WorldWideScience

Sample records for arabidopsis small heat

  1. The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis

    Science.gov (United States)

    Sedaghatmehr, Mastoureh; Mueller-Roeber, Bernd; Balazadeh, Salma

    2016-01-01

    Acquired tolerance to heat stress is an increased resistance to elevated temperature following a prior exposure to heat. The maintenance of acquired thermotolerance in the absence of intervening stress is called ‘thermomemory' but the mechanistic basis for this memory is not well defined. Here we show that Arabidopsis HSP21, a plastidial small heat shock protein that rapidly accumulates after heat stress and remains abundant during the thermomemory phase, is a crucial component of thermomemory. Sustained memory requires that HSP21 levels remain high. Through pharmacological interrogation and transcriptome profiling, we show that the plastid-localized metalloprotease FtsH6 regulates HSP21 abundance. Lack of a functional FtsH6 protein promotes HSP21 accumulation during the later stages of thermomemory and increases thermomemory capacity. Our results thus reveal the presence of a plastidial FtsH6–HSP21 control module for thermomemory in plants. PMID:27561243

  2. Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis enhances tolerance to abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Changjun Mu

    Full Text Available Small heat shock proteins (smHSPs play important and extensive roles in plant defenses against abiotic stresses. We cloned a gene for a smHSP from the David Lily (Lilium davidii (E. H. Wilson Raffill var. Willmottiae, which we named LimHSP16.45 based on its protein molecular weight. Its expression was induced by many kinds of abiotic stresses in both the lily and transgenic plants of Arabidopsis. Heterologous expression enhanced cell viability of the latter under high temperatures, high salt, and oxidative stress, and heat shock granules (HSGs formed under heat or salinity treatment. Assays of enzymes showed that LimHSP16.45 overexpression was related to greater activity by superoxide dismutase and catalase in transgenic lines. Therefore, we conclude that heterologous expression can protect plants against abiotic stresses by preventing irreversible protein aggregation, and by scavenging cellular reactive oxygen species.

  3. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress.

    Science.gov (United States)

    Zhong, Linlin; Zhou, Wen; Wang, Haijun; Ding, Shunhua; Lu, Qingtao; Wen, Xiaogang; Peng, Lianwei; Zhang, Lixin; Lu, Congming

    2013-08-01

    Compared with small heat shock proteins (sHSPs) in other organisms, those in plants are the most abundant and diverse. However, the molecular mechanisms by which sHSPs are involved in cell protection remain unknown. Here, we characterized the role of HSP21, a plastid nucleoid-localized sHSP, in chloroplast development under heat stress. We show that an Arabidopsis thaliana knockout mutant of HSP21 had an ivory phenotype under heat stress. Quantitative real-time RT-PCR, run-on transcription, RNA gel blot, and polysome association analyses demonstrated that HSP21 is involved in plastid-encoded RNA polymerase (PEP)-dependent transcription. We found that the plastid nucleoid protein pTAC5 was an HSP21 target. pTAC5 has a C4-type zinc finger similar to that of Escherichia coli DnaJ and zinc-dependent disulfide isomerase activity. Reduction of pTAC5 expression by RNA interference led to similar phenotypic effects as observed in hsp21. HSP21 and pTAC5 formed a complex that was associated mainly with the PEP complex. HSP21 and pTAC5 were associated with the PEP complex not only during transcription initiation, but also during elongation and termination. Our results suggest that HSP21 and pTAC5 are required for chloroplast development under heat stress by maintaining PEP function.

  4. NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Zhou, Yuliang; Chen, Huhui; Chu, Pu; Li, Yin; Tan, Bin; Ding, Yu; Tsang, Edward W T; Jiang, Liwen; Wu, Keqiang; Huang, Shangzhi

    2012-02-01

    In plants, small heat shock proteins (sHSPs) are unusually abundant and diverse proteins involved in various abiotic stresses, but their functions in seed vigor remain to be fully explored. In this study, we report the isolation and functional characterization of a sHSP gene, NnHSP17.5, from sacred lotus (Nelumbo nucifera Gaertn.) in seed germination vigor and seedling thermotolerance. Sequence alignment and phylogenetic analysis indicate that NnHSP17.5 is a cytosolic class II sHSP, which was further supported by the cytosolic localization of the NnHSP17.5-YFP fusion protein. NnHSP17.5 was specifically expressed in seeds under normal conditions, and was strongly up-regulated in germinating seeds upon heat and oxidative stresses. Transgenic Arabidopsis seeds ectopically expressing NnHSP17.5 displayed enhanced seed germination vigor and exhibited increased superoxide dismutase activity after accelerated aging treatment. In addition, improved basal thermotolerance was also observed in the transgenic seedlings. Taken together, this work highlights the importance of a plant cytosolic class II sHSP both in seed germination vigor and seedling thermotolerance.

  5. Small RNA-directed epigenetic natural variation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jixian Zhai

    2008-04-01

    Full Text Available Progress in epigenetics has revealed mechanisms that can heritably regulate gene function independent of genetic alterations. Nevertheless, little is known about the role of epigenetics in evolution. This is due in part to scant data on epigenetic variation among natural populations. In plants, small interfering RNA (siRNA is involved in both the initiation and maintenance of gene silencing by directing DNA methylation and/or histone methylation. Here, we report that, in the model plant Arabidopsis thaliana, a cluster of approximately 24 nt siRNAs found at high levels in the ecotype Landsberg erecta (Ler could direct DNA methylation and heterochromatinization at a hAT element adjacent to the promoter of FLOWERING LOCUS C (FLC, a major repressor of flowering, whereas the same hAT element in ecotype Columbia (Col with almost identical DNA sequence, generates a set of low abundance siRNAs that do not direct these activities. We have called this hAT element MPF for Methylated region near Promoter of FLC, although de novo methylation triggered by an inverted repeat transgene at this region in Col does not alter its FLC expression. DNA methylation of the Ler allele MPF is dependent on genes in known silencing pathways, and such methylation is transmissible to Col by genetic crosses, although with varying degrees of penetrance. A genome-wide comparison of Ler and Col small RNAs identified at least 68 loci matched by a significant level of approximately 24 nt siRNAs present specifically in Ler but not Col, where nearly half of the loci are related to repeat or TE sequences. Methylation analysis revealed that 88% of the examined loci (37 out of 42 were specifically methylated in Ler but not Col, suggesting that small RNA can direct epigenetic differences between two closely related Arabidopsis ecotypes.

  6. Regulation of Arabidopsis root development by small signaling peptides

    Directory of Open Access Journals (Sweden)

    Christina eDelay

    2013-09-01

    Full Text Available Plant root systems arise de novo from a single embryonic root. Complex and highly coordinated developmental networks are required to ensure the formation of lateral organs maximises plant fitness. The Arabidopsis root is well suited to dissection of regulatory and developmental networks due to its highly ordered, predictable structure. A myriad of regulatory signalling networks control the development of plant roots, from the classical hormones such as auxin and cytokinin to short-range positional signalling molecules that relay information between neighbouring cells. Small signaling peptides are a growing class of regulatory molecules involved in many aspects of root development including meristem maintenance, the gravitropic response, lateral root development and vascular formation. Here, recent findings on the roles of regulatory peptides in these aspects of root development are discussed.

  7. The Swiss Heating Reactor for district heating of small communities

    International Nuclear Information System (INIS)

    With fossil fuel running out in the foreseeable future, it is essential to develop substitution strategies. The heat market in industrial countries in the Northern Hemisphere has two peaks. The dominant one occurs at --900C and is due to the energy demand for space heating and warm water production. A smaller peak, mainly for metallurgical processes, occurs at --13000C. From thermodynamics considerations, using the high flame temperature of fossil fuels - or electricity - to supply the lower temperature range is obviously wasteful. On the other hand, contemporary light water reactor (LWR) technology makes it feasible to provide the space heating sector with hot water in a district heating network. Basically, existing reactor systems are adequate for this. Some 40 to 50% of the heat demand arises in the range below 1200C, causing a corresponding fraction of air pollution by SO/sub 2/ and to a lesser extent NO/sub x/, if fossil fuels are used. When analyzing an adequate district heating system, units in the 10- 50-MW power range are found to be most suitable for Switzerland, both with respect to network size and the democratic decision-making structure. They would have the best chance of penetrating and covering the heat market. In a cooperative effort among some members of Swiss industry and the Swiss Federal Institute for Reactor Research, a small LWR for heating purposes only is being developed. The Swiss Heating Reactor (SHR) is a small, 15-bar boiling water reactor. Its core, together with its primary heat exchanger, is located in a reactor pressure vessel and a shroud within an underground water pool

  8. Wheat chloroplast targeted sHSP26 promoter confers heat and abiotic stress inducible expression in transgenic Arabidopsis Plants.

    Directory of Open Access Journals (Sweden)

    Neetika Khurana

    Full Text Available The small heat shock proteins (sHSPs have been found to play a critical role in physiological stress conditions in protecting proteins from irreversible aggregation. To characterize the hloroplast targeted sHSP26 promoter in detail, deletion analysis of the promoter is carried out and analysed via transgenics in Arabidopsis. In the present study, complete assessment of the importance of CCAAT-box elements along with Heat shock elements (HSEs in the promoter of sHSP26 was performed. Moreover, the importance of 5' untranslated region (UTR has also been established in the promoter via Arabidopsis transgenics. An intense GUS expression was observed after heat stress in the transgenics harbouring a full-length promoter, confirming the heat-stress inducibility of the promoter. Transgenic plants without UTR showed reduced GUS expression when compared to transgenic plants with UTR as was confirmed at the RNA and protein levels by qRT-PCR and GUS histochemical assays, thus suggesting the possible involvement of some regulatory elements present in the UTR in heat-stress inducibility of the promoter. Promoter activity was also checked under different abiotic stresses and revealed differential expression in different deletion constructs. Promoter analysis based on histochemical assay, real-time qPCR and fluorimetric analysis revealed that HSEs alone could not transcribe GUS gene significantly in sHSP26 promoter and CCAAT box elements contribute synergistically to the transcription. Our results also provide insight into the importance of 5`UTR of sHsp26 promoter thus emphasizing the probable role of imperfect CCAAT-box element or some novel cis-element with respect to heat stress.

  9. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Jingkang Guo; Jian Wu; Qian Ji; Chao Wang; Lei Luo; Yi Yuan; Yonghua Wang; Jian Wang

    2008-01-01

    The heat shock transcription factors (HSFs) are the major heat shock factors regulating the heat stress response. They participate in regulating the expression of heat shock proteins (HSPs), which are critical in the protection against stress damage and many other impor tant biological processes. Study of the HSF gene family is important for understanding the mechanism by which plants respond to stress. The completed genome sequences of rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) constitute a valuable resource for comparative genomic analysis, as they are representatives of the two major evolutionary lineages within the angiosperms: the monocotyledons and the dicotyledons. The identification of phylogenetic relationships among HSF proteins in these species is a fundamental step to unravel the functionality of new and yet uncharacterized genes belonging to this family.In this study, the full complement of HSF genes in rice and Arabidopsis has probably been identified through the genome-wide scan. Phylogenetic analyses resulted in the identification of three major clusters of orthologous genes that contain members belonging to both species, which must have been represented in their common ancestor before the taxonomic splitting of the angiosperms. Further analysis of the phylogenetic tree reveals a possible dicot specific gene group. We also identified nine pairs of paralogs, as evidence for studies on the evolution history of rice HSF family and rice genome evolution. Expression data analysis indicates that HSF proteins are widely expressed in plants. These results provide a solid base for future functional genomic studies of the HSF gene family in rice and Arabidopsis.

  10. Arabidopsis non-specific phospholipase C1: Characterisation and its involvement in response to heat stress

    Directory of Open Access Journals (Sweden)

    Zuzana eKrčková

    2015-11-01

    Full Text Available The Arabidopsis non-specific phospholipase C (NPC protein family is encoded by the genes NPC1 – NPC6. It has been shown that NPC4 and NPC5 possess phospholipase C activity; NPC3 has lysophosphatidic acid phosphatase activity. NPC3, 4 and 5 play roles in the responses to hormones and abiotic stresses. NPC1, 2 and 6 has not been studied functionally yet.We found that Arabidopsis NPC1 expressed in E. coli possesses phospholipase C activity in vitro. This protein was able to hydrolyse phosphatidylcholine to diacylglycerol. NPC1-green fluorescent protein was localized to secretory pathway compartments in Arabidopsis roots. In the knock out T-DNA insertion line NPC1 (npc1 basal thermotolerance was impaired compared with wild-type; npc1 exhibited significant decreases in survival rate and chlorophyll content at the seventh day after heat stress. Conversely, plants overexpressing NPC1 (NPC1-OE were more resistant to heat stress compared with wild-type. These findings suggest that NPC1 is involved in the plant response to heat

  11. The RdDM Pathway Is Required for Basal Heat Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Olga V.Popova; Huy Q.Dinh; Werner Aufsatz; Claudia Jonak

    2013-01-01

    Heat stress affects epigenetic gene silencing in Arabidopsis.To test for a mechanistic involvement of epigenetic regulation in heat-stress responses,we analyzed the heat tolerance of mutants defective in DNA methylation,histone modifications,chromatin-remodeling,or siRNA-based silencing pathways.Plants deficient in NRPD2,the common second-largest subunit of RNA polymerases Ⅳ and V,and in the Rpd3-type histone deacetylase HDA6 were hypersensitive to heat exposure.Microarray analysis demonstrated that NRPD2 and HDA6 have independent roles in transcriptional reprogramming in response to temperature stress.The misexpression of protein-coding genes in nrpd2 mutants recovering from heat correlated with defective epigenetic regulation of adjacent transposon remnants which involved the loss of control of heat-stress-induced read-through transcription.We provide evidence that the transcriptional response to temperature stress,at least partially,relies on the integrity of the RNA-dependent DNA methylation pathway.

  12. HEAT TRANSFER ENHANCEMENT OF SMALL SCALE HEAT SINKS USING VIBRATING PIN FIN

    OpenAIRE

    Suabsakul Gururatana; Xianchang Li

    2013-01-01

    Heat sinks are widely adopted in electronics cooling together with different technologies to enhance the cooling process. For the small electronics application, the small scale pin fins heat sinks are extensively used to dissipate heat in electronics devices. Due to the limit of space in the small devices, it is impossible to increase heat transfer area. In order to improve the heat transfer performance, the applying the forced vibration is one of challenging method. This study applies the vi...

  13. Small heat shock proteins can release light dependence of tobacco seed during germination.

    Science.gov (United States)

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia; Hong, Choo Bong

    2015-03-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination.

  14. A small molecule inhibitor partitions two distinct pathways for trafficking of tonoplast intrinsic proteins in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Efrain E Rivera-Serrano

    Full Text Available Tonoplast intrinsic proteins (TIPs facilitate the membrane transport of water and other small molecules across the plant vacuolar membrane, and members of this family are expressed in specific developmental stages and tissue types. Delivery of TIP proteins to the tonoplast is thought to occur by vesicle-mediated traffic from the endoplasmic reticulum to the vacuole, and at least two pathways have been proposed, one that is Golgi-dependent and another that is Golgi-independent. However, the mechanisms for trafficking of vacuolar membrane proteins to the tonoplast remain poorly understood. Here we describe a chemical genetic approach to unravel the mechanisms of TIP protein targeting to the vacuole in Arabidopsis seedlings. We show that members of the TIP family are targeted to the vacuole via at least two distinct pathways, and we characterize the bioactivity of a novel inhibitor that can differentiate between them. We demonstrate that, unlike for TIP1;1, trafficking of markers for TIP3;1 and TIP2;1 is insensitive to Brefeldin A in Arabidopsis hypocotyls. Using a chemical inhibitor that may target this BFA-insensitive pathway for membrane proteins, we show that inhibition of this pathway results in impaired root hair growth and enhanced vacuolar targeting of the auxin efflux carrier PIN2 in the dark. Our results indicate that the vacuolar targeting of PIN2 and the BFA-insensitive pathway for tonoplast proteins may be mediated in part by common mechanisms.

  15. Heat-capacity measurements on small samples: The hybrid method

    NARCIS (Netherlands)

    J.C.P. Klaasse; E.H. Brück

    2008-01-01

    A newly developed method is presented for measuring heat capacities on small samples, particularly where thermal isolation is not sufficient for the use of the traditional semiadiabatic heat-pulse technique. This "hybrid technique" is a modification of this heat-pulse method in case the temperature

  16. HEAT TRANSFER ENHANCEMENT OF SMALL SCALE HEAT SINKS USING VIBRATING PIN FIN

    Directory of Open Access Journals (Sweden)

    Suabsakul Gururatana

    2013-01-01

    Full Text Available Heat sinks are widely adopted in electronics cooling together with different technologies to enhance the cooling process. For the small electronics application, the small scale pin fins heat sinks are extensively used to dissipate heat in electronics devices. Due to the limit of space in the small devices, it is impossible to increase heat transfer area. In order to improve the heat transfer performance, the applying the forced vibration is one of challenging method. This study applies the vibration frequency between 50 to 1,000 Hz to pin fins heat sinks. The results of numerical simulation clearly show satisfied heat transfer augmentation. However, the Pressure drop significantly increases with frequency. This phenomenon affects the heat transfer enhancement performance that it increases with frequency until certain value then it drops rapidly. The results of this study can help designing heat sinks for electronics cooling by employing the concept of vibration.

  17. Genome-wide analysis of uncapped mRNAs under heat stress in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Emilio Gutierrez-Beltran

    2015-09-01

    Full Text Available Recently, we have showed that Tudor Staphylococcal Nuclease (TSN or Tudor-SN proteins (TSN1 and TSN2 are localized in cytoplasmic messenger ribonucleoprotein (mRNP complexes called stress granules (SG and processing bodies (PB under heat stress in Arabidopsis. One of the primary functions of these mRNP complexes is mRNA decay, which generates uncapped mRNAs by the action of endonucleases and decapping enzymes (Thomas et al., 2011 [1]. In order to figure out whether TSN proteins could be implicated in mRNA decay, we isolated uncapped and total mRNAs of Wild type (WT; Col and Ler and TSN double knock-out (tsn1tsn2 seedlings grown under heat stress (39 °C for 40 min and control (23 °C conditions. Here, we provide the experimental procedure to reproduce the results (NCBI GEO accession number GSE63522 published by Gutierrez-Beltran et al. (2015 in The Plant Cell [2].

  18. High throughput selection of novel plant growth regulators: Assessing the translatability of small bioactive molecules from Arabidopsis to crops.

    Science.gov (United States)

    Rodriguez-Furlán, Cecilia; Miranda, Giovanna; Reggiardo, Martín; Hicks, Glenn R; Norambuena, Lorena

    2016-04-01

    Plant growth regulators (PGRs) have become an integral part of agricultural and horticultural practices. Accordingly, there is an increased demand for new and cost-effective products. Nevertheless, the market is limited by insufficient innovation. In this context chemical genomics has gained increasing attention as a powerful approach addressing specific traits. Here is described the successful implementation of a highly specific, sensitive and efficient high throughput screening approach using Arabidopsis as a model. Using a combination of techniques, 10,000 diverse compounds were screened and evaluated for several important plant growth traits including root and leaf growth. The phenotype-based selection allowed the compilation of a collection of putative Arabidopsis growth regulators with a broad range of activities and specificities. A subset was selected for evaluating their bioactivity in agronomically valuable plants. Their validation as growth regulators in commercial species such as tomato, lettuce, carrot, maize and turfgrasses reinforced the success of the screening in Arabidopsis and indicated that small molecules activity can be efficiently translated to commercial species. Therefore, the chemical genomics approach in Arabidopsis is a promising field that can be incorporated in PGR discovery programs and has a great potential to develop new products that can be efficiently used in crops.

  19. High throughput selection of novel plant growth regulators: Assessing the translatability of small bioactive molecules from Arabidopsis to crops.

    Science.gov (United States)

    Rodriguez-Furlán, Cecilia; Miranda, Giovanna; Reggiardo, Martín; Hicks, Glenn R; Norambuena, Lorena

    2016-04-01

    Plant growth regulators (PGRs) have become an integral part of agricultural and horticultural practices. Accordingly, there is an increased demand for new and cost-effective products. Nevertheless, the market is limited by insufficient innovation. In this context chemical genomics has gained increasing attention as a powerful approach addressing specific traits. Here is described the successful implementation of a highly specific, sensitive and efficient high throughput screening approach using Arabidopsis as a model. Using a combination of techniques, 10,000 diverse compounds were screened and evaluated for several important plant growth traits including root and leaf growth. The phenotype-based selection allowed the compilation of a collection of putative Arabidopsis growth regulators with a broad range of activities and specificities. A subset was selected for evaluating their bioactivity in agronomically valuable plants. Their validation as growth regulators in commercial species such as tomato, lettuce, carrot, maize and turfgrasses reinforced the success of the screening in Arabidopsis and indicated that small molecules activity can be efficiently translated to commercial species. Therefore, the chemical genomics approach in Arabidopsis is a promising field that can be incorporated in PGR discovery programs and has a great potential to develop new products that can be efficiently used in crops. PMID:26940491

  20. NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana

    OpenAIRE

    Ahammed, Golam Jalal; LI, XIN; Yu, Jingquan; Kai SHI

    2015-01-01

    Elevated CO2 can protect plants from heat stress (HS); however, the underlying mechanisms are largely unknown. Here, we used a set of Arabidopsis mutants such as salicylic acid (SA) signaling mutants nonexpressor of pathogenesis-related gene 1 (npr1-1 and npr1-5) and heat-shock proteins (HSPs) mutants (hsp21 and hsp70-1) to understand the requirement of SA signaling and HSPs in elevated CO2-induced HS tolerance. Under ambient CO2 (380 µmol mol−1) conditions, HS (42°C, 24 h) drastically decrea...

  1. Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2

    Directory of Open Access Journals (Sweden)

    Alexandre Evrard

    2013-04-01

    Full Text Available So far little is known on the functional role of phosphorylation in the heat stress response of plants. Here we present evidence that heat stress activates the Arabidopsis mitogen-activated protein kinase MPK6. In vitro and in vivo evidence is provided that MPK6 specifically targets the major heat stress transcription factor HsfA2. Activation of MPK6 results in complex formation with HsfA2. MPK6 phosphorylates HsfA2 on T249 and changes its intracellular localisation. Protein kinase and phosphatase inhibitor studies indicate that HsfA2 protein stability is regulated in a phosphorylation-dependent manner, but this mechanism is independent of MPK6. Overall, our data show that heat stress-induced targeting of HsfA2 by MPK6 participates in the complex regulatory mechanism how plants respond to heat stress.

  2. Intersection of small RNA pathways in Arabidopsis thaliana sub-nuclear domains.

    Directory of Open Access Journals (Sweden)

    Olga Pontes

    Full Text Available In Arabidopsis thaliana, functionally diverse small RNA (smRNA pathways bring about decreased RNA accumulation of target genes via several different mechanisms. Cytological experiments have suggested that the processing of microRNAs (miRNAs and heterochromatic small interfering RNAs (hc-siRNAs occurs within a specific nuclear domain that can present Cajal Body (CB characteristics. It is unclear whether single or multiple smRNA-related domains are found within the same CB and how specialization of the smRNA pathways is determined within this specific sub-compartment. To ascertain whether nuclear smRNA centers are spatially related, we localized key proteins required for siRNA or miRNA biogenesis by immunofluorescence analysis. The intranuclear distribution of the proteins revealed that hc-siRNA, miRNA and trans-acting siRNA (ta-siRNA pathway proteins accumulate and colocalize within a sub-nuclear structure in the nucleolar periphery. Furthermore, colocalization of miRNA- and siRNA-pathway members with CB markers, and reduced wild-type localization patterns in CB mutants indicates that proper nuclear localization of these proteins requires CB integrity. We hypothesize that these nuclear domains could be important for RNA silencing and may partially explain the functional redundancies and interactions among components of the same protein family. The CB may be the place in the nucleus where Dicer-generated smRNA precursors are processed and assigned to a specific pathway, and where storage, recycling or assembly of RNA interference components takes place.

  3. Transcriptional regulation of heat shock proteins and ascorbate peroxidase by CtHsfA2b from African bermudagrass conferring heat tolerance in Arabidopsis

    Science.gov (United States)

    Wang, Xiuyun; Huang, Wanlu; Yang, Zhimin; Liu, Jun; Huang, Bingru

    2016-01-01

    Heat stress transcription factor A2s (HsfA2s) are key regulators in plant response to high temperature. Our objectives were to isolate an HsfA2 gene (CtHsfA2b) from a warm-season grass species, African bermudagrass (Cynodon transvaalensis Burtt-Davy), and to determine the physiological functions and transcriptional regulation of HsfA2 for improving heat tolerance. Gene expression analysis revealed that CtHsfA2b was heat-inducible and exhibited rapid response to increasing temperature. Ectopic expression of CtHsfA2b improved heat tolerance in Arabidopsis and restored heat-sensitive defects of Arabidopsis hsfa2 mutant, which was demonstrated by higher survival rate and photosynthetic parameters, and lower electrolyte leakage in transgenic plants compared to the WT or hsfa2 mutant. CtHsfA2b transgenic plants showed elevated transcriptional regulation of several downstream genes, including those encoding ascorbate peroxidase (AtApx2) and heat shock proteins [AtHsp18.1-CI, AtHsp22.0-ER, AtHsp25.3-P and AtHsp26.5-P(r), AtHsp70b and AtHsp101-3]. CtHsfA2b was found to bind to the heat shock element (HSE) on the promoter of AtApx2 and enhanced transcriptional activity of AtApx2. These results suggested that CtHsfA2b could play positive roles in heat protection by up-regulating antioxidant defense and chaperoning mechanisms. CtHsfA2b has the potential to be used as a candidate gene to genetically modify cool-season species for improving heat tolerance. PMID:27320381

  4. The heat exchanger of small pellet boiler for phytomass

    Science.gov (United States)

    Mičieta, Jozef; Lenhard, Richard; Jandačka, Jozef

    2014-08-01

    Combustion of pellets from plant biomass (phytomass) causes various troubles. Main problem is slagging ash because of low melting temperature of ash from phytomass. This problem is possible to solve either improving energetic properties of phytomass by additives or modification of boiler construction. A small-scale boiler for phytomass is different in construction of heat exchanger and furnace mainly. We solve major problem - slagging ash, by decreasing combustion temperature via redesign of pellet burner and boiler body. Consequence of lower combustion temperature is also lower temperature gradient of combustion gas. It means that is necessary to design larger heat exchanging surface. We plane to use underfed burner, so we would utilize circle symmetry heat exchanger. Paper deals design of heat exchanger construction with help of CFD simulation. Our purpose is to keep uniform water flux and combustion gas flux in heat exchanger without zone of local overheating and excess cooling.

  5. The Arabidopsis transcriptional regulator DPB3-1 enhances heat stress tolerance without growth retardation in rice.

    Science.gov (United States)

    Sato, Hikaru; Todaka, Daisuke; Kudo, Madoka; Mizoi, Junya; Kidokoro, Satoshi; Zhao, Yu; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2016-08-01

    The enhancement of heat stress tolerance in crops is an important challenge for food security to facilitate adaptation to global warming. In Arabidopsis thaliana, the transcriptional regulator DNA polymerase II subunit B3-1 (DPB3-1)/nuclear factor Y subunit C10 (NF-YC10) has been reported as a positive regulator of Dehydration-responsive element binding protein 2A (DREB2A), and the overexpression of DPB3-1 enhances heat stress tolerance without growth retardation. Here, we show that DPB3-1 interacts with DREB2A homologues in rice and soya bean. Transactivation analyses with Arabidopsis and rice mesophyll protoplasts indicate that DPB3-1 and its rice homologue OsDPB3-2 function as positive regulators of DREB2A homologues. Overexpression of DPB3-1 did not affect plant growth or yield in rice under nonstress conditions. Moreover, DPB3-1-overexpressing rice showed enhanced heat stress tolerance. Microarray analysis revealed that many heat stress-inducible genes were up-regulated in DPB3-1-overexpressing rice under heat stress conditions. However, the overexpression of DPB3-1 using a constitutive promoter had almost no effect on the expression of these genes under nonstress conditions. This may be because DPB3-1 is a coactivator and thus lacks inherent transcriptional activity. We conclude that DPB3-1, a coactivator that functions specifically under abiotic stress conditions, could be utilized to increase heat stress tolerance in crops without negative effects on vegetative and reproductive growth. PMID:26841113

  6. Heat and mass transfer characteristics of a small helical absorber

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung-In [College of Engineering, School of Mechanical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Pusan 608-739 (Korea, Republic of); Kwon, Oh-Kyung [KITECH, 35-3 Hongchon-ri, Ipjang-meon, Chonan, Chungnam 330-825 (Korea, Republic of); Bansal, P.K. [Department of Mechanical Engineering, The University of Auckland, Private bag 92019, Auckland (New Zealand); Moon, Choon-Geun; Lee, Ho-Saeng [Department of Refrigeration and Air-conditioning Engineering, Graduate School, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Pusan 608-739 (Korea, Republic of)

    2006-02-01

    This paper presents experimental results of heat and mass transfer investigation of the falling film absorber (with strong lithium bromide solution) for a small household absorption chiller/heater. Various components (e.g. low temperature generator, absorber and evaporator) were arranged concentrically in cylindrical form such that the helical-arrangement of the heat exchangers allowed the system to be more compact than the conventional system. Measurements from the helical absorber were compared with data from the literature. The comparison revealed that the heat and mass transfer performance of the helical absorber tube is similar to the existing tube bundle absorber. As a result, the proposed helical absorber shows a good potential due its reduced size and weight for the future designs of small capacity absorption chillers/heaters. (author)

  7. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.

    Directory of Open Access Journals (Sweden)

    Harsh Chauhan

    Full Text Available Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.

  8. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Song, Chieun; Chung, Woo Sik; Lim, Chae Oh

    2016-06-30

    Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis. PMID:27109422

  9. The Swiss Heating Reactor (SHR) for district heating of small communities

    International Nuclear Information System (INIS)

    With fossil fuel running out in a foreseeable future, it is essential to develop substitution strategies. Some 40-50% of the heat demand in industrial countries is below 1200C, for space heating and warm water production, causing a corresponding fraction of air pollution by SO2 and to a lesser extent NOx if fossil fuels are used. Yet, contemporary LWR technology makes it feasible to supply a district heating network without basically new reactor development. Units in the power range 10-50 MW are most suitable for Switzerland, both in respect of network size and of the democratic decision making structure. A small BWR for heating purpose only is being developed by parts of the Swiss Industry and the Swiss Federal Institute for Reactor Research (EIR). The economic target of 100-120 SFr/MWh heat at the consumer's seems achievable. (orig.)

  10. The Swiss heating reactor (SHR) for district heating of small communities

    International Nuclear Information System (INIS)

    With fossil fuel running out in a foreseeable future, it is essential to develop substitution strategies. Some 40-50 % of the heat demand in industrial countries is below 120 degrees C, for space heating and warm water production, causing a corresponding fraction of air pollution by SO2 and to a lesser extent NOx if fossil fuels are used. Yet, contemporary LWR technology makes it feasible to supply a district heating network without basically new reactor development. Units in the power range 10-50 MW are most suitable for Switzerland, both in respect of network size and of the democratic decision making structure. A small BWR for heating purpose is being developed by parts of the Swiss Industry and the Swiss Federal Institute for Reactor Research (EIR). The economic target of 100-120 SFr/MWh heat at the consumer's seems achievable. (author)

  11. Small ex-core heat pipe thermionic reactor concept (SEHPTR)

    International Nuclear Information System (INIS)

    The Idaho National Engineering Laboratory (INEL) has developed an innovative space nuclear power concept with unique features and significant advantages for both Defense and Civilian space missions. The Small Ex-core Heat Pipe Thermionic Reactor (SEHPTR) concept was developed in response to Air Force needs for space nuclear power in the range of 10 to 40 kilowatts. This paper describes the SEHPTR concept and discusses the key technical issues and advantages of such a system

  12. The keys to success in marketing small heating reactors

    International Nuclear Information System (INIS)

    The success of the SLOWPOKE Energy System requires acceptance of the SLOWPOKE reactor within the community where the reactor's energy is to be used. Public acceptance will be obtained once the public is convinced that this nuclear heat source is needed, safe and of economic benefit to the community. The need for a new application of nuclear energy is described and the ability of small reactors used for district heating to play that role is shown. The safety of the reactor is being demonstrated with the establishment of the SLOWPOKE Demonstration Reactor by Atomic Energy of Canada Limited and with open, candid discussion with the involved community. Economic arguments are reviewed and include discussion of quantitative and qualitative issues. (orig.)

  13. Small-Scale Combined Heat and Power Plants Using Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Salomon-Popa, Marianne [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    2002-11-01

    In this time period where energy supply and climate change are of special concern, biomass-based fuels have attracted much interest due to their plentiful supply and favorable environmental characteristics (if properly managed). The effective capture and continued sustainability of this renewable resource requires a new generation of biomass power plants with high fuel energy conversion. At the same time, deregulation of the electricity market offers new opportunities for small-scale power plants in a decentralized scheme. These two important factors have opened up possibilities for small-scale combined heat and power (CHP) plants based on biofuels. The objective of this pre-study is to assess the possibilities and technical limitations for increased efficiency and energy utilization of biofuels in small size plants (approximately 10 MWe or lower). Various energy conversion technologies are considered and proven concepts for large-scale fossil fuel plants are an especially important area. An analysis has been made to identify the problems, technical limitations and different possibilities as recognized in the literature. Beyond published results, a qualitative survey was conducted to gain first-hand, current knowledge from experts in the field. At best, the survey results together with the results of personal interviews and a workshop on the role of small-scale plants in distributed generation will serve a guideline for future project directions and ideas. Conventional and novel technologies are included in the survey such as Stirling engines, combustion engines, gas turbines, steam turbines, steam motors, fuel cells and other novel technologies/cycles for biofuels. State-of-the-art heat and power plants will be identified to clarify of the advantages and disadvantages as well as possible obstacles for their implementation.

  14. A KH Domain-Containing Putative RNA-Binding Protein Is Critical for Heat Stress-Responsive Gene Regulation and Thermotolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Qingmei Guan; Changlong Wen; Haitao Zeng; Jianhua Zhu

    2013-01-01

    Heat stress is a severe environmental factor that significantly reduces plant growth and delays development.Heat stress factors (HSFs) are a class of transcription factors that are synthesized rapidly in response to elevations in temperature and are responsible for the transcription of many heat stress-responsive genes including those encoding heat shock proteins (HSPs).There are 21 HSFs in Arabidopsis,and recent studies have established that the HSFA1 family members are master regulators for the remaining HSFs.However,very little is known about upstream molecular factors that control the expression of HSFA1 genes and other HSF genes under heat stress.Through a forward genetic analysis,we identified RCF3,a K homology (KH) domain-containing nuclear-localized putative RNA-binding protein.RCF3 is a negative regulator of most HSFs,including HSFAla,HSFAlb,and HSFAld.In contrast,RCF3 positively controls the expression of HSFAle,HSFA3,HSFA9,HSFB3,and DREB2C.Consistently with the overall increased accumulation of heat-responsive genes,the rcf3 mutant plants are more tolerant than the wild-type to heat stress.Together,our results suggest that a KH domain-containing putative RNA-binding protein RCF3 is an important upstream regulator for heat stress-responsive gene expression and thermotolerance in Arabidopsis.

  15. The small ethylene response factor ERF96 is involved in the regulation of the abscisic acid response in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Xiaoping eWang

    2015-11-01

    Full Text Available Ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene Response Factors (ERFs are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96 is a positive regulator of abscisic acid (ABA responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97 and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay results indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96’s transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed

  16. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress.

    Science.gov (United States)

    Mishra, Manoj K; Singh, Gaurav; Tiwari, Shalini; Singh, Ruchi; Kumari, Nishi; Misra, Pratibha

    2015-01-01

    Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress. PMID:26382564

  17. NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Ahammed, Golam Jalal; Li, Xin; Yu, Jingquan; Shi, Kai

    2015-01-01

    Elevated CO2 can protect plants from heat stress (HS); however, the underlying mechanisms are largely unknown. Here, we used a set of Arabidopsis mutants such as salicylic acid (SA) signaling mutants nonexpressor of pathogenesis-related gene 1 (npr1-1 and npr1-5) and heat-shock proteins (HSPs) mutants (hsp21 and hsp70-1) to understand the requirement of SA signaling and HSPs in elevated CO2-induced HS tolerance. Under ambient CO2 (380 µmol mol(-1)) conditions, HS (42°C, 24 h) drastically decreased maximum photochemical efficiency of PSII (Fv/Fm) in all studied plant groups. Enrichment of CO2 (800 µmol mol(-1)) with HS remarkably increased the Fv/Fm value in all plant groups except hsp70-1, indicating that NPR1-dependent SA signaling is not involved in the elevated CO2-induced HS tolerance. These results also suggest an essentiality of HSP70-1, but not HSP21 in elevated CO2-induced HS mitigation.

  18. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wang

    2015-04-01

    Full Text Available All types of small RNAs in plants, piwi-interacting RNAs (piRNAs in animals and a subset of siRNAs in Drosophila and C. elegans are subject to HEN1 mediated 3' terminal 2'-O-methylation. This modification plays a pivotal role in protecting small RNAs from 3' uridylation, trimming and degradation. In Arabidopsis, HESO1 is a major enzyme that uridylates small RNAs to trigger their degradation. However, U-tail is still present in null hen1 heso1 mutants, suggesting the existence of (an enzymatic activities redundant with HESO1. Here, we report that UTP: RNA uridylyltransferase (URT1 is a functional paralog of HESO1. URT1 interacts with AGO1 and plays a predominant role in miRNA uridylation when HESO1 is absent. Uridylation of miRNA is globally abolished in a hen1 heso1 urt1 triple mutant, accompanied by an extensive increase of 3'-to-5' trimming. In contrast, disruption of URT1 appears not to affect the heterochromatic siRNA uridylation. This indicates the involvement of additional nucleotidyl transferases in the siRNA pathway. Analysis of miRNA tailings in the hen1 heso1 urt1 triple mutant also reveals the existence of previously unknown enzymatic activities that can add non-uridine nucleotides. Importantly, we show HESO1 may also act redundantly with URT1 in miRNA uridylation when HEN1 is fully competent. Taken together, our data not only reveal a synergistic action of HESO1 and URT1 in the 3' uridylation of miRNAs, but also independent activities of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs and an antagonistic relationship between uridylation and trimming. Our results may provide further insight into the mechanisms of small RNA 3' end modification and stability control.

  19. The Arabidopsis Adh gene exhibits diverse nucleosome arrangements within a small DNase I-sensitive domain.

    Science.gov (United States)

    Vega-Palas, M A; Ferl, R J

    1995-01-01

    The alcohol dehydrogenase (Adh) gene from Arabidopsis shows enhanced sensitivity to DNase I in cells that express the gene. This generalized sensitivity to DNase I is demarcated by position -500 on the 5' side and the end of the mRNA on the 3' side. Thus, the gene defined as the promoter and mRNA coding region corresponds very closely in size with the gene defined as a nuclease-sensitive domain. This is a remarkably close correspondence between a sensitive domain and a eukaryotic transcriptional unit, because previously reported DNase I-sensitive domains include large regions of DNA that are not transcribed. Nucleosomes are present in the coding region of the Adh gene when it is expressed, indicating that the transcriptional elongation process causes nucleosome disruption rather than release of nucleosomes from the coding region. In addition, the regulatory region contains a loosely positioned nucleosome that is separated from adjacent nucleosomes by internucleosomic DNA segments longer than the average linker DNA in bulk chromatin. This specific array of nucleosomes coexists with bound transcription factors that could contribute to the organization of the nucleosome arrangement. These results enhance our understanding of the complex interactions among DNA, nucleosomes, and transcription factors during gene expression in plants. PMID:8535143

  20. Modulation of ethylene and heat-controlled hyponastic leaf movement in Arabidopsis thaliana by the plant defense hormones jasmonate and salicylate

    OpenAIRE

    van Zanten, Martijn; Ritsema, Tita; Polko, Joanna K.; Leon-Reyes, Antonio; Voesenek, Laurentius A C J; Frank F Millenaar; Pieterse, Corné M. J.; Peeters, Anton J. M.

    2012-01-01

    Upward leaf movement (hyponastic growth) is adopted by several plant species including Arabidopsis thaliana, as a mechanism to escape adverse growth conditions. Among the signals that trigger hyponastic growth are, the gaseous hormone ethylene, low light intensities, and supra-optimal temperatures (heat). Recent studies indicated that the defence-related phytohormones jasmonic acid (JA) and salicylic acid (SA) synthesized by the plant upon biotic infestation repress low light-induced hyponast...

  1. Gene Expression, Protein Function and Pathways of Arabidopsis thaliana Responding to Silver Nanoparticles in Comparison to Silver Ions, Cold, Salt, Drought, and Heat

    Directory of Open Access Journals (Sweden)

    Eisa Kohan-Baghkheirati

    2015-03-01

    Full Text Available Silver nanoparticles (AgNPs have been widely used in industry due to their unique physical and chemical properties. However, AgNPs have caused environmental concerns. To understand the risks of AgNPs, Arabidopsis microarray data for AgNP, Ag+, cold, salt, heat and drought stresses were analyzed. Up- and down-regulated genes of more than two-fold expression change were compared, while the encoded proteins of shared and unique genes between stresses were subjected to differential enrichment analyses. AgNPs affected the fewest genes (575 in the Arabidopsis genome, followed by Ag+ (1010, heat (1374, drought (1435, salt (4133 and cold (6536. More genes were up-regulated than down-regulated in AgNPs and Ag+ (438 and 780, respectively while cold down-regulated the most genes (4022. Responses to AgNPs were more similar to those of Ag+ (464 shared genes, cold (202, and salt (163 than to drought (50 or heat (30; the genes in the first four stresses were enriched with 32 PFAM domains and 44 InterPro protein classes. Moreover, 111 genes were unique in AgNPs and they were enriched in three biological functions: response to fungal infection, anion transport, and cell wall/plasma membrane related. Despite shared similarity to Ag+, cold and salt stresses, AgNPs are a new stressor to Arabidopsis.

  2. AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    LI Chunguang; CHEN Qijun; GAO Xinqi; QI Bishu; CHEN Naizhi; XU Shouming; CHEN Jia; WANG Xuechen

    2005-01-01

    There is increasing evidence for considerable interlinking between the responses to heat stress and oxidative stress, and recent researches suggest heat shock transcription factors (Hsfs) play an important role in linking heat shock with oxidative stress signals. In this paper, we present evidence that AtHsfA2 modulated expression of stress responsive genes and enhanced tolerance to heat and oxidative stress in Arabidopsis. Using Northern blot and quantitative RT-PCR analysis, we demonstrated that the expression of AtHsfA2 was induced by not only HS but also oxidative stress. By functional analysis of AtHsfA2 knockout mutants and AtHsfA2 overexpressing transgenic plants, we also demonstrated that the mutants displayed reduced the basal and acquired thermotolerance as well as oxidative stress tolerance but the overexpression lines displayed increased tolerance to these stress. The phenotypes correlated with the expression of some Hsps and APX1, ion leakage, H2O2 level and degree of oxidative injuries. These results showed that, by modulated expression of stress responsive genes, AtHsfA2 enhanced tolerance to heat and oxidative stress in Arabidopsis. So we suggest that AtHsfA2 plays an important role in linking heat shock with oxidative stress signals.

  3. Small-Scale Pellet Heating Systems from Consumer Perspective

    International Nuclear Information System (INIS)

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic

  4. Small Heat Shock Proteins and Distal Hereditary Neuropathies.

    Science.gov (United States)

    Nefedova, V V; Muranova, L K; Sudnitsyna, M V; Ryzhavskaya, A S; Gusev, N B

    2015-12-01

    Classification of small heat shock proteins (sHsp) is presented and processes regulated by sHsp are described. Symptoms of hereditary distal neuropathy are described and the genes whose mutations are associated with development of this congenital disease are listed. The literature data and our own results concerning physicochemical properties of HspB1 mutants associated with Charcot-Marie-Tooth disease are analyzed. Mutations of HspB1, associated with hereditary motor neuron disease, can be accompanied by change of the size of HspB1 oligomers, by decreased stability under unfavorable conditions, by changes in the interaction with protein partners, and as a rule by decrease of chaperone-like activity. The largest part of these mutations is accompanied by change of oligomer stability (that can be either increased or decreased) or by change of intermonomer interaction inside an oligomer. Data on point mutation of HspB3 associated with axonal neuropathy are presented. Data concerning point mutations of Lys141 of HspB8 and those associated with hereditary neuropathy and different forms of Charcot-Marie-Tooth disease are analyzed. It is supposed that point mutations of sHsp associated with distal neuropathies lead either to loss of function (for instance, decrease of chaperone-like activity) or to gain of harmful functions (for instance, increase of interaction with certain protein partners).

  5. The role of small heat shock proteins in parasites.

    Science.gov (United States)

    Pérez-Morales, Deyanira; Espinoza, Bertha

    2015-09-01

    The natural life cycle of many protozoan and helminth parasites involves exposure to several hostile environmental conditions. Under these circumstances, the parasites arouse a cellular stress response that involves the expression of heat shock proteins (HSPs). Small HSPs (sHSPs) constitute one of the main families of HSPs. The sHSPs are very divergent at the sequence level, but their secondary and tertiary structures are conserved and some of its members are related to α-crystallin from vertebrates. They are involved in a variety of cellular processes. As other HSPs, the sHSPs act as molecular chaperones; however, they have shown other activities apparently not related to chaperone action. In this review, the diverse activities of sHSPs in the major genera of protozoan and helminth parasites are described. These include stress response, development, and immune response, among others. In addition, an analysis comparing the sequences of sHSPs from some parasites using a distance analysis is presented. Because many parasites face hostile conditions through its life cycles the study of HSPs, including sHSPs, is fundamental.

  6. Preliminary Test of a small heat pipe for hybrid control rod in-core passive decay heat removal system

    International Nuclear Information System (INIS)

    This paper introduces 'Hybrid control rod' combining its original function and heat removal ability. The high temperature operation and high resistance of radiation should be considered to adopt the hybrid heat pipe at the in-core condition. Other design consideration is to make extra inlet parts because it has a high risk of inlet boundary failure. It means that the introduction of heat pipe system is difficult to present nuclear power plants. The other concepts are presented to out-core cooling design but it has low performance compared with in-core heat removal system. Hybrid heat pipe for in-core heat removal system suggests the solution of these problems. Ultimate objective of this research is to develop the passive emergency decay heat removal system using hybrid heat pipes targeting design bases accidents such as station black-out (SBO) and small break loss of coolant accident (SBLOCA). The purpose of this work is to confirm the performance and heat transfer behavior of hybrid heat pipe. The hybrid heat pipe has special condition for operation. Therefore, it is hard to analyze their behavior in core. Table I shows the characteristics of hybrid heat pipe and consideration for manufacturing the heat pipe

  7. Preliminary Test of a small heat pipe for hybrid control rod in-core passive decay heat removal system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Ban, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    This paper introduces 'Hybrid control rod' combining its original function and heat removal ability. The high temperature operation and high resistance of radiation should be considered to adopt the hybrid heat pipe at the in-core condition. Other design consideration is to make extra inlet parts because it has a high risk of inlet boundary failure. It means that the introduction of heat pipe system is difficult to present nuclear power plants. The other concepts are presented to out-core cooling design but it has low performance compared with in-core heat removal system. Hybrid heat pipe for in-core heat removal system suggests the solution of these problems. Ultimate objective of this research is to develop the passive emergency decay heat removal system using hybrid heat pipes targeting design bases accidents such as station black-out (SBO) and small break loss of coolant accident (SBLOCA). The purpose of this work is to confirm the performance and heat transfer behavior of hybrid heat pipe. The hybrid heat pipe has special condition for operation. Therefore, it is hard to analyze their behavior in core. Table I shows the characteristics of hybrid heat pipe and consideration for manufacturing the heat pipe.

  8. Heat stress enhances the accumulation of polyadenylated mitochondrial transcripts in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Alessio Adamo

    Full Text Available BACKGROUND: Polyadenylation of RNA has a decisive influence on RNA stability. Depending on the organisms or subcellular compartment, it either enhances transcript stability or targets RNAs for degradation. In plant mitochondria, polyadenylation promotes RNA degradation, and polyadenylated mitochondrial transcripts are therefore widely considered to be rare and unstable. We followed up a surprising observation that a large number of mitochondrial transcripts are detectable in microarray experiments that used poly(A-specific RNA probes, and that these transcript levels are significantly enhanced after heat treatment. METHODOLOGY/PRINCIPAL FINDINGS: As the Columbia genome contains a complete set of mitochondrial genes, we had to identify polymorphisms to differentiate between nuclear and mitochondrial copies of a mitochondrial transcript. We found that the affected transcripts were uncapped transcripts of mitochondrial origin, which were polyadenylated at multiple sites within their 3'region. Heat-induced enhancement of these transcripts was quickly restored during a short recovery period. CONCLUSIONS/SIGNIFICANCE: Our results show that polyadenylated transcripts of mitochondrial origin are more stable than previously suggested, and that their steady-state levels can even be significantly enhanced under certain conditions. As many microarrays contain mitochondrial probes, due to the frequent transfer of mitochondrial genes into the genome, these effects need to be considered when interpreting microarray data.

  9. Characterization of a small auxin-up RNA (SAUR-like gene involved in Arabidopsis thaliana development.

    Directory of Open Access Journals (Sweden)

    Marios Nektarios Markakis

    Full Text Available The root of Arabidopsis thaliana is used as a model system to unravel the molecular nature of cell elongation and its arrest. From a micro-array performed on roots that were treated with aminocyclopropane-1-carboxylic acid (ACC, the precursor of ethylene, a Small auxin-up RNA (SAUR-like gene was found to be up regulated. As it appeared as the 76th gene in the family, it was named SAUR76. Root and leaf growth of overexpression lines ectopically expressing SAUR76 indicated the possible involvement of the gene in the division process. Using promoter::GUS and GFP lines strong expression was seen in endodermal and pericycle cells at the end of the elongation zone and during several stages of lateral root primordia development. ACC and IAA/NAA were able to induce a strong up regulation of the gene and changed the expression towards cortical and even epidermal cells at the beginning of the elongation zone. Confirmation of this up regulation of expression was delivered using qPCR, which also indicated that the expression quickly returned to normal levels when the inducing IAA-stimulus was removed, a behaviour also seen in other SAUR genes. Furthermore, confocal analysis of protein-GFP fusions localized the protein in the nucleus, cytoplasm and plasma membrane. SAUR76 expression was quantified in several mutants in ethylene and auxin-related pathways, which led to the conclusion that the expression of SAUR76 is mainly regulated by the increase in auxin that results from the addition of ACC, rather than by ACC itself.

  10. The heat capacity of small metallic grains studied by the random matrices theory

    Institute of Scientific and Technical Information of China (English)

    Chen Zhi-Qian; Cheng Nan-Pu; Shi Zhen-Gang

    2004-01-01

    The random matrices theory is applied to a study of the heat capacity of small metallic grains. The numerical calculations indicate that the level distribution and the difference between the particles respectively with an even and an odd numbers of electrons are important for the heat capacity of the small metallic grains at a low temperature and the level correlation mainly affects the heat capacity at a high temperature.

  11. Investigation on Heat Transfer in Small Hydrocarbon Rocket Combustion Chambers

    OpenAIRE

    Kirchberger, Christoph Ulrich

    2015-01-01

    Low costs and nonhazardous properties draw interest in application of hydrocarbon fuels in liquid rocket engines. Within this work, results of experiments on heat transfer, film cooling, transpiration cooled and convectively cooled fiber-reinforced ceramics conducted at a kerosene/oxygen rocket combustion chamber test facility are presented. The experimental data serves as the base for design and validation of simple-to-use models and correlations, which allow estimates of heat flux and cooli...

  12. Involvement of DEG5 and DEG8 proteases in the turnover of the photosystem II reaction center D1 protein under heat stress in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    SUN XuWu; WANG LiYuan; ZHANG LiXin

    2007-01-01

    Deg5,deg8 and the double mutant,deg5deg8 of Arabidopsis thaliana were used to study the physiological role of the DEG proteases in the repair cycle of photosystem II (PSII) under heat stress. PSII activity in deg mutants showed increased sensitivity to heat stress,and the extent of this effect was greater in the double mutant,deg5deg8,than in the single mutants,deg5 and deg8. Degradation of the D1 protein was slower in the mutants than in the WT plants. Furthermore,the levels of other PSII reaction center proteins tested remained relatively stable in the mutant and WT plants following high-temperature treatment. Thus,our results indicate that DEG5 and DEG8 may have synergistic function in degradation of D1 protein under heat stress.

  13. Universal Stress Protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress

    Directory of Open Access Journals (Sweden)

    Jung eYoung Jun

    2015-12-01

    Full Text Available Although a wide range of physiological information on Universal Stress Proteins (USPs is available from many organisms, their biochemical and molecular functions remain unidentified. The biochemical function of AtUSP (At3g53990 from Arabidopsis thaliana was therefore investigated. Plants over-expressing AtUSP showed a strong resistance to heat shock and oxidative stress, compared with wild-type and Atusp knock-out plants, confirming the crucial role of AtUSP in stress tolerance. AtUSP was present in a variety of structures including monomers, dimers, trimers, and oligomeric complexes, and switched in response to external stresses from low molecular weight (LMW species to high molecular weight (HMW complexes. AtUSP exhibited a strong chaperone function under stress conditions in particular, and this activity was significantly increased by heat treatment. Chaperone activity of AtUSP was critically regulated by the redox status of cells and accompanied by structural changes to the protein. Over-expression of AtUSP conferred a strong tolerance to heat shock and oxidative stress upon Arabidopsis, primarily via its chaperone function.

  14. Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Piippo Mirva

    2010-03-01

    Full Text Available Abstract Background DnaJ proteins participate in many metabolic pathways through dynamic interactions with various components of these processes. The role of three small chloroplast-targeted DnaJ proteins, AtJ8 (At1 g80920, AtJ11 (At4 g36040 and AtJ20 (At4 g13830, was investigated here using knock-out mutants of Arabidopsis thaliana. Photochemical efficiency, capacity of CO2 assimilation, stabilization of Photosystem (PS II dimers and supercomplexes under high light illumination, energy distribution between PSI and PSII and phosphorylation of PSII-LHCII proteins, global gene expression profiles and oxidative stress responses of these DnaJ mutants were analyzed. Results Knockout of one of these proteins caused a series of events including a decrease in photosynthetic efficiency, destabilization of PSII complexes and loss of control for balancing the redox reactions in chloroplasts. Data obtained with DNA microarray analysis demonstrated that the lack of one of these DnaJ proteins triggers a global stress response and therefore confers the plants greater tolerance to oxidative stress induced by high light or methyl viologen treatments. Expression of a set of genes encoding enzymes that detoxify reactive oxygen species (ROS as well as a number of stress-related transcription factors behaved in the mutants at growth light similarly to that when wild-type (WT plants were transferred to high light. Also a set of genes related to redox regulation were upregulated in the mutants. On the other hand, although the three DnaJ proteins reside in chloroplasts, the expression of most genes encoding thylakoid membrane proteins was not changed in the mutants. Conclusion It is proposed that the tolerance of the DnaJ protein knockout plants to oxidative stress occurs at the expense of the flexibility of photosynthetic reactions. Despite the fact that the effects of the individual protein knockout on the response of plants to high light treatment are quite similar

  15. The impact of municipal waste combustion in small heat sources

    Science.gov (United States)

    Vantúch, Martin; Kaduchová, Katarína; Lenhard, Richard

    2016-06-01

    At present there is a tendency to make greater use for heating houses for burning solid fuel, such as pieces of wood, coal, coke, local sources of heat to burn natural gas. This tendency is given both the high price of natural gas as well as the availability of cheaper solid fuel. In many cases, in the context saving heating costs, respectively in the context of the disposal of waste is co-incinerated with municipal solid fuels and wastes of different composition. This co entails increased production emissions such as CO (carbon monoxide), NOx (nitrogen oxides), particulate matter (particulate matter), PM10, HCl (hydrogen chloride), PCDD/F (polychlorinated dibenzodioxins and dibenzofurans), PCBs (polychlorinated biphenyls) and others. The experiment was focused on the emission factors from the combustion of fossil fuels in combination with municipal waste in conventional boilers designed to burn solid fuel.

  16. Steady and transient forced convection heat transfer for water flowing in small tubes with exponentially increasing heat inputs

    Science.gov (United States)

    Shibahara, M.; Fukuda, K.; Liu, Q. S.; Hata, K.

    2016-06-01

    Steady and transient heat transfer coefficients for water flowing in small tubes with exponentially increasing heat inputs were measured. Platinum tubes with inner diameters of 1.0 and 2.0 mm were used as test tubes, which were mounted vertically in the experimental water loop. In the experiment, the upward flow velocity ranged from 2 to 16 m/s, and the corresponding Reynolds numbers ranged from 4.77 × 103 to 9.16 × 104 at the inlet liquid temperatures ranged from 298 to 343 K. The heat generation rate exponentially increased with the function. The period of the heat generation rate ranged from 24 ms to 17.5 s. Experimental results indicate that steady heat transfer coefficients decreased with the increase in the inner diameter of the small tube. Moreover, the ratio of bulk viscosity to near-wall viscosity of water increased with the rise in surface temperature of the vertical tube. From the experimental data, correlations of steady-state heat transfer for inner diameters of 1.0 and 2.0 mm were obtained. The heat transfer coefficient increased with decreasing the period of the heat generation rate as the flow velocity decreased. Moreover, the Nusselt number under the transient condition was affected by the Fourier number and the Reynolds number.

  17. [Small heat shock proteins and adaptation to hypertermia in various Drosophila species].

    Science.gov (United States)

    Shilova, V Iu; Garbuz, D G; Evgen'ev, M B; Zatsepina, O G

    2006-01-01

    Expression level and kinetics of accumulation of small heat shock proteins (21-27 kDa group) have been investigated in three Drosophila species differing significantly by temperature niche and thermosensitivity. It was shown that low-latitude thermotolerant species D. virilis exceeds the high-latitude thermosensitive closely-related species D. lummei as well as distant thermosensitive species D. melanogaster in terms of small heat shock proteins expression and accumulation after temperature elevation. The data obtained enable to postulate an important role of small heat shock proteins in organism basal thermotolerance and general adaptation to adverse conditions of environment. PMID:16637267

  18. The Swiss heating reactor (SHR) for district heating of small communities

    International Nuclear Information System (INIS)

    With fossil fuel running out in a foreseeable future, it is essential to develop substitution strategies. The heat market in industrial countries in the Northern hemisphere has two peaks. The dominant one occurs at --900C and is due to the energy demand for space heating and warm water production. A smaller peak, mainly for metallurgical processes, occurs at about 13000C. From thermodynamics considerations, using the high flame temperature of fossil fuels - or electricity - to supply the lower temperature range is obviously wasteful. On the other hand contemporary LWR technology makes it feasible to provide the space heating sector with hot water in a district heating network. For this no basically new reactor system needs to be developed. Some 40-50% of the heat demand arises in the range below 1200C, causing a corresponding fraction of air pollution by SO2 and to a lesser extent NOchi, if fossil fuels are used. By analyzing an adequate district heating system, units in the power range 10-50 MW are found to be most suitable for Switzerland, both in respect of network size and of the democratic decision making structure

  19. Heat transfer behavior on small heaters during saturated pool boiling of FC-72 in microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.; Mullen, J.D. [Maryland Univ., College Park, MD (United States). Dept. of Mechanical Engineering; Yaddanapudi, N. [MetaSensors, Rockville, MD (United States)

    1999-07-01

    Saturated pool boiling of FC-72 on an array of 96 heaters, each 0.27 mm x 0.27 mm in size, was studied in a microgravity environment provided by NASA's KC-135. Each of the heaters was maintained at a constant temperature by means of electronic feedback circuits, and the heat flux through each individual heater was measured at a high sampling rate. Space and time resolved heat flux maps were obtained and correlated with video pictures of boiling on the surface recorded from below. The time resolved heat flux data was then conditionally sampled according to whether or not boiling occurred on the surface and an average heat flux during boiling was obtained. Array averaged heat fluxes in microgravity were slightly larger than in Earth gravity for wall superheats up to about 30 K, but were significantly lower than in Earth gravity at higher superheats. The time-average heat flux conditionally sampled on boiling, however, was independent of the gravity level suggesting that the behavior of small bubbles is not affected by gravity. Heat transfer from the surface occurred primarily through these small bubbles-not much heat transfer was associated with the large bubble that occasionally formed on the surface as a result of coalescence of the small bubbles. (orig.)

  20. Effect of heating methods on drying quality of small-diameter birch lumbers

    Institute of Scientific and Technical Information of China (English)

    GUO Ming-hui; ZHAO Xi-ping; YAN Li

    2005-01-01

    Following a normal low temperature drying schedule, the small-diameter Birch lumbers ( 1 000mm ×45mm × 30mm) were dried with consecution-heats or intermittent-heating, visual drying defects (bow, crook,twist, check along grain and end check) were measured, and then statistical analyses were performed. It was found that the drying quality of small-diameter Birch lumbers could be improved with intermittent-heating, but the intermittent time should be prolonged. Prolonging intermittent time helped to weaken or even avoid wood distortion and drying checks. It wasn' t helpful in avoiding crook. The drying quality of small-diameter Birch lumbers with all kinds of drying methods reached the second class of the Chinese National Standard. The drying quality reached the first class of the Chinese National Standard with the intermittent-heating in the area of visual wood defects.

  1. Technical-and-Economic Efficiency of Draft Enriched with Oxygen in Small-Capacity Heating Boilers

    Directory of Open Access Journals (Sweden)

    P. Ratnikov

    2013-01-01

    Full Text Available Data on complex experimental and theoretical investigations pertaining to efficiency of oxygen-enriched draft in the small-capacity heating boilers as exemplified by the plant HEIZA (HW-S-10/K have been presented in the paper. The paper provides a calculation model of heating processes in heat generator burner (as exemplified by HEIZA plant. Simulation of heating processes in the operational zone has been executed in paper. The experimental data have proved model adequacy. The calculation scheme of the plant will be used in future for determination of power and ecological efficiency of draft enrichment with oxygen.

  2. A unique HEAT repeat-containing protein SHOOT GRAVITROPISM6 is involved in vacuolar membrane dynamics in gravity-sensing cells of Arabidopsis inflorescence stem.

    Science.gov (United States)

    Hashiguchi, Yasuko; Yano, Daisuke; Nagafusa, Kiyoshi; Kato, Takehide; Saito, Chieko; Uemura, Tomohiro; Ueda, Takashi; Nakano, Akihiko; Tasaka, Masao; Terao Morita, Miyo

    2014-04-01

    Plant vacuoles play critical roles in development, growth and stress responses. In mature cells, vacuolar membranes (VMs) display several types of structures, which are formed by invagination and folding of VMs into the lumenal side and can gradually move and change shape. Although such VM structures are observed in a broad range of tissue types and plant species, the molecular mechanism underlying their formation and maintenance remains unclear. Here, we report that a novel HEAT-repeat protein, SHOOT GRAVITROPISM6 (SGR6), of Arabidopsis is involved in the control of morphological changes and dynamics of VM structures in endodermal cells, which are the gravity-sensing cells in shoots. SGR6 is a membrane-associated protein that is mainly localized to the VM in stem endodermal cells. The sgr6 mutant stem exhibits a reduced gravitropic response. Higher plants utilize amyloplast sedimentation as a means to sense gravity direction. Amyloplasts are surrounded by VMs in Arabidopsis endodermal cells, and the flexible and dynamic structure of VMs is important for amyloplast sedimentation. We demonstrated that such dynamic features of VMs are gradually lost in sgr6 endodermal cells during a 30 min observation period. Histological analysis revealed that amyloplast sedimentation was impaired in sgr6. Detailed live-cell imaging analyses revealed that the VM structures in sgr6 had severe defects in morphological changes and dynamics. Our results suggest that SGR6 is a novel protein involved in the formation and/or maintenance of invaginated VM structures in gravity-sensing cells.

  3. Arabidopsis HIT4, a regulator involved in heat-triggered reorganization of chromatin and release of transcriptional gene silencing, relocates from chromocenters to the nucleolus in response to heat stress.

    Science.gov (United States)

    Wang, Lian-Chin; Wu, Jia-Rong; Hsu, Yi-Ju; Wu, Shaw-Jye

    2015-01-01

    Arabidopsis HIT4 is known to mediate heat-induced decondensation of chromocenters and release from transcriptional gene silencing (TGS) with no change in the level of DNA methylation. It is unclear whether HIT4 and MOM1, a well-known DNA methylation-independent transcriptional silencer, have overlapping regulatory functions. A hit4-1/mom1 double mutant strain was generated. Its nuclear morphology and TGS state were compared with those of wild-type, hit4-1, and mom1 plants. Fluorescent protein tagging was employed to track the fates of HIT4, hit4-1 and MOM1 in vivo under heat stress. HIT4- and MOM1-mediated TGS were distinguishable. Both HIT4 and MOM1 were localized normally to chromocenters. Under heat stress, HIT4 relocated to the nucleolus, whereas MOM1 dispersed with the chromocenters. hit4-1 was able to relocate to the nucleolus under heat stress, but its relocation was insufficient to trigger the decompaction of chromocenters. The hypersensitivity to heat associated with the impaired reactivation of TGS in hit4-1 was not alleviated by mom1-induced release from TGS. HIT4 delineates a novel and MOM1-independent TGS regulation pathway. The involvement of a currently unidentified component that links HIT4 relocation and the large-scale reorganization of chromatin, and which is essential for heat tolerance in plants is hypothesized.

  4. Cost and primary energy efficiency of small-scale district heating systems

    International Nuclear Information System (INIS)

    Highlights: • We analyzed minimum-cost options for small-scale DHSs under different contexts. • District heat production cost increases with reduced DHS scales. • Fewer technical options are suitable for small-scale DHSs. • Systems with combined technologies are less sensitive to changes in fuel prices. - Abstract: Efficient district heat production systems (DHSs) can contribute to achieving environmental targets and energy security for countries that have demands for space and water heating. The optimal options for a DHS vary with the environmental and social-political contexts and the scale of district heat production, which further depends on the size of the community served and the local climatic conditions. In this study, we design a small-scale, minimum-cost DHS that produces approximately 100 GWhheat per year and estimate the yearly production cost and primary energy use of this system. We consider conventional technologies, such as heat-only boilers, electric heat pumps and combined heat and power (CHP) units, as well as emerging technologies, such as biomass-based organic Rankine cycle (BORC) and solar water heating (SWH). We explore how different environmental and social-political situations influence the design of a minimum-cost DHS and consider both proven and potential technologies for small-scale applications. Our calculations are based on the real heat load duration curve for a town in southern Sweden. We find that the district heat production cost increases and that the potential for cogeneration decreases with smaller district heat production systems. Although the selection of technologies for a minimum-cost DHS depends on environmental and social-political contexts, fewer technical options are suitable for small-scale systems. Emerging technologies such as CHP-BORC and SWH improve the efficiency of primary energy use for heat production, but these technologies are more costly than conventional heat-only boilers. However, systems with

  5. A study of a small nuclear power plant system for district heating

    International Nuclear Information System (INIS)

    We have studied nuclear power plant for district heating. Already some towns and villages in Hokkaido have requested small reactor for district heating. Using existing technology allows us to shorten development period and to keep a lid on development cost. We decided to develop new reactor based on 'MUTSU' reactor technology because 'MUTSU' had already proved its safety. And this reactor was boron free reactor. It allows plant system to reduce the chemical control system. And moderator temperature coefficient is deeply negative. It means to improve its operability and leads to dependability enhancement. We calculated burn-up calculation of erbium addition fuel. In the result, the core life became about 10 years. And we adapt the cassette type refueling during outagein in order to maintain nonproliferation. In the district heating system, a double heat exchanger system enables to response to load change in season. To obtain the acceptance of public, this system has a leak prevention system of radioactive materials to public. And road heating system of low grade heat utilization from turbine condenser leads to improve the heat utilization efficiency. We carried out performance evaluation test of district heating pipeline. Then the heat loss of pipeline is estimated at about 0.440degC/km. This result meets general condition, which is about 1degC/km. This small plant has passive safety system. It is natural cooling of containment vessel. In case of loss of coolant accident, decay heat can remove by natural convection air cooling after 6 hours. Decay heat within 6 hours can remove by evaporative heat transfer of pool on containment vessel. (author)

  6. Small-scale fluctuations in barium drifts at high latitudes and associated Joule heating effects

    Science.gov (United States)

    Hurd, L. D.; Larsen, M. F.

    2016-01-01

    Most previous estimates of Joule heating rates, especially the contribution of small-scale structure in the high-latitude ionosphere, have been based on incoherent scatter or coherent scatter radar measurements. An alternative estimate can be found from the plasma drifts obtained from ionized barium clouds released from sounding rockets. We have used barium drift data from three experiments to estimate Joule heating rates in the high-latitude E region for different magnetic activity levels. In particular, we are interested in the contribution of small-scale plasma drift fluctuations, corresponding to equivalent electric field fluctuations, to the local Joule heating rate on scales smaller than those typically resolved by radar or other measurements. Since Joule heating is a Lagrangian quantity, the inherently Lagrangian estimates provided by the chemical tracer measurements are a full description of the effects of electric field variance and neutral winds on the heating, differing from the Eulerian estimates of the type provided by ground-based measurements. Results suggest that the small-scale contributions to the heating can be more than a factor of 2 greater than the mean field contribution regardless of geomagnetic conditions, and at times the small-scale contribution is even larger. The high-resolution barium drift measurements, moreover, show that the fine structure in the electric field can be more variable than previous studies have reported for similar conditions. The neutral winds also affect the heating, altering the height-integrated Joule heating rates by as much as 12%, for the cases studied here, and modifying the height distribution of the heating profile as well.

  7. Two phases of response to long-term moderate heat: Variation in thermotolerance between Arabidopsis thaliana and its relative Arabis paniculata.

    Science.gov (United States)

    Tang, Ting; Liu, Peile; Zheng, Guowei; Li, Weiqi

    2016-02-01

    Long-term moderate heat is often experienced by plants and will become even more common in the future due to global warming. However, the responses of plants to this stress have not been characterised. In the present study, growth between Arabidopsis thaliana and its relative Arabis paniculata upon long-term exposure to moderate heat was compared. It was found that the latter was more tolerant than the former, and the patterns of physiological and biochemical responses of both plants presented two phases. The early phase involved no significant visible morphological and physiological changes. It occurred during the first third of the heat treatment and was extended when the stress was attenuated. During the later phase, the plants died or were damaged. Heat shock proteins were dramatically induced at the early phase and gradually decreased at the later phase in A. thaliana. By contrast, the levels were induced and maintained in A. paniculata. Profiling of membrane lipids found that the two plants exhibited opposite patterns of lipid remodelling at the early phase: A. paniculata synthesised phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol and showed a rapid decrease in the degree of lipid unsaturation, while A. thaliana degraded its lipids at the early phase and showed an accelerated degradation at the later phase. These biochemical adjustments during the early phase could favor the thermotolerance of A. paniculata. These results suggest that this species could thus be a model for the study of resistance to long-term moderate heat, through a strategy by which plants can adapt to long-term moderate heat. PMID:26782026

  8. Prokaryotic Expression and Purification of Heat Shock Factor HSF1 in Arabidopsis thaliana%拟南芥热激因子HSF1的表达与纯化

    Institute of Scientific and Technical Information of China (English)

    郭丽红; 王定康; 袁燕; 刘开庆; 陈雪; 陈善娜

    2009-01-01

    [Objective] This study was to express and purify Arabidopsis thaliana heat shock factor HSF1. [Method] Using Escherichia coli M15 harboring HSF1 (pQE32/His6-HSF1, pREP4) as experimental materials, HSF1 was induced to express with isopropy1-β-D-galactoside (IPTG); then the expression product was purified using Ni-NTA-agarose affinity chromatography and analyzed by SDS-PAGE. [Result] HSF1 of Arabidopsis thaliana was successfully expressed and purified. [Conclusion] This study provides materials for understanding the blinding site of HSF1 on Arabidopsis thaliana chromosome, further laying a good foundation for revealing the regulatory mechanism and physiological function of HSF1.

  9. Ribosomal P3 protein AtP3B of Arabidopsis acts as both protein and RNA chaperone to increase tolerance of heat and cold stresses.

    Science.gov (United States)

    Kang, Chang Ho; Lee, Young Mee; Park, Joung Hun; Nawkar, Ganesh M; Oh, Hun Taek; Kim, Min Gab; Lee, Soo In; Kim, Woe Yeon; Yun, Dae-Jin; Lee, Sang Yeol

    2016-07-01

    The P3 proteins are plant-specific ribosomal P-proteins; however, their molecular functions have not been characterized. In a screen for components of heat-stable high-molecular weight (HMW) complexes, we isolated the P3 protein AtP3B from heat-treated Arabidopsis suspension cultures. By size-exclusion chromatography (SEC), SDS-PAGE and native PAGE followed by immunoblotting with anti-AtP3B antibody, we showed that AtP3B was stably retained in HMW complexes following heat shock. The level of AtP3B mRNA increased in response to both high- and low-temperature stresses. Bacterially expressed recombinant AtP3B protein exhibited both protein and RNA chaperone activities. Knockdown of AtP3B by RNAi made plants sensitive to both high- and low-temperature stresses, whereas overexpression of AtP3B increased tolerance of both conditions. Together, our results suggest that AtP3B protects cells against both high- and low-temperature stresses. These findings provide novel insight into the molecular functions and in vivo roles of acidic ribosomal P-proteins, thereby expanding our knowledge of the protein production machinery. PMID:27004478

  10. Heat Shock Factors HsfB 1 and HsfB2b Are Involved in the Regulation of Pdfl.2 Expression and Pathogen Resistance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Mukesh Kumar; Wolfgang Busch; Hannah Birke; Birgit Kemmerling; Thorsten N(U)rnberger; Friedrich Sch(o)ffl

    2009-01-01

    In order to assess the functional roles of heat stress-induced class B-heat shock factors in Arabidopsis, we investigated T-DNA knockout mutants of AtHsfB1 and AtHsfB2b. Micorarray analysis of double knockout hsfBl/hsfB2b plants revealed as strong an up-regulation of the basal mRNA-levels of the defensin genes Pdfl.2a/b in mutant plants.The Pdfexpression was further enhanced by jasmonic acid treatment or infection with the necrotrophic fungus Alternaria brassicicola. The single mutant hsfB2b and the double mutant hsfB1/B2b were significantly improved in disease resistance after A. brassicicola infection. There was no indication for a direct interaction of Hsf with the promoter of Pdfl.2, which is devoid of perfect HSE consensus Hsf-binding sequences. However, changes in the formation of late HsfA2-dependent HSE binding were detected in hsfB1/B2b plants. This suggests that HsfB1/B2b may interact with class A-Hsf in regulating the shut-off of the heat shock response. The identification of Pdfgenes as targets of Hsf-dependent negative regulation is the first evidence for an interconnection of Hsf in the regulation of biotic and abiotic responses.

  11. Initial crystallographic studies of a small heat-shock protein from Xylella fastidiosa

    International Nuclear Information System (INIS)

    Initial crystallographic studies of the X. fastidiosa small heat-shock protein HSP17.9 are reported. The ORF XF2234 in the Xylella fastidiosa genome was identified as encoding a small heat-shock protein of 17.9 kDa (HSP17.9). HSP17.9 was found as one of the proteins that are induced during X. fastidiosa proliferation and infection in citrus culture. Recombinant HSP17.9 was crystallized and surface atomic force microscopy experiments were conducted with the aim of better characterizing the HSP17.9 crystals. X-ray diffraction data were collected at 2.7 Å resolution. The crystal belonged to space group P4322, with unit-cell parameters a = 68.90, b = 68.90, c = 72.51 Å, and is the first small heat-shock protein to crystallize in this space group

  12. Reassembly and protection of small nuclear ribonucleoprotein particles by heat shock proteins in yeast cells.

    OpenAIRE

    Bracken, A P; Bond, U

    1999-01-01

    The process of mRNA splicing is sensitive to in vivo thermal inactivation, but can be protected by pretreatment of cells under conditions that induce heat-shock proteins (Hsps). This latter phenomenon is known as "splicing thermotolerance". In this article we demonstrate that the small nuclear ribonucleoprotein particles (snRNPs) are in vivo targets of thermal damage within the splicing apparatus in heat-shocked yeast cells. Following a heat shock, levels of the tri-snRNP (U4/U6.U5), free U6 ...

  13. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover.

    Science.gov (United States)

    Lin, Yao-Pin; Lee, Tsung-yuan; Tanaka, Ayumi; Charng, Yee-yung

    2014-10-01

    Chlorophylls, the most abundant pigments in the photosynthetic apparatus, are constantly turned over as a result of the degradation and replacement of the damage-prone reaction center D1 protein of photosystem II. Results from isotope labeling experiments suggest that chlorophylls are recycled by reutilization of chlorophyllide and phytol, but the underlying mechanism is unclear. In this study, by characterization of a heat-sensitive Arabidopsis mutant we provide evidence of a salvage pathway for chlorophyllide a. A missense mutation in CHLOROPHYLL SYNTHASE (CHLG) was identified and confirmed to be responsible for a light-dependent, heat-induced cotyledon bleaching phenotype. Following heat treatment, mutant (chlg-1) but not wild-type seedlings accumulated a substantial level of chlorophyllide a, which resulted in a surge of phototoxic singlet oxygen. Immunoblot analysis suggested that the mutation destabilized the chlorophyll synthase proteins and caused a conditional blockage of esterification of chlorophyllide a after heat stress. Accumulation of chlorophyllide a after heat treatment occurred during recovery in the dark in the light-grown but not the etiolated seedlings, suggesting that the accumulated chlorophyllides were not derived from de novo biosynthesis but from de-esterification of the existing chlorophylls. Further analysis of the triple mutant harboring the CHLG mutant allele and null mutations of CHLOROPHYLLASE1 (CLH1) and CLH2 indicated that the known chlorophyllases are not responsible for the accumulation of chlorophyllide a in chlg-1. Taken together, our results show that chlorophyll synthase acts in a salvage pathway for chlorophyll biosynthesis by re-esterifying the chlorophyllide a produced during chlorophyll turnover.

  14. Cost of electricity from small scale co-generation of electricity and heat

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Bjoern

    2012-07-15

    There is an increasing interest in Sweden for using also small heat loads for cogeneration of electricity and heat. Increased use of small CHP-plants with heat supply capacities from a few 100 kW(h) up to 10 MW(h) cannot change the structure of the electricity supply system significantly, but could give an important contribution of 2 - 6 TWh(e) annually. The objective of this study was to clarify under what conditions electricity can be generated in small wood fired CHP-plants in Sweden at costs that can compete with those for plants using fossil fuels or nuclear energy. The capacity range studied was 2 - 10 MW(h). The results should facilitate decisions about the meaningfulness of considering CHP as an option when new heat supply systems for small communities or sawmills are planned. At the price for green certificates in Sweden, 250 - 300 SEK/MWh(e), generation costs in small wood fired CHP-plants should be below about 775 SEK/MWh(e) to compete with new nuclear power plants and below about 925 SEK/MWh(e) to compete with generation using fossil fuels.

  15. Dynamic behavior of small heat shock protein inhibition on amyloid fibrillization of a small peptide (SSTSAA) from RNase A

    International Nuclear Information System (INIS)

    Highlights: ► Mechanism of small heat shock protein inhibition on fibril formation was studied. ► Peptide SSTSAA with modified ends was used for amyloid fibril formation. ► FRET signal was followed during the fibril formation. ► Mj HSP16.5 inhibits fibril formation when introduced in the lag phase. ► Mj HSP16.5 slows down fibril formation when introduced after the lag phase. -- Abstract: Small heat shock proteins, a class of molecular chaperones, are reported to inhibit amyloid fibril formation in vitro, while the mechanism of inhibition remains unknown. In the present study, we investigated the mechanism by which Mj HSP16.5 inhibits amyloid fibril formation of a small peptide (SSTSAA) from RNase A. A model peptide (dansyl-SSTSAA-W) was designed by introducing a pair of fluorescence resonance energy transfer (FRET) probes into the peptide, allowing for the monitoring of fibril formation by this experimental model. Mj HSP16.5 completely inhibited fibril formation of the model peptide at a molar ratio of 1:120. The dynamic process of fibril formation, revealed by FRET, circular dichroism, and electron microscopy, showed a lag phase of about 2 h followed by a fast growth period. The effect of Mj HSP16.5 on amyloid fibril formation was investigated by adding it into the incubation solution during different growth phases. Adding Mj HSP16.5 to the incubating peptide before or during the lag phase completely inhibited fibril formation. However, introducing Mj HSP16.5 after the lag phase only slowed down the fibril formation process by adhering to the already formed fibrils. These findings provide insight into the inhibitory roles of small heat shock proteins on amyloid fibril formation at the molecular level.

  16. Downregulation of CSD2 by a heat-inducible miR398 is required for thermotolerance in Arabidopsis

    OpenAIRE

    Lu, Xiaoyan; Guan, Qingmei; Zhu, Jianhua

    2013-01-01

    MicroRNAs (miRNAs) play important roles in plant growth and development and abiotic stress responses. We report here that heat stress rapidly induces miR398 and reduces transcript of its target gene CSD2. Transgenic plants overexpressing the miR398-resistant form of CSD2 are more sensitive to heat stress than transgenic plants overexpressing normal coding sequence of CSD2. Expression of heat stress transcription factors (HSFs) and heat shock proteins (HSPs) is reduced in the heat-sensitive tr...

  17. Application Closed-End Oscillating Heat Pipe for Essential Oil Condensation of the Small Scale Essential Oil Refiner

    OpenAIRE

    Sakultala WANNAPAKHE

    2013-01-01

    This research aimed to investigate the design and building of a small scale essential oil refiner by using heat pipes for essential oil condensation. The device structure of the small scale essential oil refiner was divided into 3 sections as follows: 1) the boiler with a heater for heating, 2) the vapor tube, and 3) the condenser unit. Three patterns of condenser unit were investigated: 1) condensation by water circulation, 2) condensation using heat pipes, and 3) condensation using heat pip...

  18. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90 gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jinyan Xu

    Full Text Available Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1-GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1 in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline.

  19. Overexpression of WsSGTL1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    Directory of Open Access Journals (Sweden)

    Manoj K Mishra

    Full Text Available BACKGROUND: Sterol glycosyltrnasferases (SGT are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant's adaptation to abiotic stress. METHODOLOGY: The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses--salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA and the 3D structures were predicted by using Discovery Studio Ver. 2.5. RESULTS: The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. CONCLUSIONS: Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found

  20. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations.

    Science.gov (United States)

    Jung, Chang Gyo; Hwang, Sun-Goo; Park, Yong Chan; Park, Hyeon Mi; Kim, Dong Sub; Park, Duck Hwan; Jang, Cheol Seong

    2015-03-15

    LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations.

  1. Transportable, Chemical Genetic Methodology for the Small Molecule-Mediated Inhibition of Heat Shock Factor 1.

    Science.gov (United States)

    Moore, Christopher L; Dewal, Mahender B; Nekongo, Emmanuel E; Santiago, Sebasthian; Lu, Nancy B; Levine, Stuart S; Shoulders, Matthew D

    2016-01-15

    Proteostasis in the cytosol is governed by the heat shock response. The master regulator of the heat shock response, heat shock factor 1 (HSF1), and key chaperones whose levels are HSF1-regulated have emerged as high-profile targets for therapeutic applications ranging from protein misfolding-related disorders to cancer. Nonetheless, a generally applicable methodology to selectively and potently inhibit endogenous HSF1 in a small molecule-dependent manner in disease model systems remains elusive. Also problematic, the administration of even highly selective chaperone inhibitors often has the side effect of activating HSF1 and thereby inducing a compensatory heat shock response. Herein, we report a ligand-regulatable, dominant negative version of HSF1 that addresses these issues. Our approach, which required engineering a new dominant negative HSF1 variant, permits dosable inhibition of endogenous HSF1 with a selective small molecule in cell-based model systems of interest. The methodology allows us to uncouple the pleiotropic effects of chaperone inhibitors and environmental toxins from the concomitantly induced compensatory heat shock response. Integration of our method with techniques to activate HSF1 enables the creation of cell lines in which the cytosolic proteostasis network can be up- or down-regulated by orthogonal small molecules. Selective, small molecule-mediated inhibition of HSF1 has distinctive implications for the proteostasis of both chaperone-dependent globular proteins and aggregation-prone intrinsically disordered proteins. Altogether, this work provides critical methods for continued exploration of the biological roles of HSF1 and the therapeutic potential of heat shock response modulation.

  2. Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis.

    Science.gov (United States)

    Kim, Tae-Houn; Kunz, Hans-Henning; Bhattacharjee, Saikat; Hauser, Felix; Park, Jiyoung; Engineer, Cawas; Liu, Amy; Ha, Tracy; Parker, Jane E; Gassmann, Walter; Schroeder, Julian I

    2012-12-01

    In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor-nucleotide binding-Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid-induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest. PMID:23275581

  3. Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis.

    Science.gov (United States)

    Kim, Tae-Houn; Kunz, Hans-Henning; Bhattacharjee, Saikat; Hauser, Felix; Park, Jiyoung; Engineer, Cawas; Liu, Amy; Ha, Tracy; Parker, Jane E; Gassmann, Walter; Schroeder, Julian I

    2012-12-01

    In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor-nucleotide binding-Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid-induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest.

  4. Impact of various operating modes on performance and emission parameters of small heat source

    Science.gov (United States)

    Vician, Peter; Holubčík, Michal; Palacka, Matej; Jandačka, Jozef

    2016-06-01

    Thesis deals with the measurement of performance and emission parameters of small heat source for combustion of biomass in each of its operating modes. As the heat source was used pellet boiler with an output of 18 kW. The work includes design of experimental device for measuring the impact of changes in air supply and method for controlling the power and emission parameters of heat sources for combustion of woody biomass. The work describes the main factors that affect the combustion process and analyze the measurements of emissions at the heat source. The results of experiment demonstrate the values of performance and emissions parameters for the different operating modes of the boiler, which serve as a decisive factor in choosing the appropriate mode.

  5. Microscale flow visualization of nucleate boiling in small channels: Mechanisms influencing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.E.; Didascalou, T.; Wambsganss, M.W.

    1997-07-01

    This paper describes the use of a new test apparatus employing flow visualization via ultra-high-speed video and microscope optics to study microscale nucleate boiling in a small, rectangular, heated channel. The results presented are for water. Because of confinement effects produced by the channel cross section being of the same nominal size as the individual vapor bubbles nucleating at discrete wall sites, flow regimes and heat transfer mechanisms that occur in small channels are shown to be considerably different than those in large channels. Flow visualization data are presented depicting discrete bubble/bubble and bubble/wall interactions for moderate and high heat flux. Quantitative data are also presented on nucleate bubble growth behavior for a single nucleation site in the form of growth rates, bubble sizes, and frequency of generation in the presence and absence of a thin wall liquid layer. Mechanistic boiling behavior and trends are observed which support the use of this type of research as a powerful means to gain fundamental insights into why, under some conditions, nucleate boiling heat transfer coefficients are considerably larger in small channels than in large channels.

  6. Isolation and characterization of a small heat shock protein gene from maize.

    Science.gov (United States)

    Dietrich, P S; Bouchard, R A; Casey, E S; Sinibaldi, R M

    1991-08-01

    A maize (Zea mays L.) genomic clone (Zmempr 9') was isolated on the basis of its homology to a meiotically expressed Lilium sequence. Radiolabeled probe made from the maize genomic clone detected complementary RNA at high fidelity. Furthermore, it hybridized to RNA isolated from staged (an interval that is coincident with meiotic prophase) maize tassel spikelets. Complimentary RNA was strongly (at least 50-fold) induced during heat shock of maize somatic tissue and appeared as a single size class in Northern blot hybridizations. Sequencing of the complete coding region of Zmempr 9' confirmed the homology of the inferred amino acid sequence to other small heat shock proteins. Consensus sequences found in the flanking regions corresponded to the usual signals for initiation of RNA transcription, polyadenylate addition, and the induction of heat shock genes. The latter sequences conferred heat shock-specific transient expression in electroporated protoplasts when cloned into promoterless reporter gene plasmid constructs. Hybrid-selected translations revealed specific translation products ranging from 15 to 18 kilodaltons, providing evidence that this gene is a member of a related multigene family. We therefore conclude that this maize genomic DNA clone, recovered through its homology to clones for meiotic transcripts in lily, represents a genuine maize small heat shock protein gene. PMID:16668329

  7. A Small-Sized HTGR System Design for Multiple Heat Applications for Developing Countries

    Directory of Open Access Journals (Sweden)

    Hirofumi Ohashi

    2013-01-01

    Full Text Available Japan Atomic Energy Agency has conducted a conceptual design of a 50 MWt small-sized high temperature gas cooled reactor (HTGR for multiple heat applications, named HTR50S, with the reactor outlet coolant temperature of 750°C and 900°C. It is first-of-a-kind of the commercial plant or a demonstration plant of a small-sized HTGR system to be deployed in developing countries in the 2020s. The design concept of HTR50S is to satisfy the user requirements for multipurpose heat applications such as the district heating and process heat supply based on the steam turbine system and the demonstration of the power generation by helium gas turbine and the hydrogen production using the water splitting iodine-sulfur process, to upgrade its performance compared to that of HTTR without significant R&D utilizing the knowledge obtained by the HTTR design and operation, and to fulfill the high level of safety by utilizing the inherent features of HTGR and a passive decay heat removal system. The evaluation of technical feasibility shows that all design targets were satisfied by the design of each system and the preliminary safety analysis. This paper describes the conceptual design and the preliminary safety analysis of HTR50S.

  8. Small steps to maturity. Fuel cell heating aggregates; Muehsames Herantasten. Brennstoffzellen-Heizgeraete

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Wolfgang

    2009-07-15

    By 2015 at the latest, fuel cell heating systems are expected to be available to the end user after practical tests have been completed. The ultimate breakthrough is to be achieved by a funding project of several thousand million Euros of the German Federal Minister of Transportation, Construction and Urban Development (BMVBS). But the 2009 Hanover Fair showed that the development of fuel cell heating systems for serial production is a process of small steps taken one by one. Also, it becomes clear that the optimistic forecasts of a mass market that were sometimes voiced will not become reality. (orig.)

  9. Beyond heat baths: Generalized resource theories for small-scale thermodynamics.

    Science.gov (United States)

    Yunger Halpern, Nicole; Renes, Joseph M

    2016-02-01

    Thermodynamics has recently been extended to small scales with resource theories that model heat exchanges. Real physical systems exchange diverse quantities: heat, particles, angular momentum, etc. We generalize thermodynamic resource theories to exchanges of observables other than heat, to baths other than heat baths, and to free energies other than the Helmholtz free energy. These generalizations are illustrated with "grand-potential" theories that model movements of heat and particles. Free operations include unitaries that conserve energy and particle number. From this conservation law and from resource-theory principles, the grand-canonical form of the free states is derived. States are shown to form a quasiorder characterized by free operations, d majorization, the hypothesis-testing entropy, and rescaled Lorenz curves. We calculate the work distillable from-and we bound the work cost of creating-a state. These work quantities can differ but converge to the grand potential in the thermodynamic limit. Extending thermodynamic resource theories beyond heat baths, we open diverse realistic systems to modeling with one-shot statistical mechanics. Prospective applications such as electrochemical batteries are hoped to bridge one-shot theory to experiments.

  10. Beyond heat baths: Generalized resource theories for small-scale thermodynamics.

    Science.gov (United States)

    Yunger Halpern, Nicole; Renes, Joseph M

    2016-02-01

    Thermodynamics has recently been extended to small scales with resource theories that model heat exchanges. Real physical systems exchange diverse quantities: heat, particles, angular momentum, etc. We generalize thermodynamic resource theories to exchanges of observables other than heat, to baths other than heat baths, and to free energies other than the Helmholtz free energy. These generalizations are illustrated with "grand-potential" theories that model movements of heat and particles. Free operations include unitaries that conserve energy and particle number. From this conservation law and from resource-theory principles, the grand-canonical form of the free states is derived. States are shown to form a quasiorder characterized by free operations, d majorization, the hypothesis-testing entropy, and rescaled Lorenz curves. We calculate the work distillable from-and we bound the work cost of creating-a state. These work quantities can differ but converge to the grand potential in the thermodynamic limit. Extending thermodynamic resource theories beyond heat baths, we open diverse realistic systems to modeling with one-shot statistical mechanics. Prospective applications such as electrochemical batteries are hoped to bridge one-shot theory to experiments. PMID:26986307

  11. Beyond heat baths: Generalized resource theories for small-scale thermodynamics

    Science.gov (United States)

    Yunger Halpern, Nicole; Renes, Joseph M.

    2016-02-01

    Thermodynamics has recently been extended to small scales with resource theories that model heat exchanges. Real physical systems exchange diverse quantities: heat, particles, angular momentum, etc. We generalize thermodynamic resource theories to exchanges of observables other than heat, to baths other than heat baths, and to free energies other than the Helmholtz free energy. These generalizations are illustrated with "grand-potential" theories that model movements of heat and particles. Free operations include unitaries that conserve energy and particle number. From this conservation law and from resource-theory principles, the grand-canonical form of the free states is derived. States are shown to form a quasiorder characterized by free operations, d majorization, the hypothesis-testing entropy, and rescaled Lorenz curves. We calculate the work distillable from—and we bound the work cost of creating—a state. These work quantities can differ but converge to the grand potential in the thermodynamic limit. Extending thermodynamic resource theories beyond heat baths, we open diverse realistic systems to modeling with one-shot statistical mechanics. Prospective applications such as electrochemical batteries are hoped to bridge one-shot theory to experiments.

  12. Errors in macromolecular synthesis after stress : a study of the possible protective role of the small heat shock proteins

    NARCIS (Netherlands)

    Marin Vinader, L.

    2006-01-01

    The general goal of this thesis was to gain insight in what small heat shock proteins (sHsps) do with respect to macromolecular synthesis during a stressful situation in the cell. It is known that after a non-lethal heat shock, cells are better protected against a subsequent more severe heat shock,

  13. Technologies for small scale wood-fueled combined heat and power systems

    Energy Technology Data Exchange (ETDEWEB)

    Houmann Jakobsen, H.; Houmoeller, S.; Thaaning Pedersen, L.

    1998-01-01

    The aim of this study is to describe and compare different technologies for small cogeneration systems (up to 2-3 MW{sub e}), based on wood as fuel. For decentralized cogeneration, i.e. for recovering energy from saw mill wood wastes or heat supply for small villages, it is vital to know the advantages and disadvantages of the different technologies. Also, for the decision-makers it is of importance to know the price levels of the different technologies. A typical obstacle for small wood cogeneration systems is the installation costs. The specific price (per kW) is usually higher than for larger plants or plants using fossil fuels. For a saw mill choosing between cogeneration and simple heat production, however, the larger installation costs are counter weighed by the sale of electricity, while the fuel consumption is the same. Whether it is profitable or not to invest in cogeneration is often hard to decide. For many years small wood cogeneration systems have been too expensive, leading to the construction of only heat producing systems due to too high price levels of small steam turbines. In recent years a great deal of effort has been put into research and developing of new technologies to replace this traditional steam turbine. Among these are: Steam engines; Stirling engines; Indirectly fired gas turbines; Pressurized down draft combustion. Along with the small scale traditional steam turbines, these technologies will be evaluated in this study. When some or all these technologies are fully developed and commercial, a strong means of reducing the strain on the environment and the greenhouse effect will be available, as the total efficiency is high (up to 90%) and wood is an energy source in balance with nature. (au) EFP-95. 19 refs.

  14. Study of drying of small diameter Larch lumbers with intermittent heating

    Institute of Scientific and Technical Information of China (English)

    GUO Ming-hui; ZHAO Xi-ping

    2006-01-01

    Intermittent heating for drying of small diameter Larch lumbers is investigated experimentally. The lumbers were dried using an experimental drying schedule. Moisture content (MC) of the lumber was continuously recorded and final drying defects were examined. The drying curves showed that the drying rate was a constant in the early stage of intermittent heating drying and decreased evidently when the MC was about 18% ( intermittent 2h) and 20% (intermittent 6h). The drying quality reached the second (intermittent 2h) and first grade (intermittent 6h) of the Chinese National Standard. The visual drying defects, especially the check extent along grains were reduced with intermittent heating. When the intermittent time increased, the effect was more obvious.

  15. On Propagation of One Dimensional Small Amplitude Waves in Radiating Viscous and Heat Conducting Gas

    Directory of Open Access Journals (Sweden)

    S. G. Tagare

    1969-07-01

    Full Text Available "In this paper, effect of radiation, heat-conduction and viscosity on propagation of one-dimensional small amplitude waves is investigated. It is shown that there are three distinct modes of propagation viz. (i Radiation-induced mode, (ii Modified gasdynamic mode and (iii Coupled heat-conduction and viscous mode. The dispersion relation is solved both asymptotically and numerically. For very small values of omega, the asymptotic solution predicts the speed of propagation of distriubance as zero, as (isentropic sound velocity and 0.336 times the isothermal sound velocity. For very large values of omega, the high frequency waves propagate with characteristic speeds of the seventh order operation. "

  16. Performance Analysis of a Hybrid District Heating System: a Case Study of a Small Town in Croatia

    Directory of Open Access Journals (Sweden)

    Robert Mikulandric

    2015-09-01

    Full Text Available Hybridisation of district heating systems can contribute to more efficient heat generation through cogeneration power plants or through the share increase of renewable energy sources in total energy consumption while reducing negative aspects of particular energy source utilisation. In this work, the performance of a hybrid district energy system for a small town in Croatia has been analysed. Mathematical model for process analysis and optimisation algorithm for optimal system configuration has been developed and described. The main goal of the system optimisation is to reduce heat production costs. Several energy sources for heat production have been considered in 8 different simulation cases. Simulation results show that the heat production costs could be reduced with introduction of different energy systems into an existing district heating system. Renewable energy based district heating systems could contribute to heat production costs decrease in district heating systems up to 30% in comparison with highly efficient heat production technologies based on conventional fuels.

  17. Pressure- and Heat-Induced Insertion of CO2 into an Auxetic Small-Pore Zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Y Lee; D Liu; D Seoung; Z Liu; C Kao; T Vogt

    2011-12-31

    When the small-pore zeolite natrolite is compressed at ca. 1.5 GPa and heated to ca. 110 C in the presence of CO{sub 2}, the unit cell volume of natrolite expands by 6.8% and ca. 12 wt % of CO{sub 2} is contained in the expanded elliptical channels. This CO{sub 2} insertion into natrolite is found to be reversible upon pressure release.

  18. Determining Reliability Parameters for a Closed-Cycle Small Combined Heat and Power Plant

    Science.gov (United States)

    Vysokomorny, Vladimir S.; Vysokomornaya, Olga V.; Piskunov, Maxim V.

    2016-02-01

    The paper provides numerical values of the reliability parameters for independent power sources within the ambient temperature and output power range corresponding to the operation under the climatic conditions of Eastern Siberia and the Far East of the Russian Federation. We have determined the optimal values of the parameters necessary for the reliable operation of small CHP plants (combined heat and power plants) providing electricity for isolated facilities.

  19. Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications

    OpenAIRE

    Serrano Cruz, José Ramón; Olmeda González, Pablo Cesar; Arnau Martínez, Francisco José; Reyes Belmonte, Miguel Angel; Lefebvre, Alain

    2013-01-01

    Nowadays turbocharging the internal combustion engine has become a key point in the reduction on pollutant emissions and the improvement on engine performance. The matching between the turbocharger and the engine is vital due to the highly unsteady flow the turbocharger works with. In the present paper the importance of the heat transfer phenomena inside small automotive turbochargers will be analyzed. This phenomenon will be studied from the point of view of both the ...

  20. Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas.

    Science.gov (United States)

    MacRae, T H

    2000-06-01

    Small heat shock/alpha-crystallin proteins are defined by conserved sequence of approximately 90 amino acid residues, termed the alpha-crystallin domain, which is bounded by variable amino- and carboxy-terminal extensions. These proteins form oligomers, most of uncertain quaternary structure, and oligomerization is prerequisite to their function as molecular chaperones. Sequence modelling and physical analyses show that the secondary structure of small heat shock/alpha-crystallin proteins is predominately beta-pleated sheet. Crystallography, site-directed spin-labelling and yeast two-hybrid selection demonstrate regions of secondary structure within the alpha-crystallin domain that interact during oligomer assembly, a process also dependent on the amino terminus. Oligomers are dynamic, exhibiting subunit exchange and organizational plasticity, perhaps leading to functional diversity. Exposure of hydrophobic residues by structural modification facilitates chaperoning where denaturing proteins in the molten globule state associate with oligomers. The flexible carboxy-terminal extension contributes to chaperone activity by enhancing the solubility of small heat shock/alpha-crystallin proteins. Site-directed mutagenesis has yielded proteins where the effect of the change on structure and function depends upon the residue modified, the organism under study and the analytical techniques used. Most revealing, substitution of a conserved arginine residue within the alpha-crystallin domain has a major impact on quaternary structure and chaperone action probably through realignment of beta-sheets. These mutations are linked to inherited diseases. Oligomer size is regulated by a stress-responsive cascade including MAPKAP kinase 2/3 and p38. Phosphorylation of small heat shock/alpha-crystallin proteins has important consequences within stressed cells, especially for microfilaments.

  1. Small Scale Dynamo Magnetism And the Heating of the Quiet Sun Solar Atmosphere.

    Science.gov (United States)

    Amari, T.

    2015-12-01

    The longstanding problem of the solar atmosphere heating has been addressed by many theoretical studies. Two specific mechanisms have been shown to play a key role in those : magnetic reconnection and waves. On the other hand the necessity of treating together chromosphere and corona has also been been stressed, with debates going on about the possibility of heating coronal plasma by energetic phenomena observed in the chromosphere,based on many key observations such as spicules, tornadoes…. We present some recent results about the modeling of quiet Sun heating in which magnetic fields are generated by a subphotospheric fluid dynamo which is connected to granulation. The model shows a topologically complex magnetic field of 160 G on the Sun's surface, agreeing with inferences obtained from spectropolarimetric observations.Those generated magnetic fields emerge into the chromosphere, providing the required energy flux and then small-scale eruptions releasing magnetic energy and driving sonic motions. Some of the more energetic eruptions can affect the very low corona only.It is also found that taking into account a vertical weak network magnetic field then allows to provide energy higher in the corona, while leaving unchanged the physics of chromospheric eruptions. The coronal heating mechanism rests on the eventual dissipation of Alfven waves generated inside the chromosphere and carrying upwards an adequate energy flux, while more energetic phenomena contribute only weakly to the heating of the corona.

  2. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis.

    Science.gov (United States)

    Matsumura, Yoko; Ohbayashi, Iwai; Takahashi, Hiro; Kojima, Shoko; Ishibashi, Nanako; Keta, Sumie; Nakagawa, Ayami; Hayashi, Rika; Saéz-Vásquez, Julio; Echeverria, Manuel; Sugiyama, Munetaka; Nakamura, Kenzo; Machida, Chiyoko; Machida, Yasunori

    2016-01-01

    Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4 These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. PMID:27334696

  3. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yoko Matsumura

    2016-07-01

    Full Text Available Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1 and AS2 (AS1-AS2 is critical to repress abaxial (ventral genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1 synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development.

  4. Differential mRNA Accumulation upon Early Arabidopsis thaliana Infection with ORMV and TMV-Cg Is Associated with Distinct Endogenous Small RNAs Level.

    Directory of Open Access Journals (Sweden)

    Diego Zavallo

    Full Text Available Small RNAs (sRNAs play important roles in plant development and host-pathogen interactions. Several studies have highlighted the relationship between viral infections, endogenous sRNA accumulation and transcriptional changes associated with symptoms. However, few studies have described a global analysis of endogenous sRNAs by comparing related viruses at early stages of infection, especially before viral accumulation reaches systemic tissues. An sRNA high-throughput sequencing of Arabidopsis thaliana leaf samples infected either with Oilseed rape mosaic virus (ORMV or crucifer-infecting Tobacco mosaic virus (TMV-Cg with slightly different symptomatology at two early stages of infection (2 and 4 dpi was performed. At early stages, both viral infections strongly alter the patterns of several types of endogenous sRNA species in distal tissues with no virus accumulation suggesting a systemic signaling process foregoing to virus spread. A correlation between sRNAs derived from protein coding genes and the associated mRNA transcripts was also detected, indicating that an unknown recursive mechanism is involved in a regulatory circuit encompassing this sRNA/mRNA equilibrium. This work represents the initial step in uncovering how differential accumulation of endogenous sRNAs contributes to explain the massive alteration of the transcriptome associated with plant-virus interactions.

  5. Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress.

    Science.gov (United States)

    Soto, A; Allona, I; Collada, C; Guevara, M A; Casado, R; Rodriguez-Cerezo, E; Aragoncillo, C; Gomez, L

    1999-06-01

    A small heat-shock protein (sHSP) that shows molecular chaperone activity in vitro was recently purified from mature chestnut (Castanea sativa) cotyledons. This protein, renamed here as CsHSP17. 5, belongs to cytosolic class I, as revealed by cDNA sequencing and immunoelectron microscopy. Recombinant CsHSP17.5 was overexpressed in Escherichia coli to study its possible function under stress conditions. Upon transfer from 37 degrees C to 50 degrees C, a temperature known to cause cell autolysis, those cells that accumulated CsHSP17.5 showed improved viability compared with control cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cell lysates suggested that such a protective effect in vivo is due to the ability of recombinant sHSP to maintain soluble cytosolic proteins in their native conformation, with little substrate specificity. To test the recent hypothesis that sHSPs may be involved in protection against cold stress, we also studied the viability of recombinant cells at 4 degrees C. Unlike the major heat-induced chaperone, GroEL/ES, the chestnut sHSP significantly enhanced cell survivability at this temperature. CsHSP17.5 thus represents an example of a HSP capable of protecting cells against both thermal extremes. Consistent with these findings, high-level induction of homologous transcripts was observed in vegetative tissues of chestnut plantlets exposed to either type of thermal stress but not salt stress.

  6. Small-scale dynamo magnetism as the driver for heating the solar atmosphere

    Science.gov (United States)

    Amari, Tahar; Luciani, Jean-François; Aly, Jean-Jacques

    2015-06-01

    The long-standing problem of how the solar atmosphere is heated has been addressed by many theoretical studies, which have stressed the relevance of two specific mechanisms, involving magnetic reconnection and waves, as well as the necessity of treating the chromosphere and corona together. But a fully consistent model has not yet been constructed and debate continues, in particular about the possibility of coronal plasma being heated by energetic phenomena observed in the chromosphere. Here we report modelling of the heating of the quiet Sun, in which magnetic fields are generated by a subphotospheric fluid dynamo intrinsically connected to granulation. We find that the fields expand into the chromosphere, where plasma is heated at the rate required to match observations (4,500 watts per square metre) by small-scale eruptions that release magnetic energy and drive sonic motions. Some energetic eruptions can even reach heights of 10 million metres above the surface of the Sun, thereby affecting the very low corona. Extending the model by also taking into account the vertical weak network magnetic field allows for the existence of a mechanism able to heat the corona above, while leaving unchanged the physics of chromospheric eruptions. Such a mechanism rests on the eventual dissipation of Alfvén waves generated inside the chromosphere and that carry upwards the required energy flux of 300 watts per square metre. The model shows a topologically complex magnetic field of 160 gauss on the Sun's surface, agreeing with inferences obtained from spectropolarimetric observations, chromospheric features (contributing only weakly to the coronal heating) that can be identified with observed spicules and blinkers, and vortices that may be possibly associated with observed solar tornadoes.

  7. Occupational exposure in small and medium scale industry with specific reference to heat and noise

    Directory of Open Access Journals (Sweden)

    Lakhwinder Pal Singh

    2010-01-01

    Full Text Available This study was undertaken to assess heat and noise exposure and occupational safety practices in small and medium scale casting and forging units (SMEs of Northern India. We conducted personal interviews of 350 male workers of these units through a comprehensive questionnaire and collected information on heat and noise exposure, use of protective equipment, sweat loss and water intake, working hour. The ambient wet bulb globe temperature (WBGT index was measured using quest temp 34/36o area heat stress monitor. A-weighted Leq ambient noise was measured using a quest sound level meter "ANSI SI. 43-1997 (R 2002 type-1 model SOUNDPRO SE/DL". We also incorporated OSHA norms for hearing conservation which include - an exchange rate of 5dB(A, criterion level at 90dB(A, criterion time of eight hours, threshold level is equal to 80dB(A, upper limit is equal to 140dB(A and with F/S response rate. Results of the study revealed that occupational heat exposure in melting, casting, forging and punching sections is high compared to ACGIH/NIOSH norms. Ambience noise in various sections like casting / molding, drop forging, cutting presses, punching, grinding and barreling process was found to be more than 90dB(A. About 95% of the workers suffered speech interference where as high noise annoyance was reported by only 20%. Overall, 68% workers were not using any personal protective equipment (PPE. The study concluded that the proportion of SME workers exposed to high level heat stress and noise (60 - 72 hrs/week is high. The workers engaged in forging and grinding sections are more prone to noise induced hearing loss (NIHL at higher frequencies as compared to workers of other sections. It is recommended that there is a strong need to implement the standard of working hours as well as heat stress and noise control measures.

  8. Small-scale dynamo magnetism as the driver for heating the solar atmosphere.

    Science.gov (United States)

    Amari, Tahar; Luciani, Jean-François; Aly, Jean-Jacques

    2015-06-11

    The long-standing problem of how the solar atmosphere is heated has been addressed by many theoretical studies, which have stressed the relevance of two specific mechanisms, involving magnetic reconnection and waves, as well as the necessity of treating the chromosphere and corona together. But a fully consistent model has not yet been constructed and debate continues, in particular about the possibility of coronal plasma being heated by energetic phenomena observed in the chromosphere. Here we report modelling of the heating of the quiet Sun, in which magnetic fields are generated by a subphotospheric fluid dynamo intrinsically connected to granulation. We find that the fields expand into the chromosphere, where plasma is heated at the rate required to match observations (4,500 watts per square metre) by small-scale eruptions that release magnetic energy and drive sonic motions. Some energetic eruptions can even reach heights of 10 million metres above the surface of the Sun, thereby affecting the very low corona. Extending the model by also taking into account the vertical weak network magnetic field allows for the existence of a mechanism able to heat the corona above, while leaving unchanged the physics of chromospheric eruptions. Such a mechanism rests on the eventual dissipation of Alfvén waves generated inside the chromosphere and that carry upwards the required energy flux of 300 watts per square metre. The model shows a topologically complex magnetic field of 160 gauss on the Sun's surface, agreeing with inferences obtained from spectropolarimetric observations, chromospheric features (contributing only weakly to the coronal heating) that can be identified with observed spicules and blinkers, and vortices that may be possibly associated with observed solar tornadoes.

  9. Arabidopsis in Wageningen

    OpenAIRE

    Koornneef, M

    2013-01-01

    Arabidopsis thaliana is the plant species that in the past 25 years has developed into the major model species in plant biology research. This was due to its properties such as short generation time, its small genome and its easiness to be transformed. Wageningen University has played an important role in the development of this model, based on interdisciplinary collaborations using genetics as a major tool to investigate aspects of physiology, development, plant-microbe interactions and evol...

  10. Hard X-ray Detectability of Small Impulsive Heating Events in the Solar Corona

    Science.gov (United States)

    Glesener, L.; Klimchuk, J. A.; Bradshaw, S. J.; Marsh, A.; Krucker, S.; Christe, S.

    2015-12-01

    Impulsive heating events ("nanoflares") are a candidate to supply the solar corona with its ~2 MK temperature. These transient events can be studied using extreme ultraviolet and soft X-ray observations, among others. However, the impulsive events may occur in tenuous loops on small enough timescales that the heating is essentially not observed due to ionization timescales, and only the cooling phase is observed. Bremsstrahlung hard X-rays could serve as a more direct and prompt indicator of transient heating events. A hard X-ray spacecraft based on the direct-focusing technology pioneered by the Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket could search for these direct signatures. In this work, we use the hydrodynamical EBTEL code to simulate differential emission measures produced by individual heating events and by ensembles of such events. We then directly predict hard X-ray spectra and consider their observability by a future spaceborne FOXSI, and also by the RHESSI and NuSTAR spacecraft.

  11. On the Scaling of Small, Heat Simulated Jet Noise Measurements to Moderate Size Exhaust Jets

    Science.gov (United States)

    McLaughlin, Dennis K.; Bridges, James; Kuo, Ching-Wen

    2010-01-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions, depending on the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center- in partnership with GE Aviation is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to validate methodology for using data obtained from small and moderate scale experiments to reliably predict the most important components of full scale engine noise. The experimental results presented show reasonable agreement between small scale and moderate scale jet acoustic data, as well as between heated jets and heat-simulated ones. Unresolved issues however are identified that are currently receiving our attention, in particular the effect of the small bypass ratio airflow. Future activities will identify and test promising noise reduction techniques in an effort to predict how well such concepts will work with full scale engines in flight conditions.

  12. Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos.

    Science.gov (United States)

    Puigderrajols, Pere; Jofré, Anna; Mir, Gisela; Pla, Maria; Verdaguer, Dolors; Huguet, Gemma; Molinas, Marisa

    2002-06-01

    The timing and tissue localization of small heat shock proteins (sHSPs) during cork oak somatic embryo development was investigated under normal growing culture conditions and in response to stress. Western blot analyses using polyclonal antibodies raised against cork oak recombinant HSP17 showed a transient accumulation of class I sHSPs during somatic embryo maturation and germination. Moreover, the amount of protein increased at all stages of embryo development in response to exogenous stress. The developmentally accumulated proteins localized to early differentiating, but not the highly dividing, regions of the root and shoot apical meristems. By contrast, these highly dividing regions were strongly immunostained after heat stress. Findings support the hypothesis of a distinct control for developmentally and stress-induced accumulation of class I sHSPs. The possible role of sHSPs is discussed in relation to their tissue specific localization.

  13. Characterisation of small-scale heating events in the solar atmosphere from 3D MHD simulations and their potential role in coronal heating

    Science.gov (United States)

    Haberreiter, M.; Guerreiro, N.; Hansteen, V. H.; Schmutz, W. K.

    2015-12-01

    The physical mechanism that heats the solar corona is one of the still open science questions in solar physics. One of the proposed mechanism for coronal heating are nanoflares. To investigate their role in coronal heating we study the properties of the small-scale heating events in the solar atmosphere using 3D MHD simulations. We present a method to identify and track these heating events in time which allows us to study their life time, energy, and spectral signatures. These spectal signatures will be compared with available spectrosopic observations obtained with IRIS and SUMER. Ultimately, these results will be important for the coordinated scientific exploitation of SPICE and EUI along with other instruments onboard Solar Orbiter to address the coronal heating problem.

  14. Specific protein homeostatic functions of small heat-shock proteins increase lifespan.

    Science.gov (United States)

    Vos, Michel J; Carra, Serena; Kanon, Bart; Bosveld, Floris; Klauke, Karin; Sibon, Ody C M; Kampinga, Harm H

    2016-04-01

    During aging, oxidized, misfolded, and aggregated proteins accumulate in cells, while the capacity to deal with protein damage declines severely. To cope with the toxicity of damaged proteins, cells rely on protein quality control networks, in particular proteins belonging to the family of heat-shock proteins (HSPs). As safeguards of the cellular proteome, HSPs assist in protein folding and prevent accumulation of damaged, misfolded proteins. Here, we compared the capacity of all Drosophila melanogaster small HSP family members for their ability to assist in refolding stress-denatured substrates and/or to prevent aggregation of disease-associated misfolded proteins. We identified CG14207 as a novel and potent small HSP member that exclusively assisted in HSP70-dependent refolding of stress-denatured proteins. Furthermore, we report that HSP67BC, which has no role in protein refolding, was the most effective small HSP preventing toxic protein aggregation in an HSP70-independent manner. Importantly, overexpression of both CG14207 and HSP67BC in Drosophila leads to a mild increase in lifespan, demonstrating that increased levels of functionally diverse small HSPs can promote longevity in vivo.

  15. Cloning of the cDNA for U1 small nuclear ribonucleoprotein particle 70K protein from Arabidopsis thaliana

    Science.gov (United States)

    Reddy, A. S.; Czernik, A. J.; An, G.; Poovaiah, B. W.

    1992-01-01

    We cloned and sequenced a plant cDNA that encodes U1 small nuclear ribonucleoprotein (snRNP) 70K protein. The plant U1 snRNP 70K protein cDNA is not full length and lacks the coding region for 68 amino acids in the amino-terminal region as compared to human U1 snRNP 70K protein. Comparison of the deduced amino acid sequence of the plant U1 snRNP 70K protein with the amino acid sequence of animal and yeast U1 snRNP 70K protein showed a high degree of homology. The plant U1 snRNP 70K protein is more closely related to the human counter part than to the yeast 70K protein. The carboxy-terminal half is less well conserved but, like the vertebrate 70K proteins, is rich in charged amino acids. Northern analysis with the RNA isolated from different parts of the plant indicates that the snRNP 70K gene is expressed in all of the parts tested. Southern blotting of genomic DNA using the cDNA indicates that the U1 snRNP 70K protein is coded by a single gene.

  16. Study of a small heat and power PEM fuel cell system generator

    Science.gov (United States)

    Hubert, Charles-Emile; Achard, Patrick; Metkemeijer, Rudolf

    A micro-cogenerator based on a natural gas reformer and a PEMFC is studied in its entirety, pointing out the links between different sub-systems. The study is conducted within the EPACOP project, which aims at testing PEMFC systems on user sites to evaluate development and acceptance of this technology for small stationary applications. Five units were installed from November 2002 to May 2003 and have been operated until now, in real life conditions. They deliver up to 4 kW of AC power and about 6 kW of heat. Center for Energy and Processes (CEP), one of the scientific partners, processes and analyses the experimental data from the five units, running in different regions of France. This database and the study of the flowsheet enable to propose changes to enhance the efficiency of the system composed of a steam reforming, a shift and a preferential oxidation reactor, a fuel cell stack and heat exchangers. The steady state modelling and optimisation of the system is done with Thermoptim ®, a software developed within CEP for applied thermodynamics. At constant power, main targets are to decrease natural gas consumption, to increase heat recovery and to improve the water balance. This study is made using the pinch point analysis, at full load and partial load. Main results of this study are different system configurations that allow improvement of gross electrical and thermal efficiency and enable to obtain a positive water balance.

  17. An Internal Heating Model to Elucidate the Shape of a Small Planetary Body

    Institute of Scientific and Technical Information of China (English)

    LI Gen; CHEN Chu-Xin

    2012-01-01

    Small planetary bodies usually have irregular shapes.If they are large enough to be heated to a partial melting status,the deforming force of gravity could overcome the internal forces and make the shape transfigure from potato-like to spherical.We have developed a model to calculate the thermal history of a planetoid and apply the model to asteroids,since ample evidence has shown that many asteroids could have undergone differentiation.After revealing the relation between the shape and the ratio of the melt part,we also examine the surface roughness of these asteroids and suggest that 280km would be a critical radius for an asteroid to develop a virtually globular contour.%Small planetary bodies usually have irregular shapes. If they are large enough to be heated to a partial melting status, the deforming force of gravity could overcome the internal forces and make the shape transfigure from potato-like to spherical. We have developed a model to calculate the thermal history of a planetoid and apply the model to asteroids, since ample evidence has shown that many asteroids could have undergone differentiation. After revealing the relation between the shape and the ratio of the melt part, we also examine the surface roughness of these asteroids and suggest that 280 km would be a critical radius for an asteroid to develop a virtually globular contour.

  18. Control of Anther Cell Differentiation by the Small Protein Ligand TPD1 and Its Receptor EMS1 in Arabidopsis.

    Science.gov (United States)

    Huang, Jian; Zhang, Tianyu; Linstroth, Lisa; Tillman, Zachary; Otegui, Marisa S; Owen, Heather A; Zhao, Dazhong

    2016-08-01

    A fundamental feature of sexual reproduction in plants and animals is the specification of reproductive cells that conduct meiosis to form gametes, and the associated somatic cells that provide nutrition and developmental cues to ensure successful gamete production. The anther, which is the male reproductive organ in seed plants, produces reproductive microsporocytes (pollen mother cells) and surrounding somatic cells. The microsporocytes yield pollen via meiosis, and the somatic cells, particularly the tapetum, are required for the normal development of pollen. It is not known how the reproductive cells affect the differentiation of these somatic cells, and vice versa. Here, we use molecular genetics, cell biological, and biochemical approaches to demonstrate that TPD1 (TAPETUM DETERMINANT1) is a small secreted cysteine-rich protein ligand that interacts with the LRR (Leucine-Rich Repeat) domain of the EMS1 (EXCESS MICROSPOROCYTES1) receptor kinase at two sites. Analyses of the expressions and localizations of TPD1 and EMS1, ectopic expression of TPD1, experimental missorting of TPD1, and ablation of microsporocytes yielded results suggesting that the precursors of microsporocyte/microsporocyte-derived TPD1 and pre-tapetal-cell-localized EMS1 initially promote the periclinal division of secondary parietal cells and then determine one of the two daughter cells as a functional tapetal cell. Our results also indicate that tapetal cells suppress microsporocyte proliferation. Collectively, our findings show that tapetal cell differentiation requires reproductive-cell-secreted TPD1, illuminating a novel mechanism whereby signals from reproductive cells determine somatic cell fate in plant sexual reproduction. PMID:27537183

  19. Catalytic heat exchangers for small-scale production of hydrogen - feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, F. [Catator AB, Lund (Sweden)

    2002-02-01

    A feasibility study concerning heat-exchanger reactors in small-scale production of hydrogen has been performed on the request of Svenskt Gastekniskt Center AB and SWEP International AB. The basic idea is to implement different catalysts into brazed plate-type heat exchangers. This can be achieved by installing catalytic cylinders in the inlet-and outlet ports of the heat exchangers or through treatment of the plates to render them catalytically active. It is also possible to sandwich catalytically active wire meshes between the plates. Experiments concerning steam reforming of methanol and methane have been performed in a micro-reactor to gather kinetic data for modelling purposes. Performance calculations concerning heat exchanger reactors have then been conducted with Catator's generic simulation code for catalytic reactors (CatalystExplorer). The simulations clearly demonstrate the technical performance of these reactors. Indeed, the production rate of hydrogen is expected to be about 10 nm{sup 3}/h per litre of heat exchanger. The corresponding value for a conventional steam-reforming unit is about 1 nm{sup 3}/h or less per litre of reactor volume. Also, the compactness and the high degree of integration together with the possibilities of mass production will give an attractive cost for such units. Depending on the demands concerning the purity of the hydrogen it is possible to add secondary catalytic steps like water-gas shifters, methanation and selective oxidation, into a one-train unit, i.e. to design an all-inclusive design. Such reactors can be used for the supply of hydrogen to fuel cells. The production cost for hydrogen can be cut by 60 - 70% through the utilisation of heat exchanger reactors instead of conventional electrolysis. This result is primarily a result of the high price for electricity compared to the feed stock prices in steam reforming. It is important to verify the performance calculations and the simulation results through

  20. Errors in macromolecular synthesis after stress : a study of the possible protective role of the small heat shock proteins

    OpenAIRE

    Marin Vinader, L.

    2006-01-01

    The general goal of this thesis was to gain insight in what small heat shock proteins (sHsps) do with respect to macromolecular synthesis during a stressful situation in the cell. It is known that after a non-lethal heat shock, cells are better protected against a subsequent more severe heat shock, a phenomenon known as thermotolerance and attributed to the presence of the heat shock proteins. The question we asked first is whether the error rate in macromolecular synthesis (transcription, RN...

  1. Tokamak electron heat transport by direct numerical simulation of small scale turbulence

    International Nuclear Information System (INIS)

    In a fusion machine, understanding plasma turbulence, which causes a degradation of the measured energy confinement time, would constitute a major progress in this field. In tokamaks, the measured ion and electron thermal conductivities are of comparable magnitude. The possible sources of turbulence are the temperature and density gradients occurring in a fusion plasma. Whereas the heat losses in the ion channel are reasonably well understood, the origin of the electron losses is more uncertain. In addition to the radial velocity associated to the fluctuations of the electric field, electrons are more affected than ions by the magnetic field fluctuations. In experiments, the confinement time can be conveniently expressed in terms of dimensionless parameters. Although still somewhat too imprecise, these scaling laws exhibit strong dependencies on the normalized pressure β or the normalized Larmor radius, ρ*. The present thesis assesses whether a tridimensional, electromagnetic, nonlinear fluid model of plasma turbulence driven by a specific instability can reproduce the dependence of the experimental electron heat losses on the dimensionless parameters β and ρ*. The investigated interchange instability is the Electron Temperature Gradient driven one (ETG). The model is built by using the set of Braginskii equations. The developed simulation code is global in the sense that a fixed heat flux is imposed at the inner boundary, leaving the gradients free to evolve. From the nonlinear simulations, we have put in light three characteristics for the ETG turbulence: the turbulent transport is essentially electrostatic; the potential and pressure fluctuations form radially elongated cells called streamers; the transport level is very low compared to the experimental values. The thermal transport dependence study has shown a very small role of the normalized pressure, which is in contradiction with the Ohkama's formula. On the other hand, the crucial role of the electron

  2. Experimental simulation of asymmetric heat up of coolant channel under small break LOCA condition for PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Ashwini K., E-mail: ashwinikumaryadav@gmail.com [Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247667 (India); Majumdar, P., E-mail: pmajum@barc.gov.in [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ravi, E-mail: ravikfme@iitr.ernet.in [Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247667 (India); Chatterjee, B., E-mail: barun@barc.gov.in [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Gupta, Akhilesh, E-mail: akhilfme@iitr.ernet.in [Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247667 (India); Mukhopadhyay, D., E-mail: dmukho@barc.gov.in [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2013-02-15

    Highlights: ► Circumferential temperature gradient of PT for asymmetric heat-up was 440 °C. ► At 2 MPa ballooning initiated at 450 °C and with strain rate of 0.0277%/s. ► At 4 MPa ballooning initiated at 390 °C and with strain rate of 0.0305%/s. ► At 4 MPa, PT ruptured under uneven strain and steep temperature gradient. ► Integrity of PT depends on internal pressure and magnitude of decay power. -- Abstract: During postulated small break loss of coolant accident (SBLOCA) for Pressurised Heavy Water Reactors (PHWRs) as well as for postulated SBLOCA coincident with loss of ECCS, a stratified flow condition can arise in the coolant channels as the gravitational force dominates over the low inertial flow arising from small break flow. A Station Blackout condition without operator intervention can also lead to stratified flow condition during a slow channel boil-off condition. For all these conditions the pressure remains high and under stratified flow condition, the horizontal fuel bundles experience different heat transfer environments with respect to the stratified flow level. This causes the bundle upper portion to get heated up higher as compared to the submerged portion. This kind of asymmetrical heating of the bundle is having a direct bearing on the circumferential temperature gradient of pressure tube (PT) component of the coolant channel. The integrity of the PT is important under normal conditions as well as at different accident loading conditions as this component houses the fuel bundles and serves as a coolant pressure boundary of the reactors. An assessment of PT is required with respect to different accident loading conditions. The present investigation aims to study thermo-mechanical behaviour of PT (Zr, 2.5 wt% Nb) under a stratified flow condition under different internal pressures. The component is subjected to an asymmetrical heat-up conditions as expected during the said situation under different pressure conditions which varies from 2

  3. Heat shock increases lifetime of a small RNA and induces its accumulation in cells.

    Science.gov (United States)

    Tatosyan, Karina A; Kramerov, Dmitri A

    2016-08-01

    4.5SH and 4.5SI RNA are two abundant small non-coding RNAs specific for several related rodent families including Muridae. These RNAs have a number of common characteristics such as the short length (about 100nt), transcription by RNA polymerase III, and origin from Short Interspersed Elements (SINEs). However, their stabilities in cells substantially differ: the half-life of 4.5SH RNA is about 20min, while that of 4.5SI RNA is 22h. Here we studied the influence of cell stress such as heat shock or viral infection on these two RNAs. We found that the level of 4.5SI RNA did not change in stressed cells; whereas heat shock increased the abundance of 4.5SH RNA 3.2-10.5 times in different cell lines; and viral infection, 5 times. Due to the significant difference in the turnover rates of these two RNAs, a similar activation of their transcription by heat shock increases the level of the short-lived 4.5SH RNA and has minor effect on the level of the long-lived 4.5SI RNA. In addition, the accumulation of 4.5SH RNA results not only from the induction of its transcription but also from a substantial retardation of its decay. To our knowledge, it is the first example of a short-lived non-coding RNA whose elongated lifetime contributes significantly to its accumulation in stressed cells.

  4. Energy efficiency model for small/medium geothermal heat pump systems

    Directory of Open Access Journals (Sweden)

    Staiger Robert

    2015-06-01

    Full Text Available Heating application efficiency is a crucial point for saving energy and reducing greenhouse gas emissions. Today, EU legal framework conditions clearly define how heating systems should perform, how buildings should be designed in an energy efficient manner and how renewable energy sources should be used. Using heat pumps (HP as an alternative “Renewable Energy System” could be one solution for increasing efficiency, using less energy, reducing the energy dependency and reducing greenhouse gas emissions. This scientific article will take a closer look at the different efficiency dependencies of such geothermal HP (GHP systems for domestic buildings (small/medium HP. Manufacturers of HP appliances must document the efficiency, so called COP (Coefficient of Performance in the EU under certain standards. In technical datasheets of HP appliances, these COP parameters give a clear indication of the performance quality of a HP device. HP efficiency (COP and the efficiency of a working HP system can vary significantly. For this reason, an annual efficiency statistic named “Seasonal Performance Factor” (SPF has been defined to get an overall efficiency for comparing HP Systems. With this indicator, conclusions can be made from an installation, economy, environmental, performance and a risk point of view. A technical and economic HP model shows the dependence of energy efficiency problems in HP systems. To reduce the complexity of the HP model, only the important factors for efficiency dependencies are used. Dynamic and static situations with HP´s and their efficiency are considered. With the latest data from field tests of HP Systems and the practical experience over the last 10 years, this information will be compared with one of the latest simulation programs with the help of two practical geothermal HP system calculations. With the result of the gathered empirical data, it allows for a better estimate of the HP system efficiency, their

  5. Recent Progress in Arabidopsis Research in China: A Preface

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Xu

    2006-01-01

    @@ In 2002, a workshop on Arabidopsis research in China was held in Shanghai, when a small group of Chinese plant scientists was working on this model species. Since then, we have witnessed the rapid growth of Arabidopsis research in China. This special issue of Journal of Integrative Plant Biology is dedicated exclusively to the Fourth Workshop on Arabidopsis Research in China, scheduled on November 30, 2005, in Beijing. In addition to reports collected in this special issue, the Chinese Arabidopsis community has been able to make significant contributions to many research fields. Here, I briefly summarize recent advances in Arabidopsis research in China.

  6. Small heat shock proteins protect against α-synuclein-induced toxicity and aggregation

    International Nuclear Information System (INIS)

    Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). α-Synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and αB-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are ∼2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by ∼80% in a culture model while αB-crystallin reduces toxicity by ∼20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model

  7. Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN

    CERN Document Server

    Pereira, H; Silva, P; Wu, J; Koettig, T

    2010-01-01

    The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of existing ones. A large spectrum of cryogenic temperatures can be covered by choosing appropriate working fluids. For high luminosity upgrades of existing experiments installed at the Large Hadron Collider (LHC) (TOTEM) and planned ones (FP420) [2-3] being in the design phase, radiation-hard solutions are studied with noble gases as working fluids to limit the radiolysis effect on molecules detrimental to the functioning of the LHP. The installation compactness requirement of experiments such as the CAST frame-store CCD d...

  8. Non-invasive temperature monitoring using small coils during radio-frequency heating

    International Nuclear Information System (INIS)

    In hyperthermia treatment of malignant tumors, thermal tissue injury increases drastically with every degree of increase in the tissue temperature above 42.5 .deg. C Accurate temperature monitoring during hyperthermia is important. Therefore, we developed a non-invasive method to monitor the tissue temperature during radio-frequency hyperthermia by detecting the magnetic field induced by the radio-frequency currents that flow through the heated tissue. This technique uses small multi-channel coil antennas to detect radio-frequency currents and generates two-dimensional distribution in the tissue. A rectifying circuit was connected to each coil antenna, and the current was converted with a fixed resistance into voltage. Since the voltage output from each antenna was attenuated at 1/2pr (r: distance from the radio-frequency current), single-peaked projection data were prepared, and after treatment of various signals, radio-frequency currents that flowed through the heated object were determined as a two-dimensional current distribution profile by back-projection. A high correlation was observed between the distribution of radio-frequency currents detected with the coil antennas and the temperature distribution detected by thermography. Our method of the temperature distribution suggests the possibility of non-invasive evaluation of the temperature distribution in the target of hyperthermia and clinical usefulness of this method for temperature monitoring during hyperthermia

  9. A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa

    Directory of Open Access Journals (Sweden)

    de Ruiter Marjo

    2011-06-01

    Full Text Available Abstract Background Non-coding small RNAs play critical roles in various cellular processes in a wide spectrum of eukaryotic organisms. Their responses to abiotic stress have become a popular topic of economic and scientific importance in biological research. Several studies in recent years have reported a small number of non-coding small RNAs that map to chloroplast genomes. However, it remains uncertain whether small RNAs are generated from chloroplast genome and how they respond to environmental stress, such as high temperature. Chinese cabbage is an important vegetable crop, and heat stress usually causes great losses in yields and quality. Under heat stress, the leaves become etiolated due to the disruption and disassembly of chloroplasts. In an attempt to determine the heat-responsive small RNAs in chloroplast genome of Chinese cabbage, we carried out deep sequencing, using heat-treated samples, and analysed the proportion of small RNAs that were matched to chloroplast genome. Results Deep sequencing provided evidence that a novel subset of small RNAs were derived from the chloroplast genome of Chinese cabbage. The chloroplast small RNAs (csRNAs include those derived from mRNA, rRNA, tRNA and intergenic RNA. The rRNA-derived csRNAs were preferentially located at the 3'-ends of the rRNAs, while the tRNA-derived csRNAs were mainly located at 5'-termini of the tRNAs. After heat treatment, the abundance of csRNAs decreased in seedlings, except those of 24 nt in length. The novel heat-responsive csRNAs and their locations in the chloroplast were verified by Northern blotting. The regulation of some csRNAs to the putative target genes were identified by real-time PCR. Our results reveal that high temperature suppresses the production of some csRNAs, which have potential roles in transcriptional or post-transcriptional regulation. Conclusions In addition to nucleus, the chloroplast is another important organelle that generates a number of small

  10. Experimental Study of a Small Scale Hydraulic System for Mechanical Wind Energy Conversion into Heat

    Directory of Open Access Journals (Sweden)

    Tadas Zdankus

    2016-07-01

    Full Text Available Significant potential for reducing thermal energy consumption in buildings of moderate and cold climate countries lies within wind energy utilisation. Unlike solar irradiation, character of wind speeds in Central and Northern Europe correspond to the actual thermal energy demand in buildings. However, mechanical wind energy undergoes transformation into electrical energy before being actually used as thermal energy in most wind energy applications. The study presented in this paper deals with hydraulic systems, designed for small-scale applications to eliminate the intermediate energy transformation as it converts mechanical wind energy into heat directly. The prototype unit containing a pump, flow control valve, oil tank and piping was developed and tested under laboratory conditions. Results of the experiments showed that the prototype system is highly efficient and adjustable to a broad wind velocity range by modifying the definite hydraulic system resistance. Development of such small-scale replicable units has the potential to promote “bottom-up” solutions for the transition to a zero carbon society.

  11. Assessment of advanced small-scale combined heat and power production

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, J. [Joanneum Research (Austria)

    1996-12-31

    To increase the share of renewable energy sources, bioenergy has to be used for electricity generation, preferably in combined heat and power (CHP) production systems, besides its traditional use in space heating. The need for small-scale, i.e. below 5 MW{sub el}, CHP production arises from the fact that a considerable portion of the available solid biofuels may not be transported over long distances for economic reasons and that in many cases the heat demand is below 10 MW{sub el} in district heating schemes in communities with less than 10 000 inhabitants. The available technical options have to be assessed with respect to performance, reliability and economy. Such an assessment has been performed in a study where the following options have been compared: Gasification - combustion engine or gas turbine; Combustion - steam turbine/engine; Combustion - hot air turbine; Combustion - Stirling engine. While conventional steam cycle systems are available and reliable they are generally not economical in the power range under consideration. Among the other systems, which are not yet commercially available, the Stirling engine system seems to be attractive in the power range below 500 kW{sub el} and the hot air system could close the gap to the steam cycle systems, i.e. cover the power range between 0.5 and 5.0 MW{sub el}. Gasification schemes seem less suitable: The power generation part (combustion engine and gas turbine) is well established for natural gas, with the combustion engine in the lower (<5 MW{sub el}) and the gas turbine in the higher (>5MW{sub el}) power range. However, the gas quality needed for the operation of a combustion engine requires expensive pre-treatment of the gas from wood gasification so that this scheme is less attractive for the power range under consideration. These conclusions lead to R and D efforts in Austria in two directions: Hot air turbine: A utility demonstration plant is under construction with a power of 1 600 kW{sub el

  12. Modulation of ethylene- and heat-controlled hyponastic leaf movement in Arabidopsis thaliana by the plant defence hormones jasmonate and salicylate

    NARCIS (Netherlands)

    Zanten, M. van; Ritsema, T.; Polko, J.K.; Leon-Reyes, A.; Voesenek, L.A.C.J.; Millenaar, F.F.; Pieterse, C.M.J.; Peeters, A.J.M.

    2012-01-01

    Upward leaf movement (hyponastic growth) is adopted by several plant species including Arabidopsis thaliana, as a mechanism to escape adverse growth conditions. Among the signals that trigger hyponastic growth are, the gaseous hormone ethylene, low light intensities, and supra-optimal temperatures (

  13. Quiet Sun coronal heating analyzing large scale magnetic structures driven by different small-scale uniform sources

    CERN Document Server

    Podladchikova, O; Krasnoselskikh, V V; Lefebvre, B

    2002-01-01

    Recent measurements of quiet Sun heating events by Krucker and Benz (1998) give strong support to Parker's (1988) hypothesis that small scale dissipative events make the main contribution to the quiet heating. Moreover, combining their observations with the analysis by Priest et al. (2000), it can be concluded that the sources driving these dissipative events are also small scale sources, typically of the order of (or smaller than) 2000 km and the resolution of modern instruments. Thus arises the question of how these small scale events participate into the larger scale observable phenomena, and how the information about small scales can be extracted from observations. This problem is treated in the framework of a simple phenomenological model introduced in Krasnoselskikh et al. (2001), which allows to switch between various small scale sources and dissipative processes. The large scale structure of the magnetic field is studied by means of Singular Value Decomposition (SVD) and a derived entropy, techniques ...

  14. Condensation heat transfer characteristics of vapor flow in vertical small-diameter tube with variable wall temperature

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    [1]Nusselt,W.,Die Oberflchenkondensation des Wasserdampfes,VDI,1916,60: 541-546.[2]Sparrow,E.M.,Gregg,J.L.,A boundary layer treatment of laminar-film condensation,ASME J.Heat Transfer,1959,81: 13-18.[3]Mayhew,Y.R.,Griffiths,D.J.,Philips,J.W.,Effect of vapour drag on laminar film condensation on a vertical surface,Proc.I Mech.E,1965,180: 280-287.[4]Memory,S.B.,Rose,J.W.,Free convection laminar film condensation on a horizontal tube with variable wall temperature,Int.J.Heat Mass Transfer,1991,34: 2775-2778.[5]Suzuki,K.,Hagiwara,Y.,Izumi,H.,A numerical study of forced-convective filmwise condensation in a vertical tube,JSME Int.J.,Ser.II,1990,33(1): 134-140.[6]Shah,M.M.,A general correlation for heat transfer during film condensation inside pipes,Int.J.Heat Mass Transfer,1979,22: 547-556.[7]Reay,D.A.,Compact heat exchangers: a review of current equipment and R&D in the field,Heat Recovery System & CHP,1994,14(5): 459-479.[8]Srinivasan,V.,Shah,R.K.,Condensation in compact heat exchangers,J.Enhanced Heat Transfer,1997,4(4): 237-256.[9]Wadekar,V.V.,Improving industrial heat transfer-compact and non-so-compact heat exchangers,J.Enhanced Heat Transfer,1998,5(1): 53-69.[10]Rohsenow,W.M.,Film Condensation,Applied Mechanics Reviews,1970,23: 487-496.[11]Wang Buxuan,Yu Yufeng,Condensation heat transfer on the external surface of a small-diameter vertical tube (in Chinese),in Collected Papers of Bu-xuan Wang,Beijing: Tsinghua University Press,1992.[12]Henstock,W.H.,Hodgson,T.J.,The interfacial drag and height of the wall layer in annular flows,AIChE J.,1976,22: 990-1000.[13]Wang Buxuan,Du Xiaoze,Study on laminar film-wise condensation for vapor flow in an inclined small/mini-diameter tube,Int.J.Heat Mass Transfer,2000,43(10): 1859-1868.[14]Wang Buxuan,Du Xiaoze,Experimental research on flow condensation heat transfer in mini-diameter tube (in Chinese with English abstract),Chinese J.Engineering Thermophysics,2000

  15. Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans.

    Directory of Open Access Journals (Sweden)

    Martin L Duennwald

    Full Text Available How small heat shock proteins (sHsps might empower proteostasis networks to control beneficial prions or disassemble pathological amyloid is unknown. Here, we establish that yeast sHsps, Hsp26 and Hsp42, inhibit prionogenesis by the [PSI+] prion protein, Sup35, via distinct and synergistic mechanisms. Hsp42 prevents conformational rearrangements within molten oligomers that enable de novo prionogenesis and collaborates with Hsp70 to attenuate self-templating. By contrast, Hsp26 inhibits self-templating upon binding assembled prions. sHsp binding destabilizes Sup35 prions and promotes their disaggregation by Hsp104, Hsp70, and Hsp40. In yeast, Hsp26 or Hsp42 overexpression prevents [PSI+] induction, cures [PSI+], and potentiates [PSI+]-curing by Hsp104 overexpression. In vitro, sHsps enhance Hsp104-catalyzed disaggregation of pathological amyloid forms of α-synuclein and polyglutamine. Unexpectedly, in the absence of Hsp104, sHsps promote an unprecedented, gradual depolymerization of Sup35 prions by Hsp110, Hsp70, and Hsp40. This unanticipated amyloid-depolymerase activity is conserved from yeast to humans, which lack Hsp104 orthologues. A human sHsp, HspB5, stimulates depolymerization of α-synuclein amyloid by human Hsp110, Hsp70, and Hsp40. Thus, we elucidate a heretofore-unrecognized human amyloid-depolymerase system that could have applications in various neurodegenerative disorders.

  16. Drosophila melanogaster Hsp22: a mitochondrial small heat shock protein influencing the aging process

    Directory of Open Access Journals (Sweden)

    Genevieve eMorrow

    2015-03-01

    Full Text Available Mitochondria are involved in many key cellular processes and therefore need to rely on good protein quality control (PQC. Three types of mechanisms are in place to insure mitochondrial protein integrity: reactive oxygen species (ROS scavenging by anti-oxidant enzymes, protein folding/degradation by molecular chaperones and proteases and clearance of defective mitochondria by mitophagy. Drosophila melanogaster Hsp22 is part of the molecular chaperone axis of the PQC and is characterized by its intra-mitochondrial localization and preferential expression during aging. As a stress biomarker, the level of its expression during aging has been shown to partially predict the remaining lifespan of flies. Since over-expression of this small heat shock protein (sHSP increases lifespan and resistance to stress, Hsp22 most likely has a positive effect on mitochondrial integrity. Accordingly, Hsp22 has recently been implicated in the mitochondrial unfolding protein response (mtUPR of flies. This review will summarize the key findings on D. melanogaster Hsp22 and emphasis on its links with the aging process.

  17. Neutronic and thermo-hydraulic analyses of a small, long-life HTGR for passive decay-heat removal

    International Nuclear Information System (INIS)

    Since the accident at Fukushima Daiichi Nuclear Power Plant in 2011, design concepts for nuclear reactors have been reconsidered with much greater emphasis placed upon passive systems for decay-heat removal. By considering this issue, the design parameter conditions for high temperature gas-cooled reactors (HTGRs) with passive safety features of decay-heat removal were obtained by residual-heat transfer calculation using equations for fundamental heat transfer mechanisms in our previous works. In the present study, the appropriate size of reactor core for a 100 MWt reactor operating at 1123 K of the initial core temperature was found using the conditions. Consequently, neutronics and thermo-hydraulic analyses for the proposed reactor core were performed and the proper optimizations to control the excess reactivity and flatten the change in power peaking factor during operation were done successfully. By the systematic method to decide the core design which satisfies the condition for passive decay-heat removal, a long-life small HTGR concept whose excess reactivity was small during the operation was shown. The small excess reactivity is a significant advantage from the view point of safety in reactivity accident. (author)

  18. Small Barriers Trigger Liftoff of Unconfined Dilute Heated Laboratory Density Currents

    Science.gov (United States)

    Fauria, K.; Andrews, B. J.; Manga, M.

    2015-12-01

    Dilute pyroclastic density currents (PDCs) are hot, turbulent, particle-laden flows that propagate because they are denser than air. PDCs can traverse tens to hundreds of kilometers and surmount ridges 100s of m tall, yet the effects of complex topography on PDC liftoff and runout distance are uncertain. Here we used scaled laboratory experiments to explore how barriers affect dilute density current dynamics and the occurrence of liftoff. We created dilute density currents by heating and suspending 20 μm diameter talc in air in an 8.5 x 6.1 x 2.6 m tank. We scaled the currents with respect to Froude, densimetric and thermal Richardson, particle Stokes and Settling numbers such that they were dynamically similar to natural PDCs. While currents were fully turbulent, their Reynolds numbers were not as high as those for natural PDCs. We performed the first set of experiments in a laterally unconfined volume, used laser sheets to illuminate the currents, measured bulk sedimentation rates down the current centerlines, and positioned four to twenty-four cm tall ridge-like barriers in the path of the currents. We found that relatively small barriers (~ half the current height) caused PDC liftoff. By comparison, conservation of kinetic and potential energy predicts that incompressible density currents are able to surmount barriers twice their height. Furthermore, we observed increased sedimentation immediately upstream of barriers and conclude that small barriers initiated buoyancy reversal through a combination of increased air entrainment and sedimentation. We conducted a second set of experiments with the same thermal scaling and mass flux rates but where the currents were laterally confined within a 0.6 m wide channel. We found that small barriers also triggered liftoff of confined currents, but that the body of these currents reattached after liftoff. Those results suggest that lateral confinement inhibits buoyancy reversal by limiting the surface area of the current

  19. Application Closed-End Oscillating Heat Pipe for Essential Oil Condensation of the Small Scale Essential Oil Refiner

    Directory of Open Access Journals (Sweden)

    Sakultala WANNAPAKHE

    2013-12-01

    Full Text Available This research aimed to investigate the design and building of a small scale essential oil refiner by using heat pipes for essential oil condensation. The device structure of the small scale essential oil refiner was divided into 3 sections as follows: 1 the boiler with a heater for heating, 2 the vapor tube, and 3 the condenser unit. Three patterns of condenser unit were investigated: 1 condensation by water circulation, 2 condensation using heat pipes, and 3 condensation using heat pipes with water circulation. The temperature for testing was 80, 90 and 100 °C. A closed-end oscillating heat pipe (CEOHP was used in this research. The inner diameter of the heat pipe was 2 mm. R123 was used as the working fluid. 500 g of kaffir lime peels were used for each test with a time of 2 hours. It was found that the highest quantity of essential oil was 1.4 cc when using a CEOHP with a water circulation unit at 100 °C.

  20. The human genome encodes ten alpha-crystallin-related small heat shock proteins: HspB1-10

    NARCIS (Netherlands)

    Kappé, G.; Franck, E.; Verschuure, P.; Boelens, W.C.; Leunissen, J.A.M.; Jong, de W.W.

    2003-01-01

    To obtain an inventory of all human genes that code for alpha-crystallin-related small heat shock proteins (sHsps), the databases available from the public International Human Genome Sequencing Consortium (IHGSC) and the private Celera human genome project were exhaustively searched. Using the human

  1. Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale.

    Science.gov (United States)

    Quan, H T

    2014-06-01

    We study the maximum efficiency of a heat engine based on a small system. It is revealed that due to the finiteness of the system, irreversibility may arise when the working substance contacts with a heat reservoir. As a result, there is a working-substance-dependent correction to the Carnot efficiency. We derive a general and simple expression for the maximum efficiency of a Carnot cycle heat engine in terms of the relative entropy. This maximum efficiency approaches the Carnot efficiency asymptotically when the size of the working substance increases to the thermodynamic limit. Our study extends Carnot's result of the maximum efficiency to an arbitrary working substance and elucidates the subtlety of thermodynamic laws in small systems.

  2. Monitoring of small heat pumps using standardised tests in 2009; Monitoring von Klein-Waermepumpen mittels Normpruefungen 2009 - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Eschmann, M.

    2010-02-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on the monitoring in 2009 of small heat pumps with heating powers up to 100 kW using standardised tests. The authors note that, in 2009, more heat pump tests were carried out than in the years before as a result of improved facilities and procedures. Also, after initial improvement in previous years, Coefficient of Performance (COP) values have deteriorated. This is, according to the authors, due to lower prices on the market. This means that heat pumps are built cost-optimised and are not developed to reach the maximum energetic efficiency. The tests carried out are listed and the results obtained are presented in graphical form and commented on. The EHPA/DACH quality label and the required COP values are reviewed.

  3. Investigation of the chaperone function of the small heat shock protein — AgsA

    Directory of Open Access Journals (Sweden)

    Nagamune Hideaki

    2010-07-01

    Full Text Available Abstract Background A small heat shock protein AgsA was originally isolated from Salmonella enterica serovar Typhimurium. We previously demonstrated that AgsA was an effective chaperone that could reduce the amount of heat-aggregated proteins in an Escherichia coli rpoH mutant. AgsA appeared to promote survival at lethal temperatures by cooperating with other chaperones in vivo. To investigate the aggregation prevention mechanisms of AgsA, we constructed N- or C-terminal truncated mutants and compared their properties with wild type AgsA. Results AgsA showed significant overall homology to wheat sHsp16.9 allowing its three-dimensional structure to be predicted. Truncations of AgsA until the N-terminal 23rd and C-terminal 11th amino acid (AA from both termini preserved its in vivo chaperone activity. Temperature-controlled gel filtration chromatography showed that purified AgsA could maintain large oligomeric complexes up to 50°C. Destabilization of oligomeric complexes was observed for N-terminal 11- and 17-AA truncated AgsA; C-terminal 11-AA truncated AgsA could not form large oligomeric complexes. AgsA prevented the aggregation of denatured lysozyme, malate dehydrogenase (MDH and citrate synthase (CS but did not prevent the aggregation of insulin at 25°C. N-terminal 17-AA truncated AgsA showed no chaperone activity towards MDH. C-terminal 11-AA truncated AgsA showed weak or no chaperone activity towards lysozyme, MDH and CS although it prevented the aggregation of insulin at 25°C. When the same amount of AgsA and C-terminal 11-AA truncated AgsA were mixed (half of respective amount required for efficient chaperone activities, good chaperone activity for all substrates and temperatures was observed. Detectable intermolecular exchanges between AgsA oligomers at 25°C were not observed using fluorescence resonance energy transfer analysis; however, significant exchanges between AgsA oligomers and C-terminal truncated AgsA were observed at 25

  4. Study on functional heat-resistant ceramics SiC using small angle neutron scattering

    International Nuclear Information System (INIS)

    The mechanical properties of functional heat-resistant silicon carbide SiC ceramics are significantly influenced by the concentration and dimensions of pores. 3 SiC samples with different densities were sintered with different kind and amount of additives (such as Al2O3, B4C and C) using different sintering conditions of the Department of Material Science and Engineering at the University of Science and Technology in Beijing. Small angle neutron scattering measurements for 3 SiC samples were carried out at C1-2 SANS instrument of the University of Tokyo in Japan Atomic Energy Research Institute. The neutron data with 8 and 16 in of secondary flight path and 10 and 7 A of neutron wave length respectively have been obtained. After deduction of background measurement and transmission correction, both neutron data were linked up with each other. The cubic patterns of 3 neutron data with Q range from 0.0028 - 0.05 A-1 are almost with axial symmetry. It shows that the shape of pores, whose dimensions are relative to the Q range, is almost spherical. For spherical particles (or pores) we can obtain an expression of size distribution directly, using Mellin Transform (J. Appl. Phys. 45, 1974, 46.). According to our calculating program for the expression, the size distribution of pores for 3 samples were obtained. The average size (∼ 190 A) of pores for hot-pressed SiC sample with more density is smaller than others (∼ 210 A). It seems to be the reason why the density of hot-pressed SiC sample is higher than no-hot-pressed sample. (author)

  5. Epigenetic responses to heat stress at different time scales and the involvement of small RNAs

    OpenAIRE

    Stief, Anna; Brzezinka, Krzysztof; Lämke, Jörn; Bäurle, Isabel

    2014-01-01

    The hypothesis that plants can benefit from a memory of past stress exposure has recently attracted a lot of attention. Here, we discuss two different examples of heat stress memory to elucidate the potential benefits that epigenetic responses may provide at both the level of acclimation of the individual plant and adaptation at a species-wide level. Specifically, we discuss how microRNAs regulate the heat stress memory and thereby increase survival upon a recurring heat stress. Secondly, we ...

  6. Effect of heat treatment on pore structure in nanocrystalline NiO: A small angle neutron scattering study

    Indian Academy of Sciences (India)

    J Bahadur; D Sen; S Mazumder; S Ramanathan

    2008-11-01

    Nanocrystalline nickel oxide powders were calcined at 300, 600 and 900°C and pore structure evolution was followed by small angle neutron scattering (SANS). Pore size distributions at two widely separated size ranges have been revealed. Shrinkage of larger-sized pore with reduction in polydispersity has been observed with increasing heat treatment temperature. The pore structures at various heat treatment temperatures do not scale. This has been attributed to the grain boundary diffusion leading to an asymmetric shrinkage of the pores.

  7. Sustainability Assessment of a Self-Consumption Wood-Energy Chain on Small Scale for Heat Generation in Central Italy

    OpenAIRE

    Stefano Verani; Giulio Sperandio; Rodolfo Picchio; Enrico Marchi; Corrado Costa

    2015-01-01

    The sustainability of a small-scale self-consumption wood-energy chain for heat generation in central Italy was analyzed from a technical, economic and energetic point of view. A micro-chain was developed within the CRA-ING farm at Monterotondo (Rome, Italy): The purpose of this system was to produce biomass for supplying a heating plant within the CRA-ING property as a substitute for diesel fuel. A poplar short rotation coppice, established with clones AF2, AF6 and Monviso, fed the micro-cha...

  8. Helium I heat transfer in a small natural circulation loop with self-sustaining recondensation

    Science.gov (United States)

    Song, Yu; Four, Aurélien; Baudouy, Bertrand

    2014-01-01

    Heat transfer of helium I in a natural circulation loop is experimentally studied around atmospheric pressure. The test section of the loop has an inner diameter of 4 mm and a height of 23 cm and can be uniformly heated by wire heater. On top of the loop, a condenser is mounted and thermally connected to the second-stage of a 1.5 W at 4.2 K GM cryocooler. Helium can be recondensed in the condenser, where the pressure is regulated around the atmospheric pressure. While the dissipated heat flux is increased from 0 to 1 W, one encounters the different heat transfer regimes as single phase liquid convection, two phase nucleate boiling and single phase vapor convection. The wall superheat varies up to 11 K in the single phase vapor convection regime. The wall temperature measurement allows obtaining the boiling curve and determining the heat transfer coefficient.

  9. Downregulation of chloroplast RPS1 negatively modulates nuclear heat-responsive expression of HsfA2 and its target genes in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Hai-Dong Yu

    Full Text Available Heat stress commonly leads to inhibition of photosynthesis in higher plants. The transcriptional induction of heat stress-responsive genes represents the first line of inducible defense against imbalances in cellular homeostasis. Although heat stress transcription factor HsfA2 and its downstream target genes are well studied, the regulatory mechanisms by which HsfA2 is activated in response to heat stress remain elusive. Here, we show that chloroplast ribosomal protein S1 (RPS1 is a heat-responsive protein and functions in protein biosynthesis in chloroplast. Knockdown of RPS1 expression in the rps1 mutant nearly eliminates the heat stress-activated expression of HsfA2 and its target genes, leading to a considerable loss of heat tolerance. We further confirm the relationship existed between the downregulation of RPS1 expression and the loss of heat tolerance by generating RNA interference-transgenic lines of RPS1. Consistent with the notion that the inhibited activation of HsfA2 in response to heat stress in the rps1 mutant causes heat-susceptibility, we further demonstrate that overexpression of HsfA2 with a viral promoter leads to constitutive expressions of its target genes in the rps1 mutant, which is sufficient to reestablish lost heat tolerance and recovers heat-susceptible thylakoid stability to wild-type levels. Our findings reveal a heat-responsive retrograde pathway in which chloroplast translation capacity is a critical factor in heat-responsive activation of HsfA2 and its target genes required for cellular homeostasis under heat stress. Thus, RPS1 is an essential yet previously unknown determinant involved in retrograde activation of heat stress responses in higher plants.

  10. Small-angle X-ray scattering studies of metastable intermediates of beta-lactoglobulin isolated after heat-induced aggregation

    DEFF Research Database (Denmark)

    Carrotta, R.; Arleth, L.; Pedersen, J.S.;

    2003-01-01

    Small-angle x-ray scattering was used for studying intermediate species, isolated after heat-induced aggregation of the A variant of bovine P-lactoglobulin. The intermediates were separated in two fractions, the heated metastable dimer and heated metastable oligomers larger than the dimer. The pa...

  11. Regulation of mouse small heat shock protein αb-crystallin gene by aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Shuang Liu

    Full Text Available The stress-inducible small heat shock protein (shsp/αB-crystallin gene is expressed highly in the lens and moderately in other tissues. Here we provide evidence that it is a target gene of the aryl hydrocarbon receptor (AhR transcription factor. A sequence (-329/-323, CATGCGA similar to the consensus xenobiotic responsive element (XRE, called here XRE-like, is present in the αBE2 region of αB-crystallin enhancer and can bind AhR in vitro and in vivo. αB-crystallin protein levels were reduced in retina, lens, cornea, heart, skeletal muscle and cultured muscle fibroblasts of AhR(-/- mice; αB-crystallin mRNA levels were reduced in the eye, heart and skeletal muscle of AhR(-/- mice. Increased AhR stimulated αB-crystallin expression in transfection experiments conducted in conjunction with the aryl hydrocarbon receptor nuclear translocator (ARNT and decreased AhR reduced αB-crystallin expression. AhR effect on aB-crystallin promoter activity was cell-dependent in transfection experiments. AhR up-regulated αB-crystallin promoter activity in transfected HeLa, NIH3T3 and COS-7 cells in the absence of exogenously added ligand (TCDD, but had no effect on the αB-crystallin promoter in C(2C(12, CV-1 or Hepa-1 cells with or without TCDD. TCDD enhanced AhR-stimulated αB-crystallin promoter activity in transfected αTN4 cells. AhR could bind to an XRE-like site in the αB-crystallin enhancer in vitro and in vivo. Finally, site-specific mutagenesis experiments showed that the XRE-like motif was necessary for both basal and maximal AhR-induction of αB-crystallin promoter activity. Our data strongly suggest that AhR is a regulator of αB-crystallin gene expression and provide new avenues of research for the mechanism of tissue-specific αB-crystallin gene regulation under normal and physiologically stressed conditions.

  12. The Development of Small Solar Concentrating Systems with Heat Storage for Rural Food Preparation

    Science.gov (United States)

    van den Heetkamp, R. R. J.

    A system, consisting of a parabolic reflector mounted on a polar axis tracker, has been designed and built. Air at atmospheric pressure is heated by the concentrated solar radiation to temperatures of up to 400°C as it is sucked through the receiver and into the pebble-bed heat storage unit, by means of a fan at the bottom of the storage. The stored heat is recovered by the reversal of the fan and the resulting hot air can be used in a convection oven and other appliances. This report discusses practical aspects, as well as preliminary test results, of such a system.

  13. Small heat pumps using ammonia, phase 3; Kleinwaermepumpe mit Ammoniak, Phase 3: Fluegelzellenverdichter mit Economizer und Schraubenverdichter

    Energy Technology Data Exchange (ETDEWEB)

    Geisser, E.; Kopp, Th.

    2003-07-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of research done in the third phase of a research project that investigated components for small heat pump systems that use ammonia as a working fluid. The report includes a summary of the findings of the first two phases of the project and goes on to describe tests done with rotary vane and scroll compressors. The aims of the project are discussed and the work done is listed chronologically. The construction and the components of the test installation are described in detail. Also, the heat pump testing facilities at the University of Applied Science in Rapperswil, Switzerland, are described. The results of the measurements made for various temperature gradients are presented in detail and commented on; also, the various types of compressor tested and other heat pump compressors are compared.

  14. Sustainability Assessment of a Self-Consumption Wood-Energy Chain on Small Scale for Heat Generation in Central Italy

    Directory of Open Access Journals (Sweden)

    Stefano Verani

    2015-06-01

    Full Text Available The sustainability of a small-scale self-consumption wood-energy chain for heat generation in central Italy was analyzed from a technical, economic and energetic point of view. A micro-chain was developed within the CRA-ING farm at Monterotondo (Rome, Italy: The purpose of this system was to produce biomass for supplying a heating plant within the CRA-ING property as a substitute for diesel fuel. A poplar short rotation coppice, established with clones AF2, AF6 and Monviso, fed the micro-chain. The rotation was biennial. The average plantation production (Mgd.m.·ha−1·year−1 was 10.2, with a maximum of 13.53 for the twin-rows AF2 and a minimum of 8.00 for the single-row Monviso. The economic assessment was based on the Net Present Value (NPV method and the equivalent annuity cost, and found an average saving of 15.60 €·GJ−1 of heat generated by the wood chips heating system in comparison with the diesel heating system over a 10 year lifetime of the thermal power plant. The energy assessment of the poplar plantation, carried out using the Gross Energy Requirements method, reported an energy output/input ratio of 12.3. The energy output/input ratio of the whole micro-chain was 4.5.

  15. Arabidopsis CDS blastp result: AK243008 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243008 J090097H12 At5g48030.1 68418.m05935 DNAJ heat shock protein, mitochondrially targeted... (GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:2

  16. Arabidopsis CDS blastp result: AK242849 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242849 J090072M15 At5g48030.1 68418.m05935 DNAJ heat shock protein, mitochondrially targeted... (GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:2

  17. Arabidopsis CDS blastp result: AK243505 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243505 J100074N19 At5g48030.1 68418.m05935 DNAJ heat shock protein, mitochondrially targeted... (GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:2

  18. Arabidopsis CDS blastp result: AK288959 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288959 J090084E19 At5g48030.1 68418.m05935 DNAJ heat shock protein, mitochondrially targeted... (GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:2

  19. Arabidopsis CDS blastp result: AK287577 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287577 J065037N08 At5g48030.1 68418.m05935 DNAJ heat shock protein, mitochondrially targeted... (GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:2

  20. Arabidopsis CDS blastp result: AK288072 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288072 J075161I05 At5g48030.1 68418.m05935 DNAJ heat shock protein, mitochondrially targeted... (GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:2

  1. Arabidopsis CDS blastp result: AK065706 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065706 J013038P03 At5g48030.1 DNAJ heat shock protein, mitochondrially targeted (...GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:21429604; cont

  2. Arabidopsis CDS blastp result: AK120746 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120746 J023004K12 At5g48030.1 DNAJ heat shock protein, mitochondrially targeted (...GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:21429604; cont

  3. Arabidopsis CDS blastp result: AK243178 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243178 J100036P15 At5g48030.1 68418.m05935 DNAJ heat shock protein, mitochondrially targeted... (GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:2

  4. Arabidopsis CDS blastp result: AK058985 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058985 001-020-E06 At5g48030.1 DNAJ heat shock protein, mitochondrially targeted ...(GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:21429604; con

  5. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels.

    Science.gov (United States)

    Zinta, Gaurav; AbdElgawad, Hamada; Domagalska, Malgorzata A; Vergauwen, Lucia; Knapen, Dries; Nijs, Ivan; Janssens, Ivan A; Beemster, Gerrit T S; Asard, Han

    2014-12-01

    Climate changes increasingly threaten plant growth and productivity. Such changes are complex and involve multiple environmental factors, including rising CO2 levels and climate extreme events. As the molecular and physiological mechanisms underlying plant responses to realistic future climate extreme conditions are still poorly understood, a multiple organizational level analysis (i.e. eco-physiological, biochemical, and transcriptional) was performed, using Arabidopsis exposed to incremental heat wave and water deficit under ambient and elevated CO2 . The climate extreme resulted in biomass reduction, photosynthesis inhibition, and considerable increases in stress parameters. Photosynthesis was a major target as demonstrated at the physiological and transcriptional levels. In contrast, the climate extreme treatment induced a protective effect on oxidative membrane damage, most likely as a result of strongly increased lipophilic antioxidants and membrane-protecting enzymes. Elevated CO2 significantly mitigated the negative impact of a combined heat and drought, as apparent in biomass reduction, photosynthesis inhibition, chlorophyll fluorescence decline, H2 O2 production, and protein oxidation. Analysis of enzymatic and molecular antioxidants revealed that the stress-mitigating CO2 effect operates through up-regulation of antioxidant defense metabolism, as well as by reduced photorespiration resulting in lowered oxidative pressure. Therefore, exposure to future climate extreme episodes will negatively impact plant growth and production, but elevated CO2 is likely to mitigate this effect.

  6. Modeling the dynamic operation of a small fin plate heat exchanger – parametric analysis

    Directory of Open Access Journals (Sweden)

    Motyliński Konrad

    2015-09-01

    Full Text Available Given its high efficiency, low emissions and multiple fuelling options, the solid oxide fuel cells (SOFC offer a promising alternative for stationary power generators, especially while engaged in micro-combined heat and power (μ-CHP units. Despite the fact that the fuel cells are a key component in such power systems, other auxiliaries of the system can play a critical role and therefore require a significant attention. Since SOFC uses a ceramic material as an electrolyte, the high operating temperature (typically of the order of 700–900 °C is required to achieve sufficient performance. For that reason both the fuel and the oxidant have to be preheated before entering the SOFC stack. Hot gases exiting the fuel cell stack transport substantial amount of energy which has to be partly recovered for preheating streams entering the stack and for heating purposes. Effective thermal integration of the μ-CHP can be achieved only when proper technical measures are used. The ability of efficiently preheating the streams of oxidant and fuel relies on heat exchangers which are present in all possible configurations of power system with solid oxide fuel cells. In this work a compact, fin plate heat exchanger operating in the high temperature regime was under consideration. Dynamic model was proposed for investigation of its performance under the transitional states of the fuel cell system. Heat exchanger was simulated using commercial modeling software. The model includes key geometrical and functional parameters. The working conditions of the power unit with SOFC vary due to the several factors, such as load changes, heating and cooling procedures of the stack and others. These issues affect parameters of the incoming streams to the heat exchanger. The mathematical model of the heat exchanger is based on a set of equations which are simultaneously solved in the iterative process. It enables to define conditions in the outlets of both the hot and the

  7. Modeling the dynamic operation of a small fin plate heat exchanger - parametric analysis

    Science.gov (United States)

    Motyliński, Konrad; Kupecki, Jakub

    2015-09-01

    Given its high efficiency, low emissions and multiple fuelling options, the solid oxide fuel cells (SOFC) offer a promising alternative for stationary power generators, especially while engaged in micro-combined heat and power (μ-CHP) units. Despite the fact that the fuel cells are a key component in such power systems, other auxiliaries of the system can play a critical role and therefore require a significant attention. Since SOFC uses a ceramic material as an electrolyte, the high operating temperature (typically of the order of 700-900 °C) is required to achieve sufficient performance. For that reason both the fuel and the oxidant have to be preheated before entering the SOFC stack. Hot gases exiting the fuel cell stack transport substantial amount of energy which has to be partly recovered for preheating streams entering the stack and for heating purposes. Effective thermal integration of the μ-CHP can be achieved only when proper technical measures are used. The ability of efficiently preheating the streams of oxidant and fuel relies on heat exchangers which are present in all possible configurations of power system with solid oxide fuel cells. In this work a compact, fin plate heat exchanger operating in the high temperature regime was under consideration. Dynamic model was proposed for investigation of its performance under the transitional states of the fuel cell system. Heat exchanger was simulated using commercial modeling software. The model includes key geometrical and functional parameters. The working conditions of the power unit with SOFC vary due to the several factors, such as load changes, heating and cooling procedures of the stack and others. These issues affect parameters of the incoming streams to the heat exchanger. The mathematical model of the heat exchanger is based on a set of equations which are simultaneously solved in the iterative process. It enables to define conditions in the outlets of both the hot and the cold sides

  8. Differential transcript induction of parsley pathogenesis-related proteins and of a small heat shock protein by ozone and heat shock

    International Nuclear Information System (INIS)

    Parsley (Petroselinum (crispum L.) is known to respond to pathogen attack by the synthesis of furanocoumarins and to UV irradiation by the synthesis of flavone glycosides whereas ozone treatment results in the induction of both pathways. A cDNA library from parsley plants was differentially screened using labelled reverse-transcribed poly(A)+ RNA isolated from ozone-treated parsley plants. This resulted in the isolation of 13 independent cDNA clones representing ozone-induced genes and of 11 cDNA clones representing ozone-repressed genes. DNA sequencing of several clones resulted in the identification of pathogenesis-related protein 1-3 (PR1-3), of a new member of PR1 cDNAs (PRI-4) and of a small heat shock protein (sHSP). Northern blot analyses showed a transient induction of the three mRNA species after ozone fumigation. In contrast, heat shock treatment of parsley plants resulted in an increase of sHSP mRNA whereas no increase for transcripts of PR1-3 and PR1-4 could be observed. This is the first characterized sHSP cDNA clone for plants induced by heat shock, as well as by oxidative stress caused by ozone. (author)

  9. Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system

    International Nuclear Information System (INIS)

    This paper presents a comprehensive model of a small-scale integrated energy based district heating and cooling (DHC) system located in a residential area of hot-summer and cold-winter zone, which makes joint use of wind energy, solar energy, natural gas and electric energy. The model includes an off-grid wind turbine generator, heat producers, chillers, a water supply network and terminal loads. This research also investigates an optimal operating strategy based on Group Search Optimizer (GSO), through which the daily running cost of the system is optimized in both the heating and cooling modes. The strategy can be used to find the optimal number of operating chillers, optimal outlet water temperature set points of boilers and optimal water flow set points of pumps, taking into account cost functions and various operating constraints. In order to verify the model and the optimal operating strategy, performance tests have been undertaken using MATLAB. The simulation results prove the validity of the model and show that the strategy is able to minimize the system operation cost. The proposed system is evaluated in comparison with a conventional separation production (SP) system. The feasibility of investment for the DHC system is also discussed. The comparative results demonstrate the investment feasibility, the significant energy saving and the cost reduction, achieved in daily operation in an environment, where there are varying heating loads, cooling loads, wind speeds, solar radiations and electricity prices. - Highlights: • A model of a small-scale integrated energy based DHC system is presented. • An off-grid wind generator used for water heating is embedded in the model. • An optimal control strategy is studied to optimize the running cost of the system. • The designed system is proved to be energy efficient and cost effective in operation

  10. Heat transport in steep temperature gradients. I - Small flaring solar loops

    Science.gov (United States)

    Smith, D. F.

    1986-01-01

    Results on nonlocal heat transport which properly takes into account the presence of fast electrons with mean free paths much longer than the temperature scale height L are reviewed. In terms of the mean free path for the slow bulk electrons, lambda(s), the nonlocal effects are important whenever lambda(s)/L greater than 0.001, with the following consequences. The heat flux in the hot part of the gradient is reduced relative to the Spitzer-Haerm value q(SH) which does not take into account the heat carried away by the fast electrons. The heat flux in the cold part of the gradient is enhanced relative to the value q(SH) which does not take into account the heat deposited by the fast electrons. These quite general results, which should have several applications in astrophysics, are applied to the problem of thermal hard X-ray burst models. It is shown that heat is not bottled up as effectively as in some past models, and temperatures achieved for realistic energy input rates are consequently not as high. As a result such sources can be effective only in the soft part (10-30 keV) of the hard X-ray range for energy input rates up to 6,400 ergs/cu cm s. The analysis is based on a fluid model and does not consider the X-ray signature of fast electrons which escape to distances far beyond the conduction fronts formed. It is shown that such electrons could at most be effective in the soft part of the hard X-ray range.

  11. Influence of Tube‘s Diameter on Boling Heat Transfer Performance in Small Diameter Tubes

    Institute of Scientific and Technical Information of China (English)

    GanChengjun; WangWeicheng; 等

    1998-01-01

    This paper reports the experiments of evaporation study in 6 mm inner copper diameter tubes using HFC-134a,HCFC-22 and CFC-12 as working fluid.The results show that the evaporation heat transfer cofeeicient increasese with the decreasing of inner diameter of tubes,A new concept of nondimensional tube diameter U is proposed in this paper for correction of the influence of the tube diameter on the evaporation heat transfer coefficient.And further,a conveinent empirical correction method is preseted.

  12. Small heat pump using ammonium, phase 2; Kleinwaermepumpe mit Ammoniak, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Th.

    2001-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reports on tests and measurements made at the University of Applied Science in Rapperswil, Switzerland, on four different prototypes of a 17 kW heat pump using a variable-speed, eight-cell, sliding vane rotary compressor and ammonia as the working fluid. In particular, oil-management and the effects it has on gas flow and the coefficient of performance of the heat pump is discussed. Certain aspects not covered in this phase of the project, such as the effect of an economiser loop, are to be examined in a further phase of the project.

  13. Influence of tube's diameter on boiling heat transfer performance in small diameter tubes

    Science.gov (United States)

    Gan, Chengjun; Wang, Weicheng; Zhang, Lining

    1998-03-01

    This paper reports the experiments of evaporation study in 6 mm inner copper diameter tubes using HFC-134a, HCFC-22 and CFC-12 as working fluid. The results show that the evaporation heat transfer coefficient increases with the decreasing of inner diameter of tubes. A new concept of non-dimensional tube diameter U is proposed in this paper for correction of the influence of the tube diameter on the evaporation heat transfer coefficient. And further, a convenient empirical correction method is presented.

  14. Specific protein homeostatic functions of small heat-shock proteins increase lifespan

    NARCIS (Netherlands)

    Vos, Michel J; Carra, Serena; Kanon, Bart; Bosveld, Floris; Klauke, Karin; Sibon, Ody C M; Kampinga, Harm H

    2015-01-01

    During aging, oxidized, misfolded, and aggregated proteins accumulate in cells, while the capacity to deal with protein damage declines severely. To cope with the toxicity of damaged proteins, cells rely on protein quality control networks, in particular proteins belonging to the family of heat-shoc

  15. Specific protein homeostatic functions of small heat-shock proteins increase lifespan

    NARCIS (Netherlands)

    Vos, Michel J.; Carra, Serena; Kanon, Bart; Bosveld, Floris; Klauke, Karin; Sibon, Ody C. M.; Kampinga, Harm H.

    2016-01-01

    During aging, oxidized, misfolded, and aggregated proteins accumulate in cells, while the capacity to deal with protein damage declines severely. To cope with the toxicity of damaged proteins, cells rely on protein quality control networks, in particular proteins belonging to the family of heat-shoc

  16. Asparagine Metabolic Pathways in Arabidopsis.

    Science.gov (United States)

    Gaufichon, Laure; Rothstein, Steven J; Suzuki, Akira

    2016-04-01

    Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages. PMID:26628609

  17. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature

    Science.gov (United States)

    Mondal, Rabindra Nath; Roy, Titob; Shaha, Poly Rani; Yanase, Shinichiro

    2016-07-01

    Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number -300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario `multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic', if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario `multi-periodic → periodic → steady-state', if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.

  18. Examinations on the Meteorologic Factors of Urban Heat Island Development in Small and Medium-sized Towns of Hungary

    Science.gov (United States)

    Szegedi, S.; Gyarmati, R.; Kapocska, L.; Toth, T.

    2010-09-01

    EXAMINATIONS ON THE METEOROLOGICAL FACTORS OF URBAN HEAT ISLAND DEVELOPMENT IN SMALL AND MEDIUM-SIZED TOWNS OF HUNGARY Sandor Szegedi, Renata Gyarmati, Laszlo Kapocska and Tamas Toth University of Debrecen Department of Meteorology, 4032 Debrecen Egyetem tér 1. The thermal difference between the settlements and their environment is called urban heat island (UHI). Potential UHI intensities are mainly determined by the size, population and built-up structure of settlements. Meteorological conditions have a determinant impact on the development of the heat island at a certain moment. International and Hungarian studies usually deal with metropolises and big cities; much less attention is paid to medium-sized and small towns. Consequently this study has been focused on the development of UHI in such Hungarian urbanized areas as mentioned above. Settlements, located near the city of Debrecen (ca. 220,000 inhabitants) in East Hungary, with population of about 30000, 20000 10000 and 1000 were chosen for the research. Car-mounted digital thermometers with data loggers were used. Twenty four measurements were carried out during a one-year-long campaign in 2003-2004. Synoptic conditions, especially cloudiness, wind direction and wind speed were taken to consideration as determinant factors. Spatial characteristics of UHI have been described. Results have proved the existence of UHI even in the smallest settlement under suitable weather conditions. The non-heating season proved to be more advantageous for the development of UHI due to stronger irradiance and frequent anticyclonic synoptic conditions. Effects of cloudiness and wind speed have been revealed as well. St type clouds have proved to be most effective in preventing the formation of UHI. A 90-100% St cover could completely eliminate the thermal differences between natural and artificial surfaces. Ci type clouds had the weakest impact, they could prevent the formation of the heat island only in the smallest

  19. Sip1, a Unique Small Heat Shock Protein of the Nematode Caenorhabditis elegans

    OpenAIRE

    Fleckenstein, Tilly Thea

    2015-01-01

    Sip1 is a small heat shock protein in C. elegans which is important for embryonic development. In this thesis, the crystal structure of 32meric Sip1 was solved. Both oligomeric state and activity of Sip1 depend on pH, as evidenced by electron microscopy, analytical ultracentrifugation and chaperone assays. Sip1 dissociates into smaller, active oligomers at the acidic pH found in nematode eggs and thus prevents the unspecific aggregation of unfolding proteins. Sip1 ist ein kleines Hitzescho...

  20. Signatures of small-scale heating events in EUV spectral lines as modeled from 3D MHD simulations

    Science.gov (United States)

    Guerreiro, Nuno; Haberreiter, Margit; Hansteen, Viggo; Curdt, Werner; Schmutz, Werner

    2014-05-01

    We aim at understanding the implications of small scale heating events in the solar atmosphere for the variations of the solar spectral irradiance. We present a technique for identification and characterization of these events in 3D simulations of the solar atmosphere. An accurate property determination of these events in time and space will help us to understand how spectral lines, in particular in the EUV, respond to them and which kind of spectral signatures one would expect to find in observations as from SOHO/SUMER and eventually from future space missions, as for example observations by SPICE on board Solar Orbiter.

  1. Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met® Climate Model

    OpenAIRE

    Dario Ambrosini; Giorgio Galli; Biagio Mancini; Iole Nardi; Stefano Sfarra

    2014-01-01

    Urban morphology and increasing building density play a key role in the overall use of energy and promotion of environmental sustainability. The urban environment causes a local increase of temperature, a phenomenon known as Urban Heat Island (UHI). The purpose of this work is the study of the possible formation of an UHI and the evaluation of its magnitude, in the context of a small city, carried out with the ENVI-met® software. For this purpose, a simulation was needed, and this simulation ...

  2. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    OpenAIRE

    Eileen Tortora; Franco Rispoli; Domenico Borello; Alessandro Corsini

    2013-01-01

    The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP) Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting tran...

  3. Combined particle emission reduction and heat recovery from combustion exhaust-A novel approach for small wood-fired appliances

    International Nuclear Information System (INIS)

    Replacing fossil fuels by renewable sources of energy is one approach to address the problem of global warming due to anthropogenic emissions of greenhouse gases. Wood combustion can help to replace fuel oil or gas. It is advisable, however, to use modern technology for combustion and exhaust gas after-treatment in order to achieve best efficiency and avoid air quality problems due to high emission levels often related to small scale wood combustion. In this study, simultaneous combustion particle deposition and heat recovery from the exhaust of two commercially available wood-fired appliances has been investigated. The experiments were performed with a miniature pipe bundle heat exchanger operating in the exhaust gas lines of a fully automated pellet burner or a closed fireplace. The system has been characterised for a wide range of aerosol inlet temperatures (135-295 deg. C) and flow velocities (0.13-1.0ms-1), and particle deposition efficiencies up to 95% have been achieved. Deposition was dominated by thermophoresis and diffusion and increased with the average temperature difference and retention time in the heat exchanger. The aerosols from the two different appliances exhibited different deposition characteristics, which can be attributed to enhanced deposition of the nucleation mode particles generated in the closed fire place. The measured deposition efficiencies can be described by simple linear parameterisations derived from laboratory studies. The results of this study demonstrate the feasibility of thermophoretic particle removal from biomass burning flue gas and support the development of modified heat exchanger systems with enhanced capability for simultaneous heat recovery and particle deposition

  4. Heat Treatment of Small Heat Shock Proteins α-Crystallin and Hsp16.3: Structural Changes vs. Chaperone-like Activity

    Institute of Scientific and Technical Information of China (English)

    毛启龙; 柯丹霞; 昌增益

    2001-01-01

    Both α-crystallin from bovine eye lens and Hsp16.3 from Mycobacterium tuberculosis are members of the small heat shock protein family, They were preincubated at 100 C for 15 min and then cooled on ice immediately. The chaperone-like activities of preheated proteins were measured at 37 C using DTT-treated insulin B chains as substrates. Both preheated proteins exhibited greatly enhanced chaperone-like activities, accompanied with almost unchanged secondary structures and surface hydrophobicity but with a minor change in tertiary structures. The dramatically enhanced chaperone-like activities of preheated α-crystallln and Hsp16.3 may have resulted from the irreversible change in the tertiary structure as detected by near-UV CD spectra.

  5. Dual Functions in Response to Heat Stress and Spermatogenesis: Characterization of Expression Profile of Small Heat Shock Proteins 9 and 10 in Goat Testis

    Directory of Open Access Journals (Sweden)

    Wenjuan Xun

    2015-01-01

    Full Text Available Small heat shock proteins 9 and 10 (HSPB9 and HSPB10 are two testis-specific expressed sHsps. The objective of this study was to investigate the mRNA expression profile of HSPB9 and HSPB10 in goat testis among the different seasons, ages, and environmental temperatures. Allocation of the two sHsps was also performed by immunohistochemistry. The results showed that the transcript levels of HSPB9 and HSPB10 were extremely high in the testis (P<0.01. The relative expression of HSBP9 and HSPB10 in testis showed a tendency to increase with age and then is maintained at the constant level after sexual maturity. HSPB9 and HSPB10 have significantly higher expression in the breeding season  (P<0.05 and hot season (P<0.01. Both HSPB9 and HSPB10 were found to be upregulated by high-temperature stress in testis (P<0.05, and the expressions of Hsp70 and Hsp90 were also increased simultaneously (P<0.01. Immunohistochemistry analysis localized HSPB9 expressed in spermatogonia, spermatocytes, and round spermatids and HSPB10 expressed in the elongate spermatids. In epididymis, strongly staining signal of HSPB10 was detected in pseudostratified columnar epithelium. In conclusion, the two testis-specific sHsps are closely related to male reproduction and heat tolerance. The results could provide valuable data for the further studies on HSPB9 and HSPB10.

  6. The small heat shock proteins from Acidithiobacillus ferrooxidans: gene expression, phylogenetic analysis, and structural modeling

    Directory of Open Access Journals (Sweden)

    Ribeiro Daniela A

    2011-12-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is an acidophilic, chemolithoautotrophic bacterium that has been successfully used in metal bioleaching. In this study, an analysis of the A. ferrooxidans ATCC 23270 genome revealed the presence of three sHSP genes, Afe_1009, Afe_1437 and Afe_2172, that encode proteins from the HSP20 family, a class of intracellular multimers that is especially important in extremophile microorganisms. Results The expression of the sHSP genes was investigated in A. ferrooxidans cells submitted to a heat shock at 40°C for 15, 30 and 60 minutes. After 60 minutes, the gene on locus Afe_1437 was about 20-fold more highly expressed than the gene on locus Afe_2172. Bioinformatic and phylogenetic analyses showed that the sHSPs from A. ferrooxidans are possible non-paralogous proteins, and are regulated by the σ32 factor, a common transcription factor of heat shock proteins. Structural studies using homology molecular modeling indicated that the proteins encoded by Afe_1009 and Afe_1437 have a conserved α-crystallin domain and share similar structural features with the sHSP from Methanococcus jannaschii, suggesting that their biological assembly involves 24 molecules and resembles a hollow spherical shell. Conclusion We conclude that the sHSPs encoded by the Afe_1437 and Afe_1009 genes are more likely to act as molecular chaperones in the A. ferrooxidans heat shock response. In addition, the three sHSPs from A. ferrooxidans are not recent paralogs, and the Afe_1437 and Afe_1009 genes could be inherited horizontally by A. ferrooxidans.

  7. Proteomic changes of the porcine small intestine in response to chronic heat stress.

    Science.gov (United States)

    Cui, Yanjun; Gu, Xianhong

    2015-12-01

    Acute heat stress (HS) negatively affects intestinal integrity and barrier function. In contrast, chronic mild HS poses a distinct challenge to animals. Therefore, this study integrates biochemical, histological and proteomic approaches to investigate the effects of chronic HS on the intestine in finishing pigs. Castrated male crossbreeds (79.00 ± 1.50 kg BW) were subjected to either thermal neutral (TN, 21 °C; 55% ± 5% humidity; n=8) or HS conditions (30 °C; 55% ± 5% humidity; n=8) for 3 weeks. The pigs were sacrificed after 3 weeks of high environmental exposure and the plasma hormones, the intestinal morphology, integrity, and protein profiles of the jejunum mucosa were determined. Chronic HS reduced the free triiodothyronine (FT3) and GH levels. HS damaged intestinal morphology, increased plasma d-lactate concentrations and decreased alkaline phosphatase activity of intestinal mucosa. Proteome analysis of the jejunum mucosa was conducted by 2D gel electrophoresis and mass spectrometry. Fifty-three intestinal proteins were found to be differentially abundant, 18 of which were related to cell structure and motility, and their changes in abundance could comprise intestinal integrity and function. The down-regulation of proteins involved in tricarboxylic acid cycle (TCA cycle), electron transport chain (ETC), and oxidative phosphorylation suggested that chronic HS impaired energy metabolism and thus induced oxidative stress. Moreover, the changes of ten proteins in abundance related to stress response and defense indicated pigs mediated long-term heat exposure and counteracted its negative effects of heat exposure. These findings have important implications for understanding the effect of chronic HS on intestines.

  8. Two phase flow and phase change heat transfer in small structures

    NARCIS (Netherlands)

    Rops, C.M.

    2009-01-01

    New production techniques, which became available since the 1980’s, allowed the mass production of small sized fluidic systems. Reducing the size of a technical system alters the performance due to scaling effects. Physical phenomena which operate on volumes, such as gravity and inertia, become less

  9. Spatial Characteristics of Small Green Spaces' Mitigating Effects on Microscopic Urban Heat Islands

    Science.gov (United States)

    Park, J.; Lee, D. K.; Jeong, W.; Kim, J. H.; Huh, K. Y.

    2015-12-01

    The purpose of the study is to find small greens' disposition, types and sizes to reduce air temperature effectively in urban blocks. The research sites were six high developed blocks in Seoul, Korea. Air temperature was measured with mobile loggers in clear daytime during summer, from August to September, at screen level. Also the measurement repeated over three times a day during three days by walking and circulating around the experimental blocks and the control blocks at the same time. By analyzing spatial characteristics, the averaged air temperatures were classified with three spaces, sunny spaces, building-shaded spaces and small green spaces by using Kruskal-Wallis Test; and small green spaces in 6 blocks were classified into their outward forms, polygonal or linear and single or mixed. The polygonal and mixed types of small green spaces mitigated averaged air temperature of each block which they belonged with a simple linear regression model with adjusted R2 = 0.90**. As the area and volume of these types increased, the effect of air temperature reduction (ΔT; Air temperature difference between sunny space and green space in a block) also increased in a linear relationship. The experimental range of this research is 100m2 ~ 2,000m2 of area, and 1,000m3 ~ 10,000m3 of volume of small green space. As a result, more than 300m2 and 2,300m3 of polygonal green spaces with mixed vegetation is required to lower 1°C; 650m2 and 5,000m3 of them to lower 2°C; about 2,000m2 and about 10,000m3 of them to lower 4°C air temperature reduction in an urban block.

  10. Selective killing of cancer cells by small molecules targeting heat shock stress response.

    Science.gov (United States)

    Zhang, Daniel; Zhang, Bin

    2016-09-30

    HSF1 heat shock response has emerged as a valuable non-oncogenetic intervention point in targeted cancer therapy. Current reporter based high throughput screening has led to the discovery of several compounds or chemotypes that are effective in the growth inhibition of multiple cancer cell lines and relevant animal tumor models. However, some intrinsic limitations of reporter based assays can potentially lead to biased results. Using a previously validated high content image based assay, we performed a phenotypic screen targeting HSF1 heat shock pathway with a chemically diversified library of over 100,000 compounds. Several novel functional inhibitors of HSF1 pathway were identified with different chemotypes. Western blot analysis confirmed that selective compounds inhibit phosphorylation of HSF1, followed by reduced expression of HSP proteins. Moreover, HeLa cells stably transfected with HSF1 shRNA were more resistant to the compound treatment under lethal temperature than cells containing HSF1, validating HSF1 dependent mechanism of action. These compounds demonstrate nanomolar potency toward multiple cancer cell lines with relatively low cytotoxicity to normal cells. Further SAR and target identification study will pave the way for the potential development of next generation anticancer drugs. PMID:27553278

  11. Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Thomas M. [ElectraTherm Inc., Reno, NV (United States); Erlach, Celeste [ElectraTherm Inc., Reno, NV (United States)

    2014-12-30

    Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

  12. Central model predictive control of a group of domestic heat pumps, case study for a small district

    NARCIS (Netherlands)

    Leeuwen, van R.P.; Fink, J.; Smit, G.J.M.; Helfert, Markus; Krempels, Karl-Heinz; Donnellan, Brian; Klein, Cornel

    2015-01-01

    In this paper we investigate optimal control of a group of heat pumps. Each heat pump provides space heating and domestic hot water to a single household. Besides a heat pump, each house has a buffer for domestic hot water and a floor heating system for space heating. The paper describes models and

  13. Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met® Climate Model

    Directory of Open Access Journals (Sweden)

    Dario Ambrosini

    2014-10-01

    Full Text Available Urban morphology and increasing building density play a key role in the overall use of energy and promotion of environmental sustainability. The urban environment causes a local increase of temperature, a phenomenon known as Urban Heat Island (UHI. The purpose of this work is the study of the possible formation of an UHI and the evaluation of its magnitude, in the context of a small city, carried out with the ENVI-met® software. For this purpose, a simulation was needed, and this simulation is preparatory for a monitoring campaign on site, which will be held in the immediate future. ENVI-met® simulates the temporal evolution of several thermodynamics parameters on a micro-scale range, creating a 3D, non-hydrostatic model of the interactions between building-atmosphere-vegetation. The weather conditions applied simulate a typical Italian summer heat wave. Three different case-studies have been analyzed: Base Case, Cool Case and Green Case. Analysis of the actual state in the Base Case shows how even in an area with average building density, such as the old town center of a small city, fully developed UHI may rise with strong thermal gradients between built areas and open zones with plenty of vegetation. These gradients arise in a really tiny space (few hundreds of meters, showing that the influence of urban geometry can be decisive in the characterization of local microclimate. Simulations, carried out considering the application of green or cool roofs, showed small relevant effects as they become evident only in large areas heavily built up (metropolis subject to more intense climate conditions.

  14. The small community solar thermal power experiment. Parabolic dish technology for industrial process heat application

    Science.gov (United States)

    Polzien, R. E.; Rodriguez, D.

    1981-01-01

    Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.

  15. Co-combustion of Wood-Shavings and Horse Manure in a Small Scale Heating Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, E. [Energy Technology Centre, Piteaa (Sweden); Lundgren, J.; Hermansson, R. [Luleaa Univ. of Technology (Sweden). Div. of Energy Engineering

    2006-07-15

    Due to the prohibition of disposal of organic material at landfills, there is a great interest amongst stable owners in finding practical, environmental and economic alternatives for handling of the horse manure. One option is to use the waste as fuel for local heat generation. A riding school, near the town of Timraa in the middle part of Sweden, has installed a boiler fired with a mixture of wood-shavings and horse manure. The main objectives with this study were to evaluate the environmental performance of the furnace and the total economy of the plant. The measurements showed that the emissions of CO were relatively low, typically below 200 mg/Nm{sup 3}. The NO{sub x} emissions were in the range of 360 mg/Nm{sup 3} to 450 mg/Nm{sup 3}, which is significantly higher than when firing conventional wood fuels. The reason is that this fuel contains up to nine times more nitrogen than for example wood-chips due to absorbed urine from the horses. The particle emissions were in the range of 390 mg/Nm{sup 3} to 470 mg/Nm{sup 3}. (All emission values are dry gas based and normalised to 10 volume % O{sub 2}). An economic evaluation comparing combustion, composting at a waste station and direct spread on arable land showed the lowest annual cost for combustion. This is an example of turning a cumbersome waste product into a profitable fuel.

  16. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  17. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease.

    Directory of Open Access Journals (Sweden)

    Daniel W Neef

    2010-01-01

    Full Text Available Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone expression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease.

  18. An investigation of using a phase-change material to improve the heat transfer in a small electronic module for an airborne radar application

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, K.W.

    1990-10-01

    Finding new and improved means of cooling small electronic packages are of great importance to today's electronic packaging engineer. Thermal absorption through the use of a material which changes phase is an attractive alternative. Taking advantage of the heat capacity of a material's latent heat of fusion is shown to absorb heat away from the electronics, thus decreasing the overall temperature rise of the system. The energy equation is formulated in terms of enthalpy and discretized using a finite-difference method. A FORTRAN program to solve the discretized equations is presented which can be used to analyze heat conduction in a rectangular region undergoing an isothermal phase change. An analysis of heat transfer through a miniature radar electronic module cooled by a phase-change reservoir is presented, illustrating the method's advantages over conventional heat sinks. 41 refs., 11 figs., 2 tabs.

  19. Hsp20, a small heat shock protein of Deinococcus radiodurans, confers tolerance to hydrogen peroxide in Escherichia coli.

    Science.gov (United States)

    Singh, Harinder; Appukuttan, Deepti; Lim, Sangyong

    2014-08-01

    The present study shows that DR1114 (Hsp20), a small heat shock protein of the radiationresistant bacterium Deinococcus radiodurans, enhances tolerance to hydrogen peroxide (H2O2) stress when expressed in Escherichia coli. A protein profile comparison showed that E. coli cells overexpressing D. radiodurans Hsp20 (EC-pHsp20) activated the redox state proteins, thus maintaining redox homeostasis. The cells also showed increased expression of pseudouridine (psi) synthases, which are important to the stability and proper functioning of structural RNA molecules. We found that the D. radiodurans mutant strain, which lacks a psi synthase (DR0896), was more sensitive to H2O2 stress than wild type. These suggest that an increased expression of proteins involved in the control of redox state homeostasis along with more stable ribosomal function may explain the improved tolerance of EC-pHsp20 to H2O2 stress.

  20. Isotropic AGN Heating with Small Radio Quiet Bubbles in the NGC 5044 Group

    CERN Document Server

    David, L; Giacintucci, S; Forman, W; Nulsen, P; Vrtilek, J; O'Sullivan, E; Raychaudhuri, S

    2009-01-01

    (Abridged) A Chandra observation of the X-ray bright group NGC 5044 shows that the X-ray emitting gas has been strongly perturbed by recent outbursts from the central AGN and also from motion of the central dominant galaxy relative to the group gas. The NGC 5044 group hosts many small radio quiet cavities with a nearly isotropic distribution, cool filaments, a semi-circular cold front and a two-armed spiral shaped feature of cool gas. A GMRT observation of NGC 5044 at 610 MHz shows the presence of extended radio emission with a "torus-shaped" morphology. The largest X-ray filament appears to thread the radio torus, suggesting that the lower entropy gas within the filament is material being uplifted from the center of the group. The radio emission at 235 MHz is much more extended than the emission at 610 MHz, with little overlap between the two frequencies. One component of the 235 MHz emission passes through the largest X-ray cavity and is then deflected just behind the cold front. A second detatched radio lo...

  1. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L;

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...... (HRP C). HRP C is 54% identical to ATP N in sequence. When the structures of four class III plant peroxidases are superimposed, the regions with structural differences are non-randomly distributed; all are located in one half of the molecule. The architecture of the haem pocket of ATP N is very similar...... to that of HRP C, in agreement with the low small-molecule substrate specificity of all class III peroxidases. The structure of ATP N suggests that the pH dependence of the substrate turnover will differ from that of HRP C owing to differences in polarity of the residues in the substrate-access channel. Since...

  2. Characterization of three transcripts encoding small heat shock proteins expressed in the codling moth, Cydia pomone//a (Lepidoptera: Tortricidae)

    Institute of Scientific and Technical Information of China (English)

    Stephen F. Garczynski; Thomas R. Unruh; Christelle Guédot; Lisa G. Neven

    2011-01-01

    Codling moth is a major pest of apples and pears worldwide. Increasing knowledge of how this insect responds to environmental stress will improve field and postharvest control measures used against it. The small heat shock proteins (sHsps) play a major role in cellular responses to environmental stressors. A degenerate oligonucleotide primer,designed against the conserved α-crystallin domain, was used in 3′ rapid amplification of complementary DNA (cDNA) ends reactions to amplify transcripts encoding sHsps expressed in the codling moth cell line, Cp169, subjected to heat shock. Three full-length cDNAs were cloned from Cp169 cells that contained open reading frames encoding sHsps.The cDNA for CpHsp 19.8 was 795 bp encoding 177 amino acids. The cDNA for CpHsp 19.9 was 749 bp encoding 175 amino acids. The cDNA for CpHsp22.2 was 737 bp encoding 192 amino acids. Analysis of the protein sequences of the three CpHsps indicated the presence of 83 amino acids with homology to the α-crystallin domain. For each of the CpHsps, the α-crystallin domain was surrounded by divergent N- and C-terminal regions, consistent with the conserved structural features of sHsps. Real-time polymerase chain reaction, used to determine the expression patterns of each of the sHsps in different developmental stages of codling moth revealed the presence of transcripts in all stages tested. Consistent with characteristics of other sHsps, expression of CpHsp transcripts were greatly enhanced when insects were subjected to heat shock. The results of this research can be used as a guide to study the roles of sHsps in codling moth control using various post-harvest treatments.

  3. Biomass from agriculture in small-scale combined heat and power plants - A comparative life cycle assessment

    International Nuclear Information System (INIS)

    Biomass produced on farm land is a renewable fuel that can prove suitable for small-scale combined heat and power (CHP) plants in rural areas. However, it can still be questioned if biomass-based energy generation is a good environmental choice with regards to the impact on greenhouse gas emissions, and if there are negative consequences of using of agricultural land for other purposes than food production. In this study, a simplified life cycle assessment (LCA) was conducted over four scenarios for supply of the entire demand of power and heat of a rural village. Three of the scenarios are based on utilization of biomass in 100 kW (e) combined heat and power (CHP) systems and the fourth is based on fossil fuel in a large-scale plant. The biomass systems analyzed were based on 1) biogas production with ley as substrate and the biogas combusted in a microturbine, 2) gasification of willow chips and the product gas combusted in an IC-engine and 3) combustion of willow chips for a Stirling engine. The two first scenarios also require a straw boiler. The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option.

  4. Reaction of small heat-shock proteins to different kinds of cellular stress in cultured rat hippocampal neurons.

    Science.gov (United States)

    Bartelt-Kirbach, Britta; Golenhofen, Nikola

    2014-01-01

    Upregulation of small heat-shock proteins (sHsps) in response to cellular stress is one mechanism to increase cell viability.We previously described that cultured rat hippocampal neurons express five of the 11 family members but only upregulate two of them (HspB1 and HspB5) at the protein level after heat stress. Since neurons have to cope with many other pathological conditions, we investigated in this study the expression of all five expressed sHsps on mRNA and protein level after sublethal sodium arsenite and oxidative and hyperosmotic stress. Under all three conditions, HspB1, HspB5, HspB6, and HspB8 but not HspB11 were consistently upregulated but showed differences in the time course of upregulation. The increase of sHsps always occurred earlier on mRNA level compared with protein levels. We conclude from our data that these four upregulated sHsps (HspB1, HspB5, HspB6, HspB8) act together in different proportions in the protection of neurons from various stress conditions.

  5. Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses.

    Science.gov (United States)

    Barciszewska-Pacak, Maria; Milanowska, Kaja; Knop, Katarzyna; Bielewicz, Dawid; Nuc, Przemyslaw; Plewka, Patrycja; Pacak, Andrzej M; Vazquez, Franck; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2015-01-01

    Arabidopsis microRNA expression regulation was studied in a wide array of abiotic stresses such as drought, heat, salinity, copper excess/deficiency, cadmium excess, and sulfur deficiency. A home-built RT-qPCR mirEX platform for the amplification of 289 Arabidopsis microRNA transcripts was used to study their response to abiotic stresses. Small RNA sequencing, Northern hybridization, and TaqMan® microRNA assays were performed to study the abundance of mature microRNAs. A broad response on the level of primary miRNAs (pri-miRNAs) was observed. However, stress response at the level of mature microRNAs was rather confined. The data presented show that in most instances, the level of a particular mature miRNA could not be predicted based on the level of its pri-miRNA. This points to an essential role of posttranscriptional regulation of microRNA expression. New Arabidopsis microRNAs responsive to abiotic stresses were discovered. Four microRNAs: miR319a/b, miR319b.2, and miR400 have been found to be responsive to several abiotic stresses and thus can be regarded as general stress-responsive microRNA species.

  6. Modeling Transient Heat Transfer in Small-Size Twin Pipes for End-User Connections to Low-Energy District Heating Networks

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2013-01-01

    The low-energy district heating concept has the potential of increasing the energy and exergy efficiencies of heat supply systems and of exploiting renewable energy, provided technical solutions for its wide application can be developed and implemented. This paper investigates the dynamic behaviour...... of district heating branch pipes in low-temperature operation (supply temperature 50-55°C and return temperature 20-25°C). We looked at state-of-the-art district heating branch pipes, suitable for the connection of a typical single-family house to a substation equipped with a heat exchanger for domestic hot...

  7. The acoustic radiation force on a small thermoviscous or thermoelastic particle suspended in a viscous and heat-conducting fluid

    Science.gov (United States)

    Karlsen, Jonas; Bruus, Henrik

    2015-11-01

    We present a theoretical analysis (arxiv.org/abs/1507.01043) of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid. Our analysis places no restrictions on the viscous and thermal boundary layer thicknesses relative to the particle radius, but it assumes the particle to be small in comparison to the acoustic wavelength. This is the limit relevant to scattering of ultrasound waves from sub-micrometer particles. For particle sizes smaller than the boundary layer widths, our theory leads to profound consequences for the acoustic radiation force. For example, for liquid droplets and solid particles suspended in gasses we predict forces orders of magnitude larger than expected from ideal-fluid theory. Moreover, for certain relevant choices of materials, we find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to applications in acoustic levitation or separation of micro-particles in gases, as well as to handling of μm- and nm-sized particles such as bacteria and vira in lab-on-a-chip systems.

  8. Array Formatting of the Heat-Transfer Method (HTM for the Detection of Small Organic Molecules by Molecularly Imprinted Polymers

    Directory of Open Access Journals (Sweden)

    Gideon Wackers

    2014-06-01

    Full Text Available In this work we present the first steps towards a molecularly imprinted polymer (MIP-based biomimetic sensor array for the detection of small organic molecules via the heat-transfer method (HTM. HTM relies on the change in thermal resistance upon binding of the target molecule to the MIP-type receptor. A flow-through sensor cell was developed, which is segmented into four quadrants with a volume of 2.5 μL each, allowing four measurements to be done simultaneously on a single substrate. Verification measurements were conducted, in which all quadrants received a uniform treatment and all four channels exhibited a similar response. Subsequently, measurements were performed in quadrants, which were functionalized with different MIP particles. Each of these quadrants was exposed to the same buffer solution, spiked with different molecules, according to the MIP under analysis. With the flow cell design we could discriminate between similar small organic molecules and observed no significant cross-selectivity. Therefore, the MIP array sensor platform with HTM as a readout technique, has the potential to become a low-cost analysis tool for bioanalytical applications.

  9. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor

    DEFF Research Database (Denmark)

    Zhang, Xia; Wollenweber, Bernd; Jiang, Dong;

    2008-01-01

    transport rate (ETR) in 5P2 plants were depressed under optimal growth conditions (control) in relation to WT, they were enhanced under HS and HSWD. These results indicate that ABP9 transgenic plants are less susceptible to stress than the WT. In addition, the increased ABA contents in both WT and 5P2...... plants in response to WD and/or HS stresses suggest that declines in A and gs might have been due to ABA-induced stomatal closure. Moreover, compared with WT, 5P2 plants exhibited higher ABA content, instantaneous water use efficiency (IWUE), Chl a/b, NPQ, and lower Chl/carotenoid ratios. Finally......The effects of water deficits (WD), heat shock (HS), and both (HSWD) on photosynthetic carbon- and light-use efficiencies together with leaf ABA content, pigment composition and expressions of stress- and light harvesting-responsive genes were investigated in ABP9 [ABA-responsive-element (ABRE...

  10. Testing of combined heating systems for small houses: Improved procedures for whole system test methods : Deliverable 2.3

    OpenAIRE

    Haberl, Robert; Haller, Michell Y.; Papillon, Philippe; Chèze,, David; Persson, Tomas; Bales, Chris

    2015-01-01

    Dynamic system test methods for heating systems were developed and applied by the institutes SERC and SP from Sweden, INES from France and SPF from Switzerland already before the MacSheep project started. These test methods followed the same principle: a complete heating system – including heat generators, storage, control etc., is installed on the test rig; the test rig software and hardware simulates and emulates the heat load for space heating and domestic hot water of a single family hous...

  11. Local temperature-sensitive mechanisms are important mediators of limb tissue hyperemia in the heat-stressed human at rest and during small muscle mass exercise.

    Science.gov (United States)

    Chiesa, Scott T; Trangmar, Steven J; Kalsi, Kameljit K; Rakobowchuk, Mark; Banker, Devendar S; Lotlikar, Makrand D; Ali, Leena; González-Alonso, José

    2015-07-15

    Limb tissue and systemic blood flow increases with heat stress, but the underlying mechanisms remain poorly understood. Here, we tested the hypothesis that heat stress-induced increases in limb tissue perfusion are primarily mediated by local temperature-sensitive mechanisms. Leg and systemic temperatures and hemodynamics were measured at rest and during incremental single-legged knee extensor exercise in 15 males exposed to 1 h of either systemic passive heat-stress with simultaneous cooling of a single leg (n = 8) or isolated leg heating or cooling (n = 7). Systemic heat stress increased core, skin and heated leg blood temperatures (Tb), cardiac output, and heated leg blood flow (LBF; 0.6 ± 0.1 l/min; P 0.05). Increased heated leg deep tissue blood flow was closely related to Tb (R(2) = 0.50; P 0.05), despite unchanged systemic temperatures and hemodynamics. During incremental exercise, heated LBF was consistently maintained ∼ 0.6 l/min higher than that in the cooled leg (P temperature-sensitive mechanisms are important mediators in limb tissue perfusion regulation both at rest and during small-muscle mass exercise in hyperthermic humans.

  12. Small-scale, joule-heated melting of Savannah River Plant waste glass. I. Factors affecting large-scale vitrification tests

    International Nuclear Information System (INIS)

    A promising method of immobilizing SRP radioactive waste solids is incorporation in borosilicate glass. In the reference vitrification process, called joule-heated melting, a mixture of glass frit and calcined waste is heated by passage of an electric current. Two problems observed in large-scale tests are foaming and formation of an insoluble slag. A small joule-heated melter was designed and built to study problems such as these. This report describes the melter, identifies factors involved in foaming and slag formation, and proposes ways to overcome these problems

  13. Tandem Duplication Events in the Expansion of the Small Heat Shock Protein Gene Family in Solanum lycopersicum (cv. Heinz 1706)

    Science.gov (United States)

    Krsticevic, Flavia J.; Arce, Débora P.; Ezpeleta, Joaquín; Tapia, Elizabeth

    2016-01-01

    In plants, fruit maturation and oxidative stress can induce small heat shock protein (sHSP) synthesis to maintain cellular homeostasis. Although the tomato reference genome was published in 2012, the actual number and functionality of sHSP genes remain unknown. Using a transcriptomic (RNA-seq) and evolutionary genomic approach, putative sHSP genes in the Solanum lycopersicum (cv. Heinz 1706) genome were investigated. A sHSP gene family of 33 members was established. Remarkably, roughly half of the members of this family can be explained by nine independent tandem duplication events that determined, evolutionarily, their functional fates. Within a mitochondrial class subfamily, only one duplicated member, Solyc08g078700, retained its ancestral chaperone function, while the others, Solyc08g078710 and Solyc08g078720, likely degenerated under neutrality and lack ancestral chaperone function. Functional conservation occurred within a cytosolic class I subfamily, whose four members, Solyc06g076570, Solyc06g076560, Solyc06g076540, and Solyc06g076520, support ∼57% of the total sHSP RNAm in the red ripe fruit. Subfunctionalization occurred within a new subfamily, whose two members, Solyc04g082720 and Solyc04g082740, show heterogeneous differential expression profiles during fruit ripening. These findings, involving the birth/death of some genes or the preferential/plastic expression of some others during fruit ripening, highlight the importance of tandem duplication events in the expansion of the sHSP gene family in the tomato genome. Despite its evolutionary diversity, the sHSP gene family in the tomato genome seems to be endowed with a core set of four homeostasis genes: Solyc05g014280, Solyc03g082420, Solyc11g020330, and Solyc06g076560, which appear to provide a baseline protection during both fruit ripening and heat shock stress in different tomato tissues. PMID:27565886

  14. Small scale combined heat and power (CHP) from bio-crude oil fuelled to a sterling engine (Bio-stir)

    Energy Technology Data Exchange (ETDEWEB)

    Gyftopoulou, M.; Papamichael, I.; Boukis, I. [Centre for Renewable Energy Sources, Pikermi (Greece)

    2002-02-01

    De-coupling of biomass conversion and combined heat and power (CHP) production may be best achieved by a liquid fuel, namely Bio-Crude-Oil (BCO), derived by fast pyrolysis of biomass. BCO can be fuelled in a modified Stirling engine, which is able to provide a high electrical efficiency (approximately 30%) and a favourable overall efficiency (approximately 80% on CHP), which is extremely important for economic viability in small-scale (< 100 kW{sub e}). The external combustion employed in the Stirling engine enables the utilisation of relatively 'dirty' fuels such as BCO. On the aforementioned grounds, a project was drawn, aiming to accomplish the following objectives: Development of feedstock logistics for BCO production via fast pyrolysis technology; Testing of different feedstocks for BCO production and feedstock characterisation, fast pyrolysis reactor extensive operation - process optimisation, as well as BCO characterisation; Evaluation of the scale-up potential of the biomass fast pyrolysis technology; Development of a suitable burner for BCO combustion and adaptation of a Stirling engine to be fuelled with BCO; Techno-economic assessment of the proposed, entire biomass-to-energy route, including Life Cycle Assessment (LCA); Investigation for the industrial exploitation of the technology including scale-up and small-scale CHP deployment. The project has resulted in the following industrial benefits: Assessment for the production and logistics of the selected feedstocks (i.e. pine and miscanthus) for BCO production; Adoption of measures to deal with major technical risks associated with industrial scale-up (in particular char and particulates removal and vapour quenching); Assessment of the scale-up potential of the fast pyrolysis technology (in the range of 5 to 25 MW{sub th}). Demonstration of BCO combustion in a modified Stirling engine; Evaluation of the Stirling engine performance in terms of efficiency and emissions; Assessment of the

  15. Functional analysis of the Hikeshi-like protein and its interaction with HSP70 in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Shinya; Ohama, Naohiko; Mizoi, Junya [Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shinozaki, Kazuo [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 (Japan); Yamaguchi-Shinozaki, Kazuko, E-mail: akys@mail.ecc.u-tokyo.ac.jp [Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-07-18

    Highlights: • HKL, a Hikeshi homologous gene is identified in Arabidopsis. • HKL interacts with two HSP70 isoforms and regulates the subcellular localization of HSC70-1. • The two HSP70 translocate into nucleus in response to heat stress. • Overexpression of HKL confers thermotolerance in transgenic plants. - Abstract: Heat shock proteins (HSPs) refold damaged proteins and are an essential component of the heat shock response. Previously, the 70 kDa heat shock protein (HSP70) has been reported to translocate into the nucleus in a heat-dependent manner in many organisms. In humans, the heat-induced translocation of HSP70 requires the nuclear carrier protein Hikeshi. In the Arabidopsis genome, only one gene encodes a protein with high homology to Hikeshi, and we named this homolog Hikeshi-like (HKL) protein. In this study, we show that two Arabidopsis HSP70 isoforms accumulate in the nucleus in response to heat shock and that HKL interacts with these HSP70s. Our histochemical analysis revealed that HKL is predominantly expressed in meristematic tissues, suggesting the potential importance of HKL during cell division in Arabidopsis. In addition, we show that HKL regulates HSP70 localization, and HKL overexpression conferred thermotolerance to transgenic Arabidopsis plants. Our results suggest that HKL plays a positive role in the thermotolerance of Arabidopsis plants and cooperatively interacts with HSP70.

  16. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Eileen Tortora

    2013-03-01

    Full Text Available The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting transient simulations with an hourly distribution. The study of the load matching of the proposed renewable power technology and the final user has been carried out by comparing two different load tracking scenarios, i.e., the thermal and the electric demands. As a result, the power output follows fairly well the given load curves, supplying, on a selected winter day, about 50 GJ/d of thermal energy and the 6 GJ/d of electric energy, with reduced energy dumps when matching the load.

  17. Expression of Heat Shock Protein 70 and 27 in Non-small Cell Lung Cancer and Its Clinical Significance

    Institute of Scientific and Technical Information of China (English)

    HUANG Qi; ZU Yukun; FU Xiangning; WU Tangchun

    2005-01-01

    The heat shock proteins (HSPs) 70 and HSP 27 expression in patients with non-small cell lung cancer (NSCLC) was studied and the relationship between HSP 70 and HSP 27 with the clinicopathological features of NSCLC was investigated. The expression of HSP 70 and HSP 27 was detected in tumor tissues from 60 patients with NSCLC by S-P immunohistochemistry. The findings were analyzed in combination with the histological types, histopathological differentiation, lymph node metastasis, patients' clinical stages, smoking history and gender. The results showed that of the 60 NSCLC tissue specimens studied, the immunoreactivity of HSP 70 and HSP 27 was detected in 47 (78.3 %) and 43 (71.7 %) specimens, respectively. A positive correlation was found between the overexpression of HSP 70 and HSP 27. The histopathological differentiation, lymph node metastasis, clinical stages and smoking history were correlated to the expression of HSP 70, but not to the expression of HSP 27. No statistical significance was observed in histological types and gender with respect to both HSP 70 and HSP 27 expression. It is suggested that the HSP 70 expression is a powerful and significant prognostic indicator and is related to histopathological differ entiation, lymph node metastasis, patients' clinical stages, smoking history, whereas HSP 27 expression is not.

  18. Purification and in vitro chaperone activity of a class I small heat-shock protein abundant in recalcitrant chestnut seeds.

    Science.gov (United States)

    Collada, C; Gomez, L; Casado, R; Aragoncillo, C

    1997-09-01

    A 20-kD protein has been purified from cotyledons of recalcitrant (desiccation-sensitive) chestnut (Castanea sativa) seeds, where it accumulates at levels comparable to those of major seed storage proteins. This protein, termed Cs smHSP 1, forms homododecameric complexes under nondenaturing conditions and appears to be homologous to cytosolic class I small heat-shock proteins (smHSPs) from plant sources. In vitro evidence has been obtained that the isolated protein can function as a molecular chaperone; it increases, at stoichiometric levels, the renaturation yields of chemically denatured citrate synthase and also prevents the irreversible thermal inactivation of this enzyme. Although a role in desiccation tolerance has been hypothesized for seed smHSPs, this does not seem to be the case for Cs smHSP 1. We have investigated the presence of immunologically related proteins in orthodox and recalcitrant seeds of 13 woody species. Our results indicate that the presence of Cs smHSP 1-like proteins, even at high levels, is not enough to confer desiccation tolerance, and that the amount of these proteins does not furnish a reliable criterion to identify desiccation-sensitive seeds. Additional proteins or mechanisms appear necessary to keep the viability of orthodox seeds upon shedding.

  19. Effect of surfactants on Ra-sHSPI - A small heat shock protein from the cattle tick Rhipicephalus annulatus

    Science.gov (United States)

    Siddiqi, Mohammad Khursheed; Shahein, Yasser E.; Hussein, Nahla; Khan, Rizwan H.

    2016-09-01

    Electrostatic interaction plays an important role in protein aggregation phenomenon. In this study, we have checked the effect of anionic - Sodium Dodecyl Sulfate (SDS) and cationic-Cetyltrimethyl Ammonium Bromide (CTAB) surfactant on aggregation behavior of Ra-sHSPI, a small heat shock protein purified from Rhipicephalus annulatus tick. To monitor the effect of these surfactants, we have employed several spectroscopic methods such as Rayleigh light scattering measurements, ANS (8-Anilinonaphthalene-1-sulfonic acid) fluorescence measurements, ThT (Thioflavin T) binding assays, Far-UV CD (Circular Dichroism) and dynamic light scattering measurements. In the presence of anionic surfactant-SDS, Ra-sHSPI forms amyloid fibrils, in contrast, no amyloid formation was observed in presence of cationic surfactant at low pH. Enhancement of ANS fluorescence intensity confirms the exposition of more hydrophobic patches during aggregation. ThT binding assay confirms the amyloid fibrillar nature of the SDS induced Ra-sHSPI aggregates and supported by PASTA 2.0 (prediction of amyloid structural aggregation) software. This study demonstrates the crucial role of charge during amyloid fibril formation at low pH in Ra-sHSPI.

  20. CFD-Based Correlation Development For Air Side Performance Of Finned And Finless Tube Heat Exchangers With Small Diameter Tubes

    OpenAIRE

    Bacellar, Daniel; Aute, Vikrant; Radermacher, Reinhard

    2014-01-01

    Air-to-refrigerant heat exchangers are a key component in air-conditioning and heat pump systems. A great deal of effort is spent on the design and optimization of these heat exchangers. One path towards improving their performance is the transition to smaller hydraulic diameter flow channels. This is evident by the recent introduction of microchannel heat exchangers in the stationary HVAC market. Systematic analyses demonstrates a great potential for improvement in terms of size, weight, ref...

  1. Genetic and epigenetic control of plant heat responses

    Directory of Open Access Journals (Sweden)

    Junzhong eLiu

    2015-04-01

    Full Text Available Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27℃, high temperature (27-30℃ and extremely high temperature (37-42℃, also known as heat stress for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of plant immunity and circadian clock by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damage. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.

  2. Development, validation and application of a fixed district heating model structure that requires small amounts of input data

    International Nuclear Information System (INIS)

    Highlights: • A fixed model structure for cost-optimisaton studies of DH systems is developed. • A method for approximating heat demands using outdoor temperature data is developed. • Six different Swedish district heating systems are modelled and studied. • The impact of heat demand change on heat and electricity production is examined. • Reduced heat demand leads to less use of fossil fuels and biomass in the modelled systems. - Abstract: Reducing the energy use of buildings is an important part in reaching the European energy efficiency targets. Consequently, local energy systems need to adapt to a lower demand for heating. A 90% of Swedish multi-family residential buildings use district heating (DH) produced in Sweden’s over 400 DH systems, which use different heat production technologies and fuels. DH system modelling results obtained until now are mostly for particular DH systems and cannot be easily generalised. Here, a fixed model structure (FMS) based on linear programming for cost-optimisaton studies of DH systems is developed requiring only general DH system information. A method for approximating heat demands based on local outdoor temperature data is also developed. A scenario is studied where the FMS is applied to six Swedish DH systems and heat demands are reduced due to energy efficiency improvements in buildings. The results show that the FMS is a useful tool for DH system optimisation studies and that building energy efficiency improvements lead to reduced use of fossil fuels and biomass in DH systems. Also, the share of CHP in the production mix is increased in five of the six DH systems when the heat demand is reduced

  3. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins.

    Directory of Open Access Journals (Sweden)

    Alex Boyko

    Full Text Available Epigenetic states and certain environmental responses in mammals and seed plants can persist in the next sexual generation. These transgenerational effects have potential adaptative significance as well as medical and agronomic ramifications. Recent evidence suggests that some abiotic and biotic stress responses of plants are transgenerational. For example, viral infection of tobacco plants and exposure of Arabidopsis thaliana plants to UVC and flagellin can induce transgenerational increases in homologous recombination frequency (HRF. Here we show that exposure of Arabidopsis plants to stresses, including salt, UVC, cold, heat and flood, resulted in a higher HRF, increased global genome methylation, and higher tolerance to stress in the untreated progeny. This transgenerational effect did not, however, persist in successive generations. Treatment of the progeny of stressed plants with 5-azacytidine was shown to decrease global genomic methylation and enhance stress tolerance. Dicer-like (DCL 2 and DCL3 encode Dicer activities important for small RNA-dependent gene silencing. Stress-induced HRF and DNA methylation were impaired in dcl2 and dcl3 deficiency mutants, while in dcl2 mutants, only stress-induced stress tolerance was impaired. Our results are consistent with the hypothesis that stress-induced transgenerational responses in Arabidopsis depend on altered DNA methylation and smRNA silencing pathways.

  4. Suppressor Screens in Arabidopsis.

    Science.gov (United States)

    Li, Xin; Zhang, Yuelin

    2016-01-01

    Genetic screens have proven to be a useful tool in the dissection of biological processes in plants. Specifically, suppressor screens have been widely used to study signal transduction pathways. Here we provide a detailed protocol for ethyl methanesulfonate (EMS) mutagenesis used in our suppressor screens in Arabidopsis and discuss the basic principles behind suppressor screen design and downstream analyses. PMID:26577776

  5. Monitoring of small-scale heat-pumps using standardised tests; Monitoring von Klein-Waermepumpen mittels Normpruefungen 2008 - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Eschmann, M.

    2009-02-15

    This final report for the year 2008 made by the University of Applied Sciences in Buchs, Switzerland for the Swiss Federal Office of Energy (SFOE) discusses the activities of the Heat Pump Test Centre WPZ in Buchs, Switzerland. Testing is carried out to EN 14511 or EN 255 standards. The WPZ has tested more heat pumps in 2008 than ever before. Various trends are noted, including reduced coefficient of performance as a result of lower pricing of the units. The report looks at further WPZ activities and discusses its strategic planning. Statistics on air-water heat-pumps for the period 1998 - 2008 are looked at. Other topics dealt with include refrigerants used, compressor types and noise levels for both air-water as well as brine-water heat-pumps. Quality labels for air-water, brine-water as well as water-water heat-pumps are discussed.

  6. Heat affected zone (HAZ) hot cracking in 18 Cr.10 Ni stainless steels due to small boron content

    International Nuclear Information System (INIS)

    Boron lowers resistance to hot cracking in the heat affected zone of 18.10 Ti and 18.12 Mo stainless steels: this element brings down the temperature above which fusions occur. Those fusions occur in the metal when it is heated during welding. They concern a part of the heat affected zone which is all the more extended as the temperature at the start of the fusions is low, therefore as the boron content is high. Due to the welding strains, the zones in which the fusions occur get cracked

  7. Quantitative histo-morphometric analysis of heat-stress-related damage in the small intestines of broiler chickens.

    Science.gov (United States)

    Santos, Regiane R; Awati, Ajay; Roubos-van den Hil, Petra J; Tersteeg-Zijderveld, Monique H G; Koolmees, Peter A; Fink-Gremmels, Johanna

    2015-01-01

    The aim of the current research was to present a methodological approach allowing reproducible morphometric and morphological (Chiu/Park scale) analyses of the alterations in the intestines of broilers exposed to heat stress. Ross broilers were exposed over four consecutive days to a high-temperature regime in controlled climate rooms, with a day temperature of 39°C (±1°C) and a night temperature of 25°C (±1°C), respectively. A control group was kept at an ambient temperature of 25°C (±1°C) during the entire experimental period. At the end of the exposure period, the birds were sacrificed and specimens were taken of the duodenum, jejunum and ileum for histology. Blood was collected for oxidative stress analysis. Histo-morphological and morphometric analyses of the intestines indicated that the duodenum and jejunum showed more damage than the ileum. The major alterations in the control intestines were limited to the villus tips, while heat stress led to villus denudation and crypt damage. When compared with morphologically normal villi, heat-stress-associated alterations were also observed in villus height (decreased), villus breadth at base (increased) and epithelial cell area (decreased). Birds exposed to heat stress presented with an increase in glutathione peroxidase activity and a decreased antioxidant capacity. It can be concluded that the chosen model allows a reproducible quantification of heat stress effects, which is suitable for the evaluation of dietary intervention strategies to combat heat stress conditions.

  8. Cloning of heat shock protein genes from the brown planthopper,Nilaparvata lugens, and the small brown planthopper, Laodelphax striatellus, and their expression in relation to thermal stress

    Institute of Scientific and Technical Information of China (English)

    Dong Hun Kim; Sang-Chul Lee; Do-Yeon Kwak; Kyeong-Yeoll Lee

    2008-01-01

    Three heat shock protein (HSP) genes (hsp7O, hsc70, hsp90) were partially cloned from the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus (Homoptera: Delphacidae), which are serious pests of the rice plant. Sequence comparisons at the deduced amino acid level showed that the three HSPs of planthoppers were most homologous to corresponding HSPs of dipteran and lepidopteran species. Identities of both heat shock cognate 70 and HSP90 were higher than HSP70 in both species. Identity of the HSP70 between the two planthopper species was only 81%, a value much lower than seen among fly and moth groups. Effects of heat and cold shocks were demonstrated on expression of the three hsp genes in the two planthopper species. Heat shock (40℃) upregulated the hsp90 level but did not change the hsc70 level in either the nymph and adult stages of either species. On the other hand, the hsp70 level was only upregulated in L. striatellus. This heat shock response was prompt and lasted only for 1 h after treatment. In contrast, cold shock at 4℃did not change the expression levels of any hsp in either species.

  9. Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis

    OpenAIRE

    Peng, Zhi-Yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru

    2008-01-01

    Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant h...

  10. Modelling of a solar stove: small scale concentrating system with heat storage: potential for cooking in rural areas, Zimbabwe

    Energy Technology Data Exchange (ETDEWEB)

    Chikukwa, Actor

    2007-10-15

    The central objective of the present research is to serve as an in-depth technical introduction to small-scale concentrating systems tailored for application especially in rural areas in Africa located outside the national electricity grids. For example, MSc and doctoral-students recently matriculated on NUFU-sponsorship at some universities in Africa (i.e Mozambique, Uganda, Tanzania, South Africa and Ethiopia) for research in solar-concentrator technologies will find most of the material in this work quite useful. Chapter 1 discusses the premise on which this research is based. It essentially highlights the gravity of the energy crisis as experienced by the impoverished masses living in most parts of Africa. The situation in Zimbabwe was discussed in detail (for case-studies1) because it is a suitable example added to the convenience of being the country of the author's origin. The second chapter is thus a detailed study on the solar energy resource situation in Zimbabwe. It describes the availability and patterns of solar energy based on the existing solar radiation data obtained from meteorological stations scattered throughout the country. These results were necessary for assessing the potential of the proposed system in Zimbabwe, and can also be extended for use in other solar energy projects. Chapter 3 focuses on the collection of solar radiation using parabolic concentrators. Major determinants that include errors and optical sensitivity of parabolic solar collectors, the correlation between receiver configuration and the parabolic collector are expounded. Arguments for and the main principle on how-to incorporate a mechanical solar tracking device are also laid-out in this part of the thesis. A very critical component of the concentrating system: the volumetric fibrous receiver, is described in the 4th chapter. Here, the theory on which one of the major computer programmes developed in this research, is given an in-depth treatment. The gist of this

  11. Economic connection consolidation by means of a small district heating house connection; Wirtschaftliche Anschlussverdichtung durch einen kleinen Fernwaermehausanschluss

    Energy Technology Data Exchange (ETDEWEB)

    John, Dietmar [enercity Netzgesellschaft mbH, Hannover (Germany); Kraft, Soenke [Fernwaerme-Forschungsinstitut GmbH, Hemmingen (Germany); Weidlich, Ingo [AGFW e.V., Frankfurt am Main (Germany)

    2013-02-01

    There a lot of technical opportunities and competing systems at the market for the last meter to the customer. These technical opportunities and competing systems enable a cost-effective construction under the prevailing general conditions. With decreasing installed power the pressure of cost increases. In the past, the enhanced number of potential customers within the lower power range up to nearly 100 kW could not be connected due to economic reasons. Thus a project with the title 'Development of an economic district heating house connection for low thermal output' was initiated. The findings supply important components for the economic expansion of district heating and are pioneering for the further development in the area of the house-installed load for heat distribution systems.

  12. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Lohscheider, Jens N; Friso, Giulia; van Wijk, Klaas J

    2016-06-01

    Plastoglobules (PGs) are plastid lipid-protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  13. Quantitative histo-morphometric analysis of heat-stress-related damage in the small intestines of broiler chickens

    NARCIS (Netherlands)

    Santos, Regiane R.; Awati, Ajay; Roubos-van den Hil, Petra J.; Tersteeg-Zijderveld, Monique H. G.; Koolmees, Peter A.; Fink-Gremmels, Johanna

    2015-01-01

    The aim of the current research was to present a methodological approach allowing reproducible morphometric and morphological (Chiu/Park scale) analyses of the alterations in the intestines of broilers exposed to heat stress. Ross broilers were exposed over four consecutive days to a high-temperatur

  14. Identification and molecular properties of SUMO-binding proteins in arabidopsis

    KAUST Repository

    Park, Hyeongcheol

    2011-05-20

    Reversible conjugation of the small ubiquitin modifier (SUMO) peptide to proteins (SUMOylation) plays important roles in cellular processes in animals and yeasts. However, little is known about plant SUMO targets. To identify SUMO substrates in Arabidopsis and to probe for biological functions of SUMO proteins, we constructed 6xHis-3xFLAG fused AtSUMO1 (HFAtSUMO1) controlled by the CaMV35S promoter for transformation into Arabidopsis Col-0. After heat treatment, an increased sumoylation pattern was detected in the transgenic plants. SUMO1-modified proteins were selected after two-dimensional gel electrophoresis (2-DE) image analysis and identified using matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). We identified 27 proteins involved in a variety of processes such as nucleic acid metabolism, signaling, metabolism, and including proteins of unknown functions. Binding and sumoylation patterns were confirmed independently. Surprisingly, MCM3 (At5G46280), a DNA replication licensing factor, only interacted with and became sumoylated by AtSUMO1, but not by SUMO1ΔGG or AtSUMO3. The results suggest specific interactions between sumoylation targets and particular sumoylation enzymes. ©2011 KSMCB.

  15. The Role of Sulfhydryl Reactivity of Small Molecules for the Activation of the KEAP1/NRF2 Pathway and the Heat Shock Response

    Directory of Open Access Journals (Sweden)

    Albena T. Dinkova-Kostova

    2012-01-01

    Full Text Available The KEAP1/NRF2 pathway and the heat shock response are two essential cytoprotective mechanisms that allow adaptation and survival under conditions of oxidative, electrophilic, and thermal stress by regulating the expression of elaborate networks of genes with versatile protective functions. The two pathways are independently regulated by the transcription factor nuclear factor-erythroid 2 p45-related factor 2 (NRF2 and heat shock factor 1 (HSF1, respectively. The activity of these transcriptional master regulators increases during conditions of stress and also upon encounter of small molecules (inducers, both naturally occurring as well as synthetically produced. Inducers have a common chemical property: the ability to react with sulfhydryl groups. The protein targets of such sulfhydryl-reactive compounds are equipped with highly reactive cysteine residues, which serve as sensors for inducers. The initial cysteine-sensed signal is further relayed to affect the expression of large networks of genes, which in turn can ultimately influence complex cell fate decisions such as life and death. The paper summarizes the multiple lines of experimental evidence demonstrating that the reactivity with sulfhydryl groups is a major determinant of the mechanism of action of small molecule dual activators of the KEAP1/NRF2 pathway and the heat shock response.

  16. In-Situ Small-Angle X-Ray Scattering Study of Simple Shear Oriented Poly(ethylene Terephthalate) during Heating

    Science.gov (United States)

    Wang, Zhigang; Xia, Zhiyong; Hsiao, Benjamin; Sue, Hj; Han, Charles

    2002-03-01

    An equal channel angular extrusion (ECAE) process was used to prepare poly(ethylene terephthalate) samples with segmental lamellar orientations. In-situ small-angle X-ray scattering measurements were carried out to follow the structure changes during heating of sections of equal-channel-angular-extruded PET samples before and after the transition line. The total scattering power, fractions of anisotropic and isotropic scattering, orientation factors and long periods along the flow directions were obtained. The changes in these parameters revealed the processes of lamellar relaxation, recrystallization and melting during heating in specimens of different orientation and morphology. Acknowledgements. The financial support of this work is provided by a grant from NIST and NSF (DMR 0098104). The Advanced Polymers Beamline is supported by DOE (DE-FG02-99ER 45760).

  17. Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests' woodchips

    OpenAIRE

    González Juncà, Arnau; Riba Ruiz, Jordi-Roger; Puig Vidal, Rita; Navarro, Pere

    2014-01-01

    In the current energy conjunction, with an expected growth of energy consumption in a context of fossil fuel depletion, more focus is being placed on renewable energy sources (RES) for electricity generation. One of the most appealing alternatives is biomass, which can be efficiently used to generate electricity as well as heat with the application of cogeneration technologies that enhance the efficiency of the entire energy conversion process. The Mediterranean basin is a region with a recog...

  18. Efficacy of heat treatment for the thousand cankers disease vector and pathogen in small black walnut logs.

    Science.gov (United States)

    Mayfield, A E; Fraedrich, S W; Taylor, A; Merten, P; Myers, S W

    2014-02-01

    Thousand cankers disease, caused by the walnut twig beetle (Pityophthorus juglandis Blackman) and an associated fungal pathogen (Geosmithia morbida M. Kolarík, E. Freeland, C. Utley, and N. Tisserat), threatens the health and commercial use of eastern black walnut (Juglans nigra L.), one of the most economically valuable tree species in the United States. Effective phytosanitary measures are needed to reduce the possibility of spreading this insect and pathogen through wood movement. This study evaluated the efficacy of heat treatments and debarking to eliminate P. juglandis and C. morbida in J. nigra logs 4-18 cm in diameter and 30 cm in length. Infested logs were steam heated until various outer sapwood temperatures (60, 65, and 70 degrees C in 2011; 36, 42, 48, 52, and 56 degrees C in 2012) were maintained or exceeded for 30-40 min. In 2011, all heat treatments eliminated G. morbida from the bark, but logs were insufficiently colonized by P. juglandis to draw conclusions about treatment effects on the beetle. Debarking did not ensure elimination of the pathogen from the sapwood surface. In 2012, there was a negative effect of increasing temperature on P. juglandis emergence and G. morbida recovery. G. morbida did not survive in logs exposed to treatments in which minimum temperatures were 48 degrees C or higher, and mean P. juglandis emergence decreased steadily to zero as treatment minimum temperature increased from 36 to 52 degrees C. A minimum outer sapwood temperature of 56 degrees C maintained for 40 min is effective for eliminating the thousand cankers disease vector and pathogen from walnut logs, and the current heat treatment schedule for the emerald ash borer (60 degrees C core temperature for 60 min) is more than adequate for treating P. juglandis and G. morbida in walnut firewood.

  19. Sensitive detection and measurement of oligogalacturonides in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Daniela ePontiggia

    2015-04-01

    Full Text Available Oligogalacturonides (OGs are pectin fragments derived from the partial hydrolysis of the plant cell wall pectin; they are elicitors of various defense responses. While their activity is well documented, the detection of OGs produced in planta is still a challenging task.A protocol has been developed for the extraction and analysis of OGs from small samples of Arabidopsis tissues by using fluorescent labelled OGs, which allowed to monitor the efficiency of extraction. An efficient recovery was obtained by using a combination of calcium chelating agents at acidic pH. Off-line coupling of HPAEC with MALDI-TOF-MS or nanoESI-Orbitrap-MS/MS was used for the identification and characterization of oligosaccharides. The protocol was successfully applied to detect OGs by using low amounts (50 mg of Arabidopsis leaves and very low amounts (30 mg of senescent leaves. The protocol was also successfully used to detect OGs in Arabidopsis cell wall material digested with pectinases.The proposed extraction protocol followed by sensitive and high-resolution analysis methods allowed detection of OGs released from the cell wall in Arabidopsis tissues by using minimal sample material. The protocol may be useful to study OG-triggered plant immunity and cell wall remodeling during Arabidopsis growth and development.

  20. Temperature dependence of the probability of "small heating" and spectrum of UCNs up-scattered on the surface of Fomblin oil Y-HVAC 18/8

    CERN Document Server

    Nesvizhevsky, V V; Lambrecht, A; Reynaud, S; Lychagin, E V; Muzychka, A Yu; Nekhaev, G V; Strelkov, A V

    2016-01-01

    We performed precision measurements of the probability of small heating and spectrum of UCNs up-scattered on the surface of hydrogen-free oil Fomblin Y-HVAC 18/8 as a function of temperature. The probability is well reproducible, does not depend on sample thickness and does not evolve in time. It is equal (9.8+-0.2)10^(-6) at the ambient temperature. The spectrum coincides with those measured with solid-surface and nanoparticle samples. Indirect arguments indicate that spectrum shape weakly depends on temperature. Measured experimental data can be satisfactory described both within the model of near-surface nanodroplets and the model of capillary waves.

  1. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole;

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  2. Small-scale combined heat and power as a balancing reserve for wind – The case of participation in the German secondary control reserve

    Directory of Open Access Journals (Sweden)

    Peter Sorknæs

    2014-06-01

    Full Text Available Increasing amounts of intermittent renewable energy sources (RES are being integrated into energy systems worldwide. Due to the nature of these sources, they are found to increase the importance of mechanisms for balancing the electricity system. Small-scale combined heat and power (CHP plants based on gas have proven their ability to participate in the electricity system balancing, and can hence be used to facilitate an integration of intermittent RES into electricity systems. Within the EU electricity system, balancing reserves have to be procured on a market basis. This paper investigates the ability and challenges of a small-scale CHP plant based on natural gas to participate in the German balancing reserve for secondary control. It is found that CHP plants have to account for more potential losses than traditional power plants. However, it is also found that the effect of these losses can be reduced by increasing the flexibility of the CHP unit.

  3. Preliminary Feasibility Study of a Forest Biomass Fueled Small-Scale District Heating Network in the Town of Marathon, Canada

    OpenAIRE

    Peiponen, Niko

    2015-01-01

    The objective of this thesis was to look into the possibility of constructing a forest biomass fueled district heating network in to the Town of Marathon, and to evaluate if it is feasible to carry on with a full-scale feasibility study. This thesis directly supported the Nipissing University’s Biomass Innovation Centre’s (BIC) Northern Ontario Biomass Initiatives – project. The base knowledge for the theory was gathered by using the internet, journal articles, e-books and other web docum...

  4. Characterization of gas sensors for measurement of unburned gases in small district heating furnaces; Karaktaerisering av gassensorer foer maetning av ofoerbraenda aemnen i naervaermecentraler

    Energy Technology Data Exchange (ETDEWEB)

    Eskilsson, David; Roennbaeck, Marie [Swedish National Testing and Research Inst., Boraas (Sweden)

    2004-11-01

    Small district heating boilers are often equipped with a simple O{sub 2}-gauge (lambda sensor) that controls the air supply. There is a great need in small furnaces of continuous measurements of several gas components such as CO, THC and NO{sub x} by simple and cheap technique. Recently, new types of cheap gas sensors have been developed which can be suitable. These gas sensors measure the amount of unburned species (sum of carbon monoxide, hydrocarbons and hydrogen). The objective with this project has been to characterise several gas sensors for unburnt in order to evaluate if they are suitable for combustion control and surveillance of small district heating furnaces. In this work three different gas sensors have been characterised. The sensors were characterised in the laboratory where they were exposed for mixtures of pure gases. The sensors were mounted inside the flue gas channel from a small district heating furnace during 3 months in order to estimate the sensors robustness and the character of the signal in flue gas. The tests with pure gases show that all sensors also reacts for other components besides CO and THC. It is mainly the oxygen concentrations that affect the sensors characteristics but also an altered humidity is important. Measurements in the small district heating furnace showed that none of the sensors was able to measure correctly when mounted directly in the flue gas channel (in situ). The in situ sensors are covered with fly ash and the fly ash also slowly destroys the sensors. Sensors mounted after a filter (exposed for a particle free flue gas) work satisfactory. All of the tested sensors, mounted after a filter, follow the changes in CO concentration well. Some of the sensors are capable of detecting CO as low as 15 ppm. But the accuracy of how well the sensors are able to detect CO varies from sensor to sensor. The measurements also show that even if the sensor is able to follow the changes in CO concentration, the ground signal of

  5. 小型住宅采暖系统成本分析%THE SMALL RESIDENTIAL HEATING SYSTEM COST ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    郭玲

    2012-01-01

    从初始成本和未来运营成本两个方面着手,对新型太阳能采暖系统进行经济性分析,通过对新建的太阳采暖建筑、普通的节能建筑及普通节能建筑改造的太阳能建筑的综合比较,结果表明:从长远来看,普通节能建筑改建的太阳能建筑比新建的太阳能建筑更为经济,回收年限更短,而太阳能建筑比普通的节能建筑更为经济.%The new solar heating system for economic analysis is from the initial cost and the future operation cost two aspects. A comprehensive comparison among the new solar heating architecture, the ordinary energy-saving building and the ordinary energy-saving building transformation of the solar building has been made. The results showed that; In the long run, the ordinary energy-saving building transformation of the solar building is more economic and shorter recovery period than the new solar building, and solar building energy-saving building is more economic than the ordinary energy-saving building.

  6. Expression profiles of two small heat shock proteins and antioxidant enzyme activity in Mytilus galloprovincialis exposed to cadmium at environmentally relevant concentrations

    Science.gov (United States)

    You, Liping; Ning, Xuanxuan; Chen, Leilei; Zhang, Linbao; Zhao, Jianmin; Liu, Xiaoli; Wu, Huifeng

    2014-03-01

    Small heat shock proteins encompass a widespread but diverse class of proteins, which play key roles in protecting organisms from various stressors. In the present study, the full-length cDNAs of two small heat shock proteins (MgsHSP22 and MgsHSP24.1) were cloned from Mytilus galloprovincialis, which encoded peptides of 181 and 247 amino acids, respectively. Both MgsHSP22 and MgsHSP24.1 were detected in all tissues examined by real-time PCR, with the highest expression being observed in muscle and gonad tissues. The real-time PCR results revealed that Cd significantly inhibited MgsHSP22 expression at 24 h and MgsHSP24.1 at 24 and 48 h under 5 μg/L Cd 2+ exposure. MgsHSP24.1 expression was also significantly inhibited after 50 μg/L Cd2+ exposure for 48 h. With regard to antioxidant enzymes, increased GPx and CAT activity were detected under Cd2+ stress (5 and 50 μg/L), while no significant difference in SOD activity was observed throughout the experiment. Overall, both MgsHsps and antioxidant enzymes revealed their potential as Cd stress biomarkers in M. galloprovincialis.

  7. Characterization, sub-cellular localization and expression profiling of the isoprenylcysteine methylesterase gene family in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Ma Wujun

    2010-09-01

    Full Text Available Abstract Background Isoprenylcysteine methylesterases (ICME demethylate prenylated protein in eukaryotic cell. Until now, knowledge about their molecular information, localization and expression pattern is largely unavailable in plant species. One ICME in Arabidopsis, encoded by At5g15860, has been identified recently. Over-expression of At5g15860 caused an ABA hypersensitive phenotype in transgenic Arabidopsis plants, indicating that it functions as a positive regulator of ABA signaling. Moreover, ABA induced the expression of this gene in Arabidopsis seedlings. The current study extends these findings by examining the sub-cellular localization, expression profiling, and physiological functions of ICME and two other ICME-like proteins, ICME-LIKE1 and ICME-LIKE2, which were encoded by two related genes At1g26120 and At3g02410, respectively. Results Bioinformatics investigations showed that the ICME and other two ICME-like homologs comprise a small subfamily of carboxylesterase (EC 3.1.1.1 in Arabidopsis. Sub-cellular localization of GFP tagged ICME and its homologs showed that the ICME and ICME-like proteins are intramembrane proteins predominantly localizing in the endoplasmic reticulum (ER and Golgi apparatus. Semi-quantitative and real-time quantitative PCR revealed that the ICME and ICME-like genes are expressed in all examined tissues, including roots, rosette leaves, cauline leaves, stems, flowers, and siliques, with differential expression levels. Within the gene family, the base transcript abundance of ICME-LIKE2 gene is very low with higher expression in reproductive organs (flowers and siliques. Time-course analysis uncovered that both ICME and ICME-like genes are up-regulated by mannitol, NaCl and ABA treatment, with ICME showing the highest level of up-regulation by these treatments. Heat stress resulted in up-regulation of the ICME gene significantly but down-regulation of the ICME-LIKE1 and ICME-LIKE2 genes. Cold and dehydration

  8. Temperature-stress resistance and tolerance along a latitudinal cline in North American Arabidopsis lyrata.

    Directory of Open Access Journals (Sweden)

    Guillaume Wos

    Full Text Available The study of latitudinal gradients can yield important insights into adaptation to temperature stress. Two strategies are available: resistance by limiting damage, or tolerance by reducing the fitness consequences of damage. Here we studied latitudinal variation in resistance and tolerance to frost and heat and tested the prediction of a trade-off between the two strategies and their costliness. We raised plants of replicate maternal seed families from eight populations of North American Arabidopsis lyrata collected along a latitudinal gradient in climate chambers and exposed them repeatedly to either frost or heat stress, while a set of control plants grew under standard conditions. When control plants reached maximum rosette size, leaf samples were exposed to frost and heat stress, and electrolyte leakage (PEL was measured and treated as an estimate of resistance. Difference in maximum rosette size between stressed and control plants was used as an estimate of tolerance. Northern populations were more frost resistant, and less heat resistant and less heat tolerant, but-unexpectedly-they were also less frost tolerant. Negative genetic correlations between resistance and tolerance to the same and different thermal stress were generally not significant, indicating only weak trade-offs. However, tolerance to frost was consistently accompanied by small size under control conditions, which may explain the non-adaptive latitudinal pattern for frost tolerance. Our results suggest that adaptation to frost and heat is not constrained by trade-offs between them. But the cost of frost tolerance in terms of plant size reduction may be important for the limits of species distributions and climate niches.

  9. Physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathies.

    Science.gov (United States)

    Nefedova, Victoria V; Datskevich, Petr N; Sudnitsyna, Maria V; Strelkov, Sergei V; Gusev, Nikolai B

    2013-08-01

    Some physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathy were analyzed. Mutation K141Q did not affect intrinsic Trp fluorescence and interaction with hydrophobic probe bis-ANS, whereas mutation R140G decreased both intrinsic fluorescence and fluorescence of bis-ANS bound to HspB1. Both mutations decreased thermal stability of HspB1. Mutation R140G increased, whereas mutation K141Q decreased the rate of trypsinolysis of the central part (residues 5-188) of HspB1. Both the wild type HspB1 and its K141Q mutant formed large oligomers with apparent molecular weight ∼560 kDa. The R140G mutant formed two types of oligomers, i.e. large oligomers tending to aggregate and small oligomers with apparent molecular weight ∼70 kDa. The wild type HspB1 formed mixed homooligomers with R140G mutant with apparent molecular weight ∼610 kDa. The R140G mutant was unable to form high molecular weight heterooligomers with HspB6, whereas the K141Q mutant formed two types of heterooligomers with HspB6. In vitro measured chaperone-like activity of the wild type HspB1 was comparable with that of K141Q mutant and was much higher than that of R140G mutant. Mutations of homologous hot-spot Arg (R140G of HspB1 and R120G of αB-crystallin) induced similar changes in the properties of two small heat shock proteins, whereas mutations of two neighboring residues (R140 and K141) induced different changes in the properties of HspB1.

  10. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  11. AtHSPR may function in salt-induced cell death and ER stress in Arabidopsis.

    Science.gov (United States)

    Yang, Tao; Zhang, Peng; Wang, Chongying

    2016-07-01

    Salt stress is a harmful and global abiotic stress to plants and has an adverse effect on all physiological processes of plants. Recently, we cloned and identified a novel AtHSPR (Arabidopsis thaliana Heat Shock Protein Related), which encodes a nuclear-localized protein with ATPase activity, participates in salt and drought tolerance in Arabidopsis. Transcript profiling analysis revealed a differential expression of genes involved in accumulation of reactive oxygen species (ROS), abscisic acid (ABA) signaling, stress response and photosynthesis between athspr mutant and WT under salt stress. Here, we provide further analysis of the data showing the regulation of salt-induced cell death and endoplasmic reticulum (ER) stress response in Arabidopsis and propose a hypothetical model for the role of AtHSPR in the regulation of the salt tolerance in Arabidopsis. PMID:27302034

  12. Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana.

    Science.gov (United States)

    Weiss, H; Maluszynska, J

    2000-01-01

    Recent development of cytogenetic techniques has facilitated significant progress in Arabidopsis thaliana karyotype studies. Double-target FISH with rRNA genes provides makers that allow individual chromosome in the genome to be distinguished. Those studies have revealed that the number and position of rDNA loci is ecotype-specific. Arabidopsis is believed to be a true diploid (x = 5) with numerous ecotypes (accessions) and only a very few natural polyploid populations reported. Few studies were undertaken to induce polyploidy in Arabidopsis, however none of those gave the cytogenetic characteristics of polyploid plants. Our analysis of chromosome pairing of colchicine-induced autotetraploid Arabidopsis (Wilna ecotype) revealed preferential bivalent pairing in PMCs (pollen mother cells). In order to attempt to explain this phenomenon, first of all more detailed cytogenetic studies of autopolyploid plants have been undertaken. The localization of 45S and 5S rDNA loci in the diploid and autotetraploid plants revealed that Wilna ecotypes belongs to the group of Arabidopsis accessions with only two 5S rDNA loci present in a genome. Furthermore, the rearrangement of 45S rDNA locus in autopolyploid, when compared to the diploid plants of the same ecotype, was revealed. These results are interesting also in the context of the recently emphasised role of polyploidy in plant evolution and speciation. Arabidopsis, despite having small chromosomes, is a good system to study chromosome behaviour in relation to diploidization of autopolyploids and to evaluate the degree of chromosomal rearrangements during this process. PMID:11433970

  13. Trichoderma volatiles effecting Arabidopsis

    DEFF Research Database (Denmark)

    Ramadan, Metwaly; Gigolashvili, Tamara; Grosskinsky, Dominik Kilian;

    2015-01-01

    Trichoderma species are present in many ecosystems and some strains have the ability to reduce the severity of plant diseases by activating various defense pathways via specific biologically active signaling molecules. Hence we investigated the effects of low molecular weight volatile compounds...... of Trichoderma asperellum IsmT5 on Arabidopsis thaliana. During co-cultivation of T. asperellum IsmT5 without physical contact to A. thaliana we observed smaller but vital and robust plants. The exposed plants exhibit increased trichome numbers, accumulation of defense-related compounds such as H2O2, anthocyanin......, camalexin, and increased expression of defense-related genes. We conclude that A. thaliana perceives the Trichoderma volatiles as stress compounds and subsequently initiates multilayered adaptations including activation of signaling cascades to withstand this environmental influence. The prominent headspace...

  14. Technology Development of an Advanced Small-scale Microchannel-type Process Heat Exchanger (PHE) for Hydrogen Production in Iodine-sulfur Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Injin; Kim, Chan Soo; Kim, Yong Wan; Park, Jae-Won; Kim, Eung-Seon; Kim, Min-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, ongoing manufacturing processes of the components employed in an advanced small-scale microchannel-type PHE are presented. The components, such as mechanically machined microchannels and a diffusion-bonded stack are introduced. Also, preliminary studies on surface treatment techniques for improving corrosion resistance from the corrosive sulfuric environment will be covered. Ongoing manufacturing process for an advanced small-size microchannel-type PHE in KAERI is presented. Through the preliminary studies for optimizing diffusion bonding condition of Hastelloy-X, a diffusion-bonded stack, consisting of primary and secondary side layer by layer, is scheduled to be fabricated in a few months. Also, surface treatment for enhancing the corrosion resistance from the sulfuric acid environment is in progress for the plates with microchannels. A massive production of hydrogen with electricity generation is expected in a Process Heat Exchanger (PHE) in a Very High Temperature gas-cooled Reactor (VHTR) system. For the application of hydrogen production, a small-scale gas loop for feasibility testing of a laboratory-scale has constructed and operated in Korea Atomic Energy Research Institute (KAERI) as a precursor to an experimental- and a pilot-scale gas loops.

  15. Small power and heat generation systems on the basis of propulsion and innovative reactor technologies. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    In the future for developing regions and remote areas one or two power reactors in the 50 MWe to 100 MWe range could be appropriately applied for electricity and heat generation. Introducing and managing such a small program with conventional reactor systems would require a mature supporting technological infrastructure and many skilled highly-trained staff at the site, which might be a problem in some countries. An increased number of small conventional reactors would increase the burden and expenditure for assuring security and non-proliferation. To this end, the time has come to develop an innovative small reactor concept which meets the following requirements: reliable, safe operation with a minimum maintenance and supporting infrastructure, economic competitiveness with alternative energy sources available to the candidate sites, and significant improvements in proliferation resistance relative to existing reactor systems. Successful resolution of such a problem requires a comprehensive system approach that considers all aspects of manufacturing, transportation, operation and ultimate disposal. Some elements of this approach have been used previously in the development of propulsion nuclear power systems, with consideration given to many diverse requirements such as highly autonomous operation for a long period of time, no planned maintenance, no on-site refueling and ultimate disposition. It is with this focus that the IAEA convened the Advisory Group on Propulsion Reactor technologies for Civilian Applications

  16. Numerical study of self-heating effects of small-size MOSFETs fabricated on silicon-on-aluminum nitride substrate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Compared with bulk-silicon technology, silicon-on-insulator (SOI) technology possesses many advantages but it is inevitable that the buried silicon dioxide layer also thermally insulates the metal-oxide-silicon field-effect transistors (MOSFETs) from the bulk due to the low thermal conductivity. One of the alternative insulator to replace the buried oxide layer is aluminum nitride (MN), which has a thermal conductivity that is about 200 times small-size MOSFETs fabricated on silicon-on-aluminum nitride (SOAN) substrate, a two-dimensional numerical analysis is performed by using a device simulator called MEDICI run on a Solaris workstation to simulate the electrical characteristics and temperature distribution by comparing with those of bulk and standard SOI MOSFETs. Our study suggests that AlN is a suitable alternative to silicon dioxide as a buried dielectric in SOI and expands the applications of SOI to high temperature conditions.

  17. Relationship of sperm small heat-shock protein 10 and voltage-dependent anion channel 2 with semen freezability in boars.

    Science.gov (United States)

    Vilagran, Ingrid; Yeste, Marc; Sancho, Sílvia; Casas, Isabel; Rivera del Álamo, Maria M; Bonet, Sergi

    2014-08-01

    Freezability differences between boar ejaculates exist, but there is no useful method to predict the ejaculate freezability before sperm cryopreservation takes place. In this context, the present study sought to determine whether the amounts of small heat-shock protein 10 (also known as outer dense fiber protein 1) (ODF1/HSPB10) and voltage-dependent anion channel 2 (VDAC2) may be used as boar sperm freezability markers. With this aim, 26 boar ejaculates were split into two fractions: one for protein extraction and the other for cryopreservation purposes. Ejaculates were subsequently classified into two groups (good freezability ejaculates [GFE] and poor freezability ejaculates [PFE]) based on viability and sperm motility assessments after 30 and 240 minutes of after thawing. Although the VDAC2 amounts, analyzed through Western blot, were significantly higher (P cryopreservation procedures. PMID:24933094

  18. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  19. Comparison and analysis on two kinds of passive residual heat removal system designs under blackout accident for integral small modular reactor

    International Nuclear Information System (INIS)

    Small Modular Reactor (SMR) with an electric power less than 300MWe has gained much attention in recent years. By incorporating the safety-by-design and passive concept into the design process, SMRs have made a progress in meeting the safety demand of nuclear energy. There are many similar design features among integral pressurized water SMRs, and the differences are mainly on the design of PRHRS (Passive Residual Heat Removal System). To get a comprehensive understanding of the PRHRS design in SMRs, two simplified simulation models of integral SMR with different PRHRS design are built by the use of thermal hydraulic system code Relap5/Mod3.2 in this paper. A blackout accident is introduced to study the different performance between two PRHRS design models. The calculation results show that both two cases can successfully remove decay heat from the core, and could keep reactor safe for an elegant of time. But there are still some differences between two cases in aspects of primary and PRHRS coolant parameters. Comparisons of the results from two cases are conducted in this paper, and the differences are carefully analyzed too. The major finding is that in the primary side PRHRS design model, primary system parameters have an obvious turbulence at the early stage of accident. (author)

  20. Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus.

    Science.gov (United States)

    Schauser, Leif; Wieloch, Wioletta; Stougaard, Jens

    2005-02-01

    Genetic studies in Lotus japonicus and pea have identified Nin as a core symbiotic gene required for establishing symbiosis between legumes and nitrogen fixing bacteria collectively called Rhizobium. Sequencing of additional Lotus cDNAs combined with analysis of genome sequences from Arabidopsis and rice reveals that Nin homologues in all three species constitute small gene families. In total, the Arabidopsis and rice genomes encode nine and three NIN-like proteins (NLPs), respectively. We present here a bioinformatics analysis and prediction of NLP evolution. On a genome scale we show that in Arabidopsis, this family has evolved through segmental duplication rather than through tandem amplification. Alignment of all predicted NLP protein sequences shows a composition with six conserved modules. In addition, Lotus and pea NLPs contain segments that might characterize NIN proteins of legumes and be of importance for their function in symbiosis. The most conserved region in NLPs, the RWP-RK domain, has secondary structure predictions consistent with DNA binding properties. This motif is shared by several other small proteins in both Arabidopsis and rice. In rice, the RWP-RK domain sequences have diversified significantly more than in Arabidopsis. Database searches reveal that, apart from its presence in Arabidopsis and rice, the motif is also found in the algae Chlamydomonas and in the slime mold Dictyostelium discoideum. Thus, the origin of this putative DNA binding region seems to predate the fungus-plant divide. PMID:15785851

  1. Pulse-width modulation for small heat pump installations - Phase 2: implementation in a commercial controller and tests in a residential building; Pulsbreitenmodulation fuer Kleinwaermepumpenanlagen. Phase 2: Implementierung in handelsuebliche Regler und Erprobung in einem Wohnhaus

    Energy Technology Data Exchange (ETDEWEB)

    Gabathuler, H.R.; Mayer, H. [Gabathuler AG, Diessenhofen (Switzerland); Shafai, E.; Wimmer, R. [Eidgenoessische Technische Hochschule, Institut fuer Mess- und Regeltechnik, Zuerich (Switzerland); Frei, R. [Satag Thermotechnik AG, Arbon (Switzerland); Illi, B.; Sidler, F. [Siemens Building Technologies AG, Zug (Switzerland)

    2002-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project in which a new type of controller for small heat pumps used to heat single-family houses was developed. Instead of the two-point controller normally used to control flow or return temperatures in the heating system, three new approaches are described that deliver the heating energy required for a whole day in portions according to prevailing weather conditions and the thermal characteristics of the house and the heat pump. Electricity tariffs are also taken into account and peak-rate periods avoided. The results of the investigations show that all three variants can be implemented using commercially available controllers. Further investigations, including a complete and representative comparison of the three concepts and a conventional control system are foreseen in phase 3 of the project.

  2. Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures.

    Science.gov (United States)

    Lopez-Matas, Maria-Angeles; Nuñez, Paulina; Soto, Alvaro; Allona, Isabel; Casado, Rosa; Collada, Carmen; Guevara, Maria-Angeles; Aragoncillo, Cipriano; Gomez, Luis

    2004-04-01

    Heat shock, and other stresses that cause protein misfolding and aggregation, trigger the accumulation of heat shock proteins (HSPs) in virtually all organisms. Among the HSPs of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. We analyzed the occurrence of sHSPs in vegetative organs of Castanea sativa (sweet chestnut), a temperate woody species that exhibits remarkable freezing tolerance. A constitutive sHSP subject to seasonal periodic changes of abundance was immunodetected in stems. This protein was identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry and internal peptide sequencing as CsHSP17.5, a cytosolic class I sHSP previously described in cotyledons. Expression of the corresponding gene in stems was confirmed through cDNA cloning and reverse transcription-PCR. Stem protein and mRNA profiles indicated that CsHSP17.5 is significantly up-regulated in spring and fall, reaching maximal levels in late summer and, especially, in winter. In addition, cold exposure was found to quickly activate shsp gene expression in both stems and roots of chestnut seedlings kept in growth chambers. Our main finding is that purified CsHSP17.5 is very effective in protecting the cold-labile enzyme lactate dehydrogenase from freeze-induced inactivation (on a molar basis, CsHSP17.5 is about 400 times more effective as cryoprotectant than hen egg-white lysozyme). Consistent with these observations, repeated freezing/thawing did not affect appreciably the chaperone activity of diluted CsHSP17.5 nor its ability to form dodecameric complexes in vitro. Taken together, these results substantiate the hypothesis that sHSPs can play relevant roles in the acquisition of freezing tolerance.

  3. Hormonal Regulation of Leaf Morphogenesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Lin-Chuan Li; Ding-Ming Kang; Zhang-Liang Chen; Li-Jia Qu

    2007-01-01

    Leaf morphogenesis is strictly controlled not only by intrinsic genetic factors, such as transcriptional factors, but also by environmental cues, such as light, water and pathogens. Nevertheless, the molecular mechanism of how leaf rnorphogenesis is regulated by genetic programs and environmental cues is far from clear. Numerous series of events demonstrate that plant hormones, mostly small and simple molecules,play crucial roles in plant growth and development, and in responses of plants to environmental cues such as light. With more and more genetics and molecular evidence obtained from the model plant Arabidopsis,several fundamental aspects of leaf rnorphogenesis including the initiation of leaf primordia, the determination of leaf axes, the regulation of cell division and expansion in leaves have been gradually unveiled.Among these phytohormones, auxin is found to be essential in the regulation of leaf morphogenesis.

  4. Environmental History Modulates Arabidopsis Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1-Dependent Manner.

    Science.gov (United States)

    Singh, Prashant; Yekondi, Shweta; Chen, Po-Wen; Tsai, Chia-Hong; Yu, Chun-Wei; Wu, Keqiang; Zimmerli, Laurent

    2014-06-24

    In nature, plants are exposed to a fluctuating environment, and individuals exposed to contrasting environmental factors develop different environmental histories. Whether different environmental histories alter plant responses to a current stress remains elusive. Here, we show that environmental history modulates the plant response to microbial pathogens. Arabidopsis thaliana plants exposed to repetitive heat, cold, or salt stress were more resistant to virulent bacteria than Arabidopsis grown in a more stable environment. By contrast, long-term exposure to heat, cold, or exposure to high concentrations of NaCl did not provide enhanced protection against bacteria. Enhanced resistance occurred with priming of Arabidopsis pattern-triggered immunity (PTI)-responsive genes and the potentiation of PTI-mediated callose deposition. In repetitively stress-challenged Arabidopsis, PTI-responsive genes showed enrichment for epigenetic marks associated with transcriptional activation. Upon bacterial infection, enrichment of RNA polymerase II at primed PTI marker genes was observed in environmentally challenged Arabidopsis. Finally, repetitively stress-challenged histone acetyltransferase1-1 (hac1-1) mutants failed to demonstrate enhanced resistance to bacteria, priming of PTI, and increased open chromatin states. These findings reveal that environmental history shapes the plant response to bacteria through the development of a HAC1-dependent epigenetic mark characteristic of a primed PTI response, demonstrating a mechanistic link between the primed state in plants and epigenetics.

  5. Use of the novel contact heat evoked potential stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts

    OpenAIRE

    Chizh Boris A; Misra V Peter; Roberts Katherine M; Facer Paul; Atherton Duncan D; Bountra Chas; Anand Praveen

    2007-01-01

    Abstract Background The Contact Heat Evoked Potential Stimulator (CHEPS) rapidly stimulates cutaneous small nerve fibres, and resulting evoked potentials can be recorded from the scalp. We have studied patients with symptoms of sensory neuropathy and controls using CHEPS, and validated the findings using other objective measures of small nerve fibres i.e. the histamine-induced skin flare response and intra-epidermal fibres (IEF), and also quantitative sensory testing (QST), a subjective measu...

  6. Exploiting Natural Variation in Arabidopsis

    NARCIS (Netherlands)

    Molenaar, J.A.; Keurentjes, J.J.B.

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana . This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of

  7. Exploiting natural variation in Arabidopsis

    NARCIS (Netherlands)

    J.A. Molenaar; J.J.B. Keurentjes

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of g

  8. A small sample-size automated adiabatic calorimeter from 70 to 580 K——Molar heat capacities of α-Al2O3

    Institute of Scientific and Technical Information of China (English)

    谭志诚; 张际标; 孟霜鹤; 李莉

    1999-01-01

    An automatic adiabatic calorimeter for measuring heat capacities in the temperature range 70—580 K, equipped with a small sample cell of 7.4 cm~3 in the internal volume has been developed. In order to obtain a good adiabatic condition of the calorimeter at high temperature, the calorimeter was surrounded in sequence by two adiabatic shields, three radiation shields and an auxiliary temperature-controlled sheath. The main body of the cell made of copper and the lid made of brass are silver-soldered and the cell is sealed with a copper screw cap. A sealing gasket made of Pb-Sn alloy is put between the cap and the lid to ensure a high vacuum sealing of the cell in the whole experimental temperature range. All the leads are insulated and fixed with W30-11 varnish, thus a good electric insulation is obtained at high temperature. All the experimental data, including those for energy and temperature are collected and processed automatically with a personal computer using a predetermined program. To verify the

  9. Effects of tetrodotoxin and ion replacements on the short-circuit current induced by Escherichiacoli heat stable enterotoxin across small intestine of the gerbil (Gerbillus cheesmani

    Directory of Open Access Journals (Sweden)

    Fawzia Yaqoub Al-Balool

    2004-03-01

    Full Text Available The effects of mucosally added Escherichia coli heat stable enterotoxin (STa 30 ng ml-1 on the basal short-circuit current (Isc in µA cm-2 across stripped and unstripped sheets of jejuna and ilea taken from fed, starved (4 days, water ad lib and undernourished (50% control food intake for 21 days gerbil (Gerbillus cheesmani were investigated. The effect of neurotoxin tetrodotoxin (TTX 10 µM and the effects of replacing chloride by gluconate or the effects of removing bicarbonate from bathing buffers on the maximum increase in Isc induced by STa were also investigated. The maximum increase in Isc which resulted from the addition of STa were significantly higher in jejuna and ilea taken from starved and undernourished gerbils when compared with the fed control both using stripped and unstripped sheets. In the two regions of the small intestine taken from fed and starved animals TTX reduced the maximum increase in Isc induced by STa across unstripped sheets only. Moreover in jejuna and ilea taken from undernourished gerbils TTX reduced significantly the maximum increase in Isc induced by STa across stripped and unstripped sheets. Replacing chloride by gluconate decreased the maximum increase in Isc induced by STa across jejuna and ilea taken from undernourished gerbils only. Removing bicarbonates from bathing buffer decreased the maximum increase in Isc across the jejuna and ilea taken from starved and undernourished gerbils.

  10. The small heat shock protein, HSP30, is associated with aggresome-like inclusion bodies in proteasomal inhibitor-, arsenite-, and cadmium-treated Xenopus kidney cells.

    Science.gov (United States)

    Khan, Saad; Khamis, Imran; Heikkila, John J

    2015-11-01

    In the present study, treatment of Xenopus laevis A6 kidney epithelial cells with the proteasomal inhibitor, MG132, or the environmental toxicants, sodium arsenite or cadmium chloride, induced the accumulation of the small heat shock protein, HSP30, in total and in both soluble and insoluble protein fractions. Immunocytochemical analysis revealed the presence of relatively large HSP30 structures primarily in the perinuclear region of the cytoplasm. All three of the stressors promoted the formation of aggresome-like inclusion bodies as determined by immunocytochemistry and laser scanning confocal microscopy using a ProteoStat aggresome dye and additional aggresomal markers, namely, anti-γ-tubulin and anti-vimentin antibodies. Further analysis revealed that HSP30 co-localized with these aggresome-like inclusion bodies. In most cells, HSP30 was found to envelope or occur within these structures. Finally, we show that treatment of cells with withaferin A, a steroidal lactone with anti-inflammatory, anti-tumor, and proteasomal inhibitor properties, also induced HSP30 accumulation that co-localized with aggresome-like inclusion bodies. It is possible that proteasomal inhibitor or metal/metalloid-induced formation of aggresome-like inclusion bodies may sequester toxic protein aggregates until they can be degraded. While the role of HSP30 in these aggresome-like structures is not known, it is possible that they may be involved in various aspects of aggresome-like inclusion body formation or transport.

  11. Study the effect of the organizational factors on the acceptance using combined heat and power Generation plants (small-scale generation by organizational Consumers

    Directory of Open Access Journals (Sweden)

    Mehdi Momeni

    2012-01-01

    Full Text Available The main goal of this research is to study the influence of organizational factors on the acceptance of using combined heat and power generation plants by organizational consumers. Organizational factors include the seven variables of organizational values, perception, organization representatives, organizational goals and tasks, organization, technology, organizational structure and organizational resources. Research method is typically descriptive-survey and applied based. Questionnaire has been used for data collection. The questionnaire has been developed based on theoretical principles and six points Likert spectrum. Content validity of questionnaires has been positively approved by scholars and experts. Data reliability has been computed using Cronbach’s alpha coefficient as 0.955, which is satisfactory. Descriptive and inferential statistics (correlation analysis, regression and T-test have been used for data analysis. Findings imply that i all of the above-mentioned variables influence the acceptance of power plants CHP (small-scale generation by the organizational consumers, significantly; and ii the order of importance and influence of organizational factors include organizational resources, organizational goals and tasks, perception, organization representatives, technology, organizational values, and organizational structure, respectively.

  12. Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC Waste Heat Recovery System

    Directory of Open Access Journals (Sweden)

    Gaosheng Li

    2016-04-01

    Full Text Available A novel free piston expander-linear generator (FPE-LG integrated unit was proposed to recover waste heat efficiently from vehicle engine. This integrated unit can be used in a small-scale Organic Rankine Cycle (ORC system and can directly convert the thermodynamic energy of working fluid into electric energy. The conceptual design of the free piston expander (FPE was introduced and discussed. A cam plate and the corresponding valve train were used to control the inlet and outlet valve timing of the FPE. The working principle of the FPE-LG was proven to be feasible using an air test rig. The indicated efficiency of the FPE was obtained from the p–V indicator diagram. The dynamic characteristics of the in-cylinder flow field during the intake and exhaust processes of the FPE were analyzed based on Fluent software and 3D numerical simulation models using a computation fluid dynamics method. Results show that the indicated efficiency of the FPE can reach 66.2% and the maximal electric power output of the FPE-LG can reach 22.7 W when the working frequency is 3 Hz and intake pressure is 0.2 MPa. Two large-scale vortices are formed during the intake process because of the non-uniform distribution of velocity and pressure. The vortex flow will convert pressure energy and kinetic energy into thermodynamic energy for the working fluid, which weakens the power capacity of the working fluid.

  13. Radial heat flux transformer

    Science.gov (United States)

    Basiulis, A.; Buzzard, R. J.

    1971-01-01

    Unit moves heat radially from small diameter shell to larger diameter shell, or vice versa, with negligible temperature drop, making device useful wherever heating or cooling of concentrically arranged materials, substances, and structures is desired.

  14. Regulatory properties of potato-Arabidopsis hybrid ADP-glucose pyrophosphorylase.

    Science.gov (United States)

    Ventriglia, Tiziana; Ballicora, Miguel A; Crevillén, Pedro; Preiss, Jack; Romero, José M

    2007-06-01

    In higher plants, ADP-glucose pyrophosphorylase (ADPGlc-PPase) is a heterotetrameric enzyme comprised of two small and two large subunits. Potato-Arabidopsis hybrid ADPGlc-PPases were generated and their regulatory properties analyzed. We show that ADPGlc-PPase subunits from two different species can interact, producing active enzymes with new regulatory properties. Depending on the subunit combinations, hybrid heterotetramers showed responses to allosteric effectors [3-phosphoglycerate (3-PGA) and Pi] in the micromolar or millimolar range. While hybrid potato small subunit (PSS) and the Arabidopsis large subunit APL1 showed an extremely sensitive response to 3-PGA and Pi, hybrid PSS/Arabidopsis APL2 was very insensitive to them. Intermediate responses were determined for other subunit combinations. PMID:17452341

  15. Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis.

    Science.gov (United States)

    Peng, Zhi-yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru; Fu, Xiangdong; Su, Zhen; Li, Songgang; Guo, Hongwei

    2009-01-01

    Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed. PMID:19015126

  16. The quest to be "modern": The adoption of electric light, heat, and power technology in small-town America, 1883-1929

    Science.gov (United States)

    Hellrigel, Mary Ann

    This dissertation is a social, business, and technological history of electrification in the United States. It examines the origins of the electric utility industry, the development of light, heat and power technology, the marketing of electric service, and the adoption of electricity and domestic appliances in the late nineteenth and early twentieth centuries in two communities: Harrisburg and West Chester, Pennsylvania. Beginning in the 1880s, manufactured gas and electric utilities waged an intense and lengthy battle for the urban energy marketplace. Many villages, small towns and big cities had multiple gas and electric companies, driving technological change as they worked to increase reliability, lower costs, and improve lamps, lighting fixtures, and appliances. Producers as well as consumers grappled with these new sources of energy, looking for profitable and practical ways to incorporate them into everyday life. Gas and utility executives, locked in head-to-head competition, realized that marketing their invisible product was an uncertain process. Utilities redefined the concepts of "tradition" and "modernity" to attract investors and offer appliances and installation in addition to selling energy. Upper and middle class households seeking a modern comfortable home could use gas or electricity (and often both), while working classes made do with kerosene, coal and wood. Mixed technologies, based on consumer preference, access, product availability, price, and service greatly influenced the creation of "modern" America. Initially, Pennsylvania law mandated local energy systems-electricity and gas had to be consumed within the same town. Only in the early twentieth century were these laws amended to permit inter-connections, allowing merger and consolidation of utilities to serve a wider geographic area. By the 1910s, law, technology, and capital made it possible to abandon local central stations. In only a few decades, the industry shifted from locally

  17. Hydroimidazolone modification of the conserved Arg12 in small heat shock proteins: studies on the structure and chaperone function using mutant mimics.

    Directory of Open Access Journals (Sweden)

    Ram H Nagaraj

    Full Text Available Methylglyoxal (MGO is an α-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that MGO-mediated modification of αA-crystallin increased its chaperone function. We identified MGO-modified arginine residues in αA-crystallin and found that replacing such arginine residues with alanine residues mimicked the effects of MGO on the chaperone function. Arginine 12 (R12 is a conserved amino acid residue in Hsp27 as well as αA- and αB-crystallin. When treated with MGO at or near physiological concentrations (2-10 µM, R12 was modified to hydroimidazolone in all three small heat shock proteins. In this study, we determined the effect of arginine substitution with alanine at position 12 (R12A to mimic MGO modification on the structure and chaperone function of these proteins. Among the three proteins, the R12A mutation improved the chaperone function of only αA-crystallin. This enhancement in the chaperone function was accompanied by subtle changes in the tertiary structure, which increased the thermodynamic stability of αA-crystallin. This mutation induced the exposure of additional client protein binding sites on αA-crystallin. Altogether, our data suggest that MGO-modification of the conserved R12 in αA-crystallin to hydroimidazolone may play an important role in reducing protein aggregation in the lens during aging and cataract formation.

  18. Clinicopathological and prognostic significance of heat shock protein 27 (HSP27) expression in non-small cell lung cancer: a systematic review and meta-analysis.

    Science.gov (United States)

    Li, Shuangjiang; Zhang, Wenbiao; Fan, Jun; Lai, Yutian; Che, Guowei

    2016-01-01

    Numbers of clinical and experimental investigations have provided increasing evidences to demonstrate that heat shock protein 27 (HSP27) is a qualified predictor for many cancers. However, no consensus has been reached on its clinicopathological and prognostic significance in patients with non-small cell lung cancer (NSCLC). Therefore, we performed this systematic meta-analysis to help addressing this issue. PubMed, EMBASE, the Web of Science and China National Knowledge Infrastructure were searched for full-text literatures met out eligibility criteria. We determined the odds ratio (OR) and hazard ratio (HR) as the appropriate summarized statistics for assessments of clinicopathological and prognostic roles of HSP27, respectively. Q-test and I(2)-statistic were used to evaluate the level of heterogeneity. Sensitivity analysis was conducted to examine the stability of overall estimates. Potential publication bias was detected by Begg's test and Egger's test. Finally, ten articles were identified to be included into our meta-analysis. The pooled analyses suggested that HSP27 expression was significantly associated with the unfavorable conditions for differentiation degree, lymphatic metastasis, clinical stage, squamous cell carcinoma and tumor size. However, HSP27 expression had no significant relationship to gender, age and smoking status. Meanwhile, pooled HRs indicated that HSP27 expression could be a predictor for a lower 5-year overall survival (OS) rate (HR: 1.832; 95 % CI 1.322-2.538; P < 0.001) but not for 1-year OS of NSCLC (HR: 0.885; 95 % CI 0.140-5.599; P = 0.896). In conclusion, our meta-analysis demonstrates that HSP27 expression may be a strong biomarker to predict both the poor clinicopathological and prognostic characteristics in patients with NSCLC. PMID:27512624

  19. Inhibition of the Expression of the Small Heat Shock Protein αB-Crystallin Inhibits Exosome Secretion in Human Retinal Pigment Epithelial Cells in Culture.

    Science.gov (United States)

    Gangalum, Rajendra K; Bhat, Ankur M; Kohan, Sirus A; Bhat, Suraj P

    2016-06-17

    Exosomes carry cell type-specific molecular cargo to extracellular destinations and therefore act as lateral vectors of intercellular communication and transfer of genetic information from one cell to the other. We have shown previously that the small heat shock protein αB-crystallin (αB) is exported out of the adult human retinal pigment epithelial cells (ARPE19) packaged in exosomes. Here, we demonstrate that inhibition of the expression of αB via shRNA inhibits exosome secretion from ARPE19 cells indicating that exosomal cargo may have a role in exosome biogenesis (synthesis and/or secretion). Sucrose density gradient fractionation of the culture medium and cellular extracts suggests continued synthesis of exosomes but an inhibition of exosome secretion. In cells where αB expression was inhibited, the distribution of CD63 (LAMP3), an exosome marker, is markedly altered from the normal dispersed pattern to a stacked perinuclear presence. Interestingly, the total anti-CD63(LAMP3) immunofluorescence in the native and αB-inhibited cells remains unchanged suggesting continued exosome synthesis under conditions of impaired exosome secretion. Importantly, inhibition of the expression of αB results in a phenotype of the RPE cell that contains an increased number of vacuoles and enlarged (fused) vesicles that show increased presence of CD63(LAMP3) and LAMP1 indicating enhancement of the endolysosomal compartment. This is further corroborated by increased Rab7 labeling of this compartment (RabGTPase 7 is known to be associated with late endosome maturation). These data collectively point to a regulatory role for αB in exosome biogenesis possibly via its involvement at a branch point in the endocytic pathway that facilitates secretion of exosomes. PMID:27129211

  20. SOT1, a pentatricopeptide repeat protein with a small MutS-related domain, is required for correct processing of plastid 23S-4.5S rRNA precursors in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Wenjuan; Liu, Sheng; Ruwe, Hannes; Zhang, Delin; Melonek, Joanna; Zhu, Yajuan; Hu, Xupeng; Gusewski, Sandra; Yin, Ping; Small, Ian D; Howell, Katharine A; Huang, Jirong

    2016-03-01

    Ribosomal RNA processing is essential for plastid ribosome biogenesis, but is still poorly understood in higher plants. Here, we show that SUPPRESSOR OF THYLAKOID FORMATION1 (SOT1), a plastid-localized pentatricopeptide repeat (PPR) protein with a small MutS-related domain, is required for maturation of the 23S-4.5S rRNA dicistron. Loss of SOT1 function leads to slower chloroplast development, suppression of leaf variegation, and abnormal 23S and 4.5S processing. Predictions based on the PPR motif sequences identified the 5' end of the 23S-4.5S rRNA dicistronic precursor as a putative SOT1 binding site. This was confirmed by electrophoretic mobility shift assay, and by loss of the abundant small RNA 'footprint' associated with this site in sot1 mutants. We found that more than half of the 23S-4.5S rRNA dicistrons in sot1 mutants contain eroded and/or unprocessed 5' and 3' ends, and that the endonucleolytic cleavage product normally released from the 5' end of the precursor is absent in a sot1 null mutant. We postulate that SOT1 binding protects the 5' extremity of the 23S-4.5S rRNA dicistron from exonucleolytic attack, and favours formation of the RNA structure that allows endonucleolytic processing of its 5' and 3' ends. PMID:26800847

  1. HsfA1d, a Protein Identified via FOX Hunting Using Thellungiella salsuginea cDNAs Improves Heat Tolerance by Regulating Heat-Stress-Responsive Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Yukari Higashi; Naohiko Ohama; Tomoko Ishikawa; Taku Katori; Ayaka Shimura; Kazuya Kusakabe; Kazuko Yamaguchi-Shinozaki

    2013-01-01

    Theilungiella salsuginea (formerly T.halophila),a species closely related to Arabidopsis (Arabidopsis thaliana),is tolerant not only to high salt levels,but also to chilling,freezing,and ozone.Here,we report that T.salsuginea also shows greater heat tolerance than Arabidopsis.We identified T.salsuginea HsfAld (TsHsfAld) as a gene that can confer marked heat tolerance on Arabidopsis.TsHsfAld was identified via Full-length cDNA Over-eXpressing gene (FOX) hunting from among a collection of heat-stress-related T.salsuginea cDNAs.Transgenic Arabidopsis overexpressing TsHsfAld showed constitutive up-regulation of many genes in the Arabidopsis AtHsfA1 regulon under normal growth temperature.In Arabidopsis mesophyll protoplasts,TsHsfAld was localized in both the nucleus and the cytoplasm.TsHsfAld also interacted with AtHSP90,which negatively regulates AtHsfAls by forming HsfA1-HSP90 complexes in the cytoplasm.It is likely that the partial nuclear localization of TsHsfAld induced the expression of the AtHsfAld regulon in the transgenic plants at normal temperature.We also discovered that transgenic Arabidopsis plants overexpressing AtHsfAld were more heat-tolerant than wild-type plants and up-regulated the expression of the HsfAld regulon,as was observed in TsHsfAld-overexpressing plants.We propose that the products of both TsHsfAld and AtHsfAld function as positive regulators of Arabidopsis heat-stress response and would be useful for the improvement of heat-stress tolerance in other plants.

  2. Arabidopsis thaliana—Aphid Interaction

    OpenAIRE

    Louis, Joe; Singh, Vijay,; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide impor...

  3. Stem cell organization in Arabidopsis

    OpenAIRE

    Wendrich, J.R.

    2016-01-01

    Growth of plant tissues and organs depends on continuous production of new cells, by niches of stem cells. Stem cells typically divide to give rise to one differentiating daughter and one non-differentiating daughter. This constant process of self-renewal ensures that the niches of stem cells or meristems stay active throughout plant-life. Specification of stem cells occurs very early during development of the emrbyo and they are maintained during later stages. The Arabidopsis embryo is a hig...

  4. Proteomics investigation of endogenous S-nitrosylation in Arabidopsis

    International Nuclear Information System (INIS)

    Highlights: ► Identification and quantification of nitrosothiols. ► A first dataset of endogenously nitrosylated cysteines in Arabidopsis cells. ► Nitrosothiols display apolar motifs not located in close vicinity of cysteines. ► Salt stress alters the endogenous nitrosylation of specific cysteines in Arabidopsis. -- Abstract: S-Nitrosylation emerges as an important protein modification in many processes. However, most data were obtained at the protein level after addition of a NO donor, particularly in plants where information about the cysteines nitrosylated in these proteins is scarce. An adapted work-flow, combining the classical biotin switch method and labeling with isotope-coded affinity tags (ICAT), is proposed. Without addition of NO donor, a total of 53 endogenous nitrosocysteines was identified in Arabidopsis cells, in proteins belonging to all cell territories, including membranes, and covering a large panel of functions. This first repertoire of nitrosothiols in plants enabled also preliminary structural description. Three apolar motifs, not located in close vicinity of cysteines and accounting for half the dataset, were detected and are proposed to complement nitrosylation prediction algorithms, poorly trained with plant data to date. Analysis of changes induced by a brief salt stress showed that NaCl modified the nitrosylation level of a small proportion of endogenously nitrosylated proteins and did not concern all nitrosothiols in these proteins. The possible role of some NO targets in the response to salt stress was discussed.

  5. Inhibition of autophagy enhances heat-induced apoptosis in human non-small cell lung cancer cells through ER stress pathways.

    Science.gov (United States)

    Xie, Wen-Yue; Zhou, Xiang-Dong; Yang, Juan; Chen, Ling-Xiu; Ran, Dan-Hua

    2016-10-01

    The occurrence and mechanisms of autophagy induced by heat stress are not well known in lung cancer cells. Here, we have demonstrated that heat stress induces autophagy in A549 and NCI-H460 cells through morphological and biochemical analyses. The inhibition of autophagy by chloroquine, 3-methyladenine and Beclin 1 siRNA enhanced heat-induced apoptosis. Moreover, the combination of chloroquine and heat stress inhibited tumor growth and enhanced apoptosis in vivo experiments. In addition, heat-induced autophagy involved the ER stress pathway (PERK- or IRE1-dependent). Further, heat treatment led to the increased phosphorylation of AMPK and the decreased phosphorylation of mTOR in vitro and in vivo. Knockdown of GRP78 inhibited the AMPK-mTOR pathway, and the AMPK inhibitor compound C decreased heat-induced autophagy, suggesting that activation of ER stress was involved in autophagy induction and promotion of the AMPK-mTOR pathway. In conclusion, our data suggested that the heat treatment of lung cancer cells triggered protective autophagy, as mediated by ER stress. Thus, inhibition of autophagy can be a promising strategy to enhance hyperthermia in the treatment of lung cancer patients.

  6. Arabidopsis CDS blastp result: AK240730 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240730 J043030K09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 2e-11 ...

  7. Arabidopsis CDS blastp result: AK288052 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288052 J075151I09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 6e-14 ...

  8. Arabidopsis CDS blastp result: AK240911 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240911 J065037E05 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 4e-22 ...

  9. Arabidopsis CDS blastp result: AK241119 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241119 J065094C22 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 2e-13 ...

  10. Arabidopsis CDS blastp result: AK243149 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243149 J100032I21 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 7e-12 ...

  11. Arabidopsis CDS blastp result: AK241581 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241581 J065181K09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 4e-15 ...

  12. Arabidopsis CDS blastp result: AK287479 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287479 J043023O14 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 1e-17 ...

  13. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    Science.gov (United States)

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR RLK) genetic…

  14. An International Bioinformatics Infrastructure to Underpin the Arabidopsis Community

    Science.gov (United States)

    The future bioinformatics needs of the Arabidopsis community as well as those of other scientific communities that depend on Arabidopsis resources were discussed at a pair of recent meetings held by the Multinational Arabidopsis Steering Committee (MASC) and the North American Arabidopsis Steering C...

  15. One out of four: HspL but no other small heat shock protein of Agrobacterium tumefaciens acts as efficient virulence-promoting VirB8 chaperone.

    Directory of Open Access Journals (Sweden)

    Yun-Long Tsai

    Full Text Available Alpha-crystallin-type small heat shock proteins (sHsps are ubiquitously distributed in most eukaryotes and prokaryotes. Four sHsp genes named hspL, hspC, hspAT1, and hspAT2 were identified in Agrobacterium tumefaciens, a plant pathogenic bacterium capable of unique interkingdom DNA transfer via type IV secretion system (T4SS. HspL is highly expressed in virulence-induced growth condition and functions as a VirB8 chaperone to promote T4SS-mediated DNA transfer. Here, we used genetic and biochemical approaches to investigate the involvement of the other three sHsps in T4SS and discovered the molecular basis underlying the dominant function of HspL in promoting T4SS function. While single deletion of hspL but no other sHsp gene reduced T4SS-mediated DNA transfer and tumorigenesis efficiency, additional deletion of other sHsp genes in the hspL deletion background caused synergistic effects in the virulence phenotypes. This is correlated with the high induction of hspL and only modest increase of hspC, hspAT1, and hspAT2 at their mRNA and protein abundance in virulence-induced growth condition. Interestingly, overexpression of any single sHsp gene alone in the quadruple mutant caused increased T4SS-mediated DNA transfer and tumorigenesis. Thermal aggregation protecting assays in vitro indicated that all four sHsps exhibit chaperone activity for the model substrate citrate synthase but only HspL functions as efficient chaperone for VirB8. The higher VirB8 chaperone activity of HspL was also demonstrated in vivo, in which lower amounts of HspL than other sHsps were sufficient in maintaining VirB8 homeostasis in A. tumefaciens. Domain swapping between HspL and HspAT2 indicated that N-terminal, central alpha-crystallin, and C-terminal domains of HspL all contribute to HspL function as an efficient VirB8 chaperone. Taken together, we suggest that the dominant role of HspL in promoting T4SS function is based on its higher expression in virulence

  16. Flow regimes and heat transfer modes identification in ANGRA 2 core, during small break in the primary loop with area of 100 cm2, simulated with RELAP5 code

    International Nuclear Information System (INIS)

    Identifying the flow regimes and the heat transfer modes is important for the analysis of accidents such as the Loss-of-Coolant Accident (LOCA). The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used in the RELAP5/MOD3.2.gama code in ANGRA 2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 100cm2-rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of ANGRA 2 (FSAR - A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of ANGRA 2 during the postulated accident. (author)

  17. Flow regimes and heat transfer modes identification in ANGRA 2 core, during small break in the primary loop with area of 100 cm{sup 2}, simulated with RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo M.; Sabundjian, Gaiane, E-mail: gdgian@ipen.br, E-mail: borges.em@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Identifying the flow regimes and the heat transfer modes is important for the analysis of accidents such as the Loss-of-Coolant Accident (LOCA). The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used in the RELAP5/MOD3.2.gama code in ANGRA 2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 100cm{sup 2}-rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of ANGRA 2 (FSAR - A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of ANGRA 2 during the postulated accident. (author)

  18. Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method

    Directory of Open Access Journals (Sweden)

    Lee Shu-Hong

    2009-11-01

    Full Text Available Abstract Background Protoplasts isolated from leaves are useful materials in plant research. One application, the transient expression of recombinant genes using Arabidopsis mesophyll protoplasts (TEAMP, is currently commonly used for studies of subcellular protein localization, promoter activity, and in vivo protein-protein interactions. This method requires cutting leaves into very thin slivers to collect mesophyll cell protoplasts, a procedure that often causes cell damage, may yield only a few good protoplasts, and is time consuming. In addition, this protoplast isolation method normally requires a large number of leaves derived from plants grown specifically under low-light conditions, which may be a concern when material availability is limited such as with mutant plants, or in large scale experiments. Results In this report, we present a new procedure that we call the Tape-Arabidopsis Sandwich. This is a simple and fast mesophyll protoplast isolation method. Two kinds of tape (Time tape adhered to the upper epidermis and 3 M Magic tape to the lower epidermis are used to make a "Tape-Arabidopsis Sandwich". The Time tape supports the top side of the leaf during manipulation, while tearing off the 3 M Magic tape allows easy removal of the lower epidermal layer and exposes mesophyll cells to cell wall digesting enzymes when the leaf is later incubated in an enzyme solution. The protoplasts released into solution are collected and washed for further use. For TEAMP, plasmids carrying a gene expression cassette for a fluorescent protein can be successfully delivered into protoplasts isolated from mature leaves grown under optimal conditions. Alternatively, these protoplasts may be used for bimolecular fluorescence complementation (BiFC to investigate protein-protein interactions in vivo, or for Western blot analysis. A significant advantage of this protocol over the current method is that it allows the generation of protoplasts in less than 1 hr

  19. Local Convective Heat Transfer from Small Heaters to Impinging Submerged Axisymmetric Jets of Seven Coolants with Prandtl Number Ranging from 0.7 to 348

    Institute of Scientific and Technical Information of China (English)

    H.Sun; C.F.Ma; 等

    1997-01-01

    Using seven working fluids,a systematic experimental study was performed to investigate the local convective heat transfer from vertical heaters to impinging circular submerged jets in the range of Reynolds number between 1.17×102 and 3.69×104 with the emphasis placed on the examination of Prandtl number dependence.Heat transfer coefficients at the stagnation point were collected and correlated with the plate held within and beyond the potential core.Radial distribution of the local heat transfer coefficient was measured with five test liquids.Based on the measured profiles of the local heat transfer,a correlation was developed to cover the entire range of the adial distance.Basides the present data,the correlations developed in this work were also compared with a large quantity of available data of circular air jets.General agreement was observed between the air data and the correlations.

  20. High Throughput Sequencing of Entamoeba 27nt Small RNA Population Reveals Role in Permanent Gene Silencing But No Effect on Regulating Gene Expression Changes during Stage Conversion, Oxidative, or Heat Shock Stress.

    Science.gov (United States)

    Zhang, Hanbang; Ehrenkaufer, Gretchen M; Manna, Dipak; Hall, Neil; Singh, Upinder

    2015-01-01

    The human parasite Entamoeba histolytica has an active RNA interference (RNAi) pathway with an extensive repertoire of 27nt small RNAs that silence genes. However the role of this pathway in regulating amebic biology remains unknown. In this study, we address whether silencing via 27nt small RNAs may be a mechanism for controlling gene expression changes during conversion between the trophozoite and cyst stages of the parasite. We sequenced small RNA libraries generated from trophozoites, early cysts, mature cysts, and excysting cells and mapped them to the E. invadens genome. Our results show that, as in E. histolytica, small RNAs in E. invadens are largely ~27nt in length, have an unusual 5'-polyphosphate structure and mediate gene silencing. However, when comparing the libraries from each developmental time-point we found few changes in the composition of the small RNA populations. Furthermore, genes targeted by small RNAs were permanently silenced with no changes in transcript abundance during development. Thus, the E. invadens 27nt small RNA population does not mediate gene expression changes during development. In order to assess the generalizability of our observations, we examined whether small RNAs may be regulating gene expression changes during stress response in E. histolytica. Comparison of the 27nt small RNA populations from E. histolytica trophozoites from basal conditions, or after heat shock or exposure to oxidative stress showed few differences. Similar to data in E. invadens development, genes targeted by small RNAs were consistently silenced and did not change expression under tested stress conditions. Thus, the biological roles of the 27nt small RNA population in Entamoeba remain elusive. However, as the first characterization of the RNAi pathway in E. invadens these data serve as a useful resource for the study of Entamoeba development and open the door to the development of RNAi-based gene silencing tools in E. invadens.

  1. Validation of a CFD model simulating charge and discharge of a small heat storage test module based on a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Dannemand, Mark; Fan, Jianhua; Furbo, Simon;

    2014-01-01

    Computational Fluid Dynamics (CFD) model. The CFD calculated temperatures are compared to measured temperatures internally in the box to validate the CFD model. Four cases are investigated; heating the test module with the sodium acetate water mixture in solid phase from ambient temperature to 52˚C; heating the...... the crystallization, ending at ambient temperature with the sodium acetate water mixture in solid phase. Comparisons have shown reasonable good agreement between experimental measurements and theoretical simulation results for the investigated scenarios....

  2. Thermo economic comparison of conventional micro combined heat and power systems with solid oxide fuel cell systems for small scale applications

    DEFF Research Database (Denmark)

    Batens, Ellen; Cuellar, Rafael; Marissal, Matthieu;

    2013-01-01

    -fired boiler. The household heat and power demand is evaluated. The lifetime, capital cost is also considered when estimating the resulting target cost. The electrical and thermal efficiency of fuel cell systems is estimated and compared with alternative technologies (i.e. Steriling Engine, Internal combustion...... engine). By calculating the amount of fuel that would be required by different technologies to heat and power homes, the financial savings that could be realized by adopting SOFC systems are estimated....

  3. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana.

    Science.gov (United States)

    Salanoubat, M; Lemcke, K; Rieger, M; Ansorge, W; Unseld, M; Fartmann, B; Valle, G; Blöcker, H; Perez-Alonso, M; Obermaier, B; Delseny, M; Boutry, M; Grivell, L A; Mache, R; Puigdomènech, P; De Simone, V; Choisne, N; Artiguenave, F; Robert, C; Brottier, P; Wincker, P; Cattolico, L; Weissenbach, J; Saurin, W; Quétier, F; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Benes, V; Wurmbach, E; Drzonek, H; Erfle, H; Jordan, N; Bangert, S; Wiedelmann, R; Kranz, H; Voss, H; Holland, R; Brandt, P; Nyakatura, G; Vezzi, A; D'Angelo, M; Pallavicini, A; Toppo, S; Simionati, B; Conrad, A; Hornischer, K; Kauer, G; Löhnert, T H; Nordsiek, G; Reichelt, J; Scharfe, M; Schön, O; Bargues, M; Terol, J; Climent, J; Navarro, P; Collado, C; Perez-Perez, A; Ottenwälder, B; Duchemin, D; Cooke, R; Laudie, M; Berger-Llauro, C; Purnelle, B; Masuy, D; de Haan, M; Maarse, A C; Alcaraz, J P; Cottet, A; Casacuberta, E; Monfort, A; Argiriou, A; flores, M; Liguori, R; Vitale, D; Mannhaupt, G; Haase, D; Schoof, H; Rudd, S; Zaccaria, P; Mewes, H W; Mayer, K F; Kaul, S; Town, C D; Koo, H L; Tallon, L J; Jenkins, J; Rooney, T; Rizzo, M; Walts, A; Utterback, T; Fujii, C Y; Shea, T P; Creasy, T H; Haas, B; Maiti, R; Wu, D; Peterson, J; Van Aken, S; Pai, G; Militscher, J; Sellers, P; Gill, J E; Feldblyum, T V; Preuss, D; Lin, X; Nierman, W C; Salzberg, S L; White, O; Venter, J C; Fraser, C M; Kaneko, T; Nakamura, Y; Sato, S; Kato, T; Asamizu, E; Sasamoto, S; Kimura, T; Idesawa, K; Kawashima, K; Kishida, Y; Kiyokawa, C; Kohara, M; Matsumoto, M; Matsuno, A; Muraki, A; Nakayama, S; Nakazaki, N; Shinpo, S; Takeuchi, C; Wada, T; Watanabe, A; Yamada, M; Yasuda, M; Tabata, S

    2000-12-14

    Arabidopsis thaliana is an important model system for plant biologists. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis and in 1999 the sequence of the first two chromosomes was reported. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes. PMID:11130713

  4. Jasmonate Signal Pathway in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yi Shan; Zhi-Long Wang; Daoxin Xie

    2007-01-01

    Jasmonates (JAs), which include jasmonic acid and its cyclopentane derivatives are synthesized from the octadecanoid pathway and widely distributed throughout the plant kingdom. JAs modulate the expression of numerous genes and mediate responses to stress, wounding, insect attack, pathogen infection, and UV damage. They also affect a variety of processes in many plant developmental processes. The JA signal pathway involves two important events: the biosynthesis of JA and the transduction of JA signal. Several important Arabidopsis mutants in jasmonate signal pathway were described in this review.

  5. Experimental investigation of the heat transfer in small channels of the underwater vehicle%水下航行器小通道内蒸汽换热实验研究

    Institute of Scientific and Technical Information of China (English)

    白超; 韩勇军; 伊寅; 史小锋; 郭兆元; 封启玺

    2016-01-01

    为研究水下航行器小通道内的蒸汽换热特性,对采用矩形通道设计的冷凝通道进行实验研究,分析不同蒸汽入口温度对通道换热特性的影响。实验结果表明:矩形小通道具有较好的冷凝换热效果,通道总平均换热量、热流密度以及通道出口冷凝液温度均随通道入口蒸汽温度升高而升高。但总传热系数和蒸汽侧换热系数随通道入口蒸汽温度升高而降低。最后在实验数据基础上,将实验值与仿真值进行对比分析,修正仿真模型,确定过热蒸汽冷凝成水的过程中相变点位置,为后续闭式循环动力系统壳体冷凝器的设计提供依据和参考。%In order to study the characteristics of steam heat transfer in a small channel of the underwater vehicle. This article researched the experimental investigation of the condensation heart transfer in small channels, and analyzed the different steam inlet temperatures on heat transfer characteristics of channels. The experimental results show that the small rectangular channel has good condensing heat transfer effect, the channel overall average heat transfer, heat flux and export condensate temperature were increased with the channel inlet steam temperature become high, but the total heat transfer coefficient and steam side heat transfer coefficient were decreasedwith the channel inlet steam temperature were increased. Finally, the paper compared the experimental value and simulation analysison the basis of experimental data, and verified the simulation model, and the superheated steam condensation water was determined in the process of phase transformation point location, being provided for the design of power system shell condenser of the subsequent closed cycle power system shell condenser.

  6. Identification of brassinosteroid responsive genes in Arabidopsis by cDNA array

    Institute of Scientific and Technical Information of China (English)

    HU; Yuxin; (

    2001-01-01

    [1]Grove, M. D., Spencer, G. F., Rohwedder, W. K. et al., Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen, Nature, 1979, 281: 216-217.[2]Mandava, N. B., Plant growth-promoting brassinosteroids, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1988, 39: 23-52.[3]Clouse, S. D., Sasse, J. M., Brassinosteroids: essential regulators of plant growth and development, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49: 427-451.[4]Altmann, T., Recent advances in brassinosteroid molecular genetics, Curr. Opin. Plant Biol., 1998, 1: 378-383.[5]Aharoni, A., Keizer, L. C. P., Bouwmeester, H. J. et al., Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarray, Plant Cell, 2000, 12: 647-661.[6]Reymond, P., Weber, H., Damond, M. et al., Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis, Plant Cell, 2000, 12: 707-719.[7]Hu, Y., Han, C., Mou, Z. et al., Monitoring gene expression by cDNA array, Chin. Sci. Bull., 1999, 44: 441-444.[8]Fujioka, S., Li, J., Choi, Y. H. et al., The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis, Plant Cell, 1997, 9: 1951-1962.[9]Wadsworth, G. J., Redinbaugh, M. G., Scandalios, J. G., A procedure for small-scale isolation of plant RNA suitable for RNA blot analysis, Anal. Biochem., 1988, 172: 279-283.[10]Church, G. M., Gilbert, W., Genomic sequencing, Proc. Natl. Acad. Sci. USA, 1984, 81: 1991-1995.[11]Huntley, R. P., Murray, J. A. H., The plant cell cycle, Curr. Opin. Plant Biol., 1999, 2: 440-446.[12]Riou-Khamlichi, C., Huntley, R., Jacqmard, A. et al., Cytokinin activation of Arabidopsis cell division through a D-type cyclin, Science, 1999, 283: 1541-1544.[13]Hu, Y., Bao, F., Li, J., Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway, Plant J., 2000, 24: 693-701.[14]Hirayama, T., Shinozaki, K., A

  7. Polyploidy in the Arabidopsis genus.

    Science.gov (United States)

    Bomblies, Kirsten; Madlung, Andreas

    2014-06-01

    Whole genome duplication (WGD), which gives rise to polyploids, is a unique type of mutation that duplicates all the genetic material in a genome. WGD provides an evolutionary opportunity by generating abundant genetic "raw material," and has been implicated in diversification, speciation, adaptive radiation, and invasiveness, and has also played an important role in crop breeding. However, WGD at least initially challenges basic biological functions by increasing cell size, altering relationships between cell volume and DNA content, and doubling the number of homologous chromosome copies that must be sorted during cell division. Newly polyploid lineages often have extensive changes in gene regulation, genome structure, and may suffer meiotic or mitotic chromosome mis-segregation. The abundance of species that persist in nature as polyploids shows that these problems are surmountable and/or that advantages of WGD might outweigh drawbacks. The molecularly especially tractable Arabidopsis genus has several ancient polyploidy events in its history and contains several independent more recent polyploids. This genus can thus provide important insights into molecular aspects of polyploid formation, establishment, and genome evolution. The ability to integrate ecological and evolutionary questions with molecular and genetic understanding makes comparative analyses in this genus particularly attractive and holds promise for advancing our general understanding of polyploid biology. Here, we highlight some of the findings from Arabidopsis that have given us insights into the origin and evolution of polyploids. PMID:24788061

  8. Study the effect of the organizational factors on the acceptance using combined heat and power Generation plants (small-scale generation) by organizational Consumers

    OpenAIRE

    Mehdi Momeni; Mohammad Rahim Esfidani; Ali Heidari

    2012-01-01

    The main goal of this research was studied the role of the organizational factors on the acceptance using combined heat and power generation plants by organizational consumers. Organizational factors include the seven variables of organizational values, perception, organization representatives, organizational goals and tasks, organization, technology, organizational structure and organizational resources. Its methods was descriptive-survey and applied research. To gather information from ques...

  9. The protein kinase TOUSLED facilitates RNAi in Arabidopsis.

    Science.gov (United States)

    Uddin, Mohammad Nazim; Dunoyer, Patrice; Schott, Gregory; Akhter, Salina; Shi, Chunlin; Lucas, William J; Voinnet, Olivier; Kim, Jae-Yean

    2014-07-01

    RNA silencing is an evolutionarily conserved mechanism triggered by double-stranded RNA that is processed into 21- to 24-nt small interfering (si)RNA or micro (mi)RNA by RNaseIII-like enzymes called Dicers. Gene regulations by RNA silencing have fundamental implications in a large number of biological processes that include antiviral defense, maintenance of genome integrity and the orchestration of cell fates. Although most generic or core components of the various plant small RNA pathways have been likely identified over the past 15 years, factors involved in RNAi regulation through post-translational modifications are just starting to emerge, mostly through forward genetic studies. A genetic screen designed to identify factors required for RNAi in Arabidopsis identified the serine/threonine protein kinase, TOUSLED (TSL). Mutations in TSL affect exogenous and virus-derived siRNA activity in a manner dependent upon its kinase activity. By contrast, despite their pleiotropic developmental phenotype, tsl mutants show no defect in biogenesis or activity of miRNA or endogenous trans-acting siRNA. These data suggest a possible role for TSL phosphorylation in the specific regulation of exogenous and antiviral RNA silencing in Arabidopsis and identify TSL as an intrinsic regulator of RNA interference. PMID:24920830

  10. Two Arabidopsis ADP-glucose pyrophosphorylase large subunits (APL1 and APL2) are catalytic.

    Science.gov (United States)

    Ventriglia, Tiziana; Kuhn, Misty L; Ruiz, Ma Teresa; Ribeiro-Pedro, Marina; Valverde, Federico; Ballicora, Miguel A; Preiss, Jack; Romero, José M

    2008-09-01

    ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (alpha(2)beta(2)) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1-APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta. PMID:18614708

  11. Two Arabidopsis ADP-Glucose Pyrophosphorylase Large Subunits (APL1 and APL2) Are Catalytic1

    Science.gov (United States)

    Ventriglia, Tiziana; Kuhn, Misty L.; Ruiz, Ma Teresa; Ribeiro-Pedro, Marina; Valverde, Federico; Ballicora, Miguel A.; Preiss, Jack; Romero, José M.

    2008-01-01

    ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (α2β2) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1–APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta. PMID:18614708

  12. Arabidopsis CDS blastp result: AK288065 [KOME

    Lifescience Database Archive (English)

    Full Text Available al to sulfate tansporter Sultr1;3 [Arabidopsis thaliana] GI:10716805; contains Pfam profile PF00916: Sulfate... transporter family; contains Pfam profile PF01740: STAS domain; contains TIGRfam profile TIGR00815: sulfate permease 1e-145 ...

  13. Arabidopsis CDS blastp result: AK061395 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061395 006-305-E02 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multip...lication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-125 ...

  14. Arabidopsis CDS blastp result: AK104882 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104882 001-044-H04 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multip...lication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-119 ...

  15. Arabidopsis CDS blastp result: AK066854 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066854 J013075C10 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multipl...ication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-119 ...

  16. Arabidopsis CDS blastp result: AK101318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101318 J033034D12 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multipl...ication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-125 ...

  17. Arabidopsis CDS blastp result: AK069960 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-60 ...

  18. Arabidopsis CDS blastp result: AK064768 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-112 ...

  19. Arabidopsis CDS blastp result: AK061551 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  20. Arabidopsis CDS blastp result: AK104764 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  1. Arabidopsis CDS blastp result: AK098998 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 8e-57 ...

  2. Arabidopsis CDS blastp result: AK061859 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-100 ...

  3. Arabidopsis CDS blastp result: AK102695 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102695 J033103F21 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  4. Arabidopsis CDS blastp result: AK102134 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102134 J033085F12 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  5. Arabidopsis CDS blastp result: AK066835 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066835 J013087I16 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-171 ...

  6. Arabidopsis CDS blastp result: AK065259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065259 J013002J18 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  7. Arabidopsis CDS blastp result: AK100523 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100523 J023100P04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  8. Arabidopsis CDS blastp result: AK242550 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242550 J080319D10 At2g35630.1 68415.m04369 microtubule organization 1 protein (MO...R1) identical to microtubule organization 1 protein GI:14317953 from [Arabidopsis thaliana] 5e-44 ...

  9. Arabidopsis CDS blastp result: AK241043 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 2e-41 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  10. Arabidopsis CDS blastp result: AK243135 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 7e-43 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  11. The fifth international conference on Arabidopsis research

    Energy Technology Data Exchange (ETDEWEB)

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  12. Arabidopsis CDS blastp result: AK101526 [KOME

    Lifescience Database Archive (English)

    Full Text Available ucosaminyltransferase, putative similar to N-acetylglucosaminyltransferase I from Arabidopsis thaliana [gi:5139335]; contains AT-AC non-consensus splice sites at intron 13 1e-179 ...

  13. Arabidopsis CDS blastp result: AK119708 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119708 002-157-E08 At1g28330.1 dormancy-associated protein, putative (DRM1) identical to dormancy...-associated protein [Arabidopsis thaliana] GI:2995990; similar to dormancy-associated protei

  14. Arabidopsis CDS blastp result: AK060981 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060981 006-202-H08 At1g28330.1 dormancy-associated protein, putative (DRM1) identical to dormancy...-associated protein [Arabidopsis thaliana] GI:2995990; similar to dormancy-associated protei

  15. Arabidopsis CDS blastp result: AK111576 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111576 J013075J23 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly id...entical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profile

  16. Arabidopsis CDS blastp result: AK120838 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120838 J023022B11 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly id...entical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profile

  17. Arabidopsis CDS blastp result: AK111921 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111921 001-013-A10 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly i...dentical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profil

  18. Utilization of heat pipes for transfer heat from the flue gas into the heat transfer medium

    Directory of Open Access Journals (Sweden)

    Lenhard Richard

    2014-03-01

    Full Text Available The contribution is listed possible application of heat pipes in systems for obtaining heat from flue gas of small heat sources. It is also stated in the contribution design an experimental device on which to study the impact of fill (the quantity, type of load at various temperature parameters (temperature heating and cooling thermal power transferred to the heat pipe. Is listed measurement methodology using heat pipes designed experimental facility, measurement results and analysis of the results obtained.

  19. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    International Nuclear Information System (INIS)

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts' characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and

  20. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Zhang, Xiaoqin [The Ohio State Univ., Columbus, OH (United States); Kim, Inhun [The Ohio State Univ., Columbus, OH (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts’ characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and components.

  1. Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants

    International Nuclear Information System (INIS)

    In earlier studies, we showed that abiotic stresses, such as ionizing radiation, heavy metals, temperature and water, trigger an increase in homologous recombination frequency (HRF). We also demonstrated that many of these stresses led to inheritance of high-frequency homologous recombination, HRF. Although an increase in recombination frequency is an important indicator of genome rearrangements, it only represents a minor portion of possible stress-induced mutations. Here, we analyzed the influence of heat, cold, drought, flood and UVC abiotic stresses on two major types of mutations in the genome, point mutations and small deletions/insertions. We used two transgenic lines of Arabidopsis thaliana, one allowing an analysis of reversions in a stop codon-containing inactivated β-glucuronidase transgene and another one allowing an analysis of repeat stability in a microsatellite-interrupted β-glucuronidase transgene. The transgenic Arabidopsis line carrying the β-glucuronidase-based homologous recombination substrate was used as a positive control. We showed that the majority of stresses increased the frequency of point mutations, homologous recombination and microsatellite instability in somatic cells, with the frequency of homologous recombination being affected the most. The analysis of transgenerational changes showed an increase in HRF to be the most prominent effect observed in progeny. Significant changes in recombination frequency were observed upon exposure to all types of stress except drought, whereas changes in microsatellite instability were observed upon exposure to UVC, heat and cold. The frequency of point mutations in the progeny of stress-exposed plants was the least affected; an increase in mutation frequency was observed only in the progeny of plants exposed to UVC. We thus conclude that transgenerational changes in genome stability in response to stress primarily involve an increase in recombination frequency.

  2. Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants

    Energy Technology Data Exchange (ETDEWEB)

    Yao Youli, E-mail: youli.yao@uleth.ca [Department of Biological Sciences, University of Lethbridge, Lethbridge, T1K 3M4 Alberta (Canada); Kovalchuk, Igor, E-mail: igor.kovalchuk@uleth.ca [Department of Biological Sciences, University of Lethbridge, Lethbridge, T1K 3M4 Alberta (Canada)

    2011-02-10

    In earlier studies, we showed that abiotic stresses, such as ionizing radiation, heavy metals, temperature and water, trigger an increase in homologous recombination frequency (HRF). We also demonstrated that many of these stresses led to inheritance of high-frequency homologous recombination, HRF. Although an increase in recombination frequency is an important indicator of genome rearrangements, it only represents a minor portion of possible stress-induced mutations. Here, we analyzed the influence of heat, cold, drought, flood and UVC abiotic stresses on two major types of mutations in the genome, point mutations and small deletions/insertions. We used two transgenic lines of Arabidopsis thaliana, one allowing an analysis of reversions in a stop codon-containing inactivated {beta}-glucuronidase transgene and another one allowing an analysis of repeat stability in a microsatellite-interrupted {beta}-glucuronidase transgene. The transgenic Arabidopsis line carrying the {beta}-glucuronidase-based homologous recombination substrate was used as a positive control. We showed that the majority of stresses increased the frequency of point mutations, homologous recombination and microsatellite instability in somatic cells, with the frequency of homologous recombination being affected the most. The analysis of transgenerational changes showed an increase in HRF to be the most prominent effect observed in progeny. Significant changes in recombination frequency were observed upon exposure to all types of stress except drought, whereas changes in microsatellite instability were observed upon exposure to UVC, heat and cold. The frequency of point mutations in the progeny of stress-exposed plants was the least affected; an increase in mutation frequency was observed only in the progeny of plants exposed to UVC. We thus conclude that transgenerational changes in genome stability in response to stress primarily involve an increase in recombination frequency.

  3. Terpene Specialized Metabolism in Arabidopsis thaliana

    OpenAIRE

    Tholl, Dorothea; Lee, Sungbeom

    2011-01-01

    Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mech...

  4. Arabidopsis CDS blastp result: AK064342 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064342 002-107-H07 At5g58270.1 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 0.0 ...

  5. Arabidopsis CDS blastp result: AK287662 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287662 J065112L10 At5g58270.1 68418.m07295 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 1e-65 ...

  6. Arabidopsis CDS blastp result: AK242094 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242094 J075142E09 At5g58270.1 68418.m07295 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 2e-33 ...

  7. Arabidopsis CDS blastp result: AK102879 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102879 J033112G11 At5g58270.1 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 1e-122 ...

  8. Arabidopsis CDS blastp result: AK287488 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287488 J043029O04 At5g58270.1 68418.m07295 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 4e-27 ...

  9. A Lipid Transfer Protein Increases the Glutathione Content and Enhances Arabidopsis Resistance to a Trichothecene Mycotoxin.

    Directory of Open Access Journals (Sweden)

    John E McLaughlin

    Full Text Available Fusarium head blight (FHB or scab is one of the most important plant diseases worldwide, affecting wheat, barley and other small grains. Trichothecene mycotoxins such as deoxynivalenol (DON accumulate in the grain, presenting a food safety risk and health hazard to humans and animals. Despite considerable breeding efforts, highly resistant wheat or barley cultivars are not available. We screened an activation tagged Arabidopsis thaliana population for resistance to trichothecin (Tcin, a type B trichothecene in the same class as DON. Here we show that one of the resistant lines identified, trichothecene resistant 1 (trr1 contains a T-DNA insertion upstream of two nonspecific lipid transfer protein (nsLTP genes, AtLTP4.4 and AtLTP4.5. Expression of both nsLTP genes was induced in trr1 over 10-fold relative to wild type. Overexpression of AtLTP4.4 provided greater resistance to Tcin than AtLTP4.5 in Arabidopsis thaliana and in Saccharomyces cerevisiae relative to wild type or vector transformed lines, suggesting a conserved protection mechanism. Tcin treatment increased reactive oxygen species (ROS production in Arabidopsis and ROS stain was associated with the chloroplast, the cell wall and the apoplast. ROS levels were attenuated in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls. Exogenous addition of glutathione and other antioxidants enhanced resistance of Arabidopsis to Tcin while the addition of buthionine sulfoximine, an inhibitor of glutathione synthesis, increased sensitivity, suggesting that resistance was mediated by glutathione. Total glutathione content was significantly higher in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls, highlighting the importance of AtLTP4.4 in maintaining the redox state. These results demonstrate that trichothecenes cause ROS accumulation and overexpression of AtLTP4.4 protects against trichothecene-induced oxidative stress by increasing the glutathione

  10. Pulse-width modulation for small heat pump installations - Phase 4; Pulsbreitenmodulation fuer Kleinwaermepumpenanlagen. Phase 4: Erweiterung der PBM-Regler fuer Kombianlagen

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M.; Shafai, E. [Eidgenoessische Technische Hochschule (ETH), Institut fuer Mess- und Regeltechnik, Zuerich (Switzerland); Gabathuler, H.R.; Mayer, H. [Gabathuler AG, Beratende Ingenieure, Diessenhofen (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of the fourth phase of a project that investigated three types of pulse-width modulation (PWM) controllers that were developed during its first two phases. A third phase monitored the controllers when used in a simulated environment and for a real-life heat pump. The report discusses the fourth phase of the project, in which the controller was further developed and tested using the building emulation developed in the third phase. The functioning of the self-regulating controller and its use of meteorological data is described and the savings to be made in heating costs are discussed.

  11. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    Science.gov (United States)

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.

  12. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    Science.gov (United States)

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported. PMID:27266257

  13. Corrigendum to small power and heat generation systems on the basis of propulsion and innovative reactor technologies (IAEA-TECDOC-1172)

    International Nuclear Information System (INIS)

    Full text: - Footnote 1 on page 4 should read: ''1The results of the feasibility studies were presented by BARC at the meeting, but no paper was provided for publication in these proceedings.'' - On page 5, footnote 2 should be added to the following paragraph: ''CEA and TECHNICATOM (France) have about 200 reactor-years of experience from propulsion and small experimental reactors. Special design features for a future small reactor are formulated as follows2:'' (''2 At the meeting, these features were presented by CEA, Cadarache, but no paper was provided for publication in these proceedings.'')

  14. Plantacyanin plays a role in reproduction in Arabidopsis.

    Science.gov (United States)

    Dong, Juan; Kim, Sun Tae; Lord, Elizabeth M

    2005-06-01

    Plantacyanins belong to the phytocyanin family of blue copper proteins. In the Arabidopsis (Arabidopsis thaliana) genome, only one gene encodes plantacyanin. The T-DNA-tagged mutant is a knockdown mutant that shows no visible phenotype. We used both promoter-beta-glucuronidase transgenic plants and immunolocalization to show that Arabidopsis plantacyanin is expressed most highly in the inflorescence and, specifically, in the transmitting tract of the pistil. Protein levels show a steep gradient in expression from the stigma into the style and ovary. Overexpression plants were generated using cauliflower mosaic virus 35S, and protein levels in the pistil were examined as well as the pollination process. Seed set in these plants is highly reduced mainly due to a lack of anther dehiscence, which is caused by degeneration of the endothecium. Callose deposits occur on the pollen walls in plants that overexpress plantacyanin, and a small percentage of these pollen grains germinate in the closed anthers. When wild-type pollen was used on the overexpression stigma, seed set was still decreased compared to the control pollinations. We detected an increase in plantacyanin levels in the overexpression pistil, including the transmitting tract. Guidance of the wild-type pollen tube on the overexpression stigma is disrupted as evidenced by the growth behavior of pollen tubes after they penetrate the papillar cell. Normally, pollen tubes travel down the papilla cell and into the style. Wild-type pollen tubes on the overexpression stigma made numerous turns around the papilla cell before growing toward the style. In some rare cases, pollen tubes circled up the papilla cell away from the style and were arrested there. We propose that when plantacyanin levels in the stigma are increased, pollen tube guidance into the style is disrupted.

  15. A 3D analysis algorithm to improve interpretation of heat pulse sensor results for the determination of small-scale flow directions and velocities in the hyporheic zone

    Science.gov (United States)

    Angermann, Lisa; Lewandowski, Jörg; Fleckenstein, Jan H.; Nützmann, Gunnar

    2012-12-01

    The hyporheic zone is strongly influenced by the adjacent surface water and groundwater systems. It is subject to hydraulic head and pressure fluctuations at different space and time scales, causing dynamic and heterogeneous flow patterns. These patterns are crucial for many biogeochemical processes in the shallow sediment and need to be considered in investigations of this hydraulically dynamic and biogeochemical active interface. For this purpose a device employing heat as an artificial tracer and a data analysis routine were developed. The method aims at measuring hyporheic flow direction and velocity in three dimensions at a scale of a few centimeters. A short heat pulse is injected into the sediment by a point source and its propagation is detected by up to 24 temperature sensors arranged cylindrically around the heater. The resulting breakthrough curves are analyzed using an analytical solution of the heat transport equation. The device was tested in two laboratory flow-through tanks with defined flow velocities and directions. Using different flow situations and sensor arrays the sensitivity of the method was evaluated. After operational reliability was demonstrated in the laboratory, its applicability in the field was tested in the hyporheic zone of a low gradient stream with sandy streambed in NE-Germany. Median and maximum flow velocity in the hyporheic zone at the site were determined as 0.9 × 10-4 and 2.1 × 10-4 m s-1 respectively. Horizontal flow components were found to be spatially very heterogeneous, while vertical flow component appear to be predominantly driven by the streambed morphology.

  16. Advances in Arabidopsis research in China from 2006 to 2007

    Institute of Scientific and Technical Information of China (English)

    LIANG Yan; ZUO JianRu; YANG WeiCai

    2007-01-01

    @@ Arabidopsis thaliana, a model plant species, has a number of advantages over other plant species as an experimental organism due to many of its genetic and genomic features. The Chinese Arabidopsis community has made significant contributions to plant biology research in recent years[1,2]. In 2006, studies of plant biology in China received more attention than ever before, especially those pertaining to Arabidopsis research. Here we briefly summarize recent advances in Arabidopsis research in China.

  17. Tethering Complexes in the Arabidopsis Endomembrane System.

    Science.gov (United States)

    Vukašinović, Nemanja; Žárský, Viktor

    2016-01-01

    Targeting of endomembrane transport containers is of the utmost importance for proper land plant growth and development. Given the immobility of plant cells, localized membrane vesicle secretion and recycling are amongst the main processes guiding proper cell, tissue and whole plant morphogenesis. Cell wall biogenesis and modification are dependent on vectorial membrane traffic, not only during normal development, but also in stress responses and in plant defense against pathogens and/or symbiosis. It is surprising how little we know about these processes in plants, from small GTPase regulation to the tethering complexes that act as their effectors. Tethering factors are single proteins or protein complexes mediating first contact between the target membrane and arriving membrane vesicles. In this review we focus on the tethering complexes of the best-studied plant model-Arabidopsis thaliana. Genome-based predictions indicate the presence of all major tethering complexes in plants that are known from a hypothetical last eukaryotic common ancestor (LECA). The evolutionary multiplication of paralogs of plant tethering complex subunits has produced the massively expanded EXO70 family, indicating a subfunctionalization of the terminal exocytosis machinery in land plants. Interpretation of loss of function (LOF) mutant phenotypes has to consider that related, yet clearly functionally-specific complexes often share some common core subunits. It is therefore impossible to conclude with clarity which version of the complex is responsible for the phenotypic deviations observed. Experimental interest in the analysis of plant tethering complexes is growing and we hope to contribute with this review by attracting even more attention to this fascinating field of plant cell biology. PMID:27243010

  18. Tethering complexes in the Arabidopsis endomembrane system

    Directory of Open Access Journals (Sweden)

    Nemanja eVukasinovic

    2016-05-01

    Full Text Available AbstractTargeting of endomembrane transport containers is of the utmost importance for proper land plant growth and development. Given the immobility of plant cells, localized membrane vesicle secretion and recycling are amongst the main processes guiding proper cell, tissue and whole plant morphogenesis. Cell wall biogenesis and modification are dependent on vectorial membrane traffic, not only during normal development, but also in stress responses and in plant defence against pathogens and/or symbiosis. It is surprising how little we know about these processes in plants, from small GTPase regulation to the tethering complexes that act as their effectors. Tethering factors are single proteins or protein complexes mediating first contact between the target membrane and arriving membrane vesicles. In this review we focus on the tethering complexes of the best-studied plant model – Arabidopsis thaliana. Genome-based predictions indicate the presence of all major tethering complexes in plants that are known from a hypothetical last eukaryotic common ancestor (LECA. The evolutionary multiplication of paralogs of plant tethering complex subunits has produced the massively expanded EXO70 family, indicating a subfunctionalization of the terminal exocytosis machinery in land plants. Interpretation of loss of function (LOF mutant phenotypes has to consider that related, yet clearly functionally-specific complexes often share some common core subunits. It is therefore impossible to conclude with clarity which version of the complex is responsible for the phenotypic deviations observed. Experimental interest in the analysis of plant tethering complexes is growing and we hope to contribute with this review by attracting even more attention to this fascinating field of plant cell biology.

  19. Insulation Heat Shrinkage for Small-Size Silane XLPE Insulated Cable%小规格硅烷交联聚乙烯绝缘电缆的绝缘热收缩

    Institute of Scientific and Technical Information of China (English)

    陆正荣

    2011-01-01

    The reasons of insulation heat shrinkage are explained through the phenomena description and theoretic analysis of the insulation heat shrinkage of small-size Si-XLPE cables with 6 mm2 and below of conductor diameters.It is found that the heat shrinkage performance of the cable insulation can be controlled through choosing proper raw materials and equipment, controlling the cooling temperature, and choosing appropriate extruding tools.%通过对6 mm2及以下小规格硅烷交联聚乙烯(Si-XL-PE)电缆绝缘热收缩现象的阐述、原理分析,来解释绝缘热收缩的原因,得出通过原材料及设备的选择,冷却温度的控制及挤出模具的选择,可控制电缆绝缘热收缩性能的结论.

  20. Inventory of future power and heat production technologies. Partial report Small-scale technology; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Smaaskalig teknik

    Energy Technology Data Exchange (ETDEWEB)

    Ridell, Bengt (Grontmij AB (Sweden))

    2008-12-15

    The following techniques for small-scale production have been selected to be studied more carefully, Fuel cells, Photovoltaics, Organic Rankine Cycle (ORC), and Wave power. Of the four selected technologies, fuel cells, solar cells, ORC are appropriate for use in so-called distributed generation, to be used close to a consumer, and possibly also for the production of electricity. Wave power is more like the wind in nature and is probably better suited to be used by power companies for direct input to the transmission grid. None of these technologies are now competitive against buying electricity from the Swedish grid. However, there are opportunities for all to reduce production costs so that they can become competitive alternatives in the future, depending largely on the general development of electricity prices, taxes, delivery reliability, etc. The four different technologies have different development stages and requirements that affect their possibility for a commercial breakthrough. These technologies will probably not all get a breakthrough in Sweden. Small-scale technologies will in the time period up to 2030 not be able to compete with the large-scale technologies that exist in today's power grid. In the longer term the situation may be different. The power system might be reduced in importance if the small scale technologies become cheap, reliable and easy to use. Electricity can then be produced locally, directly related to user needs

  1. Heat Stress Related Gene Expression in Gossypium hirsutum L.

    Institute of Scientific and Technical Information of China (English)

    DEMIREL Ufuk; G(U)R M Atilla; KARAKU Mehmet; MEMON Abdul Rezaque

    2008-01-01

    @@ Abiotic stress is a major limiting factor to crop productivity,and heat stress is one of the important elements for reduced crop production.Plants respond to heat stress at molecular and cellular levels as well as physiological level.Heat stress alters expression patterns of numerous genes in plants.At the molecular level,most of the information for heat stress response was obtained from model plants such as Arabidopsis thaliana,Medicago trancatula,and ,Oryza sativa,but little molecular research has focused on heat stress respones in cotton.

  2. Interspecific and interploidal gene flow in Central European Arabidopsis (Brassicaceae

    Directory of Open Access Journals (Sweden)

    Jørgensen Marte H

    2011-11-01

    Full Text Available Abstract Background Effects of polyploidisation on gene flow between natural populations are little known. Central European diploid and tetraploid populations of Arabidopsis arenosa and A. lyrata are here used to study interspecific and interploidal gene flow, using a combination of nuclear and plastid markers. Results Ploidal levels were confirmed by flow cytometry. Network analyses clearly separated diploids according to species. Tetraploids and diploids were highly intermingled within species, and some tetraploids intermingled with the other species, as well. Isolation with migration analyses suggested interspecific introgression from tetraploid A. arenosa to tetraploid A. lyrata and vice versa, and some interploidal gene flow, which was unidirectional from diploid to tetraploid in A. arenosa and bidirectional in A. lyrata. Conclusions Interspecific genetic isolation at diploid level combined with introgression at tetraploid level indicates that polyploidy may buffer against negative consequences of interspecific hybridisation. The role of introgression in polyploid systems may, however, differ between plant species, and even within the small genus Arabidopsis, we find very different evolutionary fates when it comes to introgression.

  3. Determination of Arabidopsis thaliana telomere length by PCR.

    Science.gov (United States)

    Vaquero-Sedas, María I; Vega-Palas, Miguel A

    2014-07-02

    In humans, telomere length studies have acquired great relevance because the length of telomeres has been related to natural processes like disease, aging and cancer. However, very little is known about the influence of telomere length on the biology of wild type plants. The length of plant telomeres has been usually studied by Terminal Restriction Fragment (TRF) analyses. This technique requires high amounts of tissue, including multiple cell types, which might be the reason why very little is known about the influence of telomere length on plant natural processes. In contrast, many of the human telomere length studies have focused on homogenous cell populations. Most of these studies have been performed by PCR, using telomeric degenerated primers, which allow the determination of telomere length from small amounts of human cells. Here, we have adapted the human PCR procedure to analyze the length of Arabidopsis thaliana telomeres. This PCR approach will facilitate the analysis of telomere length from low amounts of tissue. We have used it to determine that CG and non CG DNA methylation positively regulates Arabidopsis telomere length.

  4. Programming of Plant Leaf Senescence with Temporal and Inter-Organellar Coordination of Transcriptome in Arabidopsis.

    Science.gov (United States)

    Woo, Hye Ryun; Koo, Hee Jung; Kim, Jeongsik; Jeong, Hyobin; Yang, Jin Ok; Lee, Il Hwan; Jun, Ji Hyung; Choi, Seung Hee; Park, Su Jin; Kang, Byeongsoo; Kim, You Wang; Phee, Bong-Kwan; Kim, Jin Hee; Seo, Chaehwa; Park, Charny; Kim, Sang Cheol; Park, Seongjin; Lee, Byungwook; Lee, Sanghyuk; Hwang, Daehee; Nam, Hong Gil; Lim, Pyung Ok

    2016-05-01

    Plant leaves, harvesting light energy and fixing CO2, are a major source of foods on the earth. Leaves undergo developmental and physiological shifts during their lifespan, ending with senescence and death. We characterized the key regulatory features of the leaf transcriptome during aging by analyzing total- and small-RNA transcriptomes throughout the lifespan of Arabidopsis (Arabidopsis thaliana) leaves at multidimensions, including age, RNA-type, and organelle. Intriguingly, senescing leaves showed more coordinated temporal changes in transcriptomes than growing leaves, with sophisticated regulatory networks comprising transcription factors and diverse small regulatory RNAs. The chloroplast transcriptome, but not the mitochondrial transcriptome, showed major changes during leaf aging, with a strongly shared expression pattern of nuclear transcripts encoding chloroplast-targeted proteins. Thus, unlike animal aging, leaf senescence proceeds with tight temporal and distinct interorganellar coordination of various transcriptomes that would be critical for the highly regulated degeneration and nutrient recycling contributing to plant fitness and productivity. PMID:26966169

  5. Overexpression of Nelumbo nucifera metallothioneins 2a and 3 enhances seed germination vigor in Arabidopsis.

    Science.gov (United States)

    Zhou, Yuliang; Chu, Pu; Chen, Huhui; Li, Yin; Liu, Jun; Ding, Yu; Tsang, Edward W T; Jiang, Liwen; Wu, Keqiang; Huang, Shangzhi

    2012-03-01

    Metallothioneins (MTs) are small, cysteine-rich and metal-binding proteins which are involved in metal homeostasis and scavenging of reactive oxygen species. Although plant MTs have been intensively studied, their roles in seeds remain to be clearly established. Here, we report the isolation and characterization of NnMT2a, NnMT2b and NnMT3 from sacred lotus (Nelumbo nucifera Gaertn.) and their roles in seed germination vigor. The transcripts of NnMT2a, NnMT2b and NnMT3 were highly expressed in developing and germinating sacred lotus seeds, and were dramatically up-regulated in response to high salinity, oxidative stresses and heavy metals. Analysis of transformed Arabidopsis protoplasts showed that NnMT2a-YFP and NnMT3-YFP were localized in cytoplasm and nucleoplasm. Transgenic Arabidopsis seeds overexpressing NnMT2a and NnMT3 displayed improved resistance to accelerated aging (AA) treatment, indicating their significant roles in seed germination vigor. These transgenic seeds also exhibited higher superoxide dismutase activity compared to wild-type seeds after AA treatment. In addition, we showed that NnMT2a and NnMT3 conferred improved germination ability to NaCl and methyl viologen on transgenic Arabidopsis seeds. Taken together, these data demonstrate that overexpression of NnMT2a and NnMT3 in Arabidopsis significantly enhances seed germination vigor after AA treatment and under abiotic stresses.

  6. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes1[OPEN

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C.; Fan, Chuanzhu

    2016-01-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella. Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  7. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes.

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C; Fan, Chuanzhu

    2016-09-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  8. Peristaltic Flow and Heat Transfer of a Conducting Phan-Thien-Tanner Fluid in an Asymmetric Channel - Application to Chyme Movement in Small Intestine

    Science.gov (United States)

    Vajravelu, K.; Sreenadh, S.; Dhananjaya, S.; Lakshminarayana, P.

    2016-08-01

    In this paper, the influence of heat transfer on the peristaltic flow of a conducting Phan-Thien-Tanner fluid in an asymmetric channel with porous medium is studied. The coupled nonlinear governing differential equations are solved by a perturbation technique. The expressions for the temperature field, the stream function, the axial velocity, and the pressure gradient are obtained. The effects of the various physical parameters such as the magnetic parameter M, the permeability parameter σ, the Brinkman number Br and the Weissenberg number We on the pumping phenomenon are analyzed through graphs and the results are discussed in detail. It is observed that the velocity and the pressure are decreased with increasing the magnetic parameter M whereas the effect of the parameter M on the temperature field is quite the opposite.

  9. The Modification of Small Air-cooled Assembled Cold Storage Heat Recovery%小型风冷型装配式冷库热回收改装

    Institute of Scientific and Technical Information of China (English)

    赖伟彬; 刘文利; 陈伟群

    2014-01-01

    In the cooling proeess the refrigerant exclude from compressor is high temperature and pressure of the steam.Existing cold storage generally put the high temperature and pressure of refringerant vapor into the atmosphere or cooling water through the condenser to reach the purpose of condensing refrigerant .But this will lead to the envi-ronment “thermal pollution”, and also waste energy.This article descnbes aplan of modification of the exising cold storage, through the waste heat recovery unit can be recovered the condensing heat effectivity and product hot water in 50 to 60degrees Celsius to provide bathing.This system also can achieve the of energy saving.%现有的小型风冷型装配式冷库制冷系统一般将高温高压的制冷剂蒸汽通过冷凝器把热量排到大气中达到制冷的目的。但是这对环境造成"热污染",同时也浪费了能源。本文中介绍了一项对小型风冷型装配式冷库制冷系统的改造,将压缩机产生的冷凝热有效的进行回收从而产生50~60℃的热水提供生活用水。从而达到节能环保的目的。

  10. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  11. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  12. Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis.

    Science.gov (United States)

    Frenette Charron, Jean Benoit; Breton, Ghislain; Badawi, Mohamed; Sarhan, Fathey

    2002-04-24

    Two cDNAs corresponding to a novel lipocalin were identified from wheat and Arabidopsis. The two cDNAs designated Tatil for Triticum aestivum L. temperature-induced lipocalin and Attil for Arabidopsis thaliana temperature-induced lipocalin encode polypeptides of 190 and 186 amino acids respectively. Structure analyses indicated the presence of the three structurally conserved regions that characterize lipocalins. Sequence analyses revealed that this novel class of plant lipocalin shares homology with three evolutionarily related lipocalins: the mammalian apolipoprotein D (ApoD), the bacterial lipocalin and the insect Lazarillo. The comparison of the putative tertiary structures of both the human ApoD and the wheat TaTIL suggest that the two proteins differ in membrane attachment and ligand interaction. Northern analyses demonstrated that Tatil and Attil transcripts are upregulated during cold acclimation and heat-shock treatment. The putative functions of this novel class of plant lipocalins during temperature stresses are discussed.

  13. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  14. Fault-Tolerant Heat Exchanger

    Science.gov (United States)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  15. Heat-induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene.

    OpenAIRE

    Sanchez, Diego H.; Jerzy Paszkowski

    2014-01-01

    Epigenetic mechanisms suppress the transcription of transposons and DNA repeats; however, this suppression can be transiently released under prolonged heat stress. Here we show that the Arabidopsis thaliana imprinted gene SDC, which is silent during vegetative growth due to DNA methylation, is activated by heat and contributes to recovery from stress. SDC activation seems to involve epigenetic mechanisms but not canonical heat-shock perception and signaling. The heat-mediated transcriptional ...

  16. Heating ventilation design of the small-scale swimming pool%某小型游泳馆的供暖通风设计

    Institute of Scientific and Technical Information of China (English)

    李娜

    2016-01-01

    针对北方地区游泳馆冬季闷热和宜结露的设计问题,从室内设计参数选择、散湿量计算、供暖通风系统的选择及气流组织设计等方面,提出了游泳馆的优化设计方案,在满足室内温、湿度要求的基础上,达到了经济、节能运行的目的.%In light of swimming pool design problems in northern region including stuffy and condensation, starting from aspects of indoor design parameter selection, moisture computation, heating and ventilation system selection and air flow organization design, on the basis of meeting in-door temperature and humidity demands, the paper puts forward the optimal swimming pool design scheme, and finally achieves the goal of eco-nomic and energy-saving operation.

  17. Gibberellins control fruit patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-10-01

    The Arabidopsis basic helix-loop-helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning. PMID:20889713

  18. High heat flux loop heat pipes

    Science.gov (United States)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop heat pipes (LHPs) can transport very large thermal power loads over long distances, through flexible, small diameter tubes against gravitational heads. In order to overcome the evaporator limit of LHPs, which is of about 0.07 MW/sq m, work was carried out to improve the efficiency by threefold to tenfold. The vapor passage geometry for the high heat flux conditions is shown. A bidisperse wick material within the circumferential vapor passages was used. Along with heat flux enhancement, several underlying issues were demonstrated, including the fabrication of bidisperse powder with controlled properties and the fabrication of a device geometry capable of replacing vapor passages with bidisperse powder.

  19. Association between small heat shock protein B11 and the prognostic value of MGMT promoter methylation in patients with high-grade glioma.

    Science.gov (United States)

    Cheng, Wen; Li, Mingyang; Jiang, Yang; Zhang, Chuanbao; Cai, Jinquan; Wang, Kuanyu; Wu, Anhua

    2016-07-01

    OBJECT This study investigated the role and prognostic value of heat shock proteins (HSPs) in glioma. METHODS Data from 3 large databases of glioma samples (Chinese Glioma Genome Atlas, Repository for Molecular Brain Neoplasia Data, and GSE16011), which contained whole-genome messenger RNA microarray expression data and patients' clinical data, were analyzed. Immunohistochemical analysis was performed to validate protein expression in another set of 50 glioma specimens. RESULTS Of 28 HSPs, 11 were overexpressed in high-grade glioma (HGG) compared with low-grade glioma. A univariate Cox analysis revealed that HSPB11 has significant prognostic value for each glioma grade, which was validated by a Kaplan-Meier survival analysis. HSPB11 expression was associated with poor prognosis and was independently correlated with overall survival (OS) in HGG. This study further explored the combined role of HSPB11 and other molecular markers in HGG, such as isocitrate dehydrogenase 1 (IDH1) mutation and O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. HSPB11 expression was able to refine the prognostic value of IDH1 mutation in patients with HGG. However, when combined with MGMT promoter methylation status, among patients with a methylated MGMT promoter, those with lower levels of HSPB11 expression had longer OS and progression-free survival than patients with higher levels of HSPB11 expression or with an unmethylated MGMT promoter. Moreover, within the MGMT promoter methylation group, patients with low levels of HSPB11 expression were more sensitive to combined radiochemotherapy than those with high levels of HSPB11 expression, which may explain why some patients with HGG with a methylated MGMT promoter show tolerance to radiochemotherapy. CONCLUSIONS HSPB11 was identified as a novel prognostic marker in patients with HGG. Together with MGMT promoter methylation status, HSPB11 expression can predict outcome for patients with HGG and identify those who

  20. Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis.

    Science.gov (United States)

    Cerný, Martin; Jedelský, Petr L; Novák, Jan; Schlosser, Andreas; Brzobohatý, Břetislav

    2014-07-01

    As sessile organisms, plants must sense environmental conditions and adjust their growth and development processes accordingly, through adaptive responses regulated by various internal factors, including hormones. A key environmental factor is temperature, but temperature-sensing mechanisms are not fully understood despite intense research. We investigated proteomic responses to temperature shocks (15 min cold or heat treatments) with and without exogenous applications of cytokinin in Arabidopsis. Image and mass spectrometric analysis of the two-dimensionally separated proteins detected 139 differentially regulated spots, in which 148 proteins were identified, most of which have not been previously linked to temperature perception. More than 70% of the temperature-shock response proteins were modulated by cytokinin, mostly in a similar manner as heat shock. Data mining of previous transcriptomic datasets supported extensive interactions between temperature and cytokinin signalling. The biological significance of this finding was tested by assaying an independent growth response of Arabidopsis seedlings to heat stress: hypocotyl elongation. This response was strongly inhibited in mutants with deficiencies in cytokinin signalling or endogenous cytokinin levels. Thus, cytokinins may directly participate in heat signalling in plants. Finally, large proportions of both temperature-shock and cytokinin responsive proteomes co-localize to the chloroplast, which might therefore host a substantial proportion of the temperature response machinery.

  1. Modification of the small-size heating device for the testing of soils' thermal response; Actualisation du mini-module de chauffage pour tests de reponse thermique des terrains

    Energy Technology Data Exchange (ETDEWEB)

    Laloui, L.; Steinmann, G.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that involved the modification of small-size testing equipment. This equipment, built by the Swiss Federal Institute of Technology in Lausanne, Switzerland, is dedicated to the measurement of the thermal characteristics of soils and geothermal probes. Its characteristics and performance have been improved. The remote data transmission system has also been changed. The improved possibilities presented by this optimised mini-module when, for example, carrying out thermal response tests in bore-hole heat exchangers of more than 300 m depth are described. The modifications made and the tests carried out with the modified equipment are described and discussed.

  2. Combination radiofrequency (RF) ablation and IV liposomal heat shock protein suppression: Reduced tumor growth and increased animal endpoint survival in a small animal tumor model

    Science.gov (United States)

    Yang, Wei; Ahmed, Muneeb; Tasawwar, Beenish; Levchenko, Tatynana; Sawant, Rupa R.; Torchilin, Vladimir; Goldberg, S. Nahum

    2012-01-01

    Background To investigate the effect of IV liposomal quercetin (a known down-regulator of heat shock proteins) alone and with liposomal doxorubicin on tumor growth and end-point survival when combined with radiofrequency (RF) tumor ablation in a rat tumor model. Methods Solitary subcutaneous R3230 mammary adenocarcinoma tumors (1.3–1.5 cm) were implanted in 48 female Fischer rats. Initially, 32 tumors (n=8, each group) were randomized into four experimental groups: (a) conventional monopolar RF alone (70°C for 5 min), (b) IV liposomal quercetin alone (1 mg/kg), (c) IV liposomal quercetin followed 24hr later with RF, and (d) no treatment. Next, 16 additional tumors were randomized into two groups (n=8, each) that received a combined RF and liposomal doxorubicin (15 min post-RF, 8 mg/kg) either with or without liposomal quercetin. Kaplan-Meier survival analysis was performed using a tumor diameter of 3.0 cm as the defined survival endpoint. Results Differences in endpoint survival and tumor doubling time among the groups were highly significant (P<0.001). Endpoint survivals were 12.5±2.2 days for the control group, 16.6±2.9 days for tumors treated with RF alone, 15.5±2.1days for tumors treated with liposomal quercetin alone, and 22.0±3.9 days with combined RF and quercetin. Additionally, combination quercetin/RF/doxorubicin therapy resulted in the longest survival (48.3±20.4 days), followed by RF/doxorubicin (29.9±3.8 days). Conclusions IV liposomal quercetin in combination with RF ablation reduces tumor growth rates and improves animal endpoint survival. Further increases in endpoint survival can be seen by adding an additional anti-tumor adjuvant agent liposomal doxorubicin. This suggests that targeting several post-ablation processes with multi-drug nanotherapies can increase overall ablation efficacy. PMID:22230341

  3. Radiofrequency ablation combined with liposomal quercetin to increase tumour destruction by modulation of heat shock protein production in a small animal model

    Science.gov (United States)

    Yang, Wei; Ahmed, Muneeb; Tasawwar, Beenish; Levchenko, Tatyana; Sawant, Rupa R.; Collins, Michael; Signoretti, Sabina; Torchilin, Vladimir; Goldberg, S. Nahum

    2012-01-01

    Purpose To investigate the effect of heat shock protein (HSP) modulation on tumour coagulation by combining radiofrequency (RF) ablation with adjuvant liposomal quercetin and/or doxorubicin in a rat tumour model. Methods Sixty R3230 breast adenocarcinoma tumours/animals were used in this IACUC-approved study. Initially, 60 tumours (n = 6, each subgroup) were randomised into five groups: (1) RF alone, (2) intravenous (IV) liposomal quercetin alone (1 mg/kg), (3) IV liposomal quercetin followed 24 h later with RF, (4) RF followed 15 min later by IV liposomal doxorubicin (8 mg/kg), (5) IV liposomal quercetin 24 h before RF followed by IV liposomal doxorubicin 15 min post-ablation. Animals were sacrificed 4 or 24 h post-treatment and gross coagulation diameters were compared. Next, immunohistochemistry staining was performed for Hsp70 and cleaved caspase-3 expression. Comparisons were performed by using Student t-tests or ANOVA. Results Combination RF-quercetin significantly increased coagulation size compared with either RF or liposomal quercetin alone (13.1 ± 0.7 mm vs. 8.8 ± 1.2 mm or 2.3 ± 1.3 mm, respectively, P < 0.001 for all comparisons). Triple therapy (quercetin-RF-doxorubicin) showed larger coagulation diameter (14.5 ± 1.0mm) at 24 h than quercetin-RF (P = 0.016) or RF-doxorubicin (13.2 ± 1.3 mm, P = 0.042). Combination quercetin-RF decreased Hsp70 expression compared with RF alone at both 4 h (percentage of stained cells/hpf 22.4 ± 13.9% vs. 38.8 ± 16.1%, P < 0.03) and 24 h (45.2 ± 10.5% vs. 81.1 ± 3.6%, P < 0.001). Quercetin-RF increased cleaved caspase-3 expression at both 4 h (percentage of stained cells/hpf 50.7 ± 13.4% vs. 41.9 ± 15.1%, P < 0.03) and 24 h (37.4 ± 7.8% vs. 33.2 ± 6.5%, P = 0.045); with, triple therapy (quercetin-RF-doxorubicin) resulting in the highest levels of apoptosis (45.1 ± 10.7%) at 24 h. Similar trends were observed for rim thickness. Conclusions Suppression of HSP production using adjuvant liposomal quercetin can

  4. Convection heat transfer of supercritical nitrogen in a small vertical tube%竖直细圆管中超临界氮的对流换热研究

    Institute of Scientific and Technical Information of China (English)

    黄禹; 沈飚; 张鹏; 王如竹

    2009-01-01

    在内径为2mm的竖直细圆管内进行了向上流动的超临界对流换热实验.通过实验发现,质量流量、进口温度对壁面温度分布以及压降有很大影响;并讨论了换热发生增强和恶化的原因;用浮升力和热加速准则解释了其中的一些热流体现象.并基于FLUENT软件进行了数值计算,与实验结果进行比较,分析表明,数值计算预测壁面温度分布和压降有一定的适用性.%Convection heat transfer of supercritical nitrogen in a small vertical tube with a diameter of 2mm was investigated experimentally. The tests investigated the effects of mass flow rate, inlet temperature on the local wall temperature and pressure drop, as well as the phenomena of enhanced and deteriorated heat transfer caused by buoyancy and thermal acceleration. Numerical simulations are carried out by FLUENT, the numerical predictions correspond well to the experimental data under some conditions, but still need further improvement.

  5. Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene (EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells.

    Science.gov (United States)

    Lee, Sang-Hoon; Lee, Ki-Won; Lee, Dong-Gi; Son, Daeyoung; Park, Su Jung; Kim, Ki-Yong; Park, Hyung Soo; Cha, Joon-Yung

    2015-04-01

    Small heat shock proteins (Hsps) protect against stress-inducible denaturation of substrates. Our objectives were to clone and examine the mRNA expression of the Hsp16.9 gene from Siberian wild rye grown under diverse stress treatments. We characterized EsHsp16.9 from Elymus sibiricus L. EsHsp16.9 has a 456-bp open reading frame that encodes a 151-amino acid protein with a conserved α-crystallin domain. Northern blot analysis showed that EsHsp16.9 transcripts were enhanced by heat, drought, arsenate, methyl viologen, and H2O2 treatment. In addition, recombinant EsHsp16.9 protein acts as a molecular chaperone to prevent the denaturation of malate dehydrogenase. Growth of cells overexpressing EsHsp16.9 was up to 200% more rapid in the presence of NaCl, arsenate, and polyethylene glycol than that of cells harboring an empty vector. These data suggest that EsHsp16.9 acts as a molecular chaperone that enhances stress tolerance in living organisms.

  6. Arabidopsis CDS blastp result: AK073532 [KOME

    Lifescience Database Archive (English)

    Full Text Available ical to ARL2 G-protein (Halimasch; HAL; TITAN5) GI:20514265 from [Arabidopsis thaliana]; identical to cDNA A...AK073532 J033046D12 At2g18390.1 ADP-ribosylation factor-like protein 2 (ARL2) ident

  7. Arabidopsis CDS blastp result: AK061294 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061294 006-301-D01 At3g08900.1 reversibly glycosylated polypeptide-3 (RGP3) nearl...y identical to reversibly glycosylated polypeptide-3 [Arabidopsis thaliana] GI:11863238; contains non-consensus GA-donor splice site at intron 2 0.0 ...

  8. Protease gene families in Populus and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jansson Stefan

    2006-12-01

    Full Text Available Abstract Background Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Results We have performed a comparative analysis of protease genes in the two sequenced dicot genomes, Arabidopsis thaliana and Populus trichocarpa by using genes coding for proteases in the MEROPS database 1 for Arabidopsis to identify homologous sequences in Populus. A multigene-based phylogenetic analysis was performed. Most protease families were found to be larger in Populus than in Arabidopsis, reflecting recent genome duplication. Detailed studies on e.g. the DegP, Clp, FtsH, Lon, rhomboid and papain-Like protease families showed the pattern of gene family expansion and gene loss was complex. We finally show that different Populus tissues express unique suites of protease genes and that the mRNA levels of different classes of proteases change along a developmental gradient. Conclusion Recent gene family expansion and contractions have made the Arabidopsis and Populus complements of proteases different and this, together with expression patterns, gives indications about the roles of the individual gene products or groups of proteases.

  9. Arabidopsis CDS blastp result: AK066153 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  10. Arabidopsis CDS blastp result: AK287906 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit / ClpC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF028...61: Clp amino terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  11. Arabidopsis CDS blastp result: AK100126 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  12. Arabidopsis CDS blastp result: AK058510 [KOME

    Lifescience Database Archive (English)

    Full Text Available lpC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amin...o terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  13. Arabidopsis CDS blastp result: AK069552 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  14. Arabidopsis CDS blastp result: AK062711 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062711 001-106-C02 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-34 ...

  15. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-19 ...

  16. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-44 ...

  17. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-11 ...

  18. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 1e-19 ...

  19. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-18 ...

  20. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-17 ...

  1. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-15 ...

  2. Arabidopsis CDS blastp result: AK108506 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108506 002-143-H11 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 7e-14 ...

  3. Arabidopsis CDS blastp result: AK241786 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241786 J065207F05 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 1e-19 ...

  4. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-44 ...

  5. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  6. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  7. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-16 ...

  8. Arabidopsis CDS blastp result: AK071661 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071661 J023105D07 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 3e-33 ...

  9. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-14 ...

  10. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-25 ...

  11. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 4e-41 ...

  12. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-16 ...

  13. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 5e-20 ...

  14. Arabidopsis CDS blastp result: AK243230 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243230 J100044L04 At1g19850.1 68414.m02490 transcription factor MONOPTEROS (MP) /... auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 2e-65 ...

  15. Arabidopsis CDS blastp result: AK103452 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103452 J033129I11 At1g19850.1 transcription factor MONOPTEROS (MP) / auxin-respon...sive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 1e-166 ...

  16. Arabidopsis CDS blastp result: AK318617 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK318617 J100090H20 At1g19850.1 68414.m02490 transcription factor MONOPTEROS (MP) /... auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 2e-63 ...

  17. Arabidopsis CDS blastp result: AK289177 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK289177 J100024E07 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 7e-29 ...

  18. Arabidopsis CDS blastp result: AK241312 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241312 J065141L09 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 3e-40 ...

  19. Arabidopsis CDS blastp result: AK243352 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243352 J100060L07 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 1e-28 ...

  20. Arabidopsis CDS blastp result: AK241438 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241438 J065162G03 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 7e-29 ...

  1. Arabidopsis CDS blastp result: AK058585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058585 001-017-G01 At3g57040.1 two-component responsive regulator / response reactor... 4 (RR4) identical to responce reactor4 GI:3273202 from [Arabidopsis thaliana]; contains Pfam profile: PF00072 response regulator receiver domain 6e-55 ...

  2. Arabidopsis CDS blastp result: AK101721 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101721 J033061A20 At3g57040.1 two-component responsive regulator / response reactor... 4 (RR4) identical to responce reactor4 GI:3273202 from [Arabidopsis thaliana]; contains Pfam profile: PF00072 response regulator receiver domain 9e-49 ...

  3. Arabidopsis CDS blastp result: AK241055 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241055 J065063N18 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 1e-26 ...

  4. Arabidopsis CDS blastp result: AK241644 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241644 J065189M04 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 3e-37 ...

  5. Arabidopsis CDS blastp result: AK242980 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242980 J090094F15 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 2e-19 ...

  6. Arabidopsis CDS blastp result: AK243669 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243669 J100089N11 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 6e-14 ...

  7. Arabidopsis CDS blastp result: AK242211 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242211 J075171C16 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 5e-21 ...

  8. Arabidopsis CDS blastp result: AK121261 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121261 J023104H13 At1g55350.4 calpain-type cysteine protease family identical to calpain...-like protein GI:20268660 from [Arabidopsis thaliana]; contains Pfam profiles: PF00648 Calpain family... cysteine protease, PF01067 Calpain large subunit,domain III; identical to cDNA calpain-like protein GI:20268659 0.0 ...

  9. Shotgun Proteomic Analysis of Arabidopsis thaliana Leaves

    Science.gov (United States)

    Two shotgun tandem mass spectrometry proteomics approaches, Multidimensional Protein Identification Technology (MudPIT) and 1D-Gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible wit...

  10. Arabidopsis CDS blastp result: AK241281 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-12 ...

  11. Arabidopsis CDS blastp result: AK242986 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-13 ...

  12. Arabidopsis CDS blastp result: AK241762 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 9e-17 ...

  13. Arabidopsis CDS blastp result: AK242393 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 3e-13 ...

  14. Arabidopsis CDS blastp result: AK242807 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242807 J090060H17 At5g37500.1 68418.m04516 guard cell outward rectifying K+ chann...el (GORK) identical to guard cell outward rectifying K+ channel [Arabidopsis thaliana] gi|11414742|emb|CAC17

  15. Arabidopsis CDS blastp result: AK243408 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 1e-151 ...

  16. Arabidopsis CDS blastp result: AK242797 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 2e-23 ...

  17. Arabidopsis CDS blastp result: AK243408 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 2e-12 ...

  18. Arabidopsis CDS blastp result: AK243428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243428 J100067L15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-36 ...

  19. Arabidopsis CDS blastp result: AK288699 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288699 J090061C22 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-36 ...

  20. Arabidopsis CDS blastp result: AK243271 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243271 J100049K04 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 4e-35 ...

  1. Arabidopsis CDS blastp result: AK241812 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241812 J065210K15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 1e-22 ...

  2. Arabidopsis CDS blastp result: AK241549 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241549 J065176M15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 3e-32 ...

  3. Arabidopsis CDS blastp result: AK241615 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241615 J065186D02 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-35 ...

  4. Arabidopsis CDS blastp result: AK288487 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288487 J090040H24 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 5e-37 ...

  5. Arabidopsis CDS blastp result: AK287469 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287469 J043021L20 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 2e-36 ...

  6. Arabidopsis CDS blastp result: AK241370 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241370 J065154C10 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 2e-31 ...

  7. Arabidopsis CDS blastp result: AK288415 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288415 J090031E07 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 3e-37 ...

  8. Arabidopsis CDS blastp result: AK240830 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240830 J065014C16 At3g12280.1 68416.m01533 retinoblastoma-related protein (RBR1) nearly identical to retin...oblastoma-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  9. Arabidopsis CDS blastp result: AK121431 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121431 J023138G19 At3g12280.1 retinoblastoma-related protein (RBR1) nearly identical to retinoblastoma...-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  10. Arabidopsis CDS blastp result: AK064987 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064987 J013001D03 At3g12280.1 retinoblastoma-related protein (RBR1) nearly identical to retinoblastoma...-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  11. Arabidopsis CDS blastp result: AK241627 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241627 J065187G05 At3g12280.1 68416.m01533 retinoblastoma-related protein (RBR1) nearly identical to retin...oblastoma-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  12. Arabidopsis CDS blastp result: AK287689 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-23 ...

  13. Arabidopsis CDS blastp result: AK240736 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-22 ...

  14. Arabidopsis CDS blastp result: AK241705 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-11 ...

  15. Arabidopsis CDS blastp result: AK287483 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-37 ...

  16. Arabidopsis CDS blastp result: AK242290 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242290 J075191E07 At4g13870.2 68417.m02149 Werner Syndrome-like exonuclease (WEX)... contains Pfam profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 1e-20 ...

  17. Arabidopsis CDS blastp result: AK063585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063585 001-118-A04 At4g13870.2 Werner Syndrome-like exonuclease (WEX) contains Pf...am profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 6e-16 ...

  18. Arabidopsis CDS blastp result: AK242290 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242290 J075191E07 At4g13870.1 68417.m02148 Werner Syndrome-like exonuclease (WEX)... contains Pfam profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 1e-20 ...

  19. Arabidopsis CDS blastp result: AK072218 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072218 J013167O21 At1g55350.4 calpain-type cysteine protease family identical to calpain...-like protein GI:20268660 from [Arabidopsis thaliana]; contains Pfam profiles: PF00648 Calpain family... cysteine protease, PF01067 Calpain large subunit,domain III; identical to cDNA calpain-like protein GI:20268659 1e-150 ...

  20. Arabidopsis CDS blastp result: AK287576 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287576 J065037D19 At1g28300.1 68414.m03473 transcriptional factor B3 family protein / leaf...y cotyledon 2 (LEC2) nearly identical to LEAFY COTYLEDON 2 [Arabidopsis thaliana] GI:15987516; contains Pfam profile PF02362: B3 DNA binding domain 5e-13 ...

  1. Arabidopsis CDS blastp result: AK243493 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243493 J100074A10 At2g23380.1 68415.m02792 curly leaf protein (CURLY LEAF) / poly...comb-group protein identical to polycomb group [Arabidopsis thaliana] GI:1903019 (curly leaf); contains Pfam profile PF00856: SET domain 0.0 ...

  2. Arabidopsis CDS blastp result: AK111743 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111743 J023052J10 At2g23380.1 curly leaf protein (CURLY LEAF) / polycomb-group pr...otein identical to polycomb group [Arabidopsis thaliana] GI:1903019 (curly leaf); contains Pfam profile PF00856: SET domain 3e-22 ...

  3. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-130 ...

  4. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 2e-65 ...

  5. Arabidopsis CDS blastp result: AK110534 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110534 002-168-A07 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-114 ...

  6. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-24 ...

  7. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  8. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-45 ...

  9. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 3e-66 ...

  10. Arabidopsis CDS blastp result: AK069071 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069071 J023010H01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  11. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-124 ...

  12. Arabidopsis CDS blastp result: AK060286 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060286 001-006-C08 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 6e-78 ...

  13. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 0.0 ...

  14. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-29 ...

  15. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-25 ...

  16. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-28 ...

  17. Arabidopsis CDS blastp result: AK105393 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105393 001-123-B04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  18. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-25 ...

  19. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-126 ...

  20. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 8e-63 ...

  1. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 1e-125 ...

  2. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 0.0 ...

  3. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-26 ...

  4. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-47 ...

  5. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-98 ...

  6. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-98 ...

  7. Arabidopsis CDS blastp result: AK109812 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109812 002-147-H02 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 5e-90 ...

  8. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-31 ...

  9. Arabidopsis CDS blastp result: AK121003 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121003 J023045B21 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  10. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-48 ...

  11. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-45 ...

  12. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 4e-27 ...

  13. Arabidopsis CDS blastp result: AK061162 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061162 006-209-A01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-35 ...

  14. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-50 ...

  15. Arabidopsis CDS blastp result: AK119521 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119521 001-202-D09 At3g57050.2 cystathionine beta-lyase, chloroplast / beta-cystathionase...thionase) (Cysteine lyase) {Arabidopsis thaliana} 1e-173 ... ... / cysteine lyase (CBL) identical to SP|P53780 Cystathionine beta-lyase, chloroplast precursor (EC 4.4.1.8) (CBL) (Beta-cysta

  16. Arabidopsis CDS blastp result: AK108403 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108403 002-142-G06 At3g57050.2 cystathionine beta-lyase, chloroplast / beta-cystathionase...thionase) (Cysteine lyase) {Arabidopsis thaliana} 5e-36 ... ... / cysteine lyase (CBL) identical to SP|P53780 Cystathionine beta-lyase, chloroplast precursor (EC 4.4.1.8) (CBL) (Beta-cysta

  17. Arabidopsis CDS blastp result: AK241330 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241330 J065144B19 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-64 ...

  18. Arabidopsis CDS blastp result: AK242212 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242212 J075171E13 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 1e-21 ...

  19. Arabidopsis CDS blastp result: AK241679 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241679 J065193F24 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-65 ...

  20. Arabidopsis CDS blastp result: AK105299 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105299 001-116-H10 At1g72660.1 developmentally regulated GTP-binding protein, put...ative very strong similarity to developmentally regulated GTP binding protein (DRG1) [Arabidopsis thaliana] GI:2345150 0.0 ...