WorldWideScience

Sample records for arabidopsis thaliana seeds

  1. The role of sugars and sugar metabolism genes (sucrose synthase) in arabidopsis thaliana seed development

    OpenAIRE

    Odunlami, Benjamin Oladipo

    2009-01-01

    Seed development in Arabidopsis thaliana, has been studied at several levels. However, little has been done to study the role of sugar metabolism genes in seed pod development in this species. As the fertilized egg progresses to a mature seed, the sugars composition during different stages of the developing changes. These changes are related to metabolic processes in the developing seeds, but also to the activity of sucrose- converting and transporting genes, active at the interphase between ...

  2. Differentially expressed genes associated with dormancy or germination of Arabidopsis thaliana seeds

    NARCIS (Netherlands)

    Toorop, P.E.; Barroco, R.M.; Engler, G.; Groot, S.P.C.; Hilhorst, H.W.M.

    2005-01-01

    Differential display analysis using dormant and non-dormant Arabidopsis thaliana (L.) Heynh seeds resulted in a set of genes that were associated with either dormancy or germination. Expression of the germination-associated genes AtRPL36B and AtRPL27B, encoding two ribosomal proteins, was undetectab

  3. Allelopathic Effects of Plant-Derived Aerosol Smoke on Seed Germination of Arabidopsis thaliana (L.) Heynh

    International Nuclear Information System (INIS)

    The role that plant-derived smoke plays in promoting seed germination is well documented, but little is known about its ability to inhibit seed germination. To better understand this phenomenon, we tested the effects of eight aerosol smoke treatments on the Columbia-3 ecotype of non dormant Arabidopsis thaliana (L.) Heynh. seeds. Our results revealed that aerosol smoke significantly inhibits germination when seeds were exposed to prolonged periods of aerosol smoke. Short durations of smoke treatments significantly promoted the rate of germination of A. thaliana seed. We briefly discuss this dual regulation of smoke and its possible impact on conservation and restoration practices. We also propose that plant-derived smoke may be another vehicle by which allelo chemicals can be introduced into the environment.

  4. Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research

    OpenAIRE

    Arsovski, Andrej A; Haughn, George W; Western, Tamara L.

    2010-01-01

    Plant cells are encased within a complex polysaccharide wall that strengthens the cell and has key roles in all aspects of plant cell growth, differentiation and interaction with the environment. This dynamic structure is under continual modification during plant development, and its synthesis and modification require the activity of a myriad of enzymes. The mucilage secretory cells (MSCs) of the Arabidopsis thaliana seed coat provide a model for the discovery of novel genes involved in the s...

  5. Expression of recombinant human anti-TNF-α scFv-Fc in Arabidopsis thaliana seeds.

    Science.gov (United States)

    Yao, N; Ai, L; Dong, Y Y; Liu, X M; Wang, D Z; Wang, N; Li, X W; Wang, F W; Li, Xk; Li, H Y; Jiang, C

    2016-01-01

    Recombinant human anti-tumor necrosis factor (TNF)-α scFv-Fc was expressed in TKO mutant Arabidopsis thaliana seeds using plant-specific codons. Immunoblotting using a human IgG1 antibody detected the expression of anti-TNF-α proteins in plants. Results from qRT-PCR analysis demonstrated that the time of harvest significantly affected the protein yield and quality. Our results indicate that the Phaseolus vulgaris β-phaseolin promoter directed anti-TNF-α scFv-Fc expression in A. thaliana seeds, with a maximum yield obtained at 20-days of development. Although the yield of anti-TNF-α scFv-Fc protein was not very high, accumulation of recombinant proteins in seeds is an attractive and simple method that can be used to purify biologically active anti-TNF-α scFv-Fc. PMID:27420937

  6. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    LENUS (Irish Health Repository)

    McKeown, Peter C

    2011-08-12

    Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was

  7. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    Directory of Open Access Journals (Sweden)

    Wennblom Trevor J

    2011-08-01

    Full Text Available Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination. We identified these MEGs by developing a bioinformatics tool (GenFrag which can directly determine the identities of transcript-derived fragments from (i their size and (ii which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1

  8. Genetic analysis of seed development in Arabidopsis thaliana.

    NARCIS (Netherlands)

    Léon-Kloosterziel, K.M.

    1997-01-01

    This thesis deals with the genetic aspects of seed development in Arabidopsisthaliana. Mutants affected in several aspects of seed development and, more specifically, in seed maturation have been isolated by various selection procedures. The mutants have been analyzed genetically, physiologically,

  9. Genetic analysis of seed development in Arabidopsis thaliana.

    OpenAIRE

    Léon-Kloosterziel, K.M.

    1997-01-01

    This thesis deals with the genetic aspects of seed development in Arabidopsisthaliana. Mutants affected in several aspects of seed development and, more specifically, in seed maturation have been isolated by various selection procedures. The mutants have been analyzed genetically, physiologically, and morphologically. Some of the mutants are impaired in the biosynthesis or sensitivity to the plant hormone, abscisic acid (ABA). All ABA-related mutants show reduced seed dormancy, indicating the...

  10. Changes in the population of seed bacteria of transgenerationally Cd-exposed Arabidopsis thaliana.

    Science.gov (United States)

    Truyens, S; Weyens, N; Cuypers, A; Vangronsveld, J

    2013-11-01

    Plant-associated bacteria can have beneficial effects on the growth and health of their host. Nevertheless, the role of endophytic bacteria present in seeds has not been investigated in depth. In this study, the cultivable endophytic population of seeds from Arabidopsis thaliana exposed to 2 μm cadmium for several generations (Cd seeds) was compared with a population isolated from seeds of plants that were never exposed to Cd (control seeds). We observed obvious differences between the two types of seed concerning genera present and phenotypic characteristics of the different isolates. Sinorhizobium sp. and Micrococcus sp. were only found in control seeds, while Pseudomonas sp., Bosea sp. and Paenibacillus sp. were only found in Cd seeds. Sphingomonas sp., Rhizobium sp., Acidovorax sp., Variovorax sp., Methylobacterium sp., Bacillus sp. and Staphylococcus sp. occurred in varying numbers in both types of seed. Metal tolerance and 1-aminocyclopropane-1-carboxylate deaminase activity were predominantly found in strains isolated from Cd seeds, while the production of siderophores, indole-3-acetic acid and organic acids was more prevalent in endophytes isolated from control seeds. These data support the hypothesis that certain endophytes are selected for transfer to the next generation and that their presence might be important for subsequent germination and early seedling development. PMID:23252960

  11. Germination of arabidopsis thaliana seeds irradiated by MeV ions

    International Nuclear Information System (INIS)

    Dry seeds of Arabidopsis thaliana were irradiated with F ions and H ions with the energy range from keV to MeV, respectively. The inhibition of germination was investigated to display the influences of ion mass, energy and fluence. The results show that H ion irradiation is more effective in decreasing the germination rate than heavier F ion irradiation. After irradiation of F ions, a decrease-increase-decease type of germination rate-fluence response curve was found and the ion fluence at the peak position decreases with ion energy increase. The possible mechanism of above experimental results is discussed in this paper. (authors)

  12. Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research.

    Science.gov (United States)

    Arsovski, Andrej A; Haughn, George W; Western, Tamara L

    2010-07-01

    Plant cells are encased within a complex polysaccharide wall that strengthens the cell and has key roles in all aspects of plant cell growth, differentiation, and interaction with the environment. This dynamic structure is under continual modification during plant development, and its synthesis and modification require the activity of a myriad of enzymes. The mucilage secretory cells (MSCs) of the Arabidopsis thaliana seed coat provide a model for the discovery of novel genes involved in the synthesis, secretion and modification of cell wall components, particularly pectin. These cells synthesize copious amounts of pectinaceous mucilage during development and, upon hydration of the desiccated seed, the mucilage rapidly swells, bursts from the MSCs and surrounds the seed in a gelatinous capsule. Several genes affecting MSC differentiation, pectin synthesis, and mucilage release have been identified and additional genes involved in these and related processes including pectin secretion and the mechanical alteration of cell walls await to be discovered. PMID:20505351

  13. EFFECT OF SEED XYLOGLUCANS AND DERIVATES ON THE GROWTH OF Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Adriana Tourinho Salamoni

    2009-10-01

    Full Text Available Studies on xyloglucan (XG extracted from Hymenaea courbaril L. (jatoba seeds showed that this biopolymer has biological activity that enhanced wheat coleoptiles growth. In apple tree micropropagation, the culture medium containing XG combined with agar induced a higher multiplication rate, rooting rate and root length than medium solidified with agar only. The purpose of this study was to determine the effect of XG from jatobá seeds extracted from jatoba seeds collected in Sinope/MT (XGS and Cuiabá/MT (XGC, and from XGC hydrolysed with a cellulase (XGCH, as well from Tamarindus indica seeds (XGT collected in Bahia/BA, on the growth of in vitro cultured Arabidopsis thaliana plantlets. In the first experiment, XGCH (0.25, 25 and 250 nM or XGC (0.5, 50 and 500 nM were added to a liquid half-strength MS medium. In the second experiment, XGs from several origins were compared: XGC (500 nM, XGS (1200 nM and XGT (800 nM, using culture medium solidified with 6 g.L-1agar. Arabidopsis thaliana L. seeds germinated in Petri plates for 4 to 5 days were transferred to culture media containing the different concentrations of XGs and cultured in a growing room. When the plantlets were cultured in a liquid medium, their growth was very slow in the presence of XGC and XGCH at the highest concentration tested, and it was faster at the lowest concentration. In the semi-solid culture medium, XGs also reduced growth. It was concluded that XGs can play a biological role in Arabidopsis thaliana (L. Heynh. plantlets, stimulating or inhibiting the root system growth and the lateral root formation. These opposite effects varied according to the plant specie that furnished the seeds containing XG, as well as the place where the seeds were collected, to the XG form used (hydrolyzed or not and to its concentration in the culture media. 

  14. Oxygen control of ethylene biosynthesis during seed development in Arabidopsis thaliana (L.) Heynh

    Science.gov (United States)

    Ramonell, K. M.; McClure, G.; Musgrave, M. E.

    2002-01-01

    An unforeseen side-effect on plant growth in reduced oxygen is the loss of seed production at concentrations around 25% atmospheric (50 mmol mol-1 O2). In this study, the model plant Arabidopsis thaliana (L.) Heynh. cv. 'Columbia' was used to investigate the effect of low oxygen on ethylene biosynthesis during seed development. Plants were grown in a range of oxygen concentrations (210 [equal to ambient], 160, 100, 50 and 25 mmol mol-1) with 0.35 mmol mol-1 CO2 in N2. Ethylene in full-sized siliques was sampled using gas chromatography, and viable seed production was determined at maturity. Molecular analysis of ethylene biosynthesis was accomplished using cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase in ribonuclease protection assays and in situ hybridizations. No ethylene was detected in siliques from plants grown at 50 and 25 mmol mol-1 O2. At the same time, silique ACC oxidase mRNA increased three-fold comparing plants grown under the lowest oxygen with ambient controls, whereas ACC synthase mRNA was unaffected. As O2 decreased, tissue-specific patterning of ACC oxidase and ACC synthase gene expression shifted from the embryo to the silique wall. These data demonstrate how low O2 modulates the activity and expression of the ethylene biosynthetic pathway during seed development in Arabidopsis.

  15. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.

    Science.gov (United States)

    Iven, Tim; Hornung, Ellen; Heilmann, Mareike; Feussner, Ivo

    2016-01-01

    Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line. PMID:25912558

  16. Treatment of Arabidopsis thaliana seeds with an HSP90 inhibitor increases plant resistance

    Science.gov (United States)

    Kozeko, Liudmyla

    2016-07-01

    Resistance of plants to unfavourable conditions is an important feature to use them as an autotrophic link of Life Support Systems in space exploration missions. It significantly depends on basic and stress-induced levels of heat shock proteins (HSP) in cells. It is known that HSP90 can bind and maintain heat shock transcription factors (HSF) as a monomer that lacks DNA binding activity and thereby regulate HSP expression. Modulation of activity of the HSP synthesis and resistance by HSP90 in plants is not well investigated. The objective of this study was to determine how treatment of seeds with an HSP90 inhibitor affects environmental responsiveness in Arabidopsis thaliana. Seed treatment with geldanamycin (GDA) was used to reduce HSP90 function. The affect of space flight stressors was simulated by gamma-irradiation and thermal upshift. Two series of experiments were carried out: 1) exposure of dry seeds to gamma-irradiation (1 kGy, ^{60}Co); 2) heat shock of seedlings. It was shown that GDA treatment of seeds stimulated the seedling growth after seed irradiation. It also increased both the basic thermotolerance (45°C for 45 min) and induced thermotolerance (45°C for 1,5-2,5 h after pretreatment at 37°C for 2 h) in seedlings. In addition, seed treatment with GDA had a prolonged effect on the HSP70 production in seedlings under normal and stressful conditions. It shows that the stimulatory effects of GDA may be caused by induction of HSP70 synthesis. The obtained data demonstrate that pre-treatment of seeds with GDA before planting allows inducing the stress resistance at least at early growth stages of plants.

  17. A protective role of HSP90 chaperone in gamma-irradiated Arabidopsis thaliana seeds

    Science.gov (United States)

    Kozeko, Liudmyla; Talalaiev, Oleksandr; Neimash, Volodymyr; Povarchuk, Vasyl

    2015-07-01

    The heat shock protein 90 (HSP90) is required for the maturation and conformational regulation of many regulatory proteins affecting morphogenetic pathways and stress tolerance. The purpose of this work is to disclose a role of HSP90 in radioresistance of seeds. Arabidopsis thaliana (Ler) seeds were exposed to γ-ray irradiation with doses of 0.1-1 kGy using 60Co source to obtain a viable but polymorphic material. A comet assay of the seeds showed a dose-dependent increase in DNA damage. Phenotypic consequences of irradiation included growth stimulation at doses of 0.1-0.25 kGy and negative growth effects at doses from 0.5 kGy and beyond, along with increasing heterogeneity of seedling growth rate and phenotype. The frequencies of abnormal phenotypes were highly correlated with the degree of DNA damage in seeds. Treatment of seeds with geldanamycin (GDA), an inhibitor of HSP90, stimulated the seedling growth at all radiation doses and, at the same time, enhanced the growth rate and morphological diversity. It was also found that HSP70 induction by γ-rays was increased following GDA treatment (shown at 1 kGy). We suppose that the GDA-induced HSP70 can be involved in elimination of detrimental radiation effects that ultimately results in growth stimulation. On the other hand, the increase in phenotypic variation, when HSP90 function was impaired, confirms the supposition that the chaperone may control the concealment of cryptic genetic alterations and the developmental stability. In general, these results demonstrate that HSP90 may interface the stress response and phenotypic expression of genetic alterations induced by irradiation.

  18. DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques

    Directory of Open Access Journals (Sweden)

    Vicente-Carbajosa Jesús

    2008-10-01

    Full Text Available Abstract Background High throughput applications of the reverse transcriptase quantitative PCR (RT-qPCR for quantification of gene expression demand straightforward procedures to isolate and analyze a considerable number of DNA-free RNA samples. Published protocols are labour intensive, use toxic organic chemicals and need a DNase digestion once pure RNAs have been isolated. In addition, for some tissues, the amount of starting material may be limiting. The convenience of commercial kits is often prohibitive when handling large number of samples. Findings We have established protocols to isolate DNA-free RNA from Arabidopsis thaliana tissues ready for RT-qPCR applications. Simple non-toxic buffers were used for RNA isolation from Arabidopsis tissues with the exception of seeds and siliques, which required the use of organic extractions. The protocols were designed to minimize the number of steps, labour time and the amount of starting tissue to as little as 10–20 mg without affecting RNA quality. In both protocols genomic DNA (gDNA can be efficiently removed from RNA samples before the final alcohol precipitation step, saving extra purification steps before cDNA synthesis. The expression kinetics of previously characterized genes confirmed the robustness of the procedures. Conclusion Here, we present two protocols to isolate DNA-free RNA from Arabidopsis tissues ready for RT-qPCR applications that significantly improve existing ones by reducing labour time and the use of organic extractions. Accessibility to these protocols is ensured by its simplicity and the low cost of the materials used.

  19. The plant secondary metabolite citral alters water status and prevents seed formation in Arabidopsis thaliana.

    Science.gov (United States)

    Graña, E; Díaz-Tielas, C; López-González, D; Martínez-Peñalver, A; Reigosa, M J; Sánchez-Moreiras, A M

    2016-05-01

    Based on previous results, which showed that the secondary metabolite citral causes disturbances to plant water status, the present study is focused on demonstrating and detailing these effects on the water-related parameters of Arabidopsis thaliana adult plants, and their impact on plant fitness. Clear evidence of effects on water status and fitness were observed: plants treated with 1200 and 2400 μm citral showed decreased RWC, reduced Ψs , increased Ψw and reduced stomatal opening, even 7 days after the beginning of the experiment. Plant protection signals, such as leaf rolling or increased anthocyanin content, were also detected in these plants. In contrast, 14 days after beginning the treatment, treated plants showed signs of citral-related damage. Moreover, the reproductive success of treated plants was critically compromised, with prematurely withered flowers and no silique or seed development. This effect of citral on fitness of adult plants suggests a promising application of this natural compound in weed management by reducing the weed seed bank in the soil. PMID:26587965

  20. Environmental control of seed germination in Arabidopsis thaliana: the role of GA and ABA signaling pathways

    OpenAIRE

    Piskurewicz, Urszula Maria

    2010-01-01

    Seed germination is a drastic developmental transition taking the plant from a highly protected, desiccated and quiescent form of life (dry seed) into a more fragile, vegetative seedling. Seed germination is tightly controlled by the environment, which determines the relative levels of two phytohormones: GA (gibberellins) and ABA (abscisic acid). Consequently, GA and ABA are key regulators of Arabidopsis seed germination. GA stimulates germination and its synthesis upon seed imbibition is nec...

  1. Cadmium-induced and trans-generational changes in the cultivable and total seed endophytic community of Arabidopsis thaliana.

    Science.gov (United States)

    Truyens, S; Beckers, B; Thijs, S; Weyens, N; Cuypers, A; Vangronsveld, J

    2016-05-01

    Trans-generational adaptation is important to respond rapidly to environmental challenges and increase overall plant fitness. Besides well-known mechanisms such as epigenetic modifications, vertically transmitted endophytic bacteria might contribute to this process. The cultivable and total endophytic communities of several generations of Arabidopsis thaliana seeds harvested from plants exposed to cadmium (Cd) or not exposed were investigated. The diversity and richness of the seed endophytic community decreased with an increasing number of generations. Aeromicrobium and Pseudonocardia were identified as indicator species in seeds from Cd-exposed plants, while Rhizobium was abundantly present in both seed types. Remarkably, Rhizobium was the only genus that was consistently detected in seeds of all generations, which suggests that the phenotypic characteristics were more important as selection criteria for which bacteria are transferred to the next plant generation than the actual genera. Production of IAA was an important trait for endophytes from both seed types, while ACC deaminase activity and Cd tolerance were mainly associated with seed endophytes from Cd-exposed plants. Understanding how different factors influence the seed endophytic community can help us to improve seed quality and plant growth through different biotechnological applications. PMID:26577608

  2. A seed coat bedding assay to genetically explore in vitro how the endosperm controls seed germination in Arabidopsis thaliana

    OpenAIRE

    Lopez Molina, Luis; Lee, Keun Pyo

    2013-01-01

    The Arabidopsis endosperm consists of a single cell layer surrounding the mature embryo and playing an essential role to prevent the germination of dormant seeds or that of nondormant seeds irradiated by a far red (FR) light pulse. In order to further gain insight into the molecular genetic mechanisms underlying the germination repressive activity exerted by the endosperm, a "seed coat bedding" assay (SCBA) was devised. The SCBA is a dissection procedure physically separating seed coats and e...

  3. Micro-pressing of rapeseed (Brassica napus L. and Arabidopsis thaliana seeds for evaluation of the oil extractability

    Directory of Open Access Journals (Sweden)

    Savoire Raphaëlle

    2010-03-01

    Full Text Available Pressing is a crucial step in the crushing process of rapeseed seeds, regarding its major effect on the oil extraction yield, the energy consumption and the quality of the meal. In order to study and model in a rigorous way the behaviour of rapeseed seeds, and the oil extraction during pressing, the potential of a micro-pressing technique using a instrumented micro press adapted to quantities of seeds as low as 10 g for rapeseed and 3 g for Arabidopsis thaliana was examined and discussed. Using a phenomenological model, data from the pressing process and the material behaviour (compressibility modules were obtained with a good precision, highlighting small differences between samples. The well-known positive effect of the temperature on the oil extraction yield was confirmed with A. thaliana. Micro-pressing of ground and cooked rapeseed seeds did not lead to the results usually reported in the literature for continuous pressing. The results strongly suggest that the performance of the static micro-pressing is related to the macro-and micro-structure of seeds and is less sensitive to the moisture than continuous pressing. Further experiments are needed to confirm that the micro-pressing could be an effective tool for predicting the extractability of oil and therefore, contribute to plant breeding programmes in the future.

  4. Proanthocyanidins Inhibit Seed Germination by Maintaining a High Level of Abscisic Acid in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Liguo Jia; Jianhua Zhang; Qiuyu Wu; Nenghui Ye; Rui Liu; Lu Shi; Weifeng Xu; Hui Zhi; A. N. M. Rubaiyath Bin Rahman; Yiji Xia

    2012-01-01

    Proanthocyanidins (PAs) are the main products of the flavonoid biosynthetic pathway in seeds,but their biological function during seed germination is still unclear.We observed that seed germination is delayed with the increase of exogenous PA concentration in Arabidopsis.A similar inhibitory effect occurred in peeled Brassica napus seeds,which was observed by measuring radicle elongation.Using abscisic acid (ABA),a biosynthetic and metabolic inhibitor,and gene expression analysis by real-time polymerase chain reaction,we found that the inhibitory effect of PAs on seed germination is due to their promotion of ABA via de novo biogenesis,rather than by any inhibition of its degradation.Consistent with the relationship between PA content and ABA accumulation in seeds,PA-deficient mutants maintain a lower level of ABA compared with wild-types during germination.Our data suggest that PA distribution in the seed coat can act as a doorkeeper to seed germination.PA regulation of seed germination is mediated by the ABA signaling pathway.

  5. Using µPIXE for quantitative mapping of metal concentration in Arabidopsis thaliana seeds

    Directory of Open Access Journals (Sweden)

    Magali eSchnell Ramos

    2013-06-01

    Full Text Available Seeds are a crucial stage in plant life. They contain the nutrients necessary to initiate the development of a new organism. Seeds also represent an important source of nutrient for human beings. Iron (Fe and zinc (Zn deficiencies affect over a billion people worldwide. It is therefore important to understand how these essential metals are stored in seeds. In this work, Particle-Induced X–ray Emission with the use of a focused ion beam (µPIXE has been used to map and quantify essential metals in Arabidopsis seeds. In agreement with Synchrotron radiation X-Ray Fluorescence (SXRF imaging and Perls/DAB staining, µPIXE maps confirmed the specific pattern of Fe and Mn localization in the endodermal and subepidermal cell layers in dry seeds, respectively. Moreover, µPIXE allows absolute quantification revealing that the Fe concentration in the endodermal cell layer reaches ~800 µg•g-1 dry weight. Nevertheless, this cell layer accounts only for about half of Fe stores in dry seeds. Comparison between Arabidopsis wild type and mutant seeds impaired in Fe vacuolar storage (vit1-1 or release (nramp3nramp4 confirmed the strongly altered Fe localization pattern in vit1-1, whereas no alteration could be detected in nramp3nramp4 dry seeds. Imaging of imbibed seeds indicates a dynamic localization of metals as Fe and Zn concentrations increase in the subepidermal cell layer of cotyledons after imbibition. The complementarities between µPIXE and other approaches as well as the importance of being able to quantify the patterns for the interpretation of mutant phenotypes are discussed.

  6. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    González-Morales, Sandra Isabel; Chávez-Montes, Ricardo A; Hayano-Kanashiro, Corina; Alejo-Jacuinde, Gerardo; Rico-Cambron, Thelma Y; de Folter, Stefan; Herrera-Estrella, Luis

    2016-08-30

    Desiccation tolerance (DT) is a remarkable process that allows seeds in the dry state to remain viable for long periods of time that in some instances exceed 1,000 y. It has been postulated that seed DT evolved by rewiring the regulatory and signaling networks that controlled vegetative DT, which itself emerged as a crucial adaptive trait of early land plants. Understanding the networks that regulate seed desiccation tolerance in model plant systems would provide the tools to understand an evolutionary process that played a crucial role in the diversification of flowering plants. In this work, we used an integrated approach that included genomics, bioinformatics, metabolomics, and molecular genetics to identify and validate molecular networks that control the acquisition of DT in Arabidopsis seeds. Two DT-specific transcriptional subnetworks were identified related to storage of reserve compounds and cellular protection mechanisms that act downstream of the embryo development master regulators LEAFY COTYLEDON 1 and 2, FUSCA 3, and ABSCICIC ACID INSENSITIVE 3. Among the transcription factors identified as major nodes in the DT regulatory subnetworks, PLATZ1, PLATZ2, and AGL67 were confirmed by knockout mutants and overexpression in a desiccation-intolerant mutant background to play an important role in seed DT. Additionally, we found that constitutive expression of PLATZ1 in WT plants confers partial DT in vegetative tissues. PMID:27551092

  7. Heterologous Expression of Two Jatropha Aquaporins Imparts Drought and Salt Tolerance and Improves Seed Viability in Transgenic Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Kasim Khan

    Full Text Available Drought and high salinity are environmental conditions that cause adverse effects on the growth and productivity of crops. Aquaporins are small integral membrane proteins that belong to the family of the major intrinsic proteins (MIPs, with members in animals, plants and microbes, where they facilitate the transport of water and/or small neutral solutes thereby affecting water balance. In this study we characterized two aquaporin genes namely, plasma membrane intrinsic protein (PIP2;7 and tonoplast intrinsic protein TIP1;3 from Jatropha curcas that are localised to the plasma membrane and vacuole respectively. Transgenic Arabidopsis thaliana lines over-expressing JcPIP2;7 and JcTIP1;3 under a constitutive promoter show improved germination under high salt and mannitol compared to control seeds. These transgenic plants also show increased root length under abiotic stress conditions compared to wild type Col-0 plants. Transgenic lines exposed to drought conditions by withholding water for 20 days, were able to withstand water stress and attained normal growth after re-watering unlike control plants which could not survive. Transgenic lines also had better seed yield than control under salt stress. Importantly, seed viability of transgenic plants grown under high salt concentration was 35%-45% compared to less than 5% for control seeds obtained from plants growing under salt stress. The effect of JcPIP2;7 and JcTIP1;3 on improving germination and seed viability in drought and salinity make these important candidates for genetic manipulation of plants for growth in saline soils.

  8. Heterologous Expression of Two Jatropha Aquaporins Imparts Drought and Salt Tolerance and Improves Seed Viability in Transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Khan, Kasim; Agarwal, Pallavi; Shanware, Arti; Sane, Vidhu Aniruddha

    2015-01-01

    Drought and high salinity are environmental conditions that cause adverse effects on the growth and productivity of crops. Aquaporins are small integral membrane proteins that belong to the family of the major intrinsic proteins (MIPs), with members in animals, plants and microbes, where they facilitate the transport of water and/or small neutral solutes thereby affecting water balance. In this study we characterized two aquaporin genes namely, plasma membrane intrinsic protein (PIP2;7) and tonoplast intrinsic protein TIP1;3 from Jatropha curcas that are localised to the plasma membrane and vacuole respectively. Transgenic Arabidopsis thaliana lines over-expressing JcPIP2;7 and JcTIP1;3 under a constitutive promoter show improved germination under high salt and mannitol compared to control seeds. These transgenic plants also show increased root length under abiotic stress conditions compared to wild type Col-0 plants. Transgenic lines exposed to drought conditions by withholding water for 20 days, were able to withstand water stress and attained normal growth after re-watering unlike control plants which could not survive. Transgenic lines also had better seed yield than control under salt stress. Importantly, seed viability of transgenic plants grown under high salt concentration was 35%-45% compared to less than 5% for control seeds obtained from plants growing under salt stress. The effect of JcPIP2;7 and JcTIP1;3 on improving germination and seed viability in drought and salinity make these important candidates for genetic manipulation of plants for growth in saline soils. PMID:26067295

  9. Using μPIXE for quantitative mapping of metal concentration in Arabidopsis thaliana seeds

    OpenAIRE

    Schnell Ramos, Magali; Khodja, Hicham; Mary, Viviane; Thomine, Sébastien

    2013-01-01

    Seeds are a crucial stage in plant life. They contain the nutrients necessary to initiate the development of a new organism. Seeds also represent an important source of nutrient for human beings. Iron (Fe) and zinc (Zn) deficiencies affect over a billion people worldwide. It is therefore important to understand how these essential metals are stored in seeds. In this work, Particle-Induced X-ray Emission with the use of a focused ion beam (μPIXE) has been used to map and quantify essential met...

  10. Natural Genetic Variation of Seed Micronutrients of Arabidopsis thaliana Grown in Zinc-Deficient and Zinc-Amended Soil

    Science.gov (United States)

    Chen, Xiaochao; Yuan, Lixing; Ludewig, Uwe

    2016-01-01

    The quality of edible seeds for human and animal nutrition is crucially dependent on high zinc (Zn) and iron (Fe) seed concentrations. The micronutrient bioavailability is strongly reduced by seed phytate that forms complexes with seed cations. Superior genotypes with increased seed Zn concentrations had been identified, but low micronutrient seed levels often prevail when the plants are grown in Zn-deficient soils, which are globally widespread and correlate with human Zn-deficiency. Here, seed Zn concentrations of Arabidopsis accessions grown in Zn-deficient and Zn-amended conditions were measured together with seed Fe and manganese (Mn), in a panel of 108 accessions. By applying genome-wide association, de novo candidate genes potentially involved in the seed micronutrient accumulation were identified. However, a candidate inositol 1,3,4-trisphosphate 5/6-kinase 3 gene (ITPK3), located close to a significant nucleotide polymorphism associated with relative Zn seed concentrations, was dispensable for seed micronutrients accumulation in Col-0. Loss of this gene in itpk3-1 did neither affect phytate seed levels, nor seed Zn, Fe, and Mn. It is concluded that large natural variance of micronutrient seed levels is identified in the population and several accessions maintain high seed Zn despite growth in Zn-deficient conditions. PMID:27507976

  11. Selenium Speciation in Arabidopsis Thaliana

    OpenAIRE

    Wang, Xiaoou

    2011-01-01

    Selenium has been proved as an essential micronutrient and is beneficial to animals and humans. It is a structural component of the important antioxidant enzyme, glutathione peroxidase, which catalyzes reactions to detoxify reactive oxygen species. However, the essentiality of Se in plants remains controversial and the protective role of Se in plants has rarely been investigated. In this study, Arabidopsis thaliana was grown in controlled environments having selenate or selenite enriched medi...

  12. Arabidopsis thaliana T-DNA Mutants Implicate GAUT Genes in the Biosynthesis of Pectin and Xylan in Cell Walls and Seed Testa

    Institute of Scientific and Technical Information of China (English)

    Kerry H. Caffall; Sivakumar Pattathil; Sarah E. Phillips; Michael G. Hahn; Debra Mohnen

    2009-01-01

    Galacturonosyltransferase 1 (GAUT1) is an α1,4-D-galacturonosyltransferase that transfers galacturonic acid from uridine 5'-diphosphogalacturonic acid onto the pectic polysaccharide homogalacturonan (Sterling et al., 2006). The 25-member Arabidopsis thaliana GAUT1-related gene family encodes 15 GAUT and 10 GAUT-like (GATL) proteins with, respectively, 56-84 and 42-53% amino acid sequence similarity to GAUT1. Previous phylogenetic analyses of AtGAUTs indicated three clades: A through C. A comparative phylogenetic analysis of the Arabidopsis, poplar and rice GAUT families has sub-classified the GAUTs into seven clades: clade A-1 (GAUTs 1 to 3); A-2 (GAUT4); A-3 (GAUTs 5 and 6); A-4 (GAUT7); B-1(GAUTs 8 and 9); B-2 (GAUTs 10 and 11); and clade C (GAUTs 12 to 15). The Arabidopsis GAUTs have a distribution com-parable to the poplar orthologs, with the exception of GAUT2, which is absent in poplar. Rice, however, has no orthologs of GAUTs 2 and 12 and has multiple apparent orthologs of GAUTs 1, 4, and 7 compared with eitherArabidopsis or poplar. The cell wall glycosyl residue compositions of 26 homozygous T-DNA insertion mutants for 13 of 15 Arabidopsis GAUTgenes reveal significantly and reproducibly different cell walls in specific tissues of gaut mutants 6, 8, 9, 10, 11, 12, 13, and 14 from that of wild-type Arabidopsis walls. Pectin and xylan polysaccharides are affected by the loss of GAUT function, as dem-onstrated by the altered galacturonic acid, xylose, rhamnose, galactose, and arabinose composition of distinct gaut mu-tant walls. The wall glycosyl residue compositional phenotypes observed among the gaut mutants suggest that at least six different biosynthetic linkages in pectins and/or xylans are affected by the lesions in these GAUTgenes. Evidence is also presented to support a role for GAUT11 in seed mucilage expansion and in seed wall and mucilage composition.

  13. Strong resistance of Arabidopsis thaliana and Raphanus sativus seeds for ionizing radiation as studied by ESR, ENDOR, ESE spectroscopy and germination measurement: Effect of long-lived and super-long-lived radicals

    International Nuclear Information System (INIS)

    Resistance of seeds for ionizing radiation effects on Arabidopsis thaliana and Raphanus sativus seeds were investigated by ESR, ENDOR, ESE spectroscopy and germination measurement. Two types of free radicals, such as long-lived (LL) and super-long-lived (SL) radicals, were produced by the γ-irradiation in the seeds. More than 90% of the 1 kGy-irradiated-seeds can germinate probably by decreasing the LL radicals by absorbing water. 10 kGy-irradiated-seeds cannot germinate at all probably due to the existence of significant amounts of the SL radicals even after absorbing water. (author)

  14. Strong resistance of Arabidopsis thaliana and Raphanus sativus seeds for ionizing radiation as studied by ESR, ENDOR, ESE spectroscopy and germination measurement: Effect of long-lived and super-long-lived radicals

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Jun E-mail: kumagai@apchem.nagoya-u.ac.jp; Katoh, Hiromi; Kumada, Takayuki; Tanaka, Atsushi; Tano, Shigemitsu; Miyazaki, Tetsuo

    2000-01-01

    Resistance of seeds for ionizing radiation effects on Arabidopsis thaliana and Raphanus sativus seeds were investigated by ESR, ENDOR, ESE spectroscopy and germination measurement. Two types of free radicals, such as long-lived (LL) and super-long-lived (SL) radicals, were produced by the {gamma}-irradiation in the seeds. More than 90% of the 1 kGy-irradiated-seeds can germinate probably by decreasing the LL radicals by absorbing water. 10 kGy-irradiated-seeds cannot germinate at all probably due to the existence of significant amounts of the SL radicals even after absorbing water. (author)

  15. Strong resistance of Arabidopsis thaliana and Raphanus sativus seeds for ionizing radiation as studied by ESR, ENDOR, ESE spectroscopy and germination measurement: Effect of long-lived and super-long-lived radicals

    Science.gov (United States)

    Kumagai, Jun; Katoh, Hiromi; Kumada, Takayuki; Tanaka, Atsushi; Tano, Shigemitsu; Miyazaki, Tetsuo

    2000-01-01

    Resistance of seeds for ionizing radiation effects on Arabidopsis thaliana and Raphanus sativus seeds were investigated by ESR, ENDOR, ESE spectroscopy and germination measurement. Two types of free radicals, such as long-lived (LL) and super-long-lived (SL) radicals, were produced by the γ-irradiation in the seeds. More than 90% of the 1 kGy-irradiated-seeds can germinate probably by decreasing the LL radicals by absorbing water. 10 kGy-irradiated-seeds cannot germinate at all probably due to the existence of significant amounts of the SL radicals even after absorbing water.

  16. Omics analysis of high-energy Arabidopsis thaliana

    OpenAIRE

    Liang, Chao; 梁超

    2014-01-01

    Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) is a phosphatase dually targeted to both chloroplasts and mitochondria. Overexpression (OE) of AtPAP2 in Arabidopsis thaliana was reported to speed up plant growth and promote flowering, seed yield and biomass at maturity in a previous study. Under long-day (16 hours light at 22°C / 8 hours dark at 18°C) growth conditions, the leaves of 20-day-old OE lines contained significant higher sucrose and glucose than the wild-type (WT) plants, r...

  17. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  18. Momilactone sensitive proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Kato-Noguchi, Hisashi; Kitajima, Shinya

    2015-05-01

    The labdane-related diterpenoid, momilactone B has potent growth inhibitory activity and was demonstrated to play a particularly critical role in the allelopathy of rice (Oryza sativa L.). However, there is limited information available about the mode of action of momilactone B on the growth inhibition. The present research describes the effects of momilactone B on protein expression in the early development of Arabidopsis thaliana seedling, which was determined by two-dimensional electrophoresis and MALDI-TOFMS. Momilactone B inhibited the accumulation of subtilisin-like serine protease, amyrin synthase LUP2, β-glucosidase and malate synthase at 1 h after the momilactone application. Those proteins are involved in the metabolic turnover and the production of intermediates needed for cell structures resulting in plant growth and development. Momilactone B also inhibited the breakdown of cruciferin 2, which is essential for seed germination and seedling growth to construct cell structures. Momilactone B induced the accumulation of translationally controlled tumor protein, glutathione S-transferase and 1-cysteine peroxiredoxin 1. These proteins are involved in stress responses and increased stress tolerance. In addition, glutathione S-transferase has the activity of herbicide detoxification and 1-cysteine peroxiredoxin 1 has inhibitory activity for seed germination under unfavorable conditions. The present research suggests that momilactone B may inhibit the seedling growth by the inhibition of the metabolic turnover and the production of intermediates for cell structures. In addition, momilactone induced proteins associated with plant defense responses. PMID:26058145

  19. A Superfamily of Arabidopsis Thaliana Retrotransposons

    OpenAIRE

    Konieczny, A; Voytas, D. F.; Cummings, M. P.; Ausubel, F M

    1991-01-01

    We describe a superfamily of Arabidopsis thaliana retrotransposable elements that consists of at least ten related families designated Ta1-Ta10. The Ta1 family has been described previously. Two genomic clones representing the Ta2 and Ta3 elements were isolated from an A. thaliana (race Landsberg erecta) λ library using sequences derived from the reverse transcriptase region of Ta1 as hybridization probes. Nucleotide sequence analysis showed that the Ta1, Ta2 and Ta3 families share >75% amino...

  20. Terpene Specialized Metabolism in Arabidopsis thaliana

    OpenAIRE

    Tholl, Dorothea; Lee, Sungbeom

    2011-01-01

    Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mech...

  1. Shotgun Proteomic Analysis of Arabidopsis thaliana Leaves

    Science.gov (United States)

    Two shotgun tandem mass spectrometry proteomics approaches, Multidimensional Protein Identification Technology (MudPIT) and 1D-Gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible wit...

  2. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana

    OpenAIRE

    Ivan R Baxter; Young, Jeffery C.; Armstrong, Gordon; Foster, Nathan; Bogenschutz, Naomi; Cordova, Tatiana; Peer, Wendy Ann; Hazen, Samuel P.; Murphy, Angus S.; Harper, Jeffrey F.

    2005-01-01

    The plasma membrane in plant cells is energized with an electrical potential and proton gradient generated through the action of H+ pumps belonging to the P-type ATPase superfamily. The Arabidopsis genome encodes 11 plasma membrane H+ pumps. Auto-inhibited H+-ATPase isoform 10 (AHA10) is expressed primarily in developing seeds. Here we show that four independent gene disruptions of AHA10 result in seed coats with a transparent testa (tt) phenotype (light-colored seeds). A quantitative analysi...

  3. Flavonoid-specific staining of Arabidopsis thaliana.

    Science.gov (United States)

    Sheahan, J J; Rechnitz, G A

    1992-12-01

    Crop yields may be threatened by increases in UV-B radiation resulting from depletion of the ozone layer. In higher plants, the presence of flavonols provides a protective mechanism, and we report a novel staining procedure for the visualization of such protectants in plant tissue. It is shown that the proposed technique provides sensitive and specific fluorescence of flavonoids in chlorophyll-bleached tissue of Arabidopsis thaliana. PMID:1282347

  4. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana.

    Science.gov (United States)

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A; Morgan, Jennifer L L; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D; Shock, Everett; Hartnett, Hilairy E

    2013-03-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3-67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. PMID:23262070

  5. Comparison of the chloroplast peroxidase system in the chlorophyte Chlamydomonas reinhardtii, the bryophyte Physcomitrella patens, the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Baier Margarete

    2010-06-01

    Full Text Available Abstract Background Oxygenic photosynthesis is accompanied by the formation of reactive oxygen species (ROS, which damage proteins, lipids, DNA and finally limit plant yield. The enzymes of the chloroplast antioxidant system are exclusively nuclear encoded. During evolution, plastid and mitochondrial genes were post-endosymbiotically transferred to the nucleus, adapted for eukaryotic gene expression and post-translational protein targeting and supplemented with genes of eukaryotic origin. Results Here, the genomes of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana were screened for ORFs encoding chloroplast peroxidases. The identified genes were compared for their amino acid sequence similarities and gene structures. Stromal and thylakoid-bound ascorbate peroxidases (APx share common splice sites demonstrating that they evolved from a common ancestral gene. In contrast to most cormophytes, our results predict that chloroplast APx activity is restricted to the stroma in Chlamydomonas and to thylakoids in Physcomitrella. The moss gene is of retrotransposonal origin. The exon-intron-structures of 2CP genes differ between chlorophytes and streptophytes indicating an independent evolution. According to amino acid sequence characteristics only the A-isoform of Chlamydomonas 2CP may be functionally equivalent to streptophyte 2CP, while the weakly expressed B- and C-isoforms show chlorophyte specific surfaces and amino acid sequence characteristics. The amino acid sequences of chloroplast PrxII are widely conserved between the investigated species. In the analyzed streptophytes, the genes are unspliced, but accumulated four introns in Chlamydomonas. A conserved splice site indicates also a common origin of chlorobiont PrxQ. The similarity of splice sites also demonstrates that streptophyte glutathione peroxidases (GPx are of common origin. Besides

  6. Arabidopsis thaliana glucuronosyltransferase in family GT14.

    Science.gov (United States)

    Dilokpimol, Adiphol; Geshi, Naomi

    2014-01-01

    Arabinogalactan proteins are abundant cell-surface proteoglycans in plants and are involved in many cellular processes including somatic embryogenesis, cell-cell interactions, and cell elongation. We reported a glucuronosyltransferase encoded by Arabidopsis AtGlcAT14A, which catalyzes an addition of glucuronic acid residues to β-1,3- and β-1,6-linked galactans of arabinogalactan (Knoch et al. 2013). The knockout mutant of this gene resulted in the enhanced growth rate of hypocotyls and roots of seedlings, suggesting an involvement of AtGlcAT14A in cell elongation. AtGlcAt14A belongs to the family GT14 in the Carbohydrate Active Enzyme database (CAZy; www.cazy.org), in which a total of 11 proteins, including AtGLCAT14A, are classified from Arabidopsis thaliana. In this paper, we report the enzyme activities for the rest of the Arabidopsis GT14 isoforms, analyzed in the same way as for AtGlcAT14A. Evidently, two other Arabidopsis GT14 isoforms, At5g15050 and At2g37585, also possess the glucuronosyltransferase activity adding glucuronic acid residues to β-1,3- and β-1,6-linked galactans. Therefore, we named At5g15050 and At2g37585 as AtGlcAT14B and AtGlcAT14C, respectively. PMID:24739253

  7. Gibberellins control fruit patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-10-01

    The Arabidopsis basic helix-loop-helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning. PMID:20889713

  8. GORDITA, a young paralog of Arabidopsis thaliana Bsister MADS-box gene ABS, has undergone neofunctionalization

    OpenAIRE

    Erdmann, Robert

    2010-01-01

    Bsister genes, a clade with close relationships to the class B floral homeotic genes, have been conserved for more than 300 million years. Bsister genes in Arabidopsis thaliana underwent gene duplication probably before the diversification of Brassicaceae leading to the paralogue genes ARABIDOPSIS BSISTER (ABS) and GORDITA (GOA). The phenotype of the abs mutant, however, is rather mild as it shows only reduced seed coloration and defects in endothelium development. This thesis focuses on the ...

  9. Effects of Preconditioning and Temperature During Germination of 73 Natural Accessions of Arabidopsis thaliana

    OpenAIRE

    Schmuths, Heike; BACHMANN, KONRAD; WEBER, W. EBERHARD; Horres, Ralf; Matthias H Hoffmann

    2006-01-01

    • Background and Aims Germination and establishment of seeds are complex traits affected by a wide range of internal and external influences. The effects of parental temperature preconditioning and temperature during germination on germination and establishment of Arabidopsis thaliana were examined.

  10. The pattern of polymorphism in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available We resequenced 876 short fragments in a sample of 96 individuals of Arabidopsis thaliana that included stock center accessions as well as a hierarchical sample from natural populations. Although A. thaliana is a selfing weed, the pattern of polymorphism in general agrees with what is expected for a widely distributed, sexually reproducing species. Linkage disequilibrium decays rapidly, within 50 kb. Variation is shared worldwide, although population structure and isolation by distance are evident. The data fail to fit standard neutral models in several ways. There is a genome-wide excess of rare alleles, at least partially due to selection. There is too much variation between genomic regions in the level of polymorphism. The local level of polymorphism is negatively correlated with gene density and positively correlated with segmental duplications. Because the data do not fit theoretical null distributions, attempts to infer natural selection from polymorphism data will require genome-wide surveys of polymorphism in order to identify anomalous regions. Despite this, our data support the utility of A. thaliana as a model for evolutionary functional genomics.

  11. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  12. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Misra, Aparna; Khan, Kasim; Niranjan, Abhishek; Nath, Pravendra; Sane, Vidhu A

    2013-12-01

    The increasing consumption of fossil fuels and petroleum products is leading to their rapid depletion and is a matter of concern around the globe. Substitutes of fossil fuels are required to sustain the pace of economic development. In this context, oil from the non food crops (biofuel) has shown potential to substitute fossil fuels. Jatropha curcas is an excellent shrub spread and naturalized across the globe. Its oil contains a high percentage of unsaturated fatty acids (about 78-84% of total fatty acid content) making the oil suitable for biodiesel production. Despite its high oil content, it has been poorly studied in terms of important enzymes/genes responsible for oil biosynthesis. Here, we describe the isolation of the full length cDNA clone of JcDGAT1, a key enzyme involved in oil biosynthesis, from J. curcas seeds and manipulation of oil content and composition in transgenic Arabidopsis plants by its expression. Transcript analysis of JcDGAT1 reveals a gradual increase from early seed development to its maturation. Homozygous transgenic Arabidopsis lines expressing JcDGAT1 both under CaMV35S promoter and a seed specific promoter show an enhanced level of total oil content (up by 30-41%) in seeds but do not show any phenotypic differences. In addition, our studies also show alterations in the oil composition through JcDGAT1 expression. While the levels of saturated FAs such as palmitate and stearate in the oil do not change, there is significant reproducible decrease in the levels of oleic acid and a concomitant increase in levels of linolenic acid both under the CaMV35S promoter as well as the seed specific promoter. Our studies thus confirm that DGAT is involved in flux control in oil biosynthesis and show that JcDGAT1 could be used specifically to manipulate and improve oil content and composition in plants. PMID:24125179

  13. The BURP domain protein AtUSPL1 of Arabidopsis thaliana is destined to the protein storage vacuoles and overexpression of the cognate gene distorts seed development.

    Science.gov (United States)

    Van Son, Le; Tiedemann, Jens; Rutten, Twan; Hillmer, Stefan; Hinz, Giselbert; Zank, Thorsten; Manteuffel, Renate; Bäumlein, Helmut

    2009-11-01

    BURP domain proteins comprise a broadly distributed, plant-specific family of functionally poorly understood proteins. VfUSP (Vicia faba Unknown Seed Protein) is the founding member of this family. The BURP proteins are characterized by a highly conserved C-terminal protein domain with a characteristic cysteine-histidine pattern. The Arabidopsis genome contains five BURP-domain encoding genes. Three of them are similar to the non-catalytic beta-subunit of the polygalacturonase of tomato and form a distinct subgroup. The remaining two genes are AtRD22 and AtUSPL1. The deduced product of AtUSPL1 is similar in size and sequence to VfUSP and that of the Brassica napus BNM2 gene which is expressed during microspore-derived embryogenesis. The protein products of BURP genes have not been found, especially that of VfUSP despite a great deal of interest arising from copious transcription of the gene in seeds. Here, we demonstrate that VfUSP and AtUSPL1 occur in cellular compartments essential for seed protein synthesis and storage, like the Golgi cisternae, dense vesicles, prevaculoar vesicles and the protein storage vacuoles in the parenchyma cells of cotyledons. Ectopic expression of AtUSPL1 leads to a shrunken seed phenotype; these seeds show structural alterations in their protein storage vacuoles and lipid vesicles. Furthermore, there is a reduction in the storage protein content and a perturbation in the seed fatty acid composition. However, loss of AtUSP1 gene function due to T-DNA insertions does not lead to a phenotypic change under laboratory conditions even though the seeds have less storage proteins. Thus, USP is pertinent to seed development but its role is likely shared by other proteins that function well enough under the laboratory growth conditions. PMID:19639386

  14. Identification of Polyadenylation Sites within Arabidopsis Thaliana

    KAUST Repository

    Kalkatawi, Manal

    2011-09-01

    Machine Learning (ML) is a field of artificial intelligence focused on the design and implementation of algorithms that enable creation of models for clustering, classification, prediction, ranking and similar inference tasks based on information contained in data. Many ML algorithms have been successfully utilized in a variety of applications. The problem addressed in this thesis is from the field of bioinformatics and deals with the recognition of polyadenylation (poly(A)) sites in the genomic sequence of the plant Arabidopsis thaliana. During the RNA processing, a tail consisting of a number of consecutive adenine (A) nucleotides is added to the terminal nucleotide of the 3’- untranslated region (3’UTR) of the primary RNA. The process in which these A nucleotides are added is called polyadenylation. The location in the genomic DNA sequence that corresponds to the start of terminal A nucleotides (i.e. to the end of 3’UTR) is known as a poly(A) site. Recognition of the poly(A) sites in DNA sequence is important for better gene annotation and understanding of gene regulation. In this study, we built an artificial neural network (ANN) for the recognition of poly(A) sites in the Arabidopsis thaliana genome. Our study demonstrates that this model achieves improved accuracy compared to the existing predictive models for this purpose. The key factor contributing to the enhanced predictive performance of our ANN model is a distinguishing set of features used in creation of the model. These features include a number of physico-chemical characteristics of relevance, such as dinucleotide thermodynamic characteristics, electron-ion interaction potential, etc., but also many of the statistical properties of the DNA sequences from the region surrounding poly(A) site, such as nucleotide and polynucleotide properties, common motifs, etc. Our ANN model was compared in performance with several other ML models, as well as with the PAC tool that is specifically developed for

  15. The Genetic Basis of Natural Variation in Seed Size and Seed Number and Their Trade-Off Using Arabidopsis thaliana MAGIC Lines

    OpenAIRE

    Gnan, Sebastian; Priest, Anne; Kover, Paula X.

    2014-01-01

    Offspring number and size are key traits determining an individual’s fitness and a crop’s yield. Yet, extensive natural variation within species is observed for these traits. Such variation is typically explained by trade-offs between fecundity and quality, for which an optimal solution is environmentally dependent. Understanding the genetic basis of seed size and number, as well as any possible genetic constraints preventing the maximization of both, is crucial from both an evolutionary and ...

  16. Arabidopsis thaliana Inspired Genetic Restoration Strategies

    Directory of Open Access Journals (Sweden)

    Donagh Hatton

    2013-04-01

    Full Text Available A controversial genetic restoration mechanism has been proposed for the model organism Arabidopsis thaliana. This theory proposes that genetic material from non-parental ancestors is used to restore genetic information that was inadvertently corrupted during reproduction. We evaluate the effectiveness of this strategy by adapting it to an evolutionary algorithm solving two distinct benchmark optimization problems. We compare the performance of the proposed strategy with a number of alternate strategies – including the Mendelian alternative. Included in this comparison are a number of biologically implausible templates that help elucidate likely reasons for the relative performance of the different templates. Results show that the proposed non- Mendelian restoration strategy is highly effective across the range of conditions investigated – significantly outperforming the Mendelian alternative in almost every situation.

  17. X-ray and fast neutron-induced mutations in Arabidopsis thaliana, and the effect of dithiothreitol upon the mutant spectrum

    International Nuclear Information System (INIS)

    The author discusses the genetic effects of X-ray and fast neutron seed-irradiation of Arabidopsis thaliana (L.) Heynh., and the influence of a pre-irradiation treatment with the radio-protector dithiothreitol (DTT). (Auth.)

  18. Lagging adaptation to warming climate in Arabidopsis thaliana.

    Science.gov (United States)

    Wilczek, Amity M; Cooper, Martha D; Korves, Tonia M; Schmitt, Johanna

    2014-06-01

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species' native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species' native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation. PMID:24843140

  19. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    NARCIS (Netherlands)

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. The large genomic changes are important for

  20. [Arabidopsis thaliana accessions - a tool for biochemical and phylogentical studies].

    Science.gov (United States)

    Szymańska, Renata; Gabruk, Michał; Kruk, Jerzy

    2015-01-01

    Arabidopsis thaliana since a few decades is used as a model for biological and plant genetic research. Natural variation of this species is related to its geographical range which covers different climate zones and habitats. The ability to occupy such a wide area by Arabidopsis is possible due to its stress tolerance and adaptability. Arabidopsis accessions exhibit phenotypic and genotypic variation, which is a result of adaptation to local environmental conditions. During development, plants are subjected to various stress factors. Plants show a spectrum of reactions, processes and phenomena that determine their survival in these adverse conditions. The response of plants to stress involves signal detection and transmission. These reactions are different and depend on the stressor, its intensity, plant species and life strategy. It is assumed that the populations of the same species from different geographical regions acclimated to the stress conditions develop a set of alleles, which allow them to grow and reproduce. Therefore, the study of natural variation in response to abiotic stress among Arabidopsis thaliana accessions allows to find key genes or alleles, and thus the mechanisms by which plants cope with adverse physical and chemical conditions. This paper presents an overview of recent findings, tools and research directions used in the study of natural variation in Arabidopsis thaliana accessions. Additionally, we explain why accessions can be used in the phylogenetic analyses and to study demography and migration of Arabidopsis thaliana. PMID:26281359

  1. Quantitative proteomics approaches to study leaf senescence in Arabidopsis thaliana

    OpenAIRE

    Hebeler, Romano

    2007-01-01

    Im Vergleich zu Arabidopsis thaliana Wildtyppflanzen zeigen onset of leaf death (old) Mutanten vorgezogene Blattseneszenz. Ziel der Arbeit war es, mittels relativ quantitativer Proteomics molekulare Prozesse der frühen Blattseneszenz zu analysieren. Zwei-dimensionale "difference gel electrophoresis" (DIGE) wurde eingesetzt, um Unterschiede in den Proteinkonzentrationen von A. thaliana mit normaler und veränderter Blattseneszenz zu bestimmen. Die regulierten Proteine wurden durc...

  2. Characterization Of Laccase T-DNA Mutants In Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Andersen, Jeppe R; Asp, Torben; Mansfield, Shawn;

    Laccases (P-diphenol:O2 oxidoreductase; EC 1.10.3.2), also termed laccase-like multicopper oxidases, are blue copper-containing oxidases which comprise multigene families in plants. In the Arabidopsis thaliana genome, 17 laccase genes (LAC1 to LAC17) have been annotated. To identify laccases invo...... quite different and distinct biochemical pathways and that laccases might be involved in polymerization of both polysaccharides and monolignols in the Arabidopsis cell wall....

  3. Evidence for five divergent thioredoxin h sequences in Arabidopsis thaliana.

    OpenAIRE

    Rivera-Madrid, R.; Mestres, D; Marinho, P.; Jacquot, J P; Decottignies, P; Miginiac-Maslow, M; Meyer, Y.

    1995-01-01

    Five different clones encoding thioredoxin homologues were isolated from Arabidopsis thaliana cDNA libraries. On the basis of the sequences they encode divergent proteins, but all belong to the cytoplasmic thioredoxins h previously described in higher plants. The five proteins obtained by overexpressing the coding sequences in Escherichia coli present typical thioredoxin activities (NADP(+)-malate dehydrogenase activation and reduction by Arabidopsis thioredoxin reductase) despite the presenc...

  4. X-Ray- and fast neutron induced mutations in Arabidopsis thaliana, and the effect of dithiothreitol upon the mutant spectrum

    NARCIS (Netherlands)

    Dellaert, L.M.W.

    1980-01-01

    The genetic effects of X-ray and fast neutron seed-irradiation of Arabidopsis thaliana (L.) Heynh., and the influence of a pre-irradiation treatment with the radio-protector dithiothreitol (DTT), are the main subjects of this thesis.Chapters I and II deal with the effects of radiation - with or with

  5. Reduction of mineral nutrient availability accelerates flowering of Arabidopsis thaliana

    Czech Academy of Sciences Publication Activity Database

    Kolář, Jan; Seňková, J.

    2008-01-01

    Roč. 165, č. 15 (2008), s. 1601-1609. ISSN 0176-1617 R&D Projects: GA AV ČR KJB600380510 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * Flowering * Landsberg erecta Subject RIV: EF - Botanics Impact factor: 2.437, year: 2008

  6. Cleaning the GenBank Arabidopsis thaliana data set

    DEFF Research Database (Denmark)

    Korning, Peter G.; Hebsgaard, Stefan M.; Rouze, Pierre; Brunak, Søren

    1996-01-01

    Data driven computational biology relies on the large quantities of genomic data stored in international sequence data banks. However, the possibilities are drastically impaired if the stored data is unreliable. During a project aiming to predict splice sites in the dicot Arabidopsis thaliana, we...... extracted a data set from the A. thaliana entries in GenBank. A number of simple `sanity' checks, based on the nature of the data, revealed an alarmingly high error rate. More than 15% of the most important entries extracted did contain erroneous information. In addition, a number of entries had directly...

  7. Cleaning the GenBank Arabidopsis thaliana data set

    DEFF Research Database (Denmark)

    Korning, Peter G.; Hebsgaard, Stefan M.; Rouze, Pierre; Brunak, Søren

    1996-01-01

    extracted a data set from the A. thaliana entries in GenBank. A number of simple `sanity' checks, based on the nature of the data, revealed an alarmingly high error rate. More than 15% of the most important entries extracted did contain erroneous information. In addition, a number of entries had directly......Data driven computational biology relies on the large quantities of genomic data stored in international sequence data banks. However, the possibilities are drastically impaired if the stored data is unreliable. During a project aiming to predict splice sites in the dicot Arabidopsis thaliana, we...

  8. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Keshavaiah Channa

    2011-02-01

    Full Text Available Abstract Background All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage-specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing. Results This study provides a comprehensive analysis of the origins of lineage-specific genes (LSGs in Arabidopsis thaliana that are restricted to the Brassicaceae family. In this study, lineage-specific genes within the nuclear (1761 genes and mitochondrial (28 genes genomes are identified. The evolutionary origins of two thirds of the lineage-specific genes within the Arabidopsis thaliana genome are also identified. Almost a quarter of lineage-specific genes originate from non-lineage-specific paralogs, while the origins of ~10% of lineage-specific genes are partly derived from DNA exapted from transposable elements (twice the proportion observed for non-lineage-specific genes. Lineage-specific genes are also enriched in genes that have overlapping CDS, which is consistent with such novel genes arising from overprinting. Over half of the subset of the 958 lineage-specific genes found only in Arabidopsis thaliana have alignments to intergenic regions in Arabidopsis lyrata, consistent with either de novo origination or differential gene loss and retention, with both evolutionary scenarios explaining the lineage-specific status of these genes. A smaller number of lineage-specific genes with an incomplete open reading frame across different Arabidopsis thaliana accessions are further identified as accession-specific genes, most likely of recent origin in Arabidopsis thaliana. Putative de novo origination for two of the Arabidopsis thaliana-only genes is identified via additional sequencing across accessions of Arabidopsis thaliana and closely

  9. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  10. Redox Impact on Starch Biosynthetic Enzymes in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Skryhan, Katsiaryna

    Summary The thesis provides new insight into the influence of the plant cell redox state on the transient starch metabolism in Arabidopsis thaliana with a focus on starch biosynthetic enzymes. Two main hypotheses forms the basis of this thesis: 1) photosynthesis and starch metabolism are coordina...... of these amino acids for targeted stress-tolerant enzyme bioengineering.......Summary The thesis provides new insight into the influence of the plant cell redox state on the transient starch metabolism in Arabidopsis thaliana with a focus on starch biosynthetic enzymes. Two main hypotheses forms the basis of this thesis: 1) photosynthesis and starch metabolism...... are coordinated by the redox state of the cell via post-translational modification of the starch metabolic enzymes containing redox active cysteine residues and these cysteine residues became cross-linked upon oxidation providing a conformational change leading to activity loss; 2) cysteine residues...

  11. Inheritance beyond plain heritability : variance controlling genes in Arabidopsis thaliana

    OpenAIRE

    Xia Shen; Mats Pettersson; Lars Rönnegård; Örjan Carlborg

    2012-01-01

    Author Summary The most well-studied effects of genes are those leading to different phenotypic means for alternative genotypes. A less well-explored type of genetic control is that resulting in a heterogeneity in variance between genotypes. Here, we reanalyze a publicly available Arabidopsis thaliana GWAS dataset to detect genetic effects on the variance heterogeneity, and our results indicate that the environmental variance is under extensive genetic control by a large number of variance-co...

  12. CAMTA 1 regulates drought responses in Arabidopsis thaliana

    OpenAIRE

    Pandey, Neha; Ranjan, Alok; Pant, Poonam; Tripathi, Rajiv K; Ateek, Farha; Pandey, Haushilla P; Patre, Uday V; Sawant, Samir V

    2013-01-01

    Background Transcription factors (TF) play a crucial role in regulating gene expression and are fit to regulate diverse cellular processes by interacting with other proteins. A TF named calmodulin binding transcription activator (CAMTA) was identified in Arabidopsis thaliana (AtCAMTA1-6). To explore the role of CAMTA1 in drought response, the phenotypic differences and gene expression was studied between camta1 and Col-0 under drought condition. Results In camta1, root development was abolish...

  13. Identification of a novel flavonoid glycoside sulfotransferase in Arabidopsis thaliana

    OpenAIRE

    Hashiguchi, Takuyu; Sakakibara, Yoichi; Shimohira, Takehiko; Kurogi, Katsuhisa; Yamasaki, Masao; Nishiyama, Kazuo; Akashi, Ryo; Liu, Ming-Cheh; Suiko, Masahito

    2013-01-01

    The discovery of sulfated flavonoids in plants suggests that sulfation may play a regulatory role in the physiological functions of flavonoids. Sulfation of flavonoids is mediated by cytosolic sulfotransferases (SULTs), which utilize 3′-phosphoadenosine 5′-phosphosulfate (PAPS) as the sulfate donor. A novel SULT from Arabidopsis thaliana, designated AtSULT202B7 (AGI code: At1g13420), was cloned and expressed in Escherichia coli. Using various compounds as potential substrates, we demonstrated...

  14. Segmenting the sepal and shoot apical meristem of Arabidopsis thaliana

    OpenAIRE

    Cunha, Alexandre L.; Roeder, Adrienne H. K.; Meyerowitz, Elliot M.

    2010-01-01

    We present methods for segmenting the sepal and shoot apical meristem of the Arabidopsis thaliana plant. We propose a mathematical morphology pipeline and a modified numerical scheme for the active contours without edges algorithm to extract the geometry and topology of plant cells imaged using confocal laser scanning microscopy. We demonstrate our methods in typical images used in the studies of cell endoreduplication and hormone transport and show that in practice they produce highly accura...

  15. Functional genetics of intraspecific ecological interactions in Arabidopsis thaliana

    OpenAIRE

    Wolf, Jason B.; Mutic, Joshua J.; Kover, Paula X.

    2011-01-01

    Studying the genetic basis of traits involved in ecological interactions is a fundamental part of elucidating the connections between evolutionary and ecological processes. Such knowledge allows one to link genetic models of trait evolution with ecological models describing interactions within and between species. Previous work has shown that connections between genetic and ecological processes in Arabidopsis thaliana may be mediated by the fact that quantitative trait loci (QTL) with ‘direct...

  16. Quantitative trait loci for floral morphology in Arabidopsis thaliana.

    OpenAIRE

    Juenger, T; Purugganan, M.; Mackay, T F

    2000-01-01

    A central question in biology is how genes control the expression of quantitative variation. We used statistical methods to estimate genetic variation in eight Arabidopsis thaliana floral characters (fresh flower mass, petal length, petal width, sepal length, sepal width, long stamen length, short stamen length, and pistil length) in a cosmopolitan sample of 15 ecotypes. In addition, we used genome-wide quantitative trait locus (QTL) mapping to evaluate the genetic basis of variation in these...

  17. Demographic history of european populations of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Olivier François

    2008-05-01

    Full Text Available The model plant species Arabidopsis thaliana is successful at colonizing land that has recently undergone human-mediated disturbance. To investigate the prehistoric spread of A. thaliana, we applied approximate Bayesian computation and explicit spatial modeling to 76 European accessions sequenced at 876 nuclear loci. We find evidence that a major migration wave occurred from east to west, affecting most of the sampled individuals. The longitudinal gradient appears to result from the plant having spread in Europe from the east approximately 10,000 years ago, with a rate of westward spread of approximately 0.9 km/year. This wave-of-advance model is consistent with a natural colonization from an eastern glacial refugium that overwhelmed ancient western lineages. However, the speed and time frame of the model also suggest that the migration of A. thaliana into Europe may have accompanied the spread of agriculture during the Neolithic transition.

  18. Expression and detection of the FMDV VP1 transgene and expressed structural protein in Arabidopsis thaliana

    OpenAIRE

    Pan, Li; Zhang, Yongguang; Wang, Yonglu; Lv, Jianliang; Zhou, Peng; Zhang, Zhongwang

    2011-01-01

    To explore the feasibility of developing a new type of plantderived foot-and-mouth disease virus (FMDV) oral vaccine, the plant seed-specific expression vector p7SBin438/VP1 carrying the VP1 gene of the FMDV strain O/China/99 was constructed and transformed into Agrobacterium tumefaciens strain GV3101. This strain was used for transformation of Arabidopsis thaliana via the floral-dip method. The kanamycin-resistant transgenic plants were selected, and the VP1 gene and protein expressions were...

  19. pATsi: Paralogs and Singleton Genes from Arabidopsis thaliana

    Science.gov (United States)

    Ambrosino, Luca; Bostan, Hamed; di Salle, Pasquale; Sangiovanni, Mara; Vigilante, Alessandra; Chiusano, Maria L.

    2016-01-01

    Arabidopsis thaliana is widely accepted as a model species in plant biology. Its genome, due to its small size and diploidy, was the first to be sequenced among plants, making this species also a reference for plant comparative genomics. Nevertheless, the evolutionary mechanisms that shaped the Arabidopsis genome are still controversial. Indeed, duplications, translocations, inversions, and gene loss events that contributed to the current organization are difficult to be traced. A reliable identification of paralogs and single-copy genes is essential to understand these mechanisms. Therefore, we implemented a dedicated pipeline to identify paralog genes and classify single-copy genes into opportune categories. PATsi, a web-accessible database, was organized to allow the straightforward access to the paralogs organized into networks and to the classification of single-copy genes. This permits to efficiently explore the gene collection of Arabidopsis for evolutionary investigations and comparative genomics. PMID:26792975

  20. Life cycle of Arabidopsis thaliana under microgravity condition in the International Space Station Kibo module

    Science.gov (United States)

    Karahara, Ichirou; Soga, Kouichi; Hoson, Takayuki; Kamisaka, Seiichiro; Yano, Sachiko; Shimazu, Toru; Tamaoki, Daisuke; Tanigaki, Fumiaki; Kasahara, Haruo; Yashiro, Umi; Suto, Takamichi; Yamaguchi, Takashi; Kasahara, Hirokazu

    2012-07-01

    Gravity is an important environmental factors for growth and development of plants throughout their life cycle. We have designed an experiment, which is called Space Seed, to examine the effects of microgravity on the seed to seed life cycle of plants. We have carried out this experiment using a newly developed apparatus, which is called the Plant Experiment Unit (PEU) and installed in the Cell Biology Experiment Facility (CBEF) onboard International Space Station (ISS). The CBEF is equipped with a turntable generating artificial gravity to perform 1-G control experiment as well as micro-G experiment on board. Arabidopsis thaliana seeds sown on dry rockwool in PEUs were transported from Kennedy Space Center to the ISS Kibo module by Space Shuttle Discovery in STS-128 mission. This experiment was started on Sep. 10, 2009 and terminated on Nov. 11, 2009. Arabidopsis seeds successfully germinated, and the plants passed through both vegetative and reproductive processes, such as formation of rosette leaves, bolting of inflorescence stems, flowering, formation of siliques and seeds. Vegetative and reproductive growth were compared among micro-G plants, 1-G control, and the ground control.

  1. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Lohscheider, Jens N; Friso, Giulia; van Wijk, Klaas J

    2016-06-01

    Plastoglobules (PGs) are plastid lipid-protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  2. Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana Wassileskija accession.

    Science.gov (United States)

    Lemaître, Thomas; Gaufichon, Laure; Boutet-Mercey, Stéphanie; Christ, Aurélie; Masclaux-Daubresse, Céline

    2008-07-01

    Adaptation to steady-state low-nutrient availability was investigated by comparing the Wassileskija (WS) accession of Arabidopsis thaliana grown on 2 or 10 mM nitrate. Low nitrogen conditions led to a limited rosette biomass and seed yield. The latter was mainly due to reduced seed number, while seed weight was less affected. However, harvest index was lower in high nitrate compared with limited nitrate conditions. Under nitrogen-limiting conditions, nitrate reductase activity was decreased while glutamine synthetase activity was increased due to a higher accumulation of the cytosolic enzyme. The level of nitrogen remobilization to the seeds was higher under low nitrogen, and the vegetative parts of the plants remaining after seed production stored very low residual nitrogen. Through promoting nitrogen remobilization and recycling pathways, nitrogen limitation modified plant and seed compositions. Rosette leaves contained more sugars and less free amino acids when grown under nitrogen-limiting conditions. Compared with high nitrogen, the levels of proline, asparagine and glutamine were decreased. The seed amino acid composition reflected that of the rosette leaves, thus suggesting that phloem loading for seed filling was poorly selective. The major finding of this report was that together with decreasing biomass and yield, nitrogen limitation triggers large modifications in vegetative products and seed quality. PMID:18508804

  3. Diuretics prime plant immunity in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yoshiteru Noutoshi

    Full Text Available Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application.

  4. Arsenic uptake and speciation in Arabidopsis thaliana under hydroponic conditions.

    Science.gov (United States)

    Park, Jin Hee; Han, Young-Soo; Seong, Hye Jin; Ahn, Joo Sung; Nam, In-Hyun

    2016-07-01

    Arsenic (As) uptake and species in Arabidopsis thaliana were evaluated under hydroponic conditions. Plant nutrient solutions were treated with arsenite [As(III)] or arsenate [As(V)], and aqueous As speciation was conducted using a solid phase extraction (SPE) cartridge. Arabidopsis reduced As(V) to As(III) in the nutrient solution, possibly due to root exudates such as organic acids or the efflux of As(III) from plant roots after in vivo reduction of As(V) to As(III). Arsenic uptake by Arabidopsis was associated with increased levels of Ca and Fe, and decreased levels of K in plant tissues. Arsenic in Arabidopsis mainly occurred as As(III), which was coordinated with oxygen and sulfur based on XANES and EXAFS results. The existence of As(III)O and As(III)S in EXAFS indicates partial biotransformation of As(III)O to a sulfur-coordinated form because of limited amount of glutathione in plants. Further understanding the mechanism of As biotransformation in Arabidopsis may help to develop measures that can mitigate As toxicity via genetic engineering. PMID:27058920

  5. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    OpenAIRE

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. The large genomic changes are important for gene balance control, gene expression and regulation, and may affect the plant’s phenotype. Moreover, chromosome changes, in particular polyploidy, inversions and translocations play a signif...

  6. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.

    Science.gov (United States)

    Cohen, Ana C; Bottini, Rubén; Pontin, Mariela; Berli, Federico J; Moreno, Daniela; Boccanlandro, Hernán; Travaglia, Claudia N; Piccoli, Patricia N

    2015-01-01

    Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought. PMID:24796562

  7. Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Thomas eDe Meyer

    2014-09-01

    Full Text Available A wide variety of recombinant proteins has been produced in the dicot model plant, Arabidopsis thaliana. Many of these proteins are targeted for secretion by means of an N terminal endoplasmic reticulum (ER signal peptide. In addition, they can also be designed for ER retention by adding a C terminal H/KDEL-tag. Despite extensive knowledge of the protein trafficking pathways, the final protein destination, especially of such H/KDEL-tagged recombinant proteins, is unpredictable. In this respect, glycoproteins are ideal study objects. Microscopy experiments reveal their deposition pattern and characterization of their N-glycans aids in elucidating the trafficking. Here, we combine microscopy and N glycosylation data generated in Arabidopsis leaves and seeds, and highlight the lack of a decent understanding of heterologous protein trafficking.

  8. Selection of valine-resistance in callus culture of Arabidopsis thaliana (L.) Heynh. derived from leaf explants

    OpenAIRE

    Małgorzata D. Gaj; Grzegorz Czaja; Małgorzata Nawrot

    2014-01-01

    The selection of valine-resistant mutants was carried out in leaf explant cultures of three Arabidopsis thaliana (L.) Heynh. ecotypes: C-24, RLD and Columbia. The valine concentration used for in vitro selection, lethal for seed-growing plants, has not affected callus formation and growth. However, strong inhibition of shoot regeneration ability of calli growing under selection pressure was noticed. In total, 1043 explants were cultured on valine medium and 18 shoots were regenerated with an ...

  9. Ozone-induced signaling in Arabidopsis thaliana

    OpenAIRE

    Ahlfors, Reetta

    2008-01-01

    Tropospheric ozone (O3) is one of the most common air pollutants in industrialized countries, and an increasing problem in rapidly industrialising and developing countries in Asia, Africa and South America. Elevated concentrations of tropospheric O3 can lead to decrease in photosynthesis rate and therefore affect the normal metabolism, growth and seed production. Acute and high O3 episodes can lead to extensive damage leading to dead tissue in plants. Thus, O3 derived growth defects can lead ...

  10. The pharmaceutics from the foreign empire: the molecular pharming of the prokaryotic staphylokinase in Arabidopsis thaliana plants.

    Science.gov (United States)

    Hnatuszko-Konka, Katarzyna; Łuchniak, Piotr; Wiktorek-Smagur, Aneta; Gerszberg, Aneta; Kowalczyk, Tomasz; Gatkowska, Justyna; Kononowicz, Andrzej K

    2016-07-01

    Here, we present the application of microbiology and biotechnology for the production of recombinant pharmaceutical proteins in plant cells. To the best of our knowledge and belief it is one of few examples of the expression of the prokaryotic staphylokinase (SAK) in the eukaryotic system. Despite the tremendous progress made in the plant biotechnology, most of the heterologous proteins still accumulate to low concentrations in plant tissues. Therefore, the composition of expression cassettes to assure economically feasible level of protein production in plants remains crucial. The aim of our research was obtaining a high concentration of the bacterial anticoagulant factor-staphylokinase, in Arabidopsis thaliana seeds. The coding sequence of staphylokinase was placed under control of the β-phaseolin promoter and cloned between the signal sequence of the seed storage protein 2S2 and the carboxy-terminal KDEL signal sequence. The engineered binary vector pATAG-sak was introduced into Arabidopsis thaliana plants via Agrobacterium tumefaciens-mediated transformation. Analysis of the subsequent generations of Arabidopsis seeds revealed both presence of the sak and nptII transgenes, and the SAK protein. Moreover, a plasminogen activator activity of staphylokinase was observed in the protein extracts from seeds, while such a reaction was not observed in the leaf extracts showing seed-specific activity of the β-phaseolin promoter. PMID:27263008

  11. A reference map of the Arabidopsis thaliana mature pollen proteome

    International Nuclear Information System (INIS)

    The male gametophyte (or pollen) plays an obligatory role during sexual reproduction of higher plants. The extremely reduced complexity of this organ renders pollen a valuable experimental system for studying fundamental aspects of plant biology such as cell fate determination, cell-cell interactions, cell polarity, and tip-growth. Here, we present the first reference map of the mature pollen proteome of the dicotyledonous model plant species, Arabidopsis thaliana. Based on two-dimensional gel electrophoresis, matrix-assisted laser desorption/ionization time-of-flight, and electrospray quadrupole time-of-flight mass spectrometry, we reproducibly identified 121 different proteins in 145 individual spots. The presence, subcellular localization, and functional classification of the identified proteins are discussed in relation to the pollen transcriptome and the full protein complement encoded by the nuclear Arabidopsis genome

  12. Mutations in leaf starch metabolism modulate the diurnal root growth profiles of Arabidopsis thaliana

    OpenAIRE

    Yazdanbakhsh, Nima; FISAHN, JOACHIM

    2011-01-01

    Roots of Arabidopsis thaliana exhibit stable diurnal growth profiles that are controlled by the circadian clock. Here we describe the effects of mutations in leaf starch metabolism on the diurnal root growth characteristics of Arabidopsis thaliana. High temporal and spatial resolution video imaging was performed to quantify the growth kinetics of Arabidopsis wild-type as well as pgm, sex1, mex1, dpe1 and dpe2 starch metabolism mutants grown in three different photoperiods. As a result, root g...

  13. Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana.

    Science.gov (United States)

    Weiss, H; Maluszynska, J

    2000-01-01

    Recent development of cytogenetic techniques has facilitated significant progress in Arabidopsis thaliana karyotype studies. Double-target FISH with rRNA genes provides makers that allow individual chromosome in the genome to be distinguished. Those studies have revealed that the number and position of rDNA loci is ecotype-specific. Arabidopsis is believed to be a true diploid (x = 5) with numerous ecotypes (accessions) and only a very few natural polyploid populations reported. Few studies were undertaken to induce polyploidy in Arabidopsis, however none of those gave the cytogenetic characteristics of polyploid plants. Our analysis of chromosome pairing of colchicine-induced autotetraploid Arabidopsis (Wilna ecotype) revealed preferential bivalent pairing in PMCs (pollen mother cells). In order to attempt to explain this phenomenon, first of all more detailed cytogenetic studies of autopolyploid plants have been undertaken. The localization of 45S and 5S rDNA loci in the diploid and autotetraploid plants revealed that Wilna ecotypes belongs to the group of Arabidopsis accessions with only two 5S rDNA loci present in a genome. Furthermore, the rearrangement of 45S rDNA locus in autopolyploid, when compared to the diploid plants of the same ecotype, was revealed. These results are interesting also in the context of the recently emphasised role of polyploidy in plant evolution and speciation. Arabidopsis, despite having small chromosomes, is a good system to study chromosome behaviour in relation to diploidization of autopolyploids and to evaluate the degree of chromosomal rearrangements during this process. PMID:11433970

  14. CESA5 Is Required for the Synthesis of Cellulose with a Role in Structuring the Adherent Mucilage of Arabidopsis Seeds

    OpenAIRE

    Sullivan, Stuart; Ralet, Marie-Christine; Berger, Adeline; Diatloff, Eugene; Bischoff, Volker; Gonneau, Martine; Marion-Poll, Annie

    2011-01-01

    Imbibed Arabidopsis (Arabidopsis thaliana) seeds are encapsulated by mucilage that is formed of hydrated polysaccharides released from seed coat epidermal cells. The mucilage is structured with water-soluble and adherent layers, with cellulose present uniquely in an inner domain of the latter. Using a reverse-genetic approach to identify the cellulose synthases (CESAs) that produce mucilage cellulose, cesa5 mutants were shown to be required for the correct formation of these layers. Expressio...

  15. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana.

    Science.gov (United States)

    Strehmel, Nadine; Mönchgesang, Susann; Herklotz, Siska; Krüger, Sylvia; Ziegler, Jörg; Scheel, Dierk

    2016-01-01

    Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana's roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes. PMID:27399695

  16. Transcriptome response analysis of Arabidopsis thaliana to leafminer (Liriomyza huidobrensis

    Directory of Open Access Journals (Sweden)

    Zhang Sufang

    2012-12-01

    Full Text Available Abstract Background Plants have evolved a complicated resistance system and exhibit a variety of defense patterns in response to different attackers. Previous studies have shown that responses of plants to chewing insects and phloem-feeding insects are significantly different. Less is known, however, regarding molecular responses to leafminer insects. To investigate plant transcriptome response to leafminers, we selected the leafminer Liriomyza huidobrensis, which has a special feeding pattern more similar to pathogen damage than that of chewing insects, as a model insect, and Arabidopsis thaliana as a response plant. Results We first investigated local and systemic responses of A. thaliana to leafminer feeding using an Affymetrix ATH1 genome array. Genes related to metabolic processes and stimulus responses were highly regulated. Most systemically-induced genes formed a subset of the local response genes. We then downloaded gene expression data from online databases and used hierarchical clustering to explore relationships among gene expression patterns in A. thaliana damaged by different attackers. Conclusions Our results demonstrate that plant response patterns are strongly coupled to damage patterns of attackers.

  17. Multiple reference genomes and transcriptomes for Arabidopsis thaliana

    KAUST Repository

    Gan, Xiangchao

    2011-08-28

    Genetic differences between Arabidopsis thaliana accessions underlie the plants extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions. ©2011 Macmillan Publishers Limited. All rights reserved.

  18. Cerium toxicity, uptake and translocation in Arabidopsis thaliana seedlings

    Institute of Scientific and Technical Information of China (English)

    WANG Xue; LIN Yousheng; LIU Dongwu; XU Hengjian; LIU Tao; ZHAO Fengyun

    2012-01-01

    Arabidopsis thaliana seedlings were cultivated in 0-500 μmol/L of extraneous cerium (Ce) for 7 d to investigate the toxicity,uptake and translocation of rare earth elements (REEs).The results showed that Ce could be largely absorbed by the roots of A.thaliana and translocated to the shoots.But the uptake rates of Ce by the roots were much higher than the translocation rates from roots to shoots.Ultrastructural analysis revealed that Ce was mainly distributed on the cell wall.At higher concentration,Ce could also enter cell,destroy the ultrastructure of cells and disturb the intrinsic balance of nutrient elements of A.thaliana.Addition of Ce (50-500 μmol/L) to the culture medium significantly inhibited the elongation of primary roots,decreased chlorophyll content,rosette diameter and fresh mass of plants.The damage increased with the increase of Ce concentration in culture medium,although primary root elongation,chlorophyll content,and rosette diameter were stimulated by relatively low concentration (0.5 μmol/L) of Ce.Thus,it is speculated that REEs may become a new type contamination if we don't well control the release of REEs into the environment.

  19. AtPIN: Arabidopsis thaliana Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Silva-Filho Marcio C

    2009-12-01

    Full Text Available Abstract Background Protein-protein interactions (PPIs constitute one of the most crucial conditions to sustain life in living organisms. To study PPI in Arabidopsis thaliana we have developed AtPIN, a database and web interface for searching and building interaction networks based on publicly available protein-protein interaction datasets. Description All interactions were divided into experimentally demonstrated or predicted. The PPIs in the AtPIN database present a cellular compartment classification (C3 which divides the PPI into 4 classes according to its interaction evidence and subcellular localization. It has been shown in the literature that a pair of genuine interacting proteins are generally expected to have a common cellular role and proteins that have common interaction partners have a high chance of sharing a common function. In AtPIN, due to its integrative profile, the reliability index for a reported PPI can be postulated in terms of the proportion of interaction partners that two proteins have in common. For this, we implement the Functional Similarity Weight (FSW calculation for all first level interactions present in AtPIN database. In order to identify target proteins of cytosolic glutamyl-tRNA synthetase (Cyt-gluRS (AT5G26710 we combined two approaches, AtPIN search and yeast two-hybrid screening. Interestingly, the proteins glutamine synthetase (AT5G35630, a disease resistance protein (AT3G50950 and a zinc finger protein (AT5G24930, which has been predicted as target proteins for Cyt-gluRS by AtPIN, were also detected in the experimental screening. Conclusions AtPIN is a friendly and easy-to-use tool that aggregates information on Arabidopsis thaliana PPIs, ontology, and sub-cellular localization, and might be a useful and reliable strategy to map protein-protein interactions in Arabidopsis. AtPIN can be accessed at http://bioinfo.esalq.usp.br/atpin.

  20. CuO Nanoparticle Interaction with Arabidopsis thaliana: Toxicity, Parent-Progeny Transfer, and Gene Expression.

    Science.gov (United States)

    Wang, Zhenyu; Xu, Lina; Zhao, Jian; Wang, Xiangke; White, Jason C; Xing, Baoshan

    2016-06-01

    CuO nanoparticles (NPs) (20, 50 mg L(-1)) inhibited seedling growth of different Arabidopsis thaliana ecotypes (Col-0, Bay-0, and Ws-2), as well as the germination of their pollens and harvested seeds. For most of growth parameters (e.g., biomass, relative growth rate, root morphology change), Col-0 was the more sensitive ecotype to CuO NPs compared to Bay-0 and Ws-2. Equivalent Cu(2+) ions and CuO bulk particles had no effect on Arabidopsis growth. After CuO NPs (50 mg L(-1)) exposure, Cu was detected in the roots, leaves, flowers and harvested seeds of Arabidopsis, and its contents were significantly higher than that in CuO bulk particles (50 mg L(-1)) and Cu(2+) ions (0.15 mg L(-1)) treatments. Based on X-ray absorption near-edge spectroscopy analysis (XANES), Cu in the harvested seeds was confirmed as being mainly in the form of CuO (88.8%), which is the first observation on the presence of CuO NPs in the plant progeny. Moreover, after CuO NPs exposure, two differentially expressed genes (C-1 and C-3) that regulated root growth and reactive oxygen species generation were identified, which correlated well with the physiological root inhibition and oxidative stress data. This current study provides direct evidence for the negative effects of CuO NPs on Arabidopsis, including accumulation and parent-progeny transfer of the particles, which may have significant implications with regard to the risk of NPs to food safety and security. PMID:27226046

  1. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bernier Georges

    2003-01-01

    Full Text Available Abstract Background Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and rosette growth habit, Arabidopsis is hardly grown in standard hydroponic devices and the systems described in the last years are still difficult to transpose at a large scale. Our aim was to design and optimize an up-scalable device that would be adaptable to any experimental conditions. Results An hydroponic system was designed for Arabidopsis, which is based on two units: a seed-holder and a 1-L tank with its cover. The original agar-containing seed-holder allows the plants to grow from sowing to seed set, without transplanting step and with minimal waste. The optimum nitrate supply was determined for vegetative growth, and the flowering response to photoperiod and vernalization was characterized to show the feasibility and reproducibility of experiments extending over the whole life cycle. How this equipment allowed to overcome experimental problems is illustrated by the analysis of developmental effects of nitrate reductase deficiency in nia1nia2 mutants. Conclusion The hydroponic device described in this paper allows to drive small and large scale cultures of homogeneously growing Arabidopsis plants. Its major advantages are its flexibility, easy handling, fast maintenance and low cost. It should be suitable for many experimental purposes.

  2. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes.

    Directory of Open Access Journals (Sweden)

    Mesfin Tesfaye

    Full Text Available Plant genomes contain several hundred defensin-like (DEFL genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species.

  3. A glycolate dehydrogenase in the mitochondria of Arabidopsis thaliana.

    Science.gov (United States)

    Bari, Rafijul; Kebeish, Rashad; Kalamajka, Rainer; Rademacher, Thomas; Peterhänsel, Christoph

    2004-03-01

    The fixation of molecular O2 by the oxygenase activity of Rubisco leads to the formation of phosphoglycolate in the chloroplast that is further metabolized in the process of photorespiration. The initial step of this pathway is the oxidation of glycolate to glyoxylate. Whereas in higher plants this reaction takes place in peroxisomes and is dependent on oxygen as a co-factor, most algae oxidize glycolate in the mitochondria using organic co-factors. The identification and characterization of a novel glycolate dehydrogenase in Arabidopsis thaliana is reported here. The enzyme is dependent on organic co-factors and resembles algal glycolate dehydrogenases in its enzymatic properties. Mutants of E. coli incapable of glycolate oxidation can be complemented by overexpression of the Arabidopsis open reading frame. The corresponding RNA accumulates preferentially in illuminated leaves, but was also found in other tissues investigated. A fusion of the N-terminal part of the Arabidopsis glycolate dehydrogenase to red fluorescent protein accumulates in mitochondria when overexpressed in the homologous system. Based on these results it is proposed that the basic photorespiratory system of algae is conserved in higher plants. PMID:14966218

  4. DNA fingerprinting and new tools for fine-scale discrimination of Arabidopsis thaliana accessions.

    Science.gov (United States)

    Simon, Matthieu; Simon, Adeline; Martins, Fréderic; Botran, Lucy; Tisné, Sébastien; Granier, Fabienne; Loudet, Olivier; Camilleri, Christine

    2012-03-01

    One of the main strengths of Arabidopsis thaliana as a model species is the impressive number of public resources available to the scientific community. Exploring species genetic diversity--and therefore adaptation--relies on collections of individuals from natural populations taken from diverse environments. Nevertheless, due to a few mislabeling events or genotype mixtures, some variants available in stock centers have been misidentified, causing inconsistencies and limiting the potential of genetic analyses. To improve the identification of natural accessions, we genotyped 1311 seed stocks from our Versailles Arabidopsis Stock Center and from other collections to determine their molecular profiles at 341 single nucleotide polymorphism markers. These profiles were used to compare genotypes at both the intra- and inter-accession levels. We confirmed previously described inconsistencies and revealed new ones, and suggest likely identities for accessions whose lineage had been lost. We also developed two new tools: a minimal fingerprint computation to quickly verify the identity of an accession, and an optimized marker set to assist in the identification of unknown or mixed accessions. These tools are available on a dedicated web interface called ANATool (https://www.versailles.inra.fr/ijpb/crb/anatool) that provides a simple and efficient means to verify or determine the identity of A. thaliana accessions in any laboratory, without the need for any specific or expensive technology. PMID:22077701

  5. Comparative Analysis of Growth, Genome Size, Chromosome Numbers and Phylogeny of Arabidopsis thaliana and Three Cooccurring Species of the Brassicaceae from Uzbekistan

    Directory of Open Access Journals (Sweden)

    Matthias H. Hoffmann

    2010-01-01

    Full Text Available Contrary to literature data Arabidopsis thaliana was rarely observed in Middle Asia during a collection trip in 2001. Instead, three other Brassicaceae species were frequently found at places where A. thaliana was expected. To reveal reasons for this frequency pattern, we studied chromosome numbers, genome sizes, phylogenetic relationships, developmental rates, and reproductive success of A. thaliana, Olimarabidopsis pumila, Arabis montbretiana, and Arabis auriculata from Uzbekistan in two temperature treatments. There are little but partially significant differences between phenotypes. All studied species have very small genomes. The 1Cx-values of different genotypes within the sampled species are correlated with altitude. Developmental rates are also correlated with 1Cx-values. In our growth experiments, Arabidopsis had high seed sterility at higher temperature, which might be one reason for the rarity of A. thaliana in Middle Asia.

  6. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana

    OpenAIRE

    WANG, YANPING; Yang, Li; Chen, Xi; Ye, Tiantian; Zhong, Bao; Liu, Ruijie; Wu, Yan; Chan, Zhulong

    2015-01-01

    Drought stress is one of the disadvantageous environmental conditions for plant growth and reproduction. Given the importance of abscisic acid (ABA) to plant growth and abiotic stress responses, identification of novel components involved in ABA signalling transduction is critical. In this study, we screened numerous Arabidopsis thaliana mutants by seed germination assay and identified a mutant mlp43 (major latex protein-like 43) with decreased ABA sensitivity in seed germination. The mlp43 m...

  7. Mutagenesis of Arabidopsis Thaliana by N+ Ion Implantation

    Science.gov (United States)

    Zhang, Genfa; Shi, Xiaoming; Nie, Yanli; Jiang, Shan; Zhou, Hongyu; Lu, Ting; Zhang, Jun

    2006-05-01

    Ion implantation, as a new biophysically mutagenic technique, has shown a great potential for crop breeding. By analyzing polymorphisms of genomic DNA through RAPD-based DNA analysis, we compared the frequency and efficiency of somatic and germ-line mutations of Arabidopsis thaliana treated with N+ ion implantation and γ-rays radiation. Our data support the following conclusions: (1) N+ ion implantation can induce a much wider spectrum of mutations than γ-rays radiation does; (2) Unlike the linear correlation between the doses and their effect in γ-rays radiation, the dose-effect correlation in N+ ion implantation is nonlinear; (3) Like γ-rays radiation, both somatic and germ-line mutations could be induced by N+ ion implantation; and (4) RAPD deletion patterns are usually seen in N+ ion implantation induced mutation.

  8. Human intrinsic factor expressed in the plant Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Fedosov, Sergey N; Laursen, Niels B; Nexø, Ebba;

    2003-01-01

    contamination by other B12 binders. We tested the use of recombinant plants for large-scale production of pathogen-free human recombinant IF. Human IF was successfully expressed in the recombinant plant Arabidopsis thaliana. Extract from fresh plants possessed high B12-binding capacity corresponding to 70 mg IF...... per 1 kg wet weight. The dried plants still retained 60% of the IF activity. The purified IF preparation consisted of a 50-kDa glycosylated protein with the N-terminal sequence of mature IF. Approximately one-third of the protein was cleaved at the internal site em leader PSNP downward arrow GPGP. The...... recombinant IF and gastric IF were alike, as was the interaction of recombinant and native IF with the specific receptor cubilin. The data presented show that recombinant plants have a great potential as a large-scale source of human IF for analytical and therapeutic purposes....

  9. Arabidopsis thaliana is an asymptomatic host of Alfalfa mosaic virus.

    Science.gov (United States)

    Balasubramaniam, Muthukumar; Ibrahim, Amr; Kim, Bong-Suk; Loesch-Fries, L Sue

    2006-11-01

    The susceptibility of Arabidopsis thaliana ecotypes to infection by Alfalfa mosaic virus (AMV) was evaluated. Thirty-nine ecotypes supported both local and systemic infection, 26 ecotypes supported only local infection, and three ecotypes could not be infected. No obvious symptoms characteristic of virus infection developed on the susceptible ecotypes under standard conditions of culture. Parameters of AMV infection were characterized in ecotype Col-0, which supported systemic infection and accumulated higher levels of AMV than the symptomatic host Nicotiana tabacum. The formation of infectious AMV particles in infected Col-0 was confirmed by infectivity assays on a hypersensitive host and by electron microscopy of purified virions. Replication and transcription of AMV was confirmed by de novo synthesis of AMV subgenomic RNA in Col-0 protoplasts transfected with AMV RNA or plasmids harboring AMV cDNAs. PMID:16875753

  10. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana

    Science.gov (United States)

    Su, Fan; Jacquard, Cédric; Villaume, Sandra; Michel, Jean; Rabenoelina, Fanja; Clément, Christophe; Barka, Essaid A.; Dhondt-Cordelier, Sandrine; Vaillant-Gaveau, Nathalie

    2015-01-01

    Several plant growth-promoting rhizobacteria (PGPR) are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN), on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers. Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyll. Impact of inoculation modes (either on seeds or by soil irrigation) and their effects overnight at 0, -1, or -3°C, were investigated by following photosystem II (PSII) activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A. thaliana

  11. Burkholderia phytofirmans PsJN reduces damages to freezing temperature in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fan eSU

    2015-10-01

    Full Text Available Several plant growth-promoting rhizobacteria (PGPR are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN, on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers.Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyllImpact of inoculation modes (either on seeds or by soil irrigation and their effects overnight at 0, -1 or -3°C, were investigated by following photosystem II (PSII activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A

  12. Nuclear micro-probe analysis of Arabidopsis thaliana leaves

    International Nuclear Information System (INIS)

    Phytoremediation is a cost-effective plant-based approach for remediation of soils and waters which takes advantage of the remarkable ability of some plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, such as toxic heavy metals and organic pollutants. Nowadays, phytoremediation technology is becoming of paramount importance when environmental decontamination is concerned, due to the emerging knowledge of its physiological and molecular mechanisms and the new biological and engineering strategies designed to optimize and improve it. In addition, the feasibility of using plants for environmental cleanup has been confirmed by many different trials around the world. Arabidopsis thaliana plants can be used for basic studies to improve the technology on phytoremediation. Making use of nuclear microscopy techniques, in this paper we study leaves of wild type and transgenic A. thaliana plants grown in a cadmium-rich environment under different conditions. Micro-PIXE, RBS and SEM analyses, performed on the scanning proton micro-probe at the CNA in Seville (Spain), prove that cadmium is preferentially sequestered in the central region of epidermal trichome and allow comparing the effects of genetic modifications

  13. Nuclear micro-probe analysis of Arabidopsis thaliana leaves

    Science.gov (United States)

    Ager, F. J.; Ynsa, M. D.; Domínguez-Solís, J. R.; López-Martín, M. C.; Gotor, C.; Romero, L. C.

    2003-09-01

    Phytoremediation is a cost-effective plant-based approach for remediation of soils and waters which takes advantage of the remarkable ability of some plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, such as toxic heavy metals and organic pollutants. Nowadays, phytoremediation technology is becoming of paramount importance when environmental decontamination is concerned, due to the emerging knowledge of its physiological and molecular mechanisms and the new biological and engineering strategies designed to optimize and improve it. In addition, the feasibility of using plants for environmental cleanup has been confirmed by many different trials around the world. Arabidopsis thaliana plants can be used for basic studies to improve the technology on phytoremediation. Making use of nuclear microscopy techniques, in this paper we study leaves of wild type and transgenic A. thaliana plants grown in a cadmium-rich environment under different conditions. Micro-PIXE, RBS and SEM analyses, performed on the scanning proton micro-probe at the CNA in Seville (Spain), prove that cadmium is preferentially sequestered in the central region of epidermal trichome and allow comparing the effects of genetic modifications.

  14. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  15. Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria

    Science.gov (United States)

    Wall, Melisa K.; Mitchenall, Lesley A.; Maxwell, Anthony

    2004-01-01

    DNA gyrase is the bacterial DNA topoisomerase (topo) that supercoils DNA by using the free energy of ATP hydrolysis. The enzyme, an A2B2 tetramer encoded by the gyrA and gyrB genes, catalyses topological changes in DNA during replication and transcription, and is the only topo that is able to introduce negative supercoils. Gyrase is essential in bacteria and apparently absent from eukaryotes and is, consequently, an important target for antibacterial agents (e.g., quinolones and coumarins). We have identified four putative gyrase genes in the model plant Arabidopsis thaliana; one gyrA and three gyrB homologues. DNA gyrase protein A (GyrA) has a dual translational initiation site targeting the mature protein to both chloroplasts and mitochondria, and there are individual targeting sequences for two of the DNA gyrase protein B (GyrB) homologues. N-terminal fusions of the organellar targeting sequences to GFPs support the hypothesis that one enzyme is targeted to the chloroplast and another to the mitochondrion, which correlates with supercoiling activity in isolated organelles. Treatment of seedlings and cultured cells with gyrase-specific drugs leads to growth inhibition. Knockout of A. thaliana gyrA is embryo-lethal whereas knockouts in the gyrB genes lead to seedling-lethal phenotypes or severely stunted growth and development. The A. thaliana genes have been cloned in Escherichia coli and found to complement gyrase temperature-sensitive strains. This report confirms the existence of DNA gyrase in eukaryotes and has important implications for drug targeting, organelle replication, and the evolution of topos in plants. PMID:15136745

  16. LEA (Late Embryogenesis Abundant proteins and their encoding genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hincha Dirk K

    2008-03-01

    Full Text Available Abstract Background LEA (late embryogenesis abundant proteins have first been described about 25 years ago as accumulating late in plant seed development. They were later found in vegetative plant tissues following environmental stress and also in desiccation tolerant bacteria and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown. Results We present a genome-wide analysis of LEA proteins and their encoding genes in Arabidopsis thaliana. We identified 51 LEA protein encoding genes in the Arabidopsis genome that could be classified into nine distinct groups. Expression studies were performed on all genes at different developmental stages, in different plant organs and under different stress and hormone treatments using quantitative RT-PCR. We found evidence of expression for all 51 genes. There was only little overlap between genes expressed in vegetative tissues and in seeds and expression levels were generally higher in seeds. Most genes encoding LEA proteins had abscisic acid response (ABRE and/or low temperature response (LTRE elements in their promoters and many genes containing the respective promoter elements were induced by abscisic acid, cold or drought. We also found that 33% of all Arabidopsis LEA protein encoding genes are arranged in tandem repeats and that 43% are part of homeologous pairs. The majority of LEA proteins were predicted to be highly hydrophilic and natively unstructured, but some were predicted to be folded. Conclusion The analyses indicate a wide range of sequence diversity, intracellular localizations, and expression patterns. The high fraction of retained duplicate genes and the inferred functional diversification indicate that they confer an evolutionary advantage for an organism under varying stressful environmental conditions. This comprehensive analysis will be an important starting point for

  17. Peculiarities of genital organ formation in Arabidopsis thaliana (L) Heynh. under spaceflight conditions

    Science.gov (United States)

    Kordyum, E. L.; Sytnik, K. M.; Chernyaeva, I. I.

    An experiment was carried out aboard the Salyut 6 research orbital station on Arabidopsis thaliana cultivations. The seeds were sprouted in the Svetoblok 1 device which provides for plant growth in the agar medium under sterile conditions and at 4000 lux illumination. The experimental plants, as well as the controls, reached approximately the same developmental stages: both flowered and began to bear fruit. A microscopic examination of the generative organs in the control and experimental plants shows that in normally formed (by appearance) flower buds and flowers of the experimental plants, as distinct from the controls, there were no fertile elements of the adroecium and gynoecium. Degeneration of the latter occurred at different stages of generative organ development. Possible reasons for this phenomenon in plants grown under weightless conditions are considered.

  18. A Direct Screening Procedure for Gravitropism Mutants in Arabidopsis thaliana (L.) Heynh. 1

    Science.gov (United States)

    Bullen, Bertha L.; Best, Thérèse R.; Gregg, Mary M.; Barsel, Sara-Ellen; Poff, Kenneth L.

    1990-01-01

    In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable. PMID:11537704

  19. A direct screening procedure for gravitropism mutants in Arabidopsis thaliana (L.) Heynh.

    Science.gov (United States)

    Bullen, B L; Best, T R; Gregg, M M; Barsel S-E; Poff, K L

    1990-01-01

    In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable. PMID:11537704

  20. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius

    2016-07-11

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  1. Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves.

    Science.gov (United States)

    Ryffel, Florian; Helfrich, Eric Jn; Kiefer, Patrick; Peyriga, Lindsay; Portais, Jean-Charles; Piel, Jörn; Vorholt, Julia A

    2016-03-01

    The phyllosphere, which is defined as the parts of terrestrial plants above the ground, is a large habitat for different microorganisms that show a high extent of adaption to their environment. A number of hypotheses were generated by culture-independent functional genomics studies to explain the competitiveness of specialized bacteria in the phyllosphere. In contrast, in situ data at the metabolome level as a function of bacterial colonization are lacking. Here, we aimed to obtain new insights into the metabolic interplay between host and epiphytes upon colonization of Arabidopsis thaliana leaves in a controlled laboratory setting using environmental metabolomics approaches. Quantitative nuclear magnetic resonance (NMR) and imaging high-resolution mass spectrometry (IMS) methods were used to identify Arabidopsis leaf surface compounds and their possible involvement in the epiphytic lifestyle by relative changes in compound pools. The dominant carbohydrates on the leaf surfaces were sucrose, fructose and glucose. These sugars were significantly and specifically altered after epiphytic leaf colonization by the organoheterotroph Sphingomonas melonis or the phytopathogen Pseudomonas syringae pv. tomato, but only to a minor extent by the methylotroph Methylobacterium extorquens. In addition to carbohydrates, IMS revealed surprising alterations in arginine metabolism and phytoalexin biosynthesis that were dependent on the presence of bacteria, which might reflect the consequences of bacterial activity and the recognition of not only pathogens but also commensals by the plant. These results highlight the power of environmental metabolomics to aid in elucidating the molecular basis underlying plant-epiphyte interactions in situ. PMID:26305156

  2. Crystallization and preliminary X-ray analysis of immunophilin-like FKBP42 from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The crystallization of FKBP42, a multi-domain member of the FK506-binding protein family, from the plant A. thaliana is reported. Two fragments of FKBP42 from Arabidopsis thaliana covering differing lengths of the molecule have been expressed, purified and crystallized. For each construct, crystals belonging to two different space groups were obtained and subjected to preliminary X-ray analysis

  3. Arabidopsis thaliana and Thlaspi caerulescens respond comparably to low zinc supply

    NARCIS (Netherlands)

    Talukdar, S.; Aarts, M.G.M.

    2008-01-01

    The main objective of this research was to study the response of Arabidopsis thaliana L. and Thlaspi caerulescens J. & C. Presl to different Zn supplies. The A. thaliana plants were exposed to Zn-deficiency (0 and 0.05 ¿M Zn) and compared to the plants grown on media containing standard Zn (2 ¿M

  4. Inferring the Brassica rapa interactome using protein-protein interaction data from Arabidopsis thaliana

    OpenAIRE

    Jianhua eYang; Kim eOsman; Mudassar eIqbal; Stekel, Dov J; Zewei eLuo; Armstrong, Susan J; Franklin, F. Chris H.

    2013-01-01

    Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein-protein interaction (PPI) data are available from the major PPI databases. It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B. rapa ...

  5. Inferring the Brassica rapa Interactome Using Protein–Protein Interaction Data from Arabidopsis thaliana

    OpenAIRE

    Yang, Jianhua; Osman, Kim; Iqbal, Mudassar; Stekel, Dov J; Luo, Zewei; Armstrong, Susan J; Franklin, F. Chris H.

    2013-01-01

    Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein–protein interaction (PPI) data are available from the major PPI databases (DBs). It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B....

  6. Early life stages contribute strongly to local adaptation in Arabidopsis thaliana.

    Science.gov (United States)

    Postma, Froukje M; Ågren, Jon

    2016-07-01

    The magnitude and genetic basis of local adaptation is of fundamental interest in evolutionary biology. However, field experiments usually do not consider early life stages, and therefore may underestimate local adaptation and miss genetically based tradeoffs. We examined the contribution of differences in seedling establishment to adaptive differentiation and the genetic architecture of local adaptation using recombinant inbred lines (RIL) derived from a cross between two locally adapted populations (Italy and Sweden) of the annual plant Arabidopsis thaliana We planted freshly matured, dormant seeds (>180 000) representing >200 RILs at the native field sites of the parental genotypes, estimated the strength of selection during different life stages, mapped quantitative trait loci (QTL) for fitness and its components, and quantified selection on seed dormancy. We found that selection during the seedling establishment phase contributed strongly to the fitness advantage of the local genotype at both sites. With one exception, local alleles of the eight distinct establishment QTL were favored. The major QTL for establishment and total fitness showed evidence of a fitness tradeoff and was located in the same region as the major seed dormancy QTL and the dormancy gene DELAY OF GERMINATION 1 (DOG1). RIL seed dormancy could explain variation in seedling establishment and fitness across the life cycle. Our results demonstrate that genetically based differences in traits affecting performance during early life stages can contribute strongly to adaptive differentiation and genetic tradeoffs, and should be considered for a full understanding of the ecology and genetics of local adaptation. PMID:27330113

  7. Arabidopsis thaliana glucuronosyltransferase in family GT14

    DEFF Research Database (Denmark)

    Dilokpimol, Adiphol; Geshi, Naomi

    2014-01-01

    family GT14 in the Carbohydrate Active Enzyme database (CAZy; www.cazy.org), in which a total of 11 proteins, including AtGLCAT 14A, are classified from Arabidopsis thaliana. In this paper, we report the enzyme activities for the rest of the Arabidopsis GT14 isoforms, analyzed in the same way as for At...

  8. Structure and organ specificity of an anionic peroxidase from Arabidopsis thaliana cell suspension culture

    DEFF Research Database (Denmark)

    Ostergaard, L; Abelskov, A K; Mattsson, O; Welinder, K G

    The predominant peroxidase (pI 3.5) (E.C. 1.11.1.7) of an Arabidopsis thaliana cell suspension culture was purified and partially sequenced. Oligonucleotides were designed and a specific probe was obtained. A cDNA clone was isolated from an Arabidopsis cell suspension cDNA library and completely ...

  9. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana

    OpenAIRE

    PiisilÀ, Maria; Keceli, Mehmet A; Brader, GÌnter; Jakobson, Liina; Jõesaar, Indrek; Sipari, Nina; Kollist, Hannes; Palva, E. T.; Kariola, Tarja

    2015-01-01

    Abstract Background The Arabidopsis thaliana F-box protein MORE AXILLARY GROWTH2 (MAX2) has previously been characterized for its role in plant development. MAX2 appears essential for the perception of the newly characterized phytohormone strigolactone, a negative regulator of polar auxin transport in Arabidopsis. Results A reverse genetic screen for F-box protein ...

  10. Stability of the rhizosphere and endophytic bacterial communities associated with Arabidopsis thaliana (L.) Heynh under impact of cosmic factors

    Science.gov (United States)

    Kordium, V. A.; Adamchuk-Chala, N. I.; Moshinec, H. V.

    The orbital experiment will involve a growing of Arabidopsis plant seed to seed in the presence of a plant probiotic bacteria consortium introduced into the system The purpose of experiment is to characterize microbial community associated with Arabidopsis thaliana and determine how consortium of introduced bacteria along with the endemic plant-associated bacteria influences the plant development reproductive system and seed formation in spaceflight conditions The first study will be an examination of the survival of model bacteria in on the inoculated plant The second complex study is to examine the plant traits in particular the ultrastructure of root statocytes in order to determine whether the plant development proceeds normally under microgravity conditions on background of introduced bacteria and to assess the structural changes occurring in the cotyledons generative organs and seeds The third set of observations will concern studies of the structure of microbial community associated with Arabidopsis plants with traditional and molecular tools The fourth part of the work will be an examination of mobile genetic elements that can play a role in adaptation of bacteria to the spaceflight conditions however they may affect the stability of bacterial endo- and rhizosphere communities The final part of the proposal initiates the study of possible risk of the bacterial consortium use for a plant inoculation in spaceflight conditions An evaluation of this risk will be performed via examination of expression of the Klebsiella

  11. Properties of serine: glyoxylate aminotransferase purified from Arabidopsis thaliana leaves

    Institute of Scientific and Technical Information of China (English)

    Maria Kendziorek; Andrzej Paszkowski

    2008-01-01

    The photorespiratory enzyme L-serine: glyoxylate aminotransferase (SGAT; EC 2.6.1.45) was purified from Arabidopsis thaliana leaves. The final enzyme was approximately 80% pure as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with silver staining. The identity of the enzyme was confirmed by LC/MS/MS analysis.The molecular mass estimated by gel filtration chromatography on Sephadex G-150 under non-denaturing conditions, mass spectrometry (matrix-assisted laser desorption/ionization/time of flight technique) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 82.4 kDa,42.0 kDa, and 39.8 kDa, respectively, indicating dimer as the active form. The optimum Ph value was 9.2. The enzyme activity was inhibited by aminooxyacetate and β-chloro-L-alanine both compounds reacting with the carbonyl group of pyridoxal phosphate. The enzyme's transaminating activity with L-alanine and glyoxylate as substrates was approximately 55% of that observed with L-serine and glyoxylate, The lower Km value (1.25 Mm) for L-alanine, compared with that of other plant SGATs, and the kcat/Km(Ala) ratio being approximately 2-fold higher than kcat/Km(Ser) suggested that, during photorespiration, Ala and Ser are used by Arabidopsis SGAT with equal efficiency as amino group donors for glyoxylate. The equilibrium constant (Keq), derived from the Haldane relation, for the transamination reaction between L-serine and glyoxylate with the formation of hydroxypyruvate and glycine was 79.1, strongly favoring glycine synthesis. However, it was accompanied by a low Km value of 2.83 Mm for glycine. A comparison of some kinetic properties of the studied enzymes with the recombinant Arabidopsis SGATs previously obtained revealed substantial differences. The ratio of the velocity of the transamination reaction with L-alanine and glyoxylate as substrates versus that with L-serine and glyoxylate was 1:1.8 for the native enzyme, whereas it was 1: 7 for the recombinant SGAT

  12. Internet Resources for Gene Expression Analysis in Arabidopsis thaliana.

    Science.gov (United States)

    Hehl, Reinhard; Bülow, Lorenz

    2008-09-01

    The number of online databases and web-tools for gene expression analysis in Arabidopsis thaliana has increased tremendously during the last years. These resources permit the database-assisted identification of putative cis-regulatory DNA sequences, their binding proteins, and the determination of common cis-regulatory motifs in coregulated genes. DNA binding proteins may be predicted by the type of cis-regulatory motif. Further questions of combinatorial control based on the interaction of DNA binding proteins and the colocalization of cis-regulatory motifs can be addressed. The database-assisted spatial and temporal expression analysis of DNA binding proteins and their target genes may help to further refine experimental approaches. Signal transduction pathways upstream of regulated genes are not yet fully accessible in databases mainly because they need to be manually annotated. This review focuses on the use of the AthaMap and PathoPlant((R)) databases for gene expression regulation analysis and discusses similar and complementary online databases and web-tools. Online databases are helpful for the development of working hypothesis and for designing subsequent experiments. PMID:19506727

  13. Molecule mechanism of stem cells in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Wenjin Zhang

    2014-01-01

    Full Text Available Plants possess the ability to continually produce new tissues and organs throughout their life. Unlike animals, plants are exposed to extreme variations in environmental conditions over the course of their lives. The vitality of plants is so powerful that they can survive several hundreds of years or even more making it an amazing miracle that comes from plant stem cells. The stem cells continue to divide to renew themselves and provide cells for the formation of leaves, stems, and flowers. Stem cells are not only quiescent but also immortal, pluripotent and homeostatic. Stem cells are the magic cells that repair tissues and regenerate organs. During the past decade, scholars around the world have paid more and more attention toward plant stem cells. At present, the major challenge is in relating molecule action mechanism to root apical meristem, shoot apical meristem and vascular system. The coordination between stem cells maintenance and differentiation is critical for normal plant growth and development. Elements such as phytohormones, transcription factors and some other known or unknown genes cooperate to balance this process. In this review, Arabidopsis thaliana as a pioneer system, we highlight recent developments in molecule modulating, illustrating how plant stem cells generate new mechanistic insights into the regulation of plants growth and development.

  14. Functional bias in molecular evolution rate of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Anandakrishnan Ramu

    2010-05-01

    Full Text Available Abstract Background Characteristics derived from mutation and other mechanisms that are advantageous for survival are often preserved during evolution by natural selection. Some genes are conserved in many organisms because they are responsible for fundamental biological function, others are conserved for their unique functional characteristics. Therefore one would expect the rate of molecular evolution for individual genes to be dependent on their biological function. Whether this expectation holds for genes duplicated by whole genome duplication is not known. Results We empirically demonstrate here, using duplicated genes generated from the Arabidopsis thaliana α-duplication event, that the rate of molecular evolution of genes duplicated in this event depend on biological function. Using functional clustering based on gene ontology annotation of gene pairs, we show that some duplicated genes, such as defense response genes, are under weaker purifying selection or under stronger diversifying selection than other duplicated genes, such as protein translation genes, as measured by the ratio of nonsynonymous to synonymous divergence (dN/dS. Conclusions These results provide empirical evidence indicating that molecular evolution rate for genes duplicated in whole genome duplication, as measured by dN/dS, may depend on biological function, which we characterize using gene ontology annotation. Furthermore, the general approach used here provides a framework for comparative analysis of molecular evolution rate for genes based on their biological function.

  15. Riboflavin-induced Priming for Pathogen Defense in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Shujian Zhang; Xue Yang; Maowu Sun; Feng Sun; Sheng Deng; Hansong Dong

    2009-01-01

    Riboflavin (vitamin B2) participates in a variety of redox processes that affect plant defense responses. Previously we have shown that riboflavin induces pathogen resistance in the absence of hypersensitive cell death (HCD) in plants. Herein, we report that riboflavin induces priming of defense responses in Arabidopsis thaliana toward infection by virulent Pseudomonas syringae pv. Tomato DC3000 (Pst). Induced resistance was mechanistically connected with the expression of defense response genes and cellular defense events, including H2O2 burst, HCD, and callose deposition in the plant. Riboflavin treatment and inoculation of plants with Pst were neither active but both synergized to induce defense responses. The priming process needed NPR1 (essential regulator of systemic acquired resistance) and maintenance of H2O2 burst but was independent of salicylic acid, jasmonic acid, ethylene, and abscisic acid. Our results suggest that the role of riboflavin in priming defenses is subject to a signaling process distinct from the known pathways of hormone signal transduction.

  16. Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions.

    Science.gov (United States)

    Kawakatsu, Taiji; Huang, Shao-Shan Carol; Jupe, Florian; Sasaki, Eriko; Schmitz, Robert J; Urich, Mark A; Castanon, Rosa; Nery, Joseph R; Barragan, Cesar; He, Yupeng; Chen, Huaming; Dubin, Manu; Lee, Cheng-Ruei; Wang, Congmao; Bemm, Felix; Becker, Claude; O'Neil, Ryan; O'Malley, Ronan C; Quarless, Danjuma X; Schork, Nicholas J; Weigel, Detlef; Nordborg, Magnus; Ecker, Joseph R

    2016-07-14

    The epigenome orchestrates genome accessibility, functionality, and three-dimensional structure. Because epigenetic variation can impact transcription and thus phenotypes, it may contribute to adaptation. Here, we report 1,107 high-quality single-base resolution methylomes and 1,203 transcriptomes from the 1001 Genomes collection of Arabidopsis thaliana. Although the genetic basis of methylation variation is highly complex, geographic origin is a major predictor of genome-wide DNA methylation levels and of altered gene expression caused by epialleles. Comparison to cistrome and epicistrome datasets identifies associations between transcription factor binding sites, methylation, nucleotide variation, and co-expression modules. Physical maps for nine of the most diverse genomes reveal how transposons and other structural variants shape the epigenome, with dramatic effects on immunity genes. The 1001 Epigenomes Project provides a comprehensive resource for understanding how variation in DNA methylation contributes to molecular and non-molecular phenotypes in natural populations of the most studied model plant. PMID:27419873

  17. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana.

    Science.gov (United States)

    Strehmel, Nadine; Böttcher, Christoph; Schmidt, Stephan; Scheel, Dierk

    2014-12-01

    To explore the chemical composition of root exudates of the model plant Arabidopsis thaliana a workflow for nontargeted metabolite profiling of the semipolar fraction of root exudates was developed. It comprises hydroponic plant cultivation and sampling of root exudates under sterile conditions, sample preparation by solid-phase extraction and analysis by reversed-phase UPLC/ESI-QTOFMS. Following the established workflow, root exudates of six-week-old plants were profiled and a set of reproducibly occurring molecular features was compiled. To structurally elucidate the corresponding metabolites, accurate mass tandem mass spectrometry and on-line hydrogen/deuterium exchange were applied. Currently, a total of 103 compounds were detected and annotated by elemental composition of which more than 90 were structurally characterized or classified. Among them, 42 compounds were rigorously identified using an authenticated standard. The compounds identified so far include nucleosides, deoxynucleosides, aromatic amino acids, anabolites and catabolites of glucosinolates, dipeptides, indolics, salicylic and jasmonic acid catabolites, coumarins, mono-, di- and trilignols, hydroxycinnamic acid derivatives and oxylipins and exemplify the high chemical diversity of plant root exudates. PMID:25457500

  18. Regulation of Arabidopsis thaliana 5S rRNA Genes.

    Science.gov (United States)

    Vaillant, Isabelle; Tutois, Sylvie; Cuvillier, Claudine; Schubert, Ingo; Tourmente, Sylvette

    2007-05-01

    The Arabidopsis thaliana genome comprises around 1,000 copies of 5S rRNA genes encoding both major and minor 5S rRNAs. In mature wild-type leaves, the minor 5S rRNA genes are silent. Using different mutants of DNA methyltransferases (met1, cmt3 and met1 cmt3), components of the RNAi pathway (ago4) or post-translational histone modifier (hda6/sil1), we show that the corresponding proteins are needed to maintain proper methylation patterns at heterochromatic 5S rDNA repeats. Using reverse transcription-PCR and cytological analyses, we report that a decrease of 5S rDNA methylation at CG or CNG sites in these mutants leads to the release of 5S rRNA gene silencing which occurred without detectable changes of the 5S rDNA chromatin structure. In spite of severely reduced DNA methylation, the met1 cmt3 double mutant revealed no increase in minor 5S rRNA transcripts. Furthermore, the release of silencing of minor 5S rDNAs can be achieved without increased formation of euchromatic loops by 5S rDNA, and is independent from the global heterochromatin content. Additionally, fluorescence in situ hybridization with centromeric 180 bp repeats confirmed that these highly repetitive sequences, in spite of their elevated transcriptional activity in the DNA methyltransferase mutants (met1, cmt3 and met1 cmt3), remain within chromocenters of the mutant nuclei. PMID:17412735

  19. A proteomics study of auxin effects in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Meiqing Xing; Hongwei Xue

    2012-01-01

    Many phytohormones regulate plant growth and development through modulating protein degradation.In this study,a proteome study based on multidimensional non-gel shotgun approach was performed to analyze the auxin-induced protein degradation via ubiquitinproteasome pathway of Arabidopsis thaliana,with the emphasis to study the overall protein changes after auxin treatment (1 nM or 1 μM indole-3-acetic acid for 6,12,or 24 h).More than a thousand proteins were detected by using label-free shotgun method,and 386 increased proteins and 370 decreased ones were identified after indole-3-acetic acid treatment.By using the auxin receptor-deficient mutant,tir1-1,as control,comparative analysis revealed that 69 and 79 proteins were significantly decreased and increased,respectively.Detailed analysis showed that among the altered proteins,some were previously reported to be associated with auxin regulation and others are potentially involved in mediating the auxin effects on specific cellular and physiological processes by regulating photosynthesis,chloroplast development,cytoskeleton,and intracellular signaling.Our results demonstrated that label-free shotgun proteomics is a powerful tool for large-scale protein identification and the analysis of the proteomic profiling of auxin-regulated biological processes will provide informative clues of underlying mechanisms of auxin effects.These results will help to expand the understanding of how auxin regulates plant growth and development via protein degradation.

  20. Plastid DNA polymerases from higher plants, Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Previously, we described a novel DNA polymerase, designated as OsPolI-like, from rice. The OsPolI-like showed a high degree of sequence homology with the DNA polymerase I of cyanobacteria and was localized in the plastid. Here, we describe two PolI-like polymerases, designated as AtPolI-like A and AtPolI-like B, from Arabidopsis thaliana. In situ hybridization analysis demonstrated expression of both mRNAs in proliferating tissues such as the shoot apical meristem. Analysis of the localizations of GFP fusion proteins showed that AtPolI-like A and AtPolI-like B were localized to plastids. AtPolI-like B expression could be induced by exposure to the mutagen H2O2. These results suggested that AtPolI-like B has a role in the repair of oxidation-induced DNA damage. Our data indicate that higher plants possess two plastid DNA polymerases that are not found in animals and yeasts

  1. Mutants of Arabidopsis thaliana hypersensitive to DNA-damaging treatments

    International Nuclear Information System (INIS)

    A simple screening method was developed for the isolation of Arabidopsis thaliana mutants hypersensitive to X-ray irradiation. The root meristem was used as the target for irradiation with sublethal doses of X rays, while protection of the shoot meristem by a lead cover allowed the rescue of hypersensitive individuals. We isolated nine independent X-ray-hypersensitive mutants from 7000 M2 seedlings. Analysis of three chosen mutants (xrs4, xrs9 and xrs11) showed that alterations in single recessive alleles are responsible for their phenotypes. The mutations are not allelic but linked and map to chromosome 4, suggesting mutations in novel genes as compared to previously mapped mutant alleles. Importantly, hypersensitivity to X rays was found to correlate with hypersensitivity to the DNA-alkylating agent mitomycin C, which provokes interstrand crosslinks, and/or to methyl methanesulfonate, which is known as a radiomimetic chemical. These novel phenotypes suggest that the mutants described here are altered in the repair of DNA damage, most probably by recombinational repair

  2. Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels.

    Directory of Open Access Journals (Sweden)

    Todd A Sangster

    Full Text Available The molecular chaperone HSP90 aids the maturation of a diverse but select set of metastable protein clients, many of which are key to a variety of signal transduction pathways. HSP90 function has been best investigated in animal and fungal systems, where inhibition of the chaperone has exceptionally diverse effects, ranging from reversing oncogenic transformation to preventing the acquisition of drug resistance. Inhibition of HSP90 in the model plant Arabidopsis thaliana uncovers novel morphologies dependent on normally cryptic genetic variation and increases stochastic variation inherent to developmental processes. The biochemical activity of HSP90 is strictly conserved between animals and plants. However, the substrates and pathways dependent on HSP90 in plants are poorly understood. Progress has been impeded by the necessity of reliance on light-sensitive HSP90 inhibitors due to redundancy in the A. thaliana HSP90 gene family. Here we present phenotypic and genome-wide expression analyses of A. thaliana with constitutively reduced HSP90 levels achieved by RNAi targeting. HSP90 reduction affects a variety of quantitative life-history traits, including flowering time and total seed set, increases morphological diversity, and decreases the developmental stability of repeated characters. Several morphologies are synergistically affected by HSP90 and growth temperature. Genome-wide expression analyses also suggest a central role for HSP90 in the genesis and maintenance of plastic responses. The expression results are substantiated by examination of the response of HSP90-reduced plants to attack by caterpillars of the generalist herbivore Trichoplusia ni. HSP90 reduction potentiates a more robust herbivore defense response. In sum, we propose that HSP90 exerts global effects on the environmental responsiveness of plants to many different stimuli. The comprehensive set of HSP90-reduced lines described here is a vital instrument to further examine

  3. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition

    International Nuclear Information System (INIS)

    The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity

  4. Hormonal relations of radiation-induced tumors of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    When gamma-irradiated Arabidopsis seed was germinated, tumors appeared on hypocotyls and apical meristems of the resulting plants. Several tumors have been cultured on hormone free medium for over two years since excision from the plants. The tumor lines display a range of phenotypes suggestive of abnormal hormone balance. To determine whether hormone overproduction or hypersensitivity is involved in tumorigenesis, we are measuring hormone levels in the tumor lines and characterizing their response to exogenously supplied growth regulators. Growth of two tumor lines is stimulated by either NAA or BAP, one is stimulated by NAA only, two by BAP only, and one is stimulated by neither. Growth of all lines tested thus far is inhibited by gibberellic acid, ethephon and ACC. The tumor lines appear more sensitive to ACC than normal callus tissue. Most tumors studied to date appear unlikely to have arisen due to increased hormone sensitivity. Experiments are in progress to determine auxin and cytokinin levels in the tumor lines

  5. Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery

    Directory of Open Access Journals (Sweden)

    Baldwin Samantha

    2011-02-01

    Full Text Available Abstract Background Arabidopsis thaliana is a useful model organism for deciphering the genetic determinants of seed size; however the small size of its seeds makes measurements difficult. Bulk seed weights are often used as an indicator of average seed size, but details of individual seed is obscured. Analysis of seed images is possible but issues arise from variations in seed pigmentation and shadowing making analysis laborious. We therefore investigated the use of a consumer level scanner to facilitate seed size measurements in conjunction with open source image-processing software. Results By using the transmitted light from the slide scanning function of a flatbed scanner and particle analysis of the resulting images, we have developed a method for the rapid and high throughput analysis of seed size and seed size distribution. The technical variation due to the approach was negligible enabling us to identify aspects of maternal plant growth that contribute to biological variation in seed size. By controlling for these factors, differences in seed size caused by altered parental genome dosage and mutation were easily detected. The method has high reproducibility and sensitivity, such that a mutant with a 10% reduction in seed size was identified in a screen of endosperm-expressed genes. Our study also generated average seed size data for 91 Arabidopsis accessions and identified a number of quantitative trait loci from two recombinant inbred line populations, generated from Cape Verde Islands and Burren accessions crossed with Columbia. Conclusions This study describes a sensitive, high-throughput approach for measuring seed size and seed size distribution. The method provides a low cost and robust solution that can be easily implemented into the workflow of studies relating to various aspects of seed development.

  6. Drought Stress Predominantly Endures Arabidopsis thaliana to Pseudomonas syringae Infection

    Directory of Open Access Journals (Sweden)

    Aarti eGupta

    2016-06-01

    Full Text Available Plant responses to a combination of drought and bacterial pathogen infection, an agronomically important and altogether a new stress, are not well studied. While occurring concurrently, these two stresses can lead to synergistic or antagonistic effects on plants due to stress-interaction. It is reported that plant responses to the stress combinations consist of both strategies unique to combined stress and those shared between combined and individual stresses. However, the combined stress response mechanisms governing stress interaction and net impact are largely unknown. In order to study these adaptive strategies, an accurate and convenient methodology is lacking even in model plants like Arabidopsis thaliana. The gradual nature of drought stress imposition protocol poses a hindrance in simultaneously applying pathogen infection under laboratory conditions to achieve combined stress. In present study we aimed to establish systematic combined stress protocol and to study physiological responses of the plants to various degrees of combined stress. Here, we have comprehensively studied the impact of combined drought and Pseudomonas syringae pv. tomato DC3000 infection on A. thaliana. Further, by employing different permutations of drought and pathogen stress intensities, an attempt was made to dissect the contribution of each individual stress effects during their concurrence. We hereby present two main aspects of combined stress viz., stress interaction and net impact of the stress on plants. Mainly, this study establishes a systematic protocol to assess the impact of combined drought and bacterial pathogen stress. It was observed that as a result of net impact, some physiological responses under combined stress are tailored when compared to the plants exposed to individual stresses. We also infer that plant responses under combined stress in this study are predominantly influenced by the drought stress. Our results show that pathogen induced

  7. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    DEFF Research Database (Denmark)

    Barah, Pankaj; Jayavelu, Naresh Doni; Rasmussen, Simon;

    2013-01-01

    available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about......BACKGROUND: Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking....... RESULTS: In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes...

  8. Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ivan Baxter

    Full Text Available In order to grow on soils that vary widely in chemical composition, plants have evolved mechanisms for regulating the elemental composition of their tissues to balance the mineral nutrient and trace element bioavailability in the soil with the requirements of the plant for growth and development. The biodiversity that exists within a species can be utilized to investigate how regulatory mechanisms of individual elements interact and to identify genes important for these processes. We analyzed the elemental composition (ionome of a set of 96 wild accessions of the genetic model plant Arabidopsis thaliana grown in hydroponic culture and soil using inductively coupled plasma mass spectrometry (ICP-MS. The concentrations of 17-19 elements were analyzed in roots and leaves from plants grown hydroponically, and leaves and seeds from plants grown in artificial soil. Significant genetic effects were detected for almost every element analyzed. We observed very few correlations between the elemental composition of the leaves and either the roots or seeds. There were many pairs of elements that were significantly correlated with each other within a tissue, but almost none of these pairs were consistently correlated across tissues and growth conditions, a phenomenon observed in several previous studies. These results suggest that the ionome of a plant tissue is variable, yet tightly controlled by genes and gene × environment interactions. The dataset provides a valuable resource for mapping studies to identify genes regulating elemental accumulation. All of the ionomic data is available at www.ionomicshub.org.

  9. Genetic Analysis of Gravity Signal Transduction in Arabidopsis thaliana Seedlings

    Science.gov (United States)

    Boonsirichai, K.; Harrison, B.; Stanga, J.; Young, L.-S.; Neal, C.; Sabat, G.; Murthy, N.; Harms, A.; Sedbrook, J.; Masson, P.

    The primary roots of Arabidopsis thaliana seedlings respond to gravity stimulation by developing a tip curvature that results from differential cellular elongation on opposite flanks of the elongation zone. This curvature appears modulated by a lateral gradient of auxin that originates in the gravity-perceiving cells (statocytes) of the root cap through an apparent lateral repositioning of a component the auxin efflux carrier complex within these cells (Friml et al, 2002, Nature 415: 806-809). Unfortunately, little is known about the molecular mechanisms that govern early phases of gravity perception and signal transduction within the root-cap statocytes. We have used a molecular genetic approach to uncover some of these mechanisms. Mutations in the Arabidopsis ARG1 and ARL2 genes, which encode J-domain proteins, resulted in specific alterations in root and hypocotyl gravitropism, without pleiotropic phenotypes. Interestingly, ARG1 and ARL2 appear to function in the same genetic pathway. A combination of molecular genetic, biochemical and cell-biological approaches were used to demonstrate that ARG1 functions in early phases of gravity signal transduction within the root and hypocotyl statocytes, and is needed for efficient lateral auxin transport within the cap. The ARG1 protein is associated with components of the secretory and/or endosomal pathways, suggesting its role in the recycling of components of the auxin efflux carrier complex between plasma membrane and endosome (Boonsirichai et al, 2003, Plant Cell 15:2612-2625). Genetic modifiers of arg1-2 were isolated and shown to enhance the gravitropic defect of arg1-2, while resulting in little or no gravitropic defects in a wild type ARG1 background. A slight tendency for arg1-2;mar1-1 and arg1-2;mar2-1 double-mutant organs to display an opposite gravitropic response compared to wild type suggests that all three genes contribute to the interpretation of the gravity-vector information by seedling organs. The

  10. DNA Gyrase Is the Target for the Quinolone Drug Ciprofloxacin in Arabidopsis thaliana *

    OpenAIRE

    Evans-Roberts, Katherine M.; Mitchenall, Lesley A.; Wall, Melisa K.; Leroux, Julie; Mylne, Joshua S; Maxwell, Anthony

    2015-01-01

    The Arabidopsis thaliana genome contains four genes that were originally annotated as potentially encoding DNA gyrase: ATGYRA, ATGYRB1, ATGYRB2, and ATGYRB3. Although we subsequently showed that ATGYRB3 does not encode a gyrase subunit, the other three genes potentially encode subunits of a plant gyrase. We also showed evidence for the existence of supercoiling activity in A. thaliana and that the plant is sensitive to quinolone and aminocoumarin antibiotics, compounds that target DNA gyrase ...

  11. Microscopic Evaluation of Interactions between Varieties of Arabidopsis thaliana Challenged by Peronospora parasitica

    OpenAIRE

    TÜRK*, Figen MERT

    2002-01-01

    Peronospora parasitica (Pers ex Fr.) Pers. is an obligate biotrophic pathogen that causes downy mildew in Arabidopsis thaliana (L.) Heynh. In this study, cotyledons of four A. thaliana varieties were inoculated with the Cala2 isolate of P. parasitica and the degree of susceptibility was observed under the microscope 1, 2, 3 and 7 days after inoculation (DAI). Microscopic examination of infected tissues revealed that early restriction of the pathogen was accompanied by a hypersensitive respons...

  12. Primary stress responses in Arabidopsis thaliana exposed to gamma radiation

    International Nuclear Information System (INIS)

    As the environment is inevitably exposed to ionizing radiation from natural and anthropogenic sources, it is important to evaluate gamma radiation induced stress responses in plants. The objective of this research is therefore to investigate radiation effects in Arabidopsis thaliana on individual and subcellular level by exposing 2-weeks-old seedlings for 7 days to total doses of 3.9 Gy, 6.7 Gy, 14.8 Gy and 58.8 Gy and evaluating growth, photosynthesis, chlorophyll a, chlorophyll b and carotenoid concentrations and antioxidative enzyme capacities. While the capacity of photosystem II (PSII measured as Fv/Fm) remained intact, plants started optimizing their photosynthetic process at the lower radiation doses by increasing the PSII efficiency (φPSII) and the maximal electron transport rate (ETRmax) and by decreasing the non-photochemical quenching (NPQ). At the highest radiation dose, photosynthetic parameters resembled those of control conditions. On subcellular level, roots showed increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) capacities under gamma irradiation but catalase (CAT), syringaldazine peroxidase (SPX) and guaiacol peroxidase (GPX) activities, on the other hand, decreased. In the leaves no alterations were observed in SOD, CAT and SPX capacities, but GPX was highly affected. Based on these results it seems that roots are more sensitive for oxidative stress under gamma radiation exposure than leaves. - Highlights: • The efficiency of photosystem II increased after irradiation with 3.9 to 14.8 Gy. • Also the maximal electron transport rate increased under these radiation conditions. • Non-photochemical quenching declined in leaves irradiated with 3.9, 6.7 and 14.8 Gy. • Photosynthetic parameters returned to control values in leaves exposed to 58.8 Gy. • Antioxidative enzyme capacities are mostly affected in irradiated roots

  13. The Hidden Geometries of the Arabidopsis thaliana Epidermis

    KAUST Repository

    Staff, Lee

    2012-09-11

    The quest for the discovery of mathematical principles that underlie biological phenomena is ancient and ongoing. We present a geometric analysis of the complex interdigitated pavement cells in the Arabidopsis thaliana (Col.) adaxial epidermis with a view to discovering some geometric characteristics that may govern the formation of this tissue. More than 2,400 pavement cells from 10, 17 and 24 day old leaves were analyzed. These interdigitated cells revealed a number of geometric properties that remained constant across the three age groups. In particular, the number of digits per cell rarely exceeded 15, irrespective of cell area. Digit numbers per 100 ?m2 cell area reduce with age and as cell area increases, suggesting early developmental programming of digits. Cell shape proportions as defined by length:width ratios were highly conserved over time independent of the size and, interestingly, both the mean and the medians were close to the golden ratio 1.618034. With maturity, the cell area:perimeter ratios increased from a mean of 2.0 to 2.4. Shape properties as defined by the medial axis transform (MAT) were calculated and revealed that branch points along the MAT typically comprise one large and two small angles. These showed consistency across the developmental stages considered here at 140° (± 5°) for the largest angles and 110° (± 5°) for the smaller angles. Voronoi diagram analyses of stomatal center coordinates revealed that giant pavement cells (?500 ?m2) tend to be arranged along Voronoi boundaries suggesting that they could function as a scaffold of the epidermis. In addition, we propose that pavement cells have a role in spacing and positioning of the stomata in the growing leaf and that they do so by growing within the limits of a set of \\'geometrical rules\\'. © 2012 Staff et al.

  14. Carbon-14 labelled sucrose transportation in an Arabidopsis thaliana using an imaging plate and real time imaging system

    International Nuclear Information System (INIS)

    As an approach to increased production of rape seed oil from Brassica napus L., Arabidopsis thaliana, a species from the same Brassicaceae family, was used to investigate transport behavior and distribution of matter in the plant body. In this study, sucrose, an initial metabolic product of photosynthesis, labeled with carbon-14 was used. The sucrose was applied to A. thaliana via the surface of a rosette leaf. Using the real time radioisotope imaging system we developed and an imaging plate (IP), images of whole or part of the sample were obtained. The sucrose assimilation products were accumulated in maturing tissue such as flowers and fruits, and in a joint part. From the comparison among branches and stems, it was indicated that there were different patterns of demand and distribution of sucrose assimilation products depending on the tissue and its growing stage. This might be caused by either morphological reason such as diameter and location of the sieve tube, or genetic factors such as an activity of a membrane transport protein. Because of self-absorption of carpels, it was difficult to observe the accumulation of carbon-14 in the seeds inside the fruits; however, an IP image of a frozen section of a fruit revealed that carbon-14 transport to seeds was higher than that of carpels. These methods will help us gain insight into matter transport and strategies to improve the production of rape seed oil. (author)

  15. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    Science.gov (United States)

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd

    2015-09-01

    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  16. Analysis of Gene Expression Patterns during Seed Coat Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Gillian Dean; George Haughn; YoncgGuo Cao; DaoQuan Xiang; Nicholas J. Provart; Larissa Ramsay; Abdul Ahada; Rick White; Gopalan Selvaraj; Raju Datla

    2011-01-01

    The seed coat is important for embryo protection,seed hydration,and dispersal.Seed coat composition is also of interest to the agricultural sector,since it impacts the nutritional value for humans and livestock alike.Although some seed coat genes have been identified,the developmental pathways controlling seed coat development are not completely elucidated,and a global genetic program associated with seed coat development has not been reported.This study uses a combination of genetic and genomic approaches in Arabidopsis thaliana to begin to address these knowledge gaps.Seed coat development is a complex process whereby the integuments of the ovule differentiate into specialized cell types.In Arabidopsis,the outermost layer of cells secretes mucilage into the apoplast and develops a secondary cell wall known as a columella.The layer beneath the epidermis,the palisade,synthesizes a secondary cell wall on its inner tangential side.The innermost layer (the pigmented layer or endothelium) produces proanthocyanidins that condense into tannins and oxidize,giving a brown color to mature seeds.Genetic separation of these cell layers was achieved using the ap2-7 and tt16-1 mutants,where the epidermis/palisade and the endothelium do not develop respectively.This genetic ablation was exploited to examine the developmental programs of these cell types by isolating and collecting seed coats at key transitions during development and performing global gene expression analysis.The data indicate that the developmental programs of the epidermis and the pigmented layer proceed relatively independently.Global expression datasets that can be used for identification of new gene candidates for seed coat development were generated.These dataset provide a comprehensive expression profile for developing seed coats in Arabidopsis,and should provide a useful resource and reference for other seed systems.

  17. Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Chao eLiang

    2015-10-01

    Full Text Available Chloroplasts and mitochondria are the major ATP producing organelles in plant leaves. Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2 is a phosphatase dually targeted to the outer membranes of both organelles and it plays a role in the import of selected nuclear-encoded proteins into these two organelles. Overexpression (OE of AtPAP2 in Arabidopsis thaliana accelerates plant growth and promotes flowering, seed yield and biomass at maturity. Measurement of ADP/ATP/NADP+/NADPH contents in the leaves of 20-day-old OE and wild-type lines at the end of night and at 1 and 8 h following illumination in a 16/8 h photoperiod revealed that the ATP levels and ATP/NADPH ratios were significantly increased in the OE line at all three time points. The AtPAP2 OE line is therefore a good model to investigate the impact of high energy on the global molecular status of Arabidopsis. In this study, transcriptome, proteome and metabolome profiles of the high ATP transgenic line were examined and compared with those of wild-type plants. A comparison of OE and WT at the end of the night provide valuable information on the impact of higher ATP output from mitochondria on plant physiology, as mitochondrial respiration is the major source of ATP in the dark in leaves. Similarly, comparison of OE and WT following illumination will provide information on the impact of higher energy output from chloroplasts on plant physiology. Overexpression of AtPAP2 was found to significantly affect the transcript and protein abundances of genes encoded by the two organellar genomes. For example, the protein abundances of many ribosomal proteins encoded by the chloroplast genome were higher in the AtPAP2 OE line under both light and dark conditions, while the protein abundances of multiple components of the photosynthetic complexes were lower. RNA-seq data also showed that the transcription of the mitochondrial genome is greatly affected by the availability of energy. These data

  18. ML3: a novel regulator of herbivory-induced responses in Arabidopsis thaliana

    OpenAIRE

    Fridborg, I.; Johansson, A; Lagensjo, J.; Leelarasamee, N.; Floková, K. (Kristýna); Tarkowská, D. (Danuše); Meijer, J.; Bejai, S.

    2013-01-01

    ML (MD2-related lipid recognition) proteins are known to enhance innate immune responses in mammals. This study reports the analysis of the putative ML gene family in Arabidopsis thaliana and suggests a role for the ML3 gene in herbivory-associated responses in plants. Feeding by larvae of the Lepidopteran generalist herbivore Spodoptera littoralis and larvae of the specialist herbivore Plutella xylostella activated ML3 transcription in leaf tissues. ML3 loss-of-function Arabidopsis plants we...

  19. Protein Interaction Network of Arabidopsis thaliana Female Gametophyte Development Identifies Novel Proteins and Relations

    OpenAIRE

    Hosseinpour, Batool; HajiHoseini, Vahid; Kashfi, Rafieh; Ebrahimie, Esmaeil; Hemmatzadeh, Farhid

    2012-01-01

    Although the female gametophyte in angiosperms consists of just seven cells, it has a complex biological network. In this study, female gametophyte microarray data from Arabidopsis thaliana were integrated into the Arabidopsis interactome database to generate a putative interaction map of the female gametophyte development including proteome map based on biological processes and molecular functions of proteins. Biological and functional groups as well as topological characteristics of the net...

  20. Use of Arabidopsis thaliana and Pseudomonas syringae in the Study of Plant Disease Resistance and Tolerance

    OpenAIRE

    Bent, Andrew F.; Kunkel, Barbara N.; Innes, Roger W.; Staskawicz, Brian J.

    1993-01-01

    The interaction between Arabidopsis thaliana and the bacterium Pseudomonas syringae is being developed as a model experimental system for plant pathology research. Race-specific ("gene-for-gene") resistance has been demonstrated for this interaction, and pathogen genes that determine avirulence have been isolated and characterized. Because certain lines of both Arabidopsis and soybean are resistant to bacteria carrying the avirulence genes avrRpt2 and avrB, extremely similar pathogen recognit...

  1. The control of starch degradation in Arabidopsis thaliana leaves at night

    OpenAIRE

    Feike, Doreen

    2013-01-01

    The aim of this work was to understand how Arabidopsis thaliana plants control starch degradation at night. Starch is the major energy reserve in Arabidopsis. It is broken down at night to maintain growth and metabolism of the plant, when photosynthesis is not possible. The rate of starch degradation follows a linear pattern and is matched to the length of the night period such that almost all starch is exhausted by dawn. The mechanisms and the proteins involved in controlling ...

  2. A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coats.

    Science.gov (United States)

    Rautengarten, Carsten; Usadel, Björn; Neumetzler, Lutz; Hartmann, Jürgen; Büssis, Dirk; Altmann, Thomas

    2008-05-01

    During Arabidopsis seed development large quantities of mucilage, composed of pectins, are deposited into the apoplast underneath the outer wall of the seed coat. Upon imbibition of mature seeds, the stored mucilage expands through hydration and breaks the outer cell wall that encapsulates the whole seed. Mutant seeds carrying loss-of-function alleles of AtSBT1.7 that encodes one of 56 Arabidopsis thaliana subtilisin-like serine proteases (subtilases) do not release mucilage upon hydration. Microscopic analysis of the mutant seed coat revealed no visible structural differences compared with wild-type seeds. Weakening of the outer primary wall using cation chelators triggered mucilage release from the seed coats of mutants. However, in contrast to mature wild-type seeds, the mutant's outer cell walls did not rupture at the radial walls of the seed coat epidermal cells, but instead opened at the chalazal end of the seed, and were released in one piece. In atsbt1.7, the total rhamnose and galacturonic acid contents, representing the backbone of mucilage, remained unchanged compared with wild-type seeds. Thus, extrusion and solubility, but not the initial deposition of mucilage, are affected in atsbt1.7 mutants. AtSBT1.7 is localized in the developing seed coat, indicating a role in testa development or maturation. The altered mode of rupture of the outer seed coat wall and mucilage release indicate that AtSBT1.7 triggers the accumulation, and/or activation, of cell wall modifying enzymes necessary either for the loosening of the outer primary cell wall, or to facilitate swelling of the mucilage, as indicated by elevated pectin methylesterase activity in developing atsbt1.7 mutant seeds. PMID:18266922

  3. Inferring the Brassica rapa Interactome Using Protein-Protein Interaction Data from Arabidopsis thaliana.

    Science.gov (United States)

    Yang, Jianhua; Osman, Kim; Iqbal, Mudassar; Stekel, Dov J; Luo, Zewei; Armstrong, Susan J; Franklin, F Chris H

    2012-01-01

    Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein-protein interaction (PPI) data are available from the major PPI databases (DBs). It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B. rapa interactome that is based on the A. thaliana PPI data from two resources: (i) A. thaliana PPI data from three major DBs, BioGRID, IntAct, and TAIR. (ii) ortholog-based A. thaliana PPI predictions. Linking between B. rapa and A. thaliana was accomplished in three complementary ways: (i) ortholog predictions, (ii) identification of gene duplication based on synteny and collinearity, and (iii) BLAST sequence similarity search. A complementary approach was also applied, which used known/predicted domain-domain interaction data. Specifically, since the two species are closely related, we used PPI data from A. thaliana to predict interacting domains that might be conserved between the two species. The predicted interactome was investigated for the component that contains known A. thaliana meiotic proteins to demonstrate its usability. PMID:23293649

  4. Inferring the Brassica rapa interactome using protein-protein interaction data from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Jianhua eYang

    2013-01-01

    Full Text Available Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein-protein interaction (PPI data are available from the major PPI databases. It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B. rapa interactome that is based on the A. thaliana PPI data from two resources: (i A. thaliana PPI data from three major databases, BioGRID, IntAct and TAIR. (ii ortholog-based A. thaliana PPI predictions. Linking between B. rapa and A. thaliana was accomplished in three complementary ways: (i ortholog predictions, (ii identification of gene duplication based on synteny and collinearity, and (iii BLAST sequence similarity search. A complementary approach was also applied, which used known/predicted domain-domain interaction data. Specifically, since the two species are closely related, we used PPI data from A. thaliana to predict interacting domains that might be conserved between the two species. The predicted interactome was investigated for the component that contains known A. thaliana meiotic proteins to demonstrate its usability.

  5. The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana

    OpenAIRE

    Stefanato, Francesca L.; Abou-Mansour, Eliane; Buchala, Antony; Kretschmer, Matthias; Mosbach, Andreas; Hahn, Matthias; Bochet, Christian G.; Métraux, Jean-Pierre; Schoonbeek, Henk-jan

    2009-01-01

    Arabidopsis thaliana is known to produce the phytoalexin camalexin in response to abiotic and biotic stress. Here we studied the mechanisms of tolerance to camalexin in the fungus Botrytis cinerea, a necrotrophic pathogen of A. thaliana. Exposure of B. cinerea to camalexin induces expression of BcatrB, an ABC transporter that functions in the efflux of fungitoxic compounds. B. cinerea inoculated on wild-type A. thaliana plants yields smaller lesions than on camalexin-deficient A. thaliana mut...

  6. Titanium dioxide nanoparticles (100-1000 mg/l) can affect vitamin E response in Arabidopsis thaliana.

    Science.gov (United States)

    Szymańska, Renata; Kołodziej, Karolina; Ślesak, Ireneusz; Zimak-Piekarczyk, Paulina; Orzechowska, Aleksandra; Gabruk, Michał; Żądło, Andrzej; Habina, Iwona; Knap, Wiesław; Burda, Květoslava; Kruk, Jerzy

    2016-06-01

    In the present study we analyze the effect of seed treatment by a range of nano-TiO2 concentrations on the growth of Arabidopsis thaliana plants, on the vitamin E content and the expression of its biosynthetic genes, as well as activity of antioxidant enzymes and lipid peroxidation. To conduct the mechanistic analysis of nano-TiO2 on plants growth and antioxidant status we applied nanoparticles concentrations that are much higher than those reported in the environment. We find that as the concentration of nano-TiO2 increases, the biomass, and chlorophyll content in 5-week-old Arabidopsis thaliana plants decrease in a concentration dependent manner. In opposite, higher nano-TiO2 concentration enhanced root growth. Our results indicate that a high concentration of nano-TiO2 induces symptoms of toxicity and elevates the antioxidant level. We also find that the expression levels of tocopherol biosynthetic genes were either down- or upregulated in response to nano-TiO2. Thermoluminescence analysis shows that higher nano-TiO2 concentrations cause lipid peroxidation. To the best of our knowledge, this is the first report concerning the effect of nano-TiO2 on vitamin E status in plants. We conclude that nano-TiO2 affects the antioxidant response in Arabidopsis thaliana plants. This could be an effect of a changes in vitamin E gene expression that is diminished under lower tested nano-TiO2 concentrations and elevated under 1000 μg/ml. PMID:27060280

  7. Rapid endocytosis is triggered upon imbibition in Arabidopsis seeds

    OpenAIRE

    Pagnussat, Luciana; Burbach, Christian; Baluška, František; de la Canal, Laura

    2012-01-01

    During seed imbibition and embryo activation, rapid change from a metabolically resting state to the activation of diverse extracellular and/or membrane bound molecules is essential and, hence, endocytosis could be activated too. In fact, we have documented endocytic internalization of the membrane impermeable endocytic tracer FM4–64 already upon 30 min of imbibition of Arabidopsis seeds. This finding suggest that endocytosis is activated early during seed imbibition in Arabidopsis. Immunoloc...

  8. The Opuntia streptacantha OpsHSP18 Gene Confers Salt and Osmotic Stress Tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Juan Francisco Jiménez-Bremont

    2012-08-01

    Full Text Available Abiotic stress limits seed germination, plant growth, flowering and fruit quality, causing economic decrease. Small Heat Shock Proteins (sHSPs are chaperons with roles in stress tolerance. Herein, we report the functional characterization of a cytosolic class CI sHSP (OpsHSP18 from Opuntia streptacantha during seed germination in Arabidopsis thaliana transgenic lines subjected to different stress and hormone treatments. The over-expression of the OpsHSP18 gene in A. thaliana increased the seed germination rate under salt (NaCl and osmotic (glucose and mannitol stress, and in ABA treatments, compared with WT. On the other hand, the over-expression of the OpsHSP18 gene enhanced tolerance to salt (150 mM NaCl and osmotic (274 mM mannitol stress in Arabidopsis seedlings treated during 14 and 21 days, respectively. These plants showed increased survival rates (52.00 and 73.33%, respectively with respect to the WT (18.75 and 53.75%, respectively. Thus, our results show that OpsHSP18 gene might have an important role in abiotic stress tolerance, in particular in seed germination and survival rate of Arabidopsis plants under unfavorable conditions.

  9. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field.

    Science.gov (United States)

    Roux, Fabrice; Mary-Huard, Tristan; Barillot, Elise; Wenes, Estelle; Botran, Lucy; Durand, Stéphanie; Villoutreix, Romain; Martin-Magniette, Marie-Laure; Camilleri, Christine; Budar, Françoise

    2016-03-29

    Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits inArabidopsis thaliana To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics ofA. thaliana. PMID:26979961

  10. Radiosensitivity of Arabidopsis thaliana L. in condition of influence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Arabidopsis thaliana is a convenient genetic object. This work represents the date of laboratory experiments concerning research of influence of chronic γ-irradiation on plants of arabidopsis at rosette stage (short stemmed mutant Lansberg Erecta). The findings contribute to the high sensitivity of rosette stage of arabidopsis to irradiation by γ-rays in low doses (0.67-10.0 cGy). It is shown in depressing effects of ionising radiation on growth, development, vitality and bearing of plants, but also in hightened output morphological anomalies of plants and embryonic lethalities in pods. (authors)

  11. Impact of elevated CO2 on growth and development of Arabidopsis thaliana L

    NARCIS (Netherlands)

    van der Kooij, T.A W; De Kok, L.J.

    1996-01-01

    After germination, Arabidopsis thaliana L (cv. Landsberg) was grown at 350 mu l l(-1) (control) or 700 mu l l(-1) (elevated) CO2. Total shoot biomass at the end of the vegetative growth period was increased by 56% due to a short transient stimulation of the relative growth rate by elevated CO2 at th

  12. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis

    DEFF Research Database (Denmark)

    Ohnuma, Takayuki; Numata, Tomoyuki; Osawa, Takuo;

    2011-01-01

    Expression of a class V chitinase gene (At4g19810, AtChiC) in Arabidopsis thaliana was examined by quantitative real-time PCR and by analyzing microarray data available at Genevestigator. The gene expression was induced by the plant stress-related hormones abscisic acid (ABA) and jasmonic acid (JA...... common to class V chitinases from higher plants....

  13. Supermolecular organization of photosystem II and its associated light-harvesting antenna in Arabidopsis thaliana

    NARCIS (Netherlands)

    Yakushevska, AE; Jensen, PE; Keegstra, W; van Roon, H; Scheller, HV; Boekema, EJ; Dekker, JP; Yakushevska, Alevtyna E.; Jensen, Poul E.; Scheller, Henrik V.; Dekker, Jan P.

    2001-01-01

    The organization of Arabidopsis thaliana photosystem II (PSII) and its associated light-harvesting antenna (LHCII) was studied in isolated PSII-LHCII supercomplexes and native membrane-bound crystals by transmission electron microscopy and image analysis. Over 4000 single-particle projections of PSI

  14. The role of ATM in maintenance of telomeres in Arabidopsis thaliana

    Czech Academy of Sciences Publication Activity Database

    Široký, Jiří; Mokroš, Petr; Vespa, L.; Shippen, D.

    Southampton, 2006. C2.37-C2.37. [Cell Cycle Symposium. 03.07.2006-06.07.2006, Southampton] R&D Projects: GA ČR(CZ) GA522/06/0380 Institutional research plan: CEZ:AV0Z50040507 Keywords : Arabidopsis thaliana * DNA repair * ataxia telangiectasia mutated Subject RIV: BO - Biophysics

  15. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana

    Science.gov (United States)

    Despite much effort, a robust protocol for in vitro germination of Arabidopsis thaliana pollen was still elusive. Here we show that controlled temperatures, a largely disregarded factor in previous studies, and a simple optimized medium, solidified or liquid, yielded pollen germination rates above 8...

  16. Whole-Genome Shotgun Sequence of Pseudomonas viridiflava, a Bacterium Species Pathogenic to Arabidopsis thaliana

    OpenAIRE

    Lefort, Francois; Calmin, Gautier; Crovadore, Julien; Osteras, Magne; Farinelli, Laurent

    2013-01-01

    We report here the first whole-genome shotgun sequence of Pseudomonas viridiflava strain UASWS38, a bacterium species pathogenic to the biological model plant Arabidopsis thaliana but also usable as a biological control agent and thus of great scientific interest for understanding the genetics of plant-microbe interactions.

  17. Study of natural variation for Zn deficiency tolerance in Arabidopsis thaliana

    NARCIS (Netherlands)

    Campos, A.C.A.L.

    2015-01-01

    English summary Zinc is an important structural component and co-factor of proteins in all living organisms. The model plant species for genetic and molecular studies, Arabidopsis thaliana, expresses more than 2,000 proteins with one or more Zn binding domains. Low Zn availability i

  18. A previously undescribed jasmonate compound in flowering Arabidopsis thaliana - The identification of cis-(+)-OPDA-Ile

    Czech Academy of Sciences Publication Activity Database

    Floková, K.; Feussner, K.; Herrfurth, C.; Miersch, O.; Mik, V.; Tarkowská, Danuše; Strnad, Miroslav; Feussner, I.; Wasternack, Claus; Novák, Ondřej

    2016-01-01

    Roč. 122, FEB (2016), s. 230-237. ISSN 0031-9422 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana (Brassicaceae) * Jasmonates * Cis-(+)-12-oxo-phytodienoyl-L-isoleucine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.547, year: 2014

  19. An En/Spm based transposable element system for gene isolation in Arabidopsis thaliana.

    NARCIS (Netherlands)

    Aarts, M.G.M.

    1996-01-01

    At the start of the research described in this thesis, the main aim was to develop, study and apply an efficient En/Spm-I/dSpm based transposon tagging system in Arabidopsis thaliana to generate tagged mutants and to provide insights in the possibilities for future applications of such a transposon

  20. A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and brassica napus

    Science.gov (United States)

    In this study, genome-wide expression profiling based on Affymetrix ATH1 arrays was used to identify discriminating responses of Arabidopsis thaliana to five herbicides, which contain active ingredients targeting two different branches of amino acid biosynthesis. One herbicide co...

  1. In vivo optical detection of pH in microscopic tissue samples of Arabidopsis thaliana

    Czech Academy of Sciences Publication Activity Database

    Kašík, Ivan; Podrazký, Ondřej; Mrázek, Jan; Martan, Tomáš; Matějec, Vlastimil; Hoyerová, Klára; Kamínek, Miroslav

    2013-01-01

    Roč. 33, č. 8 (2013), s. 4809-4815. ISSN 0928-4931 R&D Projects: GA ČR GAP102/10/2139 Institutional support: RVO:67985882 ; RVO:61389030 Keywords : Ratiometric fluorescence * Arabidopsis thaliana * Tissue Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.736, year: 2013

  2. Konukçu-Patojen İlişkisinde Model Bir Bitki: Arabidopsis thaliana / A Model Plant In Host-Pathogen Interactıon: Arabidopsis thaliana

    OpenAIRE

    Mert Türk, Figen

    2011-01-01

    Özet. Arabidopsis thaliana (Arabidopsis)’nın kromozom sayısının az olması, bu bitkinin genetik yapısının diğer bitki türlerine göre daha kolay çalışılmasına olanak sağlamakta, ayrıca diğer bitkilerde patojenlere karşı gözlenen ana savunma mekanizmaları bu bitkide de bulunmaktadır. Bu açıdan, konukçu bitkilerin patojen saldırılarına karşı savunma mekanizmalarını çalışma konusunda Arabidopsis bitkisi ideal bir model sistem oluşturmaktadır. B...

  3. Cloning the Promoter of BcNA1 from Brassica napus and Fad2 Gene from Arabidopsis thaliana and Construction of the Plant Expression Vector

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The upstream regulatory region of a seed-specific gene was isolated from the genomic DNA of Brassica napus by PCR amplification. The cloned fragment contained 1755 nucleotides, and shared a sequence homology of 99.6% with the reported data. The coding region of oleic acid desaturase gene was then cloned from Arabidopsis thaliana. The sequencing analysis indicated that the sequence of the PCR product was just the same as reported before. In addition, the plant expression vector harboring the seed-specific promoter and trans-Fad2 gene was constructed.

  4. Defects in Peroxisomal 6-Phosphogluconate Dehydrogenase Isoform PGD2 Prevent Gametophytic Interaction in Arabidopsis thaliana.

    Science.gov (United States)

    Hölscher, Christian; Lutterbey, Marie-Christin; Lansing, Hannes; Meyer, Tanja; Fischer, Kerstin; von Schaewen, Antje

    2016-05-01

    We studied the localization of 6-phosphogluconate dehydrogenase (PGD) isoforms of Arabidopsis (Arabidopsis thaliana). Similar polypeptide lengths of PGD1, PGD2, and PGD3 obscured which isoform may represent the cytosolic and/or plastidic enzyme plus whether PGD2 with a peroxisomal targeting motif also might target plastids. Reporter-fusion analyses in protoplasts revealed that, with a free N terminus, PGD1 and PGD3 accumulate in the cytosol and chloroplasts, whereas PGD2 remains in the cytosol. Mutagenesis of a conserved second ATG enhanced the plastidic localization of PGD1 and PGD3 but not PGD2. Amino-terminal deletions of PGD2 fusions with a free C terminus resulted in peroxisomal import after dimerization, and PGD2 could be immunodetected in purified peroxisomes. Repeated selfing of pgd2 transfer (T-)DNA alleles yielded no homozygous mutants, although siliques and seeds of heterozygous plants developed normally. Detailed analyses of the C-terminally truncated PGD2-1 protein showed that peroxisomal import and catalytic activity are abolished. Reciprocal backcrosses of pgd2-1 suggested that missing PGD activity in peroxisomes primarily affects the male gametophyte. Tetrad analyses in the quartet1-2 background revealed that pgd2-1 pollen is vital and in vitro germination normal, but pollen tube growth inside stylar tissues appeared less directed. Mutual gametophytic sterility was overcome by complementation with a genomic construct but not with a version lacking the first ATG. These analyses showed that peroxisomal PGD2 activity is required for guided growth of the male gametophytes and pollen tube-ovule interaction. Our report finally demonstrates an essential role of oxidative pentose-phosphate pathway reactions in peroxisomes, likely needed to sustain critical levels of nitric oxide and/or jasmonic acid, whose biosynthesis both depend on NADPH provision. PMID:26941195

  5. Variation in selenium tolerance and accumulation among 19 Arabidopsis thaliana accessions.

    Science.gov (United States)

    Zhang, Lihong; Ackley, Ashley R; Pilon-Smits, Elizabeth A H

    2007-03-01

    Selenium (Se) is an essential element for many organisms but also toxic at higher levels. The objective of this study was to identify accessions from the model species Arabidopsis thaliana that differ in Se tolerance and accumulation. Nineteen Arabidopsis accessions were grown from seed on agar medium with or without selenate (50 microM) or selenite (20 microM), followed by analysis of Se tolerance and accumulation. Tissue sulfur levels were also compared. The Se Tolerance Index (root length+Se/root length control) varied among the accessions from 0.11 to 0.44 for selenite and from 0.05 to 0.24 for selenate. When treated with selenite, the accessions differed by two-fold in shoot Se concentration (up to 250 mgkg(-1)) and three-fold in root Se concentration (up to 1000 mgkg(-1)). Selenium accumulation from selenate varied 1.7-fold in shoot (up to 1000 mgkg(-1)) and two-fold in root (up to 650 mgkg(-1)). Across all accessions, a strong correlation was observed between Se and S concentration in both shoot and root under selenate treatment, and in roots of selenite-treated plants. Shoot Se accumulation from selenate and selenite were also correlated. There was no correlation between Se tolerance and accumulation, either for selenate or selenite. The F(1) offspring from a cross between the extreme selenate-sensitive Dijon G and the extreme selenate-tolerant Estland accessions showed intermediate selenate tolerance. In contrast, the F(1) offspring from a cross between selenite-sensitive and -tolerant accessions (Dijon GxCol-PRL) were selenite tolerant. The results from this study give new insight into the mechanisms of plant selenium (Se) tolerance and accumulation, which may help develop better plants for selenium phytoremediation or as fortified foods. PMID:16513208

  6. No detectable maternal effects of elevated CO(2 on Arabidopsis thaliana over 15 generations.

    Directory of Open Access Journals (Sweden)

    Nianjun Teng

    Full Text Available Maternal environment has been demonstrated to produce considerable impact on offspring growth. However, few studies have been carried out to investigate multi-generational maternal effects of elevated CO(2 on plant growth and development. Here we present the first report on the responses of plant reproductive, photosynthetic, and cellular characteristics to elevated CO(2 over 15 generations using Arabidopsis thaliana as a model system. We found that within an individual generation, elevated CO(2 significantly advanced plant flowering, increased photosynthetic rate, increased the size and number of starch grains per chloroplast, reduced stomatal density, stomatal conductance, and transpiration rate, and resulted in a higher reproductive mass. Elevated CO(2 did not significantly influence silique length and number of seeds per silique. Across 15 generations grown at elevated CO(2 concentrations, however, there were no significant differences in these traits. In addition, a reciprocal sowing experiment demonstrated that elevated CO(2 did not produce detectable maternal effects on the offspring after fifteen generations. Taken together, these results suggested that the maternal effects of elevated CO(2 failed to extend to the offspring due to the potential lack of genetic variation for CO(2 responsiveness, and future plants may not evolve specific adaptations to elevated CO(2 concentrations.

  7. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines.

    Science.gov (United States)

    Roux, Fabrice; Gasquez, Jacques; Reboud, Xavier

    2004-01-01

    Resistance evolution depends upon the balance between advantage and disadvantage (cost) conferred in treated and untreated areas. By analyzing morphological characters and simple fitness components, the cost associated with each of eight herbicide resistance alleles (acetolactate synthase, cellulose synthase, and auxin-induced target genes) was studied in the model plant Arabidopsis thaliana. The use of allele-specific PCR to discriminate between heterozygous and homozygous plants was used to provide insights into the dominance of the resistance cost, a parameter rarely described. Morphological characters appear more sensitive than fitness (seed production) because 6 vs. 4 differences between resistant and sensitive homozygous plants were detected, respectively. Dominance levels for the fitness cost ranged from recessivity (csr1-1, ixr1-2, and axr1-3) to dominance (axr2-1) to underdominance (aux1-7). Furthermore, the dominance level of the herbicide resistance trait did not predict the dominance level of the cost of resistance. The relationship of our results to theoretical predictions of dominance and the consequences of fitness cost and its dominance in resistance management are discussed. PMID:15020435

  8. Multigenerational versus single generation studies to estimate herbicide resistance fitness cost in Arabidopsis thaliana.

    Science.gov (United States)

    Roux, Fabrice; Camilleri, Christine; Bérard, Aurélie; Reboud, Xavier

    2005-10-01

    The evolution of resistance in response to pesticide selection is expected to be delayed if fitness costs are associated with resistance genes. The estimate of fitness costs usually involves comparing major growth traits of resistant versus susceptible individuals in the absence of pesticide. Ideally, a measure of changes in resistance allele frequency over several generations would allow the best estimate of the overall fitness cost of a resistance gene. In greenhouse conditions, we monitored the dynamics of the evolution of the frequencies of six herbicide-resistant mutations (acetolactate synthase, cellulose synthase, and auxin-induced target genes) in the model species Arabidopsis thaliana in a multigenerational study covering five to seven nonoverlapping generations. The microevolutionary dynamics in experimental populations indicated a mean fitness cost of 38%, 73%, and 94% for the ixr1-2, axr1-3, and axr2-1 resistances, respectively; no fitness cost for the csr1-1, and ixr2-1 resistances; and a transient advantage for the aux1-7 resistance. The result for the csr1-1 resistance contrasts with a cost of 37% based on total seed number in a previous study, demonstrating that single generation studies could have limitation for detecting cost. A positive frequency dependence for the fitness cost was also detected for the ixr1-2 resistance. The results are discussed in relation to the maintenance of polymorphism at resistance loci. PMID:16405169

  9. Isolation and characterization of hormone-autonomous tumours of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    In order to study the molecular genetics of factors controlling plant cell growth, we have isolated and begun to characterize a set of tumours on the small crucifer Arabidopsis thaliana. Seeds or seedlings were exposed to 60Co gamma radiation and, 30–60 d after germination, tumours developed either on the hypocotyl or in the region of the apical meristem of about 1% of the plants. When excised and placed in culture, some of these tumours were found to be capable of hormone-independent growth. The tumours exhibit a number of different phenotypes, varying in colour, texture, and degree of differentiation. Some tumours appear to be completely undifferentiated, one consistently produces roots, and others show the sporadic appearance of shoots or leaflets. Doubling times of the tumours on hormone-free medium range from approximately 2 d to 9 d. We propose that these tumours arose due to heritable changes in the genome which result in altered expression of important growth-regulatory genes. Preliminary investigations of gene expression in the tumours have led to the identification of an mRNA that is abundant in all of the tumours, differentially expressed in plant organs and hormone-dependent callus grown on different auxins, and which encodes a putative glycine-rich protein. (author)

  10. Protocol: Streamlined sub-protocols for floral-dip transformation and selection of transformants in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Millar Andrew J

    2009-02-01

    Full Text Available Abstract Generating and identifying transformants is essential for many studies of gene function. In Arabidopsis thaliana, a revolutionary protocol termed floral dip is now the most widely used transformation method. Although robust, it involves a number of relatively time-consuming and laborious steps, including manipulating an Agrobacterium tumefaciens culture and aseptic procedures for the selection of plant lines harboring antibiotic-selection markers. Furthermore, where multiple transgenes are to be introduced, achieving this by sequential transformations over multiple generations adds significantly to the time required. To circumvent these bottlenecks, we have developed three streamlined sub-protocols. First, we find that A. thaliana can be transformed by dipping directly into an A. tumefaciens culture supplemented with surfactant, eliminating the need for media exchange to a buffered solution. Next, we illustrate that A. thaliana lines possessing a double-transformation event can be readily generated by simply by floral-dipping into a mixture of two A. tumefaciens cultures harboring distinct transformation vectors. Finally, we report an alternative method of transformant selection on chromatography sand that does not require surface sterilization of seeds. These sub-protocols, which can be used separately or in combination, save time and money, and reduce the possibility of contamination.

  11. The Structure, Distribution and Evolution of the Ta1 Retrotransposable Element Family of Arabidopsis Thaliana

    OpenAIRE

    Voytas, D. F.; Konieczny, A; Cummings, M. P.; Ausubel, F M

    1990-01-01

    The Ta1 elements are a low copy number, copia-like retrotransposable element family of Arabidopsis thaliana. Six Ta1 insertions comprise all of the Ta1 element copies found in three geographically diverse A. thaliana races. These six elements occupy three distinct target sites: Ta1-1 is located on chromosome 5 and is common to all three races (Col-0, Kas-1 and La-0). Ta1-2 is present in two races on chromosome 4 (Kas-1 and La-0), and Ta1-3, also located on chromosome 4, is present only in one...

  12. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination

    Science.gov (United States)

    Baudouin, Emmanuel; Poilevey, Aurélie; Hewage, Nishodi Indiketi; Cochet, Françoise; Puyaubert, Juliette; Bailly, Christophe

    2016-01-01

    Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and β-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions.

  13. Yeast Cell Wall Extract Induces Disease Resistance against Bacterial and Fungal Pathogens in Arabidopsis thaliana and Brassica Crop

    OpenAIRE

    Narusaka, Mari; Minami, Taichi; Iwabuchi, Chikako; Hamasaki, Takashi; Takasaki, Satoko; Kawamura, Kimito; Narusaka, Yoshihiro

    2015-01-01

    Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated incre...

  14. Transcriptional Consequence and Impaired Gametogenesis with High-Grade Aneuploidy in Arabidopsis thaliana

    OpenAIRE

    Kuan-Lin Lo; Long-Chi Wang; I-Ju Chen; Yu-Chen Liu; Mei-Chu Chung; Wan-Sheng Lo

    2014-01-01

    Aneuploidy features a numerical chromosome variant that the number of chromosomes in the nucleus of a cell is not an exact multiple of the haploid number, which may have an impact on morphology and gene expression. Here we report a tertiary trisomy uncovered by characterizing a T-DNA insertion mutant (aur2-1/+) in the Arabidopsis (Arabidopsis thaliana) AURORA2 locus. Whole-genome analysis with DNA tiling arrays revealed a chromosomal translocation linked to the aur2-1 allele, which collective...

  15. DNA Gyrase Is the Target for the Quinolone Drug Ciprofloxacin in Arabidopsis thaliana*

    Science.gov (United States)

    Evans-Roberts, Katherine M.; Mitchenall, Lesley A.; Wall, Melisa K.; Leroux, Julie; Mylne, Joshua S.; Maxwell, Anthony

    2016-01-01

    The Arabidopsis thaliana genome contains four genes that were originally annotated as potentially encoding DNA gyrase: ATGYRA, ATGYRB1, ATGYRB2, and ATGYRB3. Although we subsequently showed that ATGYRB3 does not encode a gyrase subunit, the other three genes potentially encode subunits of a plant gyrase. We also showed evidence for the existence of supercoiling activity in A. thaliana and that the plant is sensitive to quinolone and aminocoumarin antibiotics, compounds that target DNA gyrase in bacteria. However, it was not possible at that time to show whether the A. thaliana genes encoded an active gyrase enzyme, nor whether that enzyme is indeed the target for the quinolone and aminocoumarin antibiotics. Here we show that an A. thaliana mutant resistant to the quinolone drug ciprofloxacin has a point mutation in ATGYRA. Moreover we show that, as in bacteria, the quinolone-sensitive (wild-type) allele is dominant to the resistant gene. Further we have heterologously expressed ATGYRA and ATGYRB2 in a baculovirus expression system and shown supercoiling activity of the partially purified enzyme. Expression/purification of the quinolone-resistant A. thaliana gyrase yields active enzyme that is resistant to ciprofloxacin. Taken together these experiments now show unequivocally that A. thaliana encodes an organelle-targeted DNA gyrase that is the target of the quinolone drug ciprofloxacin; this has important consequences for plant physiology and the development of herbicides. PMID:26663076

  16. Establishment of an Indirect Genetic Transformation Method for Arabidopsis thaliana ecotype Bangladesh

    Directory of Open Access Journals (Sweden)

    Bulbul AHMED

    2011-11-01

    Full Text Available Arabidopsis thaliana is a small flowering plant belonging to the Brassicaceae family, which is adopted as a model plant for genetic research. Agrobacterium tumifaciensmediated transformation method for A. thaliana ecotype Bangladesh was established. Leaf discs of A. thaliana were incubated with A. tumefaciens strain LBA4404 containing chimeric nos. nptII. nos and intron-GUS genes. Following inoculation and co-cultivation, leaf discs were cultured on selection medium containing 50 mg/l kanamycin + 50 mg/l cefotaxime + 1.5 mg/l NAA and kanamycin resistant shoots were induced from the leaf discs after two weeks. Shoot regeneration was achieved after transferring the tissues onto fresh medium of the same combination. Finally, the shoots were rooted on MS medium containing 50 mg/l kanamycin. Incorporation and expression of the transgenes were confirmed by PCR analysis. Using this protocol, transgenic A. thaliana plants can be obtained and indicates that genomic transformation in higher plants is possible through insertion of desired gene. Although Agrobacterium mediated genetic transformation is established for A. thaliana, this study was the conducted to transform A. thaliana ecotype Bangladesh.

  17. Extensive Natural Variation in Arabidopsis Seed Mucilage Structure

    Directory of Open Access Journals (Sweden)

    Cătălin eVoiniciuc

    2016-06-01

    Full Text Available Hydrated Arabidopsis thaliana seeds are coated by a gelatinous layer called mucilage, which is mainly composed of cell wall polysaccharides. Since mucilage is rich in pectin, its architecture can be visualized with the ruthenium red (RR dye. We screened the seeds of around 280 Arabidopsis natural accessions for variation in mucilage structure, and identified a large number of novel variants that differed from the Col-0 wild-type. Most of the accessions released smaller RR-stained capsules compared to the Col-0 reference. By biochemically characterizing the phenotypes of 25 of these accessions in greater detail, we discovered that distinct changes in polysaccharide structure resulted in gelatinous coatings with a deceptively similar appearance. Monosaccharide composition analysis of total mucilage extracts revealed a remarkable variation (from 50% to 200% of Col-0 levels in the content of galactose and mannose, which are important subunits of heteromannan. In addition, most of the natural variants had altered Pontamine Fast Scarlet 4B staining of cellulose and significantly reduced birefringence of crystalline structures. This indicates that the production or organization of cellulose may be affected by the presence of different amounts of hemicellulose. Although the accessions described in this study were primarily collected from Western Europe, they form five different phenotypic classes based on the combined results of our experiments. This suggests that polymorphisms at multiple loci are likely responsible for the observed mucilage structure. The transcription of MUCILAGE-RELATED10 (MUCI10, which encodes a key enzyme for galactoglucomannan synthesis, was severely reduced in multiple variants that phenocopied the muci10-1 insertion mutant. Although we could not pinpoint any causal polymorphisms in this gene, constitutive expression of fluorescently-tagged MUCI10 proteins complemented the mucilage defects of a muci10-like accession. This leads

  18. Extensive Natural Variation in Arabidopsis Seed Mucilage Structure

    Science.gov (United States)

    Voiniciuc, Cătălin; Zimmermann, Eva; Schmidt, Maximilian Heinrich-Wilhelm; Günl, Markus; Fu, Lanbao; North, Helen M.; Usadel, Björn

    2016-01-01

    Hydrated Arabidopsis thaliana seeds are coated by a gelatinous layer called mucilage, which is mainly composed of cell wall polysaccharides. Since mucilage is rich in pectin, its architecture can be visualized with the ruthenium red (RR) dye. We screened the seeds of around 280 Arabidopsis natural accessions for variation in mucilage structure, and identified a large number of novel variants that differed from the Col-0 wild-type. Most of the accessions released smaller RR-stained capsules compared to the Col-0 reference. By biochemically characterizing the phenotypes of 25 of these accessions in greater detail, we discovered that distinct changes in polysaccharide structure resulted in gelatinous coatings with a deceptively similar appearance. Monosaccharide composition analysis of total mucilage extracts revealed a remarkable variation (from 50 to 200% of Col-0 levels) in the content of galactose and mannose, which are important subunits of heteromannan. In addition, most of the natural variants had altered Pontamine Fast Scarlet 4B staining of cellulose and significantly reduced birefringence of crystalline structures. This indicates that the production or organization of cellulose may be affected by the presence of different amounts of hemicellulose. Although, the accessions described in this study were primarily collected from Western Europe, they form five different phenotypic classes based on the combined results of our experiments. This suggests that polymorphisms at multiple loci are likely responsible for the observed mucilage structure. The transcription of MUCILAGE-RELATED10 (MUCI10), which encodes a key enzyme for galactoglucomannan synthesis, was severely reduced in multiple variants that phenocopied the muci10-1 insertion mutant. Although, we could not pinpoint any causal polymorphisms in this gene, constitutive expression of fluorescently-tagged MUCI10 proteins complemented the mucilage defects of a muci10-like accession. This leads us to

  19. Sucrose amendment enhances phytoaccumulation of the herbicide atrazine in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Growth in the presence of sucrose was shown to confer to Arabidopsis thaliana (thale cress or mustard weed) seedlings, under conditions of in vitro culture, a high level of tolerance to the herbicide atrazine and to other photosynthesis inhibitors. This tolerance was associated with root-to-shoot transfer and accumulation of atrazine in shoots, which resulted in significant decrease of herbicide levels in the growth medium. In soil microcosms, application of exogenous sucrose was found to confer tolerance and capacity to accumulate atrazine in Arabidopsis thaliana plants grown on atrazine-contaminated soil, and resulted in enhanced decontamination of the soil. Application of sucrose to plants grown on herbicide-polluted soil, which increases plant tolerance and xenobiotic absorption, thus appears to be potentially useful for phytoremediation. - Exogenous sucrose treatment induces plant tolerance to photosystem-targeted herbicides and enhances phytoremediation of herbicide-polluted soil

  20. Strictly NO3- Nutrition Alleviates Iron Deficiency Chlorosis in Arabidopsis thaliana Plants

    Directory of Open Access Journals (Sweden)

    Najoua Msilini

    2014-03-01

    Full Text Available The effects of NO3- nutrition on iron deficiency responses were investigated in Arabidopsis thaliana. Plants were grown with or without 5 µM Fe, and with NO3- alone or a mixture of NO3- and NH4+. The results indicated that, NO3- nutrition induced higher dry matter production, regardless the Fe concentration. Fe deficiency reduced growth activity, photosynthetic pigment concentration and Fe content of plants, whatever the N forms. This decrease was more pronounced in plants grown with mixed N source; those plants presented the highest EL and MDA and anthocyanin contents compared to plants grown under Fe sufficient conditions. In iron free-solutions, with NO3- as the sole nitrogen source, enhanced FC-R activity in the roots was observed. However, in the presence of NH4+, plants displayed some decrease in in FC-R and PEPC activities. The presence of NH4+ modified typical Fe stress responses in Arabidopsis thaliana plants.

  1. Characterization of minisatellites in Arabidopsis thaliana with sequence similarity to the human minisatellite core sequence.

    Science.gov (United States)

    Tourmente, S; Deragon, J M; Lafleuriel, J; Tutois, S; Pélissier, T; Cuvillier, C; Espagnol, M C; Picard, G

    1994-08-25

    A strategy based on random PCR amplification was used to isolate new repetitive elements of Arabidopsis thaliana. One of the random PCR product analyzed by this approach contained a tandem repetitive minisatellite sequence composed of 33 bp repeated units. The genomic locus corresponding to this PCR product was isolated by screening a lambda genomic library. New related loci were also isolated from the genomic library by screening with a 14 mer oligonucleotide representing a region conserved among the different repeated units. Alignment of the consensus sequence for each minisatellite locus allowed the definition of an Arabidopsis thaliana core sequence that shows strong sequence similarities with the human core sequence and with the generalized recombination signal Chi of Escherichia coli. The minisatellites were tested for their ability to detect polymorphism, and their chromosomal position was established. PMID:8078766

  2. Purification, crystallization and preliminary crystallographic analysis of deoxyuridine triphosphate nucleotidohydrolase from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, Mamta [School of Biological Sciences, University of Nebraska-Lincoln, Manter Hall, Lincoln, Nebraska 68588-0304 (United States); Moriyama, Hideaki, E-mail: hmoriyama2@unl.edu [Department of Chemistry, e-Toxicology and Biotechnology, University of Nebraska-Lincoln, Hamilton Hall, Lincoln, Nebraska 68588-0304 (United States); School of Biological Sciences, University of Nebraska-Lincoln, Manter Hall, Lincoln, Nebraska 68588-0304 (United States)

    2007-05-01

    The first crystallization of deoxyuridine triphosphate nucleotidohydrolase from plant, Arabidopsis thaliana, has been performed. An additive, taurine, was effective in producing the single crystal. The deoxyuridine triphosphate nucleotidohydrolase gene from Arabidopsis thaliana was expressed and the gene product was purified. Crystallization was performed by the hanging-drop vapour-diffusion method at 298 K using 2 M ammonium sulfate as the precipitant. X-ray diffraction data were collected to 2.2 Å resolution using Cu Kα radiation. The crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 69.90, b = 70.86 Å, c = 75.55 Å. Assuming the presence of a trimer in the asymmetric unit, the solvent content was 30%, with a V{sub M} of 1.8 Å{sup 3} Da{sup −1}.

  3. Electron transfer reactivity of the Arabidopsis thaliana sulfhydryl oxidase AtErv1

    DEFF Research Database (Denmark)

    Farver, Ole; Vitu, Elvira; Wherland, Scot;

    2009-01-01

    The redox reactivity of the three disulfide bridges and the flavin present in each protomer of the wild-type Arabidopsis thaliana mitochondrial sulfhydryl oxidase (AtErv1) homodimer has been investigated. Pulse radiolytically produced CO2- radical ions were found to reduce the disulfide bridges to...... the active site disulfide bridge increased the stability of the flavin semiquinone making it a long-lived product. Relevance of these observations to the design and function of the sulfhydryl oxidases is discussed....

  4. ML3: a novel regulator of herbivory-induced responses in Arabidopsis thaliana

    Czech Academy of Sciences Publication Activity Database

    Fridborg, I.; Johansson, A.; Lagensjo, J.; Leelarasamee, N.; Floková, Kristýna; Tarkowská, Danuše; Meijer, J.; Bejai, S.

    2013-01-01

    Roč. 64, č. 4 (2013), s. 935-948. ISSN 0022-0957 R&D Projects: GA AV ČR KAN200380801 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * herbivory * jasmonic acid Subject RIV: EC - Immunology Impact factor: 5.794, year: 2013

  5. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana

    OpenAIRE

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-01

    Background Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fat...

  6. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana

    OpenAIRE

    Zhang, Nana; Tonsor, Stephen J; Traw, M. Brian

    2015-01-01

    Salicylic acid (SA) occupies a key role as a hormone central to both plant resistance to bacterial pathogens and tolerance of abiotic stresses. Plants at high elevation experience colder temperatures and elevated UV levels. While it has been predicted that SA concentrations will be higher in plants from high elevation populations, few studies have addressed this question. Here, we asked how concentrations of SA vary in natural populations of Arabidopsis thaliana collected across an elevationa...

  7. Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions

    Czech Academy of Sciences Publication Activity Database

    Mishra, Anamika; Heyer, A. G.; Mishra, Kumud

    2014-01-01

    Roč. 10, č. 38 (2014). ISSN 1746-4811 R&D Projects: GA MŠk EE2.3.20.0246; GA MŠk 7E12047 Institutional support: RVO:67179843 Keywords : high-throughput screening * chlorophyll a fluorescence transients * cold tolerance * cold acclimation * whole plant * Arabidopsis thaliana Subject RIV: EH - Ecology, Behaviour Impact factor: 3.102, year: 2014

  8. Enhanced Toxic Metal Accumulation in Engineered Bacterial Cells Expressing Arabidopsis thaliana Phytochelatin Synthase

    OpenAIRE

    Sauge-Merle, Sandrine; Cuiné, Stéphan; Carrier, Patrick; Lecomte-Pradines, Catherine; Luu, Doan-Trung; Peltier, Gilles

    2003-01-01

    Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial ...

  9. Heterogeneous selection at specific loci in natural environments in Arabidopsis thaliana.

    OpenAIRE

    Weinig, Cynthia; Dorn, Lisa A; Kane, Nolan C.; German, Zachary M; Halldorsdottir, Solveig S; Ungerer, Mark C.; Toyonaga, Yuko; Mackay, Trudy F. C.; Purugganan, Michael D.; Schmitt, Johanna

    2003-01-01

    Genetic variation for quantitative traits is often greater than that expected to be maintained by mutation in the face of purifying natural selection. One possible explanation for this observed variation is the action of heterogeneous natural selection in the wild. Here we report that selection on quantitative trait loci (QTL) for fitness traits in the model plant species Arabidopsis thaliana differs among natural ecological settings and genetic backgrounds. At one QTL, the allele that enhanc...

  10. Funktionsanalyse ausgewählter DOF-Transkriptionsfaktoren bei der Modellpflanze Arabidopsis thaliana

    OpenAIRE

    Skirycz, Aleksandra

    2008-01-01

    Transcription factors (TFs) are global regulators of gene expression playing essential roles in almost all biological processes, and are therefore of great scientific and biotechnological interest. This project focused on functional characterisation of three DNA-binding-with-one-zinc-finger (DOF) TFs from the genetic model plant Arabidopsis thaliana, namely OBP1, OBP2 and AtDOF4;2. These genes were selected due to severe growth phenotypes conferred upon their constitutive over-expression. To ...

  11. Global and targeted proteomics in Arabidopsis thaliana: A study of secondary metabolism and phytohormone signaling

    OpenAIRE

    Slade Jr, William O

    2013-01-01

    Proteomics is defined as a tool to explore how proteins control and regulate important molecular and physiological processes. Further, peptide-centric approaches, or bottom-up methods, provide more comprehensive coverage of a proteome compared to whole-protein approaches. This body of work assesses the technical feasibility of several bottom-up proteomics technologies applied to Arabidopsis thaliana, including gel-based methods, those that require peptide derivitization, and those that do n...

  12. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants

    OpenAIRE

    Camera, Sylvain La; L’Haridon, Floriane; Astier, Jérémy; Zander, Mark; Abou-Mansour, Eliane; Page, Gonzague; Thurow, Corinna; Wendehenne, David; Gatz, Christiane; Métraux, Jean-Pierre; Lamotte, Olivier

    2011-01-01

    Botrytis cinerea is a major pre- and post-harvest necrotrophic pathogen with a broad host range that causes substantial crop losses. The plant hormone jasmonic acid (JA) is involved in the basal resistance against this fungus. Despite basal resistance, virulent strains of B. cinerea can cause disease on Arabidopsis thaliana and virulent pathogens can interfere with the metabolism of the host in a way to facilitate infection of the plant. However, plant genes that are required by the pathogen ...

  13. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions

    OpenAIRE

    Mishra, Anamika; Mishra, Kumud B; Höermiller, Imke I; Heyer, Arnd G; Nedbal, Ladislav

    2011-01-01

    Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well establ...

  14. Identification of novel regulators of COP1-controlled morphogenesis in Arabidopsis thaliana

    OpenAIRE

    Schrader, Andrea

    2011-01-01

    In Arabidopsis thaliana, COP1 is an essential element of light signal transduction acting downstream of photoreceptors and upstream of light-regulated gene expression. The COP1 protein acts as part of an E3 ligase complex to suppress photomorphogenic gene expression by ubiquitin-dependent degradation of light-regulated transcription factors. In dark-grown seedlings, the repression of photomorphogenesis involves the inhibition of hypocotyl growth, anthocyanin accumulation, expre...

  15. Induction of oxidative stress related responses in Arabidopsis thaliana following uranium exposure

    OpenAIRE

    Vanhoudt, Nathalie; Vandenhove, H.; Opdenakker, Kelly; Remans, Tony; Smeets, Karen; MARTINEZ BELLO, Daniel; van Hees, M.; Wannijn, J.; Vangronsveld, Jaco; Cuypers, Ann

    2009-01-01

    The reactive oxygen species (ROS)-signaling pathway is very important in heavy metal toxicity. Induction of the antioxidative defense mechanism, comprising ROS-scavenging enzymes and metabolites, in plants after environmental uranium contamination has been insufficiently studied in the past. This study aimed to analyze oxidative stress related responses in Arabidopsis thaliana after uranium exposure. Seventeen-day-old seedlings were exposed to 0, 0.1, 1, 10 and 100 μM uranium for 3 days. Afte...

  16. Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions

    OpenAIRE

    Carrera, Javier; Rodrigo, Guillermo; Jaramillo, Alfonso; Elena, Santiago F.

    2009-01-01

    BACKGROUND: Understanding the molecular mechanisms plants have evolved to adapt their biological activities to a constantly changing environment is an intriguing question and one that requires a systems biology approach. Here we present a network analysis of genome-wide expression data combined with reverse-engineering network modeling to dissect the transcriptional control of Arabidopsis thaliana. The regulatory network is inferred by using an assembly of microarray data containing steady-st...

  17. Dissecting a Hidden Gene Duplication: The Arabidopsis thaliana SEC10 Locus

    Czech Academy of Sciences Publication Activity Database

    Vukašinović, Nemanja; Cvrčková, F.; Eliáš, M.; Cole, R.; Fowler, J.E.; Žárský, Viktor; Synek, Lukáš

    2014-01-01

    Roč. 9, č. 4 (2014). E-ISSN 1932-6203 R&D Projects: GA ČR GPP501/11/P853; GA ČR(CZ) GAP305/11/1629 Grant ostatní: GA MŠk ME10033 Institutional support: RVO:61389030 Keywords : WHOLE-GENOME * ARABIDOPSIS-THALIANA * RECENT SEGMENTAL DUPLICATIONS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2014

  18. Early cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profiling

    Czech Academy of Sciences Publication Activity Database

    Černý, M.; Dyčka, Filip; Bobálová, Janette; Divíšková, E.; Koukalová, Š.; Brzobohatý, B.

    Prague: Czech University of Life Sciences Prague, 2009. s. 34. [ACPD 2009. Auxins and Cytokinins in Plant Development International Symposium. 10.07.2009-14.07.2009, Prague] R&D Projects: GA AV ČR IAA600040701; GA MŠk 1M06030 Institutional research plan: CEZ:AV0Z40310501 Keywords : phosphoproteins * Arabidopsis thaliana * cytokinin Subject RIV: CB - Analytical Chemistry, Separation

  19. Early cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profiling

    Czech Academy of Sciences Publication Activity Database

    Černý, M.; Dyčka, Filip; Bobálová, Janette; Divíšková, E.; Brzobohatý, B.; Koukalová, Š.

    Brno: Mendel University of Agriculture and Forestry in Brno, 2009 - (Balla, J.; Reinöhl, V.). s. 50 ISBN 978-80-7375-319-1. [ESNA 2009. 25.08.2009-29.08.2009, Brno] R&D Projects: GA MŠk 1M06030; GA AV ČR IAA600040701 Institutional research plan: CEZ:AV0Z40310501 Keywords : Arabidopsis thaliana * phosphoproteins * cytokinin Subject RIV: CB - Analytical Chemistry, Separation

  20. Tissue- and isoform-specific phytochrome regulation of light-dependent anthocyanin accumulation in Arabidopsis thaliana

    OpenAIRE

    Warnasooriya, Sankalpi N.; Porter, Katie J.; Montgomery, Beronda L

    2011-01-01

    Phytochromes regulate light- and sucrose-dependent anthocyanin synthesis and accumulation in many plants. Mesophyll-specific phyA alone has been linked to the regulation of anthocyanin accumulation in response to far-red light in Arabidopsis thaliana. However, multiple mesophyll-localized phytochromes were implicated in the photoregulation of anthocyanin accumulation in red-light conditions. Here, we report a role for mesophyll-specific phyA in blue-light-dependent regulation of anthocyanin l...

  1. Collection of apoplastic fluids from Arabidopsis thaliana leaves

    DEFF Research Database (Denmark)

    Madsen, Svend Roesen; Nour-Eldin, Hussam Hassan; Halkier, Barbara Ann

    2016-01-01

    The leaf apoplast comprises the extracellular continuum outside cell membranes. A broad range of processes take place in the apoplast, including intercellular signaling, metabolite transport, and plant-microbe interactions. To study these processes, it is essential to analyze the metabolite content...... in apoplastic fluids. Due to the fragile nature of leaf tissues, it is a challenge to obtain apoplastic fluids from leaves. Here, methods to collect apoplastic washing fluid and guttation fluid from Arabidopsis thaliana leaves are described....

  2. A kinetic model for the metabolism of the herbicide safener fenclorim in Arabidopsis thaliana

    OpenAIRE

    Liu, Junli; Brazier-Hicks, Melissa; Edwards, Robert

    2009-01-01

    Abstract Glutathione transferases (GSTs) catalyse the detoxification of a range of xenobiotics, including crop protection agents in plants. Recent studies in cultures of the model plant Arabidopsis thaliana have shown that the herbicide safener fenclorim (4,6-dichloro-2-phenylpyrimidine) is conjugated by GSTs acting in the cytosol which are induced in response to this chemical treatment. The primary glutathione conjugates are then hydrolyzed to S-(4-chloro-2-phenylpyrimidin-6-yl)-c...

  3. Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: improved recovery following removal of phenolic compounds.

    OpenAIRE

    Charmont, Stéphane; Jamet, Elisabeth; Pont-Lezica, Rafael; Canut, Hervé

    2005-01-01

    Arabidopsis thaliana seedlings grown in liquid culture were used to recover proteins secreted from the whole plant. The aim was to identify apoplastic proteins that may be lost during classical extraction procedures such as preparation of cell walls. The inclusion of polyvinyl-polypyrrolidone (PVPP) in the protocol of purification of secreted proteins allowed a more efficient identification of proteins after their separation by two-dimensional gel electrophoresis (2-DE) and mass spectrometry ...

  4. Proteomic analysis of Arabidopsis thaliana (L.) Heynh responses to a generalist sucking pest (Myzus persicae Sulzer)

    OpenAIRE

    Truong, Thi Dieu; Bauwens, Julien; Delaplace, Pierre; Mazzucchelli, Gabriel; Lognay, Georges; Francis, Frédéric

    2015-01-01

    Herbivorous insects can cause deep cellular changes to plant foliage following infestations depending on feeding 41 behavior. Here, a proteomic study was conducted to investigate green peach aphid (Myzus persicae Sulzer) 42 influence as a polyphagous pest on the defense response of Arabidopsis thaliana (L.) Heynh after aphid colony 43 set up on host plant (3 days). Analysis of about 574 protein spots on 2-DE gel revealed 31 differentially 44 expressed protein spots. Twenty out of 31 different...

  5. Kontrolle der Expression des UNUSUAL FLORAL ORGANS (UFO) Gens in Arabidopsis thaliana

    OpenAIRE

    Hobe, Martin

    2004-01-01

    Die vorliegende Arbeit befaßt sich mit der Kontrolle des Expressionsmusters des UNUSUAL FLORAL ORGANS (UFO) Gens von Arabidopsis thaliana. UFO wird im Sproß- und Blütenmeristemen aller Entwicklungsstadien der Pflanze exprimiert. In Blütenmeristemen agiert UFO als Kofaktor von LEAFY (LFY) bei der Aktivierung der Organidentitätsgene des zweiten und dritten Wirtels. UFO stellt also einen generellen Faktor der Musterbildung in Meristemen dar. Um regulatorische Gene, die die Expression von UFO bee...

  6. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress

    OpenAIRE

    Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C.; del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; González, María E; Carrasco, Pedro; Ruiz, Oscar A.

    2011-01-01

    Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the overexpression of ADC genes m...

  7. Characterization of minisatellites in Arabidopsis thaliana with sequence similarity to the human minisatellite core sequence.

    OpenAIRE

    Tourmente, S; Deragon, J M; Lafleuriel, J; Tutois, S; Pélissier, T; Cuvillier, C.; Espagnol, M C; G. Picard

    1994-01-01

    A strategy based on random PCR amplification was used to isolate new repetitive elements of Arabidopsis thaliana. One of the random PCR product analyzed by this approach contained a tandem repetitive minisatellite sequence composed of 33 bp repeated units. The genomic locus corresponding to this PCR product was isolated by screening a lambda genomic library. New related loci were also isolated from the genomic library by screening with a 14 mer oligonucleotide representing a region conserved ...

  8. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines.

    OpenAIRE

    Roux, Fabrice; Gasquez, Jacques; Reboud, Xavier

    2004-01-01

    Resistance evolution depends upon the balance between advantage and disadvantage (cost) conferred in treated and untreated areas. By analyzing morphological characters and simple fitness components, the cost associated with each of eight herbicide resistance alleles (acetolactate synthase, cellulose synthase, and auxin-induced target genes) was studied in the model plant Arabidopsis thaliana. The use of allele-specific PCR to discriminate between heterozygous and homozygous plants was used to...

  9. PHENOPSIS DB: an Information System for Arabidopsis thaliana phenotypic data in an environmental context

    Directory of Open Access Journals (Sweden)

    Massonnet Catherine

    2011-05-01

    Full Text Available Abstract Background Renewed interest in plant × environment interactions has risen in the post-genomic era. In this context, high-throughput phenotyping platforms have been developed to create reproducible environmental scenarios in which the phenotypic responses of multiple genotypes can be analysed in a reproducible way. These platforms benefit hugely from the development of suitable databases for storage, sharing and analysis of the large amount of data collected. In the model plant Arabidopsis thaliana, most databases available to the scientific community contain data related to genetic and molecular biology and are characterised by an inadequacy in the description of plant developmental stages and experimental metadata such as environmental conditions. Our goal was to develop a comprehensive information system for sharing of the data collected in PHENOPSIS, an automated platform for Arabidopsis thaliana phenotyping, with the scientific community. Description PHENOPSIS DB is a publicly available (URL: http://bioweb.supagro.inra.fr/phenopsis/ information system developed for storage, browsing and sharing of online data generated by the PHENOPSIS platform and offline data collected by experimenters and experimental metadata. It provides modules coupled to a Web interface for (i the visualisation of environmental data of an experiment, (ii the visualisation and statistical analysis of phenotypic data, and (iii the analysis of Arabidopsis thaliana plant images. Conclusions Firstly, data stored in the PHENOPSIS DB are of interest to the Arabidopsis thaliana community, particularly in allowing phenotypic meta-analyses directly linked to environmental conditions on which publications are still scarce. Secondly, data or image analysis modules can be downloaded from the Web interface for direct usage or as the basis for modifications according to new requirements. Finally, the structure of PHENOPSIS DB provides a useful template for the development

  10. Funktionelle Charakterisierung zweier Lipid Transfer Proteine in der Arabidopsis thaliana Pathogenantwort

    OpenAIRE

    Bieber, Michael

    2013-01-01

    Die Multigenfamilie der Lipid Transfer Proteine (LTP) stellt eine Gruppe von kleinen Proteinen dar, welche in allen höheren Landpflanzen vorkommen. In der Modellpflanze Arabidopsis thaliana werden 92 Proteine zur Klasse der LTPs gezählt. Die Benennung der Proteinfamilie basiert auf dem beobachteten in vitro Transfer von Lipiden zwischen zwei Membranen. Alle LTPs weisen ein konserviertes, 8 Cysteine beinhaltendes Motiv und eine hydrophobe Tasche auf, welche für die Bindung hydrophober Moleküle...

  11. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach

    OpenAIRE

    Xie, Wenchuan; Huang, Junfeng; Liu, Yang; Rao, Jianan; Luo, Da; He, Miao

    2015-01-01

    Flowering is one of the important defining features of angiosperms. The initiation of flower development and the formation of different floral organs are the results of the interplays among numerous genes. But until now, just fewer genes have been found linked with flower development. And the functions of lots of genes of Arabidopsis thaliana are still unknown. Although, the quartet model successfully simplified the ABCDE model to elaborate the molecular mechanism by introducing protein-prote...

  12. Analysis of two single trait loci affecting flavonol glycoside accumulations in Arabidopsis thaliana natural variations

    OpenAIRE

    Ishihara, Hirofumi

    2007-01-01

    Various plant secondary metabolites, including flavonoids, are involved in plant adaptation to different environments. The needs of sessile lifestyle of plants may have increased the variation of enzymes which are required in the modification and/or accumulation of different flavonol derivatives. The probable mechanism for generating variants of the enzymes is by mutating the corresponding genes. Therefore, Arabidopsis thaliana wildtype accessions collected from different environments and loc...

  13. Mass spectrometry-based metabolomic fingerprinting for screening cold tolerance in Arabidopsis thaliana accessions

    Czech Academy of Sciences Publication Activity Database

    Václavík, L.; Mishra, Anamika; Mishra, Kumud; Hajslova, J.

    2013-01-01

    Roč. 405, č. 8 (2013), s. 2671-2683. ISSN 1618-2642 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk OC08055 Institutional support: RVO:67179843 Keywords : cold tolerance * Arabidopsis thaliana * metabolomic fingerprinting * LC-MS * DART-MS * chemometric analysis Subject RIV: EH - Ecology, Behaviour Impact factor: 3.578, year: 2013

  14. Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis.

    OpenAIRE

    Borderies, Gisèle; Jamet, Elisabeth; Lafitte, Claude; Rossignol, Michel; Jauneau, Alain; Boudart, Georges; Monsarrat, Bernard; Esquerré-Tugayé, Marie-Thérèse; Boudet, Alain; Pont-Lezica, Rafael

    2003-01-01

    The complete sequencing of the Arabidopsis thaliana genome allows the use of the recently developed mass spectrometry techniques to identify the cell wall proteins (CWPs). Most proteomic approaches depend on the quality of sample preparation. Extraction of CWPs is particularly complex since the proteins may be free in the apoplast or are embedded in a polysaccharide matrix where they are retained by Van der Waals interactions, hydrogen bonds, hydrophobic or ionic interactions, or cross-linked...

  15. Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana

    OpenAIRE

    Smeets, Karen; RUYTINX, Joske; Van Belleghem, Frank; Semane, Brahim; Lin, Dan; Vangronsveld, Jaco; Cuypers, Ann

    2008-01-01

    Arabidopsis thaliana is one of the most widely used model organisms in plant sciences. Because of the increasing knowledge in the understanding of its molecular pathways, a reproducible and stable growth set-up for obtaining uniform plants becomes more important. In order to be able to easily harvest and study both roots and shoots, and to allow simple exposure to water-soluble toxic substances, a hydroponic system is the desired cultivation method for controlled plant growth. Based o...

  16. “Rhizoponics”: a novel hydroponic rhizotron for root system analyses on mature Arabidopsis thaliana plants

    OpenAIRE

    Mathieu, Laura; Lobet, Guillaume; Tocquin, Pierre; Périlleux, Claire

    2015-01-01

    Background Well-developed and functional roots are critical to support plant life and reach high crop yields. Their study however, is hampered by their underground growth and characterizing complex root system architecture (RSA) therefore remains a challenge. In the last few years, several phenotyping methods, including rhizotrons and x-ray computed tomography, have been developed for relatively thick roots. But in the model plant Arabidopsis thaliana, in vitro culture remains the easiest and...

  17. Isoflavonoids are present in Arabidopsis thaliana despite the absence of any homologue to known isoflavonoid synthases

    Czech Academy of Sciences Publication Activity Database

    Lapčík, O.; Honys, David; Koblovská, R.; Macková, Z.; Vítková, M.; Klejdus, B.

    2006-01-01

    Roč. 44, 2-3 (2006), s. 106-114. ISSN 0981-9428 R&D Projects: GA ČR GA525/03/0352; GA AV ČR KJB6038409 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * Brassicaceae * HPLC-MS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.847, year: 2006

  18. Century-scale Methylome Stability in a Recently Diverged Arabidopsis thaliana Lineage

    OpenAIRE

    Hagmann, J.; Becker, C.; Mueller, J.; Stegle, O.; Meyer, R.; Wang, G; Schneeberger, K.; Fitz, J.; Altmann, T.; J. Bergelson; Borgwardt, K.; Weigel, D.

    2015-01-01

    Author Summary It continues to be hotly debated to what extent environmentally induced epigenetic change is stably inherited and thereby contributes to short-term adaptation. It has been shown before that natural Arabidopsis thaliana lines differ substantially in their methylation profiles. How much of this is independent of genetic changes remains, however, unclear, especially given that there is very little conservation of methylation between species, simply because the methylated sequences...

  19. Activation of nitric oxide synthase and induction of defense genes in Arabidopsis thaliana by bacterial lipopolysaccharides

    OpenAIRE

    Zeidler, Dana

    2006-01-01

    The aim of this study was to examine if Lipopolysaccharide (LPS) are novel elicitors of plant innate immunity using Arabidopsis thaliana as a model system. LPS are the major outer membrane components of Gram-negative bacteria and consist of three distinct structural domains: O-antigen, core region and lipid A. They represent microbe-/pathogen-associated molecular patterns (PAMPs) in animal patho-systems and act as extremely potent stimulators of the mammalian and insect innate immunity. As fo...

  20. Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes

    OpenAIRE

    Zeidler, Dana; Zähringer, Ulrich; Gerber, Isak; Dubery, Ian; Hartung, Thomas; Bors, Wolf; Hutzler, Peter; Durner, Jörg

    2004-01-01

    Lipopolysaccharides (LPS) are cell-surface components of Gram-negative bacteria and are microbe-/pathogen-associated molecular patterns in animal pathosystems. As for plants, the molecular mechanisms of signal transduction in response to LPS are not known. Here, we show that Arabidopsis thaliana reacts to LPS with a rapid burst of NO, a hallmark of innate immunity in animals. Fifteen LPS preparations (among them Burkholderia cepacia, Pseudomonas aeruginosa, and Erwinia carotovora) as well as ...

  1. Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate aminotransferase activity

    OpenAIRE

    Somerville, C. R.; Ogren, W L

    1980-01-01

    Three mutants of the crucifer Arabidopsis thaliana (Linnaeus) Heynhold were isolated that are completely lacking in activity catalyzed by serine-glyoxylate aminotransferase (EC 2.6.1.45), a peroxisomal enzyme involved in photorespiratory carbon metabolism. These mutants were viable and exhibited normal photosynthesis under conditions that suppressed photorespiration, but they were inviable and photosynthesized at greatly reduced rates under conditions that promoted photorespiration. Serine an...

  2. Induced Systemic Resistance in Arabidopsis thaliana in Response to Root Inoculation with Pseudomonas fluorescens CHA0

    OpenAIRE

    Iavicoli, Annalisa; Boutet, Emmanuel; Buchala, Antony; Métraux, Jean-Pierre

    2006-01-01

    Root inoculation of Arabidopsis thaliana ecotype Columbia with Pseudomonas fluorescens CHA0r partially protected leaves from the oomycete Peronospora parasitica. The molecular determinants of Pseudomonas fluorescens CHA0r for this induced systemic resistance (ISR) were investigated, using mutants derived from strain CHA0: CHA400 (pyoverdine deficient), CHA805 (exoprotease deficient), CHA77 (HCN deficient), CHA660 (pyoluteorin deficient), CHA631 (2,4-diacetylphloroglucinol [DAPG] deficient), a...

  3. Activity of Antioxidant Enzymes in Response to Cadmium in Arabidopsis thaliana

    OpenAIRE

    A. Saffar; M.B. Bagherieh Najjar; M. Mianabadi

    2009-01-01

    The effects of the heavy metal cadmium (Cd+2) on growth and activities of the antioxidant enzymes, catalase (CAT), peroxidase (POD) and polyphenol oxidase (PPO) have been investigated in Arabidopsis thaliana L. seedlings. The concentration of 50 and 100 μM CdCl2 was shown to strongly inhibit the growth of roots and lipid peroxidation. Lipid peroxidation of seedlings shoots rose with increasing concentrations of Cd+2 as indicated by malondialdehyde (MDA) concentration. As Cd+2 concentra...

  4. Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDcp2)

    OpenAIRE

    Gunawardana, Dilantha; Cheng, Heung-Chin; Gayler, Kenwyn R.

    2007-01-01

    The Arabidopsis thaliana decapping enzyme (AtDcp2) was characterized by bioinformatics analysis and by biochemical studies of the enzyme and mutants produced by recombinant expression. Three functionally significant regions were detected: (i) a highly disordered C-terminal region with a putative PSD-95, Discs-large, ZO-1 (PDZ) domain-binding motif, (ii) a conserved Nudix box constituting the putative active site and (iii) a putative RNA binding domain consisting of the conserved Box B and a p...

  5. Routine mapping of Fusarium wilt resistance in BC1 populations of Arabidopsis thaliana

    OpenAIRE

    Andrew C Diener

    2013-01-01

    Abstract Background Susceptibility to Fusarium wilt disease varies among wild accessions of Arabidopsis thaliana. Six RESISTANCE TO FUSARIUM OXYSPORUM (RFO) quantitative trait loci (QTLs) controlling the resistance of accession Columbia-0 (Col-0) and susceptibility of Taynuilt-0 to Fusarium oxysporum forma specialis matthioli (FOM) are detected in a recombinant population derived from a single backcross of the F1 hybrid (BC1). In particular, ...

  6. Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana.

    Science.gov (United States)

    Campell, B R; Song, Y; Posch, T E; Cullis, C A; Town, C D

    1992-03-15

    We have isolated a genomic clone containing Arabidopsis thaliana 5S ribosomal RNA (rRNA)-encoding genes (rDNA) by screening an A. thaliana library with a 5S rDNA probe from flax. The clone isolated contains seven repeat units of 497 bp, plus 11 kb of flanking genomic sequence at one border. Sequencing of individual subcloned repeat units shows that the sequence of the 5S rRNA coding region is very similar to that reported for other flowering plants. Four A. thaliana ecotypes were found to contain approx. 1000 copies of 5S rDNA per haploid genome. Southern-blot analysis of genomic DNA indicates that 5S rDNA occurs in long tandem arrays, and shows the presence of numerous restriction-site polymorphisms among the six ecotypes studied. PMID:1348233

  7. Regulation of Arabidopsis thaliana Em genes : role of AB15

    NARCIS (Netherlands)

    Carles, C.; Bies-Etheve, N.; Aspart, L.; Léon-Kloosterziel, K.M.; Koornneef, M.; Echeverria, M.; Delseny, M.

    2002-01-01

    In order to identify new factors involved in Em (a class I Late Embryogenesis Abundant protein) gene expression, Arabidopsis mutants with an altered expression of an Em promoter GUS fusion construct and a modified accumulation of Em transcripts and proteins were isolated. Germination tests on ABA sh

  8. Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    April N Wynn

    Full Text Available In flowering plants the gynoecium is the female reproductive structure. In Arabidopsis thaliana ovules initiate within the developing gynoecium from meristematic tissue located along the margins of the floral carpels. When fertilized the ovules will develop into seeds. SEUSS (SEU and AINTEGUMENTA (ANT encode transcriptional regulators that are critical for the proper formation of ovules from the carpel margin meristem (CMM. The synergistic loss of ovule initiation observed in the seu ant double mutant suggests that SEU and ANT share overlapping functions during CMM development. However the molecular mechanism underlying this synergistic interaction is unknown. Using the ATH1 transcriptomics platform we identified transcripts that were differentially expressed in seu ant double mutant relative to wild type and single mutant gynoecia. In particular we sought to identify transcripts whose expression was dependent on the coordinated activities of the SEU and ANT gene products. Our analysis identifies a diverse set of transcripts that display altered expression in the seu ant double mutant tissues. The analysis of overrepresented Gene Ontology classifications suggests a preponderance of transcriptional regulators including multiple members of the REPRODUCTIVE MERISTEMS (REM and GROWTH-REGULATING FACTOR (GRF families are mis-regulated in the seu ant gynoecia. Our in situ hybridization analyses indicate that many of these genes are preferentially expressed within the developing CMM. This study is the first step toward a detailed description of the transcriptional regulatory hierarchies that control the development of the CMM and ovule initiation. Understanding the regulatory hierarchy controlled by SEU and ANT will clarify the molecular mechanism of the functional redundancy of these two genes and illuminate the developmental and molecular events required for CMM development and ovule initiation.

  9. SUMO E3 Ligase AtMMS21 Regulates Drought Tolerance in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Shengchun Zhang; Yanli Qi; Ming Liu; ChengweiYang

    2013-01-01

    Post-translational modifications of proteins by small ubiquitin-like modifiers (SUMOs) play crucial roles in plant growth and development,and in stress responses.The MMS21 is a newly-identified Arabidopsis thaliana L.SUMO E3 ligase gene aside from the SIZ1,and its function requires further elucidation.Here,we show that MMS21 deficient plants display improved drought tolerance,and constitutive expression of MMS21 reduces drought tolerance.The expression of MMS21 was reduced by abscisic acid (ABA),polyethylene glycol (PEG) or drought stress.Under drought conditions,mms21 mutants showed the highest survival rate and the slowest water loss,and accumulated a higher level of free proline compared to wild-type (WT) and MMS21 over-expression plants.Stomatal aperture,seed germination and cotyledon greening analysis indicated that mms21 was hypersensitive to ABA.Molecular genetic analysis revealed that MMS21 deficiency led to elevated expression of a series of ABA-mediated stress-responsive genes,including COR15A,RD22,and P5CS1 The ABA and drought-induced stress-responsive genes,including RAB18,RD29A and RD29B,were inhibited by constitutive expression of MMS21.Moreover,ABA-induced accumulation of SUMO-protein conjugates was blocked in the mms21 mutant.We thus conclude that MMS21 plays a role in the drought stress response,likely through regulation of gene expression in an ABA-dependent pathway.

  10. Overexpression of fatty acid amide hydrolase induces early flowering in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Neal D. Teaster

    2012-02-01

    Full Text Available N-Acylethanolamines (NAEs are bioactive lipids derived from the hydrolysis of the membrane phospholipid N-acylphosphatidylethanolamine (NAPE. In animal systems this reaction is part of the endocannabinoid signaling pathway, which regulates a variety of physiological processes. The signaling function of NAE is terminated by fatty acid amide hydrolase (FAAH, which hydrolyzes NAE to ethanolamine and free fatty acid. Our previous work in Arabidopsis thaliana showed that overexpression of AtFAAH (At5g64440 lowered endogenous levels of NAEs in seeds, consistent with its role in NAE signal termination. Reduced NAE levels were accompanied by an accelerated growth phenotype, increased sensitivity to abscisic acid (ABA, enhanced susceptibility to bacterial pathogens, and early flowering. Here we investigated the nature of the early flowering phenotype of AtFAAH overexpression. AtFAAH overexpressors flowered several days earlier than wild type and AtFAAH knockouts under both non-inductive short day (SD and inductive long day (LD conditions. Microarray analysis revealed that the FLOWERING LOCUS T (FT gene, which plays a major role in regulating flowering time, and one target MADS box transcription factor, SEPATALLA3 (SEP3, were elevated in AtFAAH overexpressors. Furthermore, AtFAAH overexpressors, with the early flowering phenotype had lower endogenous NAE levels in leaves compared to wild type prior to flowering. Exogenous application of NAE 12:0, which was reduced by up to 30% in AtFAAH overexpressors, delayed the onset of flowering in wild type plants. We conclude that the early flowering phenotype of AtFAAH overexpressors is, in part, explained by elevated FT gene expression resulting from the enhanced NAE hydrolase activity of AtFAAH, suggesting that NAE metabolism may participate in floral signaling pathways.

  11. Mutational Analysis to Dissect Oxidative and Abiotic Stress in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    A forward genetics approach was used to identify mutants more tolerant to oxidative stress. Chemically and T-DNA-mutagenized collections of Arabidopsis thaliana mutant lines were screened for survivors under conditions that trigger oxidative stress-induced programmed cell death (PCD). The fungal AAL-toxin triggers PCD through perturbations of sphingolipid metabolism in AAL-toxin-sensitive plants. While Arabidopsis is relatively insensitive to the toxin, the loh2 mutant is sensitive to AAL-toxin due to knockout of a gene involved in sphingolipid metabolism. EMS mutagenesis of loh2 resulted in second-site mutants that are more tolerant than loh2 to the toxin. Nine of these mutants, named atr (AAL-toxin-resistant), were characterized towards their response to oxidative stress-induced cell death. Either application of the catalase inhibitor aminotriazole, leading to H2O2 accumulation was used, or paraquat, leading to superoxide radicals generation. Some mutants were more tolerant to aminotriazole, paraquat, or both herbicides. In another approach, T-DNA mutagenized wild type seeds were germinated on plant growth media supplemented with aminotriazole and one survivor was recovered. Atr1, atr7 and atr9, with tolerance to both aminotriazole and paraquat, were studied in more details. They showed tolerance to paraquat at seedling stage as well as at rosette leaf stage. Atr1 was subjected to microarray analyses at seedling stage under conditions that trigger cell death in loh2 and no visible damage in atr1. While most of the genes showed similar expression pattern in both mutants, some genes were specifically regulated in loh2 or atr1. These specifically regulated genes are potential targets for further functional studies. Downregulation of genes related to cell wall extension and cell growth in both mutants is consistent with the observed AT-induced growth inhibition in both mutants. It indicates that AT-induced oxidative stress influences two different processes: growth

  12. Mutational analysis to dissect oxidative and abiotic stress in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    A genetic approach was used to identify mutants more tolerant to oxidative and abiotic stress. Large collections of Arabidopsis thaliana mutant lines generated by chemical and T-DNA mutagenesis were screened for survivors under conditions that trigger oxidative stress-induced programmed cell death (PCD). The fungal AAL-toxin triggers PCD through perturbations of sphingolipid metabolism in AAL-toxin-sensitive plants. While Arabidopsis is relatively insensitive to the toxin, the loh2 mutant is sensitive to AAL-toxin due to knockout of a gene involved in sphingolipid metabolism. EMS mutagenesis of loh2 resulted in second-site mutants that are more tolerant than loh2 to the toxin. Nine of these mutants were characterized towards their response to oxidative stress-induced cell death. Either application of the catalase inhibitor aminotriazole, leading to H2O2 accumulation was used, or paraquat, leading to superoxide radicals generation. Some mutants were more tolerant to aminotriazole, paraquat, or both herbicides. One of the mutants with tolerance to both aminotriazole and paraquat, called atr1 (AAL-toxin-resistant 1), was subjected to microarray analyses under conditions that trigger cell death in loh2 and no visible damage in atr1. Majority of the genes showed similar expression pattern in both mutants. Genes encoding for nitrate and ammonium transporters, peroxidases, transcription factors and DNAJ /DNA K were upregulated, while genes related to cell wall extension and cell growth were downregulated in both mutants. Genes from the heat-shock regulon were more clearly induced in loh2. In another approach, T-DNA mutagenized wild type seeds were germinated on plant growth media supplemented with aminotriazole and one survivor was recovered. As many types of abiotic stresses are connected with oxidative stress, this T-DNA mutant together with atr1 and their respective controls were subjected to chilling stress. Both the T-DNA mutant and atr1 showed reduced chilling

  13. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kazama Yusuke

    2011-11-01

    Full Text Available Abstract Background Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm-1 for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Results Dry Arabidopsis thaliana seeds were irradiated with carbon (C ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm-1 at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy and glabrous (gl and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm-1 and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. Conclusions The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection

  14. Glutathione Dynamics in Arabidopsis Seed Development and Germination

    OpenAIRE

    Sumugat, Mae Rose S.

    2004-01-01

    Seed desiccation and germination have great potential for oxidative stress. Glutathione, one of the most abundant antioxidants in plant cells, is a crucial to the plant's defense mechanisms. To better understand glutathione's responses during these two stages, we examined its dynamics in wildtype Arabidopsis seeds and in a transgenic line containing an antisense glutathione reductase2 (anGR2) cDNA insert. Seeds from the two genotypes were compared morphologically. Glutathione levels in maturi...

  15. Identification of novel miRNAs and miRNA dependent developmental shifts of gene expression in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shuhua Zhan

    Full Text Available microRNAs (miRNAs are small, endogenous RNAs of 20 approximately 25 nucleotides, processed from stem-loop regions of longer RNA precursors. Plant miRNAs act as negative regulators of target mRNAs predominately by slicing target transcripts, and a number of miRNAs play important roles in development. We analyzed a number of published datasets from Arabidopsis thaliana to characterize novel miRNAs, novel miRNA targets, and miRNA-regulated developmental changes in gene expression. These data include microarray profiling data and small RNA (sRNA deep sequencing data derived from miRNA biogenesis/transport mutants, microarray profiling data of mRNAs in a developmental series, and computational predictions of conserved genomic stem-loop structures. Our conservative analyses identified five novel mature miRNAs and seven miRNA targets, including one novel target gene. Two complementary miRNAs that target distinct mRNAs were encoded by one gene. We found that genes targeted by known miRNAs, and genes up-regulated or down-regulated in miRNA mutant inflorescences, are highly expressed in the wild type inflorescence. In addition, transcripts upregulated within the mutant inflorescences were abundant in wild type leaves and shoot meristems and low in pollen and seed. Downregulated transcripts were abundant in wild type pollen and seed and low in shoot meristems, roots and leaves. Thus, disrupting miRNA function causes the inflorescence transcriptome to resemble the leaf and meristem and to differ from pollen and seed. Applications of our computational approach to other species and the use of more liberal criteria than reported here will further expand the number of identified miRNAs and miRNA targets. Our findings suggest that miRNAs have a global role in promoting vegetative to reproductive transitions in A. thaliana.

  16. Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds.

    Directory of Open Access Journals (Sweden)

    Verónica Keim

    Full Text Available Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP synthase (FPS, the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP and dimethylallyl diphosphate (DMAPP. In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.

  17. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana.

    Science.gov (United States)

    Salanoubat, M; Lemcke, K; Rieger, M; Ansorge, W; Unseld, M; Fartmann, B; Valle, G; Blöcker, H; Perez-Alonso, M; Obermaier, B; Delseny, M; Boutry, M; Grivell, L A; Mache, R; Puigdomènech, P; De Simone, V; Choisne, N; Artiguenave, F; Robert, C; Brottier, P; Wincker, P; Cattolico, L; Weissenbach, J; Saurin, W; Quétier, F; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Benes, V; Wurmbach, E; Drzonek, H; Erfle, H; Jordan, N; Bangert, S; Wiedelmann, R; Kranz, H; Voss, H; Holland, R; Brandt, P; Nyakatura, G; Vezzi, A; D'Angelo, M; Pallavicini, A; Toppo, S; Simionati, B; Conrad, A; Hornischer, K; Kauer, G; Löhnert, T H; Nordsiek, G; Reichelt, J; Scharfe, M; Schön, O; Bargues, M; Terol, J; Climent, J; Navarro, P; Collado, C; Perez-Perez, A; Ottenwälder, B; Duchemin, D; Cooke, R; Laudie, M; Berger-Llauro, C; Purnelle, B; Masuy, D; de Haan, M; Maarse, A C; Alcaraz, J P; Cottet, A; Casacuberta, E; Monfort, A; Argiriou, A; flores, M; Liguori, R; Vitale, D; Mannhaupt, G; Haase, D; Schoof, H; Rudd, S; Zaccaria, P; Mewes, H W; Mayer, K F; Kaul, S; Town, C D; Koo, H L; Tallon, L J; Jenkins, J; Rooney, T; Rizzo, M; Walts, A; Utterback, T; Fujii, C Y; Shea, T P; Creasy, T H; Haas, B; Maiti, R; Wu, D; Peterson, J; Van Aken, S; Pai, G; Militscher, J; Sellers, P; Gill, J E; Feldblyum, T V; Preuss, D; Lin, X; Nierman, W C; Salzberg, S L; White, O; Venter, J C; Fraser, C M; Kaneko, T; Nakamura, Y; Sato, S; Kato, T; Asamizu, E; Sasamoto, S; Kimura, T; Idesawa, K; Kawashima, K; Kishida, Y; Kiyokawa, C; Kohara, M; Matsumoto, M; Matsuno, A; Muraki, A; Nakayama, S; Nakazaki, N; Shinpo, S; Takeuchi, C; Wada, T; Watanabe, A; Yamada, M; Yasuda, M; Tabata, S

    2000-12-14

    Arabidopsis thaliana is an important model system for plant biologists. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis and in 1999 the sequence of the first two chromosomes was reported. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes. PMID:11130713

  18. Composition and function of P bodies in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Luis David Maldonado-Bonilla

    2014-05-01

    Full Text Available mRNA accumulation is tightly regulated by diverse molecular pathways. The identification and characterization of enzymes and regulatory proteins involved in controlling the fate of mRNA offers the possibility to broaden our understanding of posttranscriptional gene regulation. Processing bodies (P bodies, PB are cytoplasmic protein complexes involved in degradation and translational arrest of mRNA. Composition and dynamics of these subcellular structures have been studied in animal systems, yeasts and in the model plant Arabidopsis. Their assembly implies the aggregation of specific factors related to decapping, deadenylation and exoribonucleases that operate synchronously to regulate certain mRNA targets during development and adaptation to stress. Although the general function of PB along with the flow of genetic information is understood, several questions still remain open. This review summarizes data on the composition, potential molecular roles, and biological significance of PB and potentially related proteins in Arabidopsis.

  19. Changes in DNA base sequences in the mutant of Arabidopsis thaliana induced by low-energy N+ implantation

    Institute of Scientific and Technical Information of China (English)

    常凤启; 刘选明; 李银心; 贾庚祥; 马晶晶; 刘公社; 朱至清

    2003-01-01

    To reveal the mutation effect of low-energy ion implantation on Arabidopsis thaliana in vivo, T80II, a stable dwarf mutant, derived from the seeds irradiated by 30 keV N+ with the dose of 80×1015 ions/cm2 was used for Random Amplified Polymorphic DNA (RAPD) and base sequence analysis. The results indicated that among total 397 RAPD bands observed, 52 bands in T80II were different from those of wild type showing a variation frequency 13.1%. In comparison with the sequences of A. thaliana in GenBank, the RAPD fragments in T80II were changed greatly in base sequences with an average rate of one base change per 16.8 bases. The types of base changes included base transition, transversion, deletion and insertion. Among the 275 base changes detected, single base substitutions (97.09%) occurred more frequently than base deletions and insertions (2.91%). And the frequency of base transitions (66.55%) was higher than that of base transversions (30.55%). Adenine, thymine, guanine or cytosine could be replaced by any of other three bases in cloned DNA fragments in T80II. It seems that thymine was more sensitive to the irradiation than other bases. The flanking sequences of the base changes in RAPD fragments in T80II were analyzed and the mutational "hotspot" induced by low-energy ion implantation was discussed.

  20. Gravity-regulated gene expression in Arabidopsis thaliana

    Science.gov (United States)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  1. Visualisierung von Plasmamembran-Domänen in Arabidopsis thaliana

    OpenAIRE

    Blachutzik, Jörg O.

    2013-01-01

    Unter Verwendung fluoreszenzmarkierter Remorine der taxonomischen Gruppe 1b wurden Nanodomänen in Arabidopsis Plasmamembranen (PM) unter Verwendung hoch auflösender Laser Scanning-Systeme sichtbar gemacht. In diesen kompartimentierten Membranbereichen lagerten sich Sterol-abhängige Remorine aus verschiedenen Pflanzen-familien zusammen und zeigten dort Kolokalisation. Dies wurde statistisch belegt durch hohe Pearson und Spearman Korrelationskoeffizienten. Remorine konnten schließlich als pflan...

  2. Identification and map location of TTR1, a single locus in Arabidopsis thaliana that confers tolerance to tobacco ringspot nepovirus.

    Science.gov (United States)

    Lee, J M; Hartman, G L; Domier, L L; Bent, A F

    1996-11-01

    The interaction between Arabidopsis and the nepovirus tobacco ringspot virus (TRSV) was characterized. Of 97 Arabidopsis lines tested, all were susceptible when inoculated with TRSV grape strain. Even though there was systemic spread of the virs, there was a large degree of variation in symptoms as the most sensitive lines died 10 days after inoculation, while the most tolerant lines either were symptomless or developed only mild symptoms. Four lines were selected for further study based on their differential reactions to TRSV. Infected plants of line Col-0 and Col-0 gl1 flowered and produced seeds like noninfected plants, while those of lines Estland and H55 died before producing seeds. Symptoms appeared on sensitive plants approximately 5 to 6 days after inoculation. Serological studies indicated that in mechanically inoculated seedlings, the virus, as measured by coat protein accumulation, developed at essentially the same rates and to the same levels in each of the four lines, demonstrating that differences in symptom development were not due to a suppression of virus accumulation. Two additional TRSV strains gave similar results when inoculated on the four lines. Genetic studies with these four Arabidopsis lines revealed segregation of a single incompletely dominant locus controlling tolerance to TRSV grape strain. We have designated this locus TTR1. By using SSLP and CAPS markers, TTR1 was mapped to chromosome V near the nga129 marker. Seed transmission frequency of TRSV for Col-0 and Col-0 gl1 was over 95% and their progeny from crosses all had seed transmission frequencies of over 83%, which made it possible to evaluate the segregation of TTR1 in F2 progeny from infected F1 plants without inoculating F2 plants. Seed transmission of TRSV will be further exploited to streamline selection of individuals for fine mapping the TTR1 gene. The identification of tolerant and sensitive interactions between TRSV and A. thaliana lines provides a model system for

  3. Does Arabidopsis thaliana DREAM of cell cycle control?

    Science.gov (United States)

    Fischer, Martin; DeCaprio, James A

    2015-08-01

    Strict temporal control of cell cycle gene expression is essential for all eukaryotes including animals and plants. DREAM complexes have been identified in worm, fly, and mammals, linking several distinct transcription factors to coordinate gene expression throughout the cell cycle. In this issue of The EMBO Journal, Kobayashi et al (2015) identify distinct activator and repressor complexes for genes expressed during the G2 and M phases in Arabidopsis that can be temporarily separated during proliferating and post‐mitotic stages of development. The complexes incorporate specific activator and repressor MYB and E2F transcription factors and indicate the possibility of the existence of multiple DREAM complexes in plants. PMID:26089020

  4. Regeneration from leaf protoplasts of Arabidopsis thaliana ecotype estland.

    Science.gov (United States)

    Gandhi, R; Khurana, P

    2001-07-01

    Protoplasts (2 x 10(7)/g fresh wt) were isolated from leaves of A. thaliana ecotype estland, with a viability of more than 90%. Protoplasts cultured in calcium alginate beads or layers showed division while culture in liquid or agarose beads failed to elicit any division. Effect of culture density showed highest frequency of division occurring at 5 x 10(5) while no division was seen when cultured at a density of 5 x 10(4). Culture in MS medium resulted in higher division frequency and better sustenance of microcolonies as compared to B5 medium. Under optimized conditions, macrocolonies were formed at a frequency of 1.8%. Shoot regeneration was seen in 50% of microcalli transferred to shoot induction medium for regeneration. Shoots were rooted and plantlets transferred to pots. The plants produced flowers and were fertile. PMID:12019766

  5. Genome wide association mapping for the tolerance to the polyamine oxidase inhibitor guazatine in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kostadin Evgeniev eAtanasov

    2016-04-01

    Full Text Available Guazatine is a potent inhibitor of polyamine oxidase (PAO activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines. Here we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1 within this locus was studied as candidate gene, together with its paralog (CLH2. The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2 and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine.

  6. Genome Wide Association Mapping for the Tolerance to the Polyamine Oxidase Inhibitor Guazatine in Arabidopsis thaliana.

    Science.gov (United States)

    Atanasov, Kostadin E; Barboza-Barquero, Luis; Tiburcio, Antonio F; Alcázar, Rubén

    2016-01-01

    Guazatine is a potent inhibitor of polyamine oxidase (PAO) activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines). Here, we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA) mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1) within this locus was studied as candidate gene, together with its paralog (CLH2). The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2, and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine. PMID:27092150

  7. AtKP1, a kinesin-like protein, mainly localizes to mitochondria in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Kinesins and kinesin-like proteins (KLPs) constitute a large family of microtubule-based motors that play important roles in many fundamental cellular and developmental processes. To date, a number of kinesins or KLPs have been identified in plants including Arabidopsis thaliana. Here, a polyclonal antibody against AtKP1 (kinesin-like protein 1 in A.thaliana) was raised by injection the expressed AtKP1 specific C-terminal polypeptides in rabbits, and immunoblot analysis was conducted with the affinity-purified anti-AtKP1 antibody. The results indicated that this antibody recognized the AtKP1 fusion proteins expressed in E. coli and proteins of ~125 kDa in the soluble fractions of Arabidopsis extracts. The molecular weight was consistent with the calculated molecular weight based on deduced amino acids sequence of AtKP1. To acquire the subcellular localization of the protein, AtKP1 in Arabidopsis root cells was observed by indirect immunofluorescence microscopy. AtKP1 was localized to particle-like organelles in interphase or dividing cells, but not to mitotic microtubule arrays. Relatively more AtKP1 was found in isolated mitochondria fraction on immunoblot of the subcellular fractions. The AtKP1 protein could not be released following a 0.6 M KI washing,indicating that AtKP1 is tightly bind to mitochondria and might function associated with this kind of organelles.

  8. Proteomic alterations in root tips of Arabidopsis thaliana seedlings under altered gravity conditions

    Science.gov (United States)

    Zheng, H. Q.; Wang, H.

    Gravity has a profound influence on plant growth and development Removed the influence of gravitational acceleration by spaceflight caused a wide range of cellular changes in plant Whole seedling that germinated and grown on clinostats showed the absent of gravitropism At the cellular level clinostat treatment has specific effects on plant cells such as induce alterations in cell wall composition increase production of heat-soluble proteins impact on the cellular energy metabolism facilitate a uniform distribution of plastids amyloplasts and increase number and volume of nucleoli A number of recent studies have shown that the exposure of Arabidopsis seedlings and callus cells to gravity stimulation hyper g-forces or clinostat rotation induces alterations in gene expression In our previous study the proteome of the Arabidopsis thaliana callus cells were separated by high resolution two-dimensional electrophoresis 2-DE Image analysis revealed that 80 protein spots showed quantitative and qualitative variations after exposure to clinostat rotation treatment We report here a systematic proteomic approach to investigate the altered gravity responsive proteins in root tip of Arabidopsis thaliana cv Landsberg erecta Three-day-old seedlings were exposed for 12h to a horizontal clinostat rotation H simulated weightlessness altered g-forces by centrifugation 7g hypergravity a vertical clinostat rotation V clinostat control or a stationary control grown conditions Total proteins of roots were extracted

  9. Does Arabidopsis thaliana DREAM of cell cycle control?

    Science.gov (United States)

    Fischer, Martin; DeCaprio, James A

    2015-01-01

    Strict temporal control of cell cycle gene expression is essential for all eukaryotes including animals and plants. DREAM complexes have been identified in worm, fly, and mammals, linking several distinct transcription factors to coordinate gene expression throughout the cell cycle. In this issue of The EMBO Journal, Kobayashi et al (2015) identify distinct activator and repressor complexes for genes expressed during the G2 and M phases in Arabidopsis that can be temporarily separated during proliferating and post-mitotic stages of development. The complexes incorporate specific activator and repressor MYB and E2F transcription factors and indicate the possibility of the existence of multiple DREAM complexes in plants. PMID:26089020

  10. Molecular evolutionary analysis of the Alfin-like protein family in Arabidopsis lyrata, Arabidopsis thaliana, and Thellungiella halophila.

    Directory of Open Access Journals (Sweden)

    Yu Song

    Full Text Available In previous studies, the Alfin1 gene, a transcription factor, enhanced salt tolerance in alfalfa, primarily through altering gene expression levels in the root. Here, we examined the molecular evolution of the Alfin-like (AL proteins in two Arabidopsis species (A. lyrata and A. thaliana and a salt-tolerant close relative Thellungiella halophila. These AL-like proteins could be divided into four groups and the two known DUF3594 and PHD-finger domains had co-evolved within each group of genes, irrespective of species, due to gene duplication events in the common ancestor of all three species while gene loss was observed only in T. halophila. To detect whether natural selection acted in the evolution of AL genes, we calculated synonymous substitution ratios (dn/ds and codon usage statistics, finding positive selection operated on four branches and significant differences in biased codon usage in the AL family between T. halophila and A. lyrata or A. thaliana. Distinctively, only the AL7 branch was under positive selection on the PHD-finger domain and the three members on the branch showed the smallest difference when codon bias was evaluated among the seven clusters. Functional analysis based on transgenic overexpression lines and T-DNA insertion mutants indicated that salt-stress-induced AtAL7 could play a negative role in salt tolerance of A. thaliana, suggesting that adaptive evolution occurred in the members of AL gene family.

  11. Clustering of Pathogen-Response Genesin the Genome of Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Olga A. Postnikova; Natalia Y. Minakova; Alexander M. Boutanaev; Lev G. Nemchinov

    2011-01-01

    Previously,we used heterologous expressed sequence tag (EST) mapping to generate a profile of 4 935pathogen-response genes of Arabidopsis thaliana.In this work,we performed a computer analysis of this profile,revealing 1 594 non-homologous clustered genes distributed among all A.thaliana chromosomes,whose co-regulation may be related to host responses to pathogens.To supplement computer data,we arbitrarily selected two clusters and analyzed their expression levels in A.thaliana ecotypes Col-0and C24 during infection with the yellow strain of Cucumber mosaic virus CMV(Y).Ecotype Col-0 is susceptible to CMV(Y),whereas C24 contains the dominant resistance gene RCY1.Upon infection with CMV(Y),all clustered genes were significantly activated in the resistant ecotype C24.In addition,we demonstrated that posttranslational histone modifications associated with trimethylation of histone H3 lysine 27 are most likely involved in regulation of several cluster genes described in this study.Overall,our experiments indicated that pathogen-response genes in the genome of A.thaliana may be clustered and co-regulated.

  12. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.

    Directory of Open Access Journals (Sweden)

    Julien De Giorgi

    2015-12-01

    Full Text Available Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA and abscisic acid (ABA signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.

  13. Two thymidine kinases and one multisubstrate deoxyribonucleoside kinase salvage DNA precursors in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Anders Ranegaard Clausen, Anders Ranegaard; Girandon, Lenart; Ali, Ashfaq; Knecht, Wolfgang; Rozpedowska, Elzbieta; Sandrini, Michael Paolo; Andreasson, Erik; Munch-Petersen, Birgitte; Piskur, Jure

    2012-01-01

    Deoxyribonucleotides are the building blocks of DNA and can be synthesized via de novo and salvage pathways. Deoxyribonucleoside kinases (EC 2.7.1.145) salvage deoxyribonucleosides by transfer of a phosphate group to the 5' of a deoxyribonucleoside. This salvage pathway is well characterized in...... mammals, but in contrast, little is known about how plants salvage deoxyribonucleosides. We show that during salvage, deoxyribonucleosides can be phosphorylated by extracts of Arabidopsis thaliana into corresponding monophosphate compounds with an unexpected preference for purines over pyrimidines....... Deoxyribonucleoside kinase activities were present in all tissues during all growth stages. In the A. thaliana genome, we identified two types of genes that could encode enzymes which are involved in the salvage of deoxyribonucleosides. Thymidine kinase activity was encoded by two thymidine kinase 1 (EC 2...

  14. Two thymidine kinases and one multisubstrate deoxyribonucleoside kinase salvage DNA precursors in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Clausen, Anders R.; Girandon, Lenart; Ali, Ashfaq; Knecht, Wolfgang; Rozpedowska, Elzbieta; Sandrini, Michael; Andreasson, Erik; Munch‐Petersen, Birgitte; Piskur, Jure

    2012-01-01

    Deoxyribonucleotides are the building blocks of DNA and can be synthesized via de novo and salvage pathways. Deoxyribonucleoside kinases (EC 2.7.1.145) salvage deoxyribonucleosides by transfer of a phosphate group to the 5′ of a deoxyribonucleoside. This salvage pathway is well characterized in...... mammals, but in contrast, little is known about how plants salvage deoxyribonucleosides. We show that during salvage, deoxyribonucleosides can be phosphorylated by extracts of Arabidopsis thaliana into corresponding monophosphate compounds with an unexpected preference for purines over pyrimidines....... Deoxyribonucleoside kinase activities were present in all tissues during all growth stages. In the A. thaliana genome, we identified two types of genes that could encode enzymes which are involved in the salvage of deoxyribonucleosides. Thymidine kinase activity was encoded by two thymidine kinase 1 (EC 2...

  15. Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides

    KAUST Repository

    Turek, Ilona

    2015-06-30

    Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP), AtPNP-A (At2g18660) were assessed using quantitative proteomics employing tandem mass tag (TMT) labeling and tandem mass spectrometry (LC–MS/MS). In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article “Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress” by Turek et al. (Front. Plant Sci. 5 (2014) 661) and have been deposited to the ProteomeXchange with identifier PXD001386.

  16. Crystallization and preliminary X-ray analysis of tubulin-folding cofactor A from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Tubulin-folding cofactor A from A. thaliana has been crystallized and preliminarily analyzed using X-ray diffraction. Tubulin-folding cofactor A (TFC A) is a molecular post-chaperonin that is involved in the β-tubulin-folding pathway. It has been identified in many organisms including yeasts, humans and plants. In this work, Arabidopsis thaliana TFC A was expressed in Escherichia coli and purified to homogeneity. After thrombin cleavage, a well diffracting crystal was obtained by the sitting-drop vapour-diffusion method at 289 K. The crystal diffracted to 1.6 Å resolution using synchrotron radiation and belonged to space group I41, with unit-cell parameters a = 55.0, b = 55.0, c = 67.4 Å

  17. Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides

    Directory of Open Access Journals (Sweden)

    Ilona Turek

    2015-09-01

    Full Text Available Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP, AtPNP-A (At2g18660 were assessed using quantitative proteomics employing tandem mass tag (TMT labeling and tandem mass spectrometry (LC–MS/MS. In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article “Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress” by Turek et al. (Front. Plant Sci. 5 (2014 661 and have been deposited to the ProteomeXchange with identifier PXD001386.

  18. Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Guangyou eDuan

    2013-12-01

    Full Text Available Elucidating the dynamics of molecular processes in living organisms in response to external perturbations is a central goal in modern systems biology. We investigated the dynamics of protein phosphorylation events in Arabidopsis thaliana exposed to changing nutrient conditions. Phosphopeptide expression levels were detected at five consecutive time points over a time interval of 30 minutes after nutrient resupply following prior starvation. The three tested inorganic, ionic nutrients NH4+, NO3-, PO43- elicited similar phosphosignaling responses that were distinguishable from those invoked by the sugars mannitol, sucrose. When embedded in the protein-protein interaction network of Arabidopsis thaliana, phosphoproteins were found to exhibit a higher degree compared to average proteins. Based on the time-series data, we reconstructed a network of regulatory interactions mediated by phosphorylation. The performance of different network inference methods was evaluated by the observed likelihood of physical interactions within and across different subcellular compartments and based on gene ontology semantic similarity. The dynamic phosphorylation network was then reconstructed using a Pearson correlation method with added directionality based on partial variance differences. The topology of the inferred integrated network corresponds to an information dissemination architecture, in which the phosphorylation signal is passed on to an increasing number of phosphoproteins stratified into an initiation, processing, and effector layer. Specific phosphorylation peptide motifs associated with the distinct layers were identified indicating the action of layer-specific kinases. Despite the limited temporal resolution, combined with information on subcellular location, the available time-series data proved useful for reconstructing the dynamics of the molecular signaling cascade in response to nutrient stress conditions in the plant Arabidopsis thaliana.

  19. Defects in leaf epidermis of Arabidopsis thaliana plants with CDKA;1 activity reduced in the shoot apical meristem

    OpenAIRE

    Borowska-Wykret, Dorota; Elsner, Joanna; De Veylder, Lieven; Kwiatkowska, Dorota

    2012-01-01

    In Arabidopsis thaliana, like in other dicots, the shoot epidermis originates from protodermis, the outermost cell layer of shoot apical meristem. We examined leaf epidermis in transgenic A. thaliana plants in which CDKA;1.N146, a negative dominant allele of A-type cyclin-dependent kinase, was expressed from the SHOOTMERISTEMLESS promoter, i.e., in the shoot apical meristem. Using cleared whole mount preparations of expanding leaves and sequential in vivo replicas of expanding leaf surface, w...

  20. Differences in photosynthesis and terpene content in leaves and roots of wild-type and transgenic Arabidopsis thaliana plants

    OpenAIRE

    Blanch Roure, Josep-Salvador; Peñuelas, Josep; Llusià Benet, Joan; Sardans i Galobart, Jordi; Owen, Susan M.

    2015-01-01

    We investigated the hypotheses that two different varieties of Arabidopsis thaliana show differences in physiology and terpene production. The two varieties of A. thaliana used in this study were wildtype (WT) and transgenic line (CoxIVFaNES I) genetically modified to emit nerolidol with linalool/nerolidol synthase (COX). Photosynthetic rate, electron transport rate, fluorescence, leaf volatile terpene contents and root volatile terpene contents were analyzed. For both types, we found coeluti...

  1. Compensatory expression and substrate inducibility of γ-glutamyl transferase GGT2 isoform in Arabidopsis thaliana

    OpenAIRE

    Destro, Tiziana; Prasad, Dinesh; Martignago, Damiano; Lliso Bernet, Ignacio; Trentin, Anna Rita; Renu, Indu Kumari; Ferretti, Massimo; Masi, Antonio

    2010-01-01

    γ-Glutamyl transferases (GGT; EC 2.3.2.2) are glutathione-degrading enzymes that are represented in Arabidopsis thaliana by a small gene family of four members. Two isoforms, GGT1 and GGT2, are apoplastic, sharing broad similarities in their amino acid sequences, but they are differently expressed in the tissues: GGT1 is expressed in roots, leaves, and siliques, while GGT2 was thought to be expressed only in siliques. It is demonstrated here that GGT2 is also expressed in wild-type roots, alb...

  2. Hydrogen peroxide is involved in cGMP modulating the lateral root development of Arabidopsis thaliana

    OpenAIRE

    Li, Jisjeng; Jia, Honglei

    2013-01-01

    3′,5′-cyclic guanosine monophosphate (cGMP) and hydrogen peroxide (H2O2) function as the important signaling molecule which promote the lateral root development of Arabidopsis thaliana. In this study, interestingly, application of 8-Br-cGMP (the membrane permeable cGMP analog) promoted the endogenous H2O2 production. In addition, the decrease of endogenous H2O2 also inhibited the effect of cGMP on the lateral root development. Thus, H2O2 maybe act as a downstream signaling of cGMP molecule wh...

  3. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico;

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT...... key abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  4. Arabidopsis thaliana GYRB3 Does Not Encode a DNA Gyrase Subunit

    OpenAIRE

    Evans-Roberts, Katherine M.; Christian Breuer; Wall, Melisa K.; Keiko Sugimoto-Shirasu; Anthony Maxwell

    2010-01-01

    Background DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3. Methodology/Principal Fi...

  5. Die Untersuchung der pflanzlichen Organellentranskription am Beispiel der kernkodierten RNA-Polymerasen in Arabidopsis thaliana

    OpenAIRE

    Hensel, Sarah-Sophia Nicola

    2010-01-01

    In Arabidopsis thaliana three nucleus-encoded phagetype RNA polymerases (RpoT;1, RpoT;2 and RpoT;3) were cloned. They show a conserved gene structure and have up to 55% aminoacid homology. By means of in organelle-import approaches and by using GFP-fusion-proteins, the localization of these three enzymes in different organelles was possible. Therefore RpoT;1 is only needed in mitochondria, RpoT;3 is targeted to plastids. In contrast to this, RNA polymerase 2 (RpoT;2) is imported in both plast...

  6. Early cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profiling

    Czech Academy of Sciences Publication Activity Database

    Černý, M.; Dyčka, Filip; Bobálová, Janette; Brzobohatý, Břetislav

    2011-01-01

    Roč. 62, č. 3 (2011), s. 921-937. ISSN 0022-0957 R&D Projects: GA MŠk(CZ) LC06034; GA MŠk(CZ) 1M06030; GA AV ČR IAA600040701; GA ČR(CZ) GA206/09/2062 Institutional research plan: CEZ:AV0Z40310501; CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : Arabidopsis thaliana * cytokinin * phosphoproteome * proteome Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.364, year: 2011

  7. Molecular characterization of the submergence response of Arabidopsis thaliana ecotype Columbia

    DEFF Research Database (Denmark)

    Lee, S.C.; Mustroph, A.; Sasidaharan, R.;

    2011-01-01

    A detailed description of the molecular response of Arabidopsis thaliana to submergence can aid the identification of genes that are critical to flooding survival. • Rosette-stage plants were fully submerged in complete darkness and shoot and root tissue was harvested separately after the O2...... partial pressure of the petiole and root had stabilized at c. 6 and 0.1 kPa, respectively. As controls, plants were untreated or exposed to darkness. Following quantitative profiling of cellular mRNAs with the Affymetrix ATH1 platform, changes in the transcriptome in response to submergence, early...

  8. Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability

    OpenAIRE

    Takano, Junpei; Miwa, Kyoko; Yuan, Lixing; von Wirén, Nicolaus; Fujiwara, Toru

    2005-01-01

    Boron (B) is essential for plants but toxic when present in excess. Arabidopsis thaliana BOR1 is a B exporter for xylem loading and is essential for efficient B translocation from roots to shoots under B limitation. B translocation to shoots was enhanced under B limitation in WT but not in bor1-1 mutant plants. The enhanced translocation was suppressed upon resupply of high levels of B within several hours. Unlike a number of transporters for essential mineral nutrients, BOR1 mRNA accumulatio...

  9. Individual Leaf Development in Arabidopsis thaliana: a Stable Thermal‐time‐based Programme

    OpenAIRE

    GRANIER, CHRISTINE; Massonnet, Catherine; TURC, OLIVIER; Muller, Bertrand; Chenu, Karine; Tardieu, François

    2002-01-01

    In crop species, the impact of temperature on plant development is classically modelled using thermal time. We examined whether this method could be used in a non‐crop species, Arabidopsis thaliana, to analyse the response to temperature of leaf initiation rate and of the development of two leaves of the rosette. The results confirmed the large plant‐to‐plant variability in the studied isogenic line of the Columbia ecotype: 100‐fold differences in leaf area among plants sown on the same date ...

  10. Unique Features of the m6A Methylome in Arabidopsis thaliana

    OpenAIRE

    Luo, Guan-Zheng; MacQueen, Alice; Zheng, Guanqun; Duan, Hongchao; Dore, Louis C; Lu, Zhike; LIU Jun; Chen, Kai; Jia, Guifang; Bergelson, Joy; He, Chuan

    2014-01-01

    Recent discoveries of reversible N 6-methyladenosine (m6A) methylation on messenger RNA (mRNA) and mapping of m6A methylomes in mammals and yeast have revealed potential regulatory functions of this RNA modification. In plants, defects in m6A methyltransferase cause an embryo-lethal phenotype, suggesting a critical role of m6A in plant development. Here, we profile m6A transcriptome-wide in two accessions of Arabidopsis thaliana and reveal that m6A is a highly conserved modification of mRNA i...

  11. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  12. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid.

    OpenAIRE

    Normanly, J; Cohen, J D; Fink, G. R.

    1993-01-01

    We used tryptophan auxotrophs of the dicot Arabidopsis thaliana (wall cress) to determine whether tryptophan has the capacity to serve as a precursor to the auxin, indole-3-acetic acid (IAA). Quantitative gas chromatography-selected ion monitoring-mass spectrometry (GC-SIM-MS) revealed that the trp2-1 mutant, which is defective in the conversion of indole to tryptophan, accumulated amide- and ester-linked IAA at levels 38-fold and 19-fold, respectively, above those of the wild type. Tryptopha...

  13. Rapid endocytosis is triggered upon imbibition in Arabidopsis seeds.

    Science.gov (United States)

    Pagnussat, Luciana; Burbach, Christian; Baluška, František; de la Canal, Laura

    2012-03-01

    During seed imbibition and embryo activation, rapid change from a metabolically resting state to the activation of diverse extracellular and/or membrane bound molecules is essential and, hence, endocytosis could be activated too. In fact, we have documented endocytic internalization of the membrane impermeable endocytic tracer FM4-64 already upon 30 min of imbibition of Arabidopsis seeds. This finding suggest that endocytosis is activated early during seed imbibition in Arabidopsis. Immunolocalization of rhamnogalacturonan-II (RG-II) complexed with boron showed that whereas this pectin is localized only in the cell walls of dry seed embryos, it starts to be intracellular once the imbibition started. Brefeldin A (BFA) exposure resulted in recruitment of the intracellular RG-II pectin complexes into the endocytic BFA-induced compartments, confirming the endocytic origin of the RG-II signal detected intracellularly. Finally, germination was significantly delayed when Arabidopsis seeds were germinated in the presence of inhibitors of endocytic pathways, suggesting that trafficking of extracellular molecules might play an important role in the overcome of germination. This work constitutes the first demonstration of endocytic processes during germination and opens new perspectives about the role of the extracellular matrix and membrane components in seed germination. PMID:22476454

  14. UV- and gamma-radiation sensitive mutants of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Arabidopsis seedlings repair UV-induced DNA damage via light-dependent and -independent pathways. The mechanism of the ''dark repair'' pathway is still unknown. To determine the number of genes required for dark repair and to investigate the substrate-specificity of this process we isolated mutants with enhanced sensitivity to UV radiation in the absence of photoreactivating light. Seven independently derived UV sensitive mutants were isolated from an EMS-mutagenized population. These fell into six complementation groups, two of which (UVR1 and UVH1) have previously been defined. Four of these mutants are defective in the dark repair of UV-induced pyrimidine [6-4] pyrimidinone dimers. These four mutant lines are sensitive to the growth-inhibitory effects of gamma radiation, suggesting that this repair pathway is also involved in the repair of some type of gamma-induced DNA damage product. The requirement for the coordinate action of several different gene products for effective repair of pyrimidine dimers, as well as the nonspecific nature of the repair activity, is consistent with nucleotide excision repair mechanisms previously described in Saccharomyces cerevisiae and nonplant higher eukaryotes and inconsistent with substrate-specific base excision repair mechanisms found in some bacteria, bacteriophage, and fungi. (author)

  15. Structure and Function of Centromeric and Pericentromeric Heterochromatin in Arabidopsis thaliana

    Science.gov (United States)

    Simon, Lauriane; Voisin, Maxime; Tatout, Christophe; Probst, Aline V.

    2015-01-01

    The centromere is a specific chromosomal region where the kinetochore assembles to ensure the faithful segregation of sister chromatids during mitosis and meiosis. Centromeres are defined by a local enrichment of the specific histone variant CenH3 mostly at repetitive satellite sequences. A larger pericentromeric region containing repetitive sequences and transposable elements surrounds the centromere that adopts a particular chromatin state characterized by specific histone variants and post-translational modifications and forms a transcriptionally repressive chromosomal environment. In the model organism Arabidopsis thaliana centromeric and pericentromeric domains form conspicuous heterochromatin clusters called chromocenters in interphase. Here we discuss, using Arabidopsis as example, recent insight into mechanisms involved in maintenance and establishment of centromeric and pericentromeric chromatin signatures as well as in chromocenter formation. PMID:26648952

  16. Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Jensen, Erik Østergaard

    2008-01-01

    -symbiotic hemoglobin gene, GLB2, in Arabidopsis thaliana. Lines with GLB1 silencing had a significant delay of bolting and after bolting, shoots reverted to the rosette vegetative phase by formation of aerial rosettes at lateral meristems. Lines with overexpression of GLB1 or GLB2 bolted earlier than wild type plants....... By germinating the lines in a medium containing the nitric oxide (NO) donor, sodium nitroprusside (SNP), it was demonstrated that both GLB1 and GLB2 promote bolting by antagonizing the effect of NO, suggesting that non-symbiotic plant hemoglobin controls bolting by scavenging the floral transition...... with an optimum at low concentrations. It was observed that overexpression of either GLB1 or GLB2 shifts the optimum for NO growth stimulation to a higher concentration. In conclusion, we have found that expression of NO scavenging plant hemoglobin is involved in the control of bolting in Arabidopsis....

  17. Arabidopsis thaliana - Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids

    Directory of Open Access Journals (Sweden)

    Joe eLouis

    2013-07-01

    Full Text Available The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA, is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed.

  18. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis.

    Science.gov (United States)

    Jiang, Zhimin; Xu, Gang; Jing, Yanjun; Tang, Weijiang; Lin, Rongcheng

    2016-01-01

    Seeds maintain a dormant state to withstand adverse conditions and germinate when conditions become favourable to give rise to a new generation of flowering plants. Seed dormancy and germination are tightly controlled by internal and external signals. Although phytochrome photoreceptors are proposed to regulate primary seed dormancy, the underlying molecular mechanism remains elusive. Here we show that the REVEILLE1 (RVE1) and RVE2 transcription factors promote primary seed dormancy and repress red/far-red-light-reversible germination downstream of phytochrome B (phyB) in Arabidopsis thaliana. RVE1 and RVE2 expression is downregulated after imbibition and by phyB. RVE1 directly binds to the promoter of GIBBERELLIN 3-OXIDASE 2, inhibits its transcription and thus suppresses the biosynthesis of bioactive gibberellins. In addition, DELAY OF GERMINATION 1 also acts downstream of phyB. This study identifies a signalling pathway that integrates environmental light input with internal factors to control both seed dormancy and germination. PMID:27506149

  19. Hydrogen Sulfide Regulates Ethylene-induced Stomatal Closure in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Zhihui Hou; Lanxiang Wang; Jing Liu; Lixia Hou; Xin Liu

    2013-01-01

    Hydrogen sulfide (H2S) is a newly-discovered signaling molecule in plants and has caused increasing attention in recent years,but its function in stomatal movement is unclear.In plants,H2S is synthesized via cysteine degradation catalyzed by D-/L-cysteine desulfhydrase (D-/L-CDes).AtD-/L-CDes::GUS transgenic Arabidopsis thaliana (L.) Heynh.plants were generated and used to investigate gene expression patterns,and results showed that AtD-/L-CDes can be expressed in guard cells.We also determined the subcellular localization of AtD-/L-CDes using transgenic plants of AtD-/L-CDes::GFP,and the results showed that AtD-CDes and AtL-CDes are located in the chloroplast and in the cytoplasm,respectively.The transcript levels of AtD-CDes and AtL-CDes were affected by the chemicals that cause stomatal closure.Among these factors,ACC,a precursor of ethylene,has the most significant effect,which indicates that the H2S generated from D-/L-CDes may play an important role in ethylene-induced stomatal closure.Meanwhile,H2S synthetic inhibitors significantly inhibited ethylene-induced stomatal closure in Arabidopsis.Ethylene treatment caused an increase of H2S production and of AtD-/L-CDes activity in Arabidopsis leaves.AtD-/L-CDes over-expressing plants exhibited enhanced induction of stomatal closure compared to the wild-type after ethylene treatment; however,the effect was not observed in the Atd-cdes and Atl-cdes mutants.In conclusion,our results suggest that the D-/L-CDes-generated H2S is involved in the regulation of ethylene-induced stomatal closure in Arabidopsis thaliana.

  20. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Directory of Open Access Journals (Sweden)

    Pankaj Barah

    Full Text Available BACKGROUND: Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth during insect Brevicoryne brassicae (B. brassicae henceforth and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. RESULTS: The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA, jasmonic acid (JA, ethylene (ET and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. CONCLUSIONS: Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between

  1. The Mechanism of the Silencing of a Transgene, NCED3‐LUC, in Arabidopsis Thaliana

    KAUST Repository

    Zhao, Junsong

    2011-06-20

    The Arabidopsis thaliana NCED3‐LUC transgenic line was constructed by several groups to study the regulatory network of the NCED3 gene, the protein of which catalyzes the rate‐limiting step of ABA biosynthesis under drought. The transgenic luciferase gene is expressed when the plants encounter drought stress. Intriguingly, this transgenic luciferase gene is silenced after propagation for several generations. To determine the mechanism of this gene silencing, we used a forward genetics approach. The seeds of NCED3‐LUC (referred as the ‘wild type’) were mutagenized by ethane methyl sulfonate (EMS). One mutant line, denoted as #73, with recovered luciferase activity was selected for further study. Analysis of the methylation status by bisulfite sequencing revealed that the transgenic NCED3 promoter in the #73 mutant had less methylation than the wild type. Demethylation was also evident for the endogenous NCED3 promoter and retrotransposon AtSN1 in the #73 mutant. The phenotype of #73 mutant includes small size, rapid dehydration rate, altered morphology, and a thin epicuticular wax layer. By use of map‐based cloning, the region containing the mutated gene was delimited to a contig of two BAC clones, F11F19 and F9C22, on chromosome 2. Our results indicate that NCED3‐LUC gene silencing results from hypermethylation of its promoter region, but additional study is required to determine the exact position of the mutated gene and to fully understand the mechanism of NCED3‐LUC silencing. 4 ACKNOWLEDGEMENTS I would like to take this opportunity to thank my committee chair, Professor Jian‐Kang Zhu, who is also the supervisor of my master’s thesis, for his guidance throughout the course of this research. I also would like to thank my committee members, Professor Liming Xiong and Professor Samir Hamdan, for their patience and support in reviewing my thesis. My appreciation also goes to Dr. Zhenyu Wang for taking time to teach me basic experimental skills and

  2. Insertion DNA Accelerates Meiotic Interchromosomal Recombination in Arabidopsis thaliana.

    Science.gov (United States)

    Sun, Xiao-Qin; Li, Ding-Hong; Xue, Jia-Yu; Yang, Si-Hai; Zhang, Yan-Mei; Li, Mi-Mi; Hang, Yue-Yu

    2016-08-01

    Nucleotide insertions/deletions are ubiquitous in eukaryotic genomes, and the resulting hemizygous (unpaired) DNA has significant, heritable effects on adjacent DNA. However, little is known about the genetic behavior of insertion DNA. Here, we describe a binary transgenic system to study the behavior of insertion DNA during meiosis. Transgenic Arabidopsis lines were generated to carry two different defective reporter genes on nonhomologous chromosomes, designated as "recipient" and "donor" lines. Double hemizygous plants (harboring unpaired DNA) were produced by crossing between the recipient and the donor, and double homozygous lines (harboring paired DNA) via self-pollination. The transfer of the donor's unmutated sequence to the recipient generated a functional β-glucuronidase gene, which could be visualized by histochemical staining and corroborated by polymerase chain reaction amplification and sequencing. More than 673 million seedlings were screened, and the results showed that meiotic ectopic recombination in the hemizygous lines occurred at a frequency  >6.49-fold higher than that in the homozygous lines. Gene conversion might have been exclusively or predominantly responsible for the gene correction events. The direct measurement of ectopic recombination events provided evidence that an insertion, in the absence of an allelic counterpart, could scan the entire genome for homologous counterparts with which to pair. Furthermore, the unpaired (hemizygous) architectures could accelerate ectopic recombination between itself and interchromosomal counterparts. We suggest that the ectopic recombination accelerated by hemizygous architectures may be a general mechanism for interchromosomal recombination through ubiquitously dispersed repeat sequences in plants, ultimately contributing to genetic renovation and eukaryotic evolution. PMID:27189569

  3. Defining the Functional Network of Epigenetic Regulators in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Chongyuan Luo; Brittany G.Durgin; Naohide Watanabe; Eric Lam

    2009-01-01

    Development of ChiP-chip and ChlP-seq technologies has allowed genome-wide high-resolution profiling of chromatin-associated marks and binding sites for epigenetic regulators.However,signals for directing epigenetic modi fiers to their target sites are not understood.In this paper,we tested the hypothesis that genome location can affect the involvement of epigenetic regulators using Chromatin Charting (CC) Lines,which have an identical transgene construct inserted at different locations in the Arabidopsis genome.Four CC lines that showed evidence for epigenetic silencing of the luciferase reporter gene were transformed with RNAi vectors individually targeting epigenetic regulators LHP1,MOM1,CMT3,DRD1,DRM2,SUVH2,CLF,and HD1.Involvement of a particular epigenetic regulator in silencing the transgene locus in a CC line was determined by significant alterations in luciferase expression after suppression of the regulator's expression.Our results suggest that the targeting of epigenetic regulators can be influenced by genome location as well as sequence context.In addition,the relative importance of an epigenetic regulator can be influenced by tissue identity.We also report a novel approach to predict interactions between epigenetic regulators through clustering analysis of the regulators using alterations in gene expression of putative downstream targets,including endogenous loci and transgenes,in epigenetic mutants or RNAi lines.Our data support the existence of a complex and dynamic network of epigenetic regulators that serves to coordinate and control global gene expression in higher plants.

  4. Genetic basis for dosage sensitivity in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Isabelle M Henry

    2007-04-01

    Full Text Available Aneuploidy, the relative excess or deficiency of specific chromosome types, results in gene dosage imbalance. Plants can produce viable and fertile aneuploid individuals, while most animal aneuploids are inviable or developmentally abnormal. The swarms of aneuploid progeny produced by Arabidopsis triploids constitute an excellent model to investigate the mechanisms governing dosage sensitivity and aneuploid syndromes. Indeed, genotype alters the frequency of aneuploid types within these swarms. Recombinant inbred lines that were derived from a triploid hybrid segregated into diploid and tetraploid individuals. In these recombinant inbred lines, a single locus, which we call SENSITIVE TO DOSAGE IMBALANCE (SDI, exhibited segregation distortion in the tetraploid subpopulation only. Recent progress in quantitative genotyping now allows molecular karyotyping and genetic analysis of aneuploid populations. In this study, we investigated the causes of the ploidy-specific distortion at SDI. Allele frequency was distorted in the aneuploid swarms produced by the triploid hybrid. We developed a simple quantitative measure for aneuploidy lethality and using this measure demonstrated that distortion was greatest in the aneuploids facing the strongest viability selection. When triploids were crossed to euploids, the progeny, which lack severe aneuploids, exhibited no distortion at SDI. Genetic characterization of SDI in the aneuploid swarm identified a mechanism governing aneuploid survival, perhaps by buffering the effects of dosage imbalance. As such, SDI could increase the likelihood of retaining genomic rearrangements such as segmental duplications. Additionally, in species where triploids are fertile, aneuploid survival would facilitate gene flow between diploid and tetraploid populations via a triploid bridge and prevent polyploid speciation. Our results demonstrate that positional cloning of loci affecting traits in populations containing ploidy and

  5. Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Dan Qian

    Full Text Available Cyanate is toxic to all organisms. Cyanase converts cyanate to CO₂ and NH₃ in a bicarbonate-dependent reaction. The biophysical functions and biochemical characteristics of plant cyanases are poorly studied, although it has been investigated in a variety of proteobacteria, cyanobacteria and fungi. In this study, we characterised plant cyanases from Arabidopsis thaliana and Oryza sativa (AtCYN and OsCYN. Prokaryotic-expressed AtCYN and OsCYN both showed cyanase activity in vitro. Temperature had a similar influence on the activity of both cyanases, but pH had a differential impact on AtCYN and OsCYN activity. Homology modelling provided models of monomers of AtCYN and OsCYN, and a coimmunoprecipitation assay and gel filtration indicated that AtCYN and OsCYN formed homodecamers. The analysis of single-residue mutants of AtCYN indicated that the conserved catalytic residues also contributed to the stability of the homodecamer. KCNO treatment inhibited Arabidopsis germination and early seedling growth. Plants containing AtCYN or OsCYN exhibited resistance to KCNO stress, which demonstrated that one role of cyanases in plants is detoxification. Transcription level of AtCYN was higher in the flower than in other organs of Arabidopsis. AtCYN transcription was not significantly affected by KCNO treatment in Arabidopsis, but was induced by salt stress. This research broadens our knowledge on plant detoxification of cyanate via cyanase.

  6. In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme

    Directory of Open Access Journals (Sweden)

    Iqbal M Javed

    2008-09-01

    Full Text Available Abstract Background Sudden death syndrome (SDS of soybean (Glycine max L. Merr. is an economically important disease, caused by the semi-biotrophic fungus Fusarium solani f. sp. glycines, recently renamed Fusarium virguliforme (Fv. Due to the complexity and length of the soybean-Fusarium interaction, the molecular mechanisms underlying plant resistance and susceptibility to the pathogen are not fully understood. F. virguliforme has a very wide host range for the ability to cause root rot and a very narrow host range for the ability to cause a leaf scorch. Arabidopsis thaliana is a host for many types of phytopathogens including bacteria, fungi, viruses and nematodes. Deciphering the variations among transcript abundances (TAs of functional orthologous genes of soybean and A. thaliana involved in the interaction will provide insights into plant resistance to F. viguliforme. Results In this study, we reported the analyses of microarrays measuring TA in whole plants after A. thaliana cv 'Columbia' was challenged with fungal pathogen F. virguliforme. Infection caused significant variations in TAs. The total number of increased transcripts was nearly four times more than that of decreased transcripts in abundance. A putative resistance pathway involved in responding to the pathogen infection in A. thaliana was identified and compared to that reported in soybean. Conclusion Microarray experiments allow the interrogation of tens of thousands of transcripts simultaneously and thus, the identification of plant pathways is likely to be involved in plant resistance to Fusarial pathogens. Dissection of the set functional orthologous genes between soybean and A. thaliana enabled a broad view of the functional relationships and molecular interactions among plant genes involved in F. virguliforme resistance.

  7. Efeitos da radiação ultravioleta-B sobre a morfologia foliar de Arabidopsis thaliana (L. Heynh. (Brassicaceae Effects of ultraviolet-B radiation on leaf morphology of Arabidopsis thaliana (L. Heynh. (Brassicaceae

    Directory of Open Access Journals (Sweden)

    Maria Regina Torres Boeger

    2006-06-01

    Full Text Available A redução da camada de ozônio resulta no aumento da radiação ultravioleta que atinge a superfície terrestre, especialmente a radiação ultravioletaB (UV-B. O aumento da radiação poderá induzir a mudanças estruturais e fisiológicas nas plantas, influenciando no seu crescimento e desenvolvimento. O objetivo deste trabalho foi determinar os efeitos da radiação UV-B ambiente sobre a morfologia das folhas de Arabidopsis thaliana desenvolvidas em condições controladas. As sementes de A. thaliana cresceram em câmaras de crescimento, com 300 µmol m-2s-1 de radiação fotossinteticamente ativa (PAR com ou sem 6 kJ m-2 s-1 de radiação UV-Bbe (UV-Bbe; UV-B biologicamente efetiva. Após 21 dias, 10 folhas de cada tratamento (com e sem radiação UV-B foram coletadas para avaliar área foliar, massa fresca e seca, AEF, densidades estomáticas e de tricomas de ambas as faces da folha, espessura da lâmina foliar e concentração de compostos fenólicos e de clorofila total, a e b. As folhas tratadas com radiação UV-B apresentaram menor área foliar, massa fresca e seca, densidade de tricomas na face adaxial e densidade de estômatos na face abaxial da folha. Entretanto, apresentaram os maiores valores médios de espessura total da lâmina e do mesofilo, maior concentração de clorofila total, clorofila a e clorofila b e compostos fenólicos foliares do que as folhas não tratadas com radiação UV-B. Essas diferenças morfológicas significativas (p Reduction of the ozone layer results in the increase in ultraviolet radiation reaching the earth's surface, especially the ultraviolet-B (UV-B. The increase of radiation may induce structural and physiological changes in plants, influencing their growth and development. This paper evaluates the effects of ambient UV-B radiation upon to the leaf morphology of Arabidopsis thaliana developed under controlled conditions. The seeds of A. thaliana grown in environmental chamber, with 300 µmol m-2

  8. The role of the GA signaling SLY1 in Arabidopsis seed germination

    Science.gov (United States)

    Seed dormancy, afterripening, and germination are complex developmental process regulated by phytohormones. The phytohormone abscisic acid (ABA) is needed to set up seed dormancy during embryo maturation whereas gibberellin (GA) stimulates seed germination. In tomato and Arabidopsis, GA is clearly ...

  9. SALT-OVERLY SENSITIVE5 Mediates Arabidopsis Seed Coat Mucilage Adherence and Organization through Pectins.

    Science.gov (United States)

    Griffiths, Jonathan S; Tsai, Allen Yi-Lun; Xue, Hui; Voiniciuc, Cătălin; Sola, Krešimir; Seifert, Georg J; Mansfield, Shawn D; Haughn, George W

    2014-05-01

    Interactions between cell wall polymers are critical for establishing cell wall integrity and cell-cell adhesion. Here, we exploit the Arabidopsis (Arabidopsis thaliana) seed coat mucilage system to examine cell wall polymer interactions. On hydration, seeds release an adherent mucilage layer strongly attached to the seed in addition to a nonadherent layer that can be removed by gentle agitation. Rhamnogalacturonan I (RG I) is the primary component of adherent mucilage, with homogalacturonan, cellulose, and xyloglucan constituting minor components. Adherent mucilage contains rays composed of cellulose and pectin that extend above the center of each epidermal cell. CELLULOSE SYNTHASE5 (CESA5) and the arabinogalactan protein SALT-OVERLY SENSITIVE5 (SOS5) are required for mucilage adherence through unknown mechanisms. SOS5 has been suggested to mediate adherence by influencing cellulose biosynthesis. We, therefore, investigated the relationship between SOS5 and CESA5. cesa5-1 seeds show reduced cellulose, RG I, and ray size in adherent mucilage. In contrast, sos5-2 seeds have wild-type levels of cellulose but completely lack adherent RG I and rays. Thus, relative to each other, cesa5-1 has a greater effect on cellulose, whereas sos5-2 mainly affects pectin. The double mutant cesa5-1 sos5-2 has a much more severe loss of mucilage adherence, suggesting that SOS5 and CESA5 function independently. Double-mutant analyses with mutations in MUCILAGE MODIFIED2 and FLYING SAUCER1 that reduce mucilage release through pectin modification suggest that only SOS5 influences pectin-mediated adherence. Together, these findings suggest that SOS5 mediates adherence through pectins and does so independently of but in concert with cellulose synthesized by CESA5. PMID:24808103

  10. Affinity Purification of O-Acetylserine(thiollyase from Chlorella sorokiniana by Recombinant Proteins from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Giovanna Salbitani

    2014-08-01

    Full Text Available In the unicellular green alga Chlorella sorokiniana (211/8 k, the protein O-acetylserine(thiollyase (OASTL, representing the key-enzyme in the biosynthetic cysteine pathway, was isolated and purified to apparent homogeneity. The purification was carried out in cells grown in the presence of all nutrients or in sulphate (S deprived cells. After 24 h of S-starvation, a 17-fold increase in the specific activity of OASTL was measured. In order to enable the identification of OASTL proteins from non-model organisms such as C. sorokiniana, the recombinant his-tagged SAT5 protein from Arabidopsis thaliana was immobilized by metal chelate chromatography. OASTL proteins from C. sorokiniana were affinity purified in one step and activities were enhanced 29- and 41-fold, from S-sufficient and S-starved (24 h cells, respectively. The successful application of SAT/OASTL interaction for purification confirms for the first time the existence of the cysteine synthase complexes in microalgae. The purified proteins have apparent molecular masses between 32–34 kDa and are thus slightly larger compared to those found in Arabidopsis thaliana and other vascular plants. The enhanced OASTL activity in S-starved cells can be attributed to increased amounts of plastidic and the emergence of cytosolic OASTL isoforms. The results provide proof-of-concept for the biochemical analysis of the cysteine synthase complex in diverse microalgal species.

  11. Spatial relationship between chromosomal domains in diploid and autotetraploid Arabidopsis thaliana nuclei.

    Science.gov (United States)

    Sas-Nowosielska, H; Bernas, T

    2016-04-25

    Polyploids constitute more than 80% of angiosperm plant species. Their DNA content is often further increased by endoreplication, which occurs as a part of cell differentiation. Here, we explore the relationship between 3D chromatin architecture, number of genome copies and their origin in the model plant, Arabidopsis thaliana. Spatial proximity between pericentromeric, interstitial and subtelomeric domains of chromosomes 1 and 4 was quantified over a range of distances. The results indicate that average nuclear volume as well as chromatin density increase with the genome copy number. Similar dependence is observed when association of homologous chromosomes (in 2C/ endopolyploid nuclei) and sister chromatid separation (in endopolyploid nuclei) is studied. Moreover, clusters of chromosomal domains are detectable at the spatial scale above microscopy resolution. Subtelomeric, interstitial and pericentromeric chromosomal domains are affected to different extent by these processes, which are modulated by endopolyploidy. This factor influences fusion of heterochromatin as well. Nonetheless, local chromatin architecture of Arabidopsis thaliana depends mainly on endopolyploidy level, and to lesser extend on polyploidy. PMID:27310308

  12. A workflow for mathematical modeling of subcellular metabolic pathways in leaf metabolism of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Thomas eNägele

    2013-12-01

    Full Text Available During the last decade genome sequencing has experienced a rapid technological development resulting in numerous sequencing projects and applications in life science. In plant molecular biology, the availability of sequence data on whole genomes has enabled the reconstruction of metabolic networks. Enzymatic reactions are predicted by the sequence information. Pathways arise due to the participation of chemical compounds as substrates and products in these reactions. Although several of these comprehensive networks have been reconstructed for the genetic model plant Arabidopsis thaliana, the integration of experimental data is still challenging. Particularly the analysis of subcellular organization of plant cells limits the understanding of regulatory instances in these metabolic networks in vivo. In this study, we develop an approach for the functional integration of experimental high-throughput data into such large-scale networks. We present a subcellular metabolic network model comprising 524 metabolic intermediates and 548 metabolic interactions derived from a total of 2769 reactions. We demonstrate how to link the metabolite covariance matrix of different Arabidopsis thaliana accessions with the subcellular metabolic network model for the inverse calculation of the biochemical Jacobian, finally resulting in the calculation of a matrix which satisfies a Lyaponov equation involving a covariance matrix. In this way, differential strategies of metabolite compartmentation and involved reactions were identified in the accessions when exposed to low temperature.

  13. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data.

    Science.gov (United States)

    Mönchgesang, Susann; Strehmel, Nadine; Schmidt, Stephan; Westphal, Lore; Taruttis, Franziska; Müller, Erik; Herklotz, Siska; Neumann, Steffen; Scheel, Dierk

    2016-01-01

    Many metabolomics studies focus on aboveground parts of the plant, while metabolism within roots and the chemical composition of the rhizosphere, as influenced by exudation, are not deeply investigated. In this study, we analysed exudate metabolic patterns of Arabidopsis thaliana and their variation in genetically diverse accessions. For this project, we used the 19 parental accessions of the Arabidopsis MAGIC collection. Plants were grown in a hydroponic system, their exudates were harvested before bolting and subjected to UPLC/ESI-QTOF-MS analysis. Metabolite profiles were analysed together with the genome sequence information. Our study uncovered distinct metabolite profiles for root exudates of the 19 accessions. Hierarchical clustering revealed similarities in the exudate metabolite profiles, which were partly reflected by the genetic distances. An association of metabolite absence with nonsense mutations was detected for the biosynthetic pathways of an indolic glucosinolate hydrolysis product, a hydroxycinnamic acid amine and a flavonoid triglycoside. Consequently, a direct link between metabolic phenotype and genotype was detected without using segregating populations. Moreover, genomics can help to identify biosynthetic enzymes in metabolomics experiments. Our study elucidates the chemical composition of the rhizosphere and its natural variation in A. thaliana, which is important for the attraction and shaping of microbial communities. PMID:27363486

  14. Activity of Antioxidant Enzymes in Response to Cadmium in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    A. Saffar

    2009-01-01

    Full Text Available The effects of the heavy metal cadmium (Cd+2 on growth and activities of the antioxidant enzymes, catalase (CAT, peroxidase (POD and polyphenol oxidase (PPO have been investigated in Arabidopsis thaliana L. seedlings. The concentration of 50 and 100 μM CdCl2 was shown to strongly inhibit the growth of roots and lipid peroxidation. Lipid peroxidation of seedlings shoots rose with increasing concentrations of Cd+2 as indicated by malondialdehyde (MDA concentration. As Cd+2 concentration increased, catalase (CAT activity declined progressively, while peroxidase and polyphenol oxidase activity increased when compared to the untreated plants. Close correlations between increased MDA formation and decreased root growth as well as CAT activity suggests that lipid peroxidation might caused cell damage and death proposing that applied concentrations of Cd+2 could be toxic to cells. It was also noted that Cd+2-induced cell injury and lipid peroxidation correlated with increased peroxidase and polyphenol oxidase activities, two antioxidant enzymes involved in polyphenol peroxidation as lignification substrates. Together, the results suggest that in Arabidopsis thaliana reactive oxygen species (ROS could be induced by phytotoxic concentrations of Cd+2 leading to increased POD and PPO activities which play a crucial role in detoxification of elevated concentrations of Cd+2 possibly via lignifications and physical barrier formation.

  15. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Natacha Bodenhausen

    Full Text Available Diverse communities of bacteria inhabit plant leaves and roots and those bacteria play a crucial role for plant health and growth. Arabidopsis thaliana is an important model to study plant pathogen interactions, but little is known about its associated bacterial community under natural conditions. We used 454 pyrosequencing to characterize the bacterial communities associated with the roots and the leaves of wild A. thaliana collected at 4 sites; we further compared communities on the outside of the plants with communities in the endophytic compartments. We found that the most heavily sequenced bacteria in A. thaliana associated community are related to culturable species. Proteobacteria, Actinobacteria, and Bacteroidetes are the most abundant phyla in both leaf and root samples. At the genus level, sequences of Massilia and Flavobacterium are prevalent in both samples. Organ (leaf vs root and habitat (epiphytes vs endophytes structure the community. In the roots, richness is higher in the epiphytic communities compared to the endophytic compartment (P = 0.024, while the reverse is true for the leaves (P = 0.032. Interestingly, leaf and root endophytic compartments do not differ in richness, diversity and evenness, while they differ in community composition (P = 0.001. The results show that although the communities associated with leaves and roots share many bacterial species, the associated communities differ in structure.

  16. A GC/MS method for determination of succinylacetone in Arabidopsis thaliana.

    Science.gov (United States)

    Zhou, Lizi; Yang, Zhaoguang; Zhi, Tiantian; Zhou, Zhou; Wang, Xiaochen; Ren, Chunmei; Qiu, Bo

    2016-07-01

    Succinylacetone was known to be a toxic metabolite of tyrosine in human and animals caused by blockage of the final step in tyrosine degradation pathway, but its existence in plant was unclear though the metabolic disturbance of tyrosine was also found in plant. A GC-MS method for determination of succinylacetone in Arabidopsis thaliana was developed for the first time. Both oximation and silylation were applied in the derivation procedure, and a low-temperature condition before completion of oximation was found to be necessary to obtain good linearity of the calibration curve due to the thermolability of succinylacetone. The specific chromatogram pattern formed by the four isomers of succinylacetone derivatives provided a helpful feature for its identification. The detection limit of the proposed method was 0.25 ppm in A. thaliana. The recoveries were between 95.4 and 109.3 % with the coefficient of variation ranging from 4.36 to 7.81 % for intra-day assays and 6.47 to 8.52 % for inter-day assays. Application to wild-type and the short-day sensitive cell death 1 mutant of A. thaliana represented an obvious correlation between the measured amount of succinylacetone and wilting symptom, suggesting the proposed method could be a powerful tool in further study on toxicology of succinylacetone and tyrosine catabolism in plants. PMID:27086013

  17. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  18. Unique features of the m6A methylome in Arabidopsis thaliana.

    Science.gov (United States)

    Luo, Guan-Zheng; MacQueen, Alice; Zheng, Guanqun; Duan, Hongchao; Dore, Louis C; Lu, Zhike; Liu, Jun; Chen, Kai; Jia, Guifang; Bergelson, Joy; He, Chuan

    2014-01-01

    Recent discoveries of reversible N(6)-methyladenosine (m(6)A) methylation on messenger RNA (mRNA) and mapping of m(6)A methylomes in mammals and yeast have revealed potential regulatory functions of this RNA modification. In plants, defects in m(6)A methyltransferase cause an embryo-lethal phenotype, suggesting a critical role of m(6)A in plant development. Here, we profile m(6)A transcriptome-wide in two accessions of Arabidopsis thaliana and reveal that m(6)A is a highly conserved modification of mRNA in plants. Distinct from mammals, m(6)A in A. thaliana is enriched not only around the stop codon and within 3'-untranslated regions, but also around the start codon. Gene ontology analysis indicates that the unique distribution pattern of m(6)A in A. thaliana is associated with plant-specific pathways involving the chloroplast. We also discover a positive correlation between m(6)A deposition and mRNA abundance, suggesting a regulatory role of m(6)A in plant gene expression. PMID:25430002

  19. Life-cycle chronic gamma exposure of Arabidopsis thaliana induces growth effects but no discernable effects on oxidative stress pathways.

    Science.gov (United States)

    Vandenhove, Hildegarde; Vanhoudt, Nathalie; Cuypers, Ann; van Hees, May; Wannijn, Jean; Horemans, Nele

    2010-09-01

    Arabidopsis thaliana was exposed to low-dose chronic gamma irradiation during a full life cycle (seed to seed) and several biological responses were investigated. Applied dose rates were 2336, 367 and 81 microGy h(-1). Following 24 days (inflorescence emergence), 34 days (approximately 50% of flowers open) and 54 days (silice ripening) exposure, plants were harvested and monitored for biometric parameters, capacities of enzymes involved in the antioxidative defence mechanisms (SOD, APOD, GLUR, GPOD, SPOD, CAT, ME), glutathione and ascorbate pool, lipid peroxidation products, altered gene expression of selected genes encoding for antioxidative enzymes or reactive oxygen species production, and DNA integrity. Root fresh weight was significantly reduced after gamma exposure compared to the control at all stages monitored but no significant differences in root weight for the different dose rates applied was observed. Leaf and stem fresh weight were significantly reduced at the highest irradiation level after 54 days exposure only. Also total plant fresh was significantly lower at silice riping and this for the highest and medium dose rate applied. The dose rate estimated to result in a 10% reduction in growth (EDR-10) ranged between 60 and 80 microGy h(-1). Germination of seeds from the gamma irradiated plants was not hampered. For several of the antioxidative defence enzymes studied, the enzyme capacity was generally stimulated towards flowering but generally no significant effect of dose rate on enzyme capacity was observed. Gene analysis revealed a significant transient and dose dependent change in expression of RBOHC indicating active reactive oxygen production induced by gamma irradiation. No effect of irradiation was observed on concentration or reduction state of the non-enzymatic antioxidants, ascorbate and glutathione. The level of lipid peroxidation products remained constant throughout the observation period and was not affected by dose rate. The comet assay

  20. ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin

    Czech Academy of Sciences Publication Activity Database

    Chen, Ch.; Letnik, I.; Hacham, Y.; Dobrev, Petre; Ben-Daniel, B.H.; Vaňková, Radomíra; Amir, R.; Miller, G.

    2014-01-01

    Roč. 166, č. 1 (2014), s. 370-383. ISSN 0032-0889 R&D Projects: GA ČR GA206/09/2062 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * abscisic acid * germinating seeds Subject RIV: ED - Physiology Impact factor: 6.841, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25049361

  1. Paenibacillus yonginensis DCY84(T) induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress.

    Science.gov (United States)

    Sukweenadhi, Johan; Kim, Yeon-Ju; Choi, Eul-Su; Koh, Sung-Cheol; Lee, Sang-Won; Kim, Yu-Jin; Yang, Deok Chun

    2015-03-01

    Current agricultural production methods, for example the improper use of chemical fertilizers and pesticides, create many health and environmental problems. Use of plant growth-promoting bacteria (PGPB) for agricultural benefits is increasing worldwide and also appears to be a trend for the future. There is possibility to develop microbial inoculants for use in agricultural biotechnology, based on these beneficial plant-microbe interactions. For this study, ten bacterial strains were isolated from Yongin forest soil for which in vitro plant-growth promoting trait screenings, such as indole acetic acid (IAA) production, a phosphate solubilization test, and a siderophore production test were used to select two PGPB candidates. Arabidopsis thaliana plants were inoculated with Paenibacillus yonginensis DCY84(T) and Micrococcus yunnanensis PGPB7. Salt stress, drought stress and heavy metal (aluminum) stress challenges indicated that P. yonginensis DCY84(T)-inoculated plants were more resistant than control plants. AtRSA1, AtVQ9 and AtWRKY8 were used as the salinity responsive genes. The AtERD15, AtRAB18, and AtLT178 were selected to check A. thaliana responses to drought stress. Aluminum stress response was checked using AtAIP, AtALS3 and AtALMT1. The qRT-PCR results indicated that P. yonginensis DCY84(T) can promote plant tolerance against salt, drought, and aluminum stress. P. yonginensis DCY84(T) also showed positive results during in vitro compatibility testing and virulence assay against X. oryzae pv. oryzae Philippine race 6 (PXO99). Better germination rates and growth parameters were also recorded for the P. yonginensis DCY84(T) Chuchung cultivar rice seed which was grown on coastal soil collected from Suncheon. Based on these results, P. yonginensis DCY84(T) can be used as a promising PGPB isolate for crop improvement. PMID:25721473

  2. Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth.

    Directory of Open Access Journals (Sweden)

    Sriram Devanathan

    Full Text Available The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1 (E.C.: 4.4.1.5 and 2 (E.C.3.1.2.6, has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions.

  3. MADS on the move : a study on MADS domain protein function and movement during floral development in Arabidopsis thaliana

    NARCIS (Netherlands)

    Urbanus, S.L.

    2010-01-01

    In this thesis we investigated the behaviour of fluorescently-tagged MADS domain proteins during floral development in the model plant Arabidopsis thaliana, and explored the importance of intercellular transport via plasmodesmata for MADS domain transcription factor functioning. The MADS domain tran

  4. Probing cytokinin homeostasis in Arabidopsis thaliana by constitutively overexpressing two forms of the maize cytokinin oxidase/dehydrogenase 1 gene

    Czech Academy of Sciences Publication Activity Database

    Kopečný, D.; Tarkowski, Petr; Majira, M.; Bouchez-Mahiout, I.; Nogué, F.; Laurière, M.; Sandberg, G.; Laloue, M.; Houba-Hérin, N.

    2006-01-01

    Roč. 171, č. 1 (2006), s. 114-122. ISSN 0168-9452 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * Cytokinin oxidase/dehydrogenase * Homeostasis Subject RIV: CE - Biochemistry Impact factor: 1.631, year: 2006

  5. Seed-to-seed growth of superdwarf wheat and arabidopsis using red light-emitting diodes (LED's): A report on baseline tests conducted for NASA's proposed Plant Research Unit (PRU)

    Science.gov (United States)

    Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.

    1996-01-01

    To determine the influence of narrow-spectrum red light-emitting diodes (LED's) on plant growth and seed production, wheat (Triticum aestivum L.cv Superdwarf) and Arabidopsis (Arabidopsis thaliana (L.) Heynh, race Columbia) plants were grown under red LED's (peak emission 660 nm) and compared to plants grown under daylight fluorescent (white) light and red LED's supplemented with either 1 percent or 10 percent blue fluorescent (BF) light. Wheat growth under red LED's alone appeared normal, whereas Arabidopsis under red LED's alone developed curled leaf margins and a spiraling growth pattern. Both wheat and Arabidopsis under red LED's alone or red LED's + 1 percent BF light had significantly lower seed yield than plants grown under white light. However, the addition of 10 percent BF light to red LED's partially alleviated the adverse effect of red LED's on yield. Irrespective of the light treatment, viable seeds were produced by wheat(75-92 percent germination rate) and Arabidopsis (85-100 percent germination rate). These results indicate that wheat, and to a lesser extent Arabidopsis, can be successfully grown under red LED's alone, but supplemental blue light is required with red LED's to sufficiently match the growth characteristics and seed yield associated with plants grown under white light.

  6. Gynoecium patterning in Arabidopsis thaliana : control of transmitting tract development by the HECATE genes

    OpenAIRE

    Gremski, Kristina

    2006-01-01

    The Arabidopsis gynoecium promotes the fertilization of ovules and subsequent seed development and dispersal. During fertilization, pollen adheres to the stigma and forms pollen tubes that grow through the stigma cells and the extracellular matrix of the transmitting tract toward the ovules. We have identified three genes, HECATE1 (HEC1), HECATE2 (HEC2), HECATE3 (HEC3, which have redundant roles in controlling transmitting tract and stigma development. The HEC genes encode closely related bas...

  7. Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA

    Directory of Open Access Journals (Sweden)

    Xue-Rong eZhou

    2014-09-01

    Full Text Available Metabolic engineering of omega-3 long-chain (≥C20 polyunsaturated fatty acids (ω3 LC-PUFA in oilseeds has been one of the key metabolic engineering targets in recent years. By expressing a transgenic pathway for enhancing the synthesis of the ω3 LC-PUFA docosahexaenoic acid (DHA from endogenous -linolenic acid (ALA, we obtained the production of fish oil-like proportions of DHA in Arabidopsis seed oil. Liquid chromatography-mass spectrometry (LC-MS was used to characterize the triacylglycerol (TAG, diacylglycerol (DAG and phospholipid (PL lipid classes in the transgenic and wild type Arabidopsis seeds at both developing and mature stages. The analysis identified the appearance of several abundant DHA-containing phosphatidylcholine (PC, DAG and TAG molecular species in mature seeds. The relative abundances of PL, DAG and TAG species showed a preferred combination of LC-PUFA with ALA in the transgenic seeds, where LC-PUFA were esterified in positions usually occupied by 20:1ω9. Trace amounts of di-DHA PC and tri-DHA TAG were identified, and confirmed by high resolution MS/MS. Studying the lipidome in transgenic seeds provides insights into where DHA accumulated and composed with other fatty acids of neutral and phospholipids from the developing and mature seeds.

  8. EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora.

    Science.gov (United States)

    Moreau, Manon; Degrave, Alexandre; Vedel, Régine; Bitton, Frédérique; Patrit, Oriane; Renou, Jean-Pierre; Barny, Marie-Anne; Fagard, Mathilde

    2012-03-01

    Erwinia amylovora causes fire blight in rosaceous plants. In nonhost Arabidopsis thaliana, E. amylovora triggers necrotic symptoms associated with transient bacterial multiplication, suggesting either that A. thaliana lacks a susceptibility factor or that it actively restricts E. amylovora growth. Inhibiting plant protein synthesis at the time of infection led to an increase in necrosis and bacterial multiplication and reduced callose deposition, indicating that A. thaliana requires active protein synthesis to restrict E. amylovora growth. Analysis of the callose synthase-deficient pmr4-1 mutant indicated that lack of callose deposition alone did not lead to increased sensitivity to E. amylovora. Transcriptome analysis revealed that approximately 20% of the genes induced following E. amylovora infection are related to defense and signaling. Analysis of mutants affected in NDR1 and EDS1, two main components of the defense-gene activation observed, revealed that E. amylovora multiplied ten times more in the eds1-2 mutant than in the wild type but not in the ndr1-1 mutant. Analysis of mutants affected in three WRKY transcription factors showing EDS1-dependent activation identified WRKY46 and WRKY54 as positive regulators and WRKY70 as a negative regulator of defense against E. amylovora. Altogether, we show that EDS1 is a positive regulator of nonhost resistance against E. amylovora in A. thaliana and hypothesize that it controls the production of several effective defenses against E. amylovora through the action of WRKY46 and WRKY54, while WRKY70 acts as a negative regulator. PMID:22316300

  9. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Feibing; Kong, Weili; Wong, Gary; Fu, Lifeng; Peng, Rihe; Li, Zhenjun; Yao, Quanhong

    2016-08-01

    In plants, transcriptional regulation is the most important tool for modulating flavonoid biosynthesis. The AtMYB12 gene from Arabidopsis thaliana has been shown to regulate the expression of key enzyme genes involved in flavonoid biosynthesis, leading to the increased accumulation of flavonoids. In this study, the codon-optimized AtMYB12 gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AtMYB12 was localized to the nucleus. Its overexpression significantly increased accumulation of flavonoids and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR (qRT-PCR) analysis showed that overexpression of AtMYB12 resulted in the up-regulation of genes involved in flavonoid biosynthesis, abscisic acid (ABA) biosynthesis, proline biosynthesis, stress responses and ROS scavenging under salt and drought stresses. Further analyses under salt and drought stresses showed significant increases of ABA, proline content, superoxide dismutase (SOD) and peroxidase (POD) activities, as well as significant reduction of H2O2 and malonaldehyde (MDA) content. The results demonstrate the explicit role of AtMYB12 in conferring salt and drought tolerance by increasing the levels of flavonoids and ABA in transgenic Arabidopsis. The AtMYB12 gene has the potential to be used to enhance tolerance to abiotic stresses in plants. PMID:27033553

  10. Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus

    International Nuclear Information System (INIS)

    Ionizing radiation is expected to produce mutants with deletions or other chromosomal rearrangements. These mutants are useful for a variety of purposes, such as creating null alleles and cloning genes whose existence is known only from their mutant phenotype; however, only a few mutations generated by ionizing radiation have been characterized at the molecular level in Arabidopsis thaliana. Twenty fast neutron-generated alleles of the Arabidopsis HY4 locus, which encodes a blue light receptor, CRY1, were isolated and characterized. Nine of the mutant alleles displayed normal genetic behavior. The other 11 mutant alleles were poorly transmitted through the male gametophyte and were lethal in homozygous plants. Southern blot analysis demonstrated that alleles of the first group generally contain small or moderate-sized deletions at HY4, while alleles of the second group contain large deletions at this locus. These results demonstrate that fast neutrons can produce a range of deletions at a single locus in Arabidopsis. Many of these deletions would be suitable for cloning by genomic subtraction or representational difference analysis. The results also suggest the presence of an essential locus adjacent to HY4. (author)

  11. Requirement of KNAT1/BP for the Development of Abscission Zones in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qun Wang; Wei-Hui Xu; Li-Geng Ma; Zhi-Ming Fu; Xing-Wang Deng; Jia-Yang Li; Yong-Hong Wang

    2006-01-01

    The KNAT1 gene is a member of the Class Ⅰ KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the architecture of the inflorescence by affecting pedicle development in Arabidopsis thaliana.Herein, we report the characterization of an Arabidopsis T-DNA insertion mutant that shares considerable phenotypic similarity to the previously identified mutant brevipedicle (bp). Molecular and genetic analyses showed that the mutant is allelic to bp and that the T-DNA is located within the first helix of the KNAT1homeodomain (HD). Although the mutation causes a typical abnormality of short pedicles, propendent siliques,and semidwarfism, no obvious defects are observed in the vegetative stage. A study on cell morphology showed that asymmetrical division and inhibition of cell elongation contribute to the downward-pointing and shorter pedicle phenotype. Loss of KNAT/BPfunction results in the abnormal development of abscission zones. Microarray analysis of gene expression profiling suggests that KNAT1/BP may regulate abscission zone development through hormone signaling and hormone metabolism in Arabidopsis.

  12. A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana

    KAUST Repository

    Orsini, Francesco

    2010-07-01

    Salinity is an abiotic stress that limits both yield and the expansion of agricultural crops to new areas. In the last 20 years our basic understanding of the mechanisms underlying plant tolerance and adaptation to saline environments has greatly improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt tolerance research is largely neglected. The recent introduction of halophytic Arabidopsis-Relative Model Species (ARMS) has begun to compare and relate several unique genetic resources to the well-developed Arabidopsis model. In a search for candidates to begin to understand, through genetic analyses, the biological bases of salt tolerance, 11 wild relatives of Arabidopsis thaliana were compared: Barbarea verna, Capsella bursa-pastoris, Hirschfeldia incana, Lepidium densiflorum, Malcolmia triloba, Lepidium virginicum, Descurainia pinnata, Sisymbrium officinale, Thellungiella parvula, Thellungiella salsuginea (previously T. halophila), and Thlaspi arvense. Among these species, highly salt-tolerant (L. densiflorum and L. virginicum) and moderately salt-tolerant (M. triloba and H. incana) species were identified. Only T. parvula revealed a true halophytic habitus, comparable to the better studied Thellungiella salsuginea. Major differences in growth, water transport properties, and ion accumulation are observed and discussed to describe the distinctive traits and physiological responses that can now be studied genetically in salt stress research. 2010 The Author.

  13. Proteomic analysis of Arabidopsis thaliana (L.) Heynh responses to a generalist sucking pest (Myzus persicae Sulzer).

    Science.gov (United States)

    Truong, D-H; Bauwens, J; Delaplace, P; Mazzucchelli, G; Lognay, G; Francis, F

    2015-11-01

    Herbivorous insects can cause severe cellular changes to plant foliage following infestations, depending on feeding behaviour. Here, a proteomic study was conducted to investigate the influence of green peach aphid (Myzus persicae Sulzer) as a polyphagous pest on the defence response of Arabidopsis thaliana (L.) Heynh after aphid colony establishment on the host plant (3 days). Analysis of about 574 protein spots on 2-DE gels revealed 31 differentially expressed protein spots. Twenty out of these 31 differential proteins were selected for analysis by mass spectrometry. In 12 of the 20 analysed spots, we identified seven and nine proteins using MALDI-TOF-MS and LC-ESI-MS/MS, respectively. Of the analysed spots, 25% contain two proteins. Different metabolic pathways were modulated in Arabidopsis leaves according to aphid feeding: most corresponded to carbohydrate, amino acid and energy metabolism, photosynthesis, defence response and translation. This paper has established a survey of early alterations induced in the proteome of Arabidopsis by M. persicae aphids. It provides valuable insights into the complex responses of plants to biological stress, particularly for herbivorous insects with sucking feeding behaviour. PMID:26153342

  14. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock.

    Directory of Open Access Journals (Sweden)

    Vaibhav Bhardwaj

    Full Text Available The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000, with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime.

  15. Defence responses of arabidopsis thaliana to infection by pseudomonas syringae are regulated by the circadian clock

    KAUST Repository

    Bhardwaj, Vaibhav

    2011-10-31

    The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP)-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime. © 2011 Bhardwaj et al.

  16. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  17. A Sweetpotato Geranylgeranyl Pyrophosphate Synthase Gene, IbGGPS, Increases Carotenoid Content and Enhances Osmotic Stress Tolerance in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS, named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG. Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD in transgenic seedlings. In addition, the level of malondialdehyde (MDA was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress.

  18. Regrowth patterns and rosette attributes contribute to the differential compensatory responses of Arabidopsis thaliana genotypes to apical damage.

    Science.gov (United States)

    Scholes, D R; Wszalek, A E; Paige, K N

    2016-03-01

    A plant's compensatory performance refers to its ability to maintain or increase its reproductive output following damage. The ability of a plant to compensate depends on numerous factors including the type, severity, frequency and timing of damage, the environmental conditions and the plant's genotype. Upon apical damage, a cascade of hormonal and genetic responses often produces dramatic changes in a plant's growth, development, architecture and physiology. All else being equal, this response is largely dependent on a plant's genotype, with different regrowth patterns displayed by different genotypes of a given species. In this study, we compare the architectural and growth patterns of two Arabidopsis thaliana genotypes following apical damage. Specifically, we characterise regrowth patterns of the genotypes Columbia-4 and Landsberg erecta, which typically differ in their compensation to apical meristem removal. We report that Landsberg erecta suffered reductions in the number of stems produced, maximum elongation rate, a delay in reaching this rate, lower average rosette quality throughout the growing period, and ultimately, less aboveground dry biomass and seed production when damaged compared to undamaged control plants. Columbia-4 had no reductions in any of these measures and maintained larger rosette area when clipped relative to when unclipped. Based on the apparent influence of the rosette on these genotypes' compensatory performances, we performed a rosette removal experiment, which confirmed that the rosette contributes to compensatory performance. This study provides a novel characterisation of regrowth patterns following apical damage, with insights into those measures having the largest effect on plant performance. PMID:26434737

  19. Biological damage induced by ionizing cosmic rays in dry Arabidopsis seeds.

    Science.gov (United States)

    Kranz, A R; Bork, U; Bucker, H; Reitz, G

    1990-01-01

    In September 1987 dry seeds containing embryos of the crucifer plant Arabidopsis thaliana (L.) Heynh, were flown in orbit for 13 days on the Kosmos 1887 satellite. The seeds were fixed on CNd detectors and stored in units of Biorack type I/O. One unit was exposed inside, another one outside the satellite. The temperature profile of the flown seeds inside the satellite was simulated on earth in an identical backup control sample (BC). An additional control (SC) was studied with the original seeds sample. By use of the CNd-detector, HZE-tracks were measured with a PC-assisted microscope. The biological damages were investigated by growing the seeds under controlled climatic conditions. The following biological endpoints of the cosmic radiation damage were studied: germination, radicle length, sublethality, morphological aberrations, flower development, tumorization, embryo lethality inside the siliques. The summarized damage (D) and the mutation frequencies of embyronic lethal genes were calculated. The following results were obtained: the damages increase significantly in orbit at all biological endpoints; germination and fiowerings especially, as well as embryo lethality of fruits and lethal mutation frequency, were maximum mostly for HZE-hit seeds. Additionally, an increase of damage was observed for the seeds of the outside-exposed Biorack in comparison to the inside ones, which was probably caused by less radiation shielding and free space vacuum. The significance of the results obtained is discussed with respect to stress and risk and, thus, the quality of the RBE-factors and heavy ionizing radiation all needed for the very definition of radiation protection standards in space. PMID:11537515

  20. Evaluation of the Antimicrobial Activity of Nanostructured Materials of Titanium Dioxide Doped with Silver and/or Copper and Their Effects on Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Cristina Garcidueñas-Piña

    2016-01-01

    Full Text Available Nanostructured materials (NSMs of silver (Ag@TiO2 and copper (TiO2-Cu2+ doped titanium dioxide were synthesized, fully characterized, and evaluated for their antimicrobial efficiency and effects on Arabidopsis thaliana. The NSMs were prepared using an environmentally benign route. The physicochemical properties of the materials were determined with analytical techniques. These materials are active under visible light, exhibit a small size (10–12 nm, are crystalline (anatase, and liberate metal ions (Ag+ and Cu2+ in solution. Microbicide activity was observed in E. coli C600 and S. cerevisiae W303 strains treated with several concentrations of Ag@TiO2 and TiO2-Cu2+, radiated and nonradiated, and after different times. Higher inactivation was achieved with Ag@TiO2 in E. coli, with value of log inactivation of 2.2 with 0.5 mg/mL after 4 h, than in S. cerevisiae, with a log inactivation of 2.6 with 10 mg/mL after 24 h. The impact of these NSMs in plants was evaluated in Arabidopsis thaliana Col-0 strain exposed to such materials at different conditions and concentrations, and physical and biochemical effects were analyzed. Seeds exposed to NSMs did not show effects on germination and growth. However, seedlings treated with these materials modified their growth and their total chlorophyll content.

  1. Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2008-09-01

    Full Text Available Abstract Background Pathogenesis-related proteins belonging to group 10 (PR10 are elevated in response to biotic and abiotic stresses in plants. Previously, we have shown a drastic salinity-induced increase in the levels of ABR17, a member of the PR10 family, in pea. Furthermore, we have also demonstrated that the constitutive expression of pea ABR17 cDNA in Arabidopsis thaliana and Brassica napus enhances their germination and early seedling growth under stress. Although it has been reported that several members of the PR10 family including ABR17 possess RNase activity, the exact mechanism by which the aforementioned characteristics are conferred by ABR17 is unknown at this time. We hypothesized that a study of differences in transcriptome between wild type (WT and ABR17 transgenic A. thaliana may shed light on this process. Results The molecular changes brought about by the expression of pea ABR17 cDNA in A. thaliana in the presence or absence of salt stress were investigated using microarrays consisting of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes. Statistical analysis identified number of genes which were over represented among up- or down-regulated transcripts in the transgenic line. Our results highlight the important roles of many abscisic acid (ABA and cytokinin (CK responsive genes in ABR17 transgenic lines. Although the transcriptional changes followed a general salt response theme in both WT and transgenic seedlings under salt stress, many genes exhibited differential expression patterns when the transgenic and WT lines were compared. These genes include plant defensins, heat shock proteins, other defense related genes, and several transcriptional factors. Our microarray results for selected genes were validated using quantitative real-time PCR. Conclusion Transcriptional analysis in ABR17 transgenic Arabidopsis plants, both under normal and saline conditions, revealed significant changes in abundance of

  2. Utilisation des mutations induites pour l'étude de l'embryogenèse chez le haricot Phaseolus vulgaris L. et deux plantes modèles Arabidopsis thaliana (L. Heynh. et Zea mays L.

    Directory of Open Access Journals (Sweden)

    Silué, S.

    2011-01-01

    Full Text Available Use of induced mutations in embryogenesis study in bean Phaseolus vulgaris L. and two model plants, Arabidopsis thaliana (L. Heynh. and Zea mays L.. Breeding of common bean, Phaseolus vulgaris L., through interspecific hybridizations with the species Phaseolus coccineus L. and Phaseolus polyanthus Greenm. as female parents leads to the abortion of immature embryos. Identification of genes required for embryo development could partly explain the abortion of hybrid embryos; induced mutations could thus be an alternative to identify key genes involved in Phaseolus embryogenesis. This paper is a review which shows a few examples of the use of induced mutations in the identification of essential genes for embryogenesis in two model plants, Arabidopsis thaliana (L. Heyhn. for dicots and Zea mays L. for monocots. In these two species, embryo development mutants have been isolated using insertional mutagenesis and chemical mutagenesis with Ethyl Methane Sulfonate (EMS. Arabidopsis embryo mutants are affected in apical-basal axis polarity, radial pattern and in post-embryonic stages. Some Arabidopsis embryo mutants are defected in auxin signalisation. In maize, defective kernel (dek mutants are affected in the embryo and the endosperm, while in embryo specific (emb mutants, only the embryo is affected. In common bean, plants deficient in seed development were isolated using EMS mutagenesis. Embryos inside the seeds fail to growth at different stages of development and show abnormalities mainly in the suspensor and the cotyledons.

  3. Comparison of rhizosphere bacterial communities in Arabidopsis thaliana mutants for systemic acquired resistance.

    Science.gov (United States)

    Hein, John W; Wolfe, Gordon V; Blee, Kristopher A

    2008-02-01

    Systemic acquired resistance (SAR) is an inducible systemic plant defense against a broad spectrum of plant pathogens, with the potential to secrete antimicrobial compounds into the soil. However, its impact on rhizosphere bacteria is not known. In this study, we examined fingerprints of bacterial communities in the rhizosphere of the model plant Arabidopsis thaliana to determine the effect of SAR on bacterial community structure and diversity. We compared Arabidopsis mutants that are constitutive and non-inducible for SAR and verified SAR activation by measuring pathogenesis-related protein activity via a beta-glucoronidase (GUS) reporter construct driven by the beta-1-3 glucanase promoter. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of MspI- and HaeIII-digested 16S rDNA to estimate bacterial rhizosphere community diversity, with Lactobacillus sp. added as internal controls. T-RFLP analysis showed a clear rhizosphere effect on community structure, and diversity analysis of both rhizosphere and bulk soil operational taxonomic units (as defined by terminal restriction fragments) using richness, Shannon-Weiner, and Simpson's diversity indices and evenness confirmed that the presence of Arabidopsis roots significantly altered bacterial communities. This effect of altered soil microbial community structure by plants was also seen upon multivariate cluster analysis of the terminal restriction fragments. We also found visible differences in the rhizosphere community fingerprints of different Arabidopsis SAR mutants; however, there was no clear decrease of rhizosphere diversity because of constitutive SAR expression. Our study suggests that SAR can alter rhizosphere bacterial communities, opening the door to further understanding and application of inducible plant defense as a driving force in structuring soil bacterial assemblages. PMID:17619212

  4. ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes.

    Science.gov (United States)

    Bedi, Sonia; Sengupta, Sourabh; Ray, Anagh; Nag Chaudhuri, Ronita

    2016-09-01

    ABI3, originally discovered as a seed-specific transcription factor is now implicated to act beyond seed physiology, especially during abiotic stress. In non-seed plants, ABI3 is known to act in desiccation stress signaling. Here we show that ABI3 plays a role in dehydration stress response in Arabidopsis. ABI3 gene was upregulated during dehydration stress and its expression was maintained during subsequent stress recovery phases. Comparative gene expression studies in response to dehydration stress and stress recovery were done with genes which had potential ABI3 binding sites in their upstream regulatory regions. Such studies showed that several genes including known seed-specific factors like CRUCIFERIN1, CRUCIFERIN3 and LEA-group of genes like LEA76, LEA6, DEHYDRIN LEA and LEA-LIKE got upregulated in an ABI3-dependent manner, especially during the stress recovery phase. ABI3 got recruited to regions upstream to the transcription start site of these genes during dehydration stress response through direct or indirect DNA binding. Interestingly, ABI3 also binds to its own promoter region during such stress signaling. Nucleosomes covering potential ABI3 binding sites in the upstream sequences of the above-mentioned genes alter positions, and show increased H3 K9 acetylation during stress-induced transcription. ABI3 thus mediates dehydration stress signaling in Arabidopsis through regulation of a group of genes that play a role primarily during stress recovery phase. PMID:27457990

  5. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants.

    Science.gov (United States)

    Azab, Ehab; Hegazy, Ahmad K; El-Sharnouby, Mohamed E; Abd Elsalam, Hassan E

    2016-07-01

    The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants. PMID:26771455

  6. Ultrastructural study of maturing pollen in Arabidopsis thaliana (L. Heynh. (Brassicaceae

    Directory of Open Access Journals (Sweden)

    Krystyna Zając

    2014-02-01

    Full Text Available Ultrastructural changes in Arabidopsis thaliana pollen, between late microspore stage and mature pollen stage were described. When the generative cell was peeled off from the intine, it was of spherical shape and had all usual organelles with the exception of plastids. The cytoplasm transformation of the vegetative cell included an increase in the number of mitochondria and changes in the accumulation of starch and lipid bodies. The starch plastids were observed at the bicellular and early tricellular pollen stages and next starch was utilized during the maturation procces. The lipid bodies of the vegetative cell form a very regular sheath around the generative cell and then, around the sperm cells. Before anthesis the lipid bodies were dispersed within the whole vegetative cell cytoplasm.

  7. Changes in cell ultrastructure and morphology of Arabidopsis thaliana roots after coumarins treatment

    Directory of Open Access Journals (Sweden)

    Ewa Kupidłowska

    2014-02-01

    Full Text Available The ultrastructure and morphology of roots treated with coumarin and umbelliferone as well as the reversibility of the coumarins effects caused by exogenous GA, were studied in Arabidopsis thaliana. Both coumarins suppressed root elongation and appreciably stimulated radial expansion of epidermal and cortical cells in the upper part of the meristem and in the elongation zone. The gibberellic acid applied simultaneously with coumarins decreased their inhibitory effect on root elongation and reduced cells swelling.Microscopic observation showed intensive vacuolization of cells and abnormalities in the structure of the Golgi stacks and the nuclear envelope. The detection of active acid phosphatase in the cytosol of swollen cells indicated increased membrane permeability. Significant abnormalities of newly formed cell walls, e.g. the discontinuity of cellulose layer, uncorrect position of walls and the lack of their bonds with the mother cell wall suggest that coumarins affected the cytoskeleton.

  8. A Method for Preparing Spaceflight RNAlater-Fixed Arabidopsis thaliana (Brassicaceae Tissue for Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Eric R. Schultz

    2013-07-01

    Full Text Available Premise of the study: In spaceflight experiments, tissues for morphologic study are fixed in 3% glutaraldehyde, while tissues for molecular study are fixed in RNAlater; thus, an experiment containing both study components requires multiple fixation strategies. The possibility of using RNAlater-fixed materials for standard SEM-based morphometric investigation was explored to expand the library of tissues available for analysis and maximize usage of samples returned from spaceflight, but these technologies have wide application to any situation where recovery of biological resources is limited. Methods and Results: RNAlater-fixed samples were desalinated in distilled water, dehydrated through graded methanol, plunged into liquid ethane, and transferred to cryovials for freeze-substitution. Sample tissues were critical point dried, mounted, sputter-coated, and imaged. Conclusions: The protocol resulted in acceptable SEM images from RNAlater-fixed Arabidopsis thaliana tissue. The majority of the tissues remained intact, including general morphology and finer details such as root hairs and trichomes.

  9. The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase.

    Science.gov (United States)

    Muralidharan, Mrinalini; Buss, Kristina; Larrimore, Katherine E; Segerson, Nicholas A; Kannan, Latha; Mor, Tsafrir S

    2013-04-01

    Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime molds, fungi and plants. More recently, a gene purportedly encoding for acetylcholinesterase was cloned from maize. We have cloned the Arabidopsis thaliana homolog of the Zea mays gene, At3g26430, and studied its biochemical properties. Our results indicate that the protein encoded by the gene exhibited lipase activity with preference to long chain substrates but did not hydrolyze choline esters. The At3g26430 protein belongs to the SGNH clan of serine hydrolases, and more specifically to the GDS(L) lipase family. PMID:23430565

  10. The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng; Garavito, R. Michael (MSU); (NWU)

    2014-10-02

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) has been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-{angstrom} resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.

  11. A Mutation Causing Imidazolinone Resistance Maps to the Csr1 Locus of Arabidopsis thaliana.

    Science.gov (United States)

    Haughn, G W; Somerville, C R

    1990-04-01

    A mutant of Arabidopsis thaliana, two hundred times more resistant to the imidazolinone herbicide imazapyr than wild-type plants, was isolated by direct selection of seedlings from a mutagenized population. Genetic analysis showed that resistance is due to a single dominant nuclear mutation that could not be separated by recombination from a mutation in the CSR1 gene encoding acetohydroxy acid synthase. Acetohydroxy acid synthase activity in extracts isolated from the mutant was 1000-fold more resistant to inhibition by imazapyr than that of the wild type. The resistant enzyme activity cosegregated with whole plant resistance. These data strongly suggest that the mutation is an allele of CSR1 encoding an imazapyr-resistant AHAS. PMID:16667374

  12. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  13. Mitochondrial outer membrane forms bridge between two mitochondria in Arabidopsis thaliana.

    Science.gov (United States)

    Yamashita, Akihiro; Fujimoto, Masaru; Katayama, Kenta; Tsutsumi, Nobuhiro; Arimura, Shin-Ichi

    2016-05-01

    Mitochondria are double-membrane organelles that move around and change their shapes dynamically. In plants, the dynamics of the outer membrane is not well understood. We recently demonstrated that mitochondria had tubular protrusions of the outer membrane with little or no matrix, called MOPs (mitochondrial outer-membrane protrusions; MOPs). Here we show that a MOP can form a bridge between two mitochondria in Arabidopsis thaliana. The bridge does not appear to involve the inner membranes. Live imaging revealed stretching of the MOP bridge, demonstrating the flexibility of the outer membrane. Mitochondria frequently undergo fission and fusion. These observations raise the possibility that MOPs bridges have a role in these processes. PMID:27031262

  14. Identification and structural analysis of a novel snoRNA gene cluster from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    周惠; 孟清; 屈良鹄

    2000-01-01

    A 22 snoRNA gene cluster, consisting of four antisense snoRNA genes, was identified from Arabidopsis thaliana. The sequence and structural analysis showed that the 22 snoRNA gene cluster might be transcribed as a polycistronic precursor from an upstream promoter, and the in-tergenic spacers of the gene cluster encode the ’hairpin’ structures similar to the processing recognition signals of yeast Saccharomyces cerevisiae polycistronic snoRNA precursor. The results also revealed that plant snoRNA gene with multiple copies is a characteristic in common, and provides a good system for further revealing the transcription and expression mechanism of plant snoRNA gene cluster.

  15. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Ji-Yu; Huang, Sheng-Nan; Wang, Gang; Xuan, Ji-Ping; Guo, Zhong-Ren

    2016-09-01

    Ethanolic fermentation is classically associated with waterlogging tolerance when plant cells switch from respiration to anaerobic fermentation. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we cloned a full-length PDC cDNA sequence from kiwifruit, named AdPDC1. We determined the expression of the AdPDC1 gene in kiwifruit under different environmental stresses using qRT-PCR, and the results showed that the increase of AdPDC1 expression during waterlogging stress was much higher than that during salt, cold, heat and drought stresses. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis enhanced the resistance to waterlogging stress but could not enhance resistance to cold stress at five weeks old seedlings. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis could not enhance resistance to NaCl and mannitol stresses at the stage of seed germination and in early seedlings. These results suggested that the kiwifruit AdPDC1 gene is required during waterlogging but might not be required during other environmental stresses. Expression of the AdPDC1 gene was down-regulated by abscisic acid (ABA) in kiwifruit, and overexpression of the AdPDC1 gene in Arabidopsis inhibited seed germination and root length under ABA treatment, indicating that ABA might negatively regulate the AdPDC1 gene under waterlogging stress. PMID:27191596

  16. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress.

    Science.gov (United States)

    Sperdouli, Ilektra; Moustakas, Michael

    2012-04-15

    The relationships among photosynthetic acclimation, proline (Pro), soluble sugar (SS), and anthocyanin (An) accumulation in Arabidopsis thaliana leaves to the onset of drought stress (OnDS), mild (MiDS) and moderate drought stress (MoDS), were evaluated. As leaf water content (LWC) decreased, metabolic concentrations (Pro, SS, and An) increased and were negatively and significantly correlated with LWC. Thus, these metabolites may have an important role in the acclimation process to drought stress (DS). No correlations among Pro, SS and An accumulation with the quantum efficiency of PSII photochemistry (Φ(PSII)) and the excitation pressure (1-q(P)) were observed under DS. This implies that, while metabolites increased in a drought-dependent way, PSII activity did not decrease in the same pattern. Our results indicated that, under MoDS, A. thaliana leaves were able to maintain oxidative compounds such as malondialdeyde, an end product of lipid peroxidation, within the range of control leaves, and to cope with oxidative damage, as was evident by the decreased excitation pressure (1-q(P)) and similar (ns difference) Φ(PSII) to that of control leaves. In addition, a statistically significant increased accumulation of Pro, SS and An was recorded only under MoDS compared to controls. The better PSII functioning of MoDS Arabidopsis leaves may reflect the greater capacity of these leaves to undertake key metabolic adjustments, including increased Pro, SS and An accumulation, to maintain a higher antioxidant protection and a better balance between light capture and energy use. PMID:22305050

  17. Complementation of the pha2 yeast mutant suggests functional differences for arogenate dehydratases from Arabidopsis thaliana.

    Science.gov (United States)

    Bross, Crystal D; Corea, Oliver R A; Kaldis, Angelo; Menassa, Rima; Bernards, Mark A; Kohalmi, Susanne E

    2011-08-01

    The final steps of phenylalanine (Phe) biosynthesis in bacteria, fungi and plants can occur via phenylpyruvate or arogenate intermediates. These routes are determined by the presence of prephenate dehydratase (PDT, EC4.2.1.51), which forms phenylpyruvate from prephenate, or arogenate dehydratase (ADT, EC4.2.1.91), which forms phenylalanine directly from arogenate. We compared sequences from select yeast species to those of Arabidopsis thaliana. The in silico analysis showed that plant ADTs and yeast PDTs share many common features allowing them to act as dehydratase/decarboxylases. However, plant and yeast sequences clearly group independently conferring distinct substrate specificities. Complementation of the Saccharomyces cerevisiae pha2 mutant, which lacks PDT activity and cannot grow in the absence of exogenous Phe, was used to test the PDT activity of A. thaliana ADTs in vivo. Previous biochemical characterization showed that all six AtADTs had high catalytic activity with arogenate as a substrate, while AtADT1, AtADT2 and AtADT6 also had limited activity with prephenate. Consistent with these results, the complementation test showed AtADT2 readily recovered the pha2 phenotype after ∼6 days growth at 30 °C, while AtADT1 required ∼13 days to show visible growth. By contrast, AtADT6 (lowest PDT activity) and AtADT3-5 (no PDT activity) were unable to recover the phenotype. These results suggest that only AtADT1 and AtADT2, but not the other four ADTs from Arabidopsis, have functional PDT activity in vivo, showing that there are two functional distinct groups. We hypothesize that plant ADTs have evolved to use the arogenate route for Phe synthesis while keeping some residual PDT activity. PMID:21388819

  18. Salt stress induces internalization of plasma membrane aquaporin into the vacuole in Arabidopsis thaliana.

    Science.gov (United States)

    Ueda, Masamichi; Tsutsumi, Nobuhiro; Fujimoto, Masaru

    2016-06-10

    Salt stress is a major environmental stress for plants, causing hyperosmotic, ionic and drought-like stresses. Plasma membrane intrinsic protein 2;1 (PIP2;1), which forms a water channel that regulates water flux thorough the plasma membrane (PM), is constitutively trafficked between the PM and the trans-Golgi network (TGN) in Arabidopsis thaliana. Salt stress is known to relocalize PIP2;1 to intracellular compartments, probably to decrease the water permeability of the root. However, the destination of internalized PIP2;1 and the mechanism by which PIP2;1 is internalized remain unclear. Here, we examined the effects of salt stress and inhibitors of endocytosis on the intracellular localization of green fluorescent protein-fused PIP2;1 (GFP-PIP2;1) in Arabidopsis thaliana root epidermal cells. Salt stress decreased the fluorescence of GFP-PIP2;1 at the PM and increased it in the vacuolar lumen as shown by staining of the vacuolar membrane. The internalization of PIP2;1 was suppressed by an inhibitor of clathrin-mediated endocytosis and by inhibitors of two kinases that appear to have roles in salt stress, phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol 4-kinase (PI4K). Inhibiting PI4K suppressed the salt-induced endocytosis of GFP-PIP2;1 at the PM, whereas inhibiting PI3K suppressed the trafficking of GFP-PIP2;1 after its internalization. These results suggest that salt stress induces the internalization of PIP2;1 from the PM to the vacuolar lumen, and that these processes are dependent on clathrin, PI3K and PI4K. PMID:27163638

  19. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Rassadina Valentina

    2009-04-01

    Full Text Available Abstract Background Weak magnetic and electromagnetic fields can influence physiological processes in animals, plants and microorganisms, but the underlying way of perception is poorly understood. The ion cyclotron resonance is one of the discussed mechanisms, predicting biological effects for definite frequencies and intensities of electromagnetic fields possibly by affecting the physiological availability of small ions. Above all an influence on Calcium, which is crucial for many life processes, is in the focus of interest. We show that in Arabidopsis thaliana, changes in Ca2+-concentrations can be induced by combinations of magnetic and electromagnetic fields that match Ca2+-ion cyclotron resonance conditions. Results An aequorin expressing Arabidopsis thaliana mutant (Col0-1 Aeq Cy+ was subjected to a magnetic field around 65 microtesla (0.65 Gauss and an electromagnetic field with the corresponding Ca2+ cyclotron frequency of 50 Hz. The resulting changes in free Ca2+ were monitored by aequorin bioluminescence, using a high sensitive photomultiplier unit. The experiments were referenced by the additional use of wild type plants. Transient increases of cytosolic Ca2+ were observed both after switching the electromagnetic field on and off, with the latter effect decreasing with increasing duration of the electromagnetic impact. Compared with this the uninfluenced long-term loss of bioluminescence activity without any exogenic impact was negligible. The magnetic field effect rapidly decreased if ion cyclotron resonance conditions were mismatched by varying the magnetic fieldstrength, also a dependence on the amplitude of the electromagnetic component was seen. Conclusion Considering the various functions of Ca2+ as a second messenger in plants, this mechanism may be relevant for perception of these combined fields. The applicability of recently hypothesized mechanisms for the ion cyclotron resonance effect in biological systems is discussed

  20. Conserved CDC20 cell cycle functions are carried out by two of the five isoforms in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Zoltán Kevei

    Full Text Available BACKGROUND: The CDC20 and Cdh1/CCS52 proteins are substrate determinants and activators of the Anaphase Promoting Complex/Cyclosome (APC/C E3 ubiquitin ligase and as such they control the mitotic cell cycle by targeting the degradation of various cell cycle regulators. In yeasts and animals the main CDC20 function is the destruction of securin and mitotic cyclins. Plants have multiple CDC20 gene copies whose functions have not been explored yet. In Arabidopsis thaliana there are five CDC20 isoforms and here we aimed at defining their contribution to cell cycle regulation, substrate selectivity and plant development. METHODOLOGY/PRINCIPAL FINDINGS: Studying the gene structure and phylogeny of plant CDC20s, the expression of the five AtCDC20 gene copies and their interactions with the APC/C subunit APC10, the CCS52 proteins, components of the mitotic checkpoint complex (MCC and mitotic cyclin substrates, conserved CDC20 functions could be assigned for AtCDC20.1 and AtCDC20.2. The other three intron-less genes were silent and specific for Arabidopsis. We show that AtCDC20.1 and AtCDC20.2 are components of the MCC and interact with mitotic cyclins with unexpected specificity. AtCDC20.1 and AtCDC20.2 are expressed in meristems, organ primordia and AtCDC20.1 also in pollen grains and developing seeds. Knocking down both genes simultaneously by RNAi resulted in severe delay in plant development and male sterility. In these lines, the meristem size was reduced while the cell size and ploidy levels were unaffected indicating that the lower cell number and likely slowdown of the cell cycle are the cause of reduced plant growth. CONCLUSIONS/SIGNIFICANCE: The intron-containing CDC20 gene copies provide conserved and redundant functions for cell cycle progression in plants and are required for meristem maintenance, plant growth and male gametophyte formation. The Arabidopsis-specific intron-less genes are possibly "retrogenes" and have hitherto undefined

  1. Arsenic Methylation in Arabidopsis thaliana Expressing an Algal Arsenite Methyltransferase Gene Increases Arsenic Phytotoxicity.

    Science.gov (United States)

    Tang, Zhong; Lv, Yanling; Chen, Fei; Zhang, Wenwen; Rosen, Barry P; Zhao, Fang-Jie

    2016-04-01

    Arsenic (As) contamination in soil can lead to elevated transfer of As to the food chain. One potential mitigation strategy is to genetically engineer plants to enable them to transform inorganic As to methylated and volatile As species. In this study, we genetically engineered two ecotypes of Arabidopsis thaliana with the arsenite (As(III)) S-adenosylmethyltransferase (arsM) gene from the eukaryotic alga Chlamydomonas reinhardtii. The transgenic A. thaliana plants gained a strong ability to methylate As, converting most of the inorganic As into dimethylarsenate [DMA(V)] in the shoots. Small amounts of volatile As were detected from the transgenic plants. However, the transgenic plants became more sensitive to As(III) in the medium, suggesting that DMA(V) is more phytotoxic than inorganic As. The study demonstrates a negative consequence of engineered As methylation in plants and points to a need for arsM genes with a strong ability to methylate As to volatile species. PMID:26998776

  2. Purification, crystallization and preliminary crystallographic analysis of Arabidopsis thaliana imidazoleglycerol-phosphate dehydratase

    International Nuclear Information System (INIS)

    Imidazoleglycerol-phosphate dehydratase from A. thaliana has been overexpressed, purified and crystallized and data have been collected to 3 Å resolution. Imidazoleglycerol-phosphate dehydratase catalyses the sixth step of the histidine-biosynthesis pathway in plants and microorganisms and has been identified as a possible target for the development of novel herbicides. Arabidopsis thaliana IGPD has been cloned and overexpressed in Escherichia coli, purified and subsequently crystallized in the presence of manganese. Under these conditions, the inactive trimeric form of the metal-free enzyme is assembled into a fully active species consisting of a 24-mer exhibiting 432 symmetry. X-ray diffraction data have been collected to 3.0 Å resolution from a single crystal at 293 K. The crystal belongs to space group R3, with approximate unit-cell parameters a = b = 157.9, c = 480.0 Å, α = β = 90, γ = 120° and with either 16 or 24 subunits in the asymmetric unit. A full structure determination is under way in order to provide insights into the mode of subunit assembly and to initiate a programme of rational herbicide design

  3. Genetic architecture of natural variation of telomere length in Arabidopsis thaliana.

    Science.gov (United States)

    Fulcher, Nick; Teubenbacher, Astrid; Kerdaffrec, Envel; Farlow, Ashley; Nordborg, Magnus; Riha, Karel

    2015-02-01

    Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation. PMID:25488978

  4. Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Sho Nishida

    2015-04-01

    Full Text Available Excessive accumulation of nickel (Ni can be toxic to plants. In Arabidopsis thaliana, the Fe2+ transporter, iron (Fe-regulated transporter1 (IRT1, mediates Fe uptake and also implicates in Ni2+ uptake at roots; however, the underlying mechanism of Ni2+ uptake and accumulation remains unelucidated. In the present study, we found that zinc (Zn deficient conditions resulted in increased accumulation of Ni in plants, particularly in roots, in A. thaliana. In order to elucidate the underlying mechanisms of Ni uptake correlating zinc condition, we traced 63Ni isotope in response to Zn and found that (i Zn deficiency induces short-term Ni2+ absorption and (ii Zn2+ inhibits Ni2+ uptake, suggesting competitive uptake between Ni and Zn. Furthermore, the Zrt/Irt-like protein 3 (ZIP3-defective mutant with an elevated Zn-deficient response exhibited higher Ni accumulation than the wild type, further supporting that the response to Zn deficiency induces Ni accumulation. Previously, expression profile study demonstrated that IRT1 expression is not inducible by Zn deficiency. In the present study, we found increased Ni accumulation in IRT1-null mutant under Zn deficiency in agar culture. These suggest that Zn deficiency induces Ni accumulation in an IRT1-independen manner. The present study revealed that Ni accumulation is inducible in response to Zn deficiency, which may be attributable to a Zn uptake transporter induced by Zn deficiency.

  5. Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana

    Science.gov (United States)

    Moseyko, N.; Feldman, L. J.

    2001-01-01

    This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non-invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH-sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH-sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole-root tissues of A. thaliana is reported. The utility of pH-sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.

  6. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    Science.gov (United States)

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-05-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes.

  7. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Science.gov (United States)

    Baldan, Enrico; Nigris, Sebastiano; Romualdi, Chiara; D'Alessandro, Stefano; Clocchiatti, Anna; Zottini, Michela; Stevanato, Piergiorgio; Squartini, Andrea; Baldan, Barbara

    2015-01-01

    We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammonium (39%), secrete siderophores (38%) and a limited part of them synthetized IAA and IAA-like molecules (5%). Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP) of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards. PMID:26473358

  8. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Directory of Open Access Journals (Sweden)

    Enrico Baldan

    Full Text Available We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%, release ammonium (39%, secrete siderophores (38% and a limited part of them synthetized IAA and IAA-like molecules (5%. Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.

  9. Arabidopsis thaliana IRX10 and two related proteins from psyllium and Physcomitrella patens are xylan xylosyltransferases.

    Science.gov (United States)

    Jensen, Jacob Krüger; Johnson, Nathan Robert; Wilkerson, Curtis Gene

    2014-10-01

    The enzymatic mechanism that governs the synthesis of the xylan backbone polymer, a linear chain of xylose residues connected by β-1,4 glycosidic linkages, has remained elusive. Xylan is a major constituent of many kinds of plant cell walls, and genetic studies have identified multiple genes that affect xylan formation. In this study, we investigate several homologs of one of these previously identified xylan-related genes, IRX10 from Arabidopsis thaliana, by heterologous expression and in vitro xylan xylosyltransferase assay. We find that an IRX10 homolog from the moss Physcomitrella patens displays robust activity, and we show that the xylosidic linkage formed is a β-1,4 linkage, establishing this protein as a xylan β-1,4-xylosyltransferase. We also find lower but reproducible xylan xylosyltransferase activity with A. thaliana IRX10 and with a homolog from the dicot plant Plantago ovata, showing that xylan xylosyltransferase activity is conserved over large evolutionary distance for these proteins. PMID:25139408

  10. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy

    International Nuclear Information System (INIS)

    Plant root growth is known to be influenced by higher levels of atmospheric carbon dioxide (CO2). Roots of some species grown in hydroponics under elevated CO2 concentrations may be more competitive sinks for photosynthetic assimilates than roots grown under lower CO2 conditions. Root branching patterns may also be influenced by elevated CO2 concentrations. Studies have also shown that factors such as soil compaction, salinity and the availability of nitrate, phosphorous, oxygen and water also influence root growth, and the effects of higher CO2 on roots can be confounded by such environmental factors. This study evaluated the effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root growth, morphology, and architecture. Both ambient and elevated CO2 levels were used along with various sucrose concentrations. The study revealed that A. thaliana plants grown on a phytagar medium in small chambers with elevated CO2 had longer roots, more lateral root growth than plants grown in ambient CO2. Roots in elevated CO2 were found to have wider root diameters, and more secondary growth. The addition of sucrose to the media closely resembled the effects of elevated CO2. In addition, the increase in sucrose concentration had a bigger effect on root morphology under ambient, than elevated CO2. Therefore, both elevated CO2 and increased sucrose concentrations promote root growth by increasing their number, length, and diameter. The dichotomy branching index (DBI) also dropped resulting in a more dichotomous branching pattern. 34 refs., 5 figs

  11. The novel elicitor AsES triggers a defense response against Botrytis cinerea in Arabidopsis thaliana.

    Science.gov (United States)

    Hael-Conrad, V; Abou-Mansour, E; Díaz-Ricci, J-C; Métraux, J-P; Serrano, M

    2015-12-01

    AsES (Acremonium strictum Elicitor and Subtilisin) is a novel extracellular elicitor protein produced by the avirulent isolate SS71 of the opportunist strawberry fungal pathogen A. strictum. Here we describe the activity of AsES in the plant-pathogen system Arabidopsis thaliana-Botrytis cinerea. We show that AsES renders A. thaliana plants resistant to the necrotrophic pathogen B. cinerea, both locally and systemically and the defense response observed is dose-dependent. Systemic, but not local resistance is dependent on the length of exposure to AsES. The germination of the spores in vitro was not inhibited by AsES, implying that protection to B. cinerea is due to the induction of the plant defenses. These results were further supported by the findings that AsES differentially affects mutants impaired in the response to salicylic acid, jasmonic acid and ethylene, suggesting that AsES triggers the defense response through these three signaling pathways. PMID:26706064

  12. Natural genetic variation in selected populations of Arabidopsis thaliana is associated with ionomic differences.

    Directory of Open Access Journals (Sweden)

    Elizabeth Buescher

    Full Text Available Controlling elemental composition is critical for plant growth and development as well as the nutrition of humans who utilize plants for food. Uncovering the genetic architecture underlying mineral ion homeostasis in plants is a critical first step towards understanding the biochemical networks that regulate a plant's elemental composition (ionome. Natural accessions of Arabidopsis thaliana provide a rich source of genetic diversity that leads to phenotypic differences. We analyzed the concentrations of 17 different elements in 12 A. thaliana accessions and three recombinant inbred line (RIL populations grown in several different environments using high-throughput inductively coupled plasma- mass spectroscopy (ICP-MS. Significant differences were detected between the accessions for most elements and we identified over a hundred QTLs for elemental accumulation in the RIL populations. Altering the environment the plants were grown in had a strong effect on the correlations between different elements and the QTLs controlling elemental accumulation. All ionomic data presented is publicly available at www.ionomicshub.org.

  13. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    Science.gov (United States)

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  14. Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage.

    Science.gov (United States)

    Hagmann, Jörg; Becker, Claude; Müller, Jonas; Stegle, Oliver; Meyer, Rhonda C; Wang, George; Schneeberger, Korbinian; Fitz, Joffrey; Altmann, Thomas; Bergelson, Joy; Borgwardt, Karsten; Weigel, Detlef

    2015-01-01

    There has been much excitement about the possibility that exposure to specific environments can induce an ecological memory in the form of whole-sale, genome-wide epigenetic changes that are maintained over many generations. In the model plant Arabidopsis thaliana, numerous heritable DNA methylation differences have been identified in greenhouse-grown isogenic lines, but it remains unknown how natural, highly variable environments affect the rate and spectrum of such changes. Here we present detailed methylome analyses in a geographically dispersed A. thaliana population that constitutes a collection of near-isogenic lines, diverged for at least a century from a common ancestor. Methylome variation largely reflected genetic distance, and was in many aspects similar to that of lines raised in uniform conditions. Thus, even when plants are grown in varying and diverse natural sites, genome-wide epigenetic variation accumulates mostly in a clock-like manner, and epigenetic divergence thus parallels the pattern of genome-wide DNA sequence divergence. PMID:25569172

  15. Crystallization and preliminary X-ray analysis of cryptochrome 3 from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Recombinant cryptochrome 3 from A. thaliana with FAD and MTHF cofactors has been crystallized using the hanging-drop vapour-diffusion technique in the orthorhombic space group P212121 and X-ray diffraction data were collected to 1.9 Å resolution. Cryptochromes are flavoproteins which serve as blue-light receptors in plants, animals, fungi and prokaryotes and belong to the same protein family as the catalytically active DNA photolyases. Cryptochrome 3 from the plant Arabidopsis thaliana (cry3; 525 amino acids, 60.7 kDa) is a representative of the novel cryDASH subfamily of UV-A/blue-light receptors and has been expressed as a mature FAD-containing protein in Escherichia coli without the signal sequence that directs the protein into plant organelles. The purified cryptochrome was found to be complexed to methenyltetrahydrofolate as an antenna pigment. Crystals of the cryptochrome–antenna pigment complex were obtained by vapour diffusion and display orthorhombic symmetry, with unit-cell parameters a = 76.298, b = 116.782, c = 135.024 Å. X-ray diffraction data were collected to 1.9 Å resolution using synchrotron radiation. The asymmetric unit comprises a cry3 dimer, the physiological role of which remains to be elucidated

  16. Characterisation of the first enzymes committed to lysine biosynthesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Michael D W Griffin

    Full Text Available In plants, the lysine biosynthetic pathway is an attractive target for both the development of herbicides and increasing the nutritional value of crops given that lysine is a limiting amino acid in cereals. Dihydrodipicolinate synthase (DHDPS and dihydrodipicolinate reductase (DHDPR catalyse the first two committed steps of lysine biosynthesis. Here, we carry out for the first time a comprehensive characterisation of the structure and activity of both DHDPS and DHDPR from Arabidopsis thaliana. The A. thaliana DHDPS enzyme (At-DHDPS2 has similar activity to the bacterial form of the enzyme, but is more strongly allosterically inhibited by (S-lysine. Structural studies of At-DHDPS2 show (S-lysine bound at a cleft between two monomers, highlighting the allosteric site; however, unlike previous studies, binding is not accompanied by conformational changes, suggesting that binding may cause changes in protein dynamics rather than large conformation changes. DHDPR from A. thaliana (At-DHDPR2 has similar specificity for both NADH and NADPH during catalysis, and has tighter binding of substrate than has previously been reported. While all known bacterial DHDPR enzymes have a tetrameric structure, analytical ultracentrifugation, and scattering data unequivocally show that At-DHDPR2 exists as a dimer in solution. The exact arrangement of the dimeric protein is as yet unknown, but ab initio modelling of x-ray scattering data is consistent with an elongated structure in solution, which does not correspond to any of the possible dimeric pairings observed in the X-ray crystal structure of DHDPR from other organisms. This increased knowledge of the structure and function of plant lysine biosynthetic enzymes will aid future work aimed at improving primary production.

  17. Crystallization and preliminary X-ray diffraction study of a cell-wall invertase from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Crystals suitable for structural analysis have been prepared from a cell-wall invertase from A. thaliana. Cell-wall invertase 1 (AtcwINV1), a plant protein from Arabidopsis thaliana which is involved in the breakdown of sucrose, has been crystallized in two different crystal forms. Crystal form I grows in space group P31 or P32, whereas crystal form II grows in space group C2221. Data sets were collected for crystal forms I and II to resolution limits of 2.40 and 2.15 Å, respectively

  18. Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana.

    Science.gov (United States)

    Bui, Liem T; Giuntoli, Beatrice; Kosmacz, Monika; Parlanti, Sandro; Licausi, Francesco

    2015-07-01

    Plant adaptation to hypoxic conditions is mediated by the transcriptional activation of genes involved in the metabolic reprogramming of plant cells to cope with reduced oxygen availability. Recent studies indicated that members of the group VII of the Ethylene Responsive Transcription Factor (ERFs) family act as positive regulators of this molecular response. In the current study, the five ERF-VII transcription factors of Arabidopsis thaliana were compared to infer a hierarchy in their role with respect to the anaerobic response. When the activity of each transcription factor was tested on a set of hypoxia-responsive promoters, RAP2.2, RAP2.3 and RAP2.12 appeared to be the most powerful activators. RAP2.12 was further dissected in transactivation assays in Arabidopsis protoplasts to identify responsible regions for transcriptional activation. An ultimate C-terminal motif was identified as sufficient to drive gene transcription. Finally, using realtime RT-PCR in single and double mutants for the corresponding genes, we confirmed that RAP2.2 and RAP2.12 exert major control upon the anaerobic response. PMID:26025519

  19. Uncovering microRNA-mediated response to SO2 stress in Arabidopsis thaliana by deep sequencing.

    Science.gov (United States)

    Li, Lihong; Xue, Meizhao; Yi, Huilan

    2016-10-01

    Sulfur dioxide (SO2) is a major air pollutant and has significant impacts on plants. MicroRNAs (miRNAs) are a class of gene expression regulators that play important roles in response to environmental stresses. In this study, deep sequencing was used for genome-wide identification of miRNAs and their expression profiles in response to SO2 stress in Arabidopsis thaliana shoots. A total of 27 conserved miRNAs and 5 novel miRNAs were found to be differentially expressed under SO2 stress. qRT-PCR analysis showed mostly negative correlation between miRNA accumulation and target gene mRNA abundance, suggesting regulatory roles of these miRNAs during SO2 exposure. The target genes of SO2-responsive miRNAs encode transcription factors and proteins that regulate auxin signaling and stress response, and the miRNAs-mediated suppression of these genes could improve plant resistance to SO2 stress. Promoter sequence analysis of genes encoding SO2-responsive miRNAs showed that stress-responsive and phytohormone-related cis-regulatory elements occurred frequently, providing additional evidence of the involvement of miRNAs in adaption to SO2 stress. This study represents a comprehensive expression profiling of SO2-responsive miRNAs in Arabidopsis and broads our perspective on the ubiquitous regulatory roles of miRNAs under stress conditions. PMID:27232729

  20. Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana.

    Science.gov (United States)

    Villand, P; Olsen, O A; Kleczkowski, L A

    1993-12-01

    PCR amplification of cDNA prepared from poly(A)+ RNA from aerial parts of Arabidopsis thaliana, using degenerate nucleotide primers based on conserved regions between the large and small subunits of ADP-glucose pyrophosphorylase (AGP), yielded four different cDNAs of ca. 550 nucleotides each. Based on derived amino acid sequences, the identities between the clones varied from 49 to 69%. Sequence comparison to previously published cDNAs for AGP from various species and tissues has revealed that three of the amplified cDNAs (ApL1, ApL2 and ApL3) correspond to the large subunit of AGP, and one cDNA (ApS) encodes the small subunit of AGP. Both ApL1 and ApS were subsequently found to be present in a cDNA library made from Arabidopsis leaves. All four PCR products are encoded by single genes, as found by genomic Southern analysis. PMID:8292792

  1. Towards Interoperability in Genome Databases: The MAtDB (MIPS Arabidopsis Thaliana Database) Experience.

    Science.gov (United States)

    Schoof, Heiko

    2003-01-01

    Increasing numbers of whole-genome sequences are available, but to interpret them fully requires more than listing all genes. Genome databases are faced with the challenges of integrating heterogenous data and enabling data mining. In comparison to a data warehousing approach, where integration is achieved through replication of all relevant data in a unified schema, distributed approaches provide greater flexibility and maintainability. These are important in a field where new data is generated rapidly and our understanding of the data changes. Interoperability between distributed data sources allows data maintenance to be separated from integration and analysis. Simple ways to access the data can facilitate the development of new data mining tools and the transition from model genome analysis to comparative genomics. With the MIPS Arabidopsis thaliana genome database (MAtDB, http://mips.gsf.de/proj/thal/db) our aim is to go beyond a data repository towards creating an integrated knowledge resource. To this end, the Arabidopsis genome has been a backbone against which to structure and integrate heterogenous data. The challenges to be met are continuous updating of data, the design of flexible data models that can evolve with new data, the integration of heterogenous data, e.g. through the use of ontologies, comprehensive views and visualization of complex information, simple interfaces for application access locally or via the Internet, and knowledge transfer across species. PMID:18629123

  2. Towards Interoperability in Genome Databases: The MAtDB (MIPS Arabidopsis Thaliana Database Experience

    Directory of Open Access Journals (Sweden)

    Heiko Schoof

    2006-04-01

    Full Text Available Increasing numbers of whole-genome sequences are available, but to interpret them fully requires more than listing all genes. Genome databases are faced with the challenges of integrating heterogenous data and enabling data mining. In comparison to a data warehousing approach, where integration is achieved through replication of all relevant data in a unified schema, distributed approaches provide greater flexibility and maintainability. These are important in a field where new data is generated rapidly and our understanding of the data changes. Interoperability between distributed data sources allows data maintenance to be separated from integration and analysis. Simple ways to access the data can facilitate the development of new data mining tools and the transition from model genome analysis to comparative genomics. With the MIPS Arabidopsis thaliana genome database (MAtDB, http://mips.gsf.de/proj/thal/db our aim is to go beyond a data repository towards creating an integrated knowledge resource. To this end, the Arabidopsis genome has been a backbone against which to structure and integrate heterogenous data. The challenges to be met are continuous updating of data, the design of flexible data models that can evolve with new data, the integration of heterogenous data, e.g. through the use of ontologies, comprehensive views and visualization of complex information, simple interfaces for application access locally or via the Internet, and knowledge transfer across species.

  3. Efficient Silencing of Endogenous MicroRNAs Using Artificial MicroRNAs in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Andrew L. Eamens; Claire Agius; Neil A. Smith; Peter M. Waterhouse; Ming-Bo Wang

    2011-01-01

    We report here that the expression of endogenous microRNAs (miRNAs) can be efficiently silenced in Arabidopsis thaliana (Arabidopsis) using artificial miRNA (amiRNA) technology. We demonstrate that an amiRNA designed to target a mature miRNA directs silencing against all miRNA family members, whereas an amiRNA designed to target the stem-loop region of a miRNA precursor transcript directs silencing against only the individual family member targeted.Furthermore, our results indicate that amiRNAs targeting both the mature miRNA and stem-loop sequence direct RNA silencing through cleavage of the miRNA precursor transcript, which presumably occurs in the nucleus of a plant cell during the initial stages of miRNA biogenesis. This suggests that small RNA (sRNA)-guided RNA cleavage in plants occurs not only in the cytoplasm, but also in the nucleus. Many plant miRNA gene families have been identified via sequencing and bioinformatic analysis, but, to date, only a small tranche of these have been functionally characterized due to a lack of effective forward or reverse genetic tools. Our findings therefore provide a new and powerful reverse-genetic tool for the analysis of miRNA function in plants.

  4. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.

  5. Arabidopsis thaliana WAPL is essential for the prophase removal of cohesin during meiosis.

    Directory of Open Access Journals (Sweden)

    Kuntal De

    2014-07-01

    Full Text Available Sister chromatid cohesion, which is mediated by the cohesin complex, is essential for the proper segregation of chromosomes in mitosis and meiosis. The establishment of stable sister chromatid cohesion occurs during DNA replication and involves acetylation of the complex by the acetyltransferase CTF7. In higher eukaryotes, the majority of cohesin complexes are removed from chromosomes during prophase. Studies in fly and human have shown that this process involves the WAPL mediated opening of the cohesin ring at the junction between the SMC3 ATPase domain and the N-terminal domain of cohesin's α-kleisin subunit. We report here the isolation and detailed characterization of WAPL in Arabidopsis thaliana. We show that Arabidopsis contains two WAPL genes, which share overlapping functions. Plants in which both WAPL genes contain T-DNA insertions show relatively normal growth and development but exhibit a significant reduction in male and female fertility. The removal of cohesin from chromosomes during meiotic prophase is blocked in Atwapl mutants resulting in chromosome bridges, broken chromosomes and uneven chromosome segregation. In contrast, while subtle mitotic alterations are observed in some somatic cells, cohesin complexes appear to be removed normally. Finally, we show that mutations in AtWAPL suppress the lethality associated with inactivation of AtCTF7. Taken together our results demonstrate that WAPL plays a critical role in meiosis and raises the possibility that mechanisms involved in the prophase removal of cohesin may vary between mitosis and meiosis in plants.

  6. Structural and Functional Studies of the Mitochondrial Cysteine Desulfurase from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Valeria R; Turowski; Maria V.Busi; Diego F.Gomez-Casati

    2012-01-01

    AtNfs1 is the Arabidopsis thaliana mitochondrial homolog of the bacterial cysteine desulfurases NifS and lscS,having an essential role in cellular Fe-S cluster assembly.Homology modeling of AtNfs1m predicts a high global similarity with E.coli IscS showing a full conservation of residues involved in the catalytic site,whereas the chloroplastic AtNfs2 is more similar to the Synechocystis sp.SufS.Pull-down assays showed that the recombinant mature form,AtNfs1m,specifically binds to Arabidopsis frataxin (AtFH).A hysteretic behavior,with a lag phase of several minutes,was observed and hysteretic parameters were affected by pre-incubation with AtFH.Moreover,AtFH modulates AtNfs1m kinetics,increasing Vmax and decreasing the S0.5 value for cysteine.Results suggest that AtFH plays an important role in the early steps of Fe-S cluster formation by regulating AtNfs1 activity in olant mitochondria.

  7. Pectin Biosynthesis Is Critical for Cell Wall Integrity and Immunity in Arabidopsis thaliana.

    Science.gov (United States)

    Bethke, Gerit; Thao, Amanda; Xiong, Guangyan; Li, Baohua; Soltis, Nicole E; Hatsugai, Noriyuki; Hillmer, Rachel A; Katagiri, Fumiaki; Kliebenstein, Daniel J; Pauly, Markus; Glazebrook, Jane

    2016-02-01

    Plant cell walls are important barriers against microbial pathogens. Cell walls of Arabidopsis thaliana leaves contain three major types of polysaccharides: cellulose, various hemicelluloses, and pectins. UDP-d-galacturonic acid, the key building block of pectins, is produced from the precursor UDP-d-glucuronic acid by the action of glucuronate 4-epimerases (GAEs). Pseudomonas syringae pv maculicola ES4326 (Pma ES4326) repressed expression of GAE1 and GAE6 in Arabidopsis, and immunity to Pma ES4326 was compromised in gae6 and gae1 gae6 mutant plants. These plants had brittle leaves and cell walls of leaves had less galacturonic acid. Resistance to specific Botrytis cinerea isolates was also compromised in gae1 gae6 double mutant plants. Although oligogalacturonide (OG)-induced immune signaling was unaltered in gae1 gae6 mutant plants, immune signaling induced by a commercial pectinase, macerozyme, was reduced. Macerozyme treatment or infection with B. cinerea released less soluble uronic acid, likely reflecting fewer OGs, from gae1 gae6 cell walls than from wild-type Col-0. Although both OGs and macerozyme-induced immunity to B. cinerea in Col-0, only OGs also induced immunity in gae1 gae6. Pectin is thus an important contributor to plant immunity, and this is due at least in part to the induction of immune responses by soluble pectin, likely OGs, that are released during plant-pathogen interactions. PMID:26813622

  8. Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Qing-Bo Yu; Yong-Lan Cui; Kang Chong; Yi-Xue Li; Yu-Hua Li; Zhongming Zhao; Tie-Liu Shi; Zhong-Nan Yang; Guang Li; Guan Wang; Jing-Chun Sun; Peng-Cheng Wang; Chen Wang; Hua-Ling Mi; Wei-Min Ma; Jian Cui

    2008-01-01

    Chloroplast is a typical plant cell organeUe where photosynthesis takes place.In this study,a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions.We then constructed a chloroplast protein interaction network primarily based on these core protein interactions.The network had 22 925 protein interaction pairs which involved 2 214 proteins.A total of 160 previously uncharacterized proteins were annotated in this network.The subunits of the photosynthetic complexes were modularized,and the functional relationships among photosystem Ⅰ (PSI),photosystem Ⅱ (PSII),light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network.We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis.Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis.

  9. Metal binding affinity and structural properties of calmodulin-like protein 14 from Arabidopsis thaliana.

    Science.gov (United States)

    Vallone, Rosario; La Verde, Valentina; D'Onofrio, Mariapina; Giorgetti, Alejandro; Dominici, Paola; Astegno, Alessandra

    2016-08-01

    In addition to the well-known Ca(2+) sensor calmodulin, plants possess many calmodulin-like proteins (CMLs) that are predicted to have specific roles in the cell. Herein, we described the biochemical and biophysical characterization of recombinant Arabidopsis thaliana CML14. We applied isothermal titration calorimetry to analyze the energetics of Ca(2+) and Mg(2+) binding to CML14, and nuclear magnetic resonance spectroscopy, together with intrinsic and ANS-based fluorescence, to evaluate the structural effects of metal binding and metal-induced conformational changes. Furthermore, differential scanning calorimetry and limited proteolysis were used to characterize protein thermal and local stability. Our data demonstrate that CML14 binds one Ca(2+) ion with micromolar affinity (Kd ∼ 12 µM) and the presence of 10 mM Mg(2+) decreases the Ca(2+) affinity by ∼5-fold. Although binding of Ca(2+) to CML14 increases protein stability, it does not result in a more hydrophobic protein surface and does not induce the large conformational rearrangement typical of Ca(2+) sensors, but causes only localized structural changes in the unique functional EF-hand. Our data, together with a molecular modelling prediction, provide interesting insights into the biochemical properties of Arabidopsis CML14 and may be useful to direct additional studies aimed at understanding its physiological role. PMID:27124620

  10. Analysis of DNA repair helicase UvrD from Arabidopsis thaliana and Oryza sativa.

    Science.gov (United States)

    Tuteja, Renu; Tuteja, Narendra

    2013-10-01

    Mismatch repair (MMR) proteins play important roles in maintaining genome stability in all the organisms. Studies of MMR genes in plants have identified several homologs of the Escherichia coli genes. Crop yield is directly related to genome stability, which is crucially required for optimal plant growth and development. Numerous genotoxic stresses such as UV light, radiations, pollutants and heavy metals cause DNA damage leading to genome instability, which can interfere with the plant growth and crop productivity. But the efficient repair mechanisms can help to overcome the deleterious effects of the damage. Therefore it is important to study the genes involved in various repair pathways in the plants in greater detail. UvrD helicase is a component of MMR complex and plays an essential role in the DNA repair by providing the unwinding function. In the present manuscript we present an in silico analysis of UvrD helicase from two plant species (Arabidopsis and rice). The Arabidopsis thaliana and Oryza sativa UvrD are 1149 (~129 kDa) and 1165 amino-acids (~130 kDa) proteins, respectively. These proteins contain all the conserved domains and are larger than the E. coli UvrD because they contain a longer N-terminal extension. In order to decipher the role of plant UvrD in various stresses it will be important to study the biochemical and functional properties of this enzyme. PMID:23974358

  11. Structurally distinct Arabidopsis thaliana NLR immune receptors recognize tandem WY domains of an oomycete effector.

    Science.gov (United States)

    Goritschnig, Sandra; Steinbrenner, Adam D; Grunwald, Derrick J; Staskawicz, Brian J

    2016-05-01

    Nucleotide-binding leucine-rich repeat (NB-LRR, or NLR) receptors mediate pathogen recognition. The Arabidopsis thaliana NLR RPP1 recognizes the tandem WY-domain effector ATR1 from the oomycete Hyaloperonospora arabidopsidis through direct association with C-terminal LRRs. We isolated and characterized homologous NLR genes RPP1-EstA and RPP1-ZdrA from two Arabidopsis ecotypes, Estland (Est-1) and Zdarec (Zdr-1), responsible for recognizing a novel spectrum of ATR1 alleles. RPP1-EstA and -ZdrA encode nearly identical NLRs that are phylogenetically distinct from known immunity-activating RPP1 homologs and possess greatly expanded LRR domains. Site-directed mutagenesis and truncation analysis of ATR1 suggests that these homologs recognize a novel surface of the 2(nd) WY domain of ATR1, partially specified by a C-terminal region of the LRR domain. Synteny comparison with RPP1 loci involved in hybrid incompatibility suggests that these functions evolved independently. Closely related RPP1 homologs have diversified their recognition spectra through LRR expansion and sequence variation, allowing them to detect multiple surfaces of the same pathogen effector. Engineering NLR receptor specificity may require a similar combination of repeat expansion and tailored amino acid variation. PMID:26725254

  12. Effects of temperature on UV-B-induced DNA damage and photorepair in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    LI Shao-shan; WANG Yan; BJ(O)RN Lars Olof

    2004-01-01

    DNA damage in the form of cyclobutane pyrimidine dimers(CPDs) and (6-4) photoproducts(6-4PPs) induced by UV-B radiation in Arabidopsis thaliana at different temperatures was investigated using ELISA with specific monoclonal antibodies. CPDs and 6-4PPs increased during 3 h UV-B exposure, but further exposure led to decreases. Contrary to the commonly accepted view that DNA damage induced by UV-B radiation is temperature-independent because of its photochemical nature, we found UV-B-induction of CPDs and 6-4PPs in Arabidopsis to be slower at a Iow than at a high temperature. Photorepair of CPDs at 24℃ was much faster than that at 0℃ and 12℃,with 50% CPDs removal during 1 h exposure to white light. Photorepair of 6-4PPs at 12℃ was very slow as compared with that at 24℃,and almost no removal of 6-4PPs was detected after 4 h exposure to white light at 0℃. There was evidence to suggest that temperaturedependent DNA damage and photorepair could have important ecological implications.

  13. Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana.

    Science.gov (United States)

    Harris, Sue-Re; Henbest, Kevin B; Maeda, Kiminori; Pannell, John R; Timmel, Christiane R; Hore, P J; Okamoto, Haruko

    2009-12-01

    The scientific literature describing the effects of weak magnetic fields on living systems contains a plethora of contradictory reports, few successful independent replication studies and a dearth of plausible biophysical interaction mechanisms. Most such investigations have been unsystematic, devoid of testable theoretical predictions and, ultimately, unconvincing. A recent study, of magnetic responses in the model plant Arabidopsis thaliana, however, stands out; it has a clear hypothesis-that seedling growth is magnetically sensitive as a result of photoinduced radical-pair reactions in cryptochrome photoreceptors-tested by measuring several cryptochrome-dependent responses, all of which proved to be enhanced in a magnetic field of intensity 500 muT. The potential importance of this study in the debate on putative effects of extremely low-frequency electromagnetic fields on human health prompted us to subject it to the 'gold standard' of independent replication. With experimental conditions chosen to match those of the original study, we have measured hypocotyl lengths and anthocyanin accumulation for Arabidopsis seedlings grown in a 500 microT magnetic field, with simultaneous control experiments at 50 microT. Additionally, we have determined hypocotyl lengths of plants grown in 50 microT, 1 mT and approximately 100 mT magnetic fields (with zero-field controls), measured gene (CHS, HY5 and GST) expression levels, investigated blue-light intensity effects and explored the influence of sucrose in the growth medium. In no case were consistent, statistically significant magnetic field responses detected. PMID:19324677

  14. Inference of the Genetic Network Regulating Lateral Root Initiation in Arabidopsis thaliana

    KAUST Repository

    Muraro, D.

    2013-01-01

    Regulation of gene expression is crucial for organism growth, and it is one of the challenges in systems biology to reconstruct the underlying regulatory biological networks from transcriptomic data. The formation of lateral roots in Arabidopsis thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based on different approaches, for which ready-to-use software is available. We show that their performance improves with the network size and the inclusion of mutants. We then analyze two sets of genes, whose activity is likely to be relevant to lateral root initiation in Arabidopsis, and assess causality of their regulatory interactions by integrating sequence analysis with the intersection of the results of the best performing methods on time series and mutants. The methods applied capture known interactions between genes that are candidate regulators at early stages of development. The network inferred from genes significantly expressed during lateral root formation exhibits distinct scale free, small world and hierarchical properties and the nodes with a high out-degree may warrant further investigation. © 2004-2012 IEEE.

  15. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species.

    Science.gov (United States)

    Lee, Saet Buyl; Suh, Mi Chung

    2015-04-01

    The aerial parts of plants are covered with a cuticle, a hydrophobic layer consisting of cutin polyester and cuticular waxes that protects them from various environmental stresses. Cuticular waxes mainly comprise very long chain fatty acids and their derivatives such as aldehydes, alkanes, secondary alcohols, ketones, primary alcohols, and wax esters that are also important raw materials for the production of lubricants, adhesives, cosmetics, and biofuels. The major function of cuticular waxes is to control non-stomatal water loss and gas exchange. In recent years, the in planta roles of many genes involved in cuticular wax biosynthesis have been characterized not only from model organisms like Arabidopsis thaliana and saltwater cress (Eutrema salsugineum), but also crop plants including maize, rice, wheat, tomato, petunia, Medicago sativa, Medicago truncatula, rapeseed, and Camelina sativa through genetic, biochemical, molecular, genomic, and cell biological approaches. In this review, we discuss recent advances in the understanding of the biological functions of genes involved in cuticular wax biosynthesis, transport, and regulation of wax deposition from Arabidopsis and crop species, provide information on cuticular wax amounts and composition in various organs of nine representative plant species, and suggest the important issues that need to be investigated in this field of study. PMID:25693495

  16. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach.

    Science.gov (United States)

    Xie, Wenchuan; Huang, Junfeng; Liu, Yang; Rao, Jianan; Luo, Da; He, Miao

    2015-01-01

    Flowering is one of the important defining features of angiosperms. The initiation of flower development and the formation of different floral organs are the results of the interplays among numerous genes. But until now, just fewer genes have been found linked with flower development. And the functions of lots of genes of Arabidopsis thaliana are still unknown. Although, the quartet model successfully simplified the ABCDE model to elaborate the molecular mechanism by introducing protein-protein interactions (PPIs). We still don't know much about several important aspects of flower development. So we need to discriminate even more genes involving in the flower development. In this study, we identified seven differentially modules through integrating the weighted gene co-expression network analysis (WGCNA) and Support Vector Machine (SVM) method to analyze co-expression network and PPIs using the public floral and non-floral expression profiles data of Arabidopsis thaliana. Gene set enrichment analysis was used for the functional annotation of the related genes, and some of the hub genes were identified in each module. The potential floral organ morphogenesis genes of two significant modules were integrated with PPI information in order to detail the inherent regulation mechanisms. Finally, the functions of the floral patterning genes were elucidated by combining the PPI and evolutionary information. It was indicated that the sub-networks or complexes, rather than the genes, were the regulation unit of flower development. We found that the most possible potential new genes underlining the floral pattern formation in A. thaliana were FY, CBL2, ZFN3, and AT1G77370; among them, FY, CBL2 acted as an upstream regulator of AP2; ZFN3 activated the flower primordial determining gene AP1 and AP2 by HY5/HYH gene via photo induction possibly. And AT1G77370 exhibited similar function in floral morphogenesis, same as ELF3. It possibly formed a complex between RFC3 and RPS15 in

  17. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach

    Directory of Open Access Journals (Sweden)

    Wenchuan eXie

    2015-10-01

    Full Text Available Flowering is one of the important defining features of angiosperms. The initiation of flower development and the formation of different floral organs are the results of the interplays among numerous genes. But until now, just fewer genes have been found linked with flower development. And the functions of lots of genes of Arabidopsis thaliana are still unknown. Although, the quartet model successfully simplified the ABCDE model to elaborate the molecular mechanism by introducing protein-protein interactions (PPIs. We still don't know much about several important aspects of flower development. So we need to discriminate even more genes involving in the flower development. In this study, we identified seven differentially modules through integrating the weighted gene co-expression network analysis (WGCNA and Support Vector Machine (SVM method to analyze co-expression network and PPIs using the public floral and non-floral expression profiles data of Arabidopsis thaliana. Gene set enrichment analysis was used for the functional annotation of the related genes, and some of the hub genes were identified in each module. The potential floral organ morphogenesis genes of two significant modules were integrated with PPI information in order to detail the inherent regulation mechanisms. Finally, the functions of the floral patterning genes were elucidated by combining the PPI and evolutionary information. It was indicated that the sub-networks or complexes, rather than the genes, were the regulation unit of flower development. We found that the most possible potential new genes underlining the floral pattern formation in A. thaliana were FY, CBL2, ZFN3 and AT1G77370; among them, FY, CBL2 acted as an upstream regulator of AP2; ZFN3 activated the flower primordial determining gene AP1 and AP2 by HY5/HYH gene via photo induction possibly. And AT1G77370 exhibited similar function in floral morphogenesis, same as ELF3. It possibly formed a complex between RFC3

  18. Transcriptional consequence and impaired gametogenesis with high-grade aneuploidy in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Kuan-Lin Lo

    Full Text Available Aneuploidy features a numerical chromosome variant that the number of chromosomes in the nucleus of a cell is not an exact multiple of the haploid number, which may have an impact on morphology and gene expression. Here we report a tertiary trisomy uncovered by characterizing a T-DNA insertion mutant (aur2-1/+ in the Arabidopsis (Arabidopsis thaliana AURORA2 locus. Whole-genome analysis with DNA tiling arrays revealed a chromosomal translocation linked to the aur2-1 allele, which collectively accounted for a tertiary trisomy 2. Morphologic, cytogenetic and genetic analyses of aur2-1 progeny showed impaired male and female gametogenesis to various degrees and a tight association of the aur2-1 allele with the tertiary trisomy that was preferentially inherited. Transcriptome analysis showed overlapping and distinct gene expression profiles between primary and tertiary trisomy 2 plants, particularly genes involved in response to stress and various types of external and internal stimuli. Additionally, transcriptome and gene ontology analyses revealed an overrepresentation of nuclear-encoded organelle-related genes functionally involved in plastids, mitochondria and peroxisomes that were differentially expressed in at least three if not all Arabidopsis trisomics. These observations support a previous hypothesis that aneuploid cells have higher energy requirement to overcome the detrimental effects of an unbalanced genome. Moreover, our findings extend the knowledge of the complex nature of the T-DNA insertion event influencing plant genomic integrity by creating high-grade trisomy. Finally, gene expression profiling results provide useful information for future research to compare primary and tertiary trisomics for the effects of aneuploidy on plant cell physiology.

  19. Gravitropism in Arabidopsis thaliana: violation of the sine- and resultant-law

    Science.gov (United States)

    Galland, Paul

    We investigated the gravitropic bending of hypocotyls and roots of seedlings of Arabidopsis tha-liana in response to long-term centrifugal accelerations in a range of 5 x 10-3 to 4 x g. The so-cal-led resultant law of gravitropism, a corollary of the so called sine law, claims that during centri-fugation a gravitropic organ aligns itself parallel to the resultant stimulus vector. We show here that neither of the two empirical “laws” is apt to describe the complex gravitropic behaviour of seedlings of Arabidopsis. Hypocotyls obey reasonably well the resultant law while roots display a complex behaviour that is clearly at variance with it. Horizontally centrifuged seedlings sense minute accelerations acting parallel to the longitudinal axis. If the centrifugal vector points to-ward the cotyledons, then the bending of hypocotyls and roots is greatly enhanced. If the centri-fugal vector points, however, toward the root tip, then only the bending of roots is enhanced by accelerations as low as 5 x 10-3 x g (positive tonic effect). The absolute gravitropic thresholds were determined for hypocotyls and roots in a clinostat-centrifuge and found to be near 1.5 x 10-2 x g. A behavioural mutant, ehb1-2 (Knauer et al. 2011), displays a lower gravitropic threshold for roots, not however, for hypocotyls. The complex gravitropic behaviour of seedlings of Arabi-dopsis is at odds with the classical sine- as well as the resultant law and can indicates the eminent role that is played by the acceleration vector operating longitudinally to the seedling axis.

  20. Identification and Expression Profiling of Radiation-sensitive Genes Using Plant Model System, Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The purpose of this study is to characterize genes specifically expressed in response to ionizing energy (gamma-rays) of acute irradiation and elucidate signalling mechanisms via functional analysis of isolated genes in Arabidopsis thaliana. Recent improvements in DNA microarray technologies and bioinformatics have made it possible to look for common features of ionizing radiation-responsive genes and their regulatory regions. It has produced massive quantities of gene expression and other functional genomics data, and its application will increase in plant genomics. In this study, we used oligonucleotide microarrays to detect the Arabidopsis genes expressed differentially by a gamma-irradiation during the vegetative (VT, 21 DAG) and reproductive (RT, 28 DAG) stages. Wild-type (Ler) Arabidopsis was irradiated with gamma-rays with 100 and 800 Gy doses. Among the 21,500 genes represented in the Agilent chip, approximately 13,500 (∼61.4 %) responsive genes to ν -irradiation were expressed with signal intensity greater than 192 when compared to the combined control (non-irradiated vegetative and reproductive pool). Expression patterns of several radiation inducible genes were confirmed by RT-PCR and Northern blotting. Our microarray results may contribute to an overall understanding of the type and quantities of genes that are expressed by an acute gamma-irradiation. In addition, to investigate the oxidative damage caused by irradiation, RT-PCR analysis for the expression of antioxidant isoenzyme genes, and a Transmission Electron Microscope (TEM) observation for visualizing the H2O2 scavenging activity in leaves were applied

  1. A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana.

    Science.gov (United States)

    Hevia, Montserrat A; Canessa, Paulo; Müller-Esparza, Hanna; Larrondo, Luis F

    2015-07-14

    The circadian clock of the plant model Arabidopsis thaliana modulates defense mechanisms impacting plant-pathogen interactions. Nevertheless, the effect of clock regulation on pathogenic traits has not been explored in detail. Moreover, molecular description of clocks in pathogenic fungi--or fungi in general other than the model ascomycete Neurospora crassa--has been neglected, leaving this type of question largely unaddressed. We sought to characterize, therefore, the circadian system of the plant pathogen Botrytis cinerea to assess if such oscillatory machinery can modulate its virulence potential. Herein, we show the existence of a functional clock in B. cinerea, which shares similar components and circuitry with the Neurospora circadian system, although we found that its core negative clock element FREQUENCY (BcFRQ1) serves additional roles, suggesting extracircadian functions for this protein. We observe that the lesions produced by this necrotrophic fungus on Arabidopsis leaves are smaller when the interaction between these two organisms occurs at dawn. Remarkably, this effect does not depend solely on the plant clock, but instead largely relies on the pathogen circadian system. Genetic disruption of the B. cinerea oscillator by mutation, overexpression of BcFRQ1, or by suppression of its rhythmicity by constant light, abrogates circadian regulation of fungal virulence. By conducting experiments with out-of-phase light:dark cycles, we confirm that indeed, it is the fungal clock that plays the main role in defining the outcome of the Arabidopsis-Botrytis interaction, providing to our knowledge the first evidence of a microbial clock modulating pathogenic traits at specific times of the day. PMID:26124115

  2. Non-specific phospholipase C4 mediates response to aluminum toxicity in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Přemysl ePejchar

    2015-02-01

    Full Text Available Aluminum ions (Al have been recognized as a major toxic factor for crop production in acidic soils. The first indication of the Al toxicity in plants is the cessation of root growth, but the mechanism of root growth inhibition is largely unknown. Here we examined the impact of Al on the expression, activity and function of the non-specific phospholipase C4 (NPC4, a plasma membrane-bound isoform of NPC, a member of the plant phospholipase family, in Arabidopsis thaliana.We observed a lower expression of NPC4 using GUS assay and a decreased formation of labeled diacylglycerol, product of NPC activity, using fluorescently labeled phosphatidylcholine as a phospholipase substrate in Arabidopsis WT seedlings treated with AlCl3 for 2 h. The effect on in situ NPC activity persisted for longer Al treatment periods (8, 14 h. Interestingly, in seedlings overexpressing NPC4, the Al-mediated NPC-inhibiting effect was alleviated at 14 h. However, in vitro activity and localization of NPC4 were not affected by Al, thus excluding direct inhibition by Al ions or possible translocation of NPC4 as the mechanisms involved in NPC-inhibiting effect. Furthermore, the growth of tobacco pollen tubes rapidly arrested by Al was partially rescued by the overexpression of AtNPC4 while Arabidopsis npc4 knockout lines were found to be more sensitive to Al stress during long-term exposure of Al at low phosphate conditions.Our observations suggest that NPC4 plays a role in both early and long-term responses to Al stress.

  3. Identification and Expression Profiling of Radiation-sensitive Genes Using Plant Model System, Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sub; Kang, Si-Yong; Lee, Geung-Joo; Kim, Jin-Baek

    2008-06-15

    The purpose of this study is to characterize genes specifically expressed in response to ionizing energy (gamma-rays) of acute irradiation and elucidate signalling mechanisms via functional analysis of isolated genes in Arabidopsis thaliana. Recent improvements in DNA microarray technologies and bioinformatics have made it possible to look for common features of ionizing radiation-responsive genes and their regulatory regions. It has produced massive quantities of gene expression and other functional genomics data, and its application will increase in plant genomics. In this study, we used oligonucleotide microarrays to detect the Arabidopsis genes expressed differentially by a gamma-irradiation during the vegetative (VT, 21 DAG) and reproductive (RT, 28 DAG) stages. Wild-type (Ler) Arabidopsis was irradiated with gamma-rays with 100 and 800 Gy doses. Among the 21,500 genes represented in the Agilent chip, approximately 13,500 ({sup {approx}}61.4 %) responsive genes to {nu} -irradiation were expressed with signal intensity greater than 192 when compared to the combined control (non-irradiated vegetative and reproductive pool). Expression patterns of several radiation inducible genes were confirmed by RT-PCR and Northern blotting. Our microarray results may contribute to an overall understanding of the type and quantities of genes that are expressed by an acute gamma-irradiation. In addition, to investigate the oxidative damage caused by irradiation, RT-PCR analysis for the expression of antioxidant isoenzyme genes, and a Transmission Electron Microscope (TEM) observation for visualizing the H{sub 2}O{sub 2} scavenging activity in leaves were applied.

  4. Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Martin eJanda

    2015-02-01

    Full Text Available Phytohormone salicylic acid (SA is a crucial component of plant induced defense against biotrophic pathogens. Although the key players of SA pathway are known, there are still gaps in our understanding of molecular mechanism and regulation of particular steps. In our previous research we showed in Arabidopsis suspension cells that n-butanol, which specifically modulates phospholipase D activity, significantly supresses transcription of pathogenesis related (PR1 gene generally accepted as SA pathway marker. In the presented study, we have investigated the site of n-butanol action in SA pathway. We were able to show in Arabidopsis plants treated with SA that n-butanol inhibits the transcription of defense genes (PR-1, WRKY38. Fluorescence microscopy of Arabidopsis thaliana mutants expressing 35S::NPR1-GFP (nonexpressor pathogenesis related 1 revealed significantly decreased nuclear localization of NPR1 in the presence of n-butanol. On the other hand, n-butanol did not affect nuclear localization of NPR1 in 35S::npr1C82A-GFP and 35S::npr1C216A-GFP mutants constitutively expressing NPR1 monomers. We also observed decreasing effect of n-butanol on ROS production, another important factor in plant response to pathogen attack.Mass spectrometric analysis of plant extracts showed that n-butanol significantly changes metabolic fingerprinting while t-butanol had no effect. We found groups of plant metabolites, influenced differently by SA and n-butanol treatment and we proposed several metabolites as markers for n-butanol action.

  5. A bioinformatics approach to investigate the function of non specific lipid transfer proteins in Arabidopsis thaliana

    OpenAIRE

    Jayachandra Pandiyan, Muneeswaran

    2010-01-01

    Plant non specific lipid transfer proteins (nsLTPs) enhance in vitro transfer of phospholipids between membranes. Our analysis exploited the large amount of Arabidopsis transcriptome data in public databases to learn more about the function of nsLTPs. The analysis revealed that some nsLTPs are expressed only in roots, some are seed specific, and others are specific for tissues above ground whereas certain nsLTPs show a more general expression pattern. Only few nsLTPs showed a strong up or dow...

  6. Proteome-wide survey of phosphorylation patterns affected by nuclear DNA polymorphisms in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Engelsberger Wolfgang R

    2010-07-01

    Full Text Available Abstract Background Protein phosphorylation is an important post-translational modification influencing many aspects of dynamic cellular behavior. Site-specific phosphorylation of amino acid residues serine, threonine, and tyrosine can have profound effects on protein structure, activity, stability, and interaction with other biomolecules. Phosphorylation sites can be affected in diverse ways in members of any species, one such way is through single nucleotide polymorphisms (SNPs. The availability of large numbers of experimentally identified phosphorylation sites, and of natural variation datasets in Arabidopsis thaliana prompted us to analyze the effect of non-synonymous SNPs (nsSNPs onto phosphorylation sites. Results From the analyses of 7,178 experimentally identified phosphorylation sites we found that: (i Proteins with multiple phosphorylation sites occur more often than expected by chance. (ii Phosphorylation hotspots show a preference to be located outside conserved domains. (iii nsSNPs affected experimental phosphorylation sites as much as the corresponding non-phosphorylated amino acid residues. (iv Losses of experimental phosphorylation sites by nsSNPs were identified in 86 A. thaliana proteins, among them receptor proteins were overrepresented. These results were confirmed by similar analyses of predicted phosphorylation sites in A. thaliana. In addition, predicted threonine phosphorylation sites showed a significant enrichment of nsSNPs towards asparagines and a significant depletion of the synonymous substitution. Proteins in which predicted phosphorylation sites were affected by nsSNPs (loss and gain, were determined to be mainly receptor proteins, stress response proteins and proteins involved in nucleotide and protein binding. Proteins involved in metabolism, catalytic activity and biosynthesis were less affected. Conclusions We analyzed more than 7,100 experimentally identified phosphorylation sites in almost 4,300 protein

  7. Seed germination of GA-insensitive sleepy1 mutants does not require RGL2 protein disappearance in Arabidopsis

    Science.gov (United States)

    Seed germination is a complex developmental process regulated by phytohormones. The phytohormone abscisic acid (ABA) inhibits seed germination, whereas gibberellin (GA) stimulates seed germination. In tomato and Arabidopsis, GA is clearly required for seed germination. Recent evidence suggests tha...

  8. Cortical microtubule patterning in roots of Arabidopsis thaliana primary cell wall mutants reveals the bidirectional interplay with cell expansion.

    Science.gov (United States)

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Daras, Gerasimos; Rigas, Stamatis

    2015-01-01

    Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2-4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2-4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone's expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation. PMID:26042727

  9. Parental RNA is Significantly Degraded During Arabidopsis Seed Germination

    Institute of Scientific and Technical Information of China (English)

    Qing Li; Jian-Xun Feng; Pei Han; Yu-Xian Zhu

    2006-01-01

    Germination is the first and maybe the foremost growth stage in the life cycle of a plant. Herein, we report that initiation of germination in the Arabidopsis Columbia ecotype was accompanied by a sharp decrease in the amount of extractable total RNA. At the beginning of our germination experiment, we were usually able to obtain 35-40 μg total RNA from 100 mg dry seeds. However, after 3 d of cold stratification, we could only obtain less than 5 μg total RNA from the same amount of starting material. Young seedlings contained approximately 100 μg total RNA per 100 mg fresh tissue. Further studies showed that inhibition of de novo RNA synthesis by actinomycin D prevented the degradation of parental RNA and, in the meantime, significantly delayed the germination process. Several ribonuclease-like genes that were highly expressed in dry seeds, and especially during the cold stratification period, were discovered. We propose that these enzymes are involved in the regulation of parental RNA degradation. These results indicate that parental RNA metabolism may be an important process for Arabidopsis seed germination.

  10. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens

    NARCIS (Netherlands)

    Mortel, van de J.E.; Schat, H.; Moerland, P.D.; Loren van Themaat, Ver E.; Ent, van der S.; Blankestijn-de Vries, M.H.C.; Ghandilyan, A.; Tsiatsiani, S.; Aarts, M.G.M.

    2008-01-01

    Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd

  11. The TORNADO1 and TORNADO2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana

    OpenAIRE

    Cnops, Gerda; Neyt, Pia; Raes, Jeroen; Petrarulo, Marica; Nelissen, Hilde; Malenica, Nenad; Luschnig, Christian; Tietz, Olaf; Ditengou, Franck; Palme, Klaus; Azmi, Abdelkrim; Prinsen, Els; Van Lijsebettens, Maria

    2006-01-01

    In multicellular organisms, patterning is a process that generates axes in the primary body plan, creates domains upon organ formation, and finally leads to differentiation into tissues and cell types. We identified the Arabidopsis thaliana TORNADO1 (TRN1) and TRN2 genes and their role in leaf patterning processes such as lamina venation, symmetry, and lateral growth. In trn mutants, the leaf venation network had a severely reduced complexity: incomplete loops, no tertiary or quaternary veins...

  12. Genetic and environmental control of the Verticillium syndrome in Arabidopsis thaliana

    OpenAIRE

    Diederichsen Elke; Karlovsky Petr; Häffner Eva

    2010-01-01

    Abstract Background Verticillium spp. are major pathogens of dicotyledonous plants such as cotton, tomato, olive or oilseed rape. Verticillium symptoms are often ambiguous and influenced by development and environment. The aim of the present study was to define disease and resistance traits of the complex Verticillium longisporum syndrome in Arabidopsis thaliana (L.) Heynh. A genetic approach was used to determine genetic, developmental and environmental factors controlling specific disease a...

  13. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation.

    OpenAIRE

    Nawrath, C; Poirier, Y; Somerville, C

    1994-01-01

    In the bacterium Alcaligenes eutrophus, three genes encode the enzymes necessary to catalyze the synthesis of poly[(R)-(-)-3-hydroxybutyrate] (PHB) from acetyl-CoA. In order to target these enzymes into the plastids of higher plants, the genes were modified by addition of DNA fragments encoding a pea chloroplast transit peptide, a constitutive plant promoter, and a poly(A) addition sequence. Each of the modified bacterial genes was introduced into Arabidopsis thaliana by Agrobacterium-mediate...

  14. Enzymatic characterization of a glycoside hydrolase family 5 subfamily 7 (GH5_7) mannanase from Arabidopsis thaliana

    OpenAIRE

    Wang, Yang; Vilaplana, Francisco; Brumer, Harry; Aspeborg, Henrik

    2013-01-01

    Each plant genome contains a repertoire of β-mannanase genes belonging to glycoside hydrolase family 5 subfamily 7 (GH5_7), putatively involved in the degradation and modification of various plant mannan polysaccharides, but very few have been characterized at the gene product level. The current study presents recombinant production and in vitro characterization of AtMan5-1 as a first step towards the exploration of the catalytic capacity of Arabidopsis thaliana β-mannanase. The target enzyme...

  15. Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress

    OpenAIRE

    Schmid, Christoph; Bauer, Sibylle; Müller, Benedikt; Bartelheimer, Maik

    2013-01-01

    Root-root interactions are much more sophisticated than previously thought, yet the mechanisms of belowground neighbor perception remain largely obscure. Genome-wide transcriptome analyses allow detailed insight into plant reactions to environmental cues. A root interaction trial was set up to explore both morphological and whole genome transcriptional responses in roots of Arabidopsis thaliana in the presence or absence of an inferior competitor, Hieracium pilosella. Neighbor perception was ...

  16. Loss of membrane fluidity and endocytosis inhibition are involved in rapid aluminum-induced root growth cessation in Arabidopsis thaliana

    Czech Academy of Sciences Publication Activity Database

    Krtková, J.; Havelková, L.; Křepelová, A.; Fišer, R.; Vosolsobě, S.; Novotná, Z.; Martinec, Jan; Schwarzerová, K.

    2012-01-01

    Roč. 60, Nov 2012 (2012), s. 88-97. ISSN 0981-9428 R&D Projects: GA ČR GA522/05/0340 Grant ostatní: GA ČR(CZ) GPP207/12/P890 Institutional research plan: CEZ:AV0Z50380511 Keywords : Aluminum toxicity * Arabidopsis thaliana * Cortical microtubules Subject RIV: ED - Physiology Impact factor: 2.775, year: 2012

  17. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress

    OpenAIRE

    Sabine Jülke; Jutta Ludwig-Müller

    2015-01-01

    The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana cl...

  18. A Kinetic Analysis of Regiospecific Glucosylation by Two Glycosyltransferases of Arabidopsis thaliana: DOMAIN SWAPPING TO INTRODUCE NEW ACTIVITIES*S⃞

    OpenAIRE

    Cartwright, Adam M.; Lim, Eng-Kiat; Kleanthous, Colin; Bowles, Dianna J

    2008-01-01

    Plant Family 1 glycosyltransferases (GTs) recognize a wide range of natural and non-natural scaffolds and have considerable potential as biocatalysts for the synthesis of small molecule glycosides. Regiospecificity of glycosylation is an important property, given that many acceptors have multiple potential glycosylation sites. This study has used a domain-swapping approach to explore the determinants of regiospecific glycosylation of two GTs of Arabidopsis thaliana, UG...

  19. The Saharan isolate Saccharothrix algeriensis NRRL B-24137 induces systemic resistance in Arabidopsis thaliana seedlings against Botrytis cinerea

    OpenAIRE

    Muzammil, Saima; Graillon, Clotilde; Saria, Rayenne; Mathieu, Florence; Lebrihi, Ahmed; Compant, Stéphane

    2013-01-01

    Background and aim Saccharothrix algeriensis NRRL B-24137, isolated from a Saharan soil, has been described as a potential biocontrol agent against Botrytis cinerea and other phytopathogens. However, the plant protection mechanisms involved still need to be described. The aim of this study was to determine this protection phenomenon as well as parts of the mechanisms involved, using Arabidopsis thaliana seedlings and B. cinerea. Methods The bacterial colonization process was evaluated on A. t...

  20. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana

    OpenAIRE

    Bernier Georges; Kurtem Emile; Pieltain Alexandra; Havelange Andrée; Corbesier Laurent; Tocquin Pierre; Périlleux Claire

    2003-01-01

    Abstract Background Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and roset...

  1. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana

    OpenAIRE

    Umezawa, Taishi; Yoshida, Riichiro; Maruyama, Kyonoshin; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2004-01-01

    Protein phosphorylation/dephosphorylation are major signaling events induced by osmotic stress in higher plants. Here, we showed that a SNF1-related protein kinase 2 (SnRK2), SRK2C, is an osmotic-stress-activated protein kinase in Arabidopsis thaliana that can significantly impact drought tolerance of Arabidopsis plants. Knockout mutants of SRK2C exhibited drought hypersensitivity in their roots, suggesting that SRK2C is a positive regulator of drought tolerance in Arabidopsis roots. Addition...

  2. Arabidopsis thaliana GYRB3 does not encode a DNA gyrase subunit.

    Directory of Open Access Journals (Sweden)

    Katherine M Evans-Roberts

    Full Text Available DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3.We found, contrary to previous data, that AtGyrB3 is not essential to the survival of A. thaliana. Bioinformatic analysis suggests AtGyrB3 is considerably shorter than other gyrase B subunits, lacking part of the ATPase domain and other key motifs found in all type II topoisomerases; but it does contain a putative DNA-binding domain. Partially purified AtGyrB3 cannot bind E. coli GyrA or support supercoiling. AtGyrB3 cannot complement an E. coli gyrB temperature-sensitive strain, whereas AtGyrB2 can. Yeast two-hybrid analysis suggests that AtGyrB3 cannot bind to AtGyrA or form a dimer.These data strongly suggest that AtGyrB3 is not a gyrase subunit but has another unknown function. One possibility is that it is a nuclear protein with a role in meiosis in pollen.

  3. Arabidopsis thaliana GYRB3 Does Not Encode a DNA Gyrase Subunit

    Science.gov (United States)

    Evans-Roberts, Katherine M.; Breuer, Christian; Wall, Melisa K.; Sugimoto-Shirasu, Keiko; Maxwell, Anthony

    2010-01-01

    Background DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3. Methodology/Principal Findings We found, contrary to previous data, that AtGyrB3 is not essential to the survival of A. thaliana. Bioinformatic analysis suggests AtGyrB3 is considerably shorter than other gyrase B subunits, lacking part of the ATPase domain and other key motifs found in all type II topoisomerases; but it does contain a putative DNA-binding domain. Partially purified AtGyrB3 cannot bind E. coli GyrA or support supercoiling. AtGyrB3 cannot complement an E. coli gyrB temperature-sensitive strain, whereas AtGyrB2 can. Yeast two-hybrid analysis suggests that AtGyrB3 cannot bind to AtGyrA or form a dimer. Conclusions/Significance These data strongly suggest that AtGyrB3 is not a gyrase subunit but has another unknown function. One possibility is that it is a nuclear protein with a role in meiosis in pollen. PMID:20360860

  4. Phosphate relieves chromium toxicity in Arabidopsis thaliana plants by interfering with chromate uptake.

    Science.gov (United States)

    López-Bucio, José; Hernández-Madrigal, Fátima; Cervantes, Carlos; Ortiz-Castro, Randy; Carreón-Abud, Yazmín; Martínez-Trujillo, Miguel

    2014-04-01

    Soil contamination by hexavalent chromium [Cr(VI) or chromate] due to anthropogenic activities has become an increasingly important environmental problem. Mineral nutrients such as phosphate (Pi), sulfate and nitrate have been reported to attenuate Cr(VI) toxicity, but the underlying mechanisms remain to be clarified. Here, we show that chromate activates the expression of low-Pi inducible reporter genes AtPT1 and AtPT2 in Arabidopsis thaliana transgenic seedlings. Primary-root growth was inhibited by 60 % in AtPT2::uidA-expressing seedlings upon exposure to 140-μM Cr(VI). However, increasing the Pi and sulfate supply to the seedlings that were experiencing Cr(VI) toxicity completely and partially restored the root growth, respectively. This effect correlated with the Cr(VI)-induced AtPT2::uidA expression being completely reversed by addition of Pi. To evaluate whether the nutrient supply may affect the endogenous level of Cr in plants grown under toxic Cr(VI) levels, the contents of Cr were measured (by ICP-MS analyses) in seedlings treated with Cr and with or without Pi, sulfate or nitrate. It was found that Cr accumulation increases tenfold in plants treated with 140-μM Cr(VI) without modifying the phosphorus concentration in the plant. In contrast, the supply of Pi specifically decreased the Cr content to levels similar to those found in seedlings grown in medium without chromate. Taken together, these results show that in A. thaliana seedlings the uptake of Cr(VI) is reduced by Pi. Moreover, our data indicate that Pi and sulfate supplements may be useful in strategies for handling Cr-contaminated soils. PMID:24549595

  5. Finding missing interactions of the Arabidopsis thaliana root stem cell niche gene regulatory network

    Directory of Open Access Journals (Sweden)

    Eugenio eAzpeitia

    2013-04-01

    Full Text Available AbstractOver the last few decades, the Arabidopsis thaliana root stem cell niche has become a model system for the study of plant development and the stem cell niche. Currently, many of the molecular mechanisms involved in root stem cell niche maintenance and development have been described. A few years ago, we published a gene regulatory network model integrating this information. This model suggested that there were missing components or interactions. Upon updating the model, the observed stable gene configurations of the root stem cell niche could not be recovered, indicating that there are additional missing components or interactions in the model. In fact, due to the lack of experimental data, gene regulatory networks inferred from published data are usually incomplete. However, predicting the location and nature of the missing data is a not trivial task. Here, we propose a set of procedures for detecting and predicting missing interactions in Boolean networks. We used these procedures to predict putative missing interactions in the A. thaliana root stem cell niche network model. Using our approach, we identified three necessary interactions to recover the reported gene activation configurations that have been experimentally uncovered for the different cell types within the root stem cell niche: 1 a regulation of PHABULOSA to restrict its expression domain to the vascular cells, 2 a self-regulation of WOX5, possibly by an indirect mechanism through the auxin signalling pathway and 3 a positive regulation of JACKDAW by MAGPIE. The procedures proposed here greatly reduce the number of possible Boolean functions that are biologically meaningful and experimentally testable and that do not contradict previous data. We believe that these procedures can be used on any Boolean network. However, because the procedures were designed for the specific case of the root stem cell niche, formal demonstrations of the procedures should be shown in future

  6. Modulation of modeled microgravity on radiation-induced bystander effects in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Sun, Qiao [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Xu, Wei; Li, Fanghua [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Li, Huasheng; Lu, Jinying [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Wu, Lijun; Wu, Yuejin [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Liu, Min [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Bian, Po [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China)

    2015-03-15

    Highlights: • The effects of microgravity on the radiation-induced bystander effects (RIBE) were definitely demonstrated. • The effects of microgravity on RIBE might be divergent for different biological events. • The microgravity mainly modified the generation or transport of bystander signals at early stage. - Abstract: Both space radiation and microgravity have been demonstrated to have inevitable impact on living organisms during space flights and should be considered as important factors for estimating the potential health risk for astronauts. Therefore, the question whether radiation effects could be modulated by microgravity is an important aspect in such risk evaluation. Space particles at low dose and fluence rate, directly affect only a fraction of cells in the whole organism, which implement radiation-induced bystander effects (RIBE) in cellular response to space radiation exposure. The fact that all of the RIBE experiments are carried out in a normal gravity condition bring forward the need for evidence regarding the effect of microgravity on RIBE. In the present study, a two-dimensional rotation clinostat was adopted to demonstrate RIBE in microgravity conditions, in which the RIBE was assayed using an experimental system of root-localized irradiation of Arabidopsis thaliana (A. thaliana) plants. The results showed that the modeled microgravity inhibited significantly the RIBE-mediated up-regulation of expression of the AtRAD54 and AtRAD51 genes, generation of reactive oxygen species (ROS) and transcriptional activation of multicopy P35S:GUS, but made no difference to the induction of homologous recombination by RIBE, showing divergent responses of RIBE to the microgravity conditions. The time course of interaction between the modeled microgravity and RIBE was further investigated, and the results showed that the microgravity mainly modulated the processes of the generation or translocation of the bystander signal(s) in roots.

  7. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Lee-Ho, E.; Walton, L.J.; Reid, D.M.; Yeung, E.C.; Kurepin, L.V. [Calgary Univ., AB (Canada). Dept. of Biology

    2007-03-15

    Plant root growth is known to be influenced by higher levels of atmospheric carbon dioxide (CO{sub 2}). Roots of some species grown in hydroponics under elevated CO{sub 2} concentrations may be more competitive sinks for photosynthetic assimilates than roots grown under lower CO{sub 2} conditions. Root branching patterns may also be influenced by elevated CO{sub 2} concentrations. Studies have also shown that factors such as soil compaction, salinity and the availability of nitrate, phosphorous, oxygen and water also influence root growth, and the effects of higher CO{sub 2} on roots can be confounded by such environmental factors. This study evaluated the effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root growth, morphology, and architecture. Both ambient and elevated CO{sub 2} levels were used along with various sucrose concentrations. The study revealed that A. thaliana plants grown on a phytagar medium in small chambers with elevated CO{sub 2} had longer roots, more lateral root growth than plants grown in ambient CO{sub 2}. Roots in elevated CO{sub 2} were found to have wider root diameters, and more secondary growth. The addition of sucrose to the media closely resembled the effects of elevated CO{sub 2}. In addition, the increase in sucrose concentration had a bigger effect on root morphology under ambient, than elevated CO{sub 2}. Therefore, both elevated CO{sub 2} and increased sucrose concentrations promote root growth by increasing their number, length, and diameter. The dichotomy branching index (DBI) also dropped resulting in a more dichotomous branching pattern. 34 refs., 5 figs.

  8. Photorespiratory Bypasses Lead to Increased Growth in Arabidopsis thaliana: Are Predictions Consistent with Experimental Evidence?

    Science.gov (United States)

    Basler, Georg; Küken, Anika; Fernie, Alisdair R; Nikoloski, Zoran

    2016-01-01

    Arguably, the biggest challenge of modern plant systems biology lies in predicting the performance of plant species, and crops in particular, upon different intracellular and external perturbations. Recently, an increased growth of Arabidopsis thaliana plants was achieved by introducing two different photorespiratory bypasses via metabolic engineering. Here, we investigate the extent to which these findings match the predictions from constraint-based modeling. To determine the effect of the employed metabolic network model on the predictions, we perform a comparative analysis involving three state-of-the-art metabolic reconstructions of A. thaliana. In addition, we investigate three scenarios with respect to experimental findings on the ratios of the carboxylation and oxygenation reactions of Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). We demonstrate that the condition-dependent growth phenotypes of one of the engineered bypasses can be qualitatively reproduced by each reconstruction, particularly upon considering the additional constraints with respect to the ratio of fluxes for the RuBisCO reactions. Moreover, our results lend support for the hypothesis of a reduced photorespiration in the engineered plants, and indicate that specific changes in CO2 exchange as well as in the proxies for co-factor turnover are associated with the predicted growth increase in the engineered plants. We discuss our findings with respect to the structure of the used models, the modeling approaches taken, and the available experimental evidence. Our study sets the ground for investigating other strategies for increase of plant biomass by insertion of synthetic reactions. PMID:27092301

  9. Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Bruno Huettel

    2008-10-01

    Full Text Available Aneuploidy refers to losses and/or gains of individual chromosomes from the normal chromosome set. The resulting gene dosage imbalance has a noticeable affect on the phenotype, as illustrated by aneuploid syndromes, including Down syndrome in humans, and by human solid tumor cells, which are highly aneuploid. Although the phenotypic manifestations of aneuploidy are usually apparent, information about the underlying alterations in structure, expression, and interphase organization of unbalanced chromosome sets is still sparse. Plants generally tolerate aneuploidy better than animals, and, through colchicine treatment and breeding strategies, it is possible to obtain inbred sibling plants with different numbers of chromosomes. This possibility, combined with the genetic and genomics tools available for Arabidopsis thaliana, provides a powerful means to assess systematically the molecular and cytological consequences of aberrant numbers of specific chromosomes. Here, we report on the generation of Arabidopsis plants in which chromosome 5 is present in triplicate. We compare the global transcript profiles of normal diploids and chromosome 5 trisomics, and assess genome integrity using array comparative genome hybridization. We use live cell imaging to determine the interphase 3D arrangement of transgene-encoded fluorescent tags on chromosome 5 in trisomic and triploid plants. The results indicate that trisomy 5 disrupts gene expression throughout the genome and supports the production and/or retention of truncated copies of chromosome 5. Although trisomy 5 does not grossly distort the interphase arrangement of fluorescent-tagged sites on chromosome 5, it may somewhat enhance associations between transgene alleles. Our analysis reveals the complex genomic changes that can occur in aneuploids and underscores the importance of using multiple experimental approaches to investigate how chromosome numerical changes condition abnormal phenotypes and

  10. Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana

    Science.gov (United States)

    Harris, Sue-Re; Henbest, Kevin B.; Maeda, Kiminori; Pannell, John R.; Timmel, Christiane R.; Hore, P.J.; Okamoto, Haruko

    2009-01-01

    The scientific literature describing the effects of weak magnetic fields on living systems contains a plethora of contradictory reports, few successful independent replication studies and a dearth of plausible biophysical interaction mechanisms. Most such investigations have been unsystematic, devoid of testable theoretical predictions and, ultimately, unconvincing. A recent study, of magnetic responses in the model plant Arabidopsis thaliana, however, stands out; it has a clear hypothesis—that seedling growth is magnetically sensitive as a result of photoinduced radical-pair reactions in cryptochrome photoreceptors—tested by measuring several cryptochrome-dependent responses, all of which proved to be enhanced in a magnetic field of intensity 500 μT. The potential importance of this study in the debate on putative effects of extremely low-frequency electromagnetic fields on human health prompted us to subject it to the ‘gold standard’ of independent replication. With experimental conditions chosen to match those of the original study, we have measured hypocotyl lengths and anthocyanin accumulation for Arabidopsis seedlings grown in a 500 μT magnetic field, with simultaneous control experiments at 50 μT. Additionally, we have determined hypocotyl lengths of plants grown in 50 μT, 1 mT and approximately 100 mT magnetic fields (with zero-field controls), measured gene (CHS, HY5 and GST) expression levels, investigated blue-light intensity effects and explored the influence of sucrose in the growth medium. In no case were consistent, statistically significant magnetic field responses detected. PMID:19324677

  11. Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana.

    Science.gov (United States)

    Welinder, Karen G; Justesen, Annemarie F; Kjaersgård, Inger V H; Jensen, Rikke B; Rasmussen, Søren K; Jespersen, Hans M; Duroux, Laurent

    2002-12-01

    Understanding peroxidase function in plants is complicated by the lack of substrate specificity, the high number of genes, their diversity in structure and our limited knowledge of peroxidase gene transcription and translation. In the present study we sequenced expressed sequence tags (ESTs) encoding novel heme-containing class III peroxidases from Arabidopsis thaliana and annotated 73 full-length genes identified in the genome. In total, transcripts of 58 of these genes have now been observed. The expression of individual peroxidase genes was assessed in organ-specific EST libraries and compared to the expression of 33 peroxidase genes which we analyzed in whole plants 3, 6, 15, 35 and 59 days after sowing. Expression was assessed in root, rosette leaf, stem, cauline leaf, flower bud and cell culture tissues using the gene-specific and highly sensitive reverse transcriptase-polymerase chain reaction (RT-PCR). We predicted that 71 genes could yield stable proteins folded similarly to horseradish peroxidase (HRP). The putative mature peroxidases derived from these genes showed 28-94% amino acid sequence identity and were all targeted to the endoplasmic reticulum by N-terminal signal peptides. In 20 peroxidases these signal peptides were followed by various N-terminal extensions of unknown function which are not present in HRP. Ten peroxidases showed a C-terminal extension indicating vacuolar targeting. We found that the majority of peroxidase genes were expressed in root. In total, class III peroxidases accounted for an impressive 2.2% of root ESTs. Rather few peroxidases showed organ specificity. Most importantly, genes expressed constitutively in all organs and genes with a preference for root represented structurally diverse peroxidases (< 70% sequence identity). Furthermore, genes appearing in tandem showed distinct expression profiles. The alignment of 73 Arabidopsis peroxidase sequences provides an easy access to the identification of orthologous peroxidases

  12. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shang-Hui Jin

    Full Text Available Auxin is one type of phytohormones that plays important roles in nearly all aspects of plant growth and developmental processes. The glycosylation of auxins is considered to be an essential mechanism to control the level of active auxins. Thus, the identification of auxin glycosyltransferases is of great significance for further understanding the auxin regulation. In this study, we biochemically screened the group L of Arabidopsis thaliana glycosyltransferase superfamily for enzymatic activity toward auxins. UGT74D1 was identified to be a novel auxin glycosyltransferase. Through HPLC and LC-MS analysis of reaction products in vitro by testing eight substrates including auxins and other compounds, we found that UGT74D1 had a strong glucosylating activity toward indole-3-butyric acid [IBA], indole-3-propionic acid [IPA], indole-3-acetic acid [IAA] and naphthaleneacetic acid [NAA], catalyzing them to form corresponding glucose esters. Biochemical characterization showed that this enzyme had a maximum activity in HEPES buffer at pH 6.0 and 37°C. In addition, the enzymatic activity analysis of crude protein and the IBA metabolite analysis from transgenic Arabidopsis plants overexpressing UGT74D1 gene were also carried out. Experimental results indicated that over-production of the UGT74D1 in plants indeed led to increased level of the glucose conjugate of IBA. Moreover, UGT74D1 overexpression lines displayed curling leaf phenotype, suggesting a physiological role of UGT74D1 in affecting the activity of auxins. Our current data provide a new target gene for further genetic studies to understand the auxin regulation by glycosylation in plants.

  13. DRB2 is required for microRNA biogenesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Andrew L Eamens

    Full Text Available BACKGROUND: The Arabidopsis thaliana (Arabidopsis DOUBLE-STRANDED RNA BINDING (DRB protein family consists of five members, DRB1 to DRB5. The biogenesis of two developmentally important small RNA (sRNA species, the microRNAs (miRNAs and trans-acting small interfering RNAs (tasiRNAs by DICER-LIKE (DCL endonucleases requires the assistance of DRB1 and DRB4 respectively. The importance of miRNA-directed target gene expression in plant development is exemplified by the phenotypic consequence of loss of DRB1 activity (drb1 plants. PRINCIPAL FINDINGS: Here we report that the developmental phenotype of the drb235 triple mutant plant is the result of deregulated miRNA biogenesis in the shoot apical meristem (SAM region. The expression of DRB2, DRB3 and DRB5 in wild-type seedlings is restricted to the SAM region. Small RNA sequencing of the corresponding tissue of drb235 plants revealed altered miRNA accumulation. Approximately half of the miRNAs detected remained at levels equivalent to those of wild-type plants. However, the accumulation of the remaining miRNAs was either elevated or reduced in the triple mutant. Examination of different single and multiple drb mutants revealed a clear association between the loss of DRB2 activity and altered accumulation for both the elevated and reduced miRNA classes. Furthermore, we show that the constitutive over-expression of DRB2 outside of its wild-type expression domain can compensate for the loss of DRB1 activity in drb1 plants. CONCLUSIONS/SIGNIFICANCE: Our results suggest that in the SAM region, DRB2 is both antagonistic and synergistic to the role of DRB1 in miRNA biogenesis, adding an additional layer of gene regulatory complexity in this developmentally important tissue.

  14. Calcium-Dependent Protein Kinase CPK21 Functions in Abiotic Stress Response in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Sandra Franz; Britta Ehlert; Anja Liese; Joachim Kurth; Anne-Claire Cazalé; Tina Romeis

    2011-01-01

    Calcium-dependent protein kinases(CDPKs)comprise a family of plant serine/threonine protein kinases in which the calcium sensing domain and the kinase effector domain are combined within one molecule.So far,a biological function in abiotic stress signaling has only been reported for few CDPK isoforms,whereas the underlying biochemical mechanism for these CDPKs is still mainly unknown.Here,we show that CPK21 from Arabidopsis thaliana is biochemically activated in vivo in response to hyperosmotic stress.Loss-of-function seedlings of cpk21 are more tolerant to hyperosmotic stress and mutant plants show increased stress responses with respect to marker gene expression and metabolite accumulation.In transgenic Arabidopsis complementation lines in the cpk21 mutant background,in which either CPK21 wildtype,or a full-length enzyme variant carrying an amino-acid substitution were stably expressed,stress responsitivity was restored by CPK21 but not with the kinase inactive variant.The biochemical characterization of in planta synthesized and purified CPK21 protein revealed that within the calcium-binding domain,N-terminal EF1- and EF2-motifs compared to C-terminal EF3- and EF4-motifs differ in their contribution to calcium-regulated kinase activity,suggesting a crucial role for the N-terminal EF-hand pair.Our data provide evidence for CPK21 contributing in abiotic stress signaling and suggest that the N-terminal EF-hand pair is a calcium-sensing determinant controlling specificity of CPK21 function.

  15. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    KAUST Repository

    Kim, Jeong Im

    2011-04-21

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes. 2011 The Author(s).

  16. AthaMap-assisted transcription factor target gene identification in Arabidopsis thaliana.

    Science.gov (United States)

    Bülow, Lorenz; Brill, Yuri; Hehl, Reinhard

    2010-01-01

    The AthaMap database generates a map of potential transcription factor binding sites (TFBS) and small RNA target sites in the Arabidopsis thaliana genome. The database contains sites for 115 different transcription factors (TFs). TFBS were identified with positional weight matrices (PWMs) or with single binding sites. With the new web tool 'Gene Identification', it is possible to identify potential target genes for selected TFs. For these analyses, the user can define a region of interest of up to 6000 bp in all annotated genes. For TFBS determined with PWMs, the search can be restricted to high-quality TFBS. The results are displayed in tables that identify the gene, position of the TFBS and, if applicable, individual score of the TFBS. In addition, data files can be downloaded that harbour positional information of TFBS of all TFs in a region between -2000 and +2000 bp relative to the transcription or translation start site. Also, data content of AthaMap was increased and the database was updated to the TAIR8 genome release. Database URL: http://www.athamap.de/gene_ident.php. PMID:21177332

  17. Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kim Myung K

    2011-09-01

    Full Text Available Abstract Background Total internal reflection fluorescence microscopy (TIRFM is a powerful tool for observing fluorescently labeled molecules on the plasma membrane surface of animal cells. However, the utility of TIRFM in plant cell studies has been limited by the fact that plants have cell walls, thick peripheral layers surrounding the plasma membrane. Recently, a new technique known as variable-angle epifluorescence microscopy (VAEM was developed to circumvent this problem. However, the lack of a detailed analysis of the optical principles underlying VAEM has limited its applications in plant-cell biology. Results Here, we present theoretical and experimental evidence supporting the use of variable-angle TIRFM in observations of intact plant cells. We show that when total internal reflection occurs at the cell wall/cytosol interface with an appropriate angle of incidence, an evanescent wave field of constant depth is produced inside the cytosol. Results of experimental TIRFM observations of the dynamic behaviors of phototropin 1 (a membrane receptor protein and clathrin light chain (a vesicle coat protein support our theoretical analysis. Conclusions These findings demonstrate that variable-angle TIRFM is appropriate for quantitative live imaging of cells in intact tissues of Arabidopsis thaliana.

  18. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Nana; Tonsor, Stephen J; Traw, M Brian

    2015-01-01

    Salicylic acid (SA) occupies a key role as a hormone central to both plant resistance to bacterial pathogens and tolerance of abiotic stresses. Plants at high elevation experience colder temperatures and elevated UV levels. While it has been predicted that SA concentrations will be higher in plants from high elevation populations, few studies have addressed this question. Here, we asked how concentrations of SA vary in natural populations of Arabidopsis thaliana collected across an elevational gradient on the Iberian Peninsula. In a series of common garden experiments, we found that constitutive SA concentrations were highest in genotypes from the low elevation populations. This result was in the opposite direction from our prediction and is an exception to the general finding that phenolic compounds increase with increasing elevation. These data suggest that high constitutive SA is not associated with resistance to cold temperatures in these plants. Furthermore, we also found that leaf constitutive camalexin concentrations, an important defense against some bacterial and fungal enemies, were highest in the low elevation populations, suggesting that pathogen pressures may be important. Further examination of this elevational cline will likely provide additional insights into the interplay between phenolic compounds and biotic and abiotic stress. PMID:25875692

  19. Cadmium localization and quantification in the plant Arabidopsis thaliana using micro-PIXE

    Science.gov (United States)

    Ager, F. J.; Ynsa, M. D.; Domínguez-Solís, J. R.; Gotor, C.; Respaldiza, M. A.; Romero, L. C.

    2002-04-01

    Remediation of metal-contaminated soils and waters poses a challenging problem due to its implications in the environment and the human health. The use of metal-accumulating plants to remove toxic metals, including Cd, from soil and aqueous streams has been proposed as a possible solution to this problem. The process of using plants for environmental restoration is termed phytoremediation. Cd is a particularly favourable target metal for this technology because it is readily transported and accumulated in the shoots of several plant species. This paper investigates the sites of metal localization within Arabidopsis thaliana leaves, when plants are grown in a cadmium-rich environment, by making use of nuclear microscopy techniques. Micro-PIXE, RBS and SEM analyses were performed on the scanning proton microprobe at the CNA in Seville (Spain), showing that cadmium is sequestered within the trichomes on the leaf surface. Additionally, regular PIXE analyses were performed on samples prepared by an acid digestion method in order to assess the metal accumulation of such plants.

  20. Cadmium localization and quantification in the plant Arabidopsis thaliana using micro-PIXE

    International Nuclear Information System (INIS)

    Remediation of metal-contaminated soils and waters poses a challenging problem due to its implications in the environment and the human health. The use of metal-accumulating plants to remove toxic metals, including Cd, from soil and aqueous streams has been proposed as a possible solution to this problem. The process of using plants for environmental restoration is termed phytoremediation. Cd is a particularly favourable target metal for this technology because it is readily transported and accumulated in the shoots of several plant species. This paper investigates the sites of metal localization within Arabidopsis thaliana leaves, when plants are grown in a cadmium-rich environment, by making use of nuclear microscopy techniques. Micro-PIXE, RBS and SEM analyses were performed on the scanning proton microprobe at the CNA in Seville (Spain), showing that cadmium is sequestered within the trichomes on the leaf surface. Additionally, regular PIXE analyses were performed on samples prepared by an acid digestion method in order to assess the metal accumulation of such plants

  1. Genome-Wide Search for Translated Upstream Open Reading Frames in Arabidopsis Thaliana.

    Science.gov (United States)

    Hu, Qiwen; Merchante, Catharina; Stepanova, Anna N; Alonso, Jose M; Heber, Steffen

    2016-03-01

    Upstream open reading frames (uORFs) are open reading frames that occur within the 5' UTR of an mRNA. uORFs have been found in many organisms. They play an important role in gene regulation, cell development, and in various metabolic processes. It is believed that translated uORFs reduce the translational efficiency of the main coding region. However, only few uORFs are experimentally characterized. In this paper, we use ribosome footprinting together with a semi-supervised approach based on stacking classification models to identify translated uORFs in Arabidopsis thaliana. Our approach identified 5360 potentially translated uORFs in 2051 genes. GO terms enriched in genes with translated uORFs include catalytic activity, binding, transferase activity, phosphotransferase activity, kinase activity, and transcription regulator activity. The reported uORFs occur with a higher frequency in multi-isoform genes, and some uORFs are affected by alternative transcript start sites or alternative splicing events. Association rule mining revealed sequence features associated with the translation status of the uORFs. We hypothesize that uORF translation is a complex process that might be regulated by multiple factors. The identified uORFs are available online at:https://www.dropbox.com/sh/zdutupedxafhly8/AABFsdNR5zDfiozB7B4igFcja?dl=0. This paper is the extended version of our research presented at ISBRA 2015. PMID:26886998

  2. Inflorescences contribute more than rosettes to lifetime carbon gain in Arabidopsis thaliana (Brassicaceae).

    Science.gov (United States)

    Earley, Eric J; Ingland, Bronson; Winkler, Jacob; Tonsor, Stephen J

    2009-04-01

    A metamorphosis from rosette to inflorescence in many annuals shifts photosynthetic tissue from a two-dimensional array in the soil boundary layer during cool months to a three-dimensional structure in the troposphere as spring progresses. We propose that this shift allows escape from both self-shading and an increasingly stressful boundary layer microclimate, permitting continued increases in growth. As a first step in exploring this hypothesis, we compared the lifetime C gain, water loss, and instantaneous water use efficiency (WUE) of five Arabidopsis thaliana genotypes by measuring gas exchange across the life cycle. On average, the inflorescence contributed 55% (± 5% SE) of lifetime C gain, but only 25% of lifetime water loss. Mean inflorescence WUE was nearly fourfold that of the rosette. The inflorescence continued to fix C after rosette senescence. The percentage inflorescence: total C gain varied among genotypes, from 36% to 93%. Genotypes differed in WUE for both structures. We suggest that local climates may have selected for divergence in these traits. For many annuals and winter annuals, understanding C and water budgets and their evolution must include measures of both rosette and inflorescence gas exchange. PMID:21628233

  3. Initiation patterns of flower and floral organ development in Arabidopsis thaliana.

    Science.gov (United States)

    Bossinger, G; Smyth, D R

    1996-04-01

    Sector boundary analysis has been used to deduce the number and orientation of cells initiating flower and floral organ development in Arabidopsis thaliana. Sectors were produced in transgenic plants carrying the Ac transposon from maize inserted between the constitutive 35S promoter and the GUS reporter gene. Excision of the transposon results in a blue-staining sector. Plants were chosen in which an early arising sector passed from vegetative regions into the inflorescence and through a mature flower. The range of sector boundary positions seen in mature flowers indicated that flower primordia usually arise from a group of four cells on the inflorescence flank. The radial axes of the mature flower are apparently set by these cells, supporting the concept that they act as a structural template. Floral organs show two patterns of initiation, a leaf-like pattern with eight cells in a row (sepals and carpels), or a shoot-like pattern with four cells in a block (stamens). The petal initiation pattern involved too few cells to allow assignment. The numbers of initiating cells were close to those seen when organ growth commenced in each case, indicating that earlier specification of floral organ development does not occur. By examining sector boundaries in homeotic mutant flowers in which second whorl organs develop as sepal-like organs rather than petals, we have shown that their pattern of origin is position dependent rather than identity dependent. PMID:8620836

  4. Effects of microgravity and clinorotation on stress ethylene production in two starchless mutants of Arabidopsis thaliana

    Science.gov (United States)

    Gallegos, Gregory L.; Hilaire, Emmanuel M.; Peterson, Barbara V.; Brown, Christopher S.; Guikema, James A.

    1995-01-01

    Starch filled plastids termed amyloplasts, contained within columella cells of the root caps of higher plant roots, are believed to play a statolith-like role in the gravitropic response of roots. Plants having amyloplasts containing less starch exhibit a corresponding reduction in gravitropic response. We have observed enhanced ethylene production by sweet clover (Melilotus alba L.) seedlings grown in the altered gravity condition of a slow rotating clinostat, and have suggested that this is a stress response resulting from continuous gravistimulation rather than as a result of the simulation of a microgravity condition. If so, we expect that plants deficient in starch accumulation in amyloplasts may produce less stress ethylene when grown on a clinostat. Therefore, we have grown Arabidopsis thaliana in the small, closed environment of the Fluid Processing Apparatus (FPA). In this preliminary report we compare stationary plants with clinorotated and those grown in microgravity aboard Discovery during the STS-63 flight in February 1995. In addition to wildtype, two mutants deficient in starch biosynthesis, mutants TC7 and TL25, which are, respectively, deficient in the activity of amyloplast phosphoglucomutase and ADP-glucose pyrophosphorylase, were grown for three days before being fixed within the FPA. Gas samples were aspirated from the growth chambers and carbon dioxide and ethylene concentations were measured using a gas chromatograph. The fixed tissue is currently undergoing further morphologic and microscopic characterization.

  5. Cell-free translation and purification of Arabidopsis thaliana regulator of G signaling 1 protein.

    Science.gov (United States)

    Li, Bo; Makino, Shin-Ichi; Beebe, Emily T; Urano, Daisuke; Aceti, David J; Misenheimer, Tina M; Peters, Jonathan; Fox, Brian G; Jones, Alan M

    2016-10-01

    Arabidopsis thaliana Regulator of G protein Signalling 1 (AtRGS1) is a protein with a predicted N-terminal 7-transmembrane (7TM) domain and a C-terminal cytosolic RGS1 box domain. The RGS1 box domain exerts GTPase activation (GAP) activity on Gα (AtGPA1), a component of heterotrimeric G protein signaling in plants. AtRGS1 may perceive an exogenous agonist to regulate the steady-state levels of the active form of AtGPA1. It is uncertain if the full-length AtRGS1 protein exerts any atypical effects on Gα, nor has it been established exactly how AtRGS1 contributes to perception of an extracellular signal and transmits this response to a G-protein dependent signaling cascade. Further studies on full-length AtRGS1 have been inhibited due to the extreme low abundance of the endogenous AtRGS1 protein in plants and lack of a suitable heterologous system to express AtRGS1. Here, we describe methods to produce full-length AtRGS1 by cell-free synthesis into unilamellar liposomes and nanodiscs. The cell-free synthesized AtRGS1 exhibits GTPase activating activity on Gα and can be purified to a level suitable for biochemical analyses. PMID:27164033

  6. Acclimation increases freezing stress response of Arabidopsis thaliana at proteome level

    KAUST Repository

    Fanucchi, Francesca

    2012-06-01

    This study used 2DE to investigate how Arabidopsis thaliana modulates protein levels in response to freezing stress after sub-lethal exposure at - 10 °C, both in cold-acclimated and in non-acclimated plants. A map was implemented in which 62 spots, corresponding to 44 proteins, were identified. Twenty-two spots were modulated upon treatments, and the corresponding proteins proved to be related to photosynthesis, energy metabolism, and stress response. Proteins demonstrated differences between control and acclimation conditions. Most of the acclimation-responsive proteins were either not further modulated or they were down-modulated by freezing treatment, indicating that the levels reached during acclimation were sufficient to deal with freezing. Anabolic metabolism appeared to be down-regulated in favor of catabolic metabolism. Acclimated plants and plants submitted to freezing after acclimation showed greater reciprocal similarity in protein profiles than either showed when compared both to control plants and to plants frozen without acclimation. The response of non-acclimated plants was aimed at re-modulating photosynthetic apparatus activity, and at increasing the levels of proteins with antioxidant-, molecular chaperone-, or post-transcriptional regulative functions. These changes, even less effective than the acclimation strategy, might allow the injured plastids to minimize the production of non-useful metabolites and might counteract photosynthetic apparatus injuries. © 2012 Elsevier B.V. All rights reserved.

  7. Host responses in life-history traits and tolerance to virus infection in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Israel Pagán

    Full Text Available Knowing how hosts respond to parasite infection is paramount in understanding the effects of parasites on host populations and hence host-parasite co-evolution. Modification of life-history traits in response to parasitism has received less attention than other defence strategies. Life-history theory predicts that parasitised hosts will increase reproductive effort and accelerate reproduction. However, empirical analyses of these predictions are few and mostly limited to animal-parasite systems. We have analysed life-history trait responses in 18 accessions of Arabidopsis thaliana infected at two different developmental stages with three strains of Cucumber mosaic virus (CMV. Accessions were divided into two groups according to allometric relationships; these groups differed also in their tolerance to CMV infection. Life-history trait modification upon virus infection depended on the host genotype and the stage at infection. While all accessions delayed flowering, only the more tolerant allometric group modified resource allocation to increase the production of reproductive structures and progeny, and reduced the length of reproductive period. Our results are in agreement with modifications of life-history traits reported for parasitised animals and with predictions from life-history theory. Thus, we provide empirical support for the general validity of theoretical predictions. In addition, this experimental approach allowed us to quantitatively estimate the genetic determinism of life-history trait plasticity and to evaluate the role of life-history trait modification in defence against parasites, two largely unexplored issues.

  8. Structural Determinants of Arabidopsis thaliana Hyponastic Leaves 1 Function In Vivo

    Science.gov (United States)

    Burdisso, Paula; Milia, Fernando; Schapire, Arnaldo L.; Bologna, Nicolás G.; Palatnik, Javier F.; Rasia, Rodolfo M.

    2014-01-01

    MicroRNAs have turned out to be important regulators of gene expression. These molecules originate from longer transcripts that are processed by ribonuclease III (RNAse III) enzymes. Dicer proteins are essential RNAse III enzymes that are involved in the generation of microRNAs (miRNAs) and other small RNAs. The correct function of Dicer relies on the participation of accessory dsRNA binding proteins, the exact function of which is not well-understood so far. In plants, the double stranded RNA binding protein Hyponastic Leaves 1 (HYL1) helps Dicer Like protein (DCL1) to achieve an efficient and precise excision of the miRNAs from their primary precursors. Here we dissected the regions of HYL1 that are essential for its function in Arabidopsis thaliana plant model. We generated mutant forms of the protein that retain their structure but affect its RNA-binding properties. The mutant versions of HYL1 were studied both in vitro and in vivo, and we were able to identify essential aminoacids/residues for its activity. Remarkably, mutation and even ablation of one of the purportedly main RNA binding determinants does not give rise to any major disturbances in the function of the protein. We studied the function of the mutant forms in vivo, establishing a direct correlation between affinity for the pri-miRNA precursors and protein activity. PMID:25409478

  9. Induction of oxidative stress related responses in Arabidopsis thaliana after uranium exposure

    International Nuclear Information System (INIS)

    Uranium contamination in the environment has resulted from releases linked with nuclear fuel cycle activities and from industries extracting and processing materials containing naturally occurring radionuclides (for example phosphate industry). Uranium toxicity effects are predominantly studied on man and animal species, but little information is available for plants. If phytomanagement of uranium contaminated soils is considered, biological effects on the vegetation have to be investigated. Information on the contamination impact can also be used for risk assessment and derivation of clean-up standards. Plants can experience oxidative stress when they are exposed to environmental stress situations (for example exposure to heavy metals). Reactive oxygen species (ROS) are produced in both stressed and unstressed cells potentially leading to cellular damage. Consequently, plants have developed an antioxidative defence system comprising ROS-scavenging enzymes (e.g. SOD (superoxide dismutase), CAT (catalase) and metabolites (e.g. ascorbate, glutathione). Previous results showed that uranium exposure can cause an imbalance between the oxidative and antioxidative capacities of the plant cells. The present study aimed to analyse biological effects induced in Arabidopsis thaliana after bioaccumulation of uranium and to define possible dose-effect relationships. Subtle effects on the antioxidative defence system (enzymes, metabolites viewed as early responses for individual disturbances (growth, nutrient profile) were analysed

  10. Evaluation of genetic and metabolic role of SKIP11 in Arabidopsis thaliana

    Science.gov (United States)

    Hassan, Muhammad Naeem ul; Ismail, Ismanizan

    2015-09-01

    Most of the regulatory proteins are degraded by 26S proteasome complex, only when they are tagged by Ubiquitin. A complex of four proteins, SKP1-Cullin-Ring box-F box (SCF) catalyses the final step to link the Ubiquitin tag with the target proteins. SCF complex interacts with the target proteins through F-box proteins, which confer the overall substrate specificity to the complex. F-box proteins, one of the largest family of proteins in plants have an N-terminal F-box domain and variable C-terminal domains, like leucine-rich repeat, WD-40 repeat and the kelch-repeat domains. In this study, we analysed the role of SKIP11, a kelch containing F-box protein (KFB) from Arabidopsis thaliana, by using reverse genetics strategy. The results show that SKIP11 is involved in the down-regulation of oxylipin pathway, possibly through the degradation of enzymes or/ and the regulatory factors of the pathway.

  11. Transcriptome Analysis of Induced Systemic Drought Tolerance Elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Song-Mi Cho

    2013-06-01

    Full Text Available Root colonization by Pseudomonas chlororaphis O6 induces systemic drought tolerance in Arabidopsis thaliana. Microarray analysis was performed using the 22,800-gene Affymetrix GeneChips to identify differentially-expressed genes from plants colonized with or without P. chlororaphis O6 under drought stressed conditions or normal growth conditions. Root colonization in plants grown under regular irrigation condition increased transcript accumulation from genes associated with defense, response to reactive oxygen species, and auxin- and jasmonic acid-responsive genes, but decreased transcription factors associated with ethylene and abscisic acid signaling. The cluster of genes involved in plant disease resistance were up-regulated, but the set of drought signaling response genes were down-regulated in the P. chlororaphis O6-colonized under drought stress plants compared to those of the drought stressed plants without bacterial treatment. Transcripts of the jasmonic acid-marker genes, VSP1 and pdf-1.2, the salicylic acid regulated gene, PR-1, and the ethylene-response gene, HEL, also were up-regulated in plants colonized by P. chlororaphis O6, but differed in their responsiveness to drought stress. These data show how gene expression in plants lacking adequate water can be remarkably influenced by microbial colonization leading to plant protection, and the activation of the plant defense signal pathway induced by root colonization of P. chlororaphis O6 might be a key element for induced systemic tolerance by microbes.

  12. Natural variation in tocochromanols content in Arabidopsis thaliana accessions - the effect of temperature and light intensity.

    Science.gov (United States)

    Gabruk, Michał; Habina, Iwona; Kruk, Jerzy; Dłużewska, Jolanta; Szymańska, Renata

    2016-06-01

    In this study, 25 accessions of Arabidopsis thaliana originating from a variety of climate conditions were grown under controlled circumstances of different light intensity and temperature. The accessions were analyzed for prenyllipids content and composition, as well as expression of the genes involved in tocochromanol biosynthesis (vte1-5). It was found that the applied conditions did not strongly affect total tocochromanols content and there was no apparent correlation of the tocochromanol content with the origin of the accessions. However, the presented results indicate that the temperature, more than the light intensity, affects the expression of the vte1-5 genes and the content of some prenyllipids. An interesting observation was that under low growth temperature, the hydroxy-plastochromanol (PC-OH) to plastochromanol (PC) ratio was considerably increased regardless of the light intensity in most of the accessions. PC-OH is known to be formed as a result of singlet oxygen stress, therefore this observation indicates that the singlet oxygen production is enhanced under low temperature. Unexpectedly, the highest increase in the PC-OH/PC ratio was found for accessions originating from cold climate (Shigu, Krazo-1 and Lov-5), even though such plants could be expected to be more resistant to low temperature stress. PMID:27174597

  13. Post-translational Analysis of Arabidopsis thaliana Proteins in Response to Cyclic Guanosine Monophosphate Treatment

    KAUST Repository

    Parrott, Brian

    2011-12-12

    The introduction of mass spectrometry techniques to the field of biology has made possible the exploration of the proteome as a whole system as opposed to prior techniques, such as anti-body based assays or yeast two-hybrid studies, which were strictly limited to the study of a few proteins at a time. This practice has allowed for a systems biology approach of exploring the proteome, with the possibility of viewing entire pathways over increments of time. In this study, the effect of treating Arabidopsis thaliana suspension culture cells with 3’,5’-cyclic guanosine monophosphate (cGMP), which is a native second messenger, was examined. Samples were collected at four time points and proteins were extracted and enriched for both oxidation and phosphorylation before analysis via mass spectrometry. Preliminary results suggest a tendency towards an increased number of phosphorylated proteins as a result of cGMP treatment. The data also showed a sharp increase in methionine oxidation in response to the treatment, occurring within the first ten minutes. This finding suggests that cGMP may utilize methionine oxidation as a mechanism of signal transduction. As such, this study corroborates a growing body of evidence supporting the inclusion of methionine oxidation in intracellular signaling pathways.

  14. Structural basis for the regulation of N-acetylglutamate kinase by PII in Arabidopsis thaliana.

    Science.gov (United States)

    Mizuno, Yutaka; Moorhead, Greg B G; Ng, Kenneth K-S

    2007-12-01

    PII is a highly conserved regulatory protein found in organisms across the three domains of life. In cyanobacteria and plants, PII relieves the feedback inhibition of the rate-limiting step in arginine biosynthesis catalyzed by N-acetylglutamate kinase (NAGK). To understand the molecular structural basis of enzyme regulation by PII, we have determined a 2.5-A resolution crystal structure of a complex formed between two homotrimers of PII and a single hexamer of NAGK from Arabidopsis thaliana bound to the metabolites N-acetylglutamate, ADP, ATP, and arginine. In PII, the T-loop and Trp(22) at the start of the alpha1-helix, which are both adjacent to the ATP-binding site of PII, contact two beta-strands as well as the ends of two central helices (alphaE and alphaG) in NAGK, the opposing ends of which form major portions of the ATP and N-acetylglutamate substrate-binding sites. The binding of Mg(2+).ATP to PII stabilizes a conformation of the T-loop that favors interactions with both open and closed conformations of NAGK. Interactions between PII and NAGK appear to limit the degree of opening and closing of the active-site cleft in opposition to a domain-separating inhibitory effect exerted by arginine, thus explaining the stimulatory effect of PII on the kinetics of arginine-inhibited NAGK. PMID:17913711

  15. Autophagy induction upon reactive oxygen species in Cd-stressed Arabidopsis thaliana

    Science.gov (United States)

    Zhang, WeiNa; Chen, WenLi

    2010-02-01

    Autophagy is a protein degradation process in which cells recycle cytoplasmic contents when subjected to environmental stress conditions or during certain stages of development. Upon the induction of autophagy, a double membrane autophagosome forms around cytoplasmic components and delivers them to the vacuole for degradation. In plants, autophagy has been shown previously to be induced during abiotic stresses including oxidative stress. Cd, as a toxicity heavy metal, resulted in the production of reactive oxygen species (ROS). In this paper, we demonstrated that ROS contributed to the induction of autophagy in Cd-stressed Arabidopsis thaliana. However, pre-incubation with ascorbic acid (AsA, antioxidant molecule) and catalase (CAT, a H2O2-specific scavenger) decreased the ROS production and the number of autolysosomal-like structures. Together our results indicated that the oxidative condition was essential for autophagy, as treatment with AsA and CAT abolished the formation of autophagosomes, and ROS may function as signal molecules to induce autophagy in abiotic stress.

  16. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ines eLassowskat

    2014-10-01

    Full Text Available Mitogen-activated protein kinases (MAPKs target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3 and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phosphoproteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g. WRKY transcription factors and proteins encoded by the genes from the PEN pathway required for penetration resistance to filamentous pathogens. Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org.

  17. Structural characterization of the mechanosensitive channel candidate MCA2 from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hideki Shigematsu

    Full Text Available Mechanosensing in plants is thought to be governed by sensory complexes containing a Ca²⁺-permeable, mechanosensitive channel. The plasma membrane protein MCA1 and its paralog MCA2 from Arabidopsis thaliana are involved in mechanical stress-induced Ca²⁺ influx and are thus considered as candidates for such channels or their regulators. Both MCA1 and MCA2 were functionally expressed in Sf9 cells using a baculovirus system in order to elucidate their molecular natures. Because of the abundance of protein in these cells, MCA2 was chosen for purification. Purified MCA2 in a detergent-solubilized state formed a tetramer, which was confirmed by chemical cross-linking. Single-particle analysis of cryo-electron microscope images was performed to depict the overall shape of the purified protein. The three-dimensional structure of MCA2 was reconstructed at a resolution of 26 Å from 5,500 particles and appears to comprise a small transmembrane region and large cytoplasmic region.

  18. The evolutionary response of plants to increased UV-B radiation: Field studies with Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The response of a species to any environmental change is determined by both phenotypic and evolutionary adjustments. To date, the majority of research concerning the response of terrestrial plants to increased UV-B radiation has focused on phenotypic adjustments. Recently we have initiated field studies aimed at assessing genetic variation for UV-B sensitivity within a natural population of Arabidopsis thaliana. This population consists of at least eight discrete genotypes that have been confirmed by RAPD analysis. We used an incomplete block design to assess the impact of UV-B (ambient and ambient + 6 kJ) and PAR (low and high) on these genotypes. The high UV-B treatment caused a significant reduction in fruit number and plant height while the high PAR treatment caused a significant increase in these variables. In addition, there was a marginally significant (p=0.1) UV-B x PAR x maternal line interaction for fruit number, indicating that genetic variation for UV-B sensitivity within this population depends on the PAR environment. The combination of high UV-B and high PAR caused a change in fruit number (relative to the ambient UV-B/high PAR treatment) ranging from an increase of 24% to a decrease of 47%. This range was much smaller in the low PAR treatment. These results indicate the potential for increased UV-B radiation to act as an agent of natural selection within this population

  19. Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana.

    Science.gov (United States)

    Kintzer, Alexander F; Stroud, Robert M

    2016-03-10

    Two-pore channels (TPCs) comprise a subfamily (TPC1-3) of eukaryotic voltage- and ligand-gated cation channels with two non-equivalent tandem pore-forming subunits that dimerize to form quasi-tetramers. Found in vacuolar or endolysosomal membranes, they regulate the conductance of sodium and calcium ions, intravesicular pH, trafficking and excitability. TPCs are activated by a decrease in transmembrane potential and an increase in cytosolic calcium concentrations, are inhibited by low luminal pH and calcium, and are regulated by phosphorylation. Here we report the crystal structure of TPC1 from Arabidopsis thaliana at 2.87 Å resolution as a basis for understanding ion permeation, channel activation, the location of voltage-sensing domains and regulatory ion-binding sites. We determined sites of phosphorylation in the amino-terminal and carboxy-terminal domains that are positioned to allosterically modulate cytoplasmic Ca(2+) activation. One of the two voltage-sensing domains (VSD2) encodes voltage sensitivity and inhibition by luminal Ca(2+) and adopts a conformation distinct from the activated state observed in structures of other voltage-gated ion channels. The structure shows that potent pharmacophore trans-Ned-19 (ref. 17) acts allosterically by clamping the pore domains to VSD2. In animals, Ned-19 prevents infection by Ebola virus and other filoviruses, presumably by altering their fusion with the endolysosome and delivery of their contents into the cytoplasm. PMID:26961658

  20. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  1. Characterization of Two H2AX Homologues in Arabidopsis thaliana and their Response to Ionizing Radiation

    International Nuclear Information System (INIS)

    Phosphorylation of histone variant H2AX at the site of DNA double-strand breaks (DSB) is one of the earliest responses detected in cells exposed to Ionizing Radiation (IR). Phosphorylated H2AX (γ-H2AX) is important for recruiting and retaining repair proteins at the site of DSBs and contributes to the maintenance of cell-cycle arrest until repair is completed. In this study, insertional mutants of two Arabidopsis thaliana H2AX homologues were identified and characterized to determine if both genes are functionally active and whether their roles are redundant or divergent. We report an approximate ten-fold reduction in γ-H2AX in our double mutant line and demonstrate that the homologues function redundantly in the formation of IR induced γ-H2AX foci. A tendency towards increased inhibition of root growth was observed in irradiated double mutant plants relative to both wild-type and single mutant lines. No evidence indicating a functional divergence between the two homologues was detected. (author)

  2. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana

    Science.gov (United States)

    Ramonell, K. M.; Kuang, A.; Porterfield, D. M.; Crispi, M. L.; Xiao, Y.; McClure, G.; Musgrave, M. E.

    2001-01-01

    Plant culture in oxygen concentrations below ambient is known to stimulate vegetative growth, but apart from reports on increased leaf number and weight, little is known about development at subambient oxygen concentrations. Arabidopsis thaliana (L.) Heynh. (cv. Columbia) plants were grown full term in pre-mixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2, and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen under continuous light. Fully expanded leaves were harvested and processed for light and transmission electron microscopy or for starch quantification. Growth in subambient oxygen concentrations caused changes in leaf anatomy (increased thickness, stomatal density and starch content) that have also been described for plants grown under carbon dioxide enrichment. However, at the lowest oxygen treatment (2.5 kPa), developmental changes occurred that could not be explained by changes in carbon budget caused by suppressed photorespiration, resulting in very thick leaves and a dwarf morphology. This study establishes the leaf parameters that change during growth under low O2, and identifies the lower concentration at which O2 limitation on transport and biosynthetic pathways detrimentally affects leaf development. Grant numbers: NAG5-3756, NAG2-1020, NAG2-1375.

  3. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana

    Science.gov (United States)

    Mattei, Benedetta; Spinelli, Francesco; Pontiggia, Daniela; De Lorenzo, Giulia

    2016-01-01

    Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity. PMID:27532006

  4. Hormonal response and root architecture in Arabidopsis thaliana subjected to heavy metals

    Directory of Open Access Journals (Sweden)

    Antonella Vitti

    2014-05-01

    Full Text Available In this work, specific concentrations of cadmium, copper and zinc in double combination, were supplied for 12 days to growing seedlings of the model species Arabidopsis thaliana. Metal accumulation was measured in roots and shoots. Microscopic analyses revealed that root morphology was affected by metals, and that the root and shoot levels of indole-3-acetic acid, trans-zeatin riboside and dihydrozeatin riboside varied accordingly. Minor modifications in gibberellic acid levels occurred in the Zinc treatments, whereas abscisic acid level did not change after the exposition to metals. Reverse transcription polymerase chain reaction analysis of some genes involved in auxin and cytokinin synthesis (AtAAO, AtNIT and AtIPT revealed that their expression were not affected by metal treatments. The root morphological alterations that resulted in an increased surface area, due to the formation of root hairs and lateral roots, could be signs of the response to metal stress in terms of a functionally-addressed reorientation of root growth. The root system plasticity observed could be important for better understanding the manner in which the root architecture is shaped by environmental and hormonal stimuli.

  5. On the Origin of De Novo Genes in Arabidopsis thaliana Populations.

    Science.gov (United States)

    Li, Zi-Wen; Chen, Xi; Wu, Qiong; Hagmann, Jörg; Han, Ting-Shen; Zou, Yu-Pan; Ge, Song; Guo, Ya-Long

    2016-01-01

    De novo genes, which originate from ancestral nongenic sequences, are one of the most important sources of protein-coding genes. This origination process is crucial for the adaptation of organisms. However, how de novo genes arise and become fixed in a population or species remains largely unknown. Here, we identified 782 de novo genes from the model plant Arabidopsis thaliana and divided them into three types based on the availability of translational evidence, transcriptional evidence, and neither transcriptional nor translational evidence for their origin. Importantly, by integrating multiple types of omics data, including data from genomes, epigenomes, transcriptomes, and translatomes, we found that epigenetic modifications (DNA methylation and histone modification) play an important role in the origination process of de novo genes. Intriguingly, using the transcriptomes and methylomes from the same population of 84 accessions, we found that de novo genes that are transcribed in approximately half of the total accessions within the population are highly methylated, with lower levels of transcription than those transcribed at other frequencies within the population. We hypothesized that, during the origin of de novo gene alleles, those neutralized to low expression states via DNA methylation have relatively high probabilities of spreading and becoming fixed in a population. Our results highlight the process underlying the origin of de novo genes at the population level, as well as the importance of DNA methylation in this process. PMID:27401176

  6. Unraveling the WRKY transcription factors network in Arabidopsis Thaliana by integrative approach

    Directory of Open Access Journals (Sweden)

    Mouna Choura

    2015-06-01

    Full Text Available The WRKY transcription factors superfamily are involved in diverse biological processes in plants including response to biotic and abiotic stresses and plant immunity. Protein-protein interaction network is a useful approach for understanding these complex processes. The availability of Arabidopsis Thaliana interactome offers a good opportunity to do get a global view of protein network. In this work, we have constructed the WRKY transcription factor network by combining different sources of evidence and we characterized its topological features using computational tools. We found that WRKY network is a hub-based network involving multifunctional proteins denoted as hubs such as WRKY 70, WRKY40, WRKY 53, WRKY 60, WRKY 33 and WRKY 51. Functional annotation showed seven functional modules particularly involved in biotic stress and defense responses. Furthermore, the gene ontology and pathway enrichment analysis revealed that WRKY proteins are mainly involved in plant-pathogen interaction pathways and their functions are directly related to the stress response and immune system process.

  7. Structural analysis and physical mapping of a pericentromeric region of chromosome 5 of Arabidopsis thaliana.

    Science.gov (United States)

    Tutois, S; Cloix, C; Cuvillier, C; Espagnol, M C; Lafleuriel, J; Picard, G; Tourmente, S

    1999-01-01

    The Arabidopsis thaliana CIC YAC 2D2, 510 kb long and containing a small block of 180 bp satellite units was subcloned after EcoR1 digestion in the pBluescript plasmid. One of these clones was mapped genetically in the pericentromeric region of chromosome 5. The analysis of 40 subclones of this YAC showed that they all contain repeated sequences with a high proportion of transposable elements. Three new retrotransposons, two Ty-3 Gypsy-like and one Ty-1 Copia, were identified in addition to two new tandem-repeat families. A physical map of the chromosome 5 pericentromeric region was established using CIC YAC clones, spanning around 1000 kb. This contig extends from the CIC YAC 9F5 and 7A2 positioned on the left arm of chromosome 5 to a 5S rDNA genes block localized by in-situ hybridization in the pericentromeric region. Hybridization of the subclones on the CIC YAC library showed that some of them are restricted to the pericentromeric region of chromosome 5 and represent specific markers of this region. PMID:10328626

  8. Building of an experimental cline with Arabidopsis thaliana to estimate herbicide fitness cost.

    Science.gov (United States)

    Roux, Fabrice; Giancola, Sandra; Durand, Stéphanie; Reboud, Xavier

    2006-06-01

    Various management strategies aim at maintaining pesticide resistance frequency under a threshold value by taking advantage of the benefit of the fitness penalty (the cost) expressed by the resistance allele outside the treated area or during the pesticide selection "off years." One method to estimate a fitness cost is to analyze the resistance allele frequency along transects across treated and untreated areas. On the basis of the shape of the cline, this method gives the relative contributions of both gene flow and the fitness difference between genotypes in the treated and untreated areas. Taking advantage of the properties of such migration-selection balance, an artificial cline was built up to optimize the conditions where the fitness cost of two herbicide-resistant mutants (acetolactate synthase and auxin-induced target genes) in the model species Arabidopsis thaliana could be more accurately measured. The analysis of the microevolutionary dynamics in these experimental populations indicated mean fitness costs of approximately 15 and 92% for the csr1-1 and axr2-1 resistances, respectively. In addition, negative frequency dependence for the fitness cost was also detected for the axr2-1 resistance. The advantages and disadvantages of the cline approach are discussed in regard to other methods of cost estimation. This comparison highlights the powerful ability of an experimental cline to measure low fitness costs and detect sensibility to frequency-dependent variations. PMID:16582450

  9. Newly Described Components and Regulatory Mechanisms of Circadian Clock Function in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Manuel Adrián Troncoso-Ponce; Paloma Mas

    2012-01-01

    The circadian clock temporally coordinates plant growth and metabolism in close synchronization with the diurnal and seasonal environmental changes.Research over the last decade has identified a number of clock components and a variety of regulatory mechanisms responsible for the rhythmic oscillations in metabolic and physiological activities.At the core of the clock,transcriptional/translational feedback loops modulate the expression of a significant proportion of the genome.In this article,we briefly describe some of the very recent advances that have improved our understanding of clock organization and function in Arabidopsis thaliana.The new studies illustrate the role of clock protein complex formation on circadian gating of plant growth and identify alternative splicing as a new regulatory mechanism for clock function.Examination of key clock properties such as temperature compensation has also opened new avenues for functional research within the plant clockwork.The emerging connections between the circadian clock and metabolism,hormone signaling and response to biotic and abiotic stress also add new layers of complexity to the clock network and underscore the significance of the circadian clock regulating the daily life of plants.

  10. Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Sandorf, Iris; Holländer-Czytko, Heike

    2002-11-01

    Coronatine-inducible tyrosine aminotransferase (TAT), which catalyses the transamination from tyrosine to p-hydroxyphenylpyruvate, is the first enzyme of a pathway leading via homogentisic acid to plastoquinone and tocopherols, the latter of which are known to be radical scavengers in plants. TAT can be also induced by the octadecanoids methyl jasmonate (MeJA) and methyl-12-oxophytodienoic acid (MeOPDA), as well as by wounding, high light, UV light and the herbicide oxyfluorfen. In order to elucidate the role of octadecanoids in the process of TAT induction in Arabidopsis thaliana (L.) Heynh., the jasmonate-deficient mutant delayed dehiscence (dde1) was used, in which the gene for 12-oxophytodienoic acid reductase 3 is disrupted. The amount of immunodetectable TAT was low. The enzyme was still fully induced by coronatine as well as by MeJA although induction by the latter was to a lesser extent and later than in the wild type. Treatment with MeOPDA, wounding and UV light, however, had hardly any effects. Tocopherol levels that showed considerable increases in the wild type after some treatments were much less affected in the mutant. However, starting levels of tocopherol were higher in non-induced dde1 than in the wild type. We conclude that jasmonate plays an important role in the signal transduction pathway regulating TAT activity and the biosynthesis of its product tocopherol. PMID:12430028

  11. Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Takao Araya; Takuya Kubo; Nicolaus von Wiren; Hideki Takahashi

    2016-01-01

    Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition, statistical modeling approaches to evaluate dynamic and temporal modulations of root system architecture in response to nutrient availability have remained as widely open and exploratory areas in root biology. In this study, we developed a statistical modeling approach to investigate modulations of root system archi-tecture in response to nitrogen availability. Mathematical models were designed for quantitative assessment of root growth and root branching phenotypes and their dynamic relationships based on hierarchical configuration of primary and lateral roots formulating the fishbone-shaped root system architecture in Arabidopsis thaliana. Time-series datasets reporting dynamic changes in root developmental traits on different nitrate or ammonium concentrations were gener-ated for statistical analyses. Regression analyses unraveled key parameters associated with:(i) inhibition of primary root growth under nitrogen limitation or on ammonium;(i ) rapid progression of lateral root emergence in response to ammonium; and (i i) inhibition of lateral root elongation in the presence of excess nitrate or ammonium. This study provides a statistical framework for interpreting dynamic modulation of root system architecture, supported by meta-analysis of datasets displaying morphological responses of roots to diverse nitrogen supplies.

  12. Somatic hybrids between Arabidopsis thaliana and cytoplasmic male-sterile radish (Raphanus sativus).

    Science.gov (United States)

    Yamagishi, H; Glimelius, K

    2003-08-01

    Somatic hybrids were produced by protoplast fusion between Arabidopsis thaliana ecotype Columbia and a male-sterile radish line MS-Gensuke ( Raphanus sativus) with the Ogura cytoplasm. Forty-one shoots were differentiated from the regenerated calli and established as shoot cultures in vitro. About 20 of these shoots were judged to be hybrids based on growth characteristics and morphology. Molecular analyses of 11 shoots were performed, confirming the hybrid features. Of these 11 shoots, eight were established as rooted plants in the greenhouse. Polymerase chain reaction and randomly amplified polymorphic DNA analyses of the nuclear genomes of all analyzed shoots and plants confirmed that they contained hybrid DNA patterns. Their chromosome numbers also supported the hybrid nature of the plants. Investigations of the organelles in the hybrids revealed that the chloroplast (cp) genome was exclusively represented by radish cpDNA, while the mitochondrial DNA configuration showed a combination of both parental genomes as well as fragments unique to the hybrids. Hybrid plants that flowered were male-sterile independent of the presence of the Ogura CMS-gene orf138. PMID:12827437

  13. Polyol specificity of recombinant Arabidopsis thaliana sorbitol dehydrogenase studied by enzyme kinetics and in silico modeling

    Directory of Open Access Journals (Sweden)

    María Francisca eAguayo

    2015-02-01

    Full Text Available Polyols are enzymatically-produced plant compounds which can act as compatible solutes during periods of abiotic stress. NAD+-dependent SORBITOL DEHYDROGENASE (SDH, E.C. 1.1.1.14 from Arabidopsis thaliana L. (AtSDH is capable of oxidizing several polyols including sorbitol, ribitol and xylitol. In the present study, enzymatic assays using recombinant AtSDH demonstrated a higher specificity constant for xylitol compared to sorbitol and ribitol, all of which are C2 (S and C4 (R polyols. Enzyme activity was reduced by preincubation with ethylenediaminetetraacetic acid (EDTA, indicating a requirement for zinc ions. In humans, it has been proposed that sorbitol becomes part of a pentahedric coordination sphere of the catalytic zinc during the reaction mechanism. In order to determine the validity of this pentahedric coordination model in a plant SDH, homology modeling and Molecular Dynamics simulations of AtSDH ternary complexes with the three polyols were performed using crystal structures of human and Bemisia argentifolii (Genn. (Hemiptera: Aleyrodidae SDHs as scaffolds. The results indicate that the differences in interaction with structural water molecules correlate very well with the observed enzymatic parameters, validate the proposed pentahedric coordination of the catalytic zinc ion in a plant SDH, and provide an explanation for why AtSDH shows a preference for polyols with a chirality of C2 (S and C4 (R.

  14. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes.

    Science.gov (United States)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; de Almeida Engler, Janice; Gheysen, Godelieve

    2016-08-01

    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins during feeding site development in Arabidopsis thaliana roots. Data generated via promoter-reporter line and protein localization analyses evoke a model in which auxin is being imported at the basipetal side of the feeding site by the concerted action of the influx proteins AUX1 and LAX3, and the efflux protein PIN3. Mutants in auxin influx proteins AUX1 and LAX3 bear significantly fewer and smaller galls, revealing that auxin import into the feeding sites is needed for their development and expansion. The feeding site development in auxin export (PIN) mutants was only slightly hampered. Expression of some PINs appears to be suppressed in galls, probably to prevent auxin drainage. Nevertheless, a functional PIN4 gene seems to be a prerequisite for proper nematode development and gall expansion, most likely by removing excessive auxin to stabilize the hormone level in the feeding site. Our data also indicate a role of local auxin peaks in nematode attraction towards the root. PMID:27312670

  15. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Deshu Lin; Huibo Ren; Ying Fu

    2015-01-01

    In multicel ular plant organs, cel shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cel‐to‐cel communi-cation. Plants have a specific subfamily of the Rho GTPase family, usual y cal ed Rho of Plants (ROP), which serve as a critical signal transducer involved in many cel ular processes. In the last decade, important advances in the ROP‐mediated regulation of plant cel morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cel s. Especial y, the auxin‐ROP signaling networks have been demonstrated to control interdigitated growth of pavement cel s to form jigsaw‐puzzle shapes. Here, we review findings related to the discovery of this novel auxin‐signaling mecha-nism at the cel surface. This signaling pathway is to a large extent independent of the wel‐known Transport Inhibitor Response (TIR)–Auxin Signaling F‐Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane‐localized, transmembrane kinase (TMK) receptor‐like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self‐organizing feature al owing ROP proteins to serve as a bustling signal decoder and integrator for plant cel morphogenesis.

  16. Sample Preparation of Arabidopsis thaliana Shoot Apices for Expression Studies of Photoperiod-Induced Genes.

    Science.gov (United States)

    Andrés, Fernando; Torti, Stefano; Vincent, Coral; Coupland, George

    2016-01-01

    Plants produce new organs from a population of pluripotent cells which are located in specific tissues called meristems. One of these meristems, the shoot apical meristem (SAM), gives rise to leaves during the vegetative phase and flowers during the reproductive phase. The transition from vegetative SAM to an inflorescence meristem (IM) is a dramatic developmental switch, which has been particularly well studied in the model species Arabidopsis thaliana. This developmental switch is controlled by multiple environmental signals such as day length (or photoperiod), and it is accompanied by changes in expression of hundreds of genes. A major interest in plant biology is to identify and characterize those genes which are regulated in the stem cells of the SAM in response to the photoperiodic signals. In this sense, techniques such as RNA in situ hybridization (RNA ISH) have been very successfully employed to detect the temporal and spatial expression patterns of genes in the SAM. This method can be specifically optimized for photoperiodic-flowering studies. In this chapter, we describe improved methods to generate plant material and histological samples to be combined with RNA ISH in flowering-related studies. PMID:26867617

  17. Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsis thaliana.

    Science.gov (United States)

    Galvão, Vinicius Costa; Collani, Silvio; Horrer, Daniel; Schmid, Markus

    2015-12-01

    Distinct molecular mechanisms integrate changes in ambient temperature into the genetic pathways that govern flowering time in Arabidopsis thaliana. Temperature-dependent eviction of the histone variant H2A.Z from nucleosomes has been suggested to facilitate the expression of FT by PIF4 at elevated ambient temperatures. Here we show that, in addition to PIF4, PIF3 and PIF5, but not PIF1 and PIF6, can promote flowering when expressed specifically in phloem companion cells (PCC), where they can induce FT and its close paralog, TSF. However, despite their strong potential to promote flowering, genetic analyses suggest that the PIF genes seem to have only a minor role in adjusting flowering in response to photoperiod or high ambient temperature. In addition, loss of PIF function only partially suppressed the early flowering phenotype and FT expression of the arp6 mutant, which is defective in H2A.Z deposition. In contrast, the chemical inhibition of gibberellic acid (GA) biosynthesis resulted in a strong attenuation of early flowering and FT expression in arp6. Furthermore, GA was able to induce flowering at low temperature (15°C) independently of FT, TSF, and the PIF genes, probably directly at the shoot apical meristem. Together, our results suggest that the timing of the floral transition in response to ambient temperature is more complex than previously thought and that GA signaling might play a crucial role in this process. PMID:26466761

  18. Characterization of a novel Kazal-type serine proteinase inhibitor of Arabidopsis thaliana.

    Science.gov (United States)

    Pariani, Sebastián; Contreras, Marisol; Rossi, Franco R; Sander, Valeria; Corigliano, Mariana G; Simón, Francisco; Busi, María V; Gomez-Casati, Diego F; Pieckenstain, Fernando L; Duschak, Vilma G; Clemente, Marina

    2016-04-01

    Many different types of serine proteinase inhibitors have been involved in several kinds of plant physiological processes, including defense mechanisms against phytopathogens. Kazal-type serine proteinase inhibitors, which are included in the serine proteinase inhibitor family, are present in several organisms. These proteins play a regulatory role in processes that involve serine proteinases like trypsin, chymotrypsin, thrombin, elastase and/or subtilisin. In the present work, we characterized two putative Kazal-type serine proteinase inhibitors from Arabidopsis thaliana, which have a single putative Kazal-type domain. The expression of these inhibitors is transiently induced in response to leaf infection by Botrytis cinerea, suggesting that they play some role in defense against pathogens. We also evaluated the inhibitory specificity of one of the Kazal-type serine proteinase inhibitors, which resulted to be induced during the local response to B. cinerea infection. The recombinant Kazal-type serine proteinase inhibitor displayed high specificity for elastase and subtilisin, but low specificity for trypsin, suggesting differences in its selectivity. In addition, this inhibitor exhibited a strong antifungal activity inhibiting the germination rate of B. cinerea conidia in vitro. Due to the important role of proteinase inhibitors in plant protection against pathogens and pests, the information about Kazal-type proteinase inhibitors described in the present work could contribute to improving current methods for plant protection against pathogens. PMID:26853817

  19. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana.

    Science.gov (United States)

    Weraduwage, Sarathi M; Chen, Jin; Anozie, Fransisca C; Morales, Alejandro; Weise, Sean E; Sharkey, Thomas D

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696

  20. QTL mapping in new Arabidopsis thaliana advanced intercross-recombinant inbred lines.

    Directory of Open Access Journals (Sweden)

    Sureshkumar Balasubramanian

    Full Text Available BACKGROUND: Even when phenotypic differences are large between natural or domesticated strains, the underlying genetic basis is often complex, and causal genomic regions need to be identified by quantitative trait locus (QTL mapping. Unfortunately, QTL positions typically have large confidence intervals, which can, for example, lead to one QTL being masked by another, when two closely linked loci are detected as a single QTL. One strategy to increase the power of precisely localizing small effect QTL, is the use of an intercross approach before inbreeding to produce Advanced Intercross RILs (AI-RILs. METHODOLOGY/PRINCIPAL FINDINGS: We present two new AI-RIL populations of Arabidopsis thaliana genotyped with an average intermarker distance of 600 kb. The advanced intercrossing design led to expansion of the genetic map in the two populations, which contain recombination events corresponding to 50 kb/cM in an F(2 population. We used the AI-RILs to map QTL for light response and flowering time, and to identify segregation distortion in one of the AI-RIL populations due to a negative epistatic interaction between two genomic regions. CONCLUSIONS/SIGNIFICANCE: The two new AI-RIL populations, EstC and KendC, derived from crosses of Columbia (Col to Estland (Est-1 and Kendallville (Kend-L provide an excellent resource for high precision QTL mapping. Moreover, because they have been genotyped with over 100 common markers, they are also excellent material for comparative QTL mapping.

  1. Ky-2, a Histone Deacetylase Inhibitor, Enhances High-Salinity Stress Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Sako, Kaori; Kim, Jong-Myong; Matsui, Akihiro; Nakamura, Kotaro; Tanaka, Maho; Kobayashi, Makoto; Saito, Kazuki; Nishino, Norikazu; Kusano, Miyako; Taji, Teruaki; Yoshida, Minoru; Seki, Motoaki

    2016-04-01

    Adaptation to environmental stress requires genome-wide changes in gene expression. Histone modifications are involved in gene regulation, but the role of histone modifications under environmental stress is not well understood. To reveal the relationship between histone modification and environmental stress, we assessed the effects of inhibitors of histone modification enzymes during salinity stress. Treatment with Ky-2, a histone deacetylase inhibitor, enhanced high-salinity stress tolerance in Arabidopsis. We confirmed that Ky-2 possessed inhibition activity towards histone deacetylases by immunoblot analysis. To investigate how Ky-2 improved salt stress tolerance, we performed transcriptome and metabolome analysis. These data showed that the expression of salt-responsive genes and salt stress-related metabolites were increased by Ky-2 treatment under salinity stress. A mutant deficient inAtSOS1(Arabidopis thaliana SALT OVERLY SENSITIVE 1), which encodes an Na(+)/H(+)antiporter and was among the up-regulated genes, lost the salinity stress tolerance conferred by Ky-2. We confirmed that acetylation of histone H4 atAtSOS1was increased by Ky-2 treatment. Moreover, Ky-2 treatment decreased the intracellular Na(+)accumulation under salinity stress, suggesting that enhancement of SOS1-dependent Na(+)efflux contributes to increased high-salinity stress tolerance caused by Ky-2 treatment. PMID:26657894

  2. Identification of Adenyl Cyclase Activity in a Disease Resistance Protein in Arabidopsis thaliana

    KAUST Repository

    Hussein, Rana

    2012-11-01

    Cyclic nucleotide, cAMP, is an important signaling molecule in animals and plants. However, in plants the enzymes that synthesize this second messenger, adenyl cyclases (ACs), remain elusive. Given the physiological importance of cAMP in signaling, particularly in response to biotic and abiotic stresses, it is thus important to identify and characterize ACs in higher plants. Using computational approaches, a disease resistance protein from Arabidopsis thaliana, At3g04220 was found to have an AC catalytic center motif. In an attempt to prove that this candidate has adenyl cyclases activity in vitro, the coding sequence of the putative AC catalytic domain of this protein was cloned and expressed in E. coli and the recombinant protein was purified. The nucleotide cyclase activity of the recombinant protein was examined using cyclic nucleotide enzyme immunoassays. In parallel, the expression of At3g04220 was measured in leaves under three different stress conditions in order to determine under which conditions the disease resistance protein could function. Results show that the purified recombinant protein has Mn2+ dependent AC activity in vitro, and the expression analysis supports a role for At3g04220 and cAMP in plant defense.

  3. Gibberellic acid and cGMP-dependent transcriptional regulation in arabidopsis thaliana

    KAUST Repository

    Bastian, René

    2010-03-01

    An ever increasing amount of transcriptomic data and analysis tools provide novel insight into complex responses of biological systems. Given these resources we have undertaken to review aspects of transcriptional regulation in response to the plant hormone gibberellic acid (GA) and its second messenger guanosine 3\\',5\\'-cyclic monophosphate (cGMP) in Arabidopsis thaliana, both wild type and selected mutants. Evidence suggests enrichment of GA-responsive (GARE) elements in promoters of genes that are transcriptionally upregulated in response to cGMP but downregulated in a GA insensitive mutant (ga1-3). In contrast, in the genes upregulated in the mutant, no enrichment in the GARE is observed suggesting that GARE motifs are diagnostic for GA-induced and cGMP-dependent transcriptional upregulation. Further, we review how expression studies of GA-dependent transcription factors and transcriptional networks based on common promoter signatures derived from ab initio analyses can contribute to our understanding of plant responses at the systems level. © 2010 Landes Bioscience.

  4. Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana

    KAUST Repository

    Thomas, Ludivine

    2013-05-01

    The second messenger 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenylyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, are increasingly recognized as important signaling molecules in a number of physiological responses in higher plants. Here we used proteomics to identify cAMP-dependent protein signatures in Arabidopsis thaliana and identify a number of differentially expressed proteins with a role in light- and temperature-dependent responses, notably photosystem II subunit P-1, plasma membrane associated cation-binding protein and chaperonin 60 β. Based on these proteomics results we conclude that, much like in cyanobacteria, algae and fungi, cAMP may have a role in light signaling and the regulation of photosynthesis as well as responses to temperature and we speculate that ACs could act as light and/or temperature sensors in higher plants. Biological significance: This current study is significant since it presents the first proteomic response to cAMP, a novel and key second messenger in plants. It will be relevant to researchers in plant physiology and in particular those with an interest in second messengers and their role in biotic and abiotic stress responses. © 2013 Elsevier B.V.

  5. Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant

    Indian Academy of Sciences (India)

    Swadhin Swain; Nidhi Singh; Ashis Kumar Nandi

    2015-03-01

    A sustainable balance between defence and growth is essential for optimal fitness under pathogen stress. Plants activate immune response at the cost of normal metabolic requirements. Thus, plants that constitutively activate defence are deprived of growth. Arabidopsis thaliana mutant constitutive defence without defect in growth and development1 (cdd1) is an exception. The cdd1 mutant is constitutive for salicylic acid accumulation, signalling, and defence against biotrophic and hemibiotrophic pathogens, without having much impact on growth. Thus, cdd1 offers an ideal genetic background to identify novel regulators of plant defence. Here we report the differential gene expression profile between cdd1 and wild-type plants as obtained by microarray hybridization. Expression of several defence-related genes also supports constitutive activation of defence in cdd1. We screened T-DNA insertion mutant lines of selected genes, for resistance against virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Through bacterial resistance, callose deposition and pathogenesis-associated expression analyses, we identified four novel regulators of plant defence. Resistance levels in the mutants suggest that At2g19810 and [rom] At5g05790 are positive regulators, whereas At1g61370 and At3g42790 are negative regulators of plant defence against bacterial pathogens.

  6. Photosynthetic Properties of Photosystem Ⅱ in Arabidopsis thaliana Ipa1 Mutant

    Institute of Scientific and Technical Information of China (English)

    Lian-Wei Peng; Jin-Kui Guo; Jin-Fang Ma; Wei Chi; Li-Xin Zhang

    2006-01-01

    In a previous study, we characterized a high chlorophyll fluorescence Ipa1 mutant of Arabidopsis thaliana,in which approximately 20% photosystem (PS) Ⅱ protein is accumulated. In the present study, analysis of fluorescence decay kinetics and thermoluminescence profiles demonstrated that the electron transfer reaction on either the donor or acceptor side of PSll remained largely unaffected in the Ipa1 mutant. In the mutant, maximal photochemical efficiency (Fv/Fm, where Fm is the maximum fluorescence yield and Fv is variable fluorescence) decreased with increasing light intensity and remained almost unchanged in wildtype plants under different light conditions. The Fv/Fm values also increased when mutant plants were transferred from standard growth light to low light conditions. Analysis of PSⅡ protein accumulation further confirmed that the amount of PSll reaction center protein is correlated with changes in Fv/Fm in Ipa1 plants.Thus, the assembled PSll in the mutant was functional and also showed increased photosensitivity compared with wild-type plants.

  7. Changes in leaf proteome profile of Arabidopsis thaliana in response to salicylic acid

    Indian Academy of Sciences (India)

    Riddhi Datta; Ragini Sinha; Sharmila Chattopadhyay

    2013-06-01

    Salicylic acid (SA) has been implicated in determining the outcome of interactions between many plants and their pathogens. Global changes in response to this phytohormone have been observed at the transcript level, but little is known of how it induces changes in protein abundance. To this end we have investigated the effect of 1 mM SA on soluble proteins of Arabidopsis thaliana leaves by proteomic analysis. An initial study at transcript level has been performed on temporal landscape, which revealed that induction of most of the SA-responsive genes occurs within 3 to 6 h post treatment (HPT) and the expression peaked within 24 HPT. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF MS/MS analysis has been used to identify differentially expressed proteins and 63 spots have been identified successfully. This comparative proteomic profiling of SA treated leaves versus control leaves demonstrated the changes of many defence related proteins like pathogenesis related protein 10a (PR10a), disease-resistance-like protein, putative late blight-resistance protein, WRKY4, MYB4, etc. along with gross increase in the rate of energy production, while other general metabolism rate is slightly toned down, presumably signifying a transition from ‘normal mode’ to ‘defence mode’.

  8. Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia and Arabidopsis thaliana seedlings

    Science.gov (United States)

    Sedbrook, J. C.; Kronebusch, P. J.; Borisy, G. G.; Trewavas, A. J.; Masson, P. H.

    1996-01-01

    Using the transgenic AEQUORIN system, we showed that the cotyledons and leaves of Arabidopsis thaliana seedlings developed a biphasic luminescence response to anoxia, indicating changes in cytosolic Ca2+ levels. A fast and transient luminescence peak occurred within minutes of anoxia, followed by a second, prolonged luminescence response that lasted 1.5 to 4 h. The Ca2+ channel blockers Gd3+, La3+, and ruthenium red (RR) partially inhibited the first response and promoted a larger and earlier second response, suggesting different origins for these responses. Both Gd3+ and RR also partially inhibited anaerobic induction of alcohol dehydrogenase gene expression. However, although anaerobic alcohol dehydrogenase gene induction occurred in seedlings exposed to water-agar medium and in roots, related luminescence responses were absent. Upon return to normoxia, the luminescence of cotyledons, leaves, and roots dropped quickly, before increasing again in a Gd3+, La3+, ethyleneglycol-bis(beta-aminoethyl ether)-N,N'-tetraacetic acid-, and RR-sensitive fashion.

  9. Overexpression of Rice Glutaredoxin OsGrx_C7 and OsGrx_C2.1 Reduces Intracellular Arsenic Accumulation and Increases Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Verma, Pankaj K; Verma, Shikha; Pande, Veena; Mallick, Shekhar; Deo Tripathi, Rudra; Dhankher, Om P; Chakrabarty, Debasis

    2016-01-01

    Glutaredoxins (Grxs) are a family of small multifunctional proteins involved in various cellular functions, including redox regulation and protection under oxidative stress. Despite the high number of Grx genes in plant genomes (48 Grxs in rice), the biological functions and physiological roles of most of them remain unknown. Here, the functional characterization of the two arsenic-responsive rice Grx family proteins, OsGrx_C7 and OsGrx_C2.1 are reported. Over-expression of OsGrx_C7 and OsGrx_C2.1 in transgenic Arabidopsis thaliana conferred arsenic (As) tolerance as reflected by germination, root growth assay, and whole plant growth. Also, the transgenic expression of OsGrxs displayed significantly reduced As accumulation in A. thaliana seeds and shoot tissues compared to WT plants during both AsIII and AsV stress. Thus, OsGrx_C7 and OsGrx_C2.1 seem to be an important determinant of As-stress response in plants. OsGrx_C7 and OsGrx_C2.1 transgenic showed to maintain intracellular GSH pool and involved in lowering AsIII accumulation either by extrusion or reducing uptake by altering the transcript of A. thaliana AtNIPs. Overall, OsGrx_C7 and OsGrx_C2.1 may represent a Grx family protein involved in As stress response and may allow a better understanding of the As induced stress pathways and the design of strategies for the improvement of stress tolerance as well as decreased As content in crops. PMID:27313586

  10. Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2.1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Verma

    2016-06-01

    Full Text Available Glutaredoxins (Grxs are a family of small multifunctional proteins involved in various cellular functions, including redox regulation and protection under oxidative stress. Despite the high number of Grx genes in plant genomes (48 Grxs in rice, the biological functions and physiological roles of most of them remain unknown. Here, the functional characterization of the two arsenic-responsive rice Grx family proteins, OsGrx_C7 and OsGrx_C2.1 are reported. Over-expression of OsGrx_C7 and OsGrx_C2.1 in transgenic Arabidopsis thaliana conferred arsenic (As tolerance as reflected by germination, root growth assay, and whole plant growth. Also, the transgenic expression of OsGrxs displayed significantly reduced As accumulation in A. thaliana seeds and shoot tissues compared to WT plants during both AsIII and AsV stress. Thus, OsGrx_C7 and OsGrx_C2.1 seem to be an important determinant of As-stress response in plants. OsGrx_C7 and OsGrx_C2.1 transgenic showed to maintain intracellular GSH pool and involved in lowering AsIII accumulation either by extrusion or reducing uptake by altering the transcript of A. thaliana AtNIPs. Overall, OsGrx_C7 and OsGrx_C2.1 may represent a Grx family protein involved in As stress response and may allow a better understanding of the As induced stress pathways and the design of strategies for the improvement of stress tolerance as well as decreased As content in crops.

  11. Molecular and biochemical characterizations of the monoacylglycerol lipase gene family of Arabidopsis thaliana.

    Science.gov (United States)

    Kim, Ryeo Jin; Kim, Hae Jin; Shim, Donghwan; Suh, Mi Chung

    2016-03-01

    Monoacylglycerol lipase (MAGL) catalyzes the last step of triacylglycerol breakdown, which is the hydrolysis of monoacylglycerol (MAG) to fatty acid and glycerol. Arabidopsis harbors over 270 genes annotated as 'lipase', the largest class of acyl lipid metabolism genes that have not been characterized experimentally. In this study, computational modeling suggested that 16 Arabidopsis putative MAGLs (AtMAGLs) have a three-dimensional structure that is similar to a human MAGL. Heterologous expression and enzyme assays indicated that 11 of the 16 encoded proteins indeed possess MAG lipase activity. Additionally, AtMAGL4 displayed hydrolase activity with lysophosphatidylcholine and lysophosphatidylethanolamine (LPE) substrates and AtMAGL1 and 2 utilized LPE as a substrate. All recombinant AtMAGLs preferred MAG substrates with unsaturated fatty acids over saturated fatty acids and AtMAGL8 exhibited the highest hydrolase activities with MAG containing 20:1 fatty acids. Except for AtMAGL4, -14 and -16, all AtMAGLs showed similar activity with both sn-1 and sn-2 MAG isomers. Spatial, temporal and stress-induced expression of the 16 AtMAGL genes was analyzed by transcriptome analyses. AtMAGL:eYFP fusion proteins provided initial evidence that AtMAGL1, -3, -6, -7, -8, -11, -13, -14 and -16 are targeted to the endoplasmic reticulum and/or Golgi network, AtMAGL10, -12 and -15 to the cytosol and AtMAGL2, -4 and -5 to the chloroplasts. Furthermore, AtMAGL8 was associated with the surface of oil bodies in germinating seeds and leaves accumulating oil bodies. This study provides the broad characterization of one of the least well-understood groups of Arabidopsis lipid-related enzymes and will be useful for better understanding their roles in planta. PMID:26932457

  12. Expression of mouse MGAT in Arabidopsis results in increased lipid accumulation in seeds

    Directory of Open Access Journals (Sweden)

    Anna eEl Tahchy

    2015-12-01

    Full Text Available Worldwide demand for vegetable oil is projected to double within the next thirty years due to increasing food, fuel and industrial requirements. There is therefore great interest in metabolic engineering strategies that boost oil accumulation in plant tissues, however, efforts to date have only achieved levels of storage lipid accumulation in plant tissues far below the benchmark to meet demand. Monoacylglycerol acyltransferase (MGAT is predominantly associated with lipid absorption and resynthesis in the animal intestine where it catalyses monoacylglycerol (MAG to form diacylglycerol (DAG, and then triacylglycerol (TAG. In contrast plant lipid biosynthesis routes do not include MGAT. Rather, DAG and TAG are either synthesized from glycerol-3-phosphate (G-3-P by a series of three subsequent acylation reactions, or originate from phospholipids via an acyl editing pathway. Mouse MGATs 1 and 2 have been shown to increase oil content transiently in Nicotiana benthamiana leaf tissue by 2.6 fold. Here we explore the feasibility of this approach to increase TAG in Arabidopsis thaliana seed. The stable MGAT2 expression resulted in a significant increase in seed oil content by 1.32 fold. We also report evidence of the MGAT2 activity based on in vitro assays. Up to 3.9 fold increase of radiolabelled DAG were produced in seed lysate which suggest that the transgenic MGAT activity can result in DAG re-synthesis by salvaging the MAG product of lipid breakdown. The expression of MGAT2 therefore creates an independent and complementary TAG biosynthesis route to the endogenous Kennedy pathway and other glycerolipid synthesis routes.

  13. SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat.

    Directory of Open Access Journals (Sweden)

    Chiara Mizzotti

    2014-12-01

    Full Text Available The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR, which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites.

  14. A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation

    Directory of Open Access Journals (Sweden)

    Gray John C

    2006-11-01

    Full Text Available Abstract Background The floral dip method of transformation by immersion of inflorescences in a suspension of Agrobacterium is the method of choice for Arabidopsis transformation. The presence of a marker, usually antibiotic- or herbicide-resistance, allows identification of transformed seedlings from untransformed seedlings. Seedling selection is a lengthy process which does not always lead to easily identifiable transformants. Selection for kanamycin-, phosphinothricin- and hygromycin B-resistance commonly takes 7–10 d and high seedling density and fungal contamination may result in failure to recover transformants. Results A method for identifying transformed seedlings in as little as 3.25 d has been developed. Arabidopsis T1 seeds obtained after floral dip transformation are plated on 1% agar containing MS medium and kanamycin, phosphinothricin or hygromycin B, as appropriate. After a 2-d stratification period, seeds are subjected to a regime of 4–6 h light, 48 h dark and 24 h light (3.25 d. Kanamycin-resistant and phosphinothricin-resistant seedlings are easily distinguished from non-resistant seedlings by green expanded cotyledons whereas non-resistant seedlings have pale unexpanded cotyledons. Seedlings grown on hygromycin B differ from those grown on kanamycin and phosphinothricin as both resistant and non-resistant seedlings are green. However, hygromycin B-resistant seedlings are easily identified as they have long hypocotyls (0.8–1.0 cm whereas non-resistant seedlings have short hypocotyls (0.2–0.4 cm. Conclusion The method presented here is an improvement on current selection methods as it allows quicker identification of transformed seedlings: transformed seedlings are easily discernable from non-transformants in as little as 3.25 d in comparison to the 7–10 d required for selection using current protocols.

  15. Mutation of a Gene in the Fungus Leptosphaeria maculans Allows Increased Frequency of Penetration of Stomatal Apertures of Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Candace E. Elliott; Harjono; Barbara J. Howlett

    2008-01-01

    Leptosphaeria maculans, a pathogen of Brassica napus, is unable to invade most wild-type accessions of Arabidopsis thaliana, although several mutants are susceptible. The infection pathway of L. maculans via a non-invasive inoculation method on A, thaliana Ires1 (undefined), pmr4-1 (defective in callose deposition), and pen1-1 and pen2-1 (defective in non-host responses to several pathogens) mutants is described. On wild types Col-0 and Ler-0, hyphae are generally arrested at stomatal apertures. A T-DNA insertional mutant of L. maculans (A22) that penetrates stomatal apertures of Col-0 and Ler-0 five to seven times more often than the wild-type isolate is described. The higher penetration frequency of isolate A22 is associated with an increased hypersensitive response, which includes callose deposition. Complementation analysis showed that the phenotype of this isolate is due to T-DNA insertion in an intronless gene denoted as ipa (increased penetration on Arabidopsis). This gene is predicted to encode a protein of 702 amino acids with best matches to hypothetical proteins in other filamentous ascomycetes. The ipa gene is expressed in the wild-type isolate at low levels in culture and during infection of A. thaliana and B. napus.

  16. Effect of cultural conditions on the seed-to-seed growth of Arabidopsis and Cardamine - A study of growth rates and reproductive development as affected by test tube seals

    Science.gov (United States)

    Hoshizaki, T.

    1982-01-01

    The effects of test tube seals on the growth, flowering, and seed pod formation of Arabidopsis thaliana (L.) Heynh., mouse ear cress, and Cardamine oligosperma Nutt, bitter cress, are studied in order to assess the conditions used in weightlessness experiments. Among other results, it is found that the growth (height) and flowering (date of bud appearance) were suppressed in mouse ear cress in tubes sealed with Saran. Seed pod formation which occurred by day 45 in open-to-air controls, was still lacking in the sealed plants even up to day 124. The growth and flowering of bitter cress were also suppressed by the Saran seal, although up to day 55 the Saran-sealed plants were taller. It is suggested that atmospheric composition was the cause of the suppression of growth, flowering, and seed pod development in these plants, since the mouse ear cress renewed their growth and then set seed pods after the Saran seal was ruptured.

  17. THE ROLE OF THE SLEEPY1 (SLY1) F-BOX GENE IN GA REGULATION OF SEED GERMINATION IN ARABIDOPSIS

    Science.gov (United States)

    17th International Conference on Arabidopsis Research, June 28-July 2, 2006, Madison, WI. Abstract #378. Seed germination is a complex developmental process regulated by phytohormones. The phytohormone abscisic acid (ABA) inhibits seed germination, whereas gibberellin (GA) stimulates seed germinat...

  18. A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Valle Estela M

    2009-10-01

    Full Text Available Abstract Background Transcription initiation by RNA polymerase II is unidirectional from most genes. In plants, divergent genes, defined as non-overlapping genes organized head-to-head, are highly represented in the Arabidopsis genome. Nevertheless, there is scarce evidence on functional analyses of these intergenic regions. The At5g06290 and At5g06280 loci are head-to-head oriented and encode a chloroplast-located 2-Cys peroxiredoxin B (2CPB and a protein of unknown function (PUF, respectively. The 2-Cys peroxiredoxins are proteins involved in redox processes, they are part of the plant antioxidant defence and also act as chaperons. In this study, the transcriptional activity of a small intergenic region (351 bp shared by At5g06290 and At5g06280 in Arabidopsis thaliana was characterized. Results Activity of the intergenic region in both orientations was analyzed by driving the β-glucuronidase (GUS reporter gene during the development and growth of Arabidopsis plants under physiological and stressful conditions. Results have shown that this region drives expression either of 2cpb or puf in photosynthetic or vascular tissues, respectively. GUS expression driven by the promoter in 2cpb orientation was enhanced by heat stress. On the other hand, the promoter in both orientations has shown similar down-regulation of GUS expression under low temperatures and other stress conditions such as mannitol, oxidative stress, or fungal elicitor. Conclusion The results from this study account for the first evidence of an intergenic region that, in opposite orientation, directs GUS expression in different spatially-localized Arabidopsis tissues in a mutually exclusive manner. Additionally, this is the first demonstration of a small intergenic region that drives expression of a gene whose product is involved in the chloroplast antioxidant defence such as 2cpb. Furthermore, these results contribute to show that 2cpb is related to the heat stress defensive system

  19. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Baumgarten Andrew

    2004-06-01

    Full Text Available Abstract Background Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. Results Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. Conclusions Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.

  20. Genetic and environmental control of the Verticillium syndrome in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Diederichsen Elke

    2010-11-01

    Full Text Available Abstract Background Verticillium spp. are major pathogens of dicotyledonous plants such as cotton, tomato, olive or oilseed rape. Verticillium symptoms are often ambiguous and influenced by development and environment. The aim of the present study was to define disease and resistance traits of the complex Verticillium longisporum syndrome in Arabidopsis thaliana (L. Heynh. A genetic approach was used to determine genetic, developmental and environmental factors controlling specific disease and resistance traits and to study their interrelations. Results A segregating F2/F3 population originating from ecotypes 'Burren' (Bur and 'Landsberg erecta' (Ler was established. Plants were root-dip inoculated and tested under greenhouse conditions. The Verticillium syndrome was dissected into components like systemic spread, stunting, development time and axillary branching. Systemic spread of V. longisporum via colonisation of the shoot was extensive in Ler; Bur showed a high degree of resistance against systemic spread. Fungal colonisation of the shoot apex was determined by (a determining the percentage of plants from which the fungus could be re-isolated and (b measuring fungal DNA content with quantitative real-time PCR (qPCR. Four quantitative trait loci (QTL controlling systemic spread were identified for the percentage of plants showing fungal outgrowth, two of these QTL were confirmed with qPCR data. The degree of colonisation by V. longisporum was negatively correlated with development time. QTL controlling development time showed some overlap with QTL for resistance to systemic spread. Stunting depended on host genotype, development time and seasonal effects. Five QTL controlling this trait were identified which did not co-localize with QTL controlling systemic spread. V. longisporum induced increased axillary branching in Bur; two QTL controlling this reaction were found. Conclusions Systemic spread of V. longisporum in the host as well as