elegant shape, beautiful appearance, and a fragrant aroma. C. ensifolium has a long history of cultivation in China and it has excellent commercial value as a potted plant and cut flower. The development of C. ensifolium genomic resources has been delayed because of its large genome size. Taking advantage of technical and cost improvement of RNA-Seq, we extracted total mRNA from flower buds and mature flowers and obtained a total of 9.52 Gb of filtered nucleotides comprising 98,819,349 filtered reads. The filtered reads were assembled into 101,423 isotigs, representing 51,696 genes. Of the 101,423 isotigs, 41,873 were putative homologs of annotated sequences in the public databases, of which 158 were associated with floral development and 119 were associated with flowering. The isotigs were categorized according to their putative functions. In total, 10,212 of the isotigs were assigned into 25 eukaryotic orthologous groups (KOGs, 41,690 into 58 gene ontology (GO terms, and 9,830 into 126 Arabidopsis Kyoto Encyclopedia of Genes and Genomes (KEGG pathways, and 9,539 isotigs into 123 rice pathways. Comparison of the isotigs with those of the two related orchid species P. equestris and C. sinense showed that 17,906 isotigs are unique to C. ensifolium. In addition, a total of 7,936 SSRs and 16,676 putative SNPs were identified. To our knowledge, this transcriptome database is the first major genomic resource for C. ensifolium and the most comprehensive transcriptomic resource for genus Cymbidium. These sequences provide valuable information for understanding the molecular mechanisms of floral development and flowering. Sequences predicted to be unique to C. ensifolium would provide more insights into C. ensifolium gene diversity. The numerous SNPs and SSRs identified in the present study will contribute to marker development for C. ensifolium.

  9. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    Directory of Open Access Journals (Sweden)

    Kumari Sunita

    2011-10-01

    Full Text Available Abstract Background Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought. Results RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed. Conclusions The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene

  10. Global Dynamic Transcriptome Programming of Rapeseed (Brassica napus L.) Anther at Different Development Stages.

    Science.gov (United States)

    Li, Zhanjie; Zhang, Peipei; Lv, Jinyang; Cheng, Yufeng; Cui, Jianmin; Zhao, Huixian; Hu, Shengwu

    2016-01-01

    Rapeseed (Brassica napus L.) is an important oil crop worldwide and exhibits significant heterosis. Effective pollination control systems, which are closely linked to anther development, are a prerequisite for utilizing heterosis. The anther, which is the male organ in flowering plants, undergoes many metabolic processes during development. Although the gene expression patterns underlying pollen development are well studied in model plant Arabidopsis, the regulatory networks of genome-wide gene expression during rapeseed anther development is poorly understood, especially regarding metabolic regulations. In this study, we systematically analyzed metabolic processes occurring during anther development in rapeseed using ultrastructural observation and global transcriptome analysis. Anther ultrastructure exhibited that numerous cellular organelles abundant with metabolic materials, such as elaioplast, tapetosomes, plastids (containing starch deposits) etc. appeared, accompanied with anther structural alterations during anther development, suggesting many metabolic processes occurring. Global transcriptome analysis revealed dynamic changes in gene expression during anther development that corresponded to dynamic functional alterations between early and late anther developmental stages. The early stage anthers preferentially expressed genes involved in lipid metabolism that are related to pollen extine formation as well as elaioplast and tapetosome biosynthesis, whereas the late stage anthers expressed genes associated with carbohydrate metabolism to form pollen intine and to accumulate starch in mature pollen grains. Finally, a predictive gene regulatory module responsible for early pollen extine formation was generated. Taken together, this analysis provides a comprehensive understanding of dynamic gene expression programming of metabolic processes in the rapeseed anther, especially with respect to lipid and carbohydrate metabolism during pollen development. PMID

  11. De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers.

    Science.gov (United States)

    Mudalkar, Shalini; Golla, Ramesh; Ghatty, Sreenivas; Reddy, Attipalli Ramachandra

    2014-01-01

    Camelina sativa L. is an emerging biofuel crop with potential applications in industry, medicine, cosmetics and human nutrition. The crop is unexploited owing to very limited availability of transcriptome and genomic data. In order to analyse the various metabolic pathways, we performed de novo assembly of the transcriptome on Illumina GAIIX platform with paired end sequencing for obtaining short reads. The sequencing output generated a FastQ file size of 2.97 GB with 10.83 million reads having a maximum read length of 101 nucleotides. The number of contigs generated was 53,854 with maximum and minimum lengths of 10,086 and 200 nucleotides respectively. These trancripts were annotated using BLAST search against the Aracyc, Swiss-Prot, TrEMBL, gene ontology and clusters of orthologous groups (KOG) databases. The genes involved in lipid metabolism were studied and the transcription factors were identified. Sequence similarity studies of Camelina with the other related organisms indicated the close relatedness of Camelina with Arabidopsis. In addition, bioinformatics analysis revealed the presence of a total of 19,379 simple sequence repeats. This is the first report on Camelina sativa L., where the transcriptome of the entire plant, including seedlings, seed, root, leaves and stem was done. Our data established an excellent resource for gene discovery and provide useful information for functional and comparative genomic studies in this promising biofuel crop. PMID:24002439

  12. Dynamics of the chili pepper transcriptome during fruit development

    OpenAIRE

    Martínez-López, Luis A; Ochoa-Alejo, Neftalí; Martínez, Octavio

    2014-01-01

    Background The set of all mRNA molecules present in a cell constitute the transcriptome. The transcriptome varies depending on cell type as well as in response to internal and external stimuli during development. Here we present a study of the changes that occur in the transcriptome of chili pepper fruit during development and ripening. Results RNA-Seq was used to obtain transcriptomes of whole Serrano-type chili pepper fruits (Capsicum annuum L.; ‘Tampiqueño 74’) collected at 10, 20, 40 and ...

  13. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum) Seedlings and Identification of Salt Tolerance Genes

    Science.gov (United States)

    Liu, Jiangtao; Zhou, Yuelong; Luo, Changxin; Xiang, Yun; An, Lizhe

    2016-01-01

    Achnatherum splendens is an important forage herb in Northwestern China. It has a high tolerance to salinity and is, thus, considered one of the most important constructive plants in saline and alkaline areas of land in Northwest China. However, the mechanisms of salt stress tolerance in A. splendens remain unknown. Next-generation sequencing (NGS) technologies can be used for global gene expression profiling. In this study, we examined sequence and transcript abundance data for the root/leaf transcriptome of A. splendens obtained using an Illumina HiSeq 2500. Over 35 million clean reads were obtained from the leaf and root libraries. All of the RNA sequencing (RNA-seq) reads were assembled de novo into a total of 126,235 unigenes and 36,511 coding DNA sequences (CDS). We further identified 1663 differentially-expressed genes (DEGs) between the salt stress treatment and control. Functional annotation of the DEGs by gene ontology (GO), using Arabidopsis and rice as references, revealed enrichment of salt stress-related GO categories, including “oxidation reduction”, “transcription factor activity”, and “ion channel transporter”. Thus, this global transcriptome analysis of A. splendens has provided an important genetic resource for the study of salt tolerance in this halophyte. The identified sequences and their putative functional data will facilitate future investigations of the tolerance of Achnatherum species to various types of abiotic stress. PMID:27023614

  14. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum Seedlings and Identification of Salt Tolerance Genes

    Directory of Open Access Journals (Sweden)

    Jiangtao Liu

    2016-03-01

    Full Text Available Achnatherum splendens is an important forage herb in Northwestern China. It has a high tolerance to salinity and is, thus, considered one of the most important constructive plants in saline and alkaline areas of land in Northwest China. However, the mechanisms of salt stress tolerance in A. splendens remain unknown. Next-generation sequencing (NGS technologies can be used for global gene expression profiling. In this study, we examined sequence and transcript abundance data for the root/leaf transcriptome of A. splendens obtained using an Illumina HiSeq 2500. Over 35 million clean reads were obtained from the leaf and root libraries. All of the RNA sequencing (RNA-seq reads were assembled de novo into a total of 126,235 unigenes and 36,511 coding DNA sequences (CDS. We further identified 1663 differentially-expressed genes (DEGs between the salt stress treatment and control. Functional annotation of the DEGs by gene ontology (GO, using Arabidopsis and rice as references, revealed enrichment of salt stress-related GO categories, including “oxidation reduction”, “transcription factor activity”, and “ion channel transporter”. Thus, this global transcriptome analysis of A. splendens has provided an important genetic resource for the study of salt tolerance in this halophyte. The identified sequences and their putative functional data will facilitate future investigations of the tolerance of Achnatherum species to various types of abiotic stress.

  15. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum) Seedlings and Identification of Salt Tolerance Genes.

    Science.gov (United States)

    Liu, Jiangtao; Zhou, Yuelong; Luo, Changxin; Xiang, Yun; An, Lizhe

    2016-01-01

    Achnatherum splendens is an important forage herb in Northwestern China. It has a high tolerance to salinity and is, thus, considered one of the most important constructive plants in saline and alkaline areas of land in Northwest China. However, the mechanisms of salt stress tolerance in A. splendens remain unknown. Next-generation sequencing (NGS) technologies can be used for global gene expression profiling. In this study, we examined sequence and transcript abundance data for the root/leaf transcriptome of A. splendens obtained using an Illumina HiSeq 2500. Over 35 million clean reads were obtained from the leaf and root libraries. All of the RNA sequencing (RNA-seq) reads were assembled de novo into a total of 126,235 unigenes and 36,511 coding DNA sequences (CDS). We further identified 1663 differentially-expressed genes (DEGs) between the salt stress treatment and control. Functional annotation of the DEGs by gene ontology (GO), using Arabidopsis and rice as references, revealed enrichment of salt stress-related GO categories, including "oxidation reduction", "transcription factor activity", and "ion channel transporter". Thus, this global transcriptome analysis of A. splendens has provided an important genetic resource for the study of salt tolerance in this halophyte. The identified sequences and their putative functional data will facilitate future investigations of the tolerance of Achnatherum species to various types of abiotic stress. PMID:27023614

  16. Transcriptome landscape of the human placenta

    OpenAIRE

    Kim Jinsil; Zhao Keyan; Jiang Peng; Lu Zhi-xiang; Wang Jinkai; Murray Jeffrey C; Xing Yi

    2012-01-01

    Abstract Background The placenta is a key component in understanding the physiological processes involved in pregnancy. Characterizing genes critical for placental function can serve as a basis for identifying mechanisms underlying both normal and pathologic pregnancies. Detailing the placental tissue transcriptome could provide a valuable resource for genomic studies related to placental disease. Results We have conducted a deep RNA sequencing (RNA-Seq) study on three tissue components (amni...

  17. Transcriptome Analysis of Sarracenia, an Insectivorous Plant

    OpenAIRE

    Srivastava, Anuj; Rogers, Willie L.; Breton, Catherine M.; Cai, Liming; Malmberg, Russell L.

    2011-01-01

    Sarracenia species (pitcher plants) are carnivorous plants which obtain a portion of their nutrients from insects captured in the pitchers. To investigate these plants, we sequenced the transcriptome of two species, Sarracenia psittacina and Sarracenia purpurea, using Roche 454 pyrosequencing technology. We obtained 46 275 and 36 681 contigs by de novo assembly methods for S. psittacina and S. purpurea, respectively, and further identified 16 163 orthologous contigs between them. Estimation o...

  18. Global meta-analysis of transcriptomics studies.

    Science.gov (United States)

    Caldas, José; Vinga, Susana

    2014-01-01

    Transcriptomics meta-analysis aims at re-using existing data to derive novel biological hypotheses, and is motivated by the public availability of a large number of independent studies. Current methods are based on breaking down studies into multiple comparisons between phenotypes (e.g. disease vs. healthy), based on the studies' experimental designs, followed by computing the overlap between the resulting differential expression signatures. While useful, in this methodology each study yields multiple independent phenotype comparisons, and connections are established not between studies, but rather between subsets of the studies corresponding to phenotype comparisons. We propose a rank-based statistical meta-analysis framework that establishes global connections between transcriptomics studies without breaking down studies into sets of phenotype comparisons. By using a rank product method, our framework extracts global features from each study, corresponding to genes that are consistently among the most expressed or differentially expressed genes in that study. Those features are then statistically modelled via a term-frequency inverse-document frequency (TF-IDF) model, which is then used for connecting studies. Our framework is fast and parameter-free; when applied to large collections of Homo sapiens and Streptococcus pneumoniae transcriptomics studies, it performs better than similarity-based approaches in retrieving related studies, using a Medical Subject Headings gold standard. Finally, we highlight via case studies how the framework can be used to derive novel biological hypotheses regarding related studies and the genes that drive those connections. Our proposed statistical framework shows that it is possible to perform a meta-analysis of transcriptomics studies with arbitrary experimental designs by deriving global expression features rather than decomposing studies into multiple phenotype comparisons. PMID:24586684

  19. Transcriptome analysis of Ginkgo biloba kernels

    OpenAIRE

    He, Bing; Gu, Yincong; Xu, Meng; Wang, Jianwen; Cao, Fuliang; Xu, Li-an

    2015-01-01

    Ginkgo biloba is a dioecious species native to China with medicinally and phylogenetically important characteristics; however, genomic resources for this species are limited. In this study, we performed the first transcriptome sequencing for Ginkgo kernels at five time points using Illumina paired-end sequencing. Approximately 25.08-Gb clean reads were obtained, and 68,547 unigenes with an average length of 870 bp were generated by de novo assembly. Of these unigenes, 29,987 (43.74%) were ann...

  20. High-resolution transcriptome of human macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like and alternative (M2-like polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7 as well as M2-associated (CD1a, CD1b, CD93, CD226 cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.

  1. Transcriptome Analysis of Zebrafish Embryogenesis Using Microarrays

    OpenAIRE

    Mathavan, Sinnakaruppan; Lee, Serene G. P.; Mak, Alicia; Lance D. Miller; Murthy, Karuturi Radha Krishna; Govindarajan, Kunde R; Tong, Yan; Wu, Yi Lian; Lam, Siew Hong; Yang, Henry; Ruan, Yijun; Korzh, Vladimir; Gong, Zhiyuan; Liu, Edison T; Lufkin, Thomas

    2005-01-01

    Zebrafish (Danio rerio) is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmenta...

  2. Transcriptomic changes of Legionella pneumophila in water

    OpenAIRE

    Li, Laam; Mendis, Nilmini; Trigui, Hana; Faucher, Sébastien P.

    2015-01-01

    Background Legionella pneumophila (Lp) is a water-borne opportunistic pathogen. In water, Lp can survive for an extended period of time until it encounters a permissive host. Therefore, identifying genes that are required for survival in water may help develop strategies to prevent Legionella outbreaks. Results We compared the global transcriptomic response of Lp grown in a rich medium to that of Lp exposed to an artificial freshwater medium (Fraquil) for 2, 6 and 24 hours. We uncovered succe...

  3. Transcriptome sequencing of Zhikong scallop (Chlamys farreri and comparative transcriptomic analysis with Yesso scallop (Patinopecten yessoensis.

    Directory of Open Access Journals (Sweden)

    Shan Wang

    Full Text Available BACKGROUND: Bivalves play an important role in the ecosystems they inhabit and represent an important food source all over the world. So far limited genetic research has focused on this group of animals largely due to the lack of sufficient genetic or genomic resources. Here, we performed de novo transcriptome sequencing to produce the most comprehensive expressed sequence tag resource for Zhikong scallop (Chlamys farreri, and conducted the first transcriptome comparison for scallops. RESULTS: In a single 454 sequencing run, 1,033,636 reads were produced and then assembled into 26,165 contigs. These contigs were then clustered into 24,437 isotigs and further grouped into 20,056 isogroups. About 47% of the isogroups showed significant matches to known proteins based on sequence similarity. Transcripts putatively involved in growth, reproduction and stress/immune-response were identified through Gene ontology (GO and KEGG pathway analyses. Transcriptome comparison with Yesso scallop (Patinopecten yessoensis revealed similar patterns of GO representation. Moreover, 38 putative fast-evolving genes were identified through analyzing the orthologous gene pairs between the two scallop species. More than 46,000 single nucleotide polymorphisms (SNPs and 350 simple sequence repeats (SSRs were also detected. CONCLUSION: Our study provides the most comprehensive transcriptomic resource currently available for C. farreri. Based on this resource, we performed the first large-scale transcriptome comparison between the two scallop species, C. farreri and P. yessoensis, and identified a number of putative fast-evolving genes, which may play an important role in scallop speciation and/or local adaptation. A large set of single nucleotide polymorphisms and simple sequence repeats were identified, which are ready for downstream marker development. This transcriptomic resource should lay an important foundation for future genetic or genomic studies on C. farreri.

  4. Arabidopsis CDS blastp result: AK066771 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066771 J013083K07 At1g01170.1 ozone-responsive stress-related protein, putative s...imilar to stress-related ozone-induced protein AtOZI1 (GI:790583) [Arabidopsis thaliana]; contains 1 predicted transmembrane domain; 2e-29 ...

  5. Arabidopsis CDS blastp result: AK059353 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059353 001-026-D01 At1g01170.1 ozone-responsive stress-related protein, putative ...similar to stress-related ozone-induced protein AtOZI1 (GI:790583) [Arabidopsis thaliana]; contains 1 predicted transmembrane domain; 2e-29 ...

  6. Arabidopsis CDS blastp result: AK059160 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059160 001-023-D05 At1g01170.1 ozone-responsive stress-related protein, putative ...similar to stress-related ozone-induced protein AtOZI1 (GI:790583) [Arabidopsis thaliana]; contains 1 predicted transmembrane domain; 3e-28 ...

  7. Arabidopsis CDS blastp result: AK242849 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242849 J090072M15 At1g68370.1 68414.m07809 gravity -responsive protein / altered response to gravity ... ty protein (ARG1) identical to Altered Response to Gravity ... [Arabidopsis thaliana] GI:4249662; contains Pfam p ...

  8. Arabidopsis CDS blastp result: AK288959 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288959 J090084E19 At1g68370.1 68414.m07809 gravity -responsive protein / altered response to gravity ... ty protein (ARG1) identical to Altered Response to Gravity ... [Arabidopsis thaliana] GI:4249662; contains Pfam p ...

  9. Arabidopsis CDS blastp result: AK243008 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243008 J090097H12 At1g68370.1 68414.m07809 gravity -responsive protein / altered response to gravity ... ty protein (ARG1) identical to Altered Response to Gravity ... [Arabidopsis thaliana] GI:4249662; contains Pfam p ...

  10. Arabidopsis CDS blastp result: AK288072 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288072 J075161I05 At1g68370.1 68414.m07809 gravity -responsive protein / altered response to gravity ... ty protein (ARG1) identical to Altered Response to Gravity ... [Arabidopsis thaliana] GI:4249662; contains Pfam p ...

  11. Arabidopsis CDS blastp result: AK243178 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243178 J100036P15 At1g68370.1 68414.m07809 gravity -responsive protein / altered response to gravity ... ty protein (ARG1) identical to Altered Response to Gravity ... [Arabidopsis thaliana] GI:4249662; contains Pfam p ...

  12. Arabidopsis CDS blastp result: AK243505 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243505 J100074N19 At1g68370.1 68414.m07809 gravity -responsive protein / altered response to gravity ... ty protein (ARG1) identical to Altered Response to Gravity ... [Arabidopsis thaliana] GI:4249662; contains Pfam p ...

  13. Arabidopsis CDS blastp result: AK287577 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287577 J065037N08 At1g68370.1 68414.m07809 gravity -responsive protein / altered response to gravity ... ty protein (ARG1) identical to Altered Response to Gravity ... [Arabidopsis thaliana] GI:4249662; contains Pfam p ...

  14. Protease gene families in Populus and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jansson Stefan

    2006-12-01

    Full Text Available Abstract Background Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Results We have performed a comparative analysis of protease genes in the two sequenced dicot genomes, Arabidopsis thaliana and Populus trichocarpa by using genes coding for proteases in the MEROPS database 1 for Arabidopsis to identify homologous sequences in Populus. A multigene-based phylogenetic analysis was performed. Most protease families were found to be larger in Populus than in Arabidopsis, reflecting recent genome duplication. Detailed studies on e.g. the DegP, Clp, FtsH, Lon, rhomboid and papain-Like protease families showed the pattern of gene family expansion and gene loss was complex. We finally show that different Populus tissues express unique suites of protease genes and that the mRNA levels of different classes of proteases change along a developmental gradient. Conclusion Recent gene family expansion and contractions have made the Arabidopsis and Populus complements of proteases different and this, together with expression patterns, gives indications about the roles of the individual gene products or groups of proteases.

  15. Arabidopsis CDS blastp result: AK241402 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241402 J065159A02 At4g19070.1 68417.m02810 cadmium-responsive protein / cadmium i...nduced protein (AS8) identical to cadmium induced protein AS8 SP:P42735 from [Arabidopsis thaliana] 3e-11 ...

  16. Arabidopsis CDS blastp result: AK242143 [KOME

    Lifescience Database Archive (English)

    Full Text Available ar to GI:6573119 from [Lycopersicon esculentum] (Plant Physiol. 122 (1), 292 (2000)) 3e-12 ... ... identical to SP|Q9C888 Phospholipase D epsilon (EC 3.1.4.4) (AtPLDepsilon) (PLD epsilon) (PLDalpha3) {Arabidopsis thaliana}; simil

  17. Arabidopsis CDS blastp result: AK242143 [KOME

    Lifescience Database Archive (English)

    Full Text Available ar to GI:6573119 from [Lycopersicon esculentum] (Plant Physiol. 122 (1), 292 (2000)) 6e-22 ... ... identical to SP|Q9C888 Phospholipase D epsilon (EC 3.1.4.4) (AtPLDepsilon) (PLD epsilon) (PLDalpha3) {Arabidopsis thaliana}; simil

  18. Arabidopsis CDS blastp result: AK240654 [KOME

    Lifescience Database Archive (English)

    Full Text Available ar to GI:6573119 from [Lycopersicon esculentum] (Plant Physiol. 122 (1), 292 (2000)) 1e-160 ... ... identical to SP|Q9C888 Phospholipase D epsilon (EC 3.1.4.4) (AtPLDepsilon) (PLD epsilon) (PLDalpha3) {Arabidopsis thaliana}; simil

  19. Arabidopsis CDS blastp result: AK242290 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242290 J075191E07 At4g13870.1 68417.m02148 Werner Syndrome-like exonuclease (WEX)... contains Pfam profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 1e-20 ...

  20. Arabidopsis CDS blastp result: AK063585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063585 001-118-A04 At4g13870.2 Werner Syndrome-like exonuclease (WEX) contains Pf...am profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 6e-16 ...

  1. Arabidopsis CDS blastp result: AK242290 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242290 J075191E07 At4g13870.2 68417.m02149 Werner Syndrome-like exonuclease (WEX)... contains Pfam profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 1e-20 ...

  2. Arabidopsis CDS blastp result: AK243230 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243230 J100044L04 At1g19850.1 68414.m02490 transcription factor MONOPTEROS (MP) /... auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 2e-65 ...

  3. Arabidopsis CDS blastp result: AK103452 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103452 J033129I11 At1g19850.1 transcription factor MONOPTEROS (MP) / auxin-respon...sive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 1e-166 ...

  4. Arabidopsis CDS blastp result: AK318617 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK318617 J100090H20 At1g19850.1 68414.m02490 transcription factor MONOPTEROS (MP) /... auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 2e-63 ...

  5. Arabidopsis CDS blastp result: AK287832 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287832 J065187F20 At1g30950.1 68414.m03790 unusual floral organ (UFO ) / F-box family protein ( ... ubunit; almost identical to unusual floral organs (UFO )GI:4376159 from [Arabidopsis thaliana] Landsberg-e ...

  6. Arabidopsis CDS blastp result: AK241547 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241547 J065176G22 At1g30950.1 68414.m03790 unusual floral organ (UFO ) / F-box family protein ( ... ubunit; almost identical to unusual floral organs (UFO )GI:4376159 from [Arabidopsis thaliana] Landsberg-e ...

  7. Arabidopsis CDS blastp result: AK242616 [KOME

    Lifescience Database Archive (English)

    Full Text Available ve contains PF00481: Protein phosphatase 2C domain; identical to protein phosphatase 2C (GI:4587992) [Arabidopsis thaliana] 2e-34 ... ...AK242616 J090017C19 At2g40180.1 68415.m04941 protein phosphatase 2C, putative / PP2C, putati

  8. Arabidopsis CDS blastp result: AK242846 [KOME

    Lifescience Database Archive (English)

    Full Text Available ve contains PF00481: Protein phosphatase 2C domain; identical to protein phosphatase 2C (GI:4587992) [Arabidopsis thaliana] 9e-12 ... ...AK242846 J090071I10 At2g40180.1 68415.m04941 protein phosphatase 2C, putative / PP2C, putati

  9. Arabidopsis CDS blastp result: AK241162 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241162 J065116A05 At5g54800.1 68418.m06826 glucose-6-phosphate/phosphate translocator, putative identic...al to glucose 6 phosphate/phosphate translocator [Arabidopsis thaliana] gi|7229675|gb|AAF42936 2e-11 ...

  10. Arabidopsis CDS blastp result: AK242098 [KOME

    Lifescience Database Archive (English)

    Full Text Available ve contains PF00481: Protein phosphatase 2C domain; identical to protein phosphatase 2C (GI:4587992) [Arabidopsis thaliana] 3e-22 ... ...AK242098 J075143H11 At2g40180.1 68415.m04941 protein phosphatase 2C, putative / PP2C, putati

  11. Arabidopsis CDS blastp result: AK243041 [KOME

    Lifescience Database Archive (English)

    Full Text Available ve contains PF00481: Protein phosphatase 2C domain; identical to protein phosphatase 2C (GI:4587992) [Arabidopsis thaliana] 4e-31 ... ...AK243041 J100008G07 At2g40180.1 68415.m04941 protein phosphatase 2C, putative / PP2C, putati

  12. Arabidopsis CDS blastp result: AK243539 [KOME

    Lifescience Database Archive (English)

    Full Text Available ve contains PF00481: Protein phosphatase 2C domain; identical to protein phosphatase 2C (GI:4587992) [Arabidopsis thaliana] 6e-34 ... ...AK243539 J100078G04 At2g40180.1 68415.m04941 protein phosphatase 2C, putative / PP2C, putati

  13. Arabidopsis CDS blastp result: AK242576 [KOME

    Lifescience Database Archive (English)

    Full Text Available ve contains PF00481: Protein phosphatase 2C domain; identical to protein phosphatase 2C (GI:4587992) [Arabidopsis thaliana] 3e-22 ... ...AK242576 J090009A15 At2g40180.1 68415.m04941 protein phosphatase 2C, putative / PP2C, putati

  14. Arabidopsis CDS blastp result: AK289111 [KOME

    Lifescience Database Archive (English)

    Full Text Available ve contains PF00481: Protein phosphatase 2C domain; identical to protein phosphatase 2C (GI:4587992) [Arabidopsis thaliana] 5e-20 ... ...AK289111 J090096N14 At2g40180.1 68415.m04941 protein phosphatase 2C, putative / PP2C, putati

  15. Arabidopsis CDS blastp result: AK289248 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK289248 J100079D02 At5g54800.1 68418.m06826 glucose-6-phosphate/phosphate translocator, putative identic...al to glucose 6 phosphate/phosphate translocator [Arabidopsis thaliana] gi|7229675|gb|AAF42936 7e-19 ...

  16. Arabidopsis CDS blastp result: AK287695 [KOME

    Lifescience Database Archive (English)

    Full Text Available ve contains PF00481: Protein phosphatase 2C domain; identical to protein phosphatase 2C (GI:4587992) [Arabidopsis thaliana] 3e-81 ... ...AK287695 J065129B08 At2g40180.1 68415.m04941 protein phosphatase 2C, putative / PP2C, putati

  17. Arabidopsis CDS blastp result: AK243048 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243048 J100010D20 At1g07370.1 68414.m00786 proliferating cell nuclear ... antigen 1 (PCNA1) identi ... cal to SP|Q9M7Q7 Proliferating cellular nuclear ... antigen 1 (PCNA 1) {Arabidopsis thaliana}; nearly ... identical to SP|Q43124 Proliferating cell nuclear ... antigen (PCNA) {Brassica napus}; contains Pfam pro ...

  18. Arabidopsis CDS blastp result: AK071591 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071591 J023105C08 At2g29570.1 proliferating cell nuclear ... antigen 2 (PCNA2) identical to SP|Q9Z ... W35 Proliferating cell nuclear ... antigen 2 (PCNA 2) {Arabidopsis thaliana}; nearly ... identical to SP|Q43124 Proliferating cell nuclear ... antigen (PCNA) {Brassica napus}; contains Pfam pro ...

  19. Arabidopsis CDS blastp result: AK243048 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243048 J100010D20 At2g29570.1 68415.m03591 proliferating cell nuclear ... antigen 2 (PCNA2) identi ... cal to SP|Q9ZW35 Proliferating cell nuclear ... antigen 2 (PCNA 2) {Arabidopsis thaliana}; nearly ... identical to SP|Q43124 Proliferating cell nuclear ... antigen (PCNA) {Brassica napus}; contains Pfam pro ...

  20. Arabidopsis CDS blastp result: AK241265 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241265 J065132C02 At3g19450.1 68416.m02466 cinnamyl-alcohol dehydrogenase (CAD ) identical to S ... 523 Cinnamyl-alcohol dehydrogenase (EC 1.1.1.195) (CAD ) [Arabidopsis thaliana] 1e-81 ...

  1. Arabidopsis CDS blastp result: AK105739 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105739 001-202-A05 At3g19450.1 cinnamyl-alcohol dehydrogenase (CAD ) identical to SP|P48523 Cin ... namyl-alcohol dehydrogenase (EC 1.1.1.195) (CAD ) [Arabidopsis thaliana] 2e-46 ...

  2. Arabidopsis CDS blastp result: AK243022 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243022 J100001E20 At3g19450.1 68416.m02466 cinnamyl-alcohol dehydrogenase (CAD ) identical to S ... 523 Cinnamyl-alcohol dehydrogenase (EC 1.1.1.195) (CAD ) [Arabidopsis thaliana] 4e-64 ...

  3. Arabidopsis CDS blastp result: AK287708 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287708 J065132C02 At3g19450.1 68416.m02466 cinnamyl-alcohol dehydrogenase (CAD ) identical to S ... 523 Cinnamyl-alcohol dehydrogenase (EC 1.1.1.195) (CAD ) [Arabidopsis thaliana] 1e-81 ...

  4. Arabidopsis CDS blastp result: AK121261 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121261 J023104H13 At1g55350.4 calpain-type cysteine protease family identical to calpain...-like protein GI:20268660 from [Arabidopsis thaliana]; contains Pfam profiles: PF00648 Calpain family... cysteine protease, PF01067 Calpain large subunit,domain III; identical to cDNA calpain-like protein GI:20268659 0.0 ...

  5. Arabidopsis CDS blastp result: AK100867 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100867 J023124E13 At2g29640.1 josephin family protein contains Pfam domain PF02099: Jose...phin; similar to Josephin-like protein (Swiss-Prot:O82391) [Arabidopsis thaliana] 7e-59 ...

  6. Arabidopsis CDS blastp result: AK065851 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065851 J013041L15 At1g79010.1 NADH-ubiquinone oxidoreductase 23 kDa subunit, mitochondrial (TY ... ursor (EC 1.6.5.3) (EC 1.6.99.3) (Complex I-23KD) (CI -23KD) (Complex I- 28.5KD) (CI -28.5KD) {Arabidopsis ...

  7. Arabidopsis CDS blastp result: AK119532 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119532 001-203-F01 At1g79010.1 NADH-ubiquinone oxidoreductase 23 kDa subunit, mitochondrial (T ... ursor (EC 1.6.5.3) (EC 1.6.99.3) (Complex I-23KD) (CI -23KD) (Complex I- 28.5KD) (CI -28.5KD) {Arabidopsis ...

  8. Arabidopsis CDS blastp result: AK243512 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243512 J100075C18 At4g16280.3 68417.m02471 flowering time ... control protein / FCA gamma (FCA) id ... entical to SP|O04425 Flowering time ... control protein FCA {Arabidopsis thaliana}; four a ...

  9. Arabidopsis CDS blastp result: AK243512 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243512 J100075C18 At4g16280.2 68417.m02470 flowering time ... control protein / FCA gamma (FCA) id ... entical to SP|O04425 Flowering time ... control protein FCA {Arabidopsis thaliana}; four a ...

  10. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-130 ...

  11. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 2e-65 ...

  12. Arabidopsis CDS blastp result: AK110534 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110534 002-168-A07 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-114 ...

  13. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-24 ...

  14. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  15. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-45 ...

  16. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 3e-66 ...

  17. Arabidopsis CDS blastp result: AK069071 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069071 J023010H01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  18. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-124 ...

  19. Arabidopsis CDS blastp result: AK060286 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060286 001-006-C08 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 6e-78 ...

  20. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 0.0 ...

  1. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-29 ...

  2. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-25 ...

  3. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-28 ...

  4. Arabidopsis CDS blastp result: AK105393 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105393 001-123-B04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  5. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-25 ...

  6. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-126 ...

  7. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 8e-63 ...

  8. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 1e-125 ...

  9. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 0.0 ...

  10. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-26 ...

  11. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-47 ...

  12. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-98 ...

  13. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-98 ...

  14. Arabidopsis CDS blastp result: AK109812 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109812 002-147-H02 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 5e-90 ...

  15. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-31 ...

  16. Arabidopsis CDS blastp result: AK121003 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121003 J023045B21 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  17. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-48 ...

  18. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-45 ...

  19. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 4e-27 ...

  20. Arabidopsis CDS blastp result: AK061162 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061162 006-209-A01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-35 ...

  1. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-50 ...

  2. Arabidopsis CDS blastp result: AK066153 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  3. Arabidopsis CDS blastp result: AK287906 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit / ClpC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF028...61: Clp amino terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  4. Arabidopsis CDS blastp result: AK069552 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  5. Arabidopsis CDS blastp result: AK100126 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  6. Arabidopsis CDS blastp result: AK058510 [KOME

    Lifescience Database Archive (English)

    Full Text Available lpC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amin...o terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  7. Shotgun Proteomic Analysis of Arabidopsis thaliana Leaves

    Science.gov (United States)

    Two shotgun tandem mass spectrometry proteomics approaches, Multidimensional Protein Identification Technology (MudPIT) and 1D-Gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible wit...

  8. Arabidopsis CDS blastp result: AK318553 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK318553 J075145A22 At4g11230.1 68417.m01819 respiratory burst ... oxidase, putative / NADPH oxidase ... , putative similar to respiratory burst ... oxidase homolog F [gi:3242456], RbohAp108 [gi:2654 ... 868] from Arabidopsis thaliana, respiratory burst ... oxidase homolog [GI:16549087] from Solanum tuberos ...

  9. Arabidopsis CDS blastp result: AK110694 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110694 002-170-A08 At5g59560.2 sensitivity to red light reduced protein (SRR1) id...entical to sensitivity to red light reduced protein [Arabidopsis thaliana] GI:25527089; supporting cDNA gi|25527088|gb|AY127047.1| 1e-18 ...

  10. Arabidopsis CDS blastp result: AK099399 [KOME

    Lifescience Database Archive (English)

    Full Text Available 079; contains weak similarity to the SAPB protein (TR:E236624) [Arabidopsis thaliana]; similar to seven transme...AK099399 J013000O17 At3g05010.1 transmembrane protein, putative similar to GB:AAB61...mbrane domain orphan receptor (GI:4321619) [Mus musculus] contains 7 transmembrane domains; 2e-89 ...

  11. Arabidopsis CDS blastp result: AK241202 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241202 J065122B10 At3g20600.1 68416.m02607 non-race specific disease resistance protein (NDR1) ... protein (NDR1) GB:AF021346 [Arabidopsis thaliana] (Science ... 278 (5345), 1963-1965 (1997)) 2e-11 ...

  12. Arabidopsis CDS blastp result: AK240830 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240830 J065014C16 At3g12280.1 68416.m01533 retinoblastoma-related protein (RBR1) nearly identical to retin...oblastoma-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  13. Arabidopsis CDS blastp result: AK121431 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121431 J023138G19 At3g12280.1 retinoblastoma-related protein (RBR1) nearly identical to retinoblastoma...-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  14. Arabidopsis CDS blastp result: AK064987 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064987 J013001D03 At3g12280.1 retinoblastoma-related protein (RBR1) nearly identical to retinoblastoma...-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  15. Arabidopsis CDS blastp result: AK241627 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241627 J065187G05 At3g12280.1 68416.m01533 retinoblastoma-related protein (RBR1) nearly identical to retin...oblastoma-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  16. Arabidopsis CDS blastp result: AK241568 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241568 J065179E12 At3g56700.1 68416.m06307 male ... sterility protein, putative similar to SP|Q088 ... 91 Male ... sterility protein 2 {Arabidopsis thaliana}; contai ... ns Pfam profile PF03015: Male ... sterility protein 2e-70 ...

  17. Arabidopsis CDS blastp result: AK242888 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242888 J090079L06 At3g56700.1 68416.m06307 male ... sterility protein, putative similar to SP|Q088 ... 91 Male ... sterility protein 2 {Arabidopsis thaliana}; contai ... ns Pfam profile PF03015: Male ... sterility protein 8e-81 ...

  18. Arabidopsis CDS blastp result: AK287630 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287630 J065073I15 At5g22260.1 68418.m02593 male ... sterility 1 protein, putative (MS1) identical ... to male ... sterility 1 protein [Arabidopsis thaliana] gi|1555 ... fam profile PF00628: PHD-finger; identical to cDNA male ... sterility 1 protein (ms1 gene) GI:15554514 3e-78 ...

  19. Arabidopsis CDS blastp result: AK058440 [KOME

    Lifescience Database Archive (English)

    Full Text Available 20S proteasome beta subunit PBB1 (PBB1) GB:AAC32066 [Arabidopsis thaliana] (Genetics 149 (2), 677-692 (1998)); contains Pfam profile: PF00227 proteasome A-type and B-type; 1e-92 ...

  20. Arabidopsis CDS blastp result: AK119246 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119246 001-121-C04 At5g26570.1 glycoside hydrolase starch -binding domain-containing protein si ... milar to SEX1 (starch ... excess) [Arabidopsis thaliana] GI:12044358; contai ... ns Pfam profile PF00686: Starch ... binding domain 1e-116 ...

  1. Arabidopsis CDS blastp result: AK072331 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072331 J023039L19 At5g26570.1 glycoside hydrolase starch -binding domain-containing protein sim ... ilar to SEX1 (starch ... excess) [Arabidopsis thaliana] GI:12044358; contai ... ns Pfam profile PF00686: Starch ... binding domain 0.0 ...

  2. Arabidopsis CDS blastp result: AK107208 [KOME

    Lifescience Database Archive (English)

    Full Text Available Ala hydrolase, putative virtually identical to gr1-protein from [Arabidopsis thaliana] GI:3559811; similar t...AK107208 002-125-B11 At1g44350.1 IAA-amino acid hydrolase 6, putative (ILL6) / IAA-

  3. Arabidopsis CDS blastp result: AK072218 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072218 J013167O21 At1g55350.4 calpain-type cysteine protease family identical to calpain...-like protein GI:20268660 from [Arabidopsis thaliana]; contains Pfam profiles: PF00648 Calpain family... cysteine protease, PF01067 Calpain large subunit,domain III; identical to cDNA calpain-like protein GI:20268659 1e-150 ...

  4. Arabidopsis CDS blastp result: AK287447 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287447 J043016O04 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 2e-30 ...

  5. Arabidopsis CDS blastp result: AK103126 [KOME

    Lifescience Database Archive (English)

    Full Text Available 0S proteasome beta subunit PBB1 (PBB1) GB:AAC32066 [Arabidopsis thaliana] (Genetics 149 (2), 677-692 (1998)); contains Pfam profile: PF00227 proteasome A-type and B-type; 1e-129 ...

  6. Arabidopsis CDS blastp result: AK243298 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243298 J100053J04 At3g30290.1 68416.m03825 cytochrome P450 family protein similar to Cytochrom ... similar to GB:C71417 from [Arabidopsis thaliana] (Nature ... 391 (6666), 485-488 (1998)) 2e-44 ...

  7. Arabidopsis CDS blastp result: AK241385 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241385 J065156D02 At3g30290.1 68416.m03825 cytochrome P450 family protein similar to Cytochrom ... similar to GB:C71417 from [Arabidopsis thaliana] (Nature ... 391 (6666), 485-488 (1998)) 1e-11 ...

  8. Arabidopsis CDS blastp result: AK241333 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241333 J065144I22 At3g30290.1 68416.m03825 cytochrome P450 family protein similar to Cytochrom ... similar to GB:C71417 from [Arabidopsis thaliana] (Nature ... 391 (6666), 485-488 (1998)) 2e-35 ...

  9. Arabidopsis CDS blastp result: AK240730 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240730 J043030K09 At3g30290.1 68416.m03825 cytochrome P450 family protein similar to Cytochrom ... similar to GB:C71417 from [Arabidopsis thaliana] (Nature ... 391 (6666), 485-488 (1998)) 6e-11 ...

  10. Arabidopsis CDS blastp result: AK241521 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241521 J065170L14 At3g30290.1 68416.m03825 cytochrome P450 family protein similar to Cytochrom ... similar to GB:C71417 from [Arabidopsis thaliana] (Nature ... 391 (6666), 485-488 (1998)) 9e-32 ...

  11. Arabidopsis CDS blastp result: AK288402 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288402 J090030B22 At3g30290.1 68416.m03825 cytochrome P450 family protein similar to Cytochrom ... similar to GB:C71417 from [Arabidopsis thaliana] (Nature ... 391 (6666), 485-488 (1998)) 7e-25 ...

  12. Arabidopsis CDS blastp result: AK241581 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241581 J065181K09 At3g30290.1 68416.m03825 cytochrome P450 family protein similar to Cytochrom ... similar to GB:C71417 from [Arabidopsis thaliana] (Nature ... 391 (6666), 485-488 (1998)) 7e-12 ...

  13. Engineering calcium oxalate crystal formation in Arabidopsis

    Science.gov (United States)

    Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal accumulating plant, Arabidopsis. The success of t...

  14. Arabidopsis CDS blastp result: AK288349 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288349 J090023P19 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 1e-23 ...

  15. Arabidopsis CDS blastp result: AK241364 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241364 J065152E11 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 2e-20 ...

  16. Arabidopsis thaliana glucuronosyltransferase in family GT14.

    Science.gov (United States)

    Dilokpimol, Adiphol; Geshi, Naomi

    2014-01-01

    Arabinogalactan proteins are abundant cell-surface proteoglycans in plants and are involved in many cellular processes including somatic embryogenesis, cell-cell interactions, and cell elongation. We reported a glucuronosyltransferase encoded by Arabidopsis AtGlcAT14A, which catalyzes an addition of glucuronic acid residues to β-1,3- and β-1,6-linked galactans of arabinogalactan (Knoch et al. 2013). The knockout mutant of this gene resulted in the enhanced growth rate of hypocotyls and roots of seedlings, suggesting an involvement of AtGlcAT14A in cell elongation. AtGlcAt14A belongs to the family GT14 in the Carbohydrate Active Enzyme database (CAZy; www.cazy.org), in which a total of 11 proteins, including AtGLCAT14A, are classified from Arabidopsis thaliana. In this paper, we report the enzyme activities for the rest of the Arabidopsis GT14 isoforms, analyzed in the same way as for AtGlcAT14A. Evidently, two other Arabidopsis GT14 isoforms, At5g15050 and At2g37585, also possess the glucuronosyltransferase activity adding glucuronic acid residues to β-1,3- and β-1,6-linked galactans. Therefore, we named At5g15050 and At2g37585 as AtGlcAT14B and AtGlcAT14C, respectively. PMID:24739253

  17. Arabidopsis CDS blastp result: AK242817 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242817 J090063G17 At3g48560.1 68416.m05302 acetolactate synthase, chloroplast / acetohydroxy-a ... cid synthase (ALS ) nearly identical to SP|P17597 Acetolactate syntha ... ormerly EC 4.1.3.18) (Acetohydroxy-acid synthase) (ALS ) {Arabidopsis thaliana} 0.0 ...

  18. Arabidopsis CDS blastp result: AK058963 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058963 001-020-C04 At3g48560.1 acetolactate synthase, chloroplast / acetohydroxy-acid synthase ... (ALS ) nearly identical to SP|P17597 Acetolactate syntha ... ormerly EC 4.1.3.18) (Acetohydroxy-acid synthase) (ALS ) {Arabidopsis thaliana} 2e-15 ...

  19. Arabidopsis CDS blastp result: AK109628 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109628 002-138-C02 At3g48560.1 acetolactate synthase, chloroplast / acetohydroxy-acid synthase ... (ALS ) nearly identical to SP|P17597 Acetolactate syntha ... ormerly EC 4.1.3.18) (Acetohydroxy-acid synthase) (ALS ) {Arabidopsis thaliana} 0.0 ...

  20. Arabidopsis CDS blastp result: AK242722 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242722 J090045F10 At3g16857.2 68416.m02153 two-component responsive regulator fam...ily protein / response regulator family protein contains Pfam profile: PF00072 response regulator receiver domain; similar to... ARR1 protein GB:BAA74528 from [Arabidopsis thaliana] (Plant Cell Physiol. (1998) 39 (11), 1232-1239) 2e-22 ...

  1. Arabidopsis CDS blastp result: AK111864 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111864 J033025G23 At3g16857.2 two-component responsive regulator family protein / response regulato...r family protein contains Pfam profile: PF00072 response regulator receiver domain; similar to... ARR1 protein GB:BAA74528 from [Arabidopsis thaliana] (Plant Cell Physiol. (1998) 39 (11), 1232-1239) 1e-92 ...

  2. Arabidopsis CDS blastp result: AK241362 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241362 J065151H17 At3g16857.1 68416.m02152 two-component responsive regulator fam...ily protein / response regulator family protein contains Pfam profile: PF00072 response regulator receiver domain; similar to... ARR1 protein GB:BAA74528 from [Arabidopsis thaliana] (Plant Cell Physiol. (1998) 39 (11), 1232-1239) 5e-13 ...

  3. Arabidopsis CDS blastp result: AK112039 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112039 001-044-C11 At3g16857.2 two-component responsive regulator family protein / response regulato...r family protein contains Pfam profile: PF00072 response regulator receiver domain; similar to... ARR1 protein GB:BAA74528 from [Arabidopsis thaliana] (Plant Cell Physiol. (1998) 39 (11), 1232-1239) 4e-18 ...

  4. Arabidopsis CDS blastp result: AK111899 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111899 J023034P21 At3g16857.2 two-component responsive regulator family protein / response regulato...r family protein contains Pfam profile: PF00072 response regulator receiver domain; similar to... ARR1 protein GB:BAA74528 from [Arabidopsis thaliana] (Plant Cell Physiol. (1998) 39 (11), 1232-1239) 1e-92 ...

  5. Arabidopsis CDS blastp result: AK242722 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242722 J090045F10 At3g16857.1 68416.m02152 two-component responsive regulator fam...ily protein / response regulator family protein contains Pfam profile: PF00072 response regulator receiver domain; similar to... ARR1 protein GB:BAA74528 from [Arabidopsis thaliana] (Plant Cell Physiol. (1998) 39 (11), 1232-1239) 2e-22 ...

  6. Arabidopsis CDS blastp result: AK241362 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241362 J065151H17 At3g16857.2 68416.m02153 two-component responsive regulator fam...ily protein / response regulator family protein contains Pfam profile: PF00072 response regulator receiver domain; similar to... ARR1 protein GB:BAA74528 from [Arabidopsis thaliana] (Plant Cell Physiol. (1998) 39 (11), 1232-1239) 5e-13 ...

  7. HYDROPONIC METHOD FOR CULTURING POPULATIONS OF ARABIDOPSIS

    Science.gov (United States)

    A plant life-cycle bioassay using Arabidopsis thaliana (L.) Heynh. was developed to detect potential chemical phytotoxicity. The bioassay requires large numbers of plants to maximize the probability of detecting deleterious effect and to avoid any bias that could occur if only a ...

  8. Arabidopsis CDS blastp result: AK119521 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119521 001-202-D09 At3g57050.2 cystathionine beta-lyase, chloroplast / beta-cystathionase...thionase) (Cysteine lyase) {Arabidopsis thaliana} 1e-173 ... ... / cysteine lyase (CBL) identical to SP|P53780 Cystathionine beta-lyase, chloroplast precursor (EC 4.4.1.8) (CBL) (Beta-cysta

  9. Arabidopsis CDS blastp result: AK108403 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108403 002-142-G06 At3g57050.2 cystathionine beta-lyase, chloroplast / beta-cystathionase...thionase) (Cysteine lyase) {Arabidopsis thaliana} 5e-36 ... ... / cysteine lyase (CBL) identical to SP|P53780 Cystathionine beta-lyase, chloroplast precursor (EC 4.4.1.8) (CBL) (Beta-cysta

  10. Arabidopsis CDS blastp result: AK065345 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK065345 J013008D19 At1g19720.1 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 1e-87 ...

  11. Arabidopsis CDS blastp result: AK243514 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243514 J100075D15 At1g33280.1 68414.m04116 no apical meristem (NAM) family protein similar to ... CUC1 (GP:12060422) {Arabidopsis thaliana} amd ... to NAM (GP:1279640) {Petunia x hybrida} 7e-40 ...

  12. Arabidopsis CDS blastp result: AK243585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243585 J100082O14 At1g33280.1 68414.m04116 no apical meristem (NAM) family protein similar to ... CUC1 (GP:12060422) {Arabidopsis thaliana} amd ... to NAM (GP:1279640) {Petunia x hybrida} 5e-20 ...

  13. Arabidopsis CDS blastp result: AK287666 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287666 J065117E22 At1g33280.1 68414.m04116 no apical meristem (NAM) family protein similar to ... CUC1 (GP:12060422) {Arabidopsis thaliana} amd ... to NAM (GP:1279640) {Petunia x hybrida} 1e-41 ...

  14. Arabidopsis CDS blastp result: AK242010 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242010 J075106F03 At1g33280.1 68414.m04116 no apical meristem (NAM) family protein similar to ... CUC1 (GP:12060422) {Arabidopsis thaliana} amd ... to NAM (GP:1279640) {Petunia x hybrida} 7e-14 ...

  15. Arabidopsis CDS blastp result: AK243244 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243244 J100046N20 At1g33280.1 68414.m04116 no apical meristem (NAM) family protein similar to ... CUC1 (GP:12060422) {Arabidopsis thaliana} amd ... to NAM (GP:1279640) {Petunia x hybrida} 4e-29 ...

  16. Arabidopsis CDS blastp result: AK288271 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288271 J090017A22 At1g33280.1 68414.m04116 no apical meristem (NAM) family protein similar to ... CUC1 (GP:12060422) {Arabidopsis thaliana} amd ... to NAM (GP:1279640) {Petunia x hybrida} 3e-24 ...

  17. Arabidopsis CDS blastp result: AK242268 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242268 J075186C19 At1g33280.1 68414.m04116 no apical meristem (NAM) family protein similar to ... CUC1 (GP:12060422) {Arabidopsis thaliana} amd ... to NAM (GP:1279640) {Petunia x hybrida} 1e-45 ...

  18. Arabidopsis CDS blastp result: AK069545 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069545 J023025I06 At5g13630.1 magnesium -chelatase subunit chlH, chloroplast, putative / Mg-pro ... IX chelatase, putative (CHLH) nearly identical to magnesium ... chelatase subunit GI:1154627 from [Arabidopsis tha ... liana]; contains Pfam profile: PF02514 CobN/magnesium ... chelatase family protein 0.0 ...

  19. Arabidopsis CDS blastp result: AK065420 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065420 J013022D10 At5g13630.1 magnesium -chelatase subunit chlH, chloroplast, putative / Mg-pro ... IX chelatase, putative (CHLH) nearly identical to magnesium ... chelatase subunit GI:1154627 from [Arabidopsis tha ... liana]; contains Pfam profile: PF02514 CobN/magnesium ... chelatase family protein 1e-166 ...

  20. Arabidopsis CDS blastp result: AK062262 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062262 001-047-H04 At5g13630.1 magnesium -chelatase subunit chlH, chloroplast, putative / Mg-pr ... IX chelatase, putative (CHLH) nearly identical to magnesium ... chelatase subunit GI:1154627 from [Arabidopsis tha ... liana]; contains Pfam profile: PF02514 CobN/magnesium ... chelatase family protein 0.0 ...

  1. Arabidopsis CDS blastp result: AK060612 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060612 001-025-F03 At5g13630.1 magnesium -chelatase subunit chlH, chloroplast, putative / Mg-pr ... IX chelatase, putative (CHLH) nearly identical to magnesium ... chelatase subunit GI:1154627 from [Arabidopsis tha ... liana]; contains Pfam profile: PF02514 CobN/magnesium ... chelatase family protein 0.0 ...

  2. Arabidopsis CDS blastp result: AK067323 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067323 J013106B16 At5g13630.1 magnesium -chelatase subunit chlH, chloroplast, putative / Mg-pro ... IX chelatase, putative (CHLH) nearly identical to magnesium ... chelatase subunit GI:1154627 from [Arabidopsis tha ... liana]; contains Pfam profile: PF02514 CobN/magnesium ... chelatase family protein 0.0 ...

  3. Transcriptome phase distribution analysis reveals diurnal regulated biological processes and key pathways in rice flag leaves and seedling leaves.

    Directory of Open Access Journals (Sweden)

    Wenying Xu

    Full Text Available Plant diurnal oscillation is a 24-hour period based variation. The correlation between diurnal genes and biological pathways was widely revealed by microarray analysis in different species. Rice (Oryza sativa is the major food staple for about half of the world's population. The rice flag leaf is essential in providing photosynthates to the grain filling. However, there is still no comprehensive view about the diurnal transcriptome for rice leaves. In this study, we applied rice microarray to monitor the rhythmically expressed genes in rice seedling and flag leaves. We developed a new computational analysis approach and identified 6,266 (10.96% diurnal probe sets in seedling leaves, 13,773 (24.08% diurnal probe sets in flag leaves. About 65% of overall transcription factors were identified as flag leaf preferred. In seedling leaves, the peak of phase distribution was from 2:00am to 4:00am, whereas in flag leaves, the peak was from 8:00pm to 2:00am. The diurnal phase distribution analysis of gene ontology (GO and cis-element enrichment indicated that, some important processes were waken by the light, such as photosynthesis and abiotic stimulus, while some genes related to the nuclear and ribosome involved processes were active mostly during the switch time of light to dark. The starch and sucrose metabolism pathway genes also showed diurnal phase. We conducted comparison analysis between Arabidopsis and rice leaf transcriptome throughout the diurnal cycle. In summary, our analysis approach is feasible for relatively unbiased identification of diurnal transcripts, efficiently detecting some special periodic patterns with non-sinusoidal periodic patterns. Compared to the rice flag leaves, the gene transcription levels of seedling leaves were relatively limited to the diurnal rhythm. Our comprehensive microarray analysis of seedling and flag leaves of rice provided an overview of the rice diurnal transcriptome and indicated some diurnal regulated

  4. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress

    KAUST Repository

    Li, Baohai

    2012-10-12

    Ammonium (NH4 +) is a ubiquitous intermediate of nitrogen metabolism but is notorious for its toxic effects on most organisms. Extensive studies of the underlying mechanisms of NH4 + toxicity have been reported in plants, but it is poorly understood how plants acclimate to high levels of NH4 +. Here, we identified an Arabidopsis (Arabidopsis thaliana) mutant, ammonium overly sensitive1 (amos1), that displays severe chlorosis under NH4 + stress. Map-based cloning shows amos1 to carry a mutation in EGY1 (for ethylene-dependent, gravitropism-deficient, and yellow-green-like protein1), which encodes a plastid metalloprotease. Transcriptomic analysis reveals that among the genes activated in response to NH4 +, 90% are regulated dependent on AMOS1/ EGY1. Furthermore, 63% of AMOS1/EGY1-dependent NH4 +-activated genes contain an ACGTG motif in their promoter region, a core motif of abscisic acid (ABA)-responsive elements. Consistent with this, our physiological, pharmacological, transcriptomic, and genetic data show that ABA signaling is a critical, but not the sole, downstream component of the AMOS1/EGY1-dependent pathway that regulates the expression of NH4 +-responsive genes and maintains chloroplast functionality under NH4 + stress. Importantly, abi4 mutants defective in ABA-dependent and retrograde signaling, but not ABA-deficient mutants, mimic leaf NH4 + hypersensitivity of amos1. In summary, our findings suggest that an NH4 +-responsive plastid retrograde pathway, which depends on AMOS1/EGY1 function and integrates with ABA signaling, is required for the regulation of expression of the presence of high NH4 + levels. © 2012 American Society of Plant Biologists. All Rights Reserved.

  5. Transcriptome responses to aluminum stress in roots of aspen (Populus tremula

    Directory of Open Access Journals (Sweden)

    Grisel Nadine

    2010-08-01

    Full Text Available Abstract Background Ionic aluminum (mainly Al3+ is rhizotoxic and can be present in acid soils at concentrations high enough to inhibit root growth. Many forest tree species grow naturally in acid soils and often tolerate high concentrations of Al. Previously, we have shown that aspen (Populus tremula releases citrate and oxalate from roots in response to Al exposure. To obtain further insights into the root responses of aspen to Al, we investigated root gene expression at Al conditions that inhibit root growth. Results Treatment of the aspen roots with 500 μM Al induced a strong inhibition of root growth within 6 h of exposure time. The root growth subsequently recovered, reaching growth rates comparable to that of control plants. Changes in gene expression were determined after 6 h, 2 d, and 10 d of Al exposure. Replicated transcriptome analyses using the Affymetrix poplar genome array revealed a total of 175 significantly up-regulated and 69 down-regulated genes, of which 70% could be annotated based on Arabidopsis genome resources. Between 6 h and 2 d, the number of responsive genes strongly decreased from 202 to 26, and then the number of changes remained low. The responses after 6 h were characterized by genes involved in cell wall modification, ion transport, and oxidative stress. Two genes with prolonged induction were closely related to the Arabidopsis Al tolerance genes ALS3 (for Al sensitive 3 and MATE (for multidrug and toxin efflux protein, mediating citrate efflux. Patterns of expression in different plant organs and in response to Al indicated that the two aspen genes are homologs of the Arabidopsis ALS3 and MATE. Conclusion Exposure of aspen roots to Al results in a rapid inhibition of root growth and a large change in root gene expression. The subsequent root growth recovery and the concomitant reduction in the number of responsive genes presumably reflect the success of the roots in activating Al tolerance mechanisms. The

  6. Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis.

    Science.gov (United States)

    Anoman, Armand D; Muñoz-Bertomeu, Jesús; Rosa-Téllez, Sara; Flores-Tornero, María; Serrano, Ramón; Bueso, Eduardo; Fernie, Alisdair R; Segura, Juan; Ros, Roc

    2015-11-01

    This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters. Expression of GAPCp1 under the control of RBCS in gapcp1gapcp2 had no significant effect on the metabolite profile or growth in the aerial part (AP). GAPCp1 expression under the control of the PHT promoter clearly affected Arabidopsis development by increasing the number of lateral roots and having a major effect on AP growth and metabolite profile. Our results indicate that GAPCp1 is not functionally important in photosynthetic cells but plays a fundamental role in roots and in heterotrophic cells of the AP. Specifically, GAPCp activity may be required in root meristems and the root cap for normal primary root growth. Transcriptomic and metabolomic analyses indicate that the lack of GAPCp activity affects nitrogen and carbon metabolism as well as mineral nutrition and that glycerate and glutamine are the main metabolites responding to GAPCp activity. Thus, GAPCp could be an important metabolic connector of glycolysis with other pathways, such as the phosphorylated pathway of serine biosynthesis, the ammonium assimilation pathway, or the metabolism of γ-aminobutyrate, which in turn affect plant development. PMID:26134167

  7. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus

    DEFF Research Database (Denmark)

    Andreasson, Erik; Jørgensen, Lise Bolt; Höglund, Anna-Stina;

    2001-01-01

    Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry......Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry...

  8. Transcriptome complexity in a genome-reduced bacterium

    DEFF Research Database (Denmark)

    Güell, Marc; van Noort, Vera; Yus, Eva;

    2009-01-01

    To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previousl...

  9. Arabidopsis: An Adequate Model for Dicot Root Systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of t...

  10. Physiological and molecular basis of Azospirillum-Arabidopsis Interaction

    OpenAIRE

    Nazeer, Ahmed

    2012-01-01

    The present study was aimed at revealing the early signalling events during the interaction of the diazotrophic soil bacterium Azospirillum brasilense with its host plant Arabidopsis thaliana. Furthermore, taking advantage of the micro array technique, a comprehensive overview of Arabidopsis genes has been undertaken which are affected upon association with A. brasilense The characterization of the early responses of Arabidopsis plants upon inoculation with Azospirillum brasilense strain Sp7 ...

  11. Coordinate Regulation of Metabolite Glycosylation and Stress Hormone Biosynthesis by TT8 in Arabidopsis.

    Science.gov (United States)

    Rai, Amit; Umashankar, Shivshankar; Rai, Megha; Kiat, Lim Boon; Bing, Johanan Aow Shao; Swarup, Sanjay

    2016-08-01

    Secondary metabolites play a key role in coordinating ecology and defense strategies of plants. Diversity of these metabolites arises by conjugation of core structures with diverse chemical moieties, such as sugars in glycosylation. Active pools of phytohormones, including those involved in plant stress response, are also regulated by glycosylation. While much is known about the enzymes involved in glycosylation, we know little about their regulation or coordination with other processes. We characterized the flavonoid pathway transcription factor TRANSPARENT TESTA8 (TT8) in Arabidopsis (Arabidopsis thaliana) using an integrative omics strategy. This approach provides a systems-level understanding of the cellular machinery that is used to generate metabolite diversity by glycosylation. Metabolomics analysis of TT8 loss-of-function and inducible overexpression lines showed that TT8 coordinates glycosylation of not only flavonoids, but also nucleotides, thus implicating TT8 in regulating pools of activated nucleotide sugars. Transcriptome and promoter network analyses revealed that the TT8 regulome included sugar transporters, proteins involved in sugar binding and sequestration, and a number of carbohydrate-active enzymes. Importantly, TT8 affects stress response, along with brassinosteroid and jasmonic acid biosynthesis, by directly binding to the promoters of key genes of these processes. This combined effect on metabolite glycosylation and stress hormones by TT8 inducible overexpression led to significant increase in tolerance toward multiple abiotic and biotic stresses. Conversely, loss of TT8 leads to increased sensitivity to these stresses. Thus, the transcription factor TT8 is an integrator of secondary metabolism and stress response. These findings provide novel approaches to improve broad-spectrum stress tolerance. PMID:27432888

  12. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress

    KAUST Repository

    Ambrosone, Alfredo

    2015-03-17

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.

  13. Transcriptional profiling of the Arabidopsis abscission mutant hae hsl2 by RNA-Seq

    Directory of Open Access Journals (Sweden)

    Niederhuth Chad E

    2013-01-01

    Full Text Available Abstract Background Abscission is a mechanism by which plants shed entire organs in response to both developmental and environmental signals. Arabidopsis thaliana, in which only the floral organs abscise, has been used extensively to study the genetic, molecular and cellular processes controlling abscission. Abscission in Arabidopsis requires two genes that encode functionally redundant receptor-like protein kinases, HAESA (HAE and HAESA-LIKE 2 (HSL2. Double hae hsl2 mutant plants fail to abscise their floral organs at any stage of floral development and maturation. Results Using RNA-Seq, we compare the transcriptomes of wild-type and hae hsl2 stage 15 flowers, using the floral receptacle which is enriched for abscission zone cells. 2034 genes were differentially expressed with a False Discovery Rate adjusted p INFLORESCENCE DEFICIENT IN ABSCISSION (ida mutants shows that many of the same genes are co-regulated by IDA and HAE HSL2 and support the role of IDA in the HAE and HSL2 signaling pathway. Comparison to microarray data from stamen abscission zones show distinct patterns of expression of genes that are dependent on HAE HSL2 and reveal HAE HSL2- independent pathways. Conclusion HAE HSL2-dependent and HAE HSL2-independent changes in genes expression are required for abscission. HAE and HSL2 affect the expression of cell wall modifying and defense related genes necessary for abscission. The HAE HSL2-independent genes also appear to have roles in abscission and additionally are involved in processes such as hormonal signaling, senescence and callose deposition.

  14. Global Transcriptional Analysis Reveals Unique and Shared Responses in Arabidopsis thaliana Exposed to Combined Drought and Pathogen Stress.

    Science.gov (United States)

    Gupta, Aarti; Sarkar, Ananda K; Senthil-Kumar, Muthappa

    2016-01-01

    With frequent fluctuations in global climate, plants are exposed to co-occurring drought and pathogen infection and this combination adversely affects plant survival. In the past, some studies indicated that morpho-physiological responses of plants to the combined stress are different from the individual stressed plants. However, interaction of drought stressed plants with pathogen has not been widely studied at molecular level. Such studies are important to understand the defense pathways that operate as part of combined stress tolerance mechanism. In this study, Arabidopsis thaliana was exposed to individual drought stress, Pseudomonas syringae pv tomato DC3000 (Pst DC3000) infection and their combination. Using Affymetrix WT gene 1.0 ST array, global transcriptome profiling of leaves under individual drought stress and pathogen infection was compared with their combination. The results obtained from pathway mapping (KAAS and MAPMAN) demonstrated the modulation in defense pathways in A. thaliana under drought and host pathogen Pst DC3000 infection. Further, our study revealed "tailored" responses under combined stress and the time of occurrence of each stress during their concurrence has shown differences in transcriptome profile. Our results from microarray and RT-qPCR revealed regulation of 20 novel genes uniquely during the stress interaction. This study indicates that plants exposed to concurrent drought and pathogen stress experience a new state of stress. Thus, under frequently changing climatic conditions, time of occurrence of each stress in the interaction defines the plant responses and should thus be studied explicitly. PMID:27252712

  15. Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana

    Science.gov (United States)

    Skalák, Jan; Černý, Martin; Jedelský, Petr; Dobrá, Jana; Ge, Eva; Novák, Jan; Hronková, Marie; Dobrev, Petre; Vanková, Radomira; Brzobohatý, Břetislav

    2016-01-01

    Cytokinins (CKs) are phytohormones regulating plant growth and development as well as response to the environment. In order to evaluate their function in heat stress (HS) responses, the effect of CK elevation was determined during three types of HS – targeted to shoots, targeted to roots and applied to the whole plant. The early (30min) and longer term (3h) responses were followed at the hormonal, transcriptomic and proteomic levels in Arabidopsis transformants with dexamethasone-inducible expression of the CK biosynthetic gene isopentenyltransferase (ipt) and the corresponding wild-type (Col-0). Combination of hormonal and phenotypic analyses showed transient up-regulation of the CK/abscisic acid ratio, which controls stomatal aperture, to be more pronounced in the transformant. HS responses of the root proteome and Rubisco-immunodepleted leaf proteome were followed using 2-D gel electrophoresis and MALDI-TOF/TOF. More than 100 HS-responsive proteins were detected, most of them being modulated by CK increase. Proteome and transcriptome analyses demonstrated that CKs have longer term positive effects on the stress-related proteins and transcripts, as well as on the photosynthesis-related ones. Transient accumulation of CKs and stimulation of their signal transduction in tissue(s) not exposed to HS indicate that they are involved in plant stress responses. PMID:27049021

  16. Global Transcriptional Analysis Reveals Unique and Shared Responses in Arabidopsis thaliana Exposed to Combined Drought and Pathogen Stress

    Science.gov (United States)

    Gupta, Aarti; Sarkar, Ananda K.; Senthil-Kumar, Muthappa

    2016-01-01

    With frequent fluctuations in global climate, plants are exposed to co-occurring drought and pathogen infection and this combination adversely affects plant survival. In the past, some studies indicated that morpho-physiological responses of plants to the combined stress are different from the individual stressed plants. However, interaction of drought stressed plants with pathogen has not been widely studied at molecular level. Such studies are important to understand the defense pathways that operate as part of combined stress tolerance mechanism. In this study, Arabidopsis thaliana was exposed to individual drought stress, Pseudomonas syringae pv tomato DC3000 (Pst DC3000) infection and their combination. Using Affymetrix WT gene 1.0 ST array, global transcriptome profiling of leaves under individual drought stress and pathogen infection was compared with their combination. The results obtained from pathway mapping (KAAS and MAPMAN) demonstrated the modulation in defense pathways in A. thaliana under drought and host pathogen Pst DC3000 infection. Further, our study revealed “tailored” responses under combined stress and the time of occurrence of each stress during their concurrence has shown differences in transcriptome profile. Our results from microarray and RT-qPCR revealed regulation of 20 novel genes uniquely during the stress interaction. This study indicates that plants exposed to concurrent drought and pathogen stress experience a new state of stress. Thus, under frequently changing climatic conditions, time of occurrence of each stress in the interaction defines the plant responses and should thus be studied explicitly.

  17. Global transcriptional analysis reveals unique and shared responses in Arabidopsis thaliana exposed to combined drought and pathogen stress

    Directory of Open Access Journals (Sweden)

    Aarti eGupta

    2016-05-01

    Full Text Available With frequent fluctuations in global climate, plants are exposed to co-occurring drought and pathogen infection and this combination adversely affects plant survival. In the past, some studies indicated that morpho-physiological responses of plants to the combined stress are different from the individual stressed plants. However, interaction of drought stressed plants with pathogen has not been widely studied at molecular level. Such studies are important to understand the defense pathways that operate as part of combined stress tolerance mechanism. In this study, Arabidopsis thaliana was exposed to individual drought stress, Pseudomonas syringae pv tomato DC3000 (Pst DC3000 infection and their combination. Using Affymetrix WT gene 1.0 ST array, global transcriptome profiling of leaves under individual drought stress and pathogen infection was compared with their combination. The results obtained from pathway mapping (KAAS and MAPMAN demonstrated the modulation in defense pathways in A. thaliana under drought and host pathogen Pst DC3000 infection. Further, our study revealed ‘tailored’ responses under combined stress and the time of occurrence of each stress during their concurrence has showed differences in transcriptome profile. Our results from microarray and RT-qPCR revealed unique regulation of 20 novel genes exclusively during the stress interaction. This study indicates that plants exposed to concurrent drought and pathogen stress experience a new state of stress. Thus, under frequently changing climatic conditions each combination of stressor and their timing defines the plant responses and should thus be studied explicitly.

  18. Revealing of Mycobacterium marinum transcriptome by RNA-seq.

    Directory of Open Access Journals (Sweden)

    Sen Wang

    Full Text Available Transcriptome analysis has played an essential role for revealing gene expression and the complexity of regulations at transcriptional level. RNA-seq is a powerful tool for transcriptome profiling, which uses deep-sequencing technologies to directly determine the cDNA sequence. Here, we utilized RNA-seq to explore the transcriptome of Mycobacteriummarinum (M. marinum, which is a useful model to study the pathogenesis of Mycobacterium tuberculosis (Mtb. Two profiles of exponential and early stationary phase cultures were generated after a physical ribosome RNA removal step. We systematically described the transcriptome and analyzed the functions for the differentiated expressed genes between the two phases. Furthermore, we predicted 360 operons throughout the whole genome, and 13 out of 17 randomly selected operons were validated by qRT-PCR. In general, our study has primarily uncovered M. marinum transcriptome, which could help to gain a better understanding of the regulation system in Mtb that underlines disease pathogenesis.

  19. SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat.

    Directory of Open Access Journals (Sweden)

    Chiara Mizzotti

    2014-12-01

    Full Text Available The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR, which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites.

  20. A gene regulatory network for root epidermis cell differentiation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Angela Bruex

    2012-01-01

    Full Text Available The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 "core" root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network.

  1. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze).

    Science.gov (United States)

    Jayaswall, Kuldip; Mahajan, Pallavi; Singh, Gagandeep; Parmar, Rajni; Seth, Romit; Raina, Aparnashree; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Shankar, Ravi; Sharma, Ram Kumar

    2016-01-01

    To unravel the molecular mechanism of defense against blister blight (BB) disease caused by an obligate biotrophic fungus, Exobasidium vexans, transcriptome of BB interaction with resistance and susceptible tea genotypes was analysed through RNA-seq using Illumina GAIIx at four different stages during ~20-day disease cycle. Approximately 69 million high quality reads were assembled de novo, yielding 37,790 unique transcripts with more than 55% being functionally annotated. Differentially expressed, 149 defense related transcripts/genes, namely defense related enzymes, resistance genes, multidrug resistant transporters, transcription factors, retrotransposons, metacaspases and chaperons were observed in RG, suggesting their role in defending against BB. Being present in the major hub, putative master regulators among these candidates were identified from predetermined protein-protein interaction network of Arabidopsis thaliana. Further, confirmation of abundant expression of well-known RPM1, RPS2 and RPP13 in quantitative Real Time PCR indicates salicylic acid and jasmonic acid, possibly induce synthesis of antimicrobial compounds, required to overcome the virulence of E. vexans. Compendiously, the current study provides a comprehensive gene expression and insights into the molecular mechanism of tea defense against BB to serve as a resource for unravelling the possible regulatory mechanism of immunity against various biotic stresses in tea and other crops. PMID:27465480

  2. Transcriptome resources for the perennial sunflower Helianthus maximiliani obtained from ecologically divergent populations.

    Science.gov (United States)

    Kawakami, Takeshi; Darby, Brian J; Ungerer, Mark C

    2014-07-01

    Next-generation sequencing (NGS) technologies provide a rapid means to generate genomic resources for species exhibiting interesting ecological and evolutionary variation but for which such resources are scant or nonexistent. In the current report, we utilize 454 pyrosequencing to obtain transcriptome information for multiple individuals and tissue types from geographically disparate and ecologically differentiated populations of the perennial sunflower species Helianthus maximiliani. A total of 850 275 raw reads were obtained averaging 355 bp in length. Reads were assembled, postprocessing, into 16 681 unique contigs with an N50 of 898 bp and a total length of 13.6 Mb. A majority (67%) of these contigs were annotated based on comparison with the Arabidopsis thaliana genome (TAIR10). Contigs were identified that exhibit high similarity to genes associated with natural variation in flowering time and freezing tolerance in other plant species and will facilitate future studies aimed at elucidating the molecular basis of clinal life history variation and adaptive differentiation in H. maximiliani. Large numbers of gene-associated simple sequence repeats (SSRs) and single-nucleotide polymorphisms (SNPs) also were identified that can be deployed in mapping and population genomic analyses. PMID:24438509

  3. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze)

    Science.gov (United States)

    Jayaswall, Kuldip; Mahajan, Pallavi; Singh, Gagandeep; Parmar, Rajni; Seth, Romit; Raina, Aparnashree; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Shankar, Ravi; Sharma, Ram Kumar

    2016-07-01

    To unravel the molecular mechanism of defense against blister blight (BB) disease caused by an obligate biotrophic fungus, Exobasidium vexans, transcriptome of BB interaction with resistance and susceptible tea genotypes was analysed through RNA-seq using Illumina GAIIx at four different stages during ~20-day disease cycle. Approximately 69 million high quality reads were assembled de novo, yielding 37,790 unique transcripts with more than 55% being functionally annotated. Differentially expressed, 149 defense related transcripts/genes, namely defense related enzymes, resistance genes, multidrug resistant transporters, transcription factors, retrotransposons, metacaspases and chaperons were observed in RG, suggesting their role in defending against BB. Being present in the major hub, putative master regulators among these candidates were identified from predetermined protein-protein interaction network of Arabidopsis thaliana. Further, confirmation of abundant expression of well-known RPM1, RPS2 and RPP13 in quantitative Real Time PCR indicates salicylic acid and jasmonic acid, possibly induce synthesis of antimicrobial compounds, required to overcome the virulence of E. vexans. Compendiously, the current study provides a comprehensive gene expression and insights into the molecular mechanism of tea defense against BB to serve as a resource for unravelling the possible regulatory mechanism of immunity against various biotic stresses in tea and other crops.

  4. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Jun Ma

    Full Text Available Ananas comosus var. bracteatus (Red Pineapple is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies.The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis.The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus.

  5. Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis.

    Science.gov (United States)

    Mata-Pérez, Capilla; Sánchez-Calvo, Beatriz; Padilla, María N; Begara-Morales, Juan C; Luque, Francisco; Melguizo, Manuel; Jiménez-Ruiz, Jaime; Fierro-Risco, Jesús; Peñas-Sanjuán, Antonio; Valderrama, Raquel; Corpas, Francisco J; Barroso, Juan B

    2016-02-01

    Nitro-fatty acids (NO2-FAs) are the product of the reaction between reactive nitrogen species derived of nitric oxide (NO) and unsaturated fatty acids. In animal systems, NO2-FAs are considered novel signaling mediators of cell function based on a proven antiinflammatory response. Nevertheless, the interaction of NO with fatty acids in plant systems has scarcely been studied. Here, we examine the endogenous occurrence of nitro-linolenic acid (NO2-Ln) in Arabidopsis and the modulation of NO2-Ln levels throughout this plant's development by mass spectrometry. The observed levels of this NO2-FA at picomolar concentrations suggested its role as a signaling effector of cell function. In fact, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant defense response against different abiotic-stress conditions, mainly by inducing heat shock proteins and supporting a conserved mechanism of action in both animal and plant defense processes. Bioinformatics analysis revealed that NO2-Ln was also involved in the response to oxidative stress conditions, mainly depicted by H2O2, reactive oxygen species, and oxygen-containing compound responses, with a high induction of ascorbate peroxidase expression. Closely related to these results, NO2-Ln levels significantly rose under several abiotic-stress conditions such as wounding or exposure to salinity, cadmium, and low temperature, thus validating the outcomes found by RNA-seq technology. Jointly, to our knowledge, these are the first results showing the endogenous presence of NO2-Ln in Arabidopsis (Arabidopsis thaliana) and supporting the strong signaling role of these molecules in the defense mechanism against different abiotic-stress situations. PMID:26628746

  6. Transcriptome sequencing and comparative transcriptome analysis of the scleroglucan producer Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Stahl Ulf

    2010-05-01

    Full Text Available Abstract Background The plant pathogenic basidiomycete Sclerotium rolfsii produces the industrially exploited exopolysaccharide scleroglucan, a polymer that consists of (1 → 3-β-linked glucose with a (1 → 6-β-glycosyl branch on every third unit. Although the physicochemical properties of scleroglucan are well understood, almost nothing is known about the genetics of scleroglucan biosynthesis. Similarly, the biosynthetic pathway of oxalate, the main by-product during scleroglucan production, has not been elucidated yet. In order to provide a basis for genetic and metabolic engineering approaches, we studied scleroglucan and oxalate biosynthesis in S. rolfsii using different transcriptomic approaches. Results Two S. rolfsii transcriptomes obtained from scleroglucan-producing and scleroglucan-nonproducing conditions were pooled and sequenced using the 454 pyrosequencing technique yielding ~350,000 reads. These could be assembled into 21,937 contigs and 171,833 singletons, for which 6,951 had significant matches in public protein data bases. Sequence data were used to obtain first insights into the genomics of scleroglucan and oxalate production and to predict putative proteins involved in the synthesis of both metabolites. Using comparative transcriptomics, namely Agilent microarray hybridization and suppression subtractive hybridization, we identified ~800 unigenes which are differently expressed under scleroglucan-producing and non-producing conditions. From these, candidate genes were identified which could represent potential leads for targeted modification of the S. rolfsii metabolism for increased scleroglucan yields. Conclusions The results presented in this paper provide for the first time genomic and transcriptomic data about S. rolfsii and demonstrate the power and usefulness of combined transcriptome sequencing and comparative microarray analysis. The data obtained allowed us to predict the biosynthetic pathways of scleroglucan and

  7. Transcriptomic dissection of tongue squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Schwartz Joel L

    2008-02-01

    Full Text Available Abstract Background The head and neck/oral squamous cell carcinoma (HNOSCC is a diverse group of cancers, which develop from many different anatomic sites and are associated with different risk factors and genetic characteristics. The oral tongue squamous cell carcinoma (OTSCC is one of the most common types of HNOSCC. It is significantly more aggressive than other forms of HNOSCC, in terms of local invasion and spread. In this study, we aim to identify specific transcriptomic signatures that associated with OTSCC. Results Genome-wide transcriptomic profiles were obtained for 53 primary OTSCCs and 22 matching normal tissues. Genes that exhibit statistically significant differences in expression between OTSCCs and normal were identified. These include up-regulated genes (MMP1, MMP10, MMP3, MMP12, PTHLH, INHBA, LAMC2, IL8, KRT17, COL1A2, IFI6, ISG15, PLAU, GREM1, MMP9, IFI44, CXCL1, and down-regulated genes (KRT4, MAL, CRNN, SCEL, CRISP3, SPINK5, CLCA4, ADH1B, P11, TGM3, RHCG, PPP1R3C, CEACAM7, HPGD, CFD, ABCA8, CLU, CYP3A5. The expressional difference of IL8 and MMP9 were further validated by real-time quantitative RT-PCR and immunohistochemistry. The Gene Ontology analysis suggested a number of altered biological processes in OTSCCs, including enhancements in phosphate transport, collagen catabolism, I-kappaB kinase/NF-kappaB signaling cascade, extracellular matrix organization and biogenesis, chemotaxis, as well as suppressions of superoxide release, hydrogen peroxide metabolism, cellular response to hydrogen peroxide, keratinization, and keratinocyte differentiation in OTSCCs. Conclusion In summary, our study provided a transcriptomic signature for OTSCC that may lead to a diagnosis or screen tool and provide the foundation for further functional validation of these specific candidate genes for OTSCC.

  8. Transcriptome analysis of sika deer in China.

    Science.gov (United States)

    Jia, Bo-Yin; Ba, Heng-Xing; Wang, Gui-Wu; Yang, Ying; Cui, Xue-Zhe; Peng, Ying-Hua; Zheng, Jun-Jun; Xing, Xiu-Mei; Yang, Fu-He

    2016-10-01

    Sika deer is of great commercial value because their antlers are used in tonics and alternative medicine and their meat is healthy and delicious. The goal of this study was to generate transcript sequences from sika deer for functional genomic analyses and to identify the transcripts that demonstrate tissue-specific, age-dependent differential expression patterns. These sequences could enhance our understanding of the molecular mechanisms underlying sika deer growth and development. In the present study, we performed de novo transcriptome assembly and profiling analysis across ten tissue types and four developmental stages (juvenile, adolescent, adult, and aged) of sika deer, using Illumina paired-end tag (PET) sequencing technology. A total of 1,752,253 contigs with an average length of 799 bp were generated, from which 1,348,618 unigenes with an average length of 590 bp were defined. Approximately 33.2 % of these (447,931 unigenes) were then annotated in public protein databases. Many sika deer tissue-specific, age-dependent unigenes were identified. The testes have the largest number of tissue-enriched unigenes, and some of them were prone to develop new functions for other tissues. Additionally, our transcriptome revealed that the juvenile-adolescent transition was the most complex and important stage of the sika deer life cycle. The present work represents the first multiple tissue transcriptome analysis of sika deer across four developmental stages. The generated data not only provide a functional genomics resource for future biological research on sika deer but also guide the selection and manipulation of genes controlling growth and development. PMID:27423230

  9. The adult boar testicular and epididymal transcriptomes

    Directory of Open Access Journals (Sweden)

    Guyonnet Benoît

    2009-08-01

    Full Text Available Abstract Background Mammalians gamete production takes place in the testis but when they exit this organ, although spermatozoa have acquired a specialized and distinct morphology, they are immotile and infertile. It is only after their travel in the epididymis that sperm gain their motility and fertility. Epididymis is a crescent shaped organ adjacent to the testis that can be divided in three gross morphological regions, head (caput, body (corpus and tail (cauda. It contains a long and unique convoluted tubule connected to the testis via the efferent ducts and finished by joining the vas deferens in its caudal part. Results In this study, the testis, the efferent ducts (vas efferens, VE, nine distinct successive epididymal segments and the deferent duct (vas deferens, VD of four adult boars of known fertility were isolated and their mRNA extracted. The gene expression of each of these samples was analyzed using a pig generic 9 K nylon microarray (AGENAE program; GEO accession number: GPL3729 spotted with 8931 clones derived from normalized cDNA banks from different pig tissues including testis and epididymis. Differentially expressed transcripts were obtained with moderated t-tests and F-tests and two data clustering algorithms based either on partitioning around medoid (top down PAM or hierarchical clustering (bottom up HCL were combined for class discovery and gene expression analysis. Tissue clustering defined seven transcriptomic units: testis, vas efferens and five epididymal transcriptomic units. Meanwhile transcripts formed only four clusters related to the tissues. We have then used a specific statistical method to sort out genes specifically over-expressed (markers in testis, VE or in each of the five transcriptomic units of the epididymis (including VD. The specific regional expression of some of these genes was further validated by PCR and Q-PCR. We also searched for specific pathways and functions using available gene ontology

  10. The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis

    Directory of Open Access Journals (Sweden)

    Mauget Steven A

    2004-11-01

    metabolic activities that are important in the recovery of the gametophytes from desiccation. A comparison of the GO distribution of Tortula clusters with an identical analysis of 9,981 clusters from the desiccation sensitive bryophyte species Physcomitrella patens, revealed, and accentuated, the differences between stressed and unstressed transcriptomes. Cross species sequence comparisons indicated that on the whole the Tortula clusters were more closely related to those from Physcomitrella than Arabidopsis (complete genome BLASTx comparison although because of the differences in the databases there were more high scoring matches to the Arabidopsis sequences. The most abundant transcripts contained within the Tortula ESTs encode Late Embryogenesis Abundant (LEA proteins that are normally associated with drying plant tissues. This suggests that LEAs may also play a role in recovery from desiccation when water is reintroduced into a dried tissue. Conclusion The establishment of a rehydration EST collection for Tortula ruralis, an important plant model for plant stress responses and vegetative desiccation tolerance, is an important step in understanding the genome level response to cellular dehydration. The type of transcript analysis performed here has laid the foundation for more detailed functional and genome level analyses of the genes involved in desiccation tolerance in plants.

  11. Root gravitropism in maize and Arabidopsis

    Science.gov (United States)

    Evans, Michael L.

    1993-01-01

    Research during the period 1 March 1992 to 30 November 1993 focused on improvements in a video digitizer system designed to automate the recording of surface extension in plants responding to gravistimulation. The improvements included modification of software to allow detailed analysis of localized extension patterns in roots of Arabidopsis. We used the system to analyze the role of the postmitotic isodiametric growth zone (a region between the meristem and the elongation zone) in the response of maize roots to auxin, calcium, touch and gravity. We also used the system to analyze short-term auxin and gravitropic responses in mutants of Arabidopsis with reduced auxin sensitivity. In a related project, we studied the relationship between growth rate and surface electrical currents in roots by examining the effects of gravity and thigmostimulation on surface potentials in maize roots.

  12. Arabidopsis CDS blastp result: AK100975 [KOME

    Lifescience Database Archive (English)

    Full Text Available ase 1 identical to SP:Q38882 Phospholipase D alpha 1 (EC 3.1.4.4) (AtPLDalpha1) (PLD alpha 1) (Choline ph...osphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D 1) (PLDalpha) [Arabidopsis thaliana] 0.0 ... ...AK100975 J023143J04 At3g15730.1 phospholipase D alpha 1 / PLD alpha 1 (PLDALPHA1) (PLD1) / choline phosphat

  13. Arabidopsis CDS blastp result: AK240654 [KOME

    Lifescience Database Archive (English)

    Full Text Available (PLDALPHA1) (PLD1) / choline phosphatase 1 identical to SP:Q38882 Phospholipase D alpha 1 (EC 3.1.4.4) (AtPLDalpha1) (PLD alpha... 1) (Choline phosphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D 1) (PLDalpha) [Arabidopsis thaliana] 0.0 ... ...AK240654 J023098I11 At3g15730.1 68416.m01993 phospholipase D alpha 1 / PLD alpha 1

  14. Arabidopsis CDS blastp result: AK065102 [KOME

    Lifescience Database Archive (English)

    Full Text Available ase 1 identical to SP:Q38882 Phospholipase D alpha 1 (EC 3.1.4.4) (AtPLDalpha1) (PLD alpha 1) (Choline ph...osphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D 1) (PLDalpha) [Arabidopsis thaliana] 0.0 ... ...AK065102 J013001N03 At3g15730.1 phospholipase D alpha 1 / PLD alpha 1 (PLDALPHA1) (PLD1) / choline phosphat

  15. Arabidopsis CDS blastp result: AK119523 [KOME

    Lifescience Database Archive (English)

    Full Text Available osphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D 1) (PLDalpha) [Arabidopsis thaliana] 0.0 ... ...ase 1 identical to SP:Q38882 Phospholipase D alpha 1 (EC 3.1.4.4) (AtPLDalpha1) (PLD alpha 1) (Choline ph...AK119523 001-202-E03 At3g15730.1 phospholipase D alpha 1 / PLD alpha 1 (PLDALPHA1) (PLD1) / choline phosphat

  16. Arabidopsis CDS blastp result: AK066556 [KOME

    Lifescience Database Archive (English)

    Full Text Available ase 1 identical to SP:Q38882 Phospholipase D alpha 1 (EC 3.1.4.4) (AtPLDalpha1) (PLD alpha 1) (Choline ph...osphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D 1) (PLDalpha) [Arabidopsis thaliana] 4e-63 ... ...AK066556 J013073D11 At3g15730.1 phospholipase D alpha 1 / PLD alpha 1 (PLDALPHA1) (PLD1) / choline phosphat

  17. Arabidopsis CDS blastp result: AK072121 [KOME

    Lifescience Database Archive (English)

    Full Text Available ase 1 identical to SP:Q38882 Phospholipase D alpha 1 (EC 3.1.4.4) (AtPLDalpha1) (PLD alpha 1) (Choline ph...osphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D 1) (PLDalpha) [Arabidopsis thaliana] 0.0 ... ...AK072121 J013122J23 At3g15730.1 phospholipase D alpha 1 / PLD alpha 1 (PLDALPHA1) (PLD1) / choline phosphat

  18. Arabidopsis CDS blastp result: AK119861 [KOME

    Lifescience Database Archive (English)

    Full Text Available osphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D 1) (PLDalpha) [Arabidopsis thaliana] 0.0 ... ...ase 1 identical to SP:Q38882 Phospholipase D alpha 1 (EC 3.1.4.4) (AtPLDalpha1) (PLD alpha 1) (Choline ph...AK119861 002-178-H08 At3g15730.1 phospholipase D alpha 1 / PLD alpha 1 (PLDALPHA1) (PLD1) / choline phosphat

  19. Arabidopsis CDS blastp result: AK121264 [KOME

    Lifescience Database Archive (English)

    Full Text Available ase 1 identical to SP:Q38882 Phospholipase D alpha 1 (EC 3.1.4.4) (AtPLDalpha1) (PLD alpha 1) (Choline ph...osphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D 1) (PLDalpha) [Arabidopsis thaliana] 0.0 ... ...AK121264 J023105D06 At3g15730.1 phospholipase D alpha 1 / PLD alpha 1 (PLDALPHA1) (PLD1) / choline phosphat

  20. Arabidopsis CDS blastp result: AK243041 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243041 J100008G07 At3g11410.1 68416.m01392 protein phosphatase 2C, putative / PP2C, putative identic...osphatase 2C; identical to cDNA protein phosphatase 2C GI:633027 2e-21 ... ...al to protein phosphatase 2C (PP2C) GB:P49598 [Arabidopsis thaliana]; contains Pfam profile PF00481: Protein ph

  1. Arabidopsis CDS blastp result: AK100278 [KOME

    Lifescience Database Archive (English)

    Full Text Available ase 1 identical to SP:Q38882 Phospholipase D alpha 1 (EC 3.1.4.4) (AtPLDalpha1) (PLD alpha 1) (Choline ph...osphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D 1) (PLDalpha) [Arabidopsis thaliana] 0.0 ... ...AK100278 J023073L15 At3g15730.1 phospholipase D alpha 1 / PLD alpha 1 (PLDALPHA1) (PLD1) / choline phosphat

  2. Arabidopsis CDS blastp result: AK120459 [KOME

    Lifescience Database Archive (English)

    Full Text Available ase 1 identical to SP:Q38882 Phospholipase D alpha 1 (EC 3.1.4.4) (AtPLDalpha1) (PLD alpha 1) (Choline ph...osphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D 1) (PLDalpha) [Arabidopsis thaliana] 0.0 ... ...AK120459 J013106C05 At3g15730.1 phospholipase D alpha 1 / PLD alpha 1 (PLDALPHA1) (PLD1) / choline phosphat

  3. Arabidopsis CDS blastp result: AK064381 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064381 002-108-E01 At1g55350.4 calpain-type cysteine protease family identical to calpain...-like protein GI:20268660 from [Arabidopsis thaliana]; contains Pfam profiles: PF00648 Calpain famil...y cysteine protease, PF01067 Calpain large subunit,domain III; identical to cDNA calpain-like protein GI:20268659 0.0 ...

  4. Flavonoid-specific staining of Arabidopsis thaliana.

    Science.gov (United States)

    Sheahan, J J; Rechnitz, G A

    1992-12-01

    Crop yields may be threatened by increases in UV-B radiation resulting from depletion of the ozone layer. In higher plants, the presence of flavonols provides a protective mechanism, and we report a novel staining procedure for the visualization of such protectants in plant tissue. It is shown that the proposed technique provides sensitive and specific fluorescence of flavonoids in chlorophyll-bleached tissue of Arabidopsis thaliana. PMID:1282347

  5. Unraveling the circadian clock in Arabidopsis

    OpenAIRE

    Wang, Xiaoxue; Ma, Ligeng

    2012-01-01

    The circadian clock is an endogenous timing system responsible for coordinating an organism’s biological processes with its environment. Interlocked transcriptional feedback loops constitute the fundamental architecture of the circadian clock. In Arabidopsis, three feedback loops, the core loop, morning loop and evening loop, comprise a network that is the basis of the circadian clock. The components of these three loops are regulated in distinct ways, including transcriptional, post-transcri...

  6. Ecology and Evolutionary Biology of Arabidopsis

    OpenAIRE

    Pigliucci, Massimo

    2002-01-01

    Arabidopsis thaliana is now widely used as a model system in molecular and developmental biology, as well as in physiology and cell biology. However, ecologists and evolutionary biologists have turned their attention to the mouse ear cress only much more recently and almost reluctantly. The reason for this is the perception that A. thaliana is not particularly interesting ecologically and that it represents an oddity from an evolutionary standpoint. While there is some truth in both these att...

  7. Fluorescence-Activated Nucleolus Sorting in Arabidopsis.

    Science.gov (United States)

    Pontvianne, Frédéric; Boyer-Clavel, Myriam; Sáez-Vásquez, Julio

    2016-01-01

    Nucleolar isolation allows exhaustive characterization of the nucleolar content. Centrifugation-based protocols are not adapted to isolation of nucleoli directly from a plant tissue because of copurification of cellular debris. We describe here a method that allows the purification of nucleoli using fluorescent-activated cell sorting from Arabidopsis thaliana leaves. This approach requires the expression of a specific nucleolar protein such as fibrillarin fused to green fluorescent protein in planta. PMID:27576720

  8. Arabidopsis CDS blastp result: AK071200 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071200 J023086K07 At1g64200.1 vacuolar ATP synthase ... subunit E , putative ... / V-ATPase ... E ... subunit, ... putative ... / vacuolar proton pump E ... subunit, putative ... similar ... to SP|Q39258 Vacuolar ATP synthase ... subunit E ... (E C 3.6.3.14) (V-ATPase ... E ... subunit) (Vacu ... olar proton pump E ... subunit) {Arabidopsis thaliana}; contains Pfam pro ... file ... PF01991: ATP synthase ... (E /31 kDa) subunit 1e -86 ...

  9. Arabidopsis CDS blastp result: AK100850 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100850 J023123I11 At4g11150.1 vacuolar ATP synthase ... subunit E ... / V-ATPase ... E ... subunit / vacuolar ... proton pump E ... subunit (VATE ) ide ntical to SP|Q39258 Vacuolar ATP ... synthase ... subunit E ... (E C 3.6.3.14) (V-ATPase ... E ... subunit) (Vacu ... olar proton pump E ... subunit) {Arabidopsis thaliana} 2e -79 ...

  10. Arabidopsis CDS blastp result: AK072778 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072778 J023139P14 At4g11150.1 vacuolar ATP synthase ... subunit E ... / V-ATPase ... E ... subunit / vacuolar ... proton pump E ... subunit (VATE ) ide ntical to SP|Q39258 Vacuolar ATP ... synthase ... subunit E ... (E C 3.6.3.14) (V-ATPase ... E ... subunit) (Vacu ... olar proton pump E ... subunit) {Arabidopsis thaliana} 1e -72 ...

  11. Arabidopsis CDS blastp result: AK241580 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241580 J065181H03 At4g23640.1 68417.m03404 potassium transporter / tiny root hair ... 1 protein (T ... RH1) identical to tiny root hair ... 1 protein [Arabidopsis thaliana] gi|11181958|emb|C ... MID:11500563; identical to cDNA mRNA for tiny root hair ... 1 protein (trh1) GI:11181957 1e-139 ...

  12. Arabidopsis CDS blastp result: AK110331 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110331 002-164-D12 At2g31510.1 IBR domain-containing protein / ARIADNE-like prote...in ARI7 (ARI7) identical to ARIADNE-like protein ARI7 [Arabidopsis thaliana] GI:29125028; contains similarit...y to Swiss-Prot:Q94981 ariadne-1 protein (Ari-1) [Drosophila melanogaster]; contains Pfam profile PF01485: IBR domain 3e-59 ...

  13. Arabidopsis CDS blastp result: AK242789 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242789 J090057B20 At2g31510.1 68415.m03850 IBR domain-containing protein / ARIADN...E-like protein ARI7 (ARI7) identical to ARIADNE-like protein ARI7 [Arabidopsis thaliana] GI:29125028; contai...ns similarity to Swiss-Prot:Q94981 ariadne-1 protein (Ari-1) [Drosophila melanogaster]; contains Pfam profile PF01485: IBR domain 8e-12 ...

  14. Arabidopsis CDS blastp result: AK065950 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065950 J013049M07 At3g11820.1 syntaxin 121 (SYP121) / syntaxin-related protein (SYR1) conta...ins Pfam profiles: PF00804 syntaxin and PF05739: SNARE domain; identical to cDNA syntaxin-related ...protein At-SYR1 (At-Syr1) GI:4206788, SP|Q9ZSD4 Syntaxin 121 (AtSYP121) (Syntaxin-related protein At-Syr1) {Arabidopsis thaliana} 5e-88 ...

  15. A Superfamily of Arabidopsis Thaliana Retrotransposons

    OpenAIRE

    Konieczny, A; Voytas, D. F.; Cummings, M. P.; Ausubel, F M

    1991-01-01

    We describe a superfamily of Arabidopsis thaliana retrotransposable elements that consists of at least ten related families designated Ta1-Ta10. The Ta1 family has been described previously. Two genomic clones representing the Ta2 and Ta3 elements were isolated from an A. thaliana (race Landsberg erecta) λ library using sequences derived from the reverse transcriptase region of Ta1 as hybridization probes. Nucleotide sequence analysis showed that the Ta1, Ta2 and Ta3 families share >75% amino...

  16. Arabidopsis CDS blastp result: AK243366 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK243366 J100062A03 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 3e-33 ...

  17. Arabidopsis CDS blastp result: AK241693 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK241693 J065195J20 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 4e-31 ...

  18. Arabidopsis CDS blastp result: AK240979 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK240979 J065049G14 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 1e-40 ...

  19. Arabidopsis CDS blastp result: AK242723 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK242723 J090045G15 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 7e-31 ...

  20. Arabidopsis CDS blastp result: AK241693 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK241693 J065195J20 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 4e-15 ...

  1. Arabidopsis CDS blastp result: AK289251 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK289251 J100081E23 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 9e-17 ...

  2. Arabidopsis CDS blastp result: AK318555 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK318555 J075159J07 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 8e-83 ...

  3. Arabidopsis CDS blastp result: AK288980 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK288980 J090085N06 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 4e-67 ...

  4. Arabidopsis CDS blastp result: AK288612 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK288612 J090053J15 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 4e-34 ...

  5. Arabidopsis CDS blastp result: AK241656 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK241656 J065191E22 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 3e-44 ...

  6. Arabidopsis CDS blastp result: AK288115 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK288115 J080036I11 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 3e-15 ...

  7. Arabidopsis CDS blastp result: AK242521 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK242521 J080313L24 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 5e-27 ...

  8. Arabidopsis CDS blastp result: AK241784 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK241784 J065206N09 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 5e-16 ...

  9. Arabidopsis CDS blastp result: AK240965 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK240965 J065046D15 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 1e-30 ...

  10. Arabidopsis CDS blastp result: AK243366 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK243366 J100062A03 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 2e-16 ...

  11. Arabidopsis CDS blastp result: AK288938 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK288938 J090082P07 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 5e-38 ...

  12. Arabidopsis CDS blastp result: AK242649 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK242649 J090025M16 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 2e-12 ...

  13. Arabidopsis CDS blastp result: AK287434 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK287434 J043012F24 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 4e-38 ...

  14. Arabidopsis CDS blastp result: AK240855 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK240855 J065021H02 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 1e-16 ...

  15. Arabidopsis CDS blastp result: AK241009 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK241009 J065053H11 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 1e-105 ...

  16. Arabidopsis CDS blastp result: AK243366 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK243366 J100062A03 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 8e-45 ...

  17. Arabidopsis CDS blastp result: AK241102 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK241102 J065078J20 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 1e-13 ...

  18. Arabidopsis CDS blastp result: AK242649 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK242649 J090025M16 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 3e-20 ...

  19. Arabidopsis CDS blastp result: AK288338 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK288338 J090023E14 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 5e-26 ...

  20. Arabidopsis CDS blastp result: AK240965 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK240965 J065046D15 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 1e-49 ...

  1. Arabidopsis CDS blastp result: AK288738 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK288738 J090063N09 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 2e-50 ...

  2. Arabidopsis CDS blastp result: AK288591 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK288591 J090050M07 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 9e-46 ...

  3. Arabidopsis CDS blastp result: AK242863 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK242863 J090074J03 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 3e-15 ...

  4. Arabidopsis CDS blastp result: AK241944 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK241944 J075089B01 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 8e-26 ...

  5. Arabidopsis CDS blastp result: AK287467 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK287467 J043021K18 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 1e-60 ...

  6. Arabidopsis CDS blastp result: AK242863 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK242863 J090074J03 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 5e-31 ...

  7. Arabidopsis CDS blastp result: AK241009 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK241009 J065053H11 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 2e-53 ...

  8. Arabidopsis CDS blastp result: AK287735 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK287735 J065141O09 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 8e-64 ...

  9. Arabidopsis CDS blastp result: AK242649 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK242649 J090025M16 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 3e-55 ...

  10. Arabidopsis CDS blastp result: AK242896 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK242896 J090081F08 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 3e-48 ...

  11. Arabidopsis CDS blastp result: AK241009 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK241009 J065053H11 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 3e-47 ...

  12. Arabidopsis CDS blastp result: AK240965 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK240965 J065046D15 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 4e-33 ...

  13. Arabidopsis CDS blastp result: AK242896 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK242896 J090081F08 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 8e-26 ...

  14. Arabidopsis CDS blastp result: AK241593 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK241593 J065183B01 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 3e-57 ...

  15. Arabidopsis CDS blastp result: AK288831 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK288831 J090073O12 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 4e-69 ...

  16. Arabidopsis CDS blastp result: AK242723 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK242723 J090045G15 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 5e-45 ...

  17. Arabidopsis CDS blastp result: AK242723 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK242723 J090045G15 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 6e-48 ...

  18. Arabidopsis CDS blastp result: AK241944 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK241944 J075089B01 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 9e-27 ...

  19. Arabidopsis CDS blastp result: AK241693 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK241693 J065195J20 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 2e-42 ...

  20. Arabidopsis CDS blastp result: AK240855 [KOME

    Lifescience Database Archive (English)

    Full Text Available cal over 405 amino acids to DYW7 protein of unknown function GB:CAA06829 from [Arabidopsis thaliana] (Plant...AK240855 J065021H02 At1g19720.1 68414.m02463 pentatricopeptide (PPR) repeat-containing protein nearly identi... Mol. Biol. 42 (4), 603-613 (2000)); contains Pfam profile PF01535: PPR repeat 5e-13 ...