WorldWideScience

Sample records for arabidopsis root hair

  1. Insight into the early steps of root hair formation revealed by the procuste1 cellulose synthase mutant of Arabidopsis thaliana

    OpenAIRE

    Singh Manoj; Fischer Urs; Singh Sunil K; Grebe Markus; Marchant Alan

    2008-01-01

    Abstract Background Formation of plant root hairs originating from epidermal cells involves selection of a polar initiation site and production of an initial hair bulge which requires local cell wall loosening. In Arabidopsis the polar initiation site is located towards the basal end of epidermal cells. However little is currently understood about the mechanism for the selection of the hair initiation site or the mechanism by which localised hair outgrowth is achieved. The Arabidopsis procust...

  2. Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth.

    Science.gov (United States)

    Hwang, Youra; Lee, Hyodong; Lee, Young-Sook; Cho, Hyung-Taeg

    2016-04-01

    Plant cell growth is restricted by the cell wall, and cell wall dynamics act as signals for the cytoplasmic and nuclear events of cell growth. Among various receptor kinases, ROOT HAIR SPECIFIC 10 (RHS10) belongs to a poorly known receptor kinase subfamily with a proline-rich extracellular domain. Here, we report that RHS10 defines the root hair length of Arabidopsis thaliana by negatively regulating hair growth. RHS10 modulates the duration of root hair growth rather than the growth rate. As poplar and rice RHS10 orthologs also showed a root hair-inhibitory function, this receptor kinase-mediated function appears to be conserved in angiosperms. RHS10 showed a strong association with the cell wall, most probably through its extracellular proline-rich domain (ECD). Deletion analysis of the ECD demonstrated that a minimal extracellular part, which includes a few proline residues, is required for RHS10-mediated root hair inhibition. RHS10 suppressed the accumulation of reactive oxygen species (ROS) in the root, which are necessary for root hair growth. A yeast two-hybrid screening identified an RNase (RNS2) as a putative downstream target of RHS10. Accordingly, RHS10 overexpression decreased and RHS10 loss increased RNA levels in the hair-growing root region. Our results suggest that RHS10 mediates cell wall-associated signals to maintain proper root hair length, at least in part by regulating RNA catabolism and ROS accumulation. PMID:26884603

  3. Insight into the early steps of root hair formation revealed by the procuste1 cellulose synthase mutant of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Singh Manoj

    2008-05-01

    Full Text Available Abstract Background Formation of plant root hairs originating from epidermal cells involves selection of a polar initiation site and production of an initial hair bulge which requires local cell wall loosening. In Arabidopsis the polar initiation site is located towards the basal end of epidermal cells. However little is currently understood about the mechanism for the selection of the hair initiation site or the mechanism by which localised hair outgrowth is achieved. The Arabidopsis procuste1 (prc1-1 cellulose synthase mutant was studied in order to investigate the role of the cell wall loosening during the early stages of hair formation. Results The prc1-1 mutant exhibits uncontrolled, preferential bulging of trichoblast cells coupled with mislocalised hair positioning. Combining the prc1-1 mutant with root hair defective6-1 (rhd6-1, which on its own is almost completely devoid of root hairs results in a significant restoration of root hair formation. The pEXPANSIN7::GFP (pEXP7::GFP marker which is specifically expressed in trichoblast cell files of wild-type roots, is absent in the rhd6-1 mutant. However, pEXP7::GFP expression in the rhd6-1/prc1-1 double mutant is restored in a subset of epidermal cells which have either formed a root hair or exhibit a bulged phenotype consistent with a function for EXP7 during the early stages of hair formation. Conclusion These results show that RHD6 acts upstream of the normal cell wall loosening event which involves EXP7 expression and that in the absence of a functional RHD6 the loosening and accompanying EXP7 expression is blocked. In the prc1-1 mutant background, the requirement for RHD6 during hair initiation is reduced which may result from a weaker cell wall structure mimicking the cell wall loosening events during hair formation.

  4. An ethylene and ROS-dependent pathway is involved in low ammonium-induced root hair elongation in Arabidopsis seedlings.

    Science.gov (United States)

    Zhu, Changhua; Yang, Na; Guo, Zhengfei; Qian, Meng; Gan, Lijun

    2016-08-01

    Root hairs are plastic in response to nutrient supply, but relatively little is known about their development under low ammonium (NH4(+)) conditions. This study showed that reducing NH4(+) for 3 days in wild-type Arabidopsis seedlings resulted in drastic elongation of root hairs. To investigate the possible mediation of ethylene and auxin in this process, seedlings were treated with 2,3,5-triiodobenzoic acid (TIBA, auxin transport inhibitor), 1-naphthylphthalamic acid (NPA, auxin transport inhibitor), p-chlorophenoxy isobutyric acid (PCIB, auxin action inhibitor), aminoethoxyvinylglycine (AVG, chemical inhibitor of ethylene biosynthesis), or silver ions (Ag(+), ethylene perception antagonist) under low NH4(+) conditions. Our results showed that TIBA, NPA and PCIB did not inhibit root hair elongation under low NH4(+) conditions, while AVG and Ag(+) completely inhibited low NH4(+)-induced root hair elongation. This suggested that low NH4(+)-induced root hair elongation was dependent on the ethylene pathway, but not the auxin pathway. Further genetic studies revealed that root hair elongation in auxin-insensitive mutants was sensitive to low NH4(+) treatment, but elongation was less sensitive in ethylene-insensitive mutants than wild-type plants. In addition, low NH4(+)-induced root hair elongation was accompanied by reactive oxygen species (ROS) accumulation. Diphenylene iodonium (DPI, NADPH oxidase inhibitor) and dimethylthiourea (DMTU, ROS scavenger) inhibited low NH4(+)-induced root hair elongation, suggesting that ROS were involved in this process. Moreover, ethylene acted together with ROS to modulate root hair elongation under low NH4(+) conditions. These results demonstrate that a signaling pathway involving ethylene and ROS participates in regulation of root hair elongation when Arabidopsis seedlings are subjected to low NH4(+) conditions. PMID:27074220

  5. A theoretical model for ROP localisation by auxin in Arabidopsis root hair cells.

    Directory of Open Access Journals (Sweden)

    Robert J H Payne

    Full Text Available Local activation of Rho GTPases is important for many functions including cell polarity, morphology, movement, and growth. Although a number of molecules affecting Rho-of-Plants small GTPase (ROP signalling are known, it remains unclear how ROP activity becomes spatially organised. Arabidopsis root hair cells produce patches of ROP at consistent and predictable subcellular locations, where root hair growth subsequently occurs.We present a mathematical model to show how interaction of the plant hormone auxin with ROPs could spontaneously lead to localised patches of active ROP via a Turing or Turing-like mechanism. Our results suggest that correct positioning of the ROP patch depends on the cell length, low diffusion of active ROP, a gradient in auxin concentration, and ROP levels. Our theory provides a unique explanation linking the molecular biology to the root hair phenotypes of multiple mutants and transgenic lines, including OX-ROP, CA-rop, aux1, axr3, tip1, eto1, etr1, and the triple mutant aux1 ein2 gnom(eb.We show how interactions between Rho GTPases (in this case ROPs and regulatory molecules (in this case auxin could produce characteristic subcellular patterning that subsequently affects cell shape. This has important implications for research on the morphogenesis of plants and other eukaryotes. Our results also illustrate how gradient-regulated Turing systems provide a particularly robust and flexible mechanism for pattern formation.

  6. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yan Wang; Ju Yang; Chunli Ma; Ying Zhang; Ting Ge; Zhi Qi; Yan Kang

    2015-01-01

    Anthocyanin accumulation is a common phenom-enon seen in plants under environmental stress. In this study, we identified a new allele of ROOT HAIR DEFECTIVE3 (RHD3) showing an anthocyanin overaccumulation phenotype under nitrogen starvation conditions. It is known that ethylene negatively regulates light- and sucrose-induced anthocyanin biosynthesis. We hypothesized that RHD3 achieves its negative effect on anthocyanin biosynthesis via an ethylene-regulating pathway. In support of this, similar to rhd3 mutants, the Arabidopsis ethylene signaling mutants etr1, ein2, and ein3/eil1 showed an anthocyanin overaccumulation phenotype under nitrogen starvation conditions. The ethylene precursor ACC strongly suppressed anthocyanin accumulation, dependent on ETR1, EIN2, EIN3/EIL1, and, partially, RHD3. In addition, inactivating RHD3 partially reversed the suppressive effect of ETO1 inactivation-evoked endogenous ethylene production on anthocyanin accumulation. The expression of nitrogen starva-tion-induced anthocyanin biosynthesis genes was negatively regulated by RHD3, but ethylene response genes were positively regulated by RHD3. Wild-type seedlings overexpress-ing RHD3 showed similar phenotypes to rhd3 mutants, indicating the existence of a fine-tuned relationship between gene expression and function. RHD3 was initial y identified as a gene involved in root hair development. This study uncovered a new physiological function of RHD3 in nitrogen starvation-induced anthocyanin accumulation and ethylene homeostasis. Correction added on 6 August 2015, after first online publica-tion:“RND3”corrected to“RHD3”.

  7. Cytosolic Ca(2+) Signals Enhance the Vacuolar Ion Conductivity of Bulging Arabidopsis Root Hair Cells.

    Science.gov (United States)

    Wang, Yi; Dindas, Julian; Rienmüller, Florian; Krebs, Melanie; Waadt, Rainer; Schumacher, Karin; Wu, Wei-Hua; Hedrich, Rainer; Roelfsema, M Rob G

    2015-11-01

    Plant cell expansion depends on the uptake of solutes across the plasma membrane and their storage within the vacuole. In contrast to the well-studied plasma membrane, little is known about the regulation of ion transport at the vacuolar membrane. We therefore established an experimental approach to study vacuolar ion transport in intact Arabidopsis root cells, with multi-barreled microelectrodes. The subcellular position of electrodes was detected by imaging current-injected fluorescent dyes. Comparison of measurements with electrodes in the cytosol and vacuole revealed an average vacuolar membrane potential of -31 mV. Voltage clamp recordings of single vacuoles resolved the activity of voltage-independent and slowly deactivating channels. In bulging root hairs that express the Ca(2+) sensor R-GECO1, rapid elevation of the cytosolic Ca(2+) concentration was observed, after impalement with microelectrodes, or injection of the Ca(2+) chelator BAPTA. Elevation of the cytosolic Ca(2+) level stimulated the activity of voltage-independent channels in the vacuolar membrane. Likewise, the vacuolar ion conductance was enhanced during a sudden increase of the cytosolic Ca(2+) level in cells injected with fluorescent Ca(2+) indicator FURA-2. These data thus show that cytosolic Ca(2+) signals can rapidly activate vacuolar ion channels, which may prevent rupture of the vacuolar membrane, when facing mechanical forces. PMID:26232520

  8. Responses to Iron-Deficiency in Arabidopsis-Thaliana - The Turbo Iron Reductase does not depend on the Formation of Root Hairs and Transfer Cells.

    NARCIS (Netherlands)

    Moog, P.R.; Van der Kooij, T.A.W.; Bruggemann, W.; Schiefelbein, J.W.; Kuiper, P.J.C.

    1995-01-01

    Arabidopsis thaliana (L.) Heynh. Columbia wild type and a root hair-less mutant RM57 were grown on iron-containing and iron-deficient nutrient solutions. In both genotypes, ferric chelate reductase (FCR) of intact roots was induced upon iron deficiency and followed a Michaelis-Menten kinetic with a

  9. Root hair mutants of barley

    International Nuclear Information System (INIS)

    Barley mutants without root hairs or with short or reduced root hairs were isolated among M2 seeds of 'Lux' barley (Hordeum vulgare L.) after acidified sodium azide mutagenesis. Root hair mutants are investigated intensively in Arabidopsis where about 40 genes are known. A few root hair mutants are known in maize, rice, barley and tomato. Many plants without root hairs grow quite well with good plant nutrition, and mutants have been used for investigations of uptake of strongly bound nutrients like phosphorus, iron, zinc and silicon. Seed of 'Lux' barley (Sejet Plant Breeding, Denmark) were soaked overnight, and then treated with 1.5-millimolarsodium azide in 0.1 molar sodium phosphate buffer, pH 3, for 2.5 hours according to the IAEA Manual on Mutation Breeding (2nd Ed.). After rinsing in tap water and air-drying, the M2 seeds were sown in the field the same day. Spikes, 4-6 per M1 plant, were harvested. The mutation frequency was similar to that obtained with other barley cultivars from which low-phytate mutants were isolated [5]. Seeds were germinated on black filter paper in tap water for 3 or 4 days before scoring for root hair mutants

  10. Ectopic expression of R3 MYB transcription factor gene OsTCL1 in Arabidopsis, but not rice, affects trichome and root hair formation

    Science.gov (United States)

    Zheng, Kaijie; Tian, Hainan; Hu, Qingnan; Guo, Hongyan; Yang, Li; Cai, Ling; Wang, Xutong; Liu, Bao; Wang, Shucai

    2016-01-01

    In Arabidopsis, a MYB-bHLH-WD40 (MBW) transcriptional activator complex activates the homeodomain protein gene GLABRA2 (GL2), leading to the promotion of trichome formation and inhibition of root hair formation. The same MBW complex also activates single-repeat R3 MYB genes. R3 MYBs in turn, play a negative feedback role by competing with R2R3 MYB proteins for binding bHLH proteins, thus blocking the formation of the MBW complex. By BLASTing the rice (Oryza sativa) protein database using the entire amino acid sequence of Arabidopsis R3 MYB transcription factor TRICHOMELESS1 (TCL1), we found that there are two genes in rice genome encoding R3 MYB transcription factors, namely Oryza sativa TRICHOMELESS1 (OsTCL1) and OsTCL2. Expressing OsTCL1 in Arabidopsis inhibited trichome formation and promoted root hair formation, and OsTCL1 interacted with GL3 when tested in Arabidopsis protoplasts. Consistent with these observations, expression levels of GL2, R2R3 MYB transcription factor gene GLABRA1 (GL1) and several R3 MYB genes were greatly reduced, indicating that OsTCL1 is functional R3 MYB. However, trichome and root hair formation in transgenic rice plants overexpressing OsTCL1 remained largely unchanged, and elevated expression of OsGL2 was observed in the transgenic rice plants, indicating that rice may use different mechanisms to regulate trichome formation. PMID:26758286

  11. Osmotic Effects on the Electrical Properties of Arabidopsis Root Hair Vacuoles in Situ1

    Science.gov (United States)

    Lew, Roger R.

    2004-01-01

    To assess the role of the vacuole in responses to hyperosmotic and hypo-osmotic stress, the electrical properties of the vacuole were measured in situ. A double-barrel micropipette was inserted into the vacuole for voltage clamping. A second double-barrel micropipette was inserted into the cytoplasm to provide a virtual ground that separated the electrical properties of the vacuole from those of the plasma membrane. Osmotic stress causes immediate electrical responses at the plasma membrane (Lew RR [1996] Plant Physiol 97: 2002-2005) and ion flux changes and turgor recovery (Shabala SN, Lew RR [2002] 129: 290-299) in Arabidopsis root cells. In situ, the vacuole also responds rapidly to changes in extracellular osmotic potential. Hyperosmotic treatment caused a very large increase in the ionic conductance of the vacuole. Hypo-osmotic treatment did not affect the vacuolar conductance. In either case, the vacuolar electrical potential was unchanged. Taken in concert with previous studies of changes at the plasma membrane, these results demonstrate a highly coordinated system in which the vacuole and plasma membrane are primed to respond immediately to hyperosmotic stress before changes in gene expression. PMID:14730070

  12. Global analysis of the root hair morphogenesis transcriptome reveals new candidate genes involved in root hair formation in barley.

    Science.gov (United States)

    Kwasniewski, Miroslaw; Janiak, Agnieszka; Mueller-Roeber, Bernd; Szarejko, Iwona

    2010-09-01

    Root hairs are long tubular outgrowths of specialized root epidermal cells that play an important role in plant nutrition and water uptake. They are also an important model in studies of higher plant cell differentiation. In contrast to the model dicot Arabidopsis thaliana, currently very little is known about the genetic and molecular basis of root hair formation in monocots, including major cereals. To elucidate candidate genes controlling this developmental process in barley, we took advantage of the recently established Affymetrix GeneChip Barley1 Genome Array to carry out global transcriptome analyses of hairless and root hair primordia-forming roots of two barely mutant lines. Expression profiling of the root-hairless mutant rhl1.a and its wild type parent variety 'Karat' revealed 10 genes potentially involved in the early step of root hair formation in barley. Differential expression of all identified genes was confirmed by quantitative reverse transcription-polymerase chain reaction. The genes identified encode proteins associated with the cell wall and membranes, including one gene for xyloglucan endotransglycosylase, three for peroxidase enzymes and five for arabinogalactan protein, extensin, leucine-rich-repeat protein, phosphatidylinositol phosphatidylcholine transfer protein and a RhoGTPase GDP dissociation inhibitor, respectively. The molecular function of one gene is unknown at present. The expression levels of these genes were strongly reduced in roots of the root-hairless mutant rhl1.a compared to the parent variety, while expression of all 10 genes was similar in another mutant, i.e. rhp1.b, that has lost its ability to develop full root hairs but still forms hairs blocked at the primordium stage, and its wild type relative. This clearly indicates that the new genes identified are involved in the initiation of root hair morphogenesis in barley. PMID:20388575

  13. The click-compatible sugar 6-deoxy-alkynyl glucose metabolically incorporates into Arabidopsis root hair tips and arrests their growth.

    Science.gov (United States)

    McClosky, Daniel D; Wang, Bo; Chen, Gong; Anderson, Charles T

    2016-03-01

    Plant cell walls are dynamic structures whose polysaccharide components are rearranged and recycled during growth and morphogenesis. Covalent fluorescent tagging of these polysaccharides following a metabolic labeling approach can help elucidate these changes. Herein reported are the synthesis and seedling-incorporation of a plant polysaccharide chemical reporter, 6-deoxy-alkynyl glucose (6dAG), that is modeled on D-glucose. Whereas fucose-alkyne, a previously reported chemical reporter for pectin, incorporates diffusely throughout growing cell walls, 6dAG incorporated specifically into root hair tips. This incorporation occurs in a time- and concentration-dependent manner. 6dAG exposure both induces and colocalizes with callose deposition in this tissue, and arrests both root hair and root growth. These results show that plants can incorporate an additional alkynyl-modified sugar analog into their metabolism, and into a discrete subcellular location. PMID:26833385

  14. Molecular cloning and characterization of beta-expansin gene related to root hair formation in barley.

    Science.gov (United States)

    Kwasniewski, Miroslaw; Szarejko, Iwona

    2006-07-01

    Root hairs are specialized epidermal cells that play a role in the uptake of water and nutrients from the rhizosphere and serve as a site of interaction with soil microorganisms. The process of root hair formation is well characterized in Arabidopsis (Arabidopsis thaliana); however, there is a very little information about the genetic and molecular basis of root hair development in monocots. Here, we report on isolation and cloning of the beta-expansin (EXPB) gene HvEXPB1, tightly related to root hair initiation in barley (Hordeum vulgare). Using root transcriptome differentiation in the wild-type/root-hairless mutant system, a cDNA fragment present in roots of wild-type plants only was identified. After cloning of full-length cDNA and genomic sequences flanking the identified fragment, the subsequent bioinformatics analyses revealed homology of the protein coded by the identified gene to the EXPB family. Reverse transcription-PCR showed that expression of HvEXPB1 cosegregated with the root hair phenotype in F2 progeny of the cross between the hairless mutant rhl1.a and the wild-type Karat parent variety. Expression of the HvEXPB1 gene was root specific; it was expressed in roots of wild-type forms, but not in coleoptiles, leaves, tillers, and spikes. The identified gene was active in roots of two other analyzed root hair mutants: rhp1.a developing root hair primordia only and rhs1.a with very short root hairs. Contrary to this, a complete lack of HvEXPB1 expression was observed in roots of the spontaneous root-hairless mutant bald root barley. All these observations suggest a role of the HvEXPB1 gene in the process of root hair formation in barley. PMID:16679418

  15. Induction of Root Hair Growth in a Phosphorus-Buffered Culture Solution

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-dong; James Dunlop; Thai Phung

    2006-01-01

    A system to control the release of phosphate in water was successfully established, based on solubility product of [Ca2+] and [PO43-] using tricalcium phosphate as P source in the hydroponic solution, and adding CaC12 for supplementing extra Ca2+. The system, similar to soil solutions, was a P nutrient buffer solution with very low bioavailable P. The buffer solution induced the roots of both monocotyledon and dicotyledon species to grow abundant root hairs, 3 mm in maximum length. The monocotyledons were corn (Zea mays L.) (var. Yellow Rose), wheat (Triticum aestivum L.) (var.Yanzhong 144), Triticale secale L. (var. Jingsong 5), and ryegrass (Lolium rigidum L.) (var. Ruanni), and the dicotyledons were Arabidopsis thaliana L. (var. Columbia), white clover (Trifolium repens) (var. Kopu), Lotus (Lotus peduncucatus Cav. Luliginosus Schkuhr) (var. Grasslands Maku). For these species we proved that the root environment controls the induction of root hair formation. However, the hydroponic buffer solution failed to induce root hairs on the roots of onion (Allium cepa L.). Other investigators have concluded that corn does not form root hairs in hydroponics, but abundant long root hairs on corn were induced by this buffer system. The roots with abundant long root hairs are called "hedgehog roots" because they have hairs everywhere just like a hedgehog.

  16. Endosomal Interactions during Root Hair Growth.

    Science.gov (United States)

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2015-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes-termed herein as dancing-endosomes-which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  17. Mycorrhiza alters the profile of root hairs in trifoliate orange.

    Science.gov (United States)

    Wu, Qiang-Sheng; Liu, Chun-Yan; Zhang, De-Jian; Zou, Ying-Ning; He, Xin-Hua; Wu, Qing-Hua

    2016-04-01

    Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production. PMID:26499883

  18. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength.

    Science.gov (United States)

    Haling, Rebecca E; Brown, Lawrie K; Bengough, A Glyn; Young, Iain M; Hallett, Paul D; White, Philip J; George, Timothy S

    2013-09-01

    Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g. compacted or high-strength soils). To investigate this, the root growth and P uptake of root hair genotypes of barley, Hordeum vulgare L. (i.e. genotypes with and without root hairs), were assessed under combinations of P deficiency and high soil strength. Genotypes with root hairs were found to have an advantage for root penetration into high-strength layers relative to root hairless genotypes. In P-deficient soils, despite a 20% reduction in root hair length under high-strength conditions, genotypes with root hairs were also found to have an advantage for P uptake. However, in fertilized soils, root hairs conferred an advantage for P uptake in low-strength soil but not in high-strength soil. Improved root-soil contact, coupled with an increased supply of P to the root, may decrease the value of root hairs for P acquisition in high-strength, high-P soils. Nevertheless, this work demonstrates that root hairs are a valuable trait for plant growth and nutrient acquisition under combined soil stresses. Selecting plants with superior root hair traits is important for improving P uptake efficiency and hence the sustainability of agricultural systems. PMID:23861547

  19. The role of root hairs in cadmium acquisition by barley

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Ruilun; Li Huafen [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Jiang Rongfeng, E-mail: rfjiang@cau.edu.c [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Roemheld, Volker [Institute of Plant Nutrition, University of Hohenheim, D-70593 Stuttgart (Germany); Zhang Fusuo [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Zhao Fangjie [Soil Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom)

    2011-02-15

    The role of root hairs in Cd acquisition from soil was investigated in three pot experiments using a root hairless mutant (bald root barley, brb) and its wild-type (WT) cultivar of barley (Hordeum vulgare). brb had significantly lower concentrations and lower total amounts of Cd in shoots than WT. The Cd uptake efficiency based on total root length was 8-45% lower in brb than in WT. The difference between brb and WT increased with increasing extractable Cd in soil under the experimental conditions used. Additions of phosphate to soil decreased Cd extractability. Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. These effects resulted in decreased Cd uptake with increasing P supply. Cd uptake in WT correlated significantly with root length, root hair length and density, and soil extractable Cd. Root hairs contribute significantly to Cd uptake by barley. - Research highlights: The Cd uptake efficiency was significantly lower in brb than in WT. Additions of phosphate to soil decreased Cd extractability and Cd uptake. Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. Root hairs contribute significantly to Cd uptake by barley. - The Cd uptake efficiency based on total root length was 8-45% lower in a barley root hairless mutant than in its wild-type, indicating an important role of root hairs in Cd acquisition.

  20. The role of root hairs in cadmium acquisition by barley

    International Nuclear Information System (INIS)

    The role of root hairs in Cd acquisition from soil was investigated in three pot experiments using a root hairless mutant (bald root barley, brb) and its wild-type (WT) cultivar of barley (Hordeum vulgare). brb had significantly lower concentrations and lower total amounts of Cd in shoots than WT. The Cd uptake efficiency based on total root length was 8-45% lower in brb than in WT. The difference between brb and WT increased with increasing extractable Cd in soil under the experimental conditions used. Additions of phosphate to soil decreased Cd extractability. Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. These effects resulted in decreased Cd uptake with increasing P supply. Cd uptake in WT correlated significantly with root length, root hair length and density, and soil extractable Cd. Root hairs contribute significantly to Cd uptake by barley. - Research highlights: → The Cd uptake efficiency was significantly lower in brb than in WT. → Additions of phosphate to soil decreased Cd extractability and Cd uptake. → Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. → Root hairs contribute significantly to Cd uptake by barley. - The Cd uptake efficiency based on total root length was 8-45% lower in a barley root hairless mutant than in its wild-type, indicating an important role of root hairs in Cd acquisition.

  1. Arabidopsis: An Adequate Model for Dicot Root Systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of t...

  2. Root gravitropism in maize and Arabidopsis

    Science.gov (United States)

    Evans, Michael L.

    1993-01-01

    Research during the period 1 March 1992 to 30 November 1993 focused on improvements in a video digitizer system designed to automate the recording of surface extension in plants responding to gravistimulation. The improvements included modification of software to allow detailed analysis of localized extension patterns in roots of Arabidopsis. We used the system to analyze the role of the postmitotic isodiametric growth zone (a region between the meristem and the elongation zone) in the response of maize roots to auxin, calcium, touch and gravity. We also used the system to analyze short-term auxin and gravitropic responses in mutants of Arabidopsis with reduced auxin sensitivity. In a related project, we studied the relationship between growth rate and surface electrical currents in roots by examining the effects of gravity and thigmostimulation on surface potentials in maize roots.

  3. Hydrogen peroxide modulates abscisic acid signaling in root growth and development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    BAI Ling; ZHOU Yun; ZHANG XiaoRan; SONG ChunPeng; Gao MingQing

    2007-01-01

    Exogenous abscisic acid (ABA) can inhibit root growth and promote formation of more root hairs in the root tip of Arabidopsis. However, the molecular mechanisms that underlie root ABA signaling are largely unknown. We report here that hydrogen peroxide (H2O2) reduces the root growth of wild type,and the phenotype of H2O2 on the root growth is similar to ABA response. Meanwhile ABA-induced changes in the morphology of root system can be partly reversed by ascorbic acid in wild type and abolished in NADPH oxidase defective mutant atrbohF and atrbohC. Further, ABA can induce H2O2 accumulation in the root cells and enhance transcription level of OXI1, which is necessary for many more AOS-dependent processes such as root hair growth in Arabidopsis. Our results suggest that H2O2 as an important signal molecule is required for the ABA-regulated root growth and development in Arabidopsis.

  4. The actin Cytoskeleton in Root Hairs: a cell elongation device

    NARCIS (Netherlands)

    Ketelaar, T.; Emons, A.M.C.

    2009-01-01

    The actin cytoskeleton plays an important role in root hair development. It is involved in both the delivery of growth materials to the expanding tip of root hairs and the regulation of the area of tip growth. This review starts with a discussion of the techniques that are available to visualize the

  5. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system.

    Science.gov (United States)

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Nieto-Jacobo, María Fernanda; Simpson, June; Herrera-Estrella, Luis

    2002-05-01

    The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability. PMID:12011355

  6. The Difference between the Micronutrients Content of Seeding's Root and Root Hair in Several Plant Species

    OpenAIRE

    Yamakawa, Takeo; Okuda, Naoko; Taira, Kenjiro

    2008-01-01

    It was reported in soybean that the content of Fe and Co microelements of the root hair invaded by rhizobium during the process of nodule formation was higher than that of the root. To confirm this point, a supplementary experiment was carried out using several applicable plants, soybeans, lupine, pea, corn and pumpkin. Root hair was separated in liquid nitrogen from the roots of those seedlings. The separated root hair of 20mg, or the residual root of 200mg was digested in a microwave wet...

  7. Arabidopsis CDS blastp result: AK111785 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111785 J023089N11 At5g62310.1 incomplete root hair ... elongation (IRE) / protein kinase, putative ... nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  8. Arabidopsis CDS blastp result: AK243050 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243050 J100011E04 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  9. Arabidopsis CDS blastp result: AK242758 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242758 J090051H03 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  10. Arabidopsis CDS blastp result: AK242717 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242717 J090043H19 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  11. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  12. Arabidopsis CDS blastp result: AK242638 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242638 J090023J02 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  13. Arabidopsis CDS blastp result: AK242651 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242651 J090026B08 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  14. Arabidopsis CDS blastp result: AK287631 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287631 J065073J24 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  15. Arabidopsis CDS blastp result: AK288923 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288923 J090081P06 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  16. Arabidopsis CDS blastp result: AK242271 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242271 J075187A19 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  17. Arabidopsis CDS blastp result: AK242681 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242681 J090032N04 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  18. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  19. Arabidopsis CDS blastp result: AK241519 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241519 J065170E12 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  20. Arabidopsis CDS blastp result: AK240655 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240655 J023135E11 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  1. Arabidopsis CDS blastp result: AK242733 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242733 J090047O22 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  2. Arabidopsis CDS blastp result: AK242859 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242859 J090073L24 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  3. Arabidopsis CDS blastp result: AK243187 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243187 J100039E11 At5g62310.1 68418.m07822 incomplete root hair ... elongation (IRE) / protein kin ... putative nearly identical to IRE (incomplete root hair ... elongation) [Arabidopsis thaliana] gi|6729346|dbj| ...

  4. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.

    2011-08-09

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional \\'single porosity\\' models, this \\'dual porosity\\' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  5. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    Directory of Open Access Journals (Sweden)

    Bhuwaneshwar S Mishra

    Full Text Available BACKGROUND: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. PRINCIPAL FINDINGS: Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62% genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35% even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. CONCLUSION: Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient

  6. Auxin transport through non-hair cells sustains root-hair development

    OpenAIRE

    Jones, Angharad R.; Kramer, Eric M.; Knox, Kirsten; Swarup, Ranjan; Bennett, Malcolm J; Lazarus, Colin M.; Leyser, H. M. Ottoline; Grierson, Claire S.

    2008-01-01

    The plant hormone auxin controls root epidermal cell development in a concentration-dependent manner 1-3. Root hairs are produced on a subset of epidermal cells as they increase in distance from the root tip. Auxin is required for their initiation 4-7 and continued growth 8-11, but little is known about its distribution in this region of the root. Counter to the expectation that hair cells might require active auxin influx to ensure auxin supply, we did not detect the auxin-influx transporter...

  7. Biosynthesis of Lipid Resorcinols and Benzoquinones in Isolated Secretory Plant Root Hairs

    Science.gov (United States)

    The primary functions of root hairs are to increase the root surface area and to aid plants in water and nutrient uptake. However, some root hairs also have secretory functions and exude bioactive secondary metabolites. Sorghum bicolor root hairs release a substantial amount of the lipid benzoquin...

  8. Nitric Oxide Functions as a Positive Regulator of Root Hair Development

    OpenAIRE

    Lombardo, María Cristina; Graziano, Magdalena; Polacco, Joseph C.; Lamattina, Lorenzo

    2006-01-01

    The root epidermis is composed of two cell types: trichoblasts (or hair cells) and atrichoblasts (or non-hair cells). In lettuce (Lactuca sativa cv. Grand Rapids var. Rapidmor oscura) plants grown hydroponically in water, the root epidermis did not form root hairs. The addition of 10 µM sodium nitroprusside (SNP), a nitric oxide (NO) donor, resulted in almost all rhizodermal cells differentiated into root hairs. Treatment with the synthetic auxin 1-naphthyl acetic acid (NAA) displayed a signi...

  9. Auxin, the organizer of the hormonal/environmental signals for root hair growth

    OpenAIRE

    Lee, Richard D.-W.; Cho, Hyung-Taeg

    2013-01-01

    The root hair development is controlled by diverse factors such as fate-determining developmental cues, auxin-related environmental factors, and hormones. In particular, the soil environmental factors are important as they maximize their absorption by modulating root hair development. These environmental factors affect the root hair developmental process by making use of diverse hormones. These hormonal factors interact with each other to modulate root hair development in which auxin appears ...

  10. Complex Regulation of Prolyl-4-Hydroxylases Impacts Root Hair Expansion

    DEFF Research Database (Denmark)

    Velasquez, Silvia M; Ricardi, Martiniano M; Poulsen, Christian Peter;

    2015-01-01

    Root hairs are single cells that develop by tip growth, a process shared with pollen tubes, axons, and fungal hyphae. However, structural plant cell walls impose constraints to accomplish tip growth. In addition to polysaccharides, plant cell walls are composed of hydroxyproline-rich glycoprotein...

  11. Increased symplasmic permeability in barley root epidermal cells correlates with defects in root hair development.

    Science.gov (United States)

    Marzec, M; Muszynska, A; Melzer, M; Sas-Nowosielska, H; Kurczynska, E U

    2014-03-01

    It is well known that the process of plant cell differentiation depends on the symplasmic isolation of cells. Before starting the differentiation programme, the individual cell or group of cells should restrict symplasmic communication with neighbouring cells. We tested the symplasmic communication between epidermal cells in the different root zones of parental barley plants Hordeum vulgare L., cv. 'Karat' with normal root hair development, and two root hairless mutants (rhl1.a and rhl1.b). The results clearly show that symplasmic communication was limited during root hair differentiation in the parental variety, whereas in both root hairless mutants epidermal cells were still symplasmically connected in the corresponding root zone. This paper is the first report on the role of symplasmic isolation in barley root cell differentiation, and additionally shows that a disturbance in the restriction of symplasmic communication is present in root hairless mutants. PMID:23927737

  12. Auxin regulates distal stem cell differentiation in Arabidopsis roots

    OpenAIRE

    Ding, Zhaojun; Friml, Jiří

    2010-01-01

    The stem cell niche in the root meristem is critical for the development of the plant root system. The plant hormone auxin acts as a versatile trigger in many developmental processes, including the regulation of root growth, but its role in the control of the stem cell activity remains largely unclear. Here we show that local auxin levels, determined by biosynthesis and intercellular transport, mediate maintenance or differentiation of distal stem cells in the Arabidopsis thaliana roots. Gene...

  13. Auxin, the organizer of the environmental/hormonal signals for root hair growth

    Directory of Open Access Journals (Sweden)

    Hyung-Taeg eCho

    2013-11-01

    Full Text Available The root hair development is controlled by diverse factors such as fate-determining developmental cues, auxin-related environmental factors, and hormones. In particular, the soil environmental factors are important as they maximize their absorption by modulating root hair development. These environmental factors affect the root hair developmental process by making use of diverse hormones. These hormonal factors interact with each other to modulate root hair development in which auxin appears to form the most intensive networks with the pathways from environmental factors and hormones. Moreover, auxin action for root hair development is genetically located immediately upstream of the root hair-morphogenetic genes. These observations suggest that auxin plays as an organizing node for environmental/hormonal pathways to modulate root hair growth.

  14. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    Science.gov (United States)

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. PMID:22323776

  15. Increased symplasmic permeability in barley root epidermal cells correlates with defects in root hair development

    OpenAIRE

    Marzec, M; Muszynska, A. (Agata); Melzer, M.; Sas-Nowosielska, H; Kurczynska, E U; Wick, S.

    2013-01-01

    It is well known that the process of plant cell differentiation depends on the symplasmic isolation of cells. Before starting the differentiation programme, the individual cell or group of cells should restrict symplasmic communication with neighbouring cells. We tested the symplasmic communication between epidermal cells in the different root zones of parental barley plants Hordeum vulgare L., cv. ‘Karat’ with normal root hair development, and two root hairless mutants (rhl1.a and rhl1.b). T...

  16. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.

    Science.gov (United States)

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Alfaro-Cuevas, Ruth; López-Bucio, José

    2014-06-01

    Salt stress is an important constraint to world agriculture. Here, we report on the potential of Trichoderma virens and T. atroviride to induce tolerance to salt in Arabidopsis seedlings. We first characterized the effect of several salt concentrations on shoot biomass production and root architecture of Arabidopsis seedlings. We found that salt repressed plant growth and root development in a dose-dependent manner by blocking auxin signaling. Analysis of the wild type and eir1, aux1-7, arf7arf19, and tir1abf2abf19 auxin-related mutants revealed a key role for indole-3-acetic acid (IAA) signaling in mediating salt tolerance. We also found that T. virens (Tv29.8) and T. atroviride (IMI 206040) promoted plant growth in both normal and saline conditions, which was related to the induction of lateral roots and root hairs through auxin signaling. Arabidopsis seedlings grown under saline conditions inoculated with Trichoderma spp. showed increased levels of abscissic acid, L-proline, and ascorbic acid, and enhanced elimination of Na⁺ through root exudates. Our data show the critical role of auxin signaling and root architecture to salt tolerance in Arabidopsis and suggest that these fungi may enhance the plant IAA level as well as the antioxidant and osmoprotective status of plants under salt stress. PMID:24502519

  17. Involvement of Arabidopsis thaliana phospholipase Dzeta2 in root hydrotropism through the suppression of root gravitropism.

    OpenAIRE

    Taniguchi, Yukimi Y; Taniguchi, Masatoshi; Tsuge, Tomohiko; Oka, Atsuhiro; Aoyama, Takashi

    2010-01-01

    Root hydrotropism is the phenomenon of directional root growth toward moisture under water-deficient conditions. Although physiological and genetic studies have revealed the involvement of the root cap in the sensing of moisture gradients, and those of auxin and abscisic acid (ABA) in the signal transduction for asymmetric root elongation, the overall mechanism of root hydrotropism is still unclear. We found that the promoter activity of the Arabidopsis phospholipase Dzeta2 gene (PLDzeta2) wa...

  18. Hormonal response and root architecture in Arabidopsis thaliana subjected to heavy metals

    Directory of Open Access Journals (Sweden)

    Antonella Vitti

    2014-05-01

    Full Text Available In this work, specific concentrations of cadmium, copper and zinc in double combination, were supplied for 12 days to growing seedlings of the model species Arabidopsis thaliana. Metal accumulation was measured in roots and shoots. Microscopic analyses revealed that root morphology was affected by metals, and that the root and shoot levels of indole-3-acetic acid, trans-zeatin riboside and dihydrozeatin riboside varied accordingly. Minor modifications in gibberellic acid levels occurred in the Zinc treatments, whereas abscisic acid level did not change after the exposition to metals. Reverse transcription polymerase chain reaction analysis of some genes involved in auxin and cytokinin synthesis (AtAAO, AtNIT and AtIPT revealed that their expression were not affected by metal treatments. The root morphological alterations that resulted in an increased surface area, due to the formation of root hairs and lateral roots, could be signs of the response to metal stress in terms of a functionally-addressed reorientation of root growth. The root system plasticity observed could be important for better understanding the manner in which the root architecture is shaped by environmental and hormonal stimuli.

  19. Quantitative Phosphoproteomic Analysis of Soybean Root Hairs Inoculated with Bradyrhizobium japonicum

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tran H.; Brechenmacher, Laurent; Aldrich, Joshua T.; Clauss, Therese RW; Gritsenko, Marina A.; Hixson, Kim K.; Libault, Marc; Tanaka, Kiwamu; Yang, Feng; Yao, Qiuming; Pasa-Tolic, Ljiljana; Xu, Dong; Nguyen, Henry T.; Stacey, Gary

    2012-11-11

    Root hairs are single hair-forming cells on roots that function to increase root surface area, enhancing water and nutrient uptake. In leguminous plants, root hairs also play a critical role as the site of infection by symbiotic nitrogen fixing rhizobia, leading to the formation of a novel organ, the nodule. The initial steps in the rhizobia-root hair infection process are known to involve specific receptor kinases and subsequent kinase cascades. Here, we characterize the phosphoproteome of the root hairs and the corresponding stripped roots (i.e., roots from which root hairs were removed) during rhizobial colonization and infection to gain insight into the molecular mechanism of root hair cell biology. We chose soybean (Glycine max L.), one of the most important crop plants in the legume family, for this study because of its larger root size, which permits isolation of sufficient root hair material for phosphoproteomic analysis. Phosphopeptides derived from root hairs and stripped roots, mock inoculated or inoculated with the soybean-specific rhizobium Bradyrhizobium japonicum, were labeled with the isobaric tag 8-plex ITRAQ, enriched using Ni-NTA magnetic beads and subjected to nRPLC-MS/MS analysis using HCD and decision tree guided CID/ETD strategy. A total of 1,625 unique phosphopeptides, spanning 1,659 non-redundant phosphorylation sites, were detected from 1,126 soybean phosphoproteins. Among them, 273 phosphopeptides corresponding to 240 phosphoproteins were found to be significantly regulated (>1.5 fold abundance change) in response to inoculation with B. japonicum. The data reveal unique features of the soybean root hair phosphoproteome, including root hair and stripped root-specific phosphorylation suggesting a complex network of kinase-substrate and phosphatase-substrate interactions in response to rhizobial inoculation.

  20. The root epidermis of Echium plantagineum L.: a novel type of pattern based on the distribution of short and long root hairs.

    Science.gov (United States)

    Tsai, Shin-Ling; Harris, Philip J; Lovell, Peter H

    2003-06-01

    The great majority of angiosperm species form a group in which either every cell in the root epidermis produces a root hair, or the cells that produce these hairs are randomly distributed. We describe, for the first time, pattern in the root epidermal cells of a species within this group. The seedling root of Echium plantagineum L. (Boraginaceae) has an epidermis in which almost every cell produces a root hair, but these are of two types, short hairs (up to 200 micro m) and long hairs (>200 micro m), which are in separate cell files, with the cells bearing long hairs usually separated by one or two files of cells bearing short hairs; the epidermal cells with the long root hairs are longer than the epidermal cells with the short root hairs. The long root hairs are initiated and develop earlier than the short root hairs. Transverse sections of the region of the root which contains only developing long root hairs show that the hair cells are located above anticlinal walls between underlying cortical cells. We regard the distribution of root epidermal cells in E. plantagineum as a sub-type of this group. We discuss the possible evolution, from this sub-type, of another group that is characterised by hair cells and non-hair cells occurring in separate files. PMID:12783331

  1. Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments

    Directory of Open Access Journals (Sweden)

    Javier eCanales

    2014-02-01

    Full Text Available Nitrogen (N is an essential macronutrient for plant growth and development. Plants adapt to changes in N availability partly by changes in global gene expression. We integrated publicly available root microarray data under contrasting nitrate conditions to identify new genes and functions important for adaptive nitrate responses in Arabidopsis thaliana roots. Overall, more than two thousand genes exhibited changes in expression in response to nitrate treatments in Arabidopsis thaliana root organs. Global regulation of gene expression by nitrate depends largely on the experimental context. However, despite significant differences from experiment to experiment in the identity of regulated genes, there is a robust nitrate response of specific biological functions. Integrative gene network analysis uncovered relationships between nitrate-responsive genes and eleven highly co-expressed gene clusters (modules. Four of these gene network modules have robust nitrate responsive functions such as transport, signaling and metabolism. Network analysis hypothesized G2-like transcription factors are key regulatory factors controlling transport and signaling functions. Our meta-analysis highlights the role of biological processes not studied before in the context of the nitrate response such as root hair development and provides testable hypothesis to advance our understanding of nitrate responses in plants.

  2. Regulation of Arabidopsis root development by small signaling peptides

    Directory of Open Access Journals (Sweden)

    Christina eDelay

    2013-09-01

    Full Text Available Plant root systems arise de novo from a single embryonic root. Complex and highly coordinated developmental networks are required to ensure the formation of lateral organs maximises plant fitness. The Arabidopsis root is well suited to dissection of regulatory and developmental networks due to its highly ordered, predictable structure. A myriad of regulatory signalling networks control the development of plant roots, from the classical hormones such as auxin and cytokinin to short-range positional signalling molecules that relay information between neighbouring cells. Small signaling peptides are a growing class of regulatory molecules involved in many aspects of root development including meristem maintenance, the gravitropic response, lateral root development and vascular formation. Here, recent findings on the roles of regulatory peptides in these aspects of root development are discussed.

  3. A gene regulatory network for root epidermis cell differentiation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Angela Bruex

    2012-01-01

    Full Text Available The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 "core" root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network.

  4. An in vivo root hair assay for determining rates of apoptotic-like programmed cell death in plants

    Directory of Open Access Journals (Sweden)

    Hogg Bridget V

    2011-12-01

    Full Text Available Abstract In Arabidopsis thaliana we demonstrate that dying root hairs provide an easy and rapid in vivo model for the morphological identification of apoptotic-like programmed cell death (AL-PCD in plants. The model described here is transferable between species, can be used to investigate rates of AL-PCD in response to various treatments and to identify modulation of AL-PCD rates in mutant/transgenic plant lines facilitating rapid screening of mutant populations in order to identify genes involved in AL-PCD regulation.

  5. Recent Advances in Understanding the Molecular Mechanisms Regulating the Root System Response to Phosphate Deficiency in Arabidopsis.

    Science.gov (United States)

    Bouain, Nadia; Doumas, Patrick; Rouached, Hatem

    2016-08-01

    Phosphorus (P) is an essential macronutrient for plant growth and development. Inorganic phosphate (Pi) is the major form of P taken up from the soil by plant roots. It is well established that under Pi deficiency condition, plant roots undergo striking morphological changes; mainly a reduction in primary root length while increase in lateral root length as well as root hair length and density. This typical phenotypic change reflects complex interactions with other nutrients such as iron, and involves the activity of a large spectrum of plant hormones. Although, several key proteins involved in the regulation of root growth under Pi-deficiency have been identified in Arabidopsis, how plants adapt roots system architecture in response to Pi availability remains an open question. In the current post-genomic era, state of the art technologies like high-throughput phenotyping and sequencing platforms,"omics" methods, together with the widespread use of system biology and genome-wide association studies will help to elucidate the genetic architectures of root growth on different Pi regimes. It is clear that the large-scale characterization of molecular systems will improve our understanding of nutrient stress phenotype and biology. Herein, we summarize the recent advances and future directions towards a better understanding of Arabidopsis root developmental programs functional under Pi deficiency. Such a progress is necessary to devise strategies to improve the Pi use efficiency in plants that is an important issue for agriculture. PMID:27499680

  6. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.

    Science.gov (United States)

    Street, Ian H; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N; Kieber, Joseph J; Schaller, G Eric

    2015-09-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574

  7. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress

    OpenAIRE

    He, Xiaoyan; Zeng, Jianbin; Cao, Fangbin; Ahmed, Imrul Mosaddek; Zhang, Guoping; Vincze, Eva; Wu, Feibo

    2015-01-01

    Tibetan wild barley is a treasure trove of useful genes for crop improvement including abiotic stress tolerance, like drought. Root hair of single-celled structures plays an important role in water and nutrition uptake. Polyethylene-glycol-induced drought stress hydroponic/petri-dish experiments were performed, where root hair morphology and transcriptional characteristics of two contrasting Tibetan wild barley genotypes (drought-tolerant XZ5 and drought-sensitive XZ54) and drought-tolerant c...

  8. Distribution of G-actin is Related to Root Hair Growth of Wheat

    OpenAIRE

    He, Xue; Liu, Yi-Min; Wang, Wei; LI Yan

    2006-01-01

    • Background and Aims Actin distribution in root hair tips is a controversial topic. Although the relationship between Ca2+ gradient and actin dynamics in plant tip-growth has been a focus of study, there is still little direct evidence on the exact relationship in root hair tip-growth.

  9. PLURIPETALA mediates ROP2 localization and stability in parallel to SCN1 but synergistically with TIP1 in root hairs.

    Science.gov (United States)

    Chai, Sen; Ge, Fu-Rong; Feng, Qiang-Nan; Li, Sha; Zhang, Yan

    2016-06-01

    Prenylation, the post-translational attachment of prenyl groups to substrate proteins, can affect their distribution and interactomes. Arabidopsis PLURIPETALA (PLP) encodes the shared α subunit of two heterodimeric protein isoprenyltransferases, whose functional loss provides a unique opportunity to study developmental and cellular processes mediated by its prenylated substrates, such as ROP GTPases. As molecular switches, the distribution and activation of ROPs are mediated by various factors, including guanine nucleotide exchange factors, GTPase activating proteins, guanine nucleotide dissociation inhibitors (RhoGDIs), prenylation, and S-acylation. However, how these factors together ensure that dynamic ROP signalling is still obscure. We report here that a loss-of-function allele of PLP resulted in cytoplasmic accumulation of ROP2 in root hairs and reduced its stability. Consequently, two downstream events of ROP signalling, i.e. actin microfilament (MF) organization and the production of reactive oxygen species (ROS), were compromised. Genetic, cytological and biochemical evidence supports an additive interaction between prenylation and RhoGDI1/SCN1 in ROP2 distribution and stability whereas PLP acts synergistically with the protein S-acyl transferase TIP GROWTH DEFECTIVE1 during root hair growth. By using root hair growth as a model system, we uncovered complex interactions among prenylation, RhoGDIs, and S-acylation in dynamic ROP signalling. PMID:27037800

  10. Root growth vigour is a better predictor than root hair traits of early nutrient uptake in spring wheat plants grown at low soil fertility

    OpenAIRE

    Wang, Yaosheng; Thorup-Kristensen, Kristian; Jensen, Lars Stoumann; Magid, Jakob

    2014-01-01

    Background and Aims A number of root and root hair traits have been proposed as important for acquisition of P. However, it remains unknown whether these traits are most important in determining macro- and micronutrient uptake at low soil fertility. This study investigated the variations in root and root hair traits among spring wheat genotypes and examined which root and root hair traits are most important for high uptake of macro- and micronutrients. Methods Six spring wheat genotypes w...

  11. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana.

    Science.gov (United States)

    Strehmel, Nadine; Mönchgesang, Susann; Herklotz, Siska; Krüger, Sylvia; Ziegler, Jörg; Scheel, Dierk

    2016-01-01

    Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana's roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes. PMID:27399695

  12. Manipulation of outer root sheath cell survival perturbs the hair-growth cycle.

    OpenAIRE

    Pena, J C; Kelekar, A; Fuchs, E V; Thompson, C B

    1999-01-01

    Transgenic mice that overexpress the anti-apoptotic gene bcl-xL under the control of the keratin 14 promoter have significantly shorter hair than non-transgenic littermates. The deficit in hair length correlated with a decrease in the duration of anagen, the growth phase of the hair cycle. A prolongation in telogen, the resting phase of the hair cycle, was also observed in adult animals. In the developing hair bulb, bcl-xL transgene expression was observed exclusively in the outer root sheath...

  13. Mutations in leaf starch metabolism modulate the diurnal root growth profiles of Arabidopsis thaliana

    OpenAIRE

    Yazdanbakhsh, Nima; FISAHN, JOACHIM

    2011-01-01

    Roots of Arabidopsis thaliana exhibit stable diurnal growth profiles that are controlled by the circadian clock. Here we describe the effects of mutations in leaf starch metabolism on the diurnal root growth characteristics of Arabidopsis thaliana. High temporal and spatial resolution video imaging was performed to quantify the growth kinetics of Arabidopsis wild-type as well as pgm, sex1, mex1, dpe1 and dpe2 starch metabolism mutants grown in three different photoperiods. As a result, root g...

  14. Ubiquitin-specific protease 14 (UBP14) is involved in root responses to phosphate deficiency in Arabidopsis.

    Science.gov (United States)

    Li, Wen-Feng; Perry, Paula J; Prafulla, Nulu N; Schmidt, Wolfgang

    2010-01-01

    A mutant isolated from a screen of EMS-mutagenized Arabidopsis lines, per1, showed normal root hair development under control conditions but displayed an inhibited root hair elongation phenotype upon Pi deficiency. Additionally, the per1 mutant exhibited a pleiotropic phenotype under control conditions, resembling Pi-deficient plants in several aspects. Inhibition of root hair elongation upon growth on low Pi media was reverted by treatment with the Pi analog phosphite, suggesting that the mutant phenotype is not caused by a lack of Pi. Reciprocal grafting experiments revealed that the mutant rootstock is sufficient to cause the phenotype. Complementation analyses showed that the PER1 gene encodes an ubiquitin-specific protease, UBP14. The mutation caused a synonymous substitution in the 12th exon of this gene, resulting in a lower abundance of the UBP14 protein, probably as a consequence of reduced translation efficiency. Transcriptional profiling of per1 and wild-type plants subjected to short-term Pi starvation revealed genes that may be important for the signaling of Pi deficiency. We conclude that UBP14 function is crucial for adapting root development to the prevailing local availability of phosphate. PMID:19969521

  15. A root hairless barley mutant for elucidating genetic of root hairs and phosphorus uptake (Correction in v. 242, 2002, p. 299)

    DEFF Research Database (Denmark)

    Gahoonia, T.S.; Nielsen, N.E.; Priyavadan, A.J.; Jahoor, A.

    2001-01-01

    This paper reports a new barley mutant missing root hairs. The mutant was spontaneously discovered among the population of wild type (Pallas, a spring barley cultivar), producing normal, 0.8 mm long root hairs. We have called the mutant bald root barley (brb). Root anatomical studies confirmed the...

  16. Detection of Lesch-Nyhan syndrome carriers: Analysis of hair roots for HPRT by agarose gel electrophoresis and autoradiography

    International Nuclear Information System (INIS)

    Flat agarose gel electrophoresis and autoradiography were used to analyze hypoxanthine phosphoribosyltransferase (HPRT) and adenine phosphoribosyltransferase (APRT) activity in individual hair roots collected from the scalps of females to determine the presence of HPRT-deficient cells. Autoradiographs of hair-root lysates of normal homozygous females contained two well-separated dark zones representing HPRT and APRT activities. In contrast, some hair roots from carriers of HPRT deficiency contained two zones of activity with the same relative proportion of APRT and HPRT as hair roots of normal homozygotes, while others contained decreased amounts of HPRT activity. These hair roots consisted of HPRT+ and HPRT- cells. In addition, some hair roots from heterozygous carriers contained APRT but no HPRT activity. Such hair roots consisted of HPRT- cells only. (author)

  17. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress.

    Science.gov (United States)

    He, Xiaoyan; Zeng, Jianbin; Cao, Fangbin; Ahmed, Imrul Mosaddek; Zhang, Guoping; Vincze, Eva; Wu, Feibo

    2015-12-01

    Tibetan wild barley is a treasure trove of useful genes for crop improvement including abiotic stress tolerance, like drought. Root hair of single-celled structures plays an important role in water and nutrition uptake. Polyethylene-glycol-induced drought stress hydroponic/petri-dish experiments were performed, where root hair morphology and transcriptional characteristics of two contrasting Tibetan wild barley genotypes (drought-tolerant XZ5 and drought-sensitive XZ54) and drought-tolerant cv. Tadmor were compared. Drought-induced root hair growth was only observed in XZ5. Thirty-six drought tolerance-associated genes were identified in XZ5, including 16 genes specifically highly expressed in XZ5 but not Tadmor under drought. The full length cDNA of a novel β-expansin gene (HvEXPB7), being the unique root hair development related gene in the identified genes, was cloned. The sequence comparison indicated that HvEXPB7 carried both DPBB_1 and Pollon_allerg_1 domains. HvEXPB7 is predominantly expressed in roots. Subcellular localization verified that HvEXPB7 is located in the plasma membrane. Barley stripe mosaic virus induced gene silencing (BSMV-VIGS) of HvEXPB7 led to severely suppressed root hairs both under control and drought conditions, and significantly reduced K uptake. These findings highlight and confer the significance of HvEXPB7 in root hair growth under drought stress in XZ5, and provide a novel insight into the genetic basis for drought tolerance in Tibetan wild barley. PMID:26417018

  18. Arabidopsis CDS blastp result: AK241580 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241580 J065181H03 At4g23640.1 68417.m03404 potassium transporter / tiny root hair ... 1 protein (T ... RH1) identical to tiny root hair ... 1 protein [Arabidopsis thaliana] gi|11181958|emb|C ... MID:11500563; identical to cDNA mRNA for tiny root hair ... 1 protein (trh1) GI:11181957 1e-139 ...

  19. Fast nuclear staining of head hair roots as a screening method for successful STR analysis in forensics

    OpenAIRE

    Lepez, Trees; Vandewoestyne, Mado; Van Hoofstat, David; Deforce, Dieter

    2014-01-01

    The success rate of STR profiling of hairs found at a crime scene is quite low and negative results of hair analysis are frequently reported. To increase the success rate of DNA analysis of hairs in forensics, nuclei in hair roots can be counted after staining the hair root with DAPI. Two staining methods were tested: a longer method with two 1 h incubations in respectively a DAPI-and a wash-solution, and a fast, direct staining of the hair root on microscope slides. The two staining meth...

  20. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis

    NARCIS (Netherlands)

    Xuan, Wei; Band, Leah R.; Kumpf, Robert P.; Rybel, De Bert

    2016-01-01

    The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that t

  1. Cell Wall Heterogeneity in Root Development of Arabidopsis.

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  2. Hair root characteristics of the human scalp hair in health and disease

    OpenAIRE

    Peereboom-Wynia, J.D.R.

    1982-01-01

    textabstractMorphological data on hair follicles have been available for over a hundred years, but only in recent years has a substantial advance been made in our knowledge of types and distribution of hair, its structure, metabolism, biochemistry and clinical patterns, and hormonal influences on hair growth. Hair plucking followed by microscopic examination has been used as a diagnostic procedure in the past two decades. Van Scott et al. ( 195 7) were first to standardize the technique of hu...

  3. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana.

    Science.gov (United States)

    Strehmel, Nadine; Böttcher, Christoph; Schmidt, Stephan; Scheel, Dierk

    2014-12-01

    To explore the chemical composition of root exudates of the model plant Arabidopsis thaliana a workflow for nontargeted metabolite profiling of the semipolar fraction of root exudates was developed. It comprises hydroponic plant cultivation and sampling of root exudates under sterile conditions, sample preparation by solid-phase extraction and analysis by reversed-phase UPLC/ESI-QTOFMS. Following the established workflow, root exudates of six-week-old plants were profiled and a set of reproducibly occurring molecular features was compiled. To structurally elucidate the corresponding metabolites, accurate mass tandem mass spectrometry and on-line hydrogen/deuterium exchange were applied. Currently, a total of 103 compounds were detected and annotated by elemental composition of which more than 90 were structurally characterized or classified. Among them, 42 compounds were rigorously identified using an authenticated standard. The compounds identified so far include nucleosides, deoxynucleosides, aromatic amino acids, anabolites and catabolites of glucosinolates, dipeptides, indolics, salicylic and jasmonic acid catabolites, coumarins, mono-, di- and trilignols, hydroxycinnamic acid derivatives and oxylipins and exemplify the high chemical diversity of plant root exudates. PMID:25457500

  4. Glucose and Auxin Signaling Interaction in Controlling Arabidopsis thaliana Seedlings Root Growth and Development

    OpenAIRE

    Mishra, Bhuwaneshwar S.; Manjul Singh; Priyanka Aggrawal; Ashverya Laxmi

    2009-01-01

    BACKGROUND: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. PRINCIPAL FINDINGS: Increasing concentration of glucose not only controls root ...

  5. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis.

    Science.gov (United States)

    Verweij, Walter; Spelt, Cornelis E; Bliek, Mattijs; de Vries, Michel; Wit, Niek; Faraco, Marianna; Koes, Ronald; Quattrocchio, Francesca M

    2016-03-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) fromArabidopsis thalianaand associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein AN1 activate, together with the MYB protein AN2, anthocyanin biosynthesis and, together with the MYB protein PH4, distinct genes, such asPH1andPH5, that acidify the vacuole. To understand how AN1 and AN11 activate anthocyanin biosynthetic andPHgenes independently, we isolatedPH3 We found thatPH3is a target gene of the AN11-AN1-PH4 complex and encodes a WRKY protein that can bind to AN11 and is required, in a feed-forward loop, together with AN11-AN1-PH4 for transcription ofPH5 PH3 is highly similar to TTG2, which regulates hair development, tannin accumulation, and mucilage production in Arabidopsis. Like PH3, TTG2 can bind to petunia AN11 and the Arabidopsis homolog TTG1, complementph3in petunia, and reactivate the PH3 target genePH5 Our findings show that the specificity of WD40-bHLH-MYB complexes is in part determined by interacting proteins, such as PH3 and TTG2, and reveal an unanticipated similarity in the regulatory circuitry that controls petunia vacuolar acidification and Arabidopsis hair development. PMID:26977085

  6. Mycorrhizal Formation and Diversity of Endophytic Fungi in Hair Roots of Vaccinium oldhamii Miq. in Japan.

    Science.gov (United States)

    Baba, Takashi; Hirose, Dai; Sasaki, Nobumitsu; Watanabe, Naoaki; Kobayashi, Nobuo; Kurashige, Yuji; Karimi, Fraidoon; Ban, Takuya

    2016-06-25

    The root diameters as well as colonization and diversity of the root-associating fungi of Vaccinium oldhamii Miq. were investigated in order to obtain information on their mycorrhizal properties. The distal regions of roots had typical hair roots with diameters of less than 100 μm. Ericoid mycorrhizal fungi (ErMF) and dark septate endophytes (DSE) were frequently observed in the roots. Ascomycetes, particularly helotialean fungi, appeared to be dominant among the endophytic fungi of V. oldhamii roots. Furthermore, Rhizoscyphus ericae (Read) Zhuang & Korf and Oidiodendron maius Barron known as ErMF were detected more frequently than other fungal species. PMID:27297892

  7. From signal to form: Nod factor as a morhogenetic signal molecule to induce symbiotic responses in legume root hairs

    OpenAIRE

    Esseling, J.J.

    2004-01-01

    In this thesis, research is presented which contributes to a better understanding of nod factor (NF) induced signalling in Iegume root hairs, leading to a successful symbiosis. We mainly use root hairs of the model Iegume Medicago truncatula ('barrel medic') as an experimental system. In the different chapters, different aspects of the NF induced changes in root hair morphology that are required for establishing a successful symbiosis between rhizobia and legumes are covered.Chapter 1 is a re...

  8. Hair root characteristics of the human scalp hair in health and disease

    NARCIS (Netherlands)

    J.D.R. Peereboom-Wynia

    1982-01-01

    textabstractMorphological data on hair follicles have been available for over a hundred years, but only in recent years has a substantial advance been made in our knowledge of types and distribution of hair, its structure, metabolism, biochemistry and clinical patterns, and hormonal influences on ha

  9. Auxin and Cytokinin Metabolism and Root Morphological Modifications in Arabidopsis thaliana Seedlings Infected with Cucumber mosaic virus (CMV or Exposed to Cadmium

    Directory of Open Access Journals (Sweden)

    Adriano Sofo

    2013-03-01

    Full Text Available Arabidopsis thaliana L. is a model plant but little information is available about morphological root changes as part of a phytohormonal common response against both biotic and abiotic stressors. For this purpose, two-week-old Arabidopsis seedlings were treated with 10 µM CdSO4 or infected with CMV. After 12 days the entire aerial parts and the root system were analyzed, and the presence of CMV or the accumulation of Cd were detected. Microscopic analysis revealed that both CMV and Cd influenced root morphology by a marked development in the length of root hairs and an intense root branching if compared to controls. Among the three treatments, Cd-treated seedlings showed a shorter root axis length and doubled their lateral root diameter, while the lateral roots of CMV-infected seedlings were the longest. The root growth patterns were accompanied by significant changes in the levels of indole-3-acetic acid, trans-zeatin riboside, dihydrozeatin riboside, as a probable consequence of the regulation of some genes involved in their biosynthesis/degradation. The opposite role on root development played by the phythormones studied is discussed in detail. The results obtained could provide insights into novel strategies for plant defense against pathogens and plant protection against pollutants.

  10. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  11. Identification of soybean proteins from a single cell type: The root hair

    Energy Technology Data Exchange (ETDEWEB)

    Brechenmacher, Laurent; Nguyen, Tran H.; Hixson, Kim K.; Libault, Marc; Aldrich, Joshua T.; Pasa-Tolic, Ljiljana; Stacey, Gary

    2012-11-01

    Root hairs are a terminally differentiated single cell type, mainly involved in water and nutrient uptake from the soil. The soybean root hair cell represents an excellent model for the study of single cell systems biology. In this study, we identified 5702 proteins, with at least two peptides, from soybean root hairs using an accurate mass and time tag approach, establishing the most comprehensive proteome reference map of this single cell type. We also showed that trypsin is the most appropriate enzyme for soybean proteomic studies by performing an in silico digestion of the soybean proteome database using different proteases. Although the majority of proteins identified in this study are involved in basal metabolism, the function of others are more related to root hair formation/function and include proteins involved in nutrient uptake (transporters) or vesicular trafficking (cytoskeleton and RAB proteins). Interestingly, some of these proteins appear to be specifically expressed in root hairs and constitute very good candidates for further studies to elucidate unique features of this single cell model.

  12. Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant

    DEFF Research Database (Denmark)

    Jakobsen, I.; Chen, B.D.; Munkvold, L.;

    2005-01-01

    dependency of a spontaneous root hairless mutant, brb, in Hordeum vulgare cv Pallas and its wild type. Both brb and wild type were grown at different soil P levels in association with different mycorrhizal fungi. P uptake of brb and wild type was similar at high P levels, but P uptake by non-mycorrhizal brb......Comparisons between plant species or cultivars differing in root hair length have indicated a major impact of root hairs on the mycorrhizal dependency of plants with respect to phosphate (P) uptake. The current study aimed to investigate this relationship by comparing directly the mycorrhizal...... plants at low P levels was substantially lower than that of the non-mycorrhizal wild-type plants. However, P uptake of the mutant was much increased by mycorrhizas and with one fungus, the additional P uptake was effectively translated into increased plant growth. Roots of the mutant contained typical...

  13. Capturing Arabidopsis Root Architecture Dynamics with root-fit Reveals Diversity in Responses to Salinity1[W][OPEN

    Science.gov (United States)

    Julkowska, Magdalena M.; Hoefsloot, Huub C.J.; Mol, Selena; Feron, Richard; de Boer, Gert-Jan; Haring, Michel A.; Testerink, Christa

    2014-01-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na+/K+ ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked. PMID:25271266

  14. Effects of lead on the root hair zone development of beech seedlings

    International Nuclear Information System (INIS)

    Lead belongs to the long-distance transported air pollutants. Thus it is found to accumulate even in forest soils. Acidification of the soil makes it more available for plants. Rising concentrations of lead in soil cause the following effects on the development of root systems of beech seedlings: the growth rates of main roots decrease, the development of root hairs is reduced and the lateral roots develop swollen tips. These symptoms indicate the beginning of damage to the root system. The consequence for the whole plant will be a loss of vitality and an increasing susceptibility to other stress factors. (orig.)

  15. Vigorous Root Growth Is a Better Indicator of Early Nutrient Uptake than Root Hair Traits in Spring Wheat Grown under Low Fertility

    OpenAIRE

    Wang, Yaosheng; Thorup-Kristensen, Kristian; Jensen, Lars Stoumann; Magid, Jakob

    2016-01-01

    A number of root and root hair traits have been proposed as important for nutrient acquisition. However, there is still a need for knowledge on which traits are most important in determining macro- and micronutrient uptake at low soil fertility. This study investigated the variations in root growth vigor and root hair length (RHL) and density (RHD) among spring wheat genotypes and their relationship to nutrient concentrations and uptake during early growth. Six spring wheat genotypes were gro...

  16. Chromate alters root system architecture and activates expression of genes involved in iron homeostasis and signaling in Arabidopsis thaliana.

    Science.gov (United States)

    Martínez-Trujillo, Miguel; Méndez-Bravo, Alfonso; Ortiz-Castro, Randy; Hernández-Madrigal, Fátima; Ibarra-Laclette, Enrique; Ruiz-Herrera, León Francisco; Long, Terri A; Cervantes, Carlos; Herrera-Estrella, Luis; López-Bucio, José

    2014-09-01

    Soil contamination by hexavalent chromium [Cr(VI) or chromate] due to anthropogenic activities has become an increasingly important environmental problem. To date few studies have been performed to elucidate the signaling networks involved on adaptive responses to (CrVI) toxicity in plants. In this work, we report that depending upon its concentration, Cr(VI) alters in different ways the architecture of the root system in Arabidopsis thaliana seedlings. Low concentrations of Cr (20-40 µM) promoted primary root growth, while concentrations higher than 60 µM Cr repressed growth and increased formation of root hairs, lateral root primordia and adventitious roots. We analyzed global gene expression changes in seedlings grown in media supplied with 20 or 140 µM Cr. The level of 731 transcripts was significantly modified in response to Cr treatment with only five genes common to both Cr concentrations. Interestingly, 23 genes related to iron (Fe) acquisition were up-regulated including IRT1, YSL2, FRO5, BHLH100, BHLH101 and BHLH039 and the master controllers of Fe deficiency responses PYE and BTS were specifically activated in pericycle cells. It was also found that increasing concentration of Cr in the plant correlated with a decrease in Fe content, but increased both acidification of the rhizosphere and activity of the ferric chelate reductase. Supply of Fe to Cr-treated Arabidopsis allowed primary root to resume growth and alleviated toxicity symptoms, indicating that Fe nutrition is a major target of Cr stress in plants. Our results show that low Cr levels are beneficial to plants and that toxic Cr concentrations activate a low-Fe rescue system. PMID:24928490

  17. From signal to form: Nod factor as a morhogenetic signal molecule to induce symbiotic responses in legume root hairs

    NARCIS (Netherlands)

    Esseling, J.J.

    2004-01-01

    In this thesis, research is presented which contributes to a better understanding of nod factor (NF) induced signalling in Iegume root hairs, leading to a successful symbiosis. We mainly use root hairs of the model Iegume Medicago truncatula ('barrel medic') as an experimental system. In the differe

  18. Diversity of fungi associated with Rhododendron argyrophyllum and R. floribundum hair roots in Sichuan, China

    OpenAIRE

    Yu Zheng; Bo Gao; Lifu Sun; Yanhong Bing; Kequan Pei

    2010-01-01

    We investigated the fungal associates of Rhododendron argyrophyllum and R. floribundum in Sichuan Province. A total of 41 fungal taxa were identified from hair roots based on ITS sequence analyses belonging to the following orders: Helotiales, Eurotiales, Pezizales, and Pleosporales in Ascomycetes, Sebacinales and Agaricales, Erythrobasidiales, and Filobasidiales in Basidiomycetes. Fungal diversity was rich, including ericoid mycorrhizal (ERM), ectomycorrhizal (ECM) and other root-associated ...

  19. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes.

    Science.gov (United States)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; de Almeida Engler, Janice; Gheysen, Godelieve

    2016-08-01

    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins during feeding site development in Arabidopsis thaliana roots. Data generated via promoter-reporter line and protein localization analyses evoke a model in which auxin is being imported at the basipetal side of the feeding site by the concerted action of the influx proteins AUX1 and LAX3, and the efflux protein PIN3. Mutants in auxin influx proteins AUX1 and LAX3 bear significantly fewer and smaller galls, revealing that auxin import into the feeding sites is needed for their development and expansion. The feeding site development in auxin export (PIN) mutants was only slightly hampered. Expression of some PINs appears to be suppressed in galls, probably to prevent auxin drainage. Nevertheless, a functional PIN4 gene seems to be a prerequisite for proper nematode development and gall expansion, most likely by removing excessive auxin to stabilize the hormone level in the feeding site. Our data also indicate a role of local auxin peaks in nematode attraction towards the root. PMID:27312670

  20. Arabidopsis thaliana AtUTr7 Encodes a Golgi-Localized UDP-Glucose/UDP-Galactose Transporter that Affects Lateral Root Emergence

    Institute of Scientific and Technical Information of China (English)

    Michael Handford; Cecilia Rodríguez-Furlán; Lorena Marchant; Marcelo Segura; Daniela Gómez; Elena Alvarez-Buyll; Guang-Yan Xiong; Markus Pauly; Ariel Orellana

    2012-01-01

    Nucleotide sugar transporters (NSTs) are antiporters comprising a gene family that plays a fundamental role in the biosynthesis of complex cell wall polysaccharides and glycoproteins in plants.However,due to the limited number of related mutants that have observable phenotypes,the biological function(s) of most NSTs in cell wall biosynthesis and assembly have remained elusive.Here,we report the characterization of AtUTr7 from Arabidopsis (Arabidopsis thaliana (L.) Heynh.),which is homologous to multi-specific UDP-sugar transporters from Drosophila melanogaster,humans,and Caenorhabditis elegans.We show that AtUTr7 possesses the common structural characteristics conserved among NSTs.Using a green fluorescent protein (GFP) tagged version,we demonstrate that AtUTr7 is localized in the Golgi apparatus.We also show that AtUTr7 is widely expressed,especially in the roots and in specific floral organs.Additionally,the results of an in vitro nucleotide sugar transport assay carried out with a tobacco and a yeast expression system suggest that AtUTr7 is capable of transferring UDP-Gal and UDP-GIc,but not a range of other UDP-and GDP-sugars,into the Golgi lumen.Mutants lacking expression of AtUTr7 exhibited an early proliferation of lateral roots as well as distorted root hairs when cultivated at high sucrose concentrations.Furthermore,the distribution of homogalacturonan with a low degree of methyl esterification differed in lateral root tips of the mutant compared to wild-type plants,although additional analytical procedures revealed no further differences in the composition of the root cell walls.This evidence suggests that the transport of UDP-Gal and UDP-GIc into the Golgi under conditions of high root biomass production plays a role in lateral root and root hair development.

  1. SAGE ANALYSIS OF TRANSCRIPTOME RESPONSES IN ARABIDOPSIS ROOTS EXPOSED TO 2,4,6-TRINITROTOLUENE

    Science.gov (United States)

    Serial Analysis of Gene Expression (SAGE) was used to profile transcript levels in Arabidopsis thaliana roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and ea...

  2. Polyethylene Glycol (PEG-Treated Hydroponic Culture Reduces Length and Diameter of Root Hairs of Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2015-10-01

    Full Text Available Wheat is an important cereal crop worldwide that often suffers from moisture deficits at the reproductive stage. Polyethylene glycol (PEG-treated hydroponic conditions create negative osmotic potential which is compared with moisture deficit stress. An experiment was conducted in a growth chamber to study the effects of PEG on root hair morphology and associated traits of wheat varieties. Plants of 13 wheat varieties were grown hydroponically and three different doses of PEG 6000 (w/v: 0% (control, 0.3% and 0.6% (less than −1 bar were imposed on 60 days after sowing for 20 days’ duration. A low PEG concentration was imposed to observe how initial low moisture stress might affect root hair development. PEG-treated hydroponic culture significantly decreased root hair diameter and length. Estimated surface area reduction of root hairs at the main axes of wheat plants was around nine times at the 0.6% PEG level compared to the control plants. Decrease in root hair diameter and length under PEG-induced culture decreased “potential” root surface area per unit length of main root axis. A negative association between panicle traits, length and dry weight and the main axis length of young roots indicated competition for carbon during their development. Data provides insight into how a low PEG level might alter root hair development.

  3. Plant-in-chip: Microfluidic system for studying root growth and pathogenic interactions in Arabidopsis

    Science.gov (United States)

    Parashar, Archana; Pandey, Santosh

    2011-06-01

    We report a microfluidic platform for the hydroponic growth of Arabidopsis plants with high-resolution visualization of root development and root-pathogen interactions. The platform comprises a set of parallel microchannels with individual input/output ports where 1-day old germinated seedlings are initially placed. Under optimum conditions, a root system grows in each microchannel and its images are recorded over a 198-h period. Different concentrations of plant growth media show different root growth characteristics. Later, the developed roots are inoculated with two plant pathogens (nematodes and zoospores) and their physicochemical interactions with the live root systems are observed.

  4. Glycerol Affects Root Development through Regulation of Multiple Pathways in Arabidopsis

    OpenAIRE

    Jun Hu; Yonghong Zhang; Jinfang Wang; Yongming Zhou

    2014-01-01

    Glycerol metabolism has been well studied biochemically. However, the means by which glycerol functions in plant development is not well understood. This study aimed to investigate the mechanism underlying the effects of glycerol on root development in Arabidopsis thaliana. Exogenous glycerol inhibited primary root growth and altered lateral root development in wild-type plants. These phenotypes appeared concurrently with increased endogenous glycerol-3-phosphate (G3P) and H2O2 contents in se...

  5. “Rhizoponics”: a novel hydroponic rhizotron for root system analyses on mature Arabidopsis thaliana plants

    OpenAIRE

    Mathieu, Laura; Lobet, Guillaume; Tocquin, Pierre; Périlleux, Claire

    2015-01-01

    Background Well-developed and functional roots are critical to support plant life and reach high crop yields. Their study however, is hampered by their underground growth and characterizing complex root system architecture (RSA) therefore remains a challenge. In the last few years, several phenotyping methods, including rhizotrons and x-ray computed tomography, have been developed for relatively thick roots. But in the model plant Arabidopsis thaliana, in vitro culture remains the easiest and...

  6. Genetic ablation of root cap cells in Arabidopsis

    OpenAIRE

    Tsugeki, Ryuji; Fedoroff, Nina V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of...

  7. Extracted hair follicle outer root sheath cell suspension for pigment cell restoration in vitiligo

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2013-01-01

    Full Text Available Vitiligo surgery has come up a long way from punch skin grafts to epidermal cell suspension and latest to the extracted hair follicle outer root sheath cell suspension (EHF-ORS-CS transplantation. The progressive development from one technique to the other is always in a quest for the best. In the latest development- EHF-ORS-CS, which is an enriched source of follicular inactive melanocyte (melanocyte stem cells, seems to be a good addition to the prevailing cell-based therapies for vitiligo; however, need to be explored further in larger, and preferably randomized blinded studies. This review discusses the principle, technical details, and stem cell composition of hair follicular outer root sheath cell suspension.

  8. ROP (Rho-Related Protein from Plants) GTPases for Spatial Control of Root Hair Morphogenesis

    Czech Academy of Sciences Publication Activity Database

    Žárský, Viktor; Fowler, J.

    Heidelberg : Springer, 2008 - (Ketelaar, T.; Emons, A.), s. 1-19 ISBN 978-3-540-79404-2. - (Plant Cell Monographs (Book Series)) R&D Projects: GA AV ČR IAA6038410; GA MŠk ME 841; GA MŠk(CZ) LC06034 Institutional research plan: CEZ:AV0Z50380511 Keywords : root hair s * Rop GTPases * cell polarity Subject RIV: EA - Cell Biology

  9. Rhizobium sp. Degradation of Legume Root Hair Cell Wall at the Site of Infection Thread Origin

    OpenAIRE

    Ridge, Robert W.; Rolfe, Barry G.

    1985-01-01

    Using a new microinoculation technique, we demonstrated that penetration of Rhizobium sp. into the host root hair cell occurs at 20 to 22 h after inoculation. It did this by dissolving the cell wall maxtrix, leaving a layer of depolymerized wall microfibrils. Colony growth pressure “stretched” the weakened wall, forming a bulge into an interfacial zone between the wall and plasmalemma. At the same time vesicular bodies, similar to plasmalemmasomes, accumulated at the penetration site in a man...

  10. Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Takao Araya; Takuya Kubo; Nicolaus von Wiren; Hideki Takahashi

    2016-01-01

    Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition, statistical modeling approaches to evaluate dynamic and temporal modulations of root system architecture in response to nutrient availability have remained as widely open and exploratory areas in root biology. In this study, we developed a statistical modeling approach to investigate modulations of root system archi-tecture in response to nitrogen availability. Mathematical models were designed for quantitative assessment of root growth and root branching phenotypes and their dynamic relationships based on hierarchical configuration of primary and lateral roots formulating the fishbone-shaped root system architecture in Arabidopsis thaliana. Time-series datasets reporting dynamic changes in root developmental traits on different nitrate or ammonium concentrations were gener-ated for statistical analyses. Regression analyses unraveled key parameters associated with:(i) inhibition of primary root growth under nitrogen limitation or on ammonium;(i ) rapid progression of lateral root emergence in response to ammonium; and (i i) inhibition of lateral root elongation in the presence of excess nitrate or ammonium. This study provides a statistical framework for interpreting dynamic modulation of root system architecture, supported by meta-analysis of datasets displaying morphological responses of roots to diverse nitrogen supplies.

  11. Root Responses to Boron Deficiency Mediated by Ethylene

    OpenAIRE

    González-Fontes, Agustín; Herrera-Rodríguez, M. B.; Martín-Rejano, Esperanza M.; Navarro-Gochicoa, M. T.; Rexach, Jesús; Camacho-Cristóbal, Juan J.

    2016-01-01

    Low boron (B) supply alters the architecture of the root system in Arabidopsis thaliana seedlings, leading to a reduction in the primary root growth and an increase in the length and number of root hairs. At short-term (hours), B deficiency causes a decrease in the cell elongation of the primary root, resulting in a lower growth. Experimental approaches using ethylene insensitive Arabidopsis mutants, inhibitors of ethylene response, and GUS reporter lines suggest that ethylene is involved in ...

  12. Auxin gradient is crucial for the maintenance of root distal stem cell identity in Arabidopsis

    OpenAIRE

    Tian, Huiyu; Niu, Tiantian; Yu, Qianqian; Quan, Taiyong; Ding, Zhaojun

    2013-01-01

    The plant hormone auxin plays a critical role in the maintenance of root stem cell niches in Arabidopsis. We have recently reported that WUSCHEL-RELATED HOMEOBOX 5 (WOX5) transcription factor modulates free auxin production in the quiescent center (QC) of the root and its expression is inhibited in a feedback-dependent manner by canonical auxin signaling that involves indole-3-acetic acid 17 (IAA17) auxin response repressor. WOX5-IAA17 feedback circuit assures the maintenance of auxin respons...

  13. The bZIP Protein VIP1 Is Involved in Touch Responses in Arabidopsis Roots.

    Science.gov (United States)

    Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo

    2016-06-01

    VIP1 is a bZIP transcription factor in Arabidopsis (Arabidopsis thaliana). VIP1 transiently accumulates in the nucleus when cells are exposed to hypoosmotic conditions, but its physiological relevance is unclear. This is possibly because Arabidopsis has approximately 10 close homologs of VIP1 and they function redundantly. To examine their physiological roles, transgenic plants overexpressing a repression domain-fused form of VIP1 (VIP1-SRDXox plants), in which the gene activation mediated by VIP1 is expected to be repressed, were generated. Because hypoosmotic stress can mimic mechanical stimuli (e.g. touch), the touch-induced root-waving phenotypes and gene expression patterns in those transgenic plants were examined. VIP1-SRDXox plants exhibited more severe root waving and lower expression of putative VIP1 target genes. The expression of the VIP1-green fluorescent protein (GFP) fusion protein partially suppressed the VIP1-SRDX-induced increase in root waving when expressed in the VIP1-SRDXox plants. These results suggest that VIP1 can suppress the touch-induced root waving. The VIP1-SRDX-induced increase in root waving was also suppressed when the synthetic auxin 2,4-dichlorophenoxy acetic acid or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, which is known to activate auxin biosynthesis, was present in the growth medium. Root cap cells with the auxin marker DR5rev::GFP were more abundant in the VIP1-SRDXox background than in the wild-type background. Auxin is transported via the root cap, and the conditions of outermost root cap layers were abnormal in VIP1-SRDXox plants. These results raise the possibility that VIP1 influences structures of the root cap and thereby regulates the local auxin responses in roots. PMID:27208231

  14. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy

    International Nuclear Information System (INIS)

    Plant root growth is known to be influenced by higher levels of atmospheric carbon dioxide (CO2). Roots of some species grown in hydroponics under elevated CO2 concentrations may be more competitive sinks for photosynthetic assimilates than roots grown under lower CO2 conditions. Root branching patterns may also be influenced by elevated CO2 concentrations. Studies have also shown that factors such as soil compaction, salinity and the availability of nitrate, phosphorous, oxygen and water also influence root growth, and the effects of higher CO2 on roots can be confounded by such environmental factors. This study evaluated the effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root growth, morphology, and architecture. Both ambient and elevated CO2 levels were used along with various sucrose concentrations. The study revealed that A. thaliana plants grown on a phytagar medium in small chambers with elevated CO2 had longer roots, more lateral root growth than plants grown in ambient CO2. Roots in elevated CO2 were found to have wider root diameters, and more secondary growth. The addition of sucrose to the media closely resembled the effects of elevated CO2. In addition, the increase in sucrose concentration had a bigger effect on root morphology under ambient, than elevated CO2. Therefore, both elevated CO2 and increased sucrose concentrations promote root growth by increasing their number, length, and diameter. The dichotomy branching index (DBI) also dropped resulting in a more dichotomous branching pattern. 34 refs., 5 figs

  15. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis

    KAUST Repository

    Li, Baohai

    2011-03-24

    Deposition of ammonium (NH4 +) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4 + is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root. © 2011 Blackwell Publishing Ltd.

  16. Arabidopsis CAPRICE (MYB) and GLABRA3 (bHLH) Control Tomato (Solanum lycopersicum) Anthocyanin Biosynthesis

    OpenAIRE

    Wada, Takuji; Kunihiro, Asuka; Tominaga-Wada, Rumi

    2014-01-01

    In Arabidopsis thaliana the MYB transcription factor CAPRICE (CPC) and the bHLH transcription factor GLABRA3 (GL3) are central regulators of root-hair differentiation and trichome initiation. By transforming the orthologous tomato genes SlTRY (CPC) and SlGL3 (GL3) into Arabidopsis, we demonstrated that these genes influence epidermal cell differentiation in Arabidopsis, suggesting that tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation. CPC a...

  17. Split-Cre complementation restores combination activity on transgene excision in hair roots of transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Mengling Wen

    Full Text Available The Cre/loxP system is increasingly exploited for genetic manipulation of DNA in vitro and in vivo. It was previously reported that inactive ''split-Cre'' fragments could restore Cre activity in transgenic mice when overlapping co-expression was controlled by two different promoters. In this study, we analyzed recombination activities of split-Cre proteins, and found that no recombinase activity was detected in the in vitro recombination reaction in which only the N-terminal domain (NCre of split-Cre protein was expressed, whereas recombination activity was obtained when the C-terminal (CCre or both NCre and CCre fragments were supplied. We have also determined the recombination efficiency of split-Cre proteins which were co-expressed in hair roots of transgenic tobacco. No Cre recombination event was observed in hair roots of transgenic tobacco when the NCre or CCre genes were expressed alone. In contrast, an efficient recombination event was found in transgenic hairy roots co-expressing both inactive split-Cre genes. Moreover, the restored recombination efficiency of split-Cre proteins fused with the nuclear localization sequence (NLS was higher than that of intact Cre in transgenic lines. Thus, DNA recombination mediated by split-Cre proteins provides an alternative method for spatial and temporal regulation of gene expression in transgenic plants.

  18. Signaling in Arabidopsis roots in response to beneficial rhizobacteria

    OpenAIRE

    Zamioudis, C.

    2012-01-01

    Root colonization by selected strains of beneficial soil-resident bacteria is known to improve plant growth, influence root system architecture and trigger a systemic immune response that is effective against a broad range of pathogens, known as induced systemic resistance (ISR). In this thesis we explore signaling mechanisms that are activated in the roots in response to ISR-inducing bacteria. We demonstrate that the plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS417 secret...

  19. Root system architecture: insights from Arabidopsis and cereal crops

    OpenAIRE

    Smith, Stephanie; De Smet, Ive

    2012-01-01

    Roots are important to plants for a wide variety of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface between the plant and various biotic and abiotic factors in the soil environment. Understanding the development and architecture of roots holds potential for the exploitation and manipulation of root characteristics to both increase food plant yield and optimize agricultural land use. This theme issue highlights the...

  20. NADH-dependent glutamate synthase participated in ammonium assimilation in Arabidopsis root

    OpenAIRE

    Kojima, Soichi; KONISHI Noriyuki; Beier, Marcel Pascal; Ishiyama, Keiki; Maru, Ikumi; Hayakawa, Toshihiko; Yamaya, Tomoyuki

    2014-01-01

    Higher plants have 2 GOGAT species, Fd-GOGAT and NADH-GOGAT. While Fd-GOGAT mainly assimilates ammonium in leaves, which is derived from photorespiration, the function of NADH-GOGAT, which is highly expressed in roots,1 needs to be elucidated. The aim of this study was to clarify the role of NADH-GOGAT in Arabidopsis roots. The supply of ammonium to the roots caused an accumulation of NADH-GOGAT, while Fd-GOGAT 1 and Fd-GOGAT 2 showed no response. A promoter–GUS fusion analysis and immunohist...

  1. Extracted Hair Follicle Outer Root Sheath Cell Suspension for Pigment Cell Restoration in Vitiligo

    OpenAIRE

    Anil Kumar; Sujata Mohanty; Kanika Sahni; Rajesh. Kumar; Somesh Gupta

    2013-01-01

    Vitiligo surgery has come up a long way from punch skin grafts to epidermal cell suspension and latest to the extracted hair follicle outer root sheath cell suspension (EHF-ORS-CS) transplantation. The progressive development from one technique to the other is always in a quest for the best. In the latest development- EHF-ORS-CS, which is an enriched source of follicular inactive melanocyte (melanocyte stem cells), seems to be a good addition to the prevailing cell-based therapies for vitilig...

  2. Real-time Analysis of Lateral Root Organogenesis in Arabidopsis

    Science.gov (United States)

    Marhavý, Peter; Benková, Eva

    2016-01-01

    Plants maintain capacity to form new organs such as leaves, flowers, lateral shoots and roots throughout their postembryonic lifetime. Lateral roots (LRs) originate from a few pericycle cells that acquire attributes of founder cells (FCs), undergo series of anticlinal divisions, and give rise to a few short initial cells. After initiation, coordinated cell division and differentiation occur, giving rise to lateral root primordia (LRP). Primordia continue to grow, emerge through the cortex and epidermal layers of the primary root, and finally a new apical meristem is established taking over the responsibility for growth of mature lateral roots [for detailed description of the individual stages of lateral root organogenesis see Malamy and Benfey (1997)]. To examine this highly dynamic developmental process and to investigate a role of various hormonal, genetic and environmental factors in the regulation of lateral root organogenesis, the real time imaging based analyses represent extremely powerful tools (Laskowski et al., 2008; De Smet et al., 2012; Marhavý et al., 2013 and 2014). Herein, we describe a protocol for real time lateral root primordia (LRP) analysis, which enables the monitoring of an onset of the specific gene expression and subcellular protein localization during primordia organogenesis, as well as the evaluation of the impact of genetic and environmental perturbations on LRP organogenesis.

  3. High Resolution Imaging of in situ Root Hair Development to Assess Oilseed Species Responses to Water Stress

    OpenAIRE

    Hammac, Warren Ashley; Pan, William; Bolton, Ronald; Koenig, Richard

    2009-01-01

    Understanding crop root morphology will enable better understanding of nutrient uptake efficiency and ultimately improve crop management. The ability to observe the rhizosphere with high resolution scanners will allow characterization of root-soil interactions in real-time. High resolution (4800 dpi) desktop scanners were buried in containers filled with soil to characterize root hair development under two water availability levels (-63 and -188 kPa) for canola (Brassica napus), camelina (C...

  4. Oscillating Gene Expression Determines Competence for Periodic Arabidopsis Root Branching

    Science.gov (United States)

    Moreno-Risueno, Miguel A.; Van Norman, Jaimie M.; Moreno, Antonio; Zhang, Jingyuan; Ahnert, Sebastian E.; Benfey, Philip N.

    2010-01-01

    Plants and animals produce modular developmental units in a periodic fashion. In plants, lateral roots form as repeating units along the root primary axis; however, the developmental mechanism regulating this process is unknown. We found that cyclic expression pulses of a reporter gene mark the position of future lateral roots by establishing prebranch sites and that prebranch site production and root bending are periodic. Microarray and promoter-luciferase studies revealed two sets of genes oscillating in opposite phases at the root tip. Genetic studies show that some oscillating transcriptional regulators are required for periodicity in one or both developmental processes. This molecular mechanism has characteristics that resemble molecular clock–driven activities in animal species. PMID:20829477

  5. Identification and functional characterization of soybean root hair microRNAs expressed in response to Bradyrhizobium japonicum infection.

    Science.gov (United States)

    Yan, Zhe; Hossain, Md Shakhawat; Valdés-López, Oswaldo; Hoang, Nhung T; Zhai, Jixian; Wang, Jun; Libault, Marc; Brechenmacher, Laurent; Findley, Seth; Joshi, Trupti; Qiu, Lijuan; Sherrier, D Janine; Ji, Tieming; Meyers, Blake C; Xu, Dong; Stacey, Gary

    2016-01-01

    Three soybean [Glycine max (L) Merr.] small RNA libraries were generated and sequenced using the Illumina platform to examine the role of miRNAs during soybean nodulation. The small RNA libraries were derived from root hairs inoculated with Bradyrhizobium japonicum (In_RH) or mock-inoculated with water (Un_RH), as well as from the comparable inoculated stripped root samples (i.e. inoculated roots with the root hairs removed). Sequencing of these libraries identified a total of 114 miRNAs, including 22 novel miRNAs. A comparison of miRNA abundance among the 114 miRNAs identified 66 miRNAs that were differentially expressed between root hairs and stripped roots, and 48 miRNAs that were differentially regulated in infected root hairs in response to B. japonicum when compared to uninfected root hairs (P ≤ 0.05). A parallel analysis of RNA ends (PARE) library was constructed and sequenced to reveal a total of 405 soybean miRNA targets, with most predicted to encode transcription factors or proteins involved in protein modification, protein degradation and hormone pathways. The roles of gma-miR4416 and gma-miR2606b during nodulation were further analysed. Ectopic expression of these two miRNAs in soybean roots resulted in significant changes in nodule numbers. miRNA target information suggested that gma-miR2606b regulates a Mannosyl-oligosaccharide 1, 2-alpha-mannosidase gene, while gma-miR4416 regulates the expression of a rhizobium-induced peroxidase 1 (RIP1)-like peroxidase gene, GmRIP1, during nodulation. PMID:25973713

  6. Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor.

    Science.gov (United States)

    Goh, Tatsuaki; Toyokura, Koichi; Wells, Darren M; Swarup, Kamal; Yamamoto, Mayuko; Mimura, Tetsuro; Weijers, Dolf; Fukaki, Hidehiro; Laplaze, Laurent; Bennett, Malcolm J; Guyomarc'h, Soazig

    2016-09-15

    Lateral root formation is an important determinant of root system architecture. In Arabidopsis, lateral roots originate from pericycle cells, which undergo a program of morphogenesis to generate a new lateral root meristem. Despite its importance for root meristem organization, the onset of quiescent center (QC) formation during lateral root morphogenesis remains unclear. Here, we used live 3D confocal imaging to monitor cell organization and identity acquisition during lateral root development. Our dynamic observations revealed an early morphogenesis phase and a late meristem formation phase as proposed in the bi-phasic growth model. Establishment of lateral root QCs coincided with this developmental phase transition. QC precursor cells originated from the outer layer of stage II lateral root primordia, within which the SCARECROW (SCR) transcription factor was specifically expressed. Disrupting SCR function abolished periclinal divisions in this lateral root primordia cell layer and perturbed the formation of QC precursor cells. We conclude that de novo QC establishment in lateral root primordia operates via SCR-mediated formative cell division and coincides with the developmental phase transition. PMID:27510971

  7. Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter

    Indian Academy of Sciences (India)

    Virupapuram Vijaybhaskar; Veeraputhiran Subbiah; Jagreet Kaur; Pagadala Vijayakumari; Imran Siddiqi

    2008-06-01

    A set of Ds-element enhancer trap lines of Arabidopsis thaliana was generated and screened for expression patterns leading to the identification of a line that showed root-specific expression of the bacterial uidA reporter gene encoding -glucuronidase (GUS). The insertion of the Ds element was found to be immediately downstream to a glycosyltransferase gene At1g73160. Analysis of At1g73160 expression showed that it is highly root-specific. Isolation and characterization of the upstream region of the At1g73160 gene led to the definition of a 218 bp fragment that is sufficient to confer root-specific expression. Sequence analysis revealed that several regulatory elements were implicated in expression in root tissue. The promoter identified and characterized in this study has the potential to be applied in crop biotechnology for directing the root-specific expression of transgenes.

  8. An auxin-responsive endogenous peptide regulates root development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Fengxi Yang; Yu Song; Hao Yang; Zhibin Liu; Genfa Zhu; Yi Yang

    2014-01-01

    Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous polypeptide 1 (AREP1), which is induced by auxin, and mediates root development in Arabidopsis. Expression of AREP1 was specific to the cotyledon and to root and shoot meristem tissues. Amounts of AREP1 transcripts and AREP1-green fluorescent protein fusion proteins were elevated in response to indoleacetic acid treatment. Suppression of AREP1 through RNAi silencing resulted in reduction of primary root length, increase of lateral root number, and expansion of adventitious roots, compared to the observations in wild-type plants in the presence of auxin. By contrast, transgenic plants overexpressing AREP1 showed enhanced growth of the primary root under auxin treatment. Additionally, rootmorphology, including lateral root number and adventitious roots, differed greatly between transgenic and wildtype plants. Further analysis indicated that the expression of auxin-responsive genes, such as IAA3, IAA7, IAA17, GH3.2, GH3.3, and SAUR-AC1, was significantly higher in AREP1 RNAi plants, and was slightly lower in AREP1 overexpressing plants than in wildtype plants. These results suggest that the novel endogenous peptide AREP1 plays an important role in the process of auxinmediated root development.

  9. Ergosterol content in ericaceous hair roots correlates with dark septate endophytes but not with ericoid mycorrhizal colonization

    DEFF Research Database (Denmark)

    Olsrud, Maria; Michelsen, Anders; Wallander, Håkon

    2007-01-01

    The relationship between ergosterol content in ericaceous hair roots and ericoid mycorrhizal (ErM) colonization versus dark septate endophytic (DSE) hyphal colonization was examined in a dwarf shrub-dominated subarctic mire in Northern Sweden. Ergosterol content in hair roots did not correlate with...... under natural conditions. It also suggests the possibility of using ergosterol as an estimate of DSE hyphal colonization in ericaceous dwarf shrubs. This study has implications for the interpretation of results in field studies where ergosterol was used as a sole proxy for ErM colonization....

  10. Barley root hair growth and morphology in soil, sand, and water solution media and relationship with nickel toxicity.

    Science.gov (United States)

    Lin, Yanqing; Allen, Herbert E; Di Toro, Dominic M

    2016-08-01

    Barley, Hordeum vulgare (Doyce), was grown in the 3 media of soil, hydroponic sand solution (sand), and hydroponic water solution (water) culture at the same environmental conditions for 4 d. Barley roots were scanned, and root morphology was analyzed. Plants grown in the 3 media had different root morphology and nickel (Ni) toxicity response. Root elongations and total root lengths followed the sequence soil > sand > water. Plants grown in water culture were more sensitive to Ni toxicity and had greater root hair length than those from soil and sand cultures, which increased root surface area. The unit root surface area as root surface area per centimeter of length of root followed the sequence water > sand > soil and was found to be related with root elongation. Including the unit root surface area, the difference in root elongation and 50% effective concentration were diminished, and percentage of root elongations can be improved with a root mean square error approximately 10% for plants grown in different media. Because the unit root surface area of plants in sand culture is closer to that in soil culture, the sand culture method, not water culture, is recommended for toxicity parameter estimation. Environ Toxicol Chem 2016;35:2125-2133. © 2016 SETAC. PMID:26841366

  11. Piriformospora indica antagonizes cyst nematode infection and development in Arabidopsis roots

    OpenAIRE

    Daneshkhah, R.; Cabello, S.; Rozanska, E.; Sobczak, M.; Grundler, F. M. W.; Wieczorek, K.; Hofmann, J.

    2013-01-01

    The beneficial endophytic fungus Piriformospora indica colonizes the roots of many plant species, including the model plant Arabidopsis thaliana. Its colonization promotes plant growth, development, and seed production as well as resistance to various biotic and abiotic stresses. In the present work, P. indica was tested as potential antagonist of the sedentary plant-parasitic nematode Heterodera schachtii. This biotrophic cyst-forming nematode induces severe host plant damage by changing the...

  12. Regulation of stem cell maintenance and cell differentiation states in Arabidopsis root development

    OpenAIRE

    Luijten, M.

    2009-01-01

    The experiments presented in this thesis topic the role of transcription factor family members in regulating growth, development, and maintenance of the Arabidopsis root. We demonstrate a conserved homeobox transcription factor regulates distal stem cell maintenance and expand the notion that the PLETHORA (PLT) family of transcription factors specifically regulates stem cell properties to a significantly broader role. In addition, we show that members of the PLT gene family can activate trans...

  13. Induced Systemic Resistance in Arabidopsis thaliana in Response to Root Inoculation with Pseudomonas fluorescens CHA0

    OpenAIRE

    Iavicoli, Annalisa; Boutet, Emmanuel; Buchala, Antony; Métraux, Jean-Pierre

    2006-01-01

    Root inoculation of Arabidopsis thaliana ecotype Columbia with Pseudomonas fluorescens CHA0r partially protected leaves from the oomycete Peronospora parasitica. The molecular determinants of Pseudomonas fluorescens CHA0r for this induced systemic resistance (ISR) were investigated, using mutants derived from strain CHA0: CHA400 (pyoverdine deficient), CHA805 (exoprotease deficient), CHA77 (HCN deficient), CHA660 (pyoluteorin deficient), CHA631 (2,4-diacetylphloroglucinol [DAPG] deficient), a...

  14. Lipochito-oligosaccharides re-initiate root hair tip growth in Vicia sativa with high calcium and spectrin-like antigen at the tip

    NARCIS (Netherlands)

    Ruijter, de N.C.A.; Rook, M.B.; Bisseling, T.; Emons, A.M.C.

    1998-01-01

    Lipochitooligosaccharides, Nod factors secreted by Rhizobium bacteria, are signal molecules that induce deformation of root hairs of their host plant. A bioassay was used for deformation, and the cytological changes induced by specific lipochitooligosaccharides in root hairs of Vicia sativa L. (vetc

  15. Integrating roots into a whole plant network of flowering time genes in Arabidopsis thaliana.

    Science.gov (United States)

    Bouché, Frédéric; D'Aloia, Maria; Tocquin, Pierre; Lobet, Guillaume; Detry, Nathalie; Périlleux, Claire

    2016-01-01

    Molecular data concerning the involvement of roots in the genetic pathways regulating floral transition are lacking. In this study, we performed global analyses of the root transcriptome in Arabidopsis in order to identify flowering time genes that are expressed in the roots and genes that are differentially expressed in the roots during the induction of flowering. Data mining of public microarray experiments uncovered that about 200 genes whose mutations are reported to alter flowering time are expressed in the roots (i.e. were detected in more than 50% of the microarrays). However, only a few flowering integrator genes passed the analysis cutoff. Comparison of root transcriptome in short days and during synchronized induction of flowering by a single 22-h long day revealed that 595 genes were differentially expressed. Enrichment analyses of differentially expressed genes in root tissues, gene ontology categories, and cis-regulatory elements converged towards sugar signaling. We concluded that roots are integrated in systemic signaling, whereby carbon supply coordinates growth at the whole plant level during the induction of flowering. This coordination could involve the root circadian clock and cytokinin biosynthesis as a feed forward loop towards the shoot. PMID:27352932

  16. Hydrogen peroxide is involved in cGMP modulating the lateral root development of Arabidopsis thaliana

    OpenAIRE

    Li, Jisjeng; Jia, Honglei

    2013-01-01

    3′,5′-cyclic guanosine monophosphate (cGMP) and hydrogen peroxide (H2O2) function as the important signaling molecule which promote the lateral root development of Arabidopsis thaliana. In this study, interestingly, application of 8-Br-cGMP (the membrane permeable cGMP analog) promoted the endogenous H2O2 production. In addition, the decrease of endogenous H2O2 also inhibited the effect of cGMP on the lateral root development. Thus, H2O2 maybe act as a downstream signaling of cGMP molecule wh...

  17. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Lee-Ho, E.; Walton, L.J.; Reid, D.M.; Yeung, E.C.; Kurepin, L.V. [Calgary Univ., AB (Canada). Dept. of Biology

    2007-03-15

    Plant root growth is known to be influenced by higher levels of atmospheric carbon dioxide (CO{sub 2}). Roots of some species grown in hydroponics under elevated CO{sub 2} concentrations may be more competitive sinks for photosynthetic assimilates than roots grown under lower CO{sub 2} conditions. Root branching patterns may also be influenced by elevated CO{sub 2} concentrations. Studies have also shown that factors such as soil compaction, salinity and the availability of nitrate, phosphorous, oxygen and water also influence root growth, and the effects of higher CO{sub 2} on roots can be confounded by such environmental factors. This study evaluated the effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root growth, morphology, and architecture. Both ambient and elevated CO{sub 2} levels were used along with various sucrose concentrations. The study revealed that A. thaliana plants grown on a phytagar medium in small chambers with elevated CO{sub 2} had longer roots, more lateral root growth than plants grown in ambient CO{sub 2}. Roots in elevated CO{sub 2} were found to have wider root diameters, and more secondary growth. The addition of sucrose to the media closely resembled the effects of elevated CO{sub 2}. In addition, the increase in sucrose concentration had a bigger effect on root morphology under ambient, than elevated CO{sub 2}. Therefore, both elevated CO{sub 2} and increased sucrose concentrations promote root growth by increasing their number, length, and diameter. The dichotomy branching index (DBI) also dropped resulting in a more dichotomous branching pattern. 34 refs., 5 figs.

  18. Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress

    OpenAIRE

    Schmid, Christoph; Bauer, Sibylle; Müller, Benedikt; Bartelheimer, Maik

    2013-01-01

    Root-root interactions are much more sophisticated than previously thought, yet the mechanisms of belowground neighbor perception remain largely obscure. Genome-wide transcriptome analyses allow detailed insight into plant reactions to environmental cues. A root interaction trial was set up to explore both morphological and whole genome transcriptional responses in roots of Arabidopsis thaliana in the presence or absence of an inferior competitor, Hieracium pilosella. Neighbor perception was ...

  19. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress

    DEFF Research Database (Denmark)

    He, Xiaoyan; Zeng, Jianbin; Cao, Fangbin; Ahmed, Imrul Mosaddek; Zhang, Guoping; Vincze, Eva; Wu, Feibo

    2015-01-01

    Tibetan wild barley is a treasure trove of useful genes for crop improvement including abiotic stress tolerance, like drought. Root hair of single-celled structures plays an important role in water and nutrition uptake. Polyethylene-glycol-induced drought stress hydroponic/petri-dish experiments...

  20. Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis.

    Science.gov (United States)

    Buer, Charles S; Sukumar, Poornima; Muday, Gloria K

    2006-04-01

    Plant organs change their growth direction in response to reorientation relative to the gravity vector. We explored the role of ethylene in Arabidopsis (Arabidopsis thaliana) root gravitropism. Treatment of wild-type Columbia seedlings with the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC) reduced root elongation and gravitropic curvature. The ethylene-insensitive mutants ein2-5 and etr1-3 had wild-type root gravity responses, but lacked the growth and gravity inhibition by ACC found in the wild type. We examined the effect of ACC on tt4(2YY6) seedlings, which have a null mutation in the gene encoding chalcone synthase, the first enzyme in flavonoid synthesis. The tt4(2YY6) mutant makes no flavonoids, has elevated indole-3-acetic acid transport, and exhibits a delayed gravity response. Roots of tt4(2YY6), the backcrossed line tt4-2, and two other tt4 alleles had wild-type sensitivity to growth inhibition by ACC, whereas the root gravitropic curvature of these tt4 alleles was much less inhibited by ACC than wild-type roots, suggesting that ACC may reduce gravitropic curvature by altering flavonoid synthesis. ACC treatment induced flavonoid accumulation in root tips, as judged by a dye that becomes fluorescent upon binding flavonoids in wild type, but not in ein2-5 and etr1-3. ACC also prevented a transient peak in flavonoid synthesis in response to gravity. Together, these experiments suggest that elevated ethylene levels negatively regulate root gravitropism, using EIN2- and ETR1-dependent pathways, and that ACC inhibition of gravity response occurs through altering flavonoid synthesis. PMID:16489132

  1. Distribution and regulation of auxin in Arabidopsis root cells

    OpenAIRE

    Petersson, Sara

    2011-01-01

    The plant hormone auxin (IAA) coordinates many of the important processes in plant development. For example, IAA is critical for normal embryogenesis, root development, cell elongation, and the tropic responses such as gravitropism and phototropism. IAA gradients are established and maintained in many tissues and it is thought that these gradients act as developmental cues, determining the fate of cells and tissues. Descriptions of auxin distribution patterns with cellular resolution h...

  2. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  3. Water Deficit Enhances C Export to the Roots in Arabidopsis thaliana Plants with Contribution of Sucrose Transporters in Both Shoot and Roots.

    Science.gov (United States)

    Durand, Mickaël; Porcheron, Benoît; Hennion, Nils; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie

    2016-03-01

    Root high plasticity is an adaptation to its changing environment. Water deficit impairs growth, leading to sugar accumulation in leaves, part of which could be available to roots via sucrose (Suc) phloem transport. Phloem loading is widely described in Arabidopsis (Arabidopsis thaliana), while unloading in roots is less understood. To gain information on leaf-to-root transport, a soil-based culture system was developed to monitor root system architecture in two dimensions. Under water deficit (50% of soil water-holding capacity), total root length was strongly reduced but the depth of root foraging and the shape of the root system were less affected, likely to improve water uptake. (14)CO2 pulse-chase experiments confirmed that water deficit enhanced carbon (C) export to the roots, as suggested by the increased root-to-shoot ratio. The transcript levels of AtSWEET11 (for sugar will eventually be exported transporter), AtSWEET12, and AtSUC2 (for Suc carrier) genes, all three involved in Suc phloem loading, were significantly up-regulated in leaves of water deficit plants, in accordance with the increase in C export from the leaves to the roots. Interestingly, the transcript levels of AtSUC2 and AtSWEET11 to AtSWEET15 were also significantly higher in stressed roots, underlying the importance of Suc apoplastic unloading in Arabidopsis roots and a putative role for these Suc transporters in Suc unloading. These data demonstrate that, during water deficit, plants respond to growth limitation by allocating relatively more C to the roots to maintain an efficient root system and that a subset of Suc transporters is potentially involved in the flux of C to and in the roots. PMID:26802041

  4. Alkylresorcinol Synthases Expressed in Sorghum Bicolor Root Hairs Play an Essential Role in the Biosynthesis of the Allelopathic Benzoquinone Sorgoleone

    Science.gov (United States)

    Sorghum bicolor is considered to be an allelopathic crop species, producing phytotoxins such as the lipid benzoquinone sorgoleone, which likely accounts for many of the allelopathic properties of Sorghum spp. Current evidence suggests that sorgoleone biosynthesis occurs exclusively in root hair cel...

  5. Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress.

    Science.gov (United States)

    Schmid, Christoph; Bauer, Sibylle; Müller, Benedikt; Bartelheimer, Maik

    2013-01-01

    Root-root interactions are much more sophisticated than previously thought, yet the mechanisms of belowground neighbor perception remain largely obscure. Genome-wide transcriptome analyses allow detailed insight into plant reactions to environmental cues. A root interaction trial was set up to explore both morphological and whole genome transcriptional responses in roots of Arabidopsis thaliana in the presence or absence of an inferior competitor, Hieracium pilosella. Neighbor perception was indicated by Arabidopsis roots predominantly growing away from the neighbor (segregation), while solitary plants placed more roots toward the middle of the pot. Total biomass remained unaffected. Database comparisons in transcriptome analysis revealed considerable similarity between Arabidopsis root reactions to neighbors and reactions to pathogens. Detailed analyses of the functional category "biotic stress" using MapMan tools found the sub-category "pathogenesis-related proteins" highly significantly induced. A comparison to a study on intraspecific competition brought forward a core of genes consistently involved in reactions to neighbor roots. We conclude that beyond resource depletion roots perceive neighboring roots or their associated microorganisms by a relatively uniform mechanism that involves the strong induction of pathogenesis-related proteins. In an ecological context the findings reveal that belowground neighbor detection may occur independently of resource depletion, allowing for a time advantage for the root to prepare for potential interactions. PMID:23967000

  6. Evaluation and Selection of Common Bean (Phaseolus Vulgaris L.) Genotypes for Root Traits Associated with Phosphorus (P) Acquisition Efficiency and the Use of 32P Isotope in Studies on P Uptake by Root Hairs

    International Nuclear Information System (INIS)

    Low phosphorus (P) availability is one of the main edaphic constraints limiting crop production and productivity in most of the tropical agro-ecosystems. Several root traits are known to be associated with P acquisition efficiency in low P soils. These root traits include root hairs. Computer modeling, laboratory and field studies show the depletion of 32P-phosphate around roots and that the depletion zone is influenced by the length and density of root hairs. We conducted a study involving a series of experiments with the objective of evaluating the variability of root traits associated with P uptake efficiency among common bean (Phaseolus vulgaris L.) genotypes, and to understand the mechanisms of long root hairs leading to the increase in P uptake in common bean. The study included (a) the screening of common bean genotypes in the laboratory and in the field for root traits, and (b) the use of radioactive phosphorus (32P) in the experiments conducted in the greenhouse. For laboratory screening, seedlings were germinated in paper rolls in a growth media for 3 days before evaluation for basal root whorl number (BRWN), basal root number (BRN), basal root growth angle (BRGA) and root hair length (RHL). Common bean genotypes were planted in the field with low P for 45 days after planting (DAP) before evaluation. For the 32P study four contrasting genotypes for root hairs were grown for 28 DAP in the greenhouse using 15-20 liter pots filled with a mixture of sand and vermiculate as the growth media. The radioactive P was incorporated in the growth medium in the form of alumina-P fertilizer. Normal phosphorus (non-radioactive 31P) was included in the nutrient solution in the form of calcium phosphate, Ca3(PO4)2, and supplied through irrigation. Screened genotypes exhibited different root traits associated with P uptake efficiency, and that a given genotype can have one or more root traits responsible for it P uptake efficiency. Data analysis of radioactivity present in

  7. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis

    Science.gov (United States)

    MacCleery, S. A.; Kiss, J. Z.

    1999-01-01

    Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.

  8. Proteomic alterations in root tips of Arabidopsis thaliana seedlings under altered gravity conditions

    Science.gov (United States)

    Zheng, H. Q.; Wang, H.

    Gravity has a profound influence on plant growth and development Removed the influence of gravitational acceleration by spaceflight caused a wide range of cellular changes in plant Whole seedling that germinated and grown on clinostats showed the absent of gravitropism At the cellular level clinostat treatment has specific effects on plant cells such as induce alterations in cell wall composition increase production of heat-soluble proteins impact on the cellular energy metabolism facilitate a uniform distribution of plastids amyloplasts and increase number and volume of nucleoli A number of recent studies have shown that the exposure of Arabidopsis seedlings and callus cells to gravity stimulation hyper g-forces or clinostat rotation induces alterations in gene expression In our previous study the proteome of the Arabidopsis thaliana callus cells were separated by high resolution two-dimensional electrophoresis 2-DE Image analysis revealed that 80 protein spots showed quantitative and qualitative variations after exposure to clinostat rotation treatment We report here a systematic proteomic approach to investigate the altered gravity responsive proteins in root tip of Arabidopsis thaliana cv Landsberg erecta Three-day-old seedlings were exposed for 12h to a horizontal clinostat rotation H simulated weightlessness altered g-forces by centrifugation 7g hypergravity a vertical clinostat rotation V clinostat control or a stationary control grown conditions Total proteins of roots were extracted

  9. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Natacha Bodenhausen

    Full Text Available Diverse communities of bacteria inhabit plant leaves and roots and those bacteria play a crucial role for plant health and growth. Arabidopsis thaliana is an important model to study plant pathogen interactions, but little is known about its associated bacterial community under natural conditions. We used 454 pyrosequencing to characterize the bacterial communities associated with the roots and the leaves of wild A. thaliana collected at 4 sites; we further compared communities on the outside of the plants with communities in the endophytic compartments. We found that the most heavily sequenced bacteria in A. thaliana associated community are related to culturable species. Proteobacteria, Actinobacteria, and Bacteroidetes are the most abundant phyla in both leaf and root samples. At the genus level, sequences of Massilia and Flavobacterium are prevalent in both samples. Organ (leaf vs root and habitat (epiphytes vs endophytes structure the community. In the roots, richness is higher in the epiphytic communities compared to the endophytic compartment (P = 0.024, while the reverse is true for the leaves (P = 0.032. Interestingly, leaf and root endophytic compartments do not differ in richness, diversity and evenness, while they differ in community composition (P = 0.001. The results show that although the communities associated with leaves and roots share many bacterial species, the associated communities differ in structure.

  10. Effect of Auxin Treatment on Root Hair Formation and Aquaporins Genes Expression in Root Hair of Rice%IAA对水稻根毛形成与水通道蛋白基因表达关系的研究

    Institute of Scientific and Technical Information of China (English)

    莫亿伟; 李夏杰; 王海; 陈泽恺; 杨国; 王尉

    2015-01-01

    起着重要作用,同时根毛水通道蛋白基因表达量增加,提高了根尖相对含水量,减缓了气培条件下水稻根尖的水分胁迫。%Objective]To explore the effect of auxin (IAA) and its polar auxin transport carriers on the formation of rice root hair and genetic expression of aquaporins.[Method]The varieties of wild-typeJaponicarice Zhonghua11 and its over-expressed OsPIN1a transgenic rice primary root were used in this paper. A small agar block which contains different concentrations of IAA and combination of IAA and inhibitors of polar auxin transport efflux carrier TIBA (2, 3, 5-Triiodobenzoic acid), NPA (N-1-naphthylphthalamic acid) or polar auxin transport influx carrier CHPAA (3-Chloro-4-hydroxyphenylacetic acid) was affixed to the lateral side of rice root tip when the primary root reached 0.5—1.0 cm in length in a aeroponic and dark culture. After a 12h treatment, the root hair length, root growth rate, root hair density and relative water content in rice roots were detected. The photos were taken by confocal laser scanning microscope (Zeiss Axiophot microscope with a Qimaging Retiga 1300 12-bit monochrome CCD camera with Open Lab v3.0.9) to observe subcellular localization of OsPIN1a-GFPin the tip and hair of the rice root. In addition, semi-quantitative RT-PCR was applied to detecting theOsPIN1a and aquaporins genes expression before and after the formation of the rice root hair.[Result]The results showed that the length and density of the root hair enhanced correspondingly with an increase in IAA concentration range from 0 to 5.0 mg·L-1, and 2.5 mg·L-1 IAA had an optimal effect on inducing the formation of root hair. However, as IAA exceeds 5.0 mg·L-1, the increase in root hair was insignificant and thus the primary root growth was severely inhibited. The new root hair only appeared when agar was attached to the meristematic zone of root tip but not formed in the ripe areas of the primary root. Combined treatment with IAA

  11. Changes in cell ultrastructure and morphology of Arabidopsis thaliana roots after coumarins treatment

    Directory of Open Access Journals (Sweden)

    Ewa Kupidłowska

    2014-02-01

    Full Text Available The ultrastructure and morphology of roots treated with coumarin and umbelliferone as well as the reversibility of the coumarins effects caused by exogenous GA, were studied in Arabidopsis thaliana. Both coumarins suppressed root elongation and appreciably stimulated radial expansion of epidermal and cortical cells in the upper part of the meristem and in the elongation zone. The gibberellic acid applied simultaneously with coumarins decreased their inhibitory effect on root elongation and reduced cells swelling.Microscopic observation showed intensive vacuolization of cells and abnormalities in the structure of the Golgi stacks and the nuclear envelope. The detection of active acid phosphatase in the cytosol of swollen cells indicated increased membrane permeability. Significant abnormalities of newly formed cell walls, e.g. the discontinuity of cellulose layer, uncorrect position of walls and the lack of their bonds with the mother cell wall suggest that coumarins affected the cytoskeleton.

  12. Hypoxia up-regulates mitochondrial genome-encoded transcripts in Arabidopsis roots.

    Science.gov (United States)

    Hameed, Muhammad Waqar

    2016-04-28

    Plants are frequently exposed to limitations in oxygen availability during their lifetime. During evolution, they have developed a number of physiological and morphological adaptations to tolerate oxygen and other stress conditions. These include regulation of growth by gene expression and ATP generation. The regulation of nuclear genes after hypoxia and anoxia is well studied; however, the regulation of mitochondrial genes in response to oxygen stress has not been characterized to date. Therefore, we have established an Arabidopsis mitochondrial genome-specific microarray that accommodates probes for all mitochondrial DNA-encoded genes and conserved open reading frames. Our analysis showed an up-regulation of mitochondrial transcripts in Arabidopsis roots after 48 h of hypoxia. Since no significant difference was detected in the expression of mitochondrial RNA polymerases or the mitochondrial DNA content per cell, we propose a transcriptional mode of induction of mitochondrial gene expression under hypoxia. PMID:27002184

  13. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy.

    Directory of Open Access Journals (Sweden)

    Alex Costa

    Full Text Available Selective Plane Illumination Microscopy (SPIM is an imaging technique particularly suited for long term in-vivo analysis of transparent specimens, able to visualize small organs or entire organisms, at cellular and eventually even subcellular resolution. Here we report the application of SPIM in Calcium imaging based on Förster Resonance Energy Transfer (FRET. Transgenic Arabidopsis plants expressing the genetically encoded-FRET-based Ca(2+ probe Cameleon, in the cytosol or nucleus, were used to demonstrate that SPIM enables ratiometric fluorescence imaging at high spatial and temporal resolution, both at tissue and single cell level. The SPIM-FRET technique enabled us to follow nuclear and cytosolic Ca(2+ dynamics in Arabidopsis root tip cells, deep inside the organ, in response to different stimuli. A relevant physiological phenomenon, namely Ca(2+ signal percolation, predicted in previous studies, has been directly visualized.

  14. Cyclic mononucleotides modulate potassium and calcium flux responses to H2O2 in Arabidopsis roots

    KAUST Repository

    Ordoñez, Natalia Maria

    2014-02-13

    Cyclic mononucleotides are messengers in plant stress responses. Here we show that hydrogen peroxide (H2O2) induces rapid net K+-efflux and Ca2+-influx in Arabidopsis roots. Pre-treatment with either 10 μM cAMP or cGMP for 1 or 24 h does significantly reduce net K+-leakage and Ca2+-influx, and in the case of the K+-fluxes, the cell permeant cyclic mononucleotides are more effective. We also examined the effect of 10 μM of the cell permeant 8-Br-cGMP on the Arabidopsis microsomal proteome and noted a specific increase in proteins with a role in stress responses and ion transport, suggesting that cGMP is sufficient to directly and/or indirectly induce complex adaptive changes to cellular stresses induced by H2O2. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes

    NARCIS (Netherlands)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; Almeida Engler, De Janice; Gheysen, Godelieve

    2016-01-01

    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins dur

  16. ABA-mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Li Yang

    2014-12-01

    Full Text Available Although research has determined that reactive oxygen species (ROS function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1. We also found that ABA inhibits the expression of PLETHORA1 (PLT1 and PLT2, and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis.

  17. Inference of the Genetic Network Regulating Lateral Root Initiation in Arabidopsis thaliana

    KAUST Repository

    Muraro, D.

    2013-01-01

    Regulation of gene expression is crucial for organism growth, and it is one of the challenges in systems biology to reconstruct the underlying regulatory biological networks from transcriptomic data. The formation of lateral roots in Arabidopsis thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based on different approaches, for which ready-to-use software is available. We show that their performance improves with the network size and the inclusion of mutants. We then analyze two sets of genes, whose activity is likely to be relevant to lateral root initiation in Arabidopsis, and assess causality of their regulatory interactions by integrating sequence analysis with the intersection of the results of the best performing methods on time series and mutants. The methods applied capture known interactions between genes that are candidate regulators at early stages of development. The network inferred from genes significantly expressed during lateral root formation exhibits distinct scale free, small world and hierarchical properties and the nodes with a high out-degree may warrant further investigation. © 2004-2012 IEEE.

  18. The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana

    KAUST Repository

    Muraro, Daniele

    2013-01-01

    Auxin and cytokinin are key hormonal signals that control the cellular architecture of the primary root and the initiation of new lateral root organs in the plant Arabidopsis thaliana. Both developmental processes are regulated by cross-talk between these hormones and their signalling pathways. In this paper, sub-cellular and multi-cellular mathematical models are developed to investigate how interactions between auxin and cytokinin influence the size and location of regions of division and differentiation within the primary root, and describe how their cross-regulation may cause periodic branching of lateral roots. We show how their joint activity may influence tissue-specific oscillations in gene expression, as shown in Moreno-Risueno et al. (2010) and commented upon in Traas and Vernoux (2010), and we propose mechanisms that may generate synchronisation of such periodic behaviours inside a cell and with its neighbours. Using a multi-cellular model, we also analyse the roles of cytokinin and auxin in specifying the three main regions of the primary root (elongation, transition and division zones), our simulation results being in good agreement with independent experimental observations. We then use our model to generate testable predictions concerning the effect of varying the concentrations of the auxin efflux transporters on the sizes of the different root regions. In particular, we predict that over-expression of the transporters will generate a longer root with a longer elongation zone and a smaller division zone than that of a wild type root. This root will contain fewer cells than its wild type counterpart. We conclude that our model can provide a useful tool for investigating the response of cell division and elongation to perturbations in hormonal signalling. © 2012 Elsevier Ltd.

  19. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.

    Directory of Open Access Journals (Sweden)

    Dirk Maass

    Full Text Available BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the

  20. Apoplastic Alkalinization Is Instrumental for the Inhibition of Cell Elongation in the Arabidopsis Root by the Ethylene Precursor 1-Aminocyclopropane-1-Carboxylic Acid

    NARCIS (Netherlands)

    Staal, Marten; De Cnodder, Tinne; Simon, Damien; Vandenbussche, Filip; Van Der Straeten, Dominique; Verbelen, Jean-Pierre; Elzenga, Theo; Vissenberg, Kris

    2011-01-01

    In Arabidopsis (Arabidopsis thaliana; Columbia-0) roots, the so-called zone of cell elongation comprises two clearly different domains: the transition zone, a postmeristematic region (approximately 200-450 mu m proximal of the root tip) with a low rate of elongation, and a fast elongation zone, the

  1. HAWAIIAN SKIRT regulates the quiescent center-independent meristem activity in Arabidopsis roots.

    Science.gov (United States)

    Kim, Eun-Sol; Choe, Goh; Sebastian, Jose; Ryu, Kook Hui; Mao, Linyong; Fei, Zhangjun; Lee, Ji-Young

    2016-06-01

    Root apical meristem (RAM) drives post-embryonic root growth by constantly supplying cells through mitosis. It is composed of stem cells and their derivatives, the transit-amplifying (TA) cells. Stem cell organization and its maintenance in the RAM are well characterized, however, their relationships with TA cells remain unclear. SHORTROOT (SHR) is critical for root development. It patterns cell types and promotes the post-embryonic root growth. Defective root growth in the shr has been ascribed to the lack of quiescent center (QC), which maintains the surrounding stem cells. However, our recent investigation indicated that SHR maintains TA cells independently of QC by modulating PHABULOSA (PHB) through miRNA165/6. PHB controls TA cell activity by modulating cytokinin levels and type B Arabidopsis Response Regulator activity, in a dosage-dependent manner. To further understand TA cell regulation, we conducted a shr suppressor screen. With an extensive mutagenesis screen followed by genome sequencing of a pooled F2 population, we discovered two suppressor alleles with mutations in HAWAIIAN SKIRT (HWS). HWS, encoding an F-box protein with kelch domain, is expressed, partly depending on SHR, in the root cap and in the pericycle of the differentiation zone. Interestingly, root growth in the shr hws was more active than the wild-type roots for the first 7 days after germination, without recovering QC. Contrary to shr phb, shr hws did not show a recovery of cytokinin signaling. These indicate that HWS affects QC-independent TA cell activities through a pathway distinctive from PHB. PMID:26968317

  2. Dysfunctional mitochondria regulate the size of root apical meristem and leaf development in Arabidopsis

    Science.gov (United States)

    Hsieh, Wei-Yu; Liao, Jo-Chien; Hsieh, Ming-Hsiun

    2015-01-01

    Mitochondria play an important role in maintaining metabolic and energy homeostasis in the plant cell. Thus, perturbation of mitochondrial structure and function will affect plant growth and development. Arabidopsis slow growth3 (slo3) is defective in At3g61360 that encodes a pentatricopeptide repeat (PPR) protein. Analysis of slo3 mitochondrial RNA metabolism revealed that the splicing of nad7 intron 2 is impaired, which leads to a dramatic reduction in complex I activity. So the SLO3 PPR protein is a splicing factor that is required for the removal of nad7 intron 2 in Arabidopsis. The slo3 mutant plants have obvious phenotypes with severe growth retardation and delayed development. The size of root apical meristem (RAM) is reduced and the production of meristem cells is decreased in slo3. Furthermore, the rosette leaves of slo3 are curled or crinkled, which may be derived from uneven growth of the leaf surface. The underlying mechanisms by which dysfunctional mitochondria affect these growth and developmental phenotypes have yet to be established. Nonetheless, plant hormone auxin is known to play an important role in orchestrating the development of RAM and leaf shape. It is possible that dysfunctional mitochondria may interact with auxin signaling pathways to regulate the boundary of RAM and the cell division arrest front during leaf growth in Arabidopsis. PMID:26237004

  3. The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis.

    Science.gov (United States)

    Raines, Tracy; Shanks, Carly; Cheng, Chia-Yi; McPherson, Duncan; Argueso, Cristiana T; Kim, Hyo J; Franco-Zorrilla, José M; López-Vidriero, Irene; Solano, Roberto; Vaňková, Radomíra; Schaller, G Eric; Kieber, Joseph J

    2016-01-01

    The cytokinin response factors (CRFs) are a group of related AP2/ERF transcription factors that are transcriptionally induced by cytokinin. Here we explore the role of the CRFs in Arabidopsis thaliana growth and development by analyzing lines with decreased and increased CRF function. While single crf mutations have no appreciable phenotypes, disruption of multiple CRFs results in larger rosettes, delayed leaf senescence, a smaller root apical meristem (RAM), reduced primary and lateral root growth, and, in etiolated seedlings, shorter hypocotyls. In contrast, overexpression of CRFs generally results in the opposite phenotypes. The crf1,2,5,6 quadruple mutant is embryo lethal, indicating that CRF function is essential for embryo development. Disruption of the CRFs results in partially insensitivity to cytokinin in a root elongation assay and affects the basal expression of a significant number of cytokinin-regulated genes, including the type-A ARRs, although it does not impair the cytokinin induction of the type-A ARRs. Genes encoding homeobox transcription factors are mis-expressed in the crf1,3,5,6 mutant, including STIMPY/WOX9 that is required for root and shoot apical meristem maintenance roots and which has previously been linked to cytokinin. These results indicate that the CRF transcription factors play important roles in multiple aspects of plant growth and development, in part through a complex interaction with cytokinin signaling. PMID:26662515

  4. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks

    Science.gov (United States)

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G. J.; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as “papilionoid legume-specific” were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This

  5. Nod factor effects on root hair-specific transcriptome of Medicago truncatula: focus on plasma membrane transport systems and reactive oxygen species networks

    Directory of Open Access Journals (Sweden)

    Isabelle eDAMIANI

    2016-06-01

    Full Text Available Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF for 4 h or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10 percent of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1,176 genes that could be considered as papilionoid legume-specific were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an orthologue in every of the 6 legume genomes that we considered, suggesting their involvement in essential functions

  6. Identification and characterization of inward K ~+-channels in plasma membranes of Arabidopsis root cortex cells

    Institute of Scientific and Technical Information of China (English)

    于川江; 武维华

    1999-01-01

    Patch clamping whole-cell reeording techniques were apphed to study the inward K+ channels in Arabidopsis root cortex cells. The inward K+-channels in the plasma membranes of the root cortex cell protoplasts were activated by hyperpolarized membrane potentials. The channels were highly selective tor K+ ions over Na+ ions. The channel activity was significantly inbibited by the external TEA(?) or Ba(?) The changes in cytoplasmic Ca2+ concentrations did not affect the whole-cell inward K+-currents. The possible asso(?)ation betw(?)en the channel selectivity to K+ and Na(?) ions and plant salt-tolerance was also discussed.

  7. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2006-10-01

    Full Text Available Abstract Background Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks. Results We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like; signalling molecules (e.g. PERK kinases, MLO-like receptors, carbohydrate active enzymes (e.g. XTH18, transcription factors (e.g. members of ZIM, WRKY, NAC, and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1. We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR. Conclusion Micorarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent

  8. Glycerol affects root development through regulation of multiple pathways in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jun Hu

    Full Text Available Glycerol metabolism has been well studied biochemically. However, the means by which glycerol functions in plant development is not well understood. This study aimed to investigate the mechanism underlying the effects of glycerol on root development in Arabidopsis thaliana. Exogenous glycerol inhibited primary root growth and altered lateral root development in wild-type plants. These phenotypes appeared concurrently with increased endogenous glycerol-3-phosphate (G3P and H2O2 contents in seedlings, and decreased phosphate levels in roots. Upon glycerol treatment, G3P level and root development did not change in glycerol kinase mutant gli1, but G3P level increased in gpdhc1 and fad-gpdh mutants, which resulted in more severely impaired root development. Overexpression of the FAD-GPDH gene attenuated the alterations in G3P, phosphate and H2O2 levels, leading to increased tolerance to exogenous glycerol, which suggested that FAD-GPDH plays an important role in modulating this response. Free indole-3-acetic acid (IAA content increased by 46%, and DR5pro::GUS staining increased in the stele cells of the root meristem under glycerol treatment, suggesting that glycerol likely alters normal auxin distribution. Decreases in PIN1 and PIN7 expression, β-glucuronidase (GUS staining in plants expressing PIN7pro::GUS and green fluorescent protein (GFP fluorescence in plants expressing PIN7pro::PIN7-GFP were observed, indicating that polar auxin transport in the root was downregulated under glycerol treatment. Analyses with auxin-related mutants showed that TIR1 and ARF7 were involved in regulating root growth under glycerol treatment. Glycerol-treated plants showed significant reductions in root meristem size and cell number as revealed by CYCB1;1pro::GUS staining. Furthermore, the expression of CDKA and CYCB1 decreased significantly in treated plants compared with control plants, implying possible alterations in cell cycle progression. Our data

  9. Glycerol affects root development through regulation of multiple pathways in Arabidopsis.

    Science.gov (United States)

    Hu, Jun; Zhang, Yonghong; Wang, Jinfang; Zhou, Yongming

    2014-01-01

    Glycerol metabolism has been well studied biochemically. However, the means by which glycerol functions in plant development is not well understood. This study aimed to investigate the mechanism underlying the effects of glycerol on root development in Arabidopsis thaliana. Exogenous glycerol inhibited primary root growth and altered lateral root development in wild-type plants. These phenotypes appeared concurrently with increased endogenous glycerol-3-phosphate (G3P) and H2O2 contents in seedlings, and decreased phosphate levels in roots. Upon glycerol treatment, G3P level and root development did not change in glycerol kinase mutant gli1, but G3P level increased in gpdhc1 and fad-gpdh mutants, which resulted in more severely impaired root development. Overexpression of the FAD-GPDH gene attenuated the alterations in G3P, phosphate and H2O2 levels, leading to increased tolerance to exogenous glycerol, which suggested that FAD-GPDH plays an important role in modulating this response. Free indole-3-acetic acid (IAA) content increased by 46%, and DR5pro::GUS staining increased in the stele cells of the root meristem under glycerol treatment, suggesting that glycerol likely alters normal auxin distribution. Decreases in PIN1 and PIN7 expression, β-glucuronidase (GUS) staining in plants expressing PIN7pro::GUS and green fluorescent protein (GFP) fluorescence in plants expressing PIN7pro::PIN7-GFP were observed, indicating that polar auxin transport in the root was downregulated under glycerol treatment. Analyses with auxin-related mutants showed that TIR1 and ARF7 were involved in regulating root growth under glycerol treatment. Glycerol-treated plants showed significant reductions in root meristem size and cell number as revealed by CYCB1;1pro::GUS staining. Furthermore, the expression of CDKA and CYCB1 decreased significantly in treated plants compared with control plants, implying possible alterations in cell cycle progression. Our data demonstrated that glycerol

  10. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data.

    Science.gov (United States)

    Mönchgesang, Susann; Strehmel, Nadine; Schmidt, Stephan; Westphal, Lore; Taruttis, Franziska; Müller, Erik; Herklotz, Siska; Neumann, Steffen; Scheel, Dierk

    2016-01-01

    Many metabolomics studies focus on aboveground parts of the plant, while metabolism within roots and the chemical composition of the rhizosphere, as influenced by exudation, are not deeply investigated. In this study, we analysed exudate metabolic patterns of Arabidopsis thaliana and their variation in genetically diverse accessions. For this project, we used the 19 parental accessions of the Arabidopsis MAGIC collection. Plants were grown in a hydroponic system, their exudates were harvested before bolting and subjected to UPLC/ESI-QTOF-MS analysis. Metabolite profiles were analysed together with the genome sequence information. Our study uncovered distinct metabolite profiles for root exudates of the 19 accessions. Hierarchical clustering revealed similarities in the exudate metabolite profiles, which were partly reflected by the genetic distances. An association of metabolite absence with nonsense mutations was detected for the biosynthetic pathways of an indolic glucosinolate hydrolysis product, a hydroxycinnamic acid amine and a flavonoid triglycoside. Consequently, a direct link between metabolic phenotype and genotype was detected without using segregating populations. Moreover, genomics can help to identify biosynthetic enzymes in metabolomics experiments. Our study elucidates the chemical composition of the rhizosphere and its natural variation in A. thaliana, which is important for the attraction and shaping of microbial communities. PMID:27363486

  11. Polyethylene Glycol (PEG)-Treated Hydroponic Culture Reduces Length and Diameter of Root Hairs of Wheat Varieties

    OpenAIRE

    Arif Hasan Khan Robin; Md. Jasim Uddin; Khandaker Nafiz Bayazid

    2015-01-01

    Wheat is an important cereal crop worldwide that often suffers from moisture deficits at the reproductive stage. Polyethylene glycol (PEG)-treated hydroponic conditions create negative osmotic potential which is compared with moisture deficit stress. An experiment was conducted in a growth chamber to study the effects of PEG on root hair morphology and associated traits of wheat varieties. Plants of 13 wheat varieties were grown hydroponically and three different doses of PEG 6000 (w/v): 0% (...

  12. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions.

    Directory of Open Access Journals (Sweden)

    Jacqueline M Chaparro

    Full Text Available Plant roots constantly secrete compounds into the soil to interact with neighboring organisms presumably to gain certain functional advantages at different stages of development. Accordingly, it has been hypothesized that the phytochemical composition present in the root exudates changes over the course of the lifespan of a plant. Here, root exudates of in vitro grown Arabidopsis plants were collected at different developmental stages and analyzed using GC-MS. Principle component analysis revealed that the composition of root exudates varied at each developmental stage. Cumulative secretion levels of sugars and sugar alcohols were higher in early time points and decreased through development. In contrast, the cumulative secretion levels of amino acids and phenolics increased over time. The expression in roots of genes involved in biosynthesis and transportation of compounds represented in the root exudates were consistent with patterns of root exudation. Correlation analyses were performed of the in vitro root exudation patterns with the functional capacity of the rhizosphere microbiome to metabolize these compounds at different developmental stages of Arabidopsis grown in natural soils. Pyrosequencing of rhizosphere mRNA revealed strong correlations (p<0.05 between microbial functional genes involved in the metabolism of carbohydrates, amino acids and secondary metabolites with the corresponding compounds released by the roots at particular stages of plant development. In summary, our results suggest that the root exudation process of phytochemicals follows a developmental pattern that is genetically programmed.

  13. Root Exudation of Phytochemicals in Arabidopsis Follows Specific Patterns That Are Developmentally Programmed and Correlate with Soil Microbial Functions

    Science.gov (United States)

    Sugiyama, Akifumi; Manter, Daniel K.; Vivanco, Jorge M.

    2013-01-01

    Plant roots constantly secrete compounds into the soil to interact with neighboring organisms presumably to gain certain functional advantages at different stages of development. Accordingly, it has been hypothesized that the phytochemical composition present in the root exudates changes over the course of the lifespan of a plant. Here, root exudates of in vitro grown Arabidopsis plants were collected at different developmental stages and analyzed using GC-MS. Principle component analysis revealed that the composition of root exudates varied at each developmental stage. Cumulative secretion levels of sugars and sugar alcohols were higher in early time points and decreased through development. In contrast, the cumulative secretion levels of amino acids and phenolics increased over time. The expression in roots of genes involved in biosynthesis and transportation of compounds represented in the root exudates were consistent with patterns of root exudation. Correlation analyses were performed of the in vitro root exudation patterns with the functional capacity of the rhizosphere microbiome to metabolize these compounds at different developmental stages of Arabidopsis grown in natural soils. Pyrosequencing of rhizosphere mRNA revealed strong correlations (p<0.05) between microbial functional genes involved in the metabolism of carbohydrates, amino acids and secondary metabolites with the corresponding compounds released by the roots at particular stages of plant development. In summary, our results suggest that the root exudation process of phytochemicals follows a developmental pattern that is genetically programmed. PMID:23383346

  14. Cloning of the Full-length cDNA of the Wheat Involved in Salt Stress: Root Hair Defective 3 Gene (RHD3)

    Institute of Scientific and Technical Information of China (English)

    Lei SHAN; Shuang-Yi ZHAO; Guang-Min XIA

    2005-01-01

    The full-length cDNA of the wheat (Triticum aestivum L.) root hair defective 3 gene (RHD3) has been cloned from the salt-tolerant hybrid wheat variety Shanrong No. 3 (Za3) using the mRNA differential display and 5′ rapid amplification of cDNA ends (RACE) methods. Analysis of the amino acid sequence deduced from the wheat RHD3 gene shows that two conservative GTP-binding motifs, namely GXXXXGKS and DXXG, in eukaryotes also exist at the N-terminal of wheat RHD3. In addition, an 18 amino acid residue transmembrane domain, namely FYLAVMFVVFLVGKAIWV, exists at positions 701-718 of the C-terminal of the deduced protein of wheat RHD3 obtained, but this domain is absent in another three proteins aligned,including rice RHD3, Arabidopsis RHD3, and yeast homologue SEY1. Northern blot revealed that transcription of the wheat RHD3 gene is down-regulated in both the salt-tolerant line and in JN177 under saline stress. A possible stress-responsive mechanism for this gene is discussed.

  15. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins

    Science.gov (United States)

    Zhang, Kewei; Novak, Ondrej; Wei, Zhaoyang; Gou, Mingyue; Zhang, Xuebin; Yu, Yong; Yang, Huijun; Cai, Yuanheng; Strnad, Miroslav; Liu, Chang-Jun

    2014-02-01

    Cytokinins are a major group of phytohormones regulating plant growth, development and stress responses. However, in contrast to the well-defined polar transport of auxins, the molecular basis of cytokinin transport is poorly understood. Here we show that an ATP-binding cassette transporter in Arabidopsis, AtABCG14, is essential for the acropetal (root to shoot) translocation of the root-synthesized cytokinins. AtABCG14 is expressed primarily in the pericycle and stelar cells of roots. Knocking out AtABCG14 strongly impairs the translocation of trans-zeatin (tZ)-type cytokinins from roots to shoots, thereby affecting the plant’s growth and development. AtABCG14 localizes to the plasma membrane of transformed cells. In planta feeding of C14 or C13-labelled tZ suggests that it acts as an efflux pump and its presence in the cells directly correlates with the transport of the fed cytokinin. Therefore, AtABCG14 is a transporter likely involved in the long-distance translocation of cytokinins in planta.

  16. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Science.gov (United States)

    Baldan, Enrico; Nigris, Sebastiano; Romualdi, Chiara; D'Alessandro, Stefano; Clocchiatti, Anna; Zottini, Michela; Stevanato, Piergiorgio; Squartini, Andrea; Baldan, Barbara

    2015-01-01

    We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammonium (39%), secrete siderophores (38%) and a limited part of them synthetized IAA and IAA-like molecules (5%). Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP) of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards. PMID:26473358

  17. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Directory of Open Access Journals (Sweden)

    Enrico Baldan

    Full Text Available We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%, release ammonium (39%, secrete siderophores (38% and a limited part of them synthetized IAA and IAA-like molecules (5%. Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.

  18. Finding missing interactions of the Arabidopsis thaliana root stem cell niche gene regulatory network

    Directory of Open Access Journals (Sweden)

    Eugenio eAzpeitia

    2013-04-01

    Full Text Available AbstractOver the last few decades, the Arabidopsis thaliana root stem cell niche has become a model system for the study of plant development and the stem cell niche. Currently, many of the molecular mechanisms involved in root stem cell niche maintenance and development have been described. A few years ago, we published a gene regulatory network model integrating this information. This model suggested that there were missing components or interactions. Upon updating the model, the observed stable gene configurations of the root stem cell niche could not be recovered, indicating that there are additional missing components or interactions in the model. In fact, due to the lack of experimental data, gene regulatory networks inferred from published data are usually incomplete. However, predicting the location and nature of the missing data is a not trivial task. Here, we propose a set of procedures for detecting and predicting missing interactions in Boolean networks. We used these procedures to predict putative missing interactions in the A. thaliana root stem cell niche network model. Using our approach, we identified three necessary interactions to recover the reported gene activation configurations that have been experimentally uncovered for the different cell types within the root stem cell niche: 1 a regulation of PHABULOSA to restrict its expression domain to the vascular cells, 2 a self-regulation of WOX5, possibly by an indirect mechanism through the auxin signalling pathway and 3 a positive regulation of JACKDAW by MAGPIE. The procedures proposed here greatly reduce the number of possible Boolean functions that are biologically meaningful and experimentally testable and that do not contradict previous data. We believe that these procedures can be used on any Boolean network. However, because the procedures were designed for the specific case of the root stem cell niche, formal demonstrations of the procedures should be shown in future

  19. Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress

    OpenAIRE

    Sultana eRasheed; Khurram eBashir; Akihiro eMatsui; Maho eTanaka; Motoaki eSeki

    2016-01-01

    Drought stress has a negative impact on crop yield. Thus, understanding the molecular mechanisms responsible for plant drought stress tolerance is essential for improving this beneficial trait in crops. In the current study, a transcriptional analysis was conducted of gene regulatory networks in roots of soil-grown Arabidopsis plants in response to a drought stress treatment. A microarray analysis of drought-stressed roots and shoots was performed at 0, 1, 3, 5, 7 and 9 days. Results indicat...

  20. Use of Rhizosphere Metabolomics to Investigate Exudation of Phenolics by Arabidopsis Roots

    Science.gov (United States)

    Lee, Yong Jian; Rai, Amit; Reuben, Sheela; Nesati, Victor; Almeida, Reinaldo; Swarup, Sanjay

    2013-04-01

    The rhizosphere is a specialised micro-niche for bacteria that have an active exchange of signals and nutrients with the host plant. Nearly 20% of photosynthates are released as root exudates, which consist of primary metabolites and products of secondary metabolism which are largely phenolic in nature. Previously, using rhizosphere metabolomics, we showed that nearly 50% of organic carbon in the exudates is in the form of phenolic compounds, of which the largest fraction is from the phenylpropanoid synthesis pathway. Using Arabidopsis as a model, we have demonstrated that a biased rhizosphere can be created using plants with varying levels of phenylpropanoids due to mutations in the biosynthetic or regulatory genes. These phenylpropanoids levels are reflected in the exudates, and exudates from lines with regulatory gene mutations, tt8 and ttg, have higher levels of phenylpropanoids, whereas biosynthetic mutant line, tt4, has very low and undetectable levels of phenylpropanoids. The biased rhizosphere of tt8 and ttg lines provides a nutritional advantage to rhizobacteria that can utilize these phenylpropanoids such as quercetin. With such a strategy to increase the competitiveness of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas putida, this system can be applied to improve plant performance. In order to better understand the metabolic basis of the nutritional advantage behind the competitiveness of the favoured P. putida, we elucidated its quercetin utilization pathway. We have recently cloned the gene for quercetin oxidoreductase (QuoA) and expressed it in transgenic Arabidopsis lines to alter the plant phenylpropanoid metabolism, using a gain of function approach. Since phenylpropanoid biosynthesis in plants involve formation of quercetin from naringenin, we envisaged that QuoA expression in plants will provide us with a genetic tool to "reverse" this biosynthetic step. This perturbation led to a decrease in flavonoids and an increase in lignin

  1. Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection

    NARCIS (Netherlands)

    Hase, S.; Pelt, J.A. van; Loon, L.C. van; Pieterse, C.M.J.

    2003-01-01

    Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of non-pathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salic

  2. Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology

    OpenAIRE

    Zhenzhen eQiao; Marc eLibault

    2013-01-01

    Plant root is an organ composed of multiple cell types with different functions. This multicellular complexity limits our understanding of root biology because –omics studies performed at the level of the entire root reflect the average responses of all cells composing the organ. To overcome this difficulty and allow a more comprehensive understanding of root cell biology, an approach is needed that would focus on one single cell type in the plant root. Because of its biological functions (i....

  3. Reclaiming Our Roots: The Influences of Media Curriculum on the Natural Hair Movement

    Science.gov (United States)

    Jeffries, Rhonda Baynes; Jeffries, Devair

    2014-01-01

    This article, theoretically constructed on Gramsci's notion of cultural hegemony, explores the use of Black female hair as a cultural signifier in two media texts, specifically Adrienne Kennedy's play, "Funnyhouse of a Negro," and Chris Rock's documentary, "Good Hair," in specific media texts. Analysis of the…

  4. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    Science.gov (United States)

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  5. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots.

    Science.gov (United States)

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  6. Cortical microtubule patterning in roots of Arabidopsis thaliana primary cell wall mutants reveals the bidirectional interplay with cell expansion.

    Science.gov (United States)

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Daras, Gerasimos; Rigas, Stamatis

    2015-01-01

    Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2-4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2-4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone's expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation. PMID:26042727

  7. Rice WUSCHEL-related homeobox 3A (OsWOX3A) modulates auxin-transport gene expression in lateral root and root hair development.

    Science.gov (United States)

    Yoo, Soo-Cheul; Cho, Sung-Hwan; Paek, Nam-Chon

    2013-10-01

    Coordinated regulation of the many genes controlling leaf, flower, and root development determines the phenotypes of plants; this regulation requires exquisite control of many transcription factors, including the WUSCHEL-related homeobox (WOX) family. We recently reported that rice (Oryza sativa) WUSCHEL-related homeobox 3A (OsWOX3A) plays important roles in organ development, including lateral-axis outgrowth and vasculature patterning in leaves, lemma and palea morphogenesis in spikelets, and the numbers of tillers and lateral roots. OsWOX3A is encoded by NARROW LEAF2 (NAL2) and NAL3, a pair of duplicated genes. In this study, further analysis of nal2 nal3 (hereafter nal2/3) double mutants revealed that, in addition to its role in lateral root development, OsWOX3A also acts in the control of root hair formation. Based on this new finding, we describe a possible mechanism by which OsWOX3A regulation of auxin transport genes acts in root development. PMID:24002214

  8. The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking

    Institute of Scientific and Technical Information of China (English)

    Yuan Wang; Wen-Hui Lin; Xu Chen; Hong-Wei Xue

    2009-01-01

    Inositol polyphosphate 5-phosphatases (5PTases) are enzymes of phosphatidylinositoi metabolism that affect various aspects of plant growth and development. Arabidopsis 5PTasel3 regulates auxin homeostasis and hormone-related cotyledon vein development, and here we demonstrate that its knockout mutant 5pt13 has elevated sensitivity to gravistimulation in root gravitropic responses. The altered responses of 5pt13 mutants to 1-N-naphthylphthalamic acid (an auxin transport inhibitor) indicate that 5PTasel3 might be involved in the regulation of auxin transport. Indeed, the auxin efflux carrier PIN2 is expressed more broadly under 5PTasel3 deficiency, and observations of the internalization of the membrane-selective dye FM4-64 reveal altered vesicle trafficking in 5pt13 mutants. Compared with wild-type, 5pt13 mutant seedlings are less sensitive to the inhibition by brefeldin A of vesicle cycling, seedling growth, and the intracellular cycling of the PINI and PIN2 proteins. Further, auxin redistribution upon gravitropic stimulation is stimulated under 5PTasel3 deficiency. These results suggest that 5PTasel3 may modulate auxin trans-port by regulating vesicle trafficking and thereby play a role in root gravitropism.

  9. Identification of a Stelar-Localized Transport Protein That Facilitates Root-to-Shoot Transfer of Chloride in Arabidopsis

    KAUST Repository

    Li, Bo

    2015-12-11

    Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl–) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl– xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl– efflux out of cells and was much less permeable to NO3−. Shoot Cl– accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl– in plants, playing a role in the loading and the regulation of Cl– loading into the xylem of Arabidopsis roots during salinity stress.

  10. Potassium Transporter KUP7 Is Involved in K(+) Acquisition and Translocation in Arabidopsis Root under K(+)-Limited Conditions.

    Science.gov (United States)

    Han, Min; Wu, Wei; Wu, Wei-Hua; Wang, Yi

    2016-03-01

    Potassium (K(+)) is one of the essential macronutrients for plant growth and development. K(+) uptake from environment and K(+) translocation in plants are conducted by K(+) channels and transporters. In this study, we demonstrated that KT/HAK/KUP transporter KUP7 plays crucial roles in K(+) uptake and translocation in Arabidopsis root. The kup7 mutant exhibited a sensitive phenotype on low-K(+) medium, whose leaves showed chlorosis symptoms compared with wild-type plants. Loss of function of KUP7 led to a reduction of K(+) uptake rate and K(+) content in xylem sap under K(+)-deficient conditions. Thus, the K(+) content in kup7 shoot was significantly reduced under low-K(+) conditions. Localization analysis revealed that KUP7 was predominantly targeted to the plasma membrane. The complementation assay in yeast suggested that KUP7 could mediate K(+) transport. In addition, phosphorylation on S80, S719, and S721 was important for KUP7 activity. KUP7 was ubiquitously expressed in many organs/tissues, and showed a higher expression level in Arabidopsis root. Together, our data demonstrated that KUP7 is crucial for K(+) uptake in Arabidopsis root and might be also involved in K(+) transport into xylem sap, affecting K(+) translocation from root toward shoot, especially under K(+)-limited conditions. PMID:26851373

  11. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Moreau Hervé

    2008-10-01

    Full Text Available Abstract Background The Wuschel related homeobox (WOX family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most

  12. Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2 and CSLD4 in tip-growing arabidopsis cells

    DEFF Research Database (Denmark)

    Bernal Giraldo, Adriana Jimena; Yoo, Cheol-Min; Mutwil, Marek;

    2008-01-01

    A reverse genetic approach was used to investigate the functions of three members of the cellulose synthase superfamily in Arabidopsis (Arabidopsis thaliana), CELLULOSE SYNTHASE-LIKE D1 (CSLD1), CSLD2, and CSLD4. CSLD2 is required for normal root hair growth but has a different role from that...... previously described for CSLD3 (KOJAK). CSLD2 is required during a later stage of hair development than CSLD3, and CSLD2 mutants produce root hairs with a range of abnormalities, with many root hairs rupturing late in development. Remarkably, though, it was often the case that in CSLD2 mutants, tip growth...... would resume after rupturing of root hairs. In silico, semiquantitative reverse transcription-polymerase chain reaction, and promoter-reporter construct analyses indicated that the expression of both CSLD2 and CSLD3 is elevated at reduced temperatures, and the phenotypes of mutants homozygous for...

  13. Identification and characterization of Arabidopsis AtNUDX9 as a GDP-d-mannose pyrophosphohydrolase: its involvement in root growth inhibition in response to ammonium

    OpenAIRE

    Tanaka, Hiroyuki; Maruta, Takanori; Ogawa, Takahisa; Tanabe, Noriaki; Tamoi, Masahiro; Yoshimura, Kazuya; Shigeoka, Shigeru

    2015-01-01

    Highlight AtNUDX9, a GDP-d-Man pyrophosphohydrolase in Arabidopsis, is involved in the regulation of GDP-d-Man levels affecting ammonium sensitivity via modulation of protein N-glycosylation in the roots.

  14. Auxin-Independent NAC Pathway Acts in Response to Explant-Specific Wounding and Promotes Root Tip Emergence during de Novo Root Organogenesis in Arabidopsis.

    Science.gov (United States)

    Chen, Xiaodong; Cheng, Jingfei; Chen, Lyuqin; Zhang, Guifang; Huang, Hai; Zhang, Yijing; Xu, Lin

    2016-04-01

    Plants have powerful regenerative abilities that allow them to recover from damage and survive in nature. De novo organogenesis is one type of plant regeneration in which adventitious roots and shoots are produced from wounded and detached organs. By studying de novo root organogenesis using leaf explants of Arabidopsis (Arabidopsis thaliana), we previously suggested that wounding is the first event that provides signals to trigger the whole regenerative process. However, our knowledge of the role of wounding in regeneration remains limited. In this study, we show that wounding not only triggers the auxin-mediated fate transition of regeneration-competent cells, but also induces the NAC pathway for root tip emergence. The NAC1 transcription factor gene was specifically expressed in response to wounding in the leaf explant, but not in the wounded leaf residue of the source plant. Inhibition of the NAC1 pathway severely affected the emergence of adventitious root tips. However, the NAC1 pathway functioned independently of auxin-mediated cell fate transition and regulates expression of CEP genes, which encode proteins that might have a role in degradation of extensin proteins in the cell wall. Overall, our results suggest that wounding has multiple roles in de novo root organogenesis and that NAC1 acts as one downstream branch in regulating the cellular environment for organ emergence. PMID:26850273

  15. Mutations in exocyst complex subunit SEC6 gene impaired polar auxin transport and PIN protein recycling in Arabidopsis primary root.

    Science.gov (United States)

    Tan, Xiaoyun; Feng, Yihong; Liu, Yulong; Bao, Yiqun

    2016-09-01

    Polar auxin transport, which is critical for land plant pattern formation and directional growth, is largely depended on asymmetric distribution of PIN proteins at the plasma membrane (PM). Endocytosis and recycling processes play important roles in regulating PIN protein distribution and abundance at the PM. Two subunits (SEC8, EXO70A1) of exocyst, an octameric vesicle-tethering complex, have been reported to be involved in PIN protein recycling in Arabidopsis. However, the function of exocyst complex in PIN protein recycling and polar auxin transport remains incompletely understood. In this study, we utilized two SEC6 down-regulation mutants (PRsec6-1 and PRsec6-2) to investigate the role of exocyst subunit SEC6 in the primary root development, polar auxin transport and PIN proteins recycling. We found that in PRsec6 mutants: 1. Primary root growth was retarded, and lateral root initiation were compromised. 2. Primary roots were sensitive to exogenous auxin 1-napthalene acetic acid (NAA) but not 2,4-dichlorophenoxy (2.4-D). 3. Recycling of PIN1 and PIN2 proteins from the Brefeldin A (BFA) compartment to the PM was delayed. 4. Vesicles accumulated in the primary root tip cells, especially accumulated in the cytosol closed to the PM. These results further demonstrated that the exocyst complex plays an important role in PIN protein recycling and polar auxin transport in Arabidopsis primary root. PMID:27457987

  16. Chromium-Induced Ultrastructural Changes and Oxidative Stress in Roots of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Eleftherios P. Eleftheriou

    2015-07-01

    Full Text Available Chromium (Cr is an abundant heavy metal in nature, toxic to living organisms. As it is widely used in industry and leather tanning, it may accumulate locally at high concentrations, raising concerns for human health hazards. Though Cr effects have extensively been investigated in animals and mammals, in plants they are poorly understood. The present study was then undertaken to determine the ultrastructural malformations induced by hexavalent chromium [Cr(VI], the most toxic form provided as 100 μM potassium dichromate (K2Cr2O7, in the root tip cells of the model plant Arabidopsis thaliana. A concentration-dependent decrease of root growth and a time-dependent increase of dead cells, callose deposition, hydrogen peroxide (H2O2 production and peroxidase activity were found in Cr(VI-treated seedlings, mostly at the transition root zone. In the same zone, nuclei remained ultrastructurally unaffected, but in the meristematic zone some nuclei displayed bulbous outgrowths or contained tubular structures. Endoplasmic reticulum (ER was less affected under Cr(VI stress, but Golgi bodies appeared severely disintegrated. Moreover, mitochondria and plastids became spherical and displayed translucent stroma with diminished internal membranes, but noteworthy is that their double-membrane envelopes remained structurally intact. Starch grains and electron dense deposits occurred in the plastids. Amorphous material was also deposited in the cell walls, the middle lamella and the vacuoles. Some vacuoles were collapsed, but the tonoplast appeared integral. The plasma membrane was structurally unaffected and the cytoplasm contained opaque lipid droplets and dense electron deposits. All electron dense deposits presumably consisted of Cr that is sequestered from sensitive sites, thus contributing to metal tolerance. It is concluded that the ultrastructural changes are reactive oxygen species (ROS-correlated and the malformations observed are organelle specific.

  17. Chromium-Induced Ultrastructural Changes and Oxidative Stress in Roots of Arabidopsis thaliana.

    Science.gov (United States)

    Eleftheriou, Eleftherios P; Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Fatsiou, Maria

    2015-01-01

    Chromium (Cr) is an abundant heavy metal in nature, toxic to living organisms. As it is widely used in industry and leather tanning, it may accumulate locally at high concentrations, raising concerns for human health hazards. Though Cr effects have extensively been investigated in animals and mammals, in plants they are poorly understood. The present study was then undertaken to determine the ultrastructural malformations induced by hexavalent chromium [Cr(VI)], the most toxic form provided as 100 μM potassium dichromate (K2Cr2O7), in the root tip cells of the model plant Arabidopsis thaliana. A concentration-dependent decrease of root growth and a time-dependent increase of dead cells, callose deposition, hydrogen peroxide (H2O2) production and peroxidase activity were found in Cr(VI)-treated seedlings, mostly at the transition root zone. In the same zone, nuclei remained ultrastructurally unaffected, but in the meristematic zone some nuclei displayed bulbous outgrowths or contained tubular structures. Endoplasmic reticulum (ER) was less affected under Cr(VI) stress, but Golgi bodies appeared severely disintegrated. Moreover, mitochondria and plastids became spherical and displayed translucent stroma with diminished internal membranes, but noteworthy is that their double-membrane envelopes remained structurally intact. Starch grains and electron dense deposits occurred in the plastids. Amorphous material was also deposited in the cell walls, the middle lamella and the vacuoles. Some vacuoles were collapsed, but the tonoplast appeared integral. The plasma membrane was structurally unaffected and the cytoplasm contained opaque lipid droplets and dense electron deposits. All electron dense deposits presumably consisted of Cr that is sequestered from sensitive sites, thus contributing to metal tolerance. It is concluded that the ultrastructural changes are reactive oxygen species (ROS)-correlated and the malformations observed are organelle specific. PMID:26204828

  18. AtGRIP protein locates to the secretory vesicles of trans Golgi-network in Arabidopsis root cap cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying; ZHANG Wei; ZHAO Lei; LI Yan

    2008-01-01

    GRIP domain proteins, locating to the trans-Golgi network, are thought to play an essential role in Golgi apparatus trafficking in yeast and animal cells. In the present study, AtGRIP cDNA was amplified by reverse transcriptase PCR from RNA isolated from Arabidopsis seedling. The GST fusion protein of AtGRIP was affinity-purified and its rabbit polyclonal antibody was obtained. Immuno-blotting with the purified anti-AtGRIP polyclonal antibody demonstrated that the molecular mass of AtGRIP protein is about 92 kD, and its expression is not tissue-specific in Arabidopsis. Immunoflourescent labeling and confocal microscopy revealed that the AtGRIP protein was co-localized with Golgi stacks in Arabidop-sis root cells. Immuno-gold labeling and electron microscopy observation showed that AtGRIP protein was mainly located to the membrane of the secretory vesicles of trans-Golgi network in Arabidopsis root cap cells. Taken together, these results indicate that the localization of GRIP domain proteins be-tween plants and animal cells are conserved. These results also suggest that the AtGRIP may be in-volved in regulating the formation or sorting of Golgi-associated vesicles in plant cells.

  19. Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato.

    Science.gov (United States)

    von Wirén, N; Lauter, F R; Ninnemann, O; Gillissen, B; Walch-Liu, P; Engels, C; Jost, W; Frommer, W B

    2000-01-01

    To elucidate the role of NH4+ transporters in N nutrition of tomato, two new NH4+ transporter genes were isolated from cDNA libraries of root hairs or leaves of tomato. While LeAMT1;2 is closely related to LeAMT1;1 (75.6% amino acid identity), LeAMT1;3 is more distantly related (62.8% identity) and possesses two short upstream open reading frames in the 5' end of the mRNA and a particularly short N-terminus of the protein as unique features. When expressed in yeast mutants defective in NH4+ uptake, all three genes complemented NH4+ uptake. In roots of hydroponically grown plants, transcript levels of LeAMT1;2 increased after NH4+ or NO3- supply, while LeAMT1;1 was induced by N deficiency coinciding with low glutamine concentrations, and LeAMT1;3 was not detected. In aeroponic culture, expression of LeAMT1;1 and LeAMT1;2 was higher in root hairs than in the remaining root fraction. Growth of plants at elevated CO2 slightly decreased expression of LeAMT1;2 and LeAMT1;3 in leaves, but strongly repressed transcript levels of chloroplast glutamine synthetase and photorespiratory serine hydroxymethyl-transferase. Expression of LeAMT1;2 and LeAMT1;3 showed a reciprocal diurnal regulation with highest transcript levels of LeAMT1;3 in darkness and highest levels of LeAMT1;2 after onset of light. These results indicate that in tomato at least two high-affinity NH4+ transporters, LeAMT1;1 and LeAMT1;2, are differentially regulated by N and contribute to root hair-mediated NH4+ acquisition from the rhizosphere. In leaves, the reciprocally expressed transporters LeAMT1;2 and LeAMT1;3 are supposed to play different roles in N metabolism, NH4+ uptake and/or NH3 retrieval during photorespiration. PMID:10743657

  20. Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Wojas, Sylwia [Faculty of Biology, University of Warsaw, Miecznikowa str. 1, 02-096 Warszawa (Poland); Hennig, Jacek [Institute of Biochemistry and Biophysics PAS, Pawinskiego str. 5A, 02-106 Warszawa (Poland); Plaza, Sonia; Geisler, Markus [Institute of Plant Biology, University of Zuerich, CH-8008 Zuerich (Switzerland); Siemianowski, Oskar; Sklodowska, Aleksandra [Faculty of Biology, University of Warsaw, Miecznikowa str. 1, 02-096 Warszawa (Poland); Ruszczynska, Anna; Bulska, Ewa [Faculty of Chemistry, University of Warsaw, Pasteura str.1, 02-093 Warszawa (Poland); Antosiewicz, Danuta M., E-mail: dma@biol.uw.edu.p [Faculty of Biology, University of Warsaw, Miecznikowa str. 1, 02-096 Warszawa (Poland)

    2009-10-15

    Arabidopsis MRPs/ABCCs have been shown to remove various organic and inorganic substrates from the cytosol to other subcellular compartments. Here we first demonstrate that heterologous expression of AtMRP7 in tobacco (Nicotiana tabacum var. Xanthi) modifies cadmium accumulation, distribution and tolerance. Arabidopsis MRP7 was localized both in the tonoplast and in the plasma membrane when expressed in tobacco. Its overexpression increased tobacco Cd-tolerance and resulted in enhanced cadmium concentration in leaf vacuoles, indicating more efficient detoxification by means of vacuolar storage. Heterologous AtMRP7 expression also led to more efficient retention of Cd in roots, suggesting a contribution to the control of cadmium root-to-shoot translocation. The results underscore the use of AtMRP7 in plant genetic engineering to modify the heavy-metal accumulation pattern for a broad range of applications. - AtMRP7 expression in tobacco enhances Cd-tolerance and increases Cd storage in vacuoles

  1. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress

    OpenAIRE

    Sabine Jülke; Jutta Ludwig-Müller

    2015-01-01

    The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana cl...

  2. RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatin-related genes in Agrobacterium-mediated root transformation

    OpenAIRE

    Crane, Yan Ma; Gelvin, Stanton B

    2007-01-01

    We investigated the effect of RNAi-mediated gene silencing of 109 Arabidopsis thaliana chromatin-related genes (termed “chromatin genes” hereafter) on Agrobacterium-mediated root transformation. Each of the RNAi lines contains a single- or low-copy-number insertion of a hairpin construction that silences the endogenous copy of the target gene. We used three standard transient and stable transformation assays to screen 340 independent RNAi lines, representing 109 target genes, for the rat (res...

  3. Differences in photosynthesis and terpene content in leaves and roots of wild-type and transgenic Arabidopsis thaliana plants

    OpenAIRE

    Blanch Roure, Josep-Salvador; Peñuelas, Josep; Llusià Benet, Joan; Sardans i Galobart, Jordi; Owen, Susan M.

    2015-01-01

    We investigated the hypotheses that two different varieties of Arabidopsis thaliana show differences in physiology and terpene production. The two varieties of A. thaliana used in this study were wildtype (WT) and transgenic line (CoxIVFaNES I) genetically modified to emit nerolidol with linalool/nerolidol synthase (COX). Photosynthetic rate, electron transport rate, fluorescence, leaf volatile terpene contents and root volatile terpene contents were analyzed. For both types, we found coeluti...

  4. Establishment of embryonic shoot–root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis

    Directory of Open Access Journals (Sweden)

    Ying Hua eSu

    2015-01-01

    Full Text Available Auxin and cytokinin signaling participates in regulating a large spectrum of developmental and physiological processes in plants. The shoots and roots of plants have specific and sometimes even contrary responses to these hormones. Recent studies have clearly shown that establishing the spatiotemporal distribution of auxin and cytokinin response signals is central for the control of shoot apical meristem (SAM induction in cultured tissues. However, little is known about the role of these hormones in root apical meristem (RAM initiation. Here, we found that the expression patterns of several regulatory genes critical for RAM formation were correlated with the establishment of the embryonic root meristem during somatic embryogenesis in Arabidopsis. Interestingly, the early expression of the WUS-RELATED HOMEOBOX 5 (WOX5 and WUSCHEL (WUS genes was induced and was nearly overlapped within the embryonic callus when somatic embryos (SEs could not be identified morphologically. Their correct expression was essential for RAM and SAM initiation and embryonic shoot–root axis establishment. Furthermore, we analyzed the auxin and cytokinin response during SE initiation. Notably, cytokinin response signals were detected in specific regions that were correlated with induced WOX5 expression and subsequent SE formation. Overexpression of the ARABIDOPSIS RESPONSE REGULATOR genes ARR7 and ARR15 (feedback repressors of cytokinin signaling, disturbed RAM initiation and SE induction. These results provide new information on auxin and cytokinin-regulated apical–basal polarity formation of shoot–root axis during somatic embryogenesis.

  5. Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity

    OpenAIRE

    Prieto, Pilar; Schiliro, Elisabetta; Maldonado-González, María Mercedes; Valderrama, Raquel; Barroso-Albarracín, Juan Bautista; Mercado-Blanco, Jesús

    2011-01-01

    The use of indigenous bacterial root endophytes with biocontrol activity against soil-borne phytopathogens is an environmentally-friendly and ecologically-efficient action within an integrated disease management framework. The earliest steps of olive root colonization by Pseudomonas fluorescens PICF7 and Pseudomonas putida PICP2, effective biocontrol agents (BCAs) against Verticillium wilt of olive (Olea europaea L.) caused by the fungus Verticillium dahliae Kleb., are here described. A gnoto...

  6. Geometric analysis of Arabidopsis root apex reveals a new aspect of the ethylene signal transduction pathway in development

    Science.gov (United States)

    Cervantes, Emilio; Tocino, Angel

    2005-01-01

    Structurally, ethylene is the simplest phytohormone and regulates multiple aspects of plant growth and development. Its effects are mediated by a signal transduction cascade involving receptors, MAP kinases and transcription factors. Many morphological effects of ethylene in plant development, including root size, have been previously described. In this article a combined geometric and algebraic approach has been used to analyse the shape and the curvature in the root apex of Arabidopsis seedlings. The process requires the fitting of Bezier curves that reproduce the root apex shape, and the calculation of the corresponding curvatures. The application of the method has allowed us to identify significant differences in the root curvatures of ethylene insensitive mutants (ein2-1 and etr1-1) with respect to the wild-type Columbia.

  7. Arabidopsis thaliana root elongation growth is sensitive to lunisolar tidal acceleration and may also be weakly correlated with geomagnetic variations

    Science.gov (United States)

    Barlow, Peter W.; Fisahn, Joachim; Yazdanbakhsh, Nima; Moraes, Thiago A.; Khabarova, Olga V.; Gallep, Cristiano M.

    2013-01-01

    Background Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. Methods Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a ‘free-running’ state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. Key Results and Conclusions The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate. PMID:23532042

  8. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy.

    Science.gov (United States)

    Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela

    2016-01-01

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development. PMID:27288545

  9. Tissue organization and cell ultrastructure in the roots of three Arabidopsis species grown at different zinc concentrations

    Directory of Open Access Journals (Sweden)

    M. Čiamporová

    2015-05-01

    Full Text Available The model plant Arabidopsis thaliana is known to be heavy metal-sensitive in contrast to its relative species A. arenosa and A. halleri classified as pseudometallophytes. Quantitative differences in primary root anatomy previously found between A. thaliana and the non-metallicolous (NM and metallicolous (M populations of the non-model Arabidopsis species necessitated further research at cellular and ultrastructural levels. Seedlings of A. thaliana, ecotype Columbia and a natural population Ratkovo, the NM and M populations of A. arenosa and A. halleri were grown on agar medium containing 10 μM (control and 1000 μM Zn2+ for 5 days. Light microscopy confirmed the higher number of cells in the endodermal, cortical and epidermal layers and a higher incidence of additional cell tiers, the so-called middle cortex (MC in the tolerant genotypes. Such differences were present in untreated plants and even more pronounced in plants exposed to excess of zinc (Zn. Electron microscopy of the root tissues at comparable distances from the root tip showed Casparian bands only in the radial cell walls of endodermis of A. halleri M population originating from severely (Cu, Cd and Pb contaminated site. Casparian bands were not differentiated yet in the roots of the other species and populations, and they were not formed in the cell walls between endodermis and MC cells. In the apical cytoplasm of trichoblast bulges, autophagic vacuoles were found only in the sensitive A. thaliana and small vacuoles in the other genotypes. The enhanced concentration of Zn confirmed the higher metal sensitivity of the model species and did not substantially disturb the root cell ultrastructure of the tolerant Arabidopsis species.

  10. The Arabidopsis Root Transcriptome by Serial Analysis of Gene Expression. Gene Identification Using the Genome Sequence1

    Science.gov (United States)

    Fizames, Cécile; Muños, Stéphane; Cazettes, Céline; Nacry, Philippe; Boucherez, Jossia; Gaymard, Frédéric; Piquemal, David; Delorme, Valérie; Commes, Thérèse; Doumas, Patrick; Cooke, Richard; Marti, Jacques; Sentenac, Hervé; Gojon, Alain

    2004-01-01

    Large-scale identification of genes expressed in roots of the model plant Arabidopsis was performed by serial analysis of gene expression (SAGE), on a total of 144,083 sequenced tags, representing at least 15,964 different mRNAs. For tag to gene assignment, we developed a computational approach based on 26,620 genes annotated from the complete sequence of the genome. The procedure selected warrants the identification of the genes corresponding to the majority of the tags found experimentally, with a high level of reliability, and provides a reference database for SAGE studies in Arabidopsis. This new resource allowed us to characterize the expression of more than 3,000 genes, for which there is no expressed sequence tag (EST) or cDNA in the databases. Moreover, 85% of the tags were specific for one gene. To illustrate this advantage of SAGE for functional genomics, we show that our data allow an unambiguous analysis of most of the individual genes belonging to 12 different ion transporter multigene families. These results indicate that, compared with EST-based tag to gene assignment, the use of the annotated genome sequence greatly improves gene identification in SAGE studies. However, more than 6,000 different tags remained with no gene match, suggesting that a significant proportion of transcripts present in the roots originate from yet unknown or wrongly annotated genes. The root transcriptome characterized in this study markedly differs from those obtained in other organs, and provides a unique resource for investigating the functional specificities of the root system. As an example of the use of SAGE for transcript profiling in Arabidopsis, we report here the identification of 270 genes differentially expressed between roots of plants grown either with NO3- or NH4NO3 as N source. PMID:14730065

  11. Constitutive expression of OsIAA9 affects starch granules accumulation and root gravitropic response in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sha eLuo

    2015-12-01

    Full Text Available Auxin/Indole-3-Acetic Acid (Aux/IAA genes are early auxin response genes ecoding short-lived transcriptional repressors, which regulate auxin signaling in plants by interplay with Auxin Response Factors (ARFs. Most of the Aux/IAA proteins contain four different domains, namely Domain I, Domain II, Domain III and Domain IV. So far all Aux/IAA mutants with auxin-related phenotypes identified in both Arabidopsis and rice (Oryza sativa are dominant gain-of-function mutants with mutations in Domain II of the corresponding Aux/IAA proteins, suggest that Aux/IAA proteins in both Arabidopsis and rice are largely functional redundantly, and they may have conserved functions. We report here the functional characterization of a rice Aux/IAA gene, OsIAA9. RT-PCR results showed that expression of OsIAA9 was induced by exogenously applied auxin, suggesting that OsIAA9 is an auxin response gene. Bioinformatic analysis showed that OsIAA9 has a repressor motif in Domain I, a degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. By generating transgenic plants expressing GFP-OsIAA9 and examining florescence in the transgenic plants, we found that OsIAA9 is localized in the nucleus. When transfected into protoplasts isolated from rosette leaves of Arabidopsis, OsIAA9 repressed reporter gene expression, and the repression was partially released by exogenously IAA. These results suggest that OsIAA9 is a canonical Aux/IAA protein. Protoplast transfection assays showed that OsIAA9 interacted ARF5, but not ARF6, 7, 8 and 19. Transgenic Arabidopsis plants expressing OsIAA9 have increased number of lateral roots, and reduced gravitropic response. Further analysis showed that OsIAA9 transgenic Arabidopsis plants accumulated fewer granules in their root tips and the distribution of granules was also affected. Taken together, our study showed that OsIAA9 is a transcriptional repressor, and it regulates

  12. The Root Hair Specific SYP123 Regulates the Localization of Cell Wall Components and Contributes to Rizhobacterial Priming of Induced Systemic Resistance.

    Science.gov (United States)

    Rodriguez-Furlán, Cecilia; Salinas-Grenet, Hernán; Sandoval, Omar; Recabarren, Camilo; Arraño-Salinas, Paulina; Soto-Alvear, Sylvana; Orellana, Ariel; Blanco-Herrera, Francisca

    2016-01-01

    Root hairs are important for nutrient and water uptake and are also critically involved the interaction with soil inhabiting microbiota. Root hairs are tubular-shaped outgrowths that emerge from trichoblasts. This polarized elongation is maintained and regulated by a robust mechanism involving the endomembrane secretory and endocytic system. Members of the syntaxin family of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) in plants (SYP), have been implicated in regulation of the fusion of vesicles with the target membranes in both exocytic and endocytic pathways. One member of this family, SYP123, is expressed specifically in the root hairs and accumulated in the growing tip region. This study shows evidence of the SYP123 role in polarized trafficking using knockout insertional mutant plants. We were able to observe defects in the deposition of cell wall proline rich protein PRP3 and cell wall polysaccharides. In a complementary strategy, similar results were obtained using a plant expressing a dominant negative soluble version of SYP123 (SP2 fragment) lacking the transmembrane domain. The evidence presented indicates that SYP123 is also regulating PRP3 protein distribution by recycling by endocytosis. We also present evidence that indicates that SYP123 is necessary for the response of roots to plant growth promoting rhizobacterium (PGPR) in order to trigger trigger induced systemic response (ISR). Plants with a defective SYP123 function were unable to mount a systemic acquired resistance in response to bacterial pathogen infection and ISR upon interaction with rhizobacteria. These results indicated that SYP123 was involved in the polarized localization of protein and polysaccharides in growing root hairs and that this activity also contributed to the establishment of effective plant defense responses. Root hairs represent very plastic structures were many biotic and abiotic factors can affect the number, anatomy and physiology of

  13. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Zhen Wang; Jie-Li Mao; Ying-Jun Zhao; Chuan-You Li; Cheng-Bin Xiang

    2015-01-01

    L‐Cysteine plays a prominent role in sulfur metabo-lism of plants. However, its role in root development is largely unknown. Here, we report that L‐cysteine reduces primary root growth in a dosage‐dependent manner. Elevating cel ular L‐cysteine level by exposing Arabidopsis thaliana seedlings to high L‐cysteine, buthionine sulphoximine, or O‐acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cel marker as wel as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L‐cysteine significantly reduces the protein level of two sets of stem cel specific transcription factors PLETHORA1/2 and SCR/SHR. However, L‐cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post‐transcriptional mech-anism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L‐cysteine level acts to maintain root stem cel niche by regulating basal‐and auxin‐induced expression of PLT1/2 and SCR/SHR. L‐Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth.

  14. Arabidopsis Myrosinase Genes AtTGG4 and AtTGG5 Are Root-Tip Specific and Contribute to Auxin Biosynthesis and Root-Growth Regulation

    OpenAIRE

    Lili Fu; Meng Wang; Bingying Han; Deguan Tan; Xuepiao Sun; Jiaming Zhang

    2016-01-01

    Plant myrosinases (β-thioglucoside glucohydrolases) are classified into two subclasses, Myr I and Myr II. The biological function of Myr I has been characterized as a major biochemical defense against insect pests and pathogens in cruciferous plants. However, the biological function of Myr II remains obscure. We studied the function of two Myr II member genes AtTGG4 and AtTGG5 in Arabidopsis. RT-PCR showed that both genes were specifically expressed in roots. GUS-assay revealed that both gene...

  15. Root-specific CLE19 overexpression and the sol1/2: Suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristern maintenance

    OpenAIRE

    Casamitjana-Martinez, E.; Hofhuis, H.F.; Xu, J.; Liu, C. M.; Heidstra, R.; Scheres, B.J.G.

    2003-01-01

    In the Arabidopsis shoot apical meristem, an organizing center signals in a non-cell-autonomous manner to specify the overlying stem cells [1 and 2]. Stem cells express the small, secreted protein CLAVATA3 (CLV3; [3]) that activates the CLV1-CLV2 receptor complex, which negatively controls the size of the organizing center [4, 5 and 6]. Consistently, CLV3 overexpression restricts shoot meristem size [6]. The root meristem also contains a stem cell organizer, and here we show that localized ov...

  16. Key divisions in the early Arabidopsis embryo require POL and PLL1 phosphatases to establish the root stem organizer and vascular axis

    OpenAIRE

    Song, Sang-Kee; Hofhuis, Hugo; Lee, Myeong Min; Clark, Steven E

    2008-01-01

    Arabidopsis development proceeds from three stem cell populations located at the shoot, flower and root meristems. The relationship between the highly related shoot and flower stem cells with the very divergent root stem cells has been unclear. We show that the related phosphatases POL and PLL1 are required for all three stem cell populations. pol pll1 mutant embryos lack key asymmetric divisions that give rise to the root stem cell organizer and the central vascular axis. Instead, these cell...

  17. Transcriptome analysis reveals the role of the root hairs as environmental sensors to maintain plant functions under water-deficiency conditions.

    Science.gov (United States)

    Kwasniewski, Miroslaw; Daszkowska-Golec, Agata; Janiak, Agnieszka; Chwialkowska, Karolina; Nowakowska, Urszula; Sablok, Gaurav; Szarejko, Iwona

    2016-02-01

    An important part of the root system is the root hairs, which play a role in mineral and water uptake. Here, we present an analysis of the transcriptomic response to water deficiency of the wild-type (WT) barley cultivar 'Karat' and its root-hairless mutant rhl1.a. A comparison of the transcriptional changes induced by water stress resulted in the identification of genes whose expression was specifically affected in each genotype. At the onset of water stress, more genes were modulated by water shortage in the roots of the WT plants than in the roots of rhl1.a. The roots of the WT plants, but not of rhl1.a, specifically responded with the induction of genes that are related to the abscisic acid biosynthesis, stomatal closure, and cell wall biogenesis, thus indicating the specific activation of processes that are related to water-stress signalling and protection. On the other hand, the processes involved in the further response to abiotic stimuli, including hydrogen peroxide, heat, and high light intensity, were specifically up-regulated in the leaves of rhl1.a. An extended period of severe stress caused more drastic transcriptome changes in the roots and leaves of the rhl1.a mutant than in those of the WT. These results are in agreement with the much stronger damage to photosystem II in the rhl1.a mutant than in its parent cultivar after 10 d of water stress. Taking into account the putative stress sensing and signalling features of the root hair transcriptome, we discuss the role of root hairs as sensors of environmental conditions. PMID:26585228

  18. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root.

    Science.gov (United States)

    Valenzuela, Camilo E; Acevedo-Acevedo, Orlando; Miranda, Giovanna S; Vergara-Barros, Pablo; Holuigue, Loreto; Figueroa, Carlos R; Figueroa, Pablo M

    2016-07-01

    Salinity is a severe abiotic stress that affects irrigated croplands. Jasmonate (JA) is an essential hormone involved in plant defense against herbivory and in responses to abiotic stress. However, the relationship between the salt stress response and the JA pathway in Arabidopsis thaliana is not well understood at molecular and cellular levels. In this work we investigated the activation of JA signaling by NaCl and its effect on primary root growth. We found that JA-responsive JAZ genes were up-regulated by salt stress in a COI1-dependent manner in the roots. Using a JA-Ile sensor we demonstrated that activation of JA signaling by salt stress occurs in the meristematic zone and stele of the differentiation zone and that this activation was dependent on JAR1 and proteasome functions. Another finding is that the elongation zone (EZ) and its cortical cells were significantly longer in JA-related mutants (AOS, COI1, JAZ3 and MYC2/3/4 genes) compared with wild-type plants under salt stress, revealing the participation of the canonical JA signaling pathway. Noteworthy, osmotic stress - a component of salt stress - inhibited cell elongation in the EZ in a COI1-dependent manner. We propose that salt stress triggers activation of the JA signaling pathway followed by inhibition of cell elongation in the EZ. We have shown that salt-inhibited root growth partially involves the jasmonate signaling pathway in Arabidopsis. PMID:27217545

  19. Polycaprolactone fiber meshes provide a 3D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle.

    Science.gov (United States)

    Savkovic, Vuk; Flämig, Franziska; Schneider, Marie; Sülflow, Katharina; Loth, Tina; Lohrenz, Andrea; Hacker, Michael Christian; Schulz-Siegmund, Michaela; Simon, Jan-Christoph

    2016-01-01

    Melanocytes differentiated from the stem cells of human hair follicle outer root sheath (ORS) have the potential for developing non-invasive treatments for skin disorders out of a minimal sample: of hair root. With a robust procedure for melanocyte cultivation from the ORS of human hair follicle at hand, this study focused on the identification of a suitable biocompatible, biodegradable carrier as the next step toward their clinical implementation. Polycaprolactone (PCL) is a known biocompatible material used for a number of medical devices. In this study, we have populated electrospun PCL fiber meshes with normal human epidermal melanocytes (NHEM) as well as with hair-follicle-derived human melanocytes from the outer root sheath (HUMORS) and tested their functionality in vitro. PCL fiber meshes evidently provided a niche for melanocytes and supported their melanotic properties. The cells were tested for gene expression of PAX3, PMEL, TYR and MITF, as well as for proliferation, expression of melanocyte marker proteins tyrosinase and glycoprotein 100 (gp100), L-DOPA-tautomerase enzymatic activity and melanin content. Reduced mitochondrial activity and PAX-3 gene expression indicated that the three-dimensional PCL scaffold supported differentiation rather than proliferation of melanocytes. The monitored melanotic features of both the NHEM and HUMORS cultivated on PCL scaffolds significantly exceeded those of two-dimensional adherent cultures. PMID:26126647

  20. Gravitropism in Arabidopsis thaliana: Root-specific action of the EHB gene and violation of the resultant law.

    Science.gov (United States)

    Dümmer, Michaela; Forreiter, Christoph; Galland, Paul

    2015-09-15

    Gravitropic bending of seedlings of Arabidopsis thaliana in response to centrifugal accelerations was determined in a range between 0.0025 and 4×g to revisit and validate the so-called resultant law, which claims that centrifugation causes gravitropic organs to orient parallel to the resultant stimulus vector. We show here for seedlings of A. thaliana that this empirical law holds for hypocotyls but surprisingly fails for roots. While the behavior of hypocotyls could be modeled by an arc tangent function predicted by the resultant law, roots displayed a sharp maximum at 1.8×g that substantially overshoots the predicted value and that represents a novel phenomenon, diagravitropism elicited by centrifugal acceleration. The gravitropic bending critically depended on the orientation of the seedling relative to the centrifugal acceleration. If the centrifugal vector pointed toward the cotyledons, gravitropic bending of hypocotyls and roots was substantially enhanced. The complex behavior of Arabidopsis seedlings provides strong evidence that gravitropic bending entails a cosine component (longitudinal stimulus) to which the seedlings were more sensitive than to the classical sine component. The absolute gravitropic thresholds of hypocotyls and roots were determined in a clinostat-centrifuge and found to be below 0.015×g. A tropism mutant lacking the EHB1 protein, which interacts with ARF-GAP (ARF GTPase-activating protein) and thus indirectly with a small ARF-type G protein, displayed a lower gravitropic threshold for roots and also enhanced bending, while the responses of the hypocotyls remained nearly unaffected. PMID:26496692

  1. Arabidopsis Myrosinase Genes AtTGG4 and AtTGG5 Are Root-Tip Specific and Contribute to Auxin Biosynthesis and Root-Growth Regulation

    Directory of Open Access Journals (Sweden)

    Lili Fu

    2016-06-01

    Full Text Available Plant myrosinases (β-thioglucoside glucohydrolases are classified into two subclasses, Myr I and Myr II. The biological function of Myr I has been characterized as a major biochemical defense against insect pests and pathogens in cruciferous plants. However, the biological function of Myr II remains obscure. We studied the function of two Myr II member genes AtTGG4 and AtTGG5 in Arabidopsis. RT-PCR showed that both genes were specifically expressed in roots. GUS-assay revealed that both genes were expressed in the root-tip but with difference: AtTGG4 was expressed in the elongation zone of the root-tip, while AtTGG5 was expressed in the whole root-tip. Moreover, myrosin cells that produce and store the Myr I myrosinases in aboveground organs were not observed in roots, and AtTGG4 and AtTGG5 were expressed in all cells of the specific region. A homozygous double mutant line tgg4tgg5 was obtained through cross-pollination between two T-DNA insertion lines, tgg4E8 and tgg5E12, by PCR-screening in the F2 and F3 generations. Analysis of myrosinase activity in roots of mutants revealed that AtTGG4 and AtTGG5 had additive effects and contributed 35% and 65% myrosinase activity in roots of the wild type Col-0, respectively, and myrosinase activity in tgg4tgg5 was severely repressed. When grown in Murashiege & Skoog (MS medium or in soil with sufficient water, Col-0 had the shortest roots, and tgg4tgg5 had the longest roots, while tgg4E8 and tgg5E12 had intermediate root lengths. In contrast, when grown in soil with excessive water, Col-0 had the longest roots, and tgg4tgg5 had the shortest roots. These results suggested that AtTGG4 and AtTGG5 regulated root growth and had a role in flood tolerance. The auxin-indicator gene DR5::GUS was then introduced into tgg4tgg5 by cross-pollination. DR5::GUS expression patterns in seedlings of F1, F2, and F3 generations indicated that AtTGG4 and AtTGG5 contributed to auxin biosynthesis in roots. The proposed

  2. Arabidopsis Myrosinase Genes AtTGG4 and AtTGG5 Are Root-Tip Specific and Contribute to Auxin Biosynthesis and Root-Growth Regulation.

    Science.gov (United States)

    Fu, Lili; Wang, Meng; Han, Bingying; Tan, Deguan; Sun, Xuepiao; Zhang, Jiaming

    2016-01-01

    Plant myrosinases (β-thioglucoside glucohydrolases) are classified into two subclasses, Myr I and Myr II. The biological function of Myr I has been characterized as a major biochemical defense against insect pests and pathogens in cruciferous plants. However, the biological function of Myr II remains obscure. We studied the function of two Myr II member genes AtTGG4 and AtTGG5 in Arabidopsis. RT-PCR showed that both genes were specifically expressed in roots. GUS-assay revealed that both genes were expressed in the root-tip but with difference: AtTGG4 was expressed in the elongation zone of the root-tip, while AtTGG5 was expressed in the whole root-tip. Moreover, myrosin cells that produce and store the Myr I myrosinases in aboveground organs were not observed in roots, and AtTGG4 and AtTGG5 were expressed in all cells of the specific region. A homozygous double mutant line tgg4tgg5 was obtained through cross-pollination between two T-DNA insertion lines, tgg4E8 and tgg5E12, by PCR-screening in the F2 and F3 generations. Analysis of myrosinase activity in roots of mutants revealed that AtTGG4 and AtTGG5 had additive effects and contributed 35% and 65% myrosinase activity in roots of the wild type Col-0, respectively, and myrosinase activity in tgg4tgg5 was severely repressed. When grown in Murashiege & Skoog (MS) medium or in soil with sufficient water, Col-0 had the shortest roots, and tgg4tgg5 had the longest roots, while tgg4E8 and tgg5E12 had intermediate root lengths. In contrast, when grown in soil with excessive water, Col-0 had the longest roots, and tgg4tgg5 had the shortest roots. These results suggested that AtTGG4 and AtTGG5 regulated root growth and had a role in flood tolerance. The auxin-indicator gene DR5::GUS was then introduced into tgg4tgg5 by cross-pollination. DR5::GUS expression patterns in seedlings of F1, F2, and F3 generations indicated that AtTGG4 and AtTGG5 contributed to auxin biosynthesis in roots. The proposed mechanism is that

  3. Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yuan-Zhi Shi; Xiao-Fang Zhu; Jiang-Xue Wan; Gui-Xin Li; Shao-Jian Zheng

    2015-01-01

    Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium (Cd) concentration, and rescued Cd-induced chlorosis in Arabidopsis thaliana (Columbia ecotype, Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot significantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd (Glu þ Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it significantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu þ Cd treatment compared with Cd treatment alone, which was in accordance with the significant upregulation of the expression of tonoplast-localized metal transporter genes, suggesting that com-partmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increas-ing Cd fixation in the root cell wall and sequestration into the vacuoles.

  4. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis.

    Science.gov (United States)

    Chen, Lyuqin; Tong, Jianhua; Xiao, Langtao; Ruan, Ying; Liu, Jingchun; Zeng, Minhuan; Huang, Hai; Wang, Jia-Wei; Xu, Lin

    2016-07-01

    Many plant organs have the ability to regenerate a new plant after detachment or wounding via de novo organogenesis. During de novo root organogenesis from Arabidopsis thaliana leaf explants, endogenic auxin is essential for the fate transition of regeneration-competent cells to become root founder cells via activation of WUSCHEL-RELATED HOMEOBOX 11 (WOX11). However, the molecular events from leaf explant detachment to auxin-mediated cell fate transition are poorly understood. In this study, we used an assay to determine the concentration of indole-3-acetic acid (IAA) to provide direct evidence that auxin is produced after leaf explant detachment, a process that involves YUCCA (YUC)-mediated auxin biogenesis. Inhibition of YUC prevents expression of WOX11 and fate transition of competent cells, resulting in the blocking of rooting. Further analysis showed that YUC1 and YUC4 act quickly (within 4 hours) in response to wounding after detachment in both light and dark conditions and promote auxin biogenesis in both mesophyll and competent cells, whereas YUC5, YUC8, and YUC9 primarily respond in dark conditions. In addition, YUC2 and YUC6 contribute to rooting by providing a basal auxin level in the leaf. Overall, our study indicates that YUC genes exhibit a division of labour during de novo root organogenesis from leaf explants in response to multiple signals. PMID:27255928

  5. Differential responsiveness of cortical microtubule orientation to suppression of cell expansion among the developmental zones of Arabidopsis thaliana root apex.

    Directory of Open Access Journals (Sweden)

    Emmanuel Panteris

    Full Text Available Τhe bidirectional relationship between cortical microtubule orientation and cell wall structure has been extensively studied in elongating cells. Nevertheless, the possible interplay between microtubules and cell wall elements in meristematic cells still remains elusive. Herein, the impact of cellulose synthesis inhibition and suppressed cell elongation on cortical microtubule orientation was assessed throughout the developmental zones of Arabidopsis thaliana root apex by whole-mount tubulin immunolabeling and confocal microscopy. Apart from the wild-type, thanatos and pom2-4 mutants of Cellulose SynthaseA3 and Cellulose Synthase Interacting1, respectively, were studied. Pharmacological and mechanical approaches inhibiting cell expansion were also applied. Cortical microtubules of untreated wild-type roots were predominantly transverse in the meristematic, transition and elongation root zones. Cellulose-deficient mutants, chemical inhibition of cell expansion, or growth in soil resulted in microtubule reorientation in the elongation zone, wherein cell length was significantly decreased. Combinatorial genetic and chemical suppression of cell expansion extended microtubule reorientation to the transition zone. According to the results, transverse cortical microtubule orientation is established in the meristematic root zone, persisting upon inhibition of cell expansion. Microtubule reorientation in the elongation zone could be attributed to conditional suppression of cell elongation. The differential responsiveness of microtubule orientation to genetic and environmental cues is most likely associated with distinct biophysical traits of the cells among each developmental root zone.

  6. Differential responsiveness of cortical microtubule orientation to suppression of cell expansion among the developmental zones of Arabidopsis thaliana root apex.

    Science.gov (United States)

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Daras, Gerasimos; Hatzopoulos, Polydefkis; Rigas, Stamatis

    2013-01-01

    Τhe bidirectional relationship between cortical microtubule orientation and cell wall structure has been extensively studied in elongating cells. Nevertheless, the possible interplay between microtubules and cell wall elements in meristematic cells still remains elusive. Herein, the impact of cellulose synthesis inhibition and suppressed cell elongation on cortical microtubule orientation was assessed throughout the developmental zones of Arabidopsis thaliana root apex by whole-mount tubulin immunolabeling and confocal microscopy. Apart from the wild-type, thanatos and pom2-4 mutants of Cellulose SynthaseA3 and Cellulose Synthase Interacting1, respectively, were studied. Pharmacological and mechanical approaches inhibiting cell expansion were also applied. Cortical microtubules of untreated wild-type roots were predominantly transverse in the meristematic, transition and elongation root zones. Cellulose-deficient mutants, chemical inhibition of cell expansion, or growth in soil resulted in microtubule reorientation in the elongation zone, wherein cell length was significantly decreased. Combinatorial genetic and chemical suppression of cell expansion extended microtubule reorientation to the transition zone. According to the results, transverse cortical microtubule orientation is established in the meristematic root zone, persisting upon inhibition of cell expansion. Microtubule reorientation in the elongation zone could be attributed to conditional suppression of cell elongation. The differential responsiveness of microtubule orientation to genetic and environmental cues is most likely associated with distinct biophysical traits of the cells among each developmental root zone. PMID:24324790

  7. Roles of Proteome Dynamics and Cytokinin Signaling in Root to Hypocotyl Ratio Changes Induced by Shading Roots of Arabidopsis Seedlings

    Czech Academy of Sciences Publication Activity Database

    Novak, J.; Černý, M.; Pavlů, J.; Zemánková, J.; Skalák, J.; Plačková, Lenka; Brzobohatý, Břetislav

    2015-01-01

    Roč. 56, č. 5 (2015), s. 1006-1018. ISSN 0032-0781 R&D Projects: GA MŠk(CZ) LO1204 Grant ostatní: GA ČR(CZ) GAP305/12/2144 Institutional support: RVO:68081707 ; RVO:61389030 Keywords : Arabidopsis thaliana * Cytokinin * Hypocotyl elongation Subject RIV: BO - Biophysics; EF - Botanics (UEB-Q) Impact factor: 4.931, year: 2014

  8. BES1 regulates the localization of the brassinosteroid receptor BRL3 within the provascular tissue of the Arabidopsis primary root.

    Science.gov (United States)

    Salazar-Henao, Jorge E; Lehner, Reinhard; Betegón-Putze, Isabel; Vilarrasa-Blasi, Josep; Caño-Delgado, Ana I

    2016-09-01

    Brassinosteroid (BR) hormones are important regulators of plant growth and development. Recent studies revealed the cell-specific role of BRs in vascular and stem cell development by the action of cell-specific BR receptor complexes and downstream signaling components in Arabidopsis thaliana Despite the importance of spatiotemporal regulation of hormone signaling in the control of plant vascular development, the mechanisms that confer cellular specificity to BR receptors within the vascular cells are not yet understood. The present work shows that BRI1-like receptor genes 1 and 3 (BRL1 and BRL3) are differently regulated by BRs. By using promoter deletion constructs of BRL1 and BRL3 fused to GFP/GUS (green fluorescent protein/β-glucuronidase) reporters in Arabidopsis, analysis of their cell-specific expression and regulation by BRs in the root apex has been carried out. We found that BRL3 expression is finely modulated by BRs in different root cell types, whereas the location of BRL1 appears to be independent of this hormone. Physiological and genetic analysis show a BR-dependent expression of BRL3 in the root meristem. In particular, BRL3 expression requires active BES1, a central transcriptional effector within the BRI1 pathway. ChIP analysis showed that BES1 directly binds to the BRRE present in the BRL3 promoter region, modulating its transcription in different subsets of cells of the root apex. Overall our study reveals the existence of a cell-specific negative feedback loop from BRI1-mediated BES1 transcription factor to BRL3 in phloem cells, while contributing to a general understanding of the spatial control of steroid signaling in plant development. PMID:27511026

  9. The acquisition of cell fate in the Arabidopsis thaliana root meristem

    NARCIS (Netherlands)

    Scheres, B.J.G.; Berg, C. van den; Hage, W.; Willemsen, V.; Werff, N. van der; Wolkenfelt, H.; McKhann, H.; Weisbeek, P.

    1997-01-01

    During plant embryogenesis an embryo with cotyledons, a shoot apical meristem, a hypocotyl and a root apical meristem, is formed. The primary root and shoot meristems initiate post-embryonic growth generating all plant organs. The root meristem forms the primary root, and the shoot meristem forms th

  10. A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis.

    Directory of Open Access Journals (Sweden)

    Natasha Saint Savage

    2008-09-01

    Full Text Available The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.

  11. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Yoichiro Fukao

    2016-01-01

    Full Text Available The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex, respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.

  12. Regulation of Small RNAs and Corresponding Targets in Nod Factor-Induced Phaseolus vulgaris Root Hair Cells

    Science.gov (United States)

    Formey, Damien; Martín-Rodríguez, José Ángel; Leija, Alfonso; Santana, Olivia; Quinto, Carmen; Cárdenas, Luis; Hernández, Georgina

    2016-01-01

    A genome-wide analysis identified the set of small RNAs (sRNAs) from the agronomical important legume Phaseolus vulgaris (common bean), including novel P. vulgaris-specific microRNAs (miRNAs) potentially important for the regulation of the rhizobia-symbiotic process. Generally, novel miRNAs are difficult to identify and study because they are very lowly expressed in a tissue- or cell-specific manner. In this work, we aimed to analyze sRNAs from common bean root hairs (RH), a single-cell model, induced with pure Rhizobium etli nodulation factors (NF), a unique type of signal molecule. The sequence analysis of samples from NF-induced and control libraries led to the identity of 132 mature miRNAs, including 63 novel miRNAs and 1984 phasiRNAs. From these, six miRNAs were significantly differentially expressed during NF induction, including one novel miRNA: miR-RH82. A parallel degradome analysis of the same samples revealed 29 targets potentially cleaved by novel miRNAs specifically in NF-induced RH samples; however, these novel miRNAs were not differentially accumulated in this tissue. This study reveals Phaseolus vulgaris-specific novel miRNA candidates and their corresponding targets that meet all criteria to be involved in the regulation of the early nodulation events, thus setting the basis for exploring miRNA-mediated improvement of the common bean–rhizobia symbiosis. PMID:27271618

  13. Regulation of Small RNAs and Corresponding Targets in Nod Factor-Induced Phaseolus vulgaris Root Hair Cells.

    Science.gov (United States)

    Formey, Damien; Martín-Rodríguez, José Ángel; Leija, Alfonso; Santana, Olivia; Quinto, Carmen; Cárdenas, Luis; Hernández, Georgina

    2016-01-01

    A genome-wide analysis identified the set of small RNAs (sRNAs) from the agronomical important legume Phaseolus vulgaris (common bean), including novel P. vulgaris-specific microRNAs (miRNAs) potentially important for the regulation of the rhizobia-symbiotic process. Generally, novel miRNAs are difficult to identify and study because they are very lowly expressed in a tissue- or cell-specific manner. In this work, we aimed to analyze sRNAs from common bean root hairs (RH), a single-cell model, induced with pure Rhizobium etli nodulation factors (NF), a unique type of signal molecule. The sequence analysis of samples from NF-induced and control libraries led to the identity of 132 mature miRNAs, including 63 novel miRNAs and 1984 phasiRNAs. From these, six miRNAs were significantly differentially expressed during NF induction, including one novel miRNA: miR-RH82. A parallel degradome analysis of the same samples revealed 29 targets potentially cleaved by novel miRNAs specifically in NF-induced RH samples; however, these novel miRNAs were not differentially accumulated in this tissue. This study reveals Phaseolus vulgaris-specific novel miRNA candidates and their corresponding targets that meet all criteria to be involved in the regulation of the early nodulation events, thus setting the basis for exploring miRNA-mediated improvement of the common bean-rhizobia symbiosis. PMID:27271618

  14. CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis.

    Science.gov (United States)

    Roberts, Ianto; Smith, Stephanie; Stes, Elisabeth; De Rybel, Bert; Staes, An; van de Cotte, Brigitte; Njo, Maria Fransiska; Dedeyne, Lise; Demol, Hans; Lavenus, Julien; Audenaert, Dominique; Gevaert, Kris; Beeckman, Tom; De Smet, Ive

    2016-08-01

    Roots explore the soil for water and nutrients through the continuous production of lateral roots. Lateral roots are formed at regular distances in a steadily elongating organ, but how future sites for lateral root formation become established is not yet understood. Here, we identified C-TERMINALLY ENCODED PEPTIDE 5 (CEP5) as a novel, auxin-repressed and phloem pole-expressed signal assisting in the formation of lateral roots. In addition, based on genetic and expression data, we found evidence for the involvement of its proposed receptor, XYLEM INTERMIXED WITH PHLOEM 1 (XIP1)/CEP RECEPTOR 1 (CEPR1), during the process of lateral root initiation. In conclusion, we report here on the existence of a peptide ligand-receptor kinase interaction that impacts lateral root initiation. Our results represent an important step towards the understanding of the cellular communication implicated in the early phases of lateral root formation. PMID:27296247

  15. The acquisition of cell fate in the Arabidopsis thaliana root meristem

    OpenAIRE

    Scheres, B.J.G.; Berg, C. van den; Hage, W.; Willemsen, V; Werff, N. van der; Wolkenfelt, H.; McKhann, H.; Weisbeek, P.

    1997-01-01

    During plant embryogenesis an embryo with cotyledons, a shoot apical meristem, a hypocotyl and a root apical meristem, is formed. The primary root and shoot meristems initiate post-embryonic growth generating all plant organs. The root meristem forms the primary root, and the shoot meristem forms the aerial portion of the plant including secondary meristems. Histological and fate map data have shown that there is no precise correlation between the shoot meristem cells and their descendants. T...

  16. Cytokinin-Deficient Transgenic Arabidopsis Plants Show Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity

    Czech Academy of Sciences Publication Activity Database

    Werner, T.; Motyka, Václav; Laucou, V.; Smets, R.; Onckelen, H. V.; Schmülling, T.

    2003-01-01

    Roč. 15, č. 11 (2003), s. 2532-2550. ISSN 1040-4651 R&D Projects: GA AV ČR IAA6038002 Institutional research plan: CEZ:AV0Z5038910 Keywords : Transgenic Arabidopsis Plants * Cytokinins * Root Meristem Activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.679, year: 2003

  17. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle

    NARCIS (Netherlands)

    Léon-Kloosterziel, K.M.; Verhagen, B.W.M.; Keurentjes, J.J.B.; Pelt, J.A. van; Rep, M.; Loon, L.C. van; Pieterse, C.M.J.

    2005-01-01

    Plants of which the roots are colonized by selected strains of non-pathogenic, fluorescent Pseudomonas spp. develop an enhanced defensive capacity against a broad spectrum of foliar pathogens. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of sa

  18. A root chicory MADS box sequence and the Arabidopsis flowering repressor FLC share common features that suggest conserved function in vernalization and de-vernalization responses.

    Science.gov (United States)

    Périlleux, Claire; Pieltain, Alexandra; Jacquemin, Guillaume; Bouché, Frédéric; Detry, Nathalie; D'Aloia, Maria; Thiry, Laura; Aljochim, Pierre; Delansnay, Martin; Mathieu, Anne-Sophie; Lutts, Stanley; Tocquin, Pierre

    2013-08-01

    Root chicory (Cichorium intybus var. sativum) is a biennial crop, but is harvested to obtain root inulin at the end of the first growing season before flowering. However, cold temperatures may vernalize seeds or plantlets, leading to incidental early flowering, and hence understanding the molecular basis of vernalization is important. A MADS box sequence was isolated by RT-PCR and named FLC-LIKE1 (CiFL1) because of its phylogenetic positioning within the same clade as the floral repressor Arabidopsis FLOWERING LOCUS C (AtFLC). Moreover, over-expression of CiFL1 in Arabidopsis caused late flowering and prevented up-regulation of the AtFLC target FLOWERING LOCUS T by photoperiod, suggesting functional conservation between root chicory and Arabidopsis. Like AtFLC in Arabidopsis, CiFL1 was repressed during vernalization of seeds or plantlets of chicory, but repression of CiFL1 was unstable when the post-vernalization temperature was favorable to flowering and when it de-vernalized the plants. This instability of CiFL1 repression may be linked to the bienniality of root chicory compared with the annual lifecycle of Arabidopsis. However, re-activation of AtFLC was also observed in Arabidopsis when a high temperature treatment was used straight after seed vernalization, eliminating the promotive effect of cold on flowering. Cold-induced down-regulation of a MADS box floral repressor and its re-activation by high temperature thus appear to be conserved features of the vernalization and de-vernalization responses in distant species. PMID:23581257

  19. Arabidopsis ERF1 Mediates Cross-Talk between Ethylene and Auxin Biosynthesis during Primary Root Elongation by Regulating ASA1 Expression.

    Directory of Open Access Journals (Sweden)

    Jie-Li Mao

    2016-01-01

    Full Text Available The gaseous phytohormone ethylene participates in the regulation of root growth and development in Arabidopsis. It is known that root growth inhibition by ethylene involves auxin, which is partially mediated by the action of the WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 (WEI2/ASA1, encoding a rate-limiting enzyme in tryptophan (Trp biosynthesis, from which auxin is derived. However, the molecular mechanism by which ethylene decreases root growth via ASA1 is not understood. Here we report that the ethylene-responsive AP2 transcription factor, ETHYLENE RESPONSE FACTOR1 (ERF1, plays an important role in primary root elongation of Arabidopsis. Using loss- and gain-of-function transgenic lines as well as biochemical analysis, we demonstrate that ERF1 can directly up-regulate ASA1 by binding to its promoter, leading to auxin accumulation and ethylene-induced inhibition of root growth. This discloses one mechanism linking ethylene signaling and auxin biosynthesis in Arabidopsis roots.

  20. Arabidopsis ERF1 Mediates Cross-Talk between Ethylene and Auxin Biosynthesis during Primary Root Elongation by Regulating ASA1 Expression

    Science.gov (United States)

    Wang, Zhen; Yu, Lin-Hui; Cai, Xiao-Teng; Xiang, Cheng-Bin

    2016-01-01

    The gaseous phytohormone ethylene participates in the regulation of root growth and development in Arabidopsis. It is known that root growth inhibition by ethylene involves auxin, which is partially mediated by the action of the WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 (WEI2/ASA1), encoding a rate-limiting enzyme in tryptophan (Trp) biosynthesis, from which auxin is derived. However, the molecular mechanism by which ethylene decreases root growth via ASA1 is not understood. Here we report that the ethylene-responsive AP2 transcription factor, ETHYLENE RESPONSE FACTOR1 (ERF1), plays an important role in primary root elongation of Arabidopsis. Using loss- and gain-of-function transgenic lines as well as biochemical analysis, we demonstrate that ERF1 can directly up-regulate ASA1 by binding to its promoter, leading to auxin accumulation and ethylene-induced inhibition of root growth. This discloses one mechanism linking ethylene signaling and auxin biosynthesis in Arabidopsis roots. PMID:26745809

  1. Tracking transcription factor mobility and interaction in arabidopsis roots with fluorescence correlation spectroscopy

    NARCIS (Netherlands)

    Clark, Natalie M.; Hinde, Elizabeth; Hinde, Elizabeth; Fisher, Adam P.; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N.; Sozzani, Rosangela

    2016-01-01

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction

  2. Microscopy of the hair and trichogram

    OpenAIRE

    Özlem Dicle

    2014-01-01

    Hair microscopy is a fast and simple method for the diagnosis of various disorders affecting the hair in daily practice. For the microscopy of the hair, samples are collected by either clipping or plucking. The trichogram technique which the hair sample is collected by a standardized plucking method is used for the diagnosis of hair shedding and of alopecia via hair root pattern. In this review, the examination techniques and details are discussed and the most common indications for the hair ...

  3. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress.

    Science.gov (United States)

    Jülke, Sabine; Ludwig-Müller, Jutta

    2015-01-01

    The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana clubroots indicate that lipid transfer proteins (LTPs) could be involved in disease development or at least in adaptation to the disease symptoms. Therefore, the aim of the study was to examine the role of some, of the still enigmatic LTPs during clubroot development. For a functional approach, we have generated transgenic plants that overexpress LTP genes in a root specific manner or show reduced LTP gene expression. Our results showed that overexpression of some of the LTP genes resulted in reduced disease severity whereas the lipid content in clubs of LTP mutants seems to be unaffected. Additional studies indicate a role for some LTPs during salt stress conditions in roots of A. thaliana. PMID:27135222

  4. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP Gene Expression to the Clubroot Disease and Salt Stress

    Directory of Open Access Journals (Sweden)

    Sabine Jülke

    2015-12-01

    Full Text Available The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana clubroots indicate that lipid transfer proteins (LTPs could be involved in disease development or at least in adaptation to the disease symptoms. Therefore, the aim of the study was to examine the role of some, of the still enigmatic LTPs during clubroot development. For a functional approach, we have generated transgenic plants that overexpress LTP genes in a root specific manner or show reduced LTP gene expression. Our results showed that overexpression of some of the LTP genes resulted in reduced disease severity whereas the lipid content in clubs of LTP mutants seems to be unaffected. Additional studies indicate a role for some LTPs during salt stress conditions in roots of A. thaliana.

  5. An improved, simple, inexpensive and highly flexible hydroponic setup for root mitochondria isolation from arabidopsis and nicotiana pants

    International Nuclear Information System (INIS)

    Hydroponic setups are frequently developed and improved as they are convenient platforms for studying whole plant physiology. Mostly, the available systems produce small amounts of plant material and are therefore, unsuitable for studies requiring large quantities of plant material like isolation of mitochondria. To address this issue, we have modified a hydroponic setup that can sustain hundreds of Arabidopsis and tobacco plants until adult plants are established. The setup is very flexible and easy to construct. It is based on the use of recyclable and sterilizable plastic-net-pots and media containers, which are easily available from the local suppliers. The modified seed-pots and styrofoam sheets facilitate the transfer and harvesting of seedlings. We have used the Percoll based two-step density gradient centrifugation method for the isolation of root mitochondria from the hydroponically grown plants. (author)

  6. Live cell imaging of FM4-64, a tool for tracing the endocytic pathways in Arabidopsis root cells.

    Science.gov (United States)

    Rigal, Adeline; Doyle, Siamsa M; Robert, Stéphanie

    2015-01-01

    Confocal live imaging of the amphiphilic styryl dye FM4-64 is a valuable technique to monitor organelle dynamics and in particular endocytic pathways. After application in plants, FM4-64 immediately stains the plasma membrane and is then integrated on vesicles following endomembrane system-dependent internalization processes. Over time, FM4-64 becomes distributed throughout the full vesicular network from the plasma membrane to the vacuole, including the components of the secretory pathways. Here we provide succinct examples of the many important developmental processes in plants that rely on endocytosis and describe two suitable methods to trace the endocytic pathways in Arabidopsis thaliana root cells based on the uptake of FM4-64. PMID:25408447

  7. A SCARECROW-RETINOBLASTOMA protein network controls protective quiescence in the Arabidopsis root stem cell organizer.

    OpenAIRE

    Alfredo Cruz-Ramírez; Sara Díaz-Triviño; Guy Wachsman; Yujuan Du; Mario Arteága-Vázquez; Hongtao Zhang; Rene Benjamins; Ikram Blilou; Neef, Anne B.; Vicki Chandler; Ben Scheres

    2013-01-01

    Author Summary In the plant Arabidposis thaliana, root meristems (in the growing tip of the root) contain slowly dividing cells that act as an organizing center for the root stem cells that surround them. This centre is called the quiescent centre (QC). In this study, we show that the slow rate of division in the QC is regulated by the interaction between two proteins: Retinoblastoma homolog (RBR) and SCARECROW (SCR), a transcription factor that controls stem cell maintenance. RBR and SCR reg...

  8. Effects of Conditional IPT-Dependent Cytokinin Overproduction on Root Architecture of Arabidopsis Seedlings

    Czech Academy of Sciences Publication Activity Database

    Kuderová, A.; Urbánková, I.; Válková, M.; Malbeck, Jiří; Brzobohatý, Břetislav; Némethová, D.; Hejátko, J.

    2008-01-01

    Roč. 49, č. 4 (2008), s. 570-582. ISSN 0032-0781 R&D Projects: GA MŠk(CZ) LC06034; GA AV ČR(CZ) IAA600380507 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50040507 Keywords : Arabidopsis thaliana * Auxin–cytokinin cross-talk * CaMV 35S>GR>ipt transactivation Subject RIV: ED - Physiology Impact factor: 3.542, year: 2008

  9. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part I: responses in the roots

    International Nuclear Information System (INIS)

    When aiming to evaluate the environmental impact of uranium contamination, it is important to unravel the mechanisms by which plants respond to uranium stress. As oxidative stress seems an important modulator under other heavy metal stress, this study aimed to investigate oxidative stress related responses in Arabidopsis thaliana exposed to uranium concentrations ranging from 0.1 to 100 μM for 1, 3 and 7 days. Besides analyzing relevant reactive oxygen species-producing and -scavenging enzymes at protein and transcriptional level, the importance of the ascorbate-glutathione cycle under uranium stress was investigated. These results are reported separately for roots and leaves in two papers: Part I dealing with responses in the roots and Part II unraveling responses in the leaves and presenting general conclusions. Results of Part I indicate that oxidative stress related responses in the roots were only triggered following exposure to the highest uranium concentration of 100 μM. A fast oxidative burst was suggested based on the observed enhancement of lipoxygenase (LOX1) and respiratory burst oxydase homolog (RBOHD) transcript levels already after 1 day. The first line of defense was attributed to superoxide dismutase (SOD), also triggered from the first day. The enhanced SOD-capacity observed at protein level corresponded with an enhanced expression of iron SOD (FSD1) located in the plastids. For the detoxification of H2O2, an early increase in catalase (CAT1) transcript levels was observed while peroxidase capacities were enhanced at the later stage of 3 days. Although the ascorbate peroxidase capacity and gene expression (APX1) increased, the ascorbate/dehydroascorbate redox balance was completely disrupted and shifted toward the oxidized form. This disrupted balance could not be inverted by the glutathione part of the cycle although the glutathione redox balance could be maintained. - Highlights: → Unravel response mechanisms to uranium stress in Arabidopsis

  10. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part I: responses in the roots

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoudt, Nathalie, E-mail: nvanhoud@sckcen.be [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Vandenhove, Hildegarde; Horemans, Nele [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Remans, Tony; Opdenakker, Kelly; Smeets, Karen [Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Bello, Daniel Martinez [Hasselt University, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Agoralaan Building D, 3590 Diepenbeek (Belgium); Wannijn, Jean; Van Hees, May [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Vangronsveld, Jaco; Cuypers, Ann [Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium)

    2011-06-15

    When aiming to evaluate the environmental impact of uranium contamination, it is important to unravel the mechanisms by which plants respond to uranium stress. As oxidative stress seems an important modulator under other heavy metal stress, this study aimed to investigate oxidative stress related responses in Arabidopsis thaliana exposed to uranium concentrations ranging from 0.1 to 100 {mu}M for 1, 3 and 7 days. Besides analyzing relevant reactive oxygen species-producing and -scavenging enzymes at protein and transcriptional level, the importance of the ascorbate-glutathione cycle under uranium stress was investigated. These results are reported separately for roots and leaves in two papers: Part I dealing with responses in the roots and Part II unraveling responses in the leaves and presenting general conclusions. Results of Part I indicate that oxidative stress related responses in the roots were only triggered following exposure to the highest uranium concentration of 100 {mu}M. A fast oxidative burst was suggested based on the observed enhancement of lipoxygenase (LOX1) and respiratory burst oxydase homolog (RBOHD) transcript levels already after 1 day. The first line of defense was attributed to superoxide dismutase (SOD), also triggered from the first day. The enhanced SOD-capacity observed at protein level corresponded with an enhanced expression of iron SOD (FSD1) located in the plastids. For the detoxification of H{sub 2}O{sub 2}, an early increase in catalase (CAT1) transcript levels was observed while peroxidase capacities were enhanced at the later stage of 3 days. Although the ascorbate peroxidase capacity and gene expression (APX1) increased, the ascorbate/dehydroascorbate redox balance was completely disrupted and shifted toward the oxidized form. This disrupted balance could not be inverted by the glutathione part of the cycle although the glutathione redox balance could be maintained. - Highlights: > Unravel response mechanisms to uranium stress

  11. Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate.

    Directory of Open Access Journals (Sweden)

    Anne M Visscher

    Full Text Available BACKGROUND: Martian regolith (unconsolidated surface material is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. METHODOLOGY AND PRINCIPAL FINDINGS: Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO(4.7H(2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO(4.7H(2O (magnesium sulfate stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO(4.7H(2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment. CONCLUSIONS/SIGNIFICANCE: The results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster

  12. Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche

    Directory of Open Access Journals (Sweden)

    Alvarez-Buylla Elena R

    2010-10-01

    Full Text Available Abstract Background Recent experimental work has uncovered some of the genetic components required to maintain the Arabidopsis thaliana root stem cell niche (SCN and its structure. Two main pathways are involved. One pathway depends on the genes SHORTROOT and SCARECROW and the other depends on the PLETHORA genes, which have been proposed to constitute the auxin readouts. Recent evidence suggests that a regulatory circuit, composed of WOX5 and CLE40, also contributes to the SCN maintenance. Yet, we still do not understand how the niche is dynamically maintained and patterned or if the uncovered molecular components are sufficient to recover the observed gene expression configurations that characterize the cell types within the root SCN. Mathematical and computational tools have proven useful in understanding the dynamics of cell differentiation. Hence, to further explore root SCN patterning, we integrated available experimental data into dynamic Gene Regulatory Network (GRN models and addressed if these are sufficient to attain observed gene expression configurations in the root SCN in a robust and autonomous manner. Results We found that an SCN GRN model based only on experimental data did not reproduce the configurations observed within the root SCN. We developed several alternative GRN models that recover these expected stable gene configurations. Such models incorporate a few additional components and interactions in addition to those that have been uncovered. The recovered configurations are stable to perturbations, and the models are able to recover the observed gene expression profiles of almost all the mutants described so far. However, the robustness of the postulated GRNs is not as high as that of other previously studied networks. Conclusions These models are the first published approximations for a dynamic mechanism of the A. thaliana root SCN cellular pattering. Our model is useful to formally show that the data now available are not

  13. Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis.

    Science.gov (United States)

    Mudgil, Yashwanti; Karve, Abhijit; Teixeira, Paulo J P L; Jiang, Kun; Tunc-Ozdemir, Meral; Jones, Alan M

    2016-01-01

    Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior. PMID:27610112

  14. PHABULOSA controls the quiescent center-independent root meristem activities in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jose Sebastian

    2015-03-01

    Full Text Available Plant growth depends on stem cell niches in meristems. In the root apical meristem, the quiescent center (QC cells form a niche together with the surrounding stem cells. Stem cells produce daughter cells that are displaced into a transit-amplifying (TA domain of the root meristem. TA cells divide several times to provide cells for growth. SHORTROOT (SHR and SCARECROW (SCR are key regulators of the stem cell niche. Cytokinin controls TA cell activities in a dose-dependent manner. Although the regulatory programs in each compartment of the root meristem have been identified, it is still unclear how they coordinate one another. Here, we investigate how PHABULOSA (PHB, under the posttranscriptional control of SHR and SCR, regulates TA cell activities. The root meristem and growth defects in shr or scr mutants were significantly recovered in the shr phb or scr phb double mutant, respectively. This rescue in root growth occurs in the absence of a QC. Conversely, when the modified PHB, which is highly resistant to microRNA, was expressed throughout the stele of the wild-type root meristem, root growth became very similar to that observed in the shr; however, the identity of the QC was unaffected. Interestingly, a moderate increase in PHB resulted in a root meristem phenotype similar to that observed following the application of high levels of cytokinin. Our protoplast assay and transgenic approach using ARR10 suggest that the depletion of TA cells by high PHB in the stele occurs via the repression of B-ARR activities. This regulatory mechanism seems to help to maintain the cytokinin homeostasis in the meristem. Taken together, our study suggests that PHB can dynamically regulate TA cell activities in a QC-independent manner, and that the SHR-PHB pathway enables a robust root growth system by coordinating the stem cell niche and TA domain.

  15. Aluminium-induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux

    OpenAIRE

    Bose, Jayakumar; Babourina, Olga; Shabala, Sergey; RENGEL, ZED

    2010-01-01

    Aluminium (Al) rhizotoxicity coincides with low pH; however, it is unclear whether plant tolerance to these two factors is controlled by the same mechanism. To address this question, the Al-resistant alr104 mutant, two Al-sensitive mutants (als3 and als5), and wild-type Arabidopsis thaliana were compared in long-term exposure (solution culture) and in short-term exposure experiments (H+ and K+ fluxes, rhizosphere pH, and plasma membrane potential, E m). Based on biomass accumulation, als5 and...

  16. Root and shoot performance of Arabidopsis thaliana exposed to elevated CO2: A physiologic, metabolic and transcriptomic response.

    Science.gov (United States)

    Jauregui, Iván; Aparicio-Tejo, Pedro M; Avila, Concepción; Rueda-López, Marina; Aranjuelo, Iker

    2015-09-15

    The responsiveness of C3 plants to raised atmospheric [CO2] levels has been frequently described as constrained by photosynthetic downregulation. The main goal of the current study was to characterize the shoot-root relationship and its implications in plant responsiveness under elevated [CO2] conditions. For this purpose, Arabidopsis thaliana plants were exposed to elevated [CO2] (800ppm versus 400ppm [CO2]) and fertilized with a mixed (NH4NO3) nitrogen source. Plant growth, physiology, metabolite and transcriptomic characterizations were carried out at the root and shoot levels. Plant growth under elevated [CO2] conditions was doubled due to increased photosynthetic rates and gas exchange measurements revealed that these plants maintain higher photosynthetic rates over extended periods of time. This positive response of photosynthetic rates to elevated [CO2] was caused by the maintenance of leaf protein and Rubisco concentrations at control levels alongside enhanced energy efficiency. The increased levels of leaf carbohydrates, organic acids and amino acids supported the augmented respiration rates of plants under elevated [CO2]. A transcriptomic analysis allowed the identification of photoassimilate allocation and remobilization as fundamental process used by the plants to maintain the outstanding photosynthetic performance. Moreover, based on the relationship between plant carbon status and hormone functioning, the transcriptomic analyses provided an explanation of why phenology accelerates under elevated [CO2] conditions. PMID:26519814

  17. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots

    KAUST Repository

    Muraro, D.

    2013-12-31

    As multicellular organisms grow, positional information is continually needed to regulate the pattern in which cells are arranged. In the Arabidopsis root, most cell types are organized in a radially symmetric pattern; however, a symmetry-breaking event generates bisymmetric auxin and cytokinin signaling domains in the stele. Bidirectional cross-talk between the stele and the surrounding tissues involving a mobile transcription factor, SHORT ROOT (SHR), and mobile microRNA species also determines vascular pattern, but it is currently unclear how these signals integrate. We use a multicellular model to determine a minimal set of components necessary for maintaining a stable vascular pattern. Simulations perturbing the signaling network show that, in addition to the mutually inhibitory interaction between auxin and cytokinin, signaling through SHR, microRNA165/6, and PHABULOSA is required to maintain a stable bisymmetric pattern. We have verified this prediction by observing loss of bisymmetry in shr mutants. The model reveals the importance of several features of the network, namely the mutual degradation of microRNA165/6 and PHABULOSA and the existence of an additional negative regulator of cytokinin signaling. These components form a plausible mechanism capable of patterning vascular tissues in the absence of positional inputs provided by the transport of hormones from the shoot.

  18. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Markakis Marios

    2012-11-01

    Full Text Available Abstract Background Along the root axis of Arabidopsis thaliana, cells pass through different developmental stages. In the apical meristem repeated cycles of division increase the numbers of cells. Upon leaving the meristem, these cells pass the transition zone where they are physiologically and mechanically prepared to undergo subsequent rapid elongation. During the process of elongation epidermal cells increase their length by 300% in a couple of hours. When elongation ceases, the cells acquire their final size, shape and functions (in the differentiation zone. Ethylene administered as its precursor 1-aminocyclopropane-1-carboxylic acid (ACC is capable of inhibiting elongation in a concentration-dependent way. Using a microarray analysis, genes and/or processes involved in this elongation arrest are identified. Results Using a CATMA-microarray analysis performed on control and 3h ACC-treated roots, 240 differentially expressed genes were identified. Quantitative Real-Time RT-PCR analysis of the 10 most up and down regulated genes combined with literature search confirmed the accurateness of the analysis. This revealed that inhibition of cell elongation is, at least partly, caused by restricting the events that under normal growth conditions initiate elongation and by increasing the processes that normally stop cellular elongation at the end of the elongation/onset of differentiation zone. Conclusions ACC interferes with cell elongation in the Arabidopsis thaliana roots by inhibiting cells from entering the elongation process and by immediately stimulating the formation of cross-links in cell wall components, diminishing the remaining elongation capacity. From the analysis of the differentially expressed genes, it becomes clear that many genes identified in this response, are also involved in several other kind of stress responses. This suggests that many responses originate from individual elicitors, but that somewhere in the downstream

  19. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7.

    Science.gov (United States)

    Maldonado-González, M Mercedes; Bakker, Peter A H M; Prieto, Pilar; Mercado-Blanco, Jesús

    2015-01-01

    The effective management of Verticillium wilts (VW), diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control VW of olive caused by the highly virulent, defoliating (D) pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V. dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i) olive D and non-defoliating V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii) strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii) strain PICF7 controls VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. A. thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7. PMID:25904904

  20. Development of root hairs

    NARCIS (Netherlands)

    Grierson, C.; Ketelaar, T.

    2004-01-01

    The cytoskeleton is a dynamic filamentous structure composed of at least actin and microtubule networks. Actin and microtubules are no different structurally from their animal and fungal counterparts. However, the strategies of cell differentiation and development in plants require this network to r

  1. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses

    OpenAIRE

    2015-01-01

    In Arabidopsis roots, the transcription factor MYB72 plays a dual role in the onset of rhizobacteria-induced systemic resistance (ISR) and plant survival under conditions of limited iron availability. Previously, it was shown that MYB72 coordinates the expression of a gene module that promotes synthesis and excretion of iron-mobilizing phenolic compounds in the rhizosphere, a process that is involved in both iron acquisition and ISR signaling. Here, we show that volatile organic compounds (VO...

  2. The response of Arabidopsis root water transport to a challenging environment implicates reactive oxygen species- and phosphorylation-dependent internalization of aquaporins

    OpenAIRE

    Boursiac, Yann; Prak, Sodana; Boudet, Julie; Postaire, Olivier; Luu, Doan-Trung; Tournaire-Roux, Colette; Santoni, Véronique; Maurel, Christophe

    2008-01-01

    Aquaporins, which facilitate the diffusion of water across biological membranes, are key molecules for the regulation of water transport at the cell and organ levels. We recently reported that hydrogen peroxide (H2O2) acts as an intermediate in the regulation of Arabidopsis root water transport and aquaporins in response to NaCl and salicylic acid (SA).1 Its action involves signaling pathways and an internalization of aquaporins from the cell surface. The present addendum connects these findi...

  3. Intraspecific competition reveals conditional fitness effects of single gene polymorphism at the Arabidopsis root growth regulator BRX

    OpenAIRE

    Shindo, Chikako; Bernasconi, Giorgina; Hardtke, Christian S

    2009-01-01

    • Intraspecific genetic variation for morphological traits is observed in many organisms. In Arabidopsis thaliana, alleles responsible for intraspecific morphological variation are increasingly being identified. However, the fitness consequences remain unclear in most cases. • Here, the fitness effects of alleles of the BRX gene are investigated. A brx loss-of-function allele, which was found in a natural accession, results in a highly branched but poorly elongated root system. • Comparison ...

  4. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Dong, Fang; Lei, Gui Jie [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2013-12-15

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd{sup 2+}) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd{sup 2+} concentration and rescued Cd{sup 2+}-induced chlorosis in Arabidopsis thaliana. Under Cd{sup 2+} stress conditions, NAA increased Cd{sup 2+} retention in the roots and most Cd{sup 2+} in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd{sup 2+}, whereas it significantly increased the content of hemicellulose 1 and the amount of Cd{sup 2+} retained in it. There were highly significant correlations between Cd{sup 2+} concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd{sup 2+} or NAA + Cd{sup 2+} treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd{sup 2+} in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd{sup 2+} toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd{sup 2+} fixation in the root, thus reducing the translocation of Cd{sup 2+} from roots to shoots.

  5. The Growth of Human Hair.

    Science.gov (United States)

    Jones, Helen J.

    1984-01-01

    Suggests a simple technique for collecting and observing human hair roots to compare structure, function, and variation. Students extract their own hair samples and view them using a 40-power microscope objective. Differences between active/inactive phases of hair growth are readily observed. (The activity can be adapted for younger students.) (DH)

  6. Detecting autophagy in Arabidopsis roots by membrane-permeable cysteine protease inhibitor E-64d and endocytosis tracer FM4–64

    OpenAIRE

    Oh-ye, Yuumi; Inoue, Yuko; Moriyasu, Yuji

    2011-01-01

    Autophagy is the process by which cells degrade their own components in lysosomes or vacuoles. Autophagy in tobacco BY-2 cells cultured in sucrose-free medium takes place in formed, autolysosomes in the presence of a cysteine protease inhibitor. The autolysosomes in BY-2 cells are located in the endocytotic pathway and thus can be stained with fluorescent endocytosis marker FM4–64. In the present study, in order to detect autophagy in the root cells of Arabidopsis, we incubated root tips from...

  7. Mathematical Modeling and Experimental Validation of the Spatial Distribution of Boron in the Root of Arabidopsis thaliana Identify High Boron Accumulation in the Tip and Predict a Distinct Root Tip Uptake Function

    OpenAIRE

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F.M.; Verônica A Grieneisen; Fujiwara, Toru

    2015-01-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the ro...

  8. Regulation of Cell Fate Determination by Single-Repeat R3 MYB Transcription Factors in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shucai [Northeast Normal University, Changchun, China; Chen, Jay [ORNL

    2014-01-01

    MYB transcription factors regulate multiple aspects of plant growth and development. Among the large family of MYB transcription factors, single-repeat R3 MYB are characterized by their short sequence (<120 amino acids) consisting largely of the single MYB DNA-binding repeat. In the model plant Arabidopsis, R3 MYBs mediate lateral inhibition during epidermal patterning and are best characterized for their regulatory roles in trichome and root hair development. R3 MYBs act as negative regulators for trichome formation but as positive regulators for root hair development. In this article, we provide a comprehensive review on the role of R3 MYBs in the regulation of cell type specification in the model plant Arabidopsis.

  9. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7

    Directory of Open Access Journals (Sweden)

    M. Mercedes eMaldonado-González

    2015-04-01

    Full Text Available The effective management of Verticillium wilts, diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control Verticillium wilt of olive caused by the highly-virulent, defoliating (D pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V.dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i olive D and non-defoliating (ND V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii strain PICF7 controls Verticillium wilt (VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. Arabidopsis thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7.

  10. Oxidative stress response in Arabidopsis thaliana roots and leaves exposed to cadmium, uranium or a combination of both stressors

    International Nuclear Information System (INIS)

    Nuclear energy production or NORM industry released low amounts of radioactive substances together with non-radioactive substances (e.g., heavy metals, organic chemicals) to the environment. As sessile organisms, plants are commonly exposed to a number of adverse conditions and therefore it is interesting to study the stress responses of plants induced by the single stressors as well as in a in a multi-pollution set-up. The aim of this study was to understand and predict fast induced oxidative stress responses in plants exposed to Cd and U or a combination of both stressors. Arabidopsis thaliana plants grown hydroponically for 18 days were exposed to a Cd (5 μM) or 238U (25 μM) or an equi-toxic mixture of Cd and 238U (2.5 μM + 12.5 μM) for 24 h. As expected both metals were taken up into the plants with Cd being more readily transported to the leaves than U. The root-to-shoot ratio was approximately 1,3 for Cd whereas it was above 3500 for U. For both U and Cd the root-to-shoot ratio was not affected under multiple exposure conditions used here. Notwithstanding the limited exposure time, leave and root fresh weight was already decreasing in U-treated plants. For Cd or Cd+U a decreasing but at this point not significant trend was visible. As U concentrations in the leaves were very low the decrease in leaf fresh weight is possibly due to signaling from the roots rather than a direct toxicity of U. The oxidative stress response was investigated by measuring the transcription of selected pro- and anti-oxidative genes, anti-oxidative enzyme capacities and concentration and redox status of major anti-oxidative metabolites. Cd strongly up-regulated lipoxygenase (LOX1) and NADPH-oxidases (RBOHD or C in roots and leaves, respectively) whereas this was not found in the U-treated plants. For the anti-oxidative response related enzymes both Cd and U induced a decrease in Cu/Zn superoxide dismutases (CSD1,2) and a concomitant increase in Fe-SOD (FSD1). However the increase

  11. Oxidative stress response in Arabidopsis thaliana roots and leaves exposed to cadmium, uranium or a combination of both stressors

    Energy Technology Data Exchange (ETDEWEB)

    Horemans, N.; Saenen, E.; Vandenhove, H. [Belgian Nuclear Research Centre, SCK.CEN, Boeretang 200, 2400 Mol (Belgium); Hendrix, S.; Keunen, E.; Cuypers, A. [Hasselt University, Centre for Environmental Sciences, Agoralaan, Building D, 3590 Diepenbeek (Belgium)

    2014-07-01

    Nuclear energy production or NORM industry released low amounts of radioactive substances together with non-radioactive substances (e.g., heavy metals, organic chemicals) to the environment. As sessile organisms, plants are commonly exposed to a number of adverse conditions and therefore it is interesting to study the stress responses of plants induced by the single stressors as well as in a in a multi-pollution set-up. The aim of this study was to understand and predict fast induced oxidative stress responses in plants exposed to Cd and U or a combination of both stressors. Arabidopsis thaliana plants grown hydroponically for 18 days were exposed to a Cd (5 μM) or {sup 238}U (25 μM) or an equi-toxic mixture of Cd and {sup 238}U (2.5 μM + 12.5 μM) for 24 h. As expected both metals were taken up into the plants with Cd being more readily transported to the leaves than U. The root-to-shoot ratio was approximately 1,3 for Cd whereas it was above 3500 for U. For both U and Cd the root-to-shoot ratio was not affected under multiple exposure conditions used here. Notwithstanding the limited exposure time, leave and root fresh weight was already decreasing in U-treated plants. For Cd or Cd+U a decreasing but at this point not significant trend was visible. As U concentrations in the leaves were very low the decrease in leaf fresh weight is possibly due to signaling from the roots rather than a direct toxicity of U. The oxidative stress response was investigated by measuring the transcription of selected pro- and anti-oxidative genes, anti-oxidative enzyme capacities and concentration and redox status of major anti-oxidative metabolites. Cd strongly up-regulated lipoxygenase (LOX1) and NADPH-oxidases (RBOHD or C in roots and leaves, respectively) whereas this was not found in the U-treated plants. For the anti-oxidative response related enzymes both Cd and U induced a decrease in Cu/Zn superoxide dismutases (CSD1,2) and a concomitant increase in Fe-SOD (FSD1). However

  12. Joint genetic and network analyses identify loci associated with root growth under NaCl stress in Arabidopsis thaliana.

    Science.gov (United States)

    Kobayashi, Yuriko; Sadhukhan, Ayan; Tazib, Tanveer; Nakano, Yuki; Kusunoki, Kazutaka; Kamara, Mohamed; Chaffai, Radhouane; Iuchi, Satoshi; Sahoo, Lingaraj; Kobayashi, Masatomo; Hoekenga, Owen A; Koyama, Hiroyuki

    2016-04-01

    Plants have evolved a series of tolerance mechanisms to saline stress, which perturbs physiological processes throughout the plant. To identify genetic mechanisms associated with salinity tolerance, we performed linkage analysis and genome-wide association study (GWAS) on maintenance of root growth of Arabidopsis thaliana in hydroponic culture with weak and severe NaCl toxicity. The top 200 single-nucleotide polymorphisms (SNPs) determined by GWAS could cumulatively explain approximately 70% of the variation observed at each stress level. The most significant SNPs were linked to the genes of ATP-binding cassette B10 and vacuolar proton ATPase A2. Several known salinity tolerance genes such as potassium channel KAT1 and calcium sensor SOS3 were also linked to SNPs in the top 200. In parallel, we constructed a gene co-expression network to independently verify that particular groups of genes work together to a common purpose. We identify molecular mechanisms to confer salt tolerance from both predictable and novel physiological sources and validate the utility of combined genetic and network analysis. Additionally, our study indicates that the genetic architecture of salt tolerance is responsive to the severity of stress. These gene datasets are a significant information resource for a following exploration of gene function. PMID:26667381

  13. Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity

    Science.gov (United States)

    Qian, Haifeng; Lu, Haiping; Ding, Haiyan; Lavoie, Michel; Li, Yali; Liu, Weiping; Fu, Zhengwei

    2015-07-01

    Imazethapyr (IM) is a widely used chiral herbicide that inhibits the synthesis of branched-chain amino acids (BCAAs). IM is thought to exert its toxic effects on amino acid synthesis mainly through inhibition of acetolactate synthase activity, but little is known about the potential effects of IM on other key biochemical pathways. Here, we exposed the model plant Arabidospsis thaliana to trace S- and R-IM enantiomer concentrations and examined IM toxicity effects on the root proteome using iTRAQ. Conventional analyses of root carbohydrates, organic acids, and enzyme activities were also performed. We discovered several previously unknown key biochemical pathways targeted by IM in Arabidospsis. 1,322 and 987 proteins were differentially expressed in response to R- and S-IM treatments, respectively. Bioinformatics and physiological analyses suggested that IM reduced the BCAA tissue content not only by strongly suppressing BCAA synthesis but also by increasing BCAA catabolism. IM also affected sugar and starch metabolism, changed the composition of root cell walls, increased citrate production and exudation, and affected the microbial community structure of the rhizosphere. The present study shed new light on the multiple toxicity mechanisms of a selective herbicide on a model plant.

  14. Low-pH and aluminum resistance in arabidopsis correlates with high cytosolic magnesium content and increased magnesium uptake by plant roots.

    Science.gov (United States)

    Bose, Jayakumar; Babourina, Olga; Shabala, Sergey; Rengel, Zed

    2013-07-01

    Low-pH stress and Al(3+) toxicity affect root growth in acid soils. It was hypothesized that the capacity of genotypes to maintain Mg(2+) uptake in acidic environments may contribute to low-pH and Al resistance, but explicit evidence is lacking. In this work, an Al-resistant alr104 mutant and two Al-sensitive mutants (als5 and als3) of Arabidopsis thaliana were compared with the wild type (Col-0) for Mg(2+) uptake and intracellular Mg(2+) concentration under low-pH and combined low-pH/Al stresses. Magnesium accumulation in roots was measured in long-term (7 d) experiments. The Mg(2+) fluxes were measured using ion-sensitive microelectrodes at the distal elongation and the mature root zones in short-term (0-60 min) experiments. Intracellular Mg(2+) concentrations were measured in intact root cells at the distal elongation zone using magnesium-specific fluorescent dye and fluorescent lifetime imaging (FLIM) analysis. Under low-pH stress, Arabidopsis mutants als5 and alr104 maintained a higher Mg concentration in roots, and had greater Mg(2+) influx than the wild type and the als3 mutant. Under combined low-pH/Al treatment, Al-resistant genotypes (wild type and alr104) maintained a higher Mg(2+) accumulation, and had a higher Mg(2+) influx and higher intracellular Mg(2+) concentration than Al-sensitive genotypes (als3 and als5). Overall, these results show that increased Mg(2+) uptake correlates with an enhanced capacity of Arabidopsis genotypes to cope with low-pH and combined low-pH/Al stresses. PMID:23620479

  15. Method for evaluation of root hairs of common bean genotypes Método de avaliação de pêlos radicais de genótipos de feijão

    OpenAIRE

    Rogério Faria Vieira; Celestina Nhagupana Jochua; Jonathan Paul Lynch

    2007-01-01

    The objective of this work was to test a simple method for root hair evaluation of 21 common bean (Phaseolus vulgaris) genotypes, most of them used in breeding programs in Brazil. Hairs of basal and primary roots of 5-day old seedlings, produced on germination paper with no phosphorus addition, were visually evaluated by a rating scale after staining with 0.05% trypan blue. The method reveals variability among the genotypes, and the standard error of the mean is relatively low.O objetivo dest...

  16. Hair Care

    Science.gov (United States)

    ... Body Looking and feeling your best Hair care Hair care Short, long, curly, straight, up, down. Hair options can seem endless! Not all of what makes your hair look good comes from the outside, though. Good ...

  17. Oily hair

    Science.gov (United States)

    Hair - oily ... are some tips for preventing and treating oily hair: Shampoo your hair every day. Leaving the shampoo on your head ... minutes before rinsing may help. Avoid brushing your hair too often or too vigorously, since the brushing ...

  18. Aluminium-induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux.

    Science.gov (United States)

    Bose, Jayakumar; Babourina, Olga; Shabala, Sergey; Rengel, Zed

    2010-06-01

    Aluminium (Al) rhizotoxicity coincides with low pH; however, it is unclear whether plant tolerance to these two factors is controlled by the same mechanism. To address this question, the Al-resistant alr104 mutant, two Al-sensitive mutants (als3 and als5), and wild-type Arabidopsis thaliana were compared in long-term exposure (solution culture) and in short-term exposure experiments (H(+) and K(+) fluxes, rhizosphere pH, and plasma membrane potential, E(m)). Based on biomass accumulation, als5 and alr104 showed tolerance to low pH, whereas alr104 was tolerant to the combined low-pH/Al treatment. The sensitivity of the als5 and als3 mutants to the Al stress was similar. The Al-induced decrease in H(+) influx at the distal elongation zone (DEZ) and Al-induced H(+) efflux at the mature zone (MZ) were higher in the Al-sensitive mutants (als3 and als5) than in the wild type and the alr104 mutant. Under combined low-pH/Al treatment, alr104 and the wild type had depolarized plasma membranes for the entire 30 min measurement period, whereas in the Al-sensitive mutants (als3 and als5), initial depolarization to around -60 mV became hyperpolarization at -110 mV after 20 min. At the DEZ, the E(m) changes corresponded to the changes in K(+) flux: K(+) efflux was higher in alr104 and the wild type than in the als3 and als5 mutants. In conclusion, Al tolerance in the alr104 mutant correlated with E(m) depolarization, higher K(+) efflux, and higher H(+) influx, which led to a more alkaline rhizosphere under the combined low-pH/Al stress. Low-pH tolerance (als5) was linked to higher H(+) uptake under low-pH stress, which was abolished by Al exposure. PMID:20497972

  19. Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores.

    Science.gov (United States)

    Koo, Yeonjong; Wang, Jing; Zhang, Qingbo; Zhu, Huiguang; Chehab, E Wassim; Colvin, Vicki L; Alvarez, Pedro J J; Braam, Janet

    2015-01-01

    We explored the impact of quantum dot (QD) coat characteristics on NP stability, uptake, and translocation in Arabidopsis thaliana, and subsequent transfer to primary consumers, Trichoplusia ni (T. ni). Arabidopsis was exposed to CdSe/CdZnS QDs with three different coatings: Poly(acrylic acid-ethylene glycol) (PAA-EG), polyethylenimine (PEI) and poly(maleic anhydride-alt-1-octadecene)-poly(ethylene glycol) (PMAO-PEG), which are anionic, cationic, and relatively neutral, respectively. PAA-EG-coated QDs were relatively stable and taken up from a hydroponic medium through both Arabidopsis leaf petioles and roots, without apparent aggregation, and showed generally uniform distribution in leaves. In contrast, PEI- and PMAO-PEG-coated QDs displayed destabilization in the hydroponic medium, and generated particulate fluorescence plant tissues, suggesting aggregation. PAA-EG QDs moved faster than PEI QDs through leaf petioles; however, 8-fold more cadmium accumulated in PEI QD-treated leaves than in those exposed to PAA-EG QDs, possibly due to PEI QD dissolution and direct metal uptake. T. ni caterpillars that fed on Arabidopsis exposed to QDs had reduced performance, and QD fluorescence was detected in both T. ni bodies and frass, demonstrating trophic transfer of intact QDs from plants to insects. Overall, this paper demonstrates that QD coat properties influence plant nanoparticle uptake and translocation and can impact transfer to herbivores. PMID:25437125

  20. A P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root.

    Science.gov (United States)

    Yu, Qianqian; Tian, Huiyu; Yue, Kun; Liu, Jiajia; Zhang, Bing; Li, Xugang; Ding, Zhaojun

    2016-09-01

    Reactive oxygen species (ROS) are recognized as important regulators of cell division and differentiation. The Arabidopsis thaliana P-loop NTPase encoded by APP1 affects root stem cell niche identity through its control of local ROS homeostasis. The disruption of APP1 is accompanied by a reduction in ROS level, a rise in the rate of cell division in the quiescent center (QC) and the promotion of root distal stem cell (DSC) differentiation. Both the higher level of ROS induced in the app1 mutant by exposure to methyl viologen (MV), and treatment with hydrogen peroxide (H2O2) rescued the mutant phenotype, implying that both the increased rate of cell division in the QC and the enhancement in root DSC differentiation can be attributed to a low level of ROS. APP1 is expressed in the root apical meristem cell mitochondria, and its product is associated with ATP hydrolase activity. The key transcription factors, which are defining root distal stem niche, such as SCARECROW (SCR) and SHORT ROOT (SHR) are both significantly down-regulated at both the transcriptional and protein level in the app1 mutant, indicating that SHR and SCR are important downstream targets of APP1-regulated ROS signaling to control the identity of root QC and DSCs. PMID:27583367

  1. The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism.

    Science.gov (United States)

    Wan, Yinglang; Jasik, Jan; Wang, Li; Hao, Huaiqing; Volkmann, Dieter; Menzel, Diedrik; Mancuso, Stefano; Baluška, František; Lin, Jinxing

    2012-02-01

    Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone. PMID:22374399

  2. Wiring a plant: genetic networks for phloem formation in Arabidopsis thaliana roots.

    Science.gov (United States)

    Rodriguez-Villalon, Antia

    2016-04-01

    45 I. 45 II. 46 III. 46 IV. 47 V. 48 VI. 48 49 References 49 SUMMARY: In plants, phloem conduits form a specialized vascular network mediating the exchange of nutrients and signaling molecules between distantly separated organs. To become effective transport elements, protophloem cells undergo a rather unique, differentiation program that involves nucleus degradation, organelle rearrangement and cell wall thickening. Yet, protophloem sieve elements remain alive because their essential metabolic functions are supported by their neighboring companion cells. In spite of the importance of the phloem, the molecular mechanisms orchestrating protophloem specification and differentiation remain still poorly understood. In this review, I provide a summary of recent discoveries regarding morphogenetic events that determine phloem formation, and also a discussion of the systemic effects on root architecture derived from impaired protophloem differentiation programs. PMID:26171671

  3. AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip

    Science.gov (United States)

    Medici, Anna; Marshall-Colon, Amy; Ronzier, Elsa; Szponarski, Wojciech; Wang, Rongchen; Gojon, Alain; Crawford, Nigel M; Ruffel, Sandrine; Coruzzi, Gloria M; Krouk, Gabriel

    2015-01-01

    Nitrogen and phosphorus are among the most widely used fertilizers worldwide. Nitrate (NO3−) and phosphate (PO43−) are also signaling molecules whose respective transduction pathways are being intensively studied. However, plants are continuously challenged with combined nutritional deficiencies, yet very little is known about how these signaling pathways are integrated. Here we report the identification of a highly NO3−-inducible NRT1.1-controlled GARP transcription factor, HRS1, document its genome-wide transcriptional targets, and validate its cis-regulatory-elements. We demonstrate that this transcription factor and a close homolog repress primary root growth in response to P deficiency conditions, but only when NO3− is present. This system defines a molecular logic gate integrating P and N signals. We propose that NO3− and P signaling converge via double transcriptional and post-transcriptional control of the same protein, HRS1 PMID:25723764

  4. Perturbation of cytokinin and ethylene-signalling pathways explain the strong rooting phenotype exhibited by Arabidopsis expressing the Schizosaccharomyces pombe mitotic inducer, cdc25

    Directory of Open Access Journals (Sweden)

    Spadafora Natasha D

    2012-03-01

    Full Text Available Abstract Background Entry into mitosis is regulated by cyclin dependent kinases that in turn are phosphoregulated. In most eukaryotes, phosphoregulation is through WEE1 kinase and CDC25 phosphatase. In higher plants a homologous CDC25 gene is unconfirmed and hence the mitotic inducer Schizosaccharomyces pombe (Sp cdc25 has been used as a tool in transgenic plants to probe cell cycle function. Expression of Spcdc25 in tobacco BY-2 cells accelerates entry into mitosis and depletes cytokinins; in whole plants it stimulates lateral root production. Here we show, for the first time, that alterations to cytokinin and ethylene signaling explain the rooting phenotype elicited by Spcdc25 expression in Arabidopsis. Results Expressing Spcdc25 in Arabidopsis results in increased formation of lateral and adventitious roots, a reduction of primary root width and more isodiametric cells in the root apical meristem (RAM compared with wild type. Furthermore it stimulates root morphogenesis from hypocotyls when cultured on two way grids of increasing auxin and cytokinin concentrations. Microarray analysis of seedling roots expressing Spcdc25 reveals that expression of 167 genes is changed by > 2-fold. As well as genes related to stress responses and defence, these include 19 genes related to transcriptional regulation and signaling. Amongst these was the up-regulation of genes associated with ethylene synthesis and signaling. Seedlings expressing Spcdc25 produced 2-fold more ethylene than WT and exhibited a significant reduction in hypocotyl length both in darkness or when exposed to 10 ppm ethylene. Furthermore in Spcdc25 expressing plants, the cytokinin receptor AHK3 was down-regulated, and endogenous levels of iPA were reduced whereas endogeous IAA concentrations in the roots increased. Conclusions We suggest that the reduction in root width and change to a more isodiametric cell phenotype in the RAM in Spcdc25 expressing plants is a response to ethylene over

  5. Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis.

    Science.gov (United States)

    Kim, Tae-Houn; Kunz, Hans-Henning; Bhattacharjee, Saikat; Hauser, Felix; Park, Jiyoung; Engineer, Cawas; Liu, Amy; Ha, Tracy; Parker, Jane E; Gassmann, Walter; Schroeder, Julian I

    2012-12-01

    In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor-nucleotide binding-Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid-induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest. PMID:23275581

  6. Aluminium toxicity targets PIN2 in Arabidopsis root apices: Effects on PIN2 endocytosis, vesicular recycling,and polar auxin transport

    Institute of Scientific and Technical Information of China (English)

    SHEN Hong; HOU NingYan; Markus SCHLICHT; WAN YingLang; Stefano MANCUSO; Frantisek BALUSKA

    2008-01-01

    The most obvious symptom of AI toxicity is the inhibition of root growth.However,the mechanism of AI-inhibiting root growth remains to be elucidated.In this study,auxin transport and vesicle movement of an auxin-efflux carrier (PIN2) were investigated in Arabidopsis roots in response to AI stress.Results indicated that AI inhibited the apical transport of auxin in root tips of Arabidopsis significantly.The severe inhibition was localized in the cells of transition zone,where the concentration of auxin was only 34% that of the control.Brefeldin A (BFA),an inhibitor of vesicle transport,induced the dot-like structure of PIN2 vesicle significantly.Al decreased the size of dot-like structure of PIN2 vesicles.Re-sults of real-time RT-PCR and Western-blotting analysis showed that Al increased the transcript level of PIN2 and the accumulation of PIN2 protein in horizontal direction of plasma membrane,but decreased its distribution in endosomes,suggesting that AI inhibited the transport of PIN2 vesicles from plasma membrane to endosomes.Results of cytoskeleton-depolymering drugs indicated that it was via the pathway of disruption of actin microfilaments that AI inhibited the transport of PIN2 vesicles.Exposed to AI stress,the cells of elongation zone had less AI uptake and less transport frequency of vesicles than cells of transition zone.Taken together,our results suggested that AI inhibited root growth mainly by modulating the transport of PIN2 vesicles between plasma membrane and endosomes,thus block-ing auxin transport and root growth.

  7. An ABA down-regulated bHLH transcription repressor gene, bHLH129 regulates root elongation and ABA response when overexpressed in Arabidopsis

    Science.gov (United States)

    Tian, Hainan; Guo, Hongyan; Dai, Xuemei; Cheng, Yuxin; Zheng, Kaijie; Wang, Xiaoping; Wang, Shucai

    2015-01-01

    Plant hormone abscisic acid (ABA) plays a crucial role in modulating plant responses to environmental stresses. Basic helix-loop-helix (bHLH) transcription factors are one of the largest transcription factor families that regulate multiple aspects of plant growth and development, as well as of plant metabolism in Arabidopsis. Several bHLH transcription factors have been shown to be involved in the regulation of ABA signaling. We report here the characterization of bHLH129, a bHLH transcription factor in Arabidopsis. We found that the expression level of bHLH129 was reduced in response to exogenously applied ABA, and elevated in the ABA biosynthesis mutant aba1-5. Florescence observation of transgenic plants expressing bHLH129-GFP showed that bHLH129 was localized in the nucleus, and transient expression of bHLH129 in protoplasts inhibited reporter gene expression. When expressed in Arabidopsis under the control of the 35S promoter, bHLH129 promoted root elongation, and the transgenic plants were less sensitivity to ABA in root elongation assays. Quantitative RT-PCR results showed that ABA response of several genes involved in ABA signaling, including ABI1, SnRK2.2, SnRK2.3 and SnRK2.6 were altered in the transgenic plants overexpressing bHLH129. Taken together, our study suggests that bHLH129 is a transcription repressor that negatively regulates ABA response in Arabidopsis. PMID:26625868

  8. A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type

    Directory of Open Access Journals (Sweden)

    Tan Chao

    2011-11-01

    Full Text Available Abstract Background Root gravitropsim has been proposed to require the coordinated, redistribution of the plant signaling molecule auxin within the root meristem, but the underlying molecular mechanisms are still unknown. PIN proteins are membrane transporters that mediate the efflux of auxin from cells. The PIN2 is important for the basipetal transport of auxin in roots and plays a critical role in the transmission of gravity signals perceived in the root cap to the root elongation zone. The loss of function pin2 mutant exhibits a gravity-insensitive root growth phenotype. By comparing the proteomes of wild type and the pin2 mutant root tips under different gravitational conditions, we hope to identify proteins involved in the gravity-related signal transduction. Results To identify novel proteins involved in the gravity signal transduction pathway we have carried out a comparative proteomic analysis of Arabidopsis pin2 mutant and wild type (WT roots subjected to different gravitational conditions. These conditions included horizontal (H and vertical (V clinorotation, hypergravity (G and the stationary control (S. Analysis of silver-stained two-dimensional SDS-PAGE gels revealed 28 protein spots that showed significant expression changes in altered gravity (H or G compared to control roots (V and S. Whereas the majority of these proteins exhibited similar expression patterns in WT and pin2 roots, a significant number displayed different patterns of response between WT and pin2 roots. The latter group included 11 protein spots in the H samples and two protein spots in the G samples that exhibited an altered expression exclusively in WT but not in pin2 roots. One of these proteins was identified as annexin2, which was induced in the root cap columella cells under altered gravitational conditions. Conclusions The most interesting observation in this study is that distinctly different patterns of protein expression were found in WT and pin2 mutant

  9. Mathematical modeling and experimental validation of the spatial distribution of boron in the root of Arabidopsis thaliana identify high boron accumulation in the tip and predict a distinct root tip uptake function.

    Science.gov (United States)

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F M; Grieneisen, Verônica A; Fujiwara, Toru

    2015-04-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. PMID:25670713

  10. Enhancement of chlorogenic acid production in hairy roots of Platycodon grandiflorum by over-expression of an Arabidopsis thaliana transcription factor AtPAP1.

    Science.gov (United States)

    Tuan, Pham Anh; Kwon, Do Yeon; Lee, Sanghyun; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Nam Il; Park, Sang Un

    2014-01-01

    To improve the production of chlorogenic acid (CGA) in hairy roots of Platycodon grandiflorum, we induced over-expression of Arabidopsis thaliana transcription factor production of anthocyanin pigment (AtPAP1) using an Agrobacterium rhizogenes-mediated transformation system. Twelve hairy root lines showing over-expression of AtPAP1 were generated. In order to investigate the regulation of AtPAP1 on the activities of CGA biosynthetic genes, the expression levels of seven P. grandiflorum CGA biosynthetic genes were analyzed in the hairy root line that had the greatest accumulation of AtPAP1 transcript, OxPAP1-1. The introduction of AtPAP1 increased the mRNA levels of all examined CGA biosynthetic genes and resulted in a 900% up-regulation of CGA accumulation in OxPAP1-1 hairy roots relative to controls. This suggests that P. grandiflorum hairy roots that over-express the AtPAP1 gene are a potential alternative source of roots for the production of CGA. PMID:25153629

  11. Enhancement of Chlorogenic Acid Production in Hairy Roots of Platycodon grandiflorum by Over-Expression of An Arabidopsis thaliana Transcription Factor AtPAP1

    Directory of Open Access Journals (Sweden)

    Pham Anh Tuan

    2014-08-01

    Full Text Available To improve the production of chlorogenic acid (CGA in hairy roots of Platycodon grandiflorum, we induced over-expression of Arabidopsis thaliana transcription factor production of anthocyanin pigment (AtPAP1 using an Agrobacterium rhizogenes-mediated transformation system. Twelve hairy root lines showing over-expression of AtPAP1 were generated. In order to investigate the regulation of AtPAP1 on the activities of CGA biosynthetic genes, the expression levels of seven P. grandiflorum CGA biosynthetic genes were analyzed in the hairy root line that had the greatest accumulation of AtPAP1 transcript, OxPAP1-1. The introduction of AtPAP1 increased the mRNA levels of all examined CGA biosynthetic genes and resulted in a 900% up-regulation of CGA accumulation in OxPAP1-1 hairy roots relative to controls. This suggests that P. grandiflorum hairy roots that over-express the AtPAP1 gene are a potential alternative source of roots for the production of CGA.

  12. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp.

    Science.gov (United States)

    Shi, Wei-Ling; Chen, Xiu-Lan; Wang, Li-Xia; Gong, Zhi-Ting; Li, Shuyu; Li, Chun-Long; Xie, Bin-Bin; Zhang, Wei; Shi, Mei; Li, Chuanyou; Zhang, Yu-Zhong; Song, Xiao-Yan

    2016-04-01

    Trichodermaspp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced byTrichoderma Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol fromTrichoderma longibrachiatumSMF2, onArabidopsisprimary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened theArabidopsisTK VI-resistant mutanttkr1tkr1harbors a point mutation inGORK, which encodes gated outwardly rectifying K(+)channel proteins. This mutation alleviated TK VI-induced suppression of K(+)efflux in roots, thereby stabilizing the auxin gradient. Thetkr1mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol-plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding ofTrichoderma-plant interactions. PMID:26850879

  13. Identifying root system genes using induced mutants in barley

    International Nuclear Information System (INIS)

    Root systems play an important role in plant growth and development. They absorb water and nutrients, anchor plant in the soil and affect plant tolerance to various abiotic stresses. Despite their importance, the progress in understanding the molecular processes underlying root development has been achieved only in Arabidopsis thaliana. It was accomplished through detailed analysis of root mutants with the use of advanced molecular, genomic and bioinformatic tools. Recently, similar studies performed with rice and maize root mutants have led to the identification of homologous and novel genes controlling root system formation in monocots. The collection of barley mutants with changes in root system development and morphology has been developed in our Department after mutagenic treatments of spring barley varieties with N-methyl N-nitosourea (MNU) and sodium azide. Among these mutants, the majority was characterized by seminal roots significantly shorter than roots of a parent variety throughout a whole vegetation period. Additionally, several mutants with root hairs impaired at different stages of development have been identified. These mutants have become the material of studies aimed at genetic and molecular dissection of seminal root and root hair formation in barley. The studies included the molecular mapping of genes responsible for mutant phenotype using DNA markers and root transcriptome analysis in the mutant/parent variety system. Using cDNA RDA approach, we have identified the HvEXPB1 gene encoding root specific beta expansin related to the root hair initiation in barley. We have also initiated the database search for barley sequences homologous to the known Arabodopsis, maize and rice genes. The identified homologous ESTs are now used for isolation of the complete coding sequences and gene function will be validated through identification of mutations related to the altered phenotype. This work was supported by the IAEA Research Contracts 12611 and 12849

  14. Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation.

    Science.gov (United States)

    Ziegler, Jörg; Schmidt, Stephan; Chutia, Ranju; Müller, Jens; Böttcher, Christoph; Strehmel, Nadine; Scheel, Dierk; Abel, Steffen

    2016-03-01

    Plants have evolved two major strategies to cope with phosphate (Pi) limitation. The systemic response, mainly comprising increased Pi uptake and metabolic adjustments for more efficient Pi use, and the local response, enabling plants to explore Pi-rich soil patches by reorganization of the root system architecture. Unlike previous reports, this study focused on root exudation controlled by the local response to Pi deficiency. To approach this, a hydroponic system separating the local and systemic responses was developed. Arabidopsis thaliana genotypes exhibiting distinct sensitivities to Pi deficiency could be clearly distinguished by their root exudate composition as determined by non-targeted reversed-phase ultraperformance liquid chromatography electrospray ionization quadrupole-time-of-flight mass spectrometry metabolite profiling. Compared with wild-type plants or insensitive low phosphate root 1 and 2 (lpr1 lpr2) double mutant plants, the hypersensitive phosphate deficiency response 2 (pdr2) mutant exhibited a reduced number of differential features in root exudates after Pi starvation, suggesting the involvement of PDR2-encoded P5-type ATPase in root exudation. Identification and analysis of coumarins revealed common and antagonistic regulatory pathways between Pi and Fe deficiency-induced coumarin secretion. The accumulation of oligolignols in root exudates after Pi deficiency was inversely correlated with Pi starvation-induced lignification at the root tips. The strongest oligolignol accumulation in root exudates was observed for the insensitive lpr1 lpr2 double mutant, which was accompanied by the absence of Pi deficiency-induced lignin deposition, suggesting a role of LPR ferroxidases in lignin polymerization during Pi starvation. PMID:26685189

  15. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses.

    Science.gov (United States)

    Zamioudis, Christos; Korteland, Jolanda; Van Pelt, Johan A; van Hamersveld, Muriël; Dombrowski, Nina; Bai, Yang; Hanson, Johannes; Van Verk, Marcel C; Ling, Hong-Qing; Schulze-Lefert, Paul; Pieterse, Corné M J

    2015-10-01

    In Arabidopsis roots, the transcription factor MYB72 plays a dual role in the onset of rhizobacteria-induced systemic resistance (ISR) and plant survival under conditions of limited iron availability. Previously, it was shown that MYB72 coordinates the expression of a gene module that promotes synthesis and excretion of iron-mobilizing phenolic compounds in the rhizosphere, a process that is involved in both iron acquisition and ISR signaling. Here, we show that volatile organic compounds (VOCs) from ISR-inducing Pseudomonas bacteria are important elicitors of MYB72. In response to VOC treatment, MYB72 is co-expressed with the iron uptake-related genes FERRIC REDUCTION OXIDASE 2 (FRO2) and IRON-REGULATED TRANSPORTER 1 (IRT1) in a manner that is dependent on FER-LIKE IRON DEFICIENCY TRANSCRIPTION FACTOR (FIT), indicating that MYB72 is an intrinsic part of the plant's iron-acquisition response that is typically activated upon iron starvation. However, VOC-induced MYB72 expression is activated independently of iron availability in the root vicinity. Moreover, rhizobacterial VOC-mediated induction of MYB72 requires photosynthesis-related signals, while iron deficiency in the rhizosphere activates MYB72 in the absence of shoot-derived signals. Together, these results show that the ISR- and iron acquisition-related transcription factor MYB72 in Arabidopsis roots is activated by rhizobacterial volatiles and photosynthesis-related signals, and enhances the iron-acquisition capacity of roots independently of the iron availability in the rhizosphere. This work highlights the role of MYB72 in plant processes by which root microbiota simultaneously stimulate systemic immunity and activate the iron-uptake machinery in their host plants. PMID:26307542

  16. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins

    OpenAIRE

    Mei, Yu; Jia, Wen-Jing; Chu, Yu-Jia; Xue, Hong-Wei

    2011-01-01

    Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P2) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k...

  17. MiRNA398b and miRNA398c are involved in the regulation of the SOD response in uranium-exposed Arabidopsis thaliana roots

    OpenAIRE

    Saenen, Eline; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, H.; Biermans, Geert; Hees, M. van; WANNIJN, J.; Vangronsveld, Jaco; Cuypers, Ann

    2015-01-01

    The chemical speciation of uranium (U), and hence its toxicity, is strongly dependent on pH. However, oxidative stress responses after U exposure have mainly been investigated in Arabidopsis thaliana plants at pH 5.5, the ideal pH for growing plants in a hydroponic setup. As the pH of pore water can vary strongly, the aim of this study is to investigate oxidative stress responses induced in roots of A. thaliana plants exposed to different U concentrations at pH 4.5 and hence at a high free...

  18. Hair transplant

    Science.gov (United States)

    Hair restoration ... Avram MR, Keene SA, Stough DB, Rogers NE. Hair restoration. In: Bolognia JL, Jorizzo JL, Schaffer JV, eds. ... PA: Elsevier Saunders; 2012:chap 157. Fisher J. Hair restoration. In: Neligan PC, ed. Plastic Surgery . 3rd ed. ...

  19. The biology of hair diversity.

    Science.gov (United States)

    Westgate, Gillian E; Botchkareva, Natalia V; Tobin, Desmond J

    2013-08-01

    Hair diversity, its style, colour, shape and growth pattern is one of our most defining characteristics. The natural versus temporary style is influenced by what happens to our hair during our lifetime, such as genetic hair loss, sudden hair shedding, greying and pathological hair loss in the various forms of alopecia because of genetics, illness or medication. Despite the size and global value of the hair care market, our knowledge of what controls the innate and within-lifetime characteristics of hair diversity remains poorly understood. In the last decade, drivers of knowledge have moved into the arena of genetics where hair traits are obvious and measurable and genetic polymorphisms are being found that raise valuable questions about the biology of hair growth. The recent discovery that the gene for trichohyalin contributes to hair shape comes as no surprise to the hair biologists who have believed for 100 years that hair shape is linked to the structure and function of the inner root sheath. Further conundrums awaiting elucidation include the polymorphisms in the androgen receptor (AR) described in male pattern alopecia whose location on the X chromosome places this genetic contributor into the female line. The genetics of female hair loss is less clear with polymorphisms in the AR not associated with female pattern hair loss. Lifestyle choices are also implicated in hair diversity. Greying, which also has a strong genetic component, is often suggested to have a lifestyle (stress) influence and hair follicle melanocytes show declining antioxidant protection with age and lowered resistance to stress. It is likely that hair research will undergo a renaissance on the back of the rising information from genetic studies as well as the latest contributions from the field of epigenetics. PMID:23363384

  20. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the product. ...

  1. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins

    Institute of Scientific and Technical Information of China (English)

    Yu Mei; Wen-Jing Jia; Yu-Jia Chu; Hong-Wei Xue

    2012-01-01

    Phosphatidylinositol monophosphate 5-kinase(PIP5K)catalyzes the synthesis of PI-4,5-bisphosphate(PtdIns(4,5)P2)by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring,and is involved in regulating multiple developmental processes and stress responses.We here report on the functional characterization of Arabidopsis PIP5K2,which is expressed during lateral root initiation and elongation,and whose expression is enhanced by exogenous auxin.The knockout mutant pip5k2 shows reduced lateral root formation,which could be recovered with exogenous auxin,and interestingly,delayed root gravity response that could not be recovered with exogenous auxin.Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2.In addition,analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P2 reduction,which hence results in suppressed cycling of PIN proteins(PIN2 and 3),and delayed redistribution of PIN2 and auxin under gravistimulation in pipSk2 roots.On the contrary,PtdIns(4,5)P2 significantly enhanced the vesicle trafficking and cycling of PIN proteins.These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response,and reveal a critical role of PIP5K2/Ptdlns(4,5)P2 in root development through regulation of PIN proteins,providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response,and new insights into the control of polar auxin transport.

  2. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins.

    Science.gov (United States)

    Mei, Yu; Jia, Wen-Jing; Chu, Yu-Jia; Xue, Hong-Wei

    2012-03-01

    Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P(2)) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k2 shows reduced lateral root formation, which could be recovered with exogenous auxin, and interestingly, delayed root gravity response that could not be recovered with exogenous auxin. Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2. In addition, analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P(2) reduction, which hence results in suppressed cycling of PIN proteins (PIN2 and 3), and delayed redistribution of PIN2 and auxin under gravistimulation in pip5k2 roots. On the contrary, PtdIns(4,5)P(2) significantly enhanced the vesicle trafficking and cycling of PIN proteins. These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response, and reveal a critical role of PIP5K2/PtdIns(4,5)P(2) in root development through regulation of PIN proteins, providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response, and new insights into the control of polar auxin transport. PMID:21894193

  3. Transcriptional Activation and Production of Tryptophan-Derived Secondary Metabolites in Arabidopsis Roots Contributes to the Defense against the Fungal Vascular Pathogen Verticillium Iongisporum

    Institute of Scientific and Technical Information of China (English)

    Tim Iven; Wolfgang Dr(o)ge-Laser; Stefanie K(o)nig; Seema Singh; Susanna A.Braus-Stromeyer; Matthias Bischoff; Lutz F.Tietze; Gerhard H.Braus; Volker Lipka; Ivo Feussner

    2012-01-01

    The soil-borne fungal pathogen Verticillium Iongisporum causes vascular disease on Brassicaceae host plants such as oilseed rape.The fungus colonizes the root xylem and moves upwards to the foliage where disease symptoms become visible.Using Arabidopsis as a model for early gene induction,we performed root transcriptome analyses in response to hyphal growth immediately after spore germination and during penetration of the root cortex,respectively.Infected roots showed a rapid reprogramming of gene expression such as activation of transcription factors,stress-,and defense-related genes.Here,we focused on the highly coordinated gene induction resulting in the production of tryptophan-derived secondary metabolites.Previous studies in leaves showed that enzymes encoded by CYP81F2 and PEN2 (PENETRATION2) execute the formation of antifungal indole glucosinolate (IGS) metabolites.In Verticillium-infected roots.we found transcriptional activation of CYP81F2 and the PEN2 homolog PEL1 (PEN2-LIKE1),but no increase in antifungal IGS breakdown products.In contrast,indole-3-carboxylic acid (I3CA) and the phytoalexin camalexin accumulated in infected roots but only camalexin inhibited Verticillium growth in vitro.Whereas genetic disruption of the individual metabolic pathways leading to either camalexin or CYP81F2-dependent IGS metabolites did not alter Verticillium-induced disease symptoms,a cyp79b2 cyp79b3 mutant impaired in both branches resulted in significantly enhanced susceptibility.Hence,our data provide an insight into root-specific early defenses and suggest tryptophan-derived metabolites as active antifungal compounds against a vascular pathogen.

  4. Rice WUSCHEL-related homeobox 3A (OsWOX3A) modulates auxin-transport gene expression in lateral root and root hair development

    OpenAIRE

    Yoo, Soo-Cheul; Cho, Sung-Hwan; Paek, Nam-Chon

    2013-01-01

    Coordinated regulation of the many genes controlling leaf, flower, and root development determines the phenotypes of plants; this regulation requires exquisite control of many transcription factors, including the WUSCHEL-related homeobox (WOX) family. We recently reported that rice (Oryza sativa) WUSCHEL-related homeobox 3A (OsWOX3A) plays important roles in organ development, including lateral-axis outgrowth and vasculature patterning in leaves, lemma and palea morphogenesis in spikelets, an...

  5. Element profiles of mouse hair

    International Nuclear Information System (INIS)

    Element profile patterns of growth and nongrowth phase hair were obtained for the C57L/J male mouse using a proton microprobe. Growth phase hair profiles of Cl, S, K and P show that these elements are concentrating in regions of higher pigmentation. Calcium is restricted to the medulla region in the hair shaft. For nongrowth phase hair, the profiles of Cl and S are essentially unchanged, whereas K and P are depleted in the hair shaft and are concentrating in the cornified root sheath. The element patterns found for the nongrowth phase profiles of mouse hair show striking similarities to previously reported patterns for growth profiles of human hair. (author) 10 refs.; 4 figs

  6. Hair transplantation.

    Science.gov (United States)

    Avram, Marc R

    2012-12-01

    Hair transplantation is a purely dermatologic surgical procedure that dermatologists should be able to perform in appropriate candidates with hair loss. Hair transplantation techniques performed in the 1960s through the 1990s utilized large grafts that created an unfortunate public image of unnatural-appearing transplanted hair. Over the last 15 years, hair transplantation has been performed using follicular units to create consistently natural-looking transplanted hair in both men and women. This article provides an overview of candidate selection and state-of-the-art techniques for performing hair transplantation. PMID:23409484

  7. Tissue-specific root ion profiling reveals essential roles of the CAX and ACA calcium transport systems in response to hypoxia in Arabidopsis.

    Science.gov (United States)

    Wang, Feifei; Chen, Zhong-Hua; Liu, Xiaohui; Colmer, Timothy David; Zhou, Meixue; Shabala, Sergey

    2016-06-01

    Waterlogging is a major abiotic stress that limits the growth of plants. The crucial role of Ca(2+) as a second messenger in response to abiotic and biotic stimuli has been widely recognized in plants. However, the physiological and molecular mechanisms of Ca(2+) distribution within specific cell types in different root zones under hypoxia is poorly understood. In this work, whole-plant physiological and tissue-specific Ca(2+) changes were studied using several ACA (Ca(2+)-ATPase) and CAX (Ca(2+)/proton exchanger) knock-out Arabidopsis mutants subjected to waterlogging treatment. In the wild-type (WT) plants, several days of hypoxia decreased the expression of ACA8, CAX4, and CAX11 by 33% and 50% compared with the control. The hypoxic treatment also resulted in an up to 11-fold tissue-dependent increase in Ca(2+) accumulation in root tissues as revealed by confocal microscopy. The increase was much higher in stelar cells in the mature zone of Arabidopsis mutants with loss of function for ACA8, ACA11, CAX4, and CAX11 In addition, a significantly increased Ca(2+) concentration was found in the cytosol of stelar cells in the mature zone after hypoxic treatment. Three weeks of waterlogging resulted in dramatic loss of shoot biomass in cax11 plants (67% loss in shoot dry weight), while in the WT and other transport mutants this decline was only 14-22%. These results were also consistent with a decline in leaf chlorophyll fluorescence (F v/F m). It is suggested that CAX11 plays a key role in maintaining cytosolic Ca(2+) homeostasis and/or signalling in root cells under hypoxic conditions. PMID:26889007

  8. Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Arabidopsis thaliana plants were transformed with GFP-MBD (J. Marc et al., Plant Cell 10: 1927-1939, 1998) under the control of a constitutive (35S) or copper-inducible promoter. GFP-specific fluorescence distributions, levels, and persistence were determined and found to vary with age, tissue type, transgenic line, and individual plant. With the exception of an increased frequency of abnormal roots of 35S GFP-MBD plants grown on kanamycin-containing media, expression of GFP-MBD does not appear to affect plant phenotype. The number of leaves, branches, bolts, and siliques as well as overall height, leaf size, and seed set are similar between wild-type and transgenic plants as is the rate of root growth. Thus, we conclude that the transgenic plants can serve as a living model system in which the dynamic behavior of microtubules can be visualized. Confocal microscopy was used to simultaneously monitor growth and microtubule behavior within individual cells as they passed through the elongation zone of the Arabidopsis root. Generally, microtubules reoriented from transverse to oblique or longitudinal orientations as growth declined. Microtubule reorientation initiated at the ends of the cell did not necessarily occur simultaneously in adjacent neighboring cells and did not involve complete disintegration and repolymerization of microtubule arrays. Although growth rates correlated with microtubule reorientation, the two processes were not tightly coupled in terms of their temporal relationships, suggesting that other factor(s) may be involved in regulating both events. Additionally, microtubule orientation was more defined in cells whose growth was accelerating and less stringent in cells whose growth was decelerating, indicating that microtubule-orienting factor(s) may be sensitive to growth acceleration, rather than growth per se.

  9. The WUSCHEL Related Homeobox Protein WOX7 Regulates the Sugar Response of Lateral Root Development in Arabidopsis thaliana.

    Science.gov (United States)

    Kong, Danyu; Hao, Yueling; Cui, Hongchang

    2016-02-01

    Sugars promote lateral root formation at low levels but become inhibitory at high C/N or C/P ratios. How sugars suppress lateral root formation is unclear, however. Here we report that WOX7, a member of the WUSCHEL related homeobox (WOX) family transcription factors, inhibits lateral root development in a sugar-dependent manner. The number of lateral root primordia increased in wox7 mutants but decreased in plants over-expressing WOX7. Plants expressing the WOX7-VP16 fusion protein produced even more lateral roots than wox7, suggesting that WOX7 acts as a transcriptional repressor in lateral root development. WOX7 is expressed at all stages of lateral root development, but it is primarily involved in lateral root initiation. Consistent with this, the wox7 mutant had a higher mitotic activity only at early stages of lateral root development. Further studies suggest that WOX7 regulates lateral root development through direct repression of cell cycle genes, particularly CYCD6;1. WOX7 expression was enhanced by sugar, reduced by auxin, but did not respond to salt and mannitol. In the wox7 mutant, the effect of sugar on lateral root formation was mitigated. These results together suggest that WOX7 plays an important role in coupling the lateral root development program and sugar status in plants. PMID:26621542

  10. Profilin Plays a Role in Cell Elongation, Cell Shape Maintenance, and Flowering in Arabidopsis

    DEFF Research Database (Denmark)

    Ramachandran, S.; Christensen, Hans Erik Mølager; Ishimaru, Y.;

    2000-01-01

    Profilin (PFN) is an ubiquitous, low-M-r, actin-binding protein involved in the organization of the cytoskeleton of eukaryotes including higher plants. PFNs are encoded by a multigene family in Arabidopsis. We have analyzed in vivo functions of Arabidopsis PFN by generating transgenic plants...... carrying a 35S-PFN-1 or 35S-antisense PFN-1 transgene. Etiolated seedlings underexpressing PFN (PFN-U) displayed an overall dwarf phenotype with short hypocotyls whose lengths were 20% to 25% that of wild type (WT) at low temperatures. Light-grown PFN-U plants were smaller in stature and flowered early...... expressed in the vascular bundles of cotyledons and leaves. Our results show that Arabidopsis PFNs play a role in cell elongation, cell shape maintenance, polarized growth of root hair, and unexpectedly, in determination of flowering time....

  11. Transcription of DWARF4 plays a crucial role in auxin-regulated root elongation in addition to brassinosteroid homeostasis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yuya Yoshimitsu

    Full Text Available The expression of DWARF4 (DWF4, which encodes a C-22 hydroxylase, is crucial for brassinosteroid (BR biosynthesis and for the feedback control of endogenous BR levels. To advance our knowledge of BRs, we examined the effects of different plant hormones on DWF4 transcription in Arabidopsis thaliana. Semi-quantitative reverse-transcriptase PCR showed that the amount of the DWF4 mRNA precursor either decreased or increased, similarly with its mature form, in response to an exogenously applied bioactive BR, brassinolide (BL, and a BR biosynthesis inhibitor, brassinazole (Brz, respectively. The response to these chemicals in the levels of β-glucuronidase (GUS mRNA and its enzymatic activity is similar to the response of native DWF4 mRNA in DWF4::GUS plants. Contrary to the effects of BL, exogenous auxin induced GUS activity, but this enhancement was suppressed by anti-auxins, such as α-(phenylethyl-2-one-IAA and α-tert-butoxycarbonylaminohexyl-IAA, suggesting the involvement of SCF(TIR1-mediated auxin signaling in auxin-induced DWF4 transcription. Auxin-enhanced GUS activity was observed exclusively in roots; it was the most prominent in the elongation zones of both primary and lateral roots. Furthermore, auxin-induced lateral root elongation was suppressed by both Brz application and the dwf4 mutation, and this suppression was rescued by BL, suggesting that BRs act positively on root elongation under the control of auxin. Altogether, our results indicate that DWF4 transcription plays a novel role in the BR-auxin crosstalk associated with root elongation, in addition to its role in BR homeostasis.

  12. Identification of MicroRNA 395a in 24-Epibrassinolide-Regulated Root Growth of Arabidopsis thaliana Using MicroRNA Arrays

    Directory of Open Access Journals (Sweden)

    Hsueh-Fen Juan

    2013-07-01

    Full Text Available Brassinosteroids (BRs are endogenous plant hormones and are essential for normal plant growth and development. MicroRNAs (miRNAs of Arabidopsis thaliana are involved in mediating cell proliferation in leaves, stress tolerance, and root development. The specifics of BR mechanisms involving miRNAs are unknown. Using customized miRNA array analysis, we identified miRNAs from A. thaliana ecotype Columbia (Col-0 regulated by 24-epibrassinolide (EBR, a highly active BR. We found that miR395a was significantly up-regulated by EBR treatment and validated its expression under these conditions. miR395a was over expressed in leaf veins and root tissues in EBR-treated miR395a promoter::GUS plants. We integrated bioinformatics methods and publicly available DNA microarray data to predict potential targets of miR395a. GUN5—a multifunctional protein involved in plant metabolic functions such as chlorophyll synthesis and the abscisic acid (ABA pathway—was identified as a possible target. ABI4 and ABI5, both genes positively regulated by ABA, were down-regulated by EBR treatment. In summary, our results suggest that EBR regulates seedling development and root growth of A. thaliana through miR395a by suppressing GUN5 expression and its downstream signal transduction.

  13. Cell patterns emerge from coupled chemical and physical fields with cell proliferation dynamics: the Arabidopsis thaliana root as a study system.

    Directory of Open Access Journals (Sweden)

    Rafael A Barrio

    Full Text Available A central issue in developmental biology is to uncover the mechanisms by which stem cells maintain their capacity to regenerate, yet at the same time produce daughter cells that differentiate and attain their ultimate fate as a functional part of a tissue or an organ. In this paper we propose that, during development, cells within growing organs obtain positional information from a macroscopic physical field that is produced in space while cells are proliferating. This dynamical interaction triggers and responds to chemical and genetic processes that are specific to each biological system. We chose the root apical meristem of Arabidopsis thaliana to develop our dynamical model because this system is well studied at the molecular, genetic and cellular levels and has the key traits of multicellular stem-cell niches. We built a dynamical model that couples fundamental molecular mechanisms of the cell cycle to a tension physical field and to auxin dynamics, both of which are known to play a role in root development. We perform extensive numerical calculations that allow for quantitative comparison with experimental measurements that consider the cellular patterns at the root tip. Our model recovers, as an emergent pattern, the transition from proliferative to transition and elongation domains, characteristic of stem-cell niches in multicellular organisms. In addition, we successfully predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions. Our modeling platform may be extended to explicitly consider gene regulatory networks or to treat other developmental systems.

  14. Notch signaling and the developing hair follicle

    OpenAIRE

    Aubin Houzelstein, Geneviève

    2012-01-01

    Notch function in the hair follicle has been mainly studied by use of transgenic mice carrying either loss or gain of function mutations in various members of the pathway. These studies revealed that whereas embryonic development of the hair follicle can be achieved without Notch, its postnatal development requires an intact Notch signaling in the hair bulb and the outer root sheath. Among the many roles played by Notch in the hair follicle, two can be highlighted: in the bulge, Notch control...

  15. Loss of membrane fluidity and endocytosis inhibition are involved in rapid aluminum-induced root growth cessation in Arabidopsis thaliana

    Czech Academy of Sciences Publication Activity Database

    Krtková, J.; Havelková, L.; Křepelová, A.; Fišer, R.; Vosolsobě, S.; Novotná, Z.; Martinec, Jan; Schwarzerová, K.

    2012-01-01

    Roč. 60, Nov 2012 (2012), s. 88-97. ISSN 0981-9428 R&D Projects: GA ČR GA522/05/0340 Grant ostatní: GA ČR(CZ) GPP207/12/P890 Institutional research plan: CEZ:AV0Z50380511 Keywords : Aluminum toxicity * Arabidopsis thaliana * Cortical microtubules Subject RIV: ED - Physiology Impact factor: 2.775, year: 2012

  16. Hair removal

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Haak, Christina S

    2011-01-01

    suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair......Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths......, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available...

  17. Hair Removal

    DEFF Research Database (Denmark)

    Hædersdal, Merete

    2011-01-01

    suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair......Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths......, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available...

  18. Hair Removal

    Science.gov (United States)

    ... that's also found in your fingernails and toenails. Hair growth begins beneath the surface of your skin at ... provide cushioning and protection. In some cases, excess hair growth, called hirsutism (pronounced: hur -soo-tih-zum), may ...

  19. Hair Transplants

    Science.gov (United States)

    ... Sweating Facial Redness Frown Lines and Forehead Furrows Hair Loss Sagging Skin Scars Skin Growths Skin Lesions Spider ... Sweating Facial Redness Frown Lines and Forehead Furrows Hair Loss Sagging Skin Scars Skin Growths Skin Lesions Spider ...

  20. Root Responses to Boron Deficiency Mediated by Ethylene.

    Science.gov (United States)

    González-Fontes, Agustín; Herrera-Rodríguez, M B; Martín-Rejano, Esperanza M; Navarro-Gochicoa, M T; Rexach, Jesús; Camacho-Cristóbal, Juan J

    2015-01-01

    Low boron (B) supply alters the architecture of the root system in Arabidopsis thaliana seedlings, leading to a reduction in the primary root growth and an increase in the length and number of root hairs. At short-term (hours), B deficiency causes a decrease in the cell elongation of the primary root, resulting in a lower growth. Experimental approaches using ethylene insensitive Arabidopsis mutants, inhibitors of ethylene response, and GUS reporter lines suggest that ethylene is involved in these responses of the primary root to B deficiency. Furthermore, it has been shown that auxin participates in the inhibition of cell elongation under short-term B deprivation. These results support that an interaction between ethylene and auxin plays an important role in controlling the primary root elongation, in which a number of genes related to the synthesis, transport, and signaling of both phytohormones could modulate this effect. Evidence for a root cross-talk among both hormones and other possible intermediates (abscisic acid, calcium sensors, and reactive oxygen species) in response to B deficiency is provided and discussed. PMID:26779202

  1. Hair cosmetics

    OpenAIRE

    Nina Madnani; Kaleem Khan

    2013-01-01

    The hair cosmetic industry has undergone a revolutionary change over the last two decades. The focus has dramatically veered from merely cleaning to repair, increasing the tensile strength, reducing oxidative damage, and stimulating growth. Newer shorter procedures to make hair look naturally more lustrous, smooth, and manageable have evolved. Specialized grooming products have been formulated to cleanse, calm, and condition the hair, and are tailored for different hair-types, for example, dr...

  2. Hair cosmetics

    Directory of Open Access Journals (Sweden)

    Nina Madnani

    2013-01-01

    Full Text Available The hair cosmetic industry has undergone a revolutionary change over the last two decades. The focus has dramatically veered from merely cleaning to repair, increasing the tensile strength, reducing oxidative damage, and stimulating growth. Newer shorter procedures to make hair look naturally more lustrous, smooth, and manageable have evolved. Specialized grooming products have been formulated to cleanse, calm, and condition the hair, and are tailored for different hair-types, for example, dry, dry-damaged, oily, colored, and gray hair. Other products are formulated to alter the color or structure of the hair shaft, for example, hair dyes, perming/relaxing. Hair sprays and waxes/gels, can alter the ′lift′ of the hair-shaft. Although dermatologists are experts in managing scalp and hair diseases, the esthetic applications of newer cosmetic therapies still remain elusive. This article attempts to fill the lacunae in our knowledge of hair cosmetics and esthetic procedures relevant in today′s rapidly changing beauty-enhancing industry, with special emphasis on the Indian scenario for chemical and ′natural′ hair products.

  3. Truffles regulate plant root morphogenesis via the production of auxin and ethylene.

    Science.gov (United States)

    Splivallo, Richard; Fischer, Urs; Göbel, Cornelia; Feussner, Ivo; Karlovsky, Petr

    2009-08-01

    Truffles are symbiotic fungi that form ectomycorrhizas with plant roots. Here we present evidence that at an early stage of the interaction, i.e. prior to physical contact, mycelia of the white truffle Tuber borchii and the black truffle Tuber melanopsorum induce alterations in root morphology of the host Cistus incanus and the nonhost Arabidopsis (Arabidopsis thaliana; i.e. primary root shortening, lateral root formation, root hair stimulation). This was most likely due to the production of indole-3-acetic acid (IAA) and ethylene by the mycelium. Application of a mixture of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid and IAA fully mimicked the root morphology induced by the mycelium for both host and nonhost plants. Application of the single hormones only partially mimicked it. Furthermore, primary root growth was not inhibited in the Arabidopsis auxin transport mutant aux1-7 by truffle metabolites while root branching was less effected in the ethylene-insensitive mutant ein2-LH. The double mutant aux1-7;ein2-LH displayed reduced sensitivity to fungus-induced primary root shortening and branching. In agreement with the signaling nature of truffle metabolites, increased expression of the auxin response reporter DR5GFP in Arabidopsis root meristems subjected to the mycelium could be observed, confirming that truffles modify the endogenous hormonal balance of plants. Last, we demonstrate that truffles synthesize ethylene from l-methionine probably through the alpha-keto-gamma-(methylthio)butyric acid pathway. Taken together, these results establish the central role of IAA and ethylene as signal molecules in truffle/plant interactions. PMID:19535471

  4. AtMSL9 and AtMSL10: Sensors of plasma membrane tension in Arabidopsis roots

    OpenAIRE

    Peyronnet, Rémi; Haswell, Elizabeth S.; Barbier-Brygoo, Hélène; Frachisse, Jean-Marie

    2008-01-01

    Plant cells, like those of animals and bacteria, are able to sense physical deformation of the plasma membrane. Mechanosensitive (MS) channels are proteins that transduce mechanical force into ion flux, providing a mechanism for the perception of mechanical stimuli such as sound, touch and osmotic pressure. We recently identified AtMSL9 and AtMSL10, two mechanosensitive channels in Arabidopsis thaliana, as molecular candidates for mechanosensing in higher plants.1 AtMSL9 and AtMSL10 are membe...

  5. SDG2-Mediated H3K4 Methylation Is Required for Proper Arabidopsis Root Growth and Development

    OpenAIRE

    Xiaozhen Yao; Haiyang Feng; Yu Yu; Aiwu Dong; Wen-Hui Shen

    2013-01-01

    Trithorax group (TrxG) proteins are evolutionarily conserved in eukaryotes and play critical roles in transcriptional activation via deposition of histone H3 lysine 4 trimethylation (H3K4me3) in chromatin. Several Arabidopsis TrxG members have been characterized, and among them SET DOMAIN GROUP 2 (SDG2) has been shown to be necessary for global genome-wide H3K4me3 deposition. Although pleiotropic phenotypes have been uncovered in the sdg2 mutants, SDG2 function in the regulation of stem cell ...

  6. Turgor Regulation in Osmotically Stressed Arabidopsis Epidermal Root Cells. Direct Support for the Role of Inorganic Ion Uptake as Revealed by Concurrent Flux and Cell Turgor Measurements1

    Science.gov (United States)

    Shabala, Sergey N.; Lew, Roger R.

    2002-01-01

    Hyperosmotic stress is known to significantly enhance net uptake of inorganic ions into plant cells. Direct evidence for cell turgor recovery via such a mechanism, however, is still lacking. In the present study, we performed concurrent measurements of net ion fluxes (with the noninvasive microelectrode ion flux estimation technique) and cell turgor changes (with the pressure-probe technique) to provide direct evidence that inorganic ion uptake regulates turgor in osmotically stressed Arabidopsis epidermal root cells. Immediately after onset of hyperosmotic stress (100/100 mm mannitol/sorbitol treatment), the cell turgor dropped from 0.65 to about 0.25 MPa. Turgor recovery started within 2 to 10 min after the treatment and was accompanied by a significant (30–80 nmol m−2 s−1) increase in uptake of K+, Cl−, and Na+ by root cells. In most cells, almost complete (>90% of initial values) recovery of the cell turgor was observed within 40 to 50 min after stress onset. In another set of experiments, we combined the voltage-clamp and the microelectrode ion flux estimation techniques to show that this process is, in part, mediated by voltage-gated K+ transporters at the cell plasma membrane. The possible physiological significance of these findings is discussed. PMID:12011359

  7. Depletion of CD200+ Hair Follicle Stem Cells in Human Prematurely Gray Hair Follicles

    OpenAIRE

    Sujata Mohanty; Anil Kumar; Jyoti Dhawan; Vinod K Sharma; Somesh Gupta

    2013-01-01

    Introduction: Melanocyte stem cells (MelSCs) are known to be depleted in gray hair follicles. Hair follicle stem cells (HFSCs) are important for maintenance of stemness of MelSCs. Methods: We compared the proportion of CD200+ (Cluster of Differentiation 200 positive) stem cells in the outer root sheath cell suspension of gray and pigmented hair follicles of three patients with the premature graying of hair. In addition, explants culture for HFSCs was also carried out from gray and pigmented h...

  8. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress

    KAUST Repository

    Kinoshita, Natsuko

    2012-09-01

    The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress-induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance. © 2012 American Society of Plant Biologists. All rights reserved.

  9. Hair casts

    Directory of Open Access Journals (Sweden)

    Sweta S Parmar

    2014-01-01

    Full Text Available Hair casts or pseudonits are circumferential concretions,which cover the hair shaft in such a way that, it could be easily removed. They are thin, cylindrical, and elongated in length. We present an unusual case of an 8-year-old girl presenting with hair casts. Occurrence of these is unusual, and they may have varied associations. This patient was suffering from developmental delay. It is commonly misdiagnosed as and very important to differentiate from pediculosis capitis.

  10. Arabidopsis TWISTED DWARF1 functionally interacts with Auxin Exporter ABCB1 on the root plasma membrane

    DEFF Research Database (Denmark)

    Wang, Bangjun; Bailly, Aurélien; Zwiewka, Marta;

    2013-01-01

    . In planta bioluminescence resonance energy transfer analysis was used to verify specific ABC transporter B1 (ABCB1)-TWD1 interaction. Our data support a model in which TWD1 promotes lateral ABCB-mediated auxin efflux via protein-protein interaction at the plasma membrane, minimizing reflux from the root...

  11. Proteomic Analysis of Hair Follicles

    Science.gov (United States)

    Ishioka, Noriaki; Terada, Masahiro; Yamada, Shin; Seki, Masaya; Takahashi, Rika; Majima, Hideyuki J.; Higashibata, Akira; Mukai, Chiaki

    2013-02-01

    Hair root cells actively divide in a hair follicle, and they sensitively reflect physical conditions. By analyzing the human hair, we can know stress levels on the human body and metabolic conditions caused by microgravity environment and cosmic radiation. The Japan Aerospace Exploration Agency (JAXA) has initiated a human research study to investigate the effects of long-term space flight on gene expression and mineral metabolism by analyzing hair samples of astronauts who stayed in the International Space Station (ISS) for 6 months. During long-term flights, the physiological effects on astronauts include muscle atrophy and bone calcium loss. Furthermore, radiation and psychological effects are important issue to consider. Therefore, an understanding of the effects of the space environment is important for developing countermeasures against the effects experienced by astronauts. In this experiment, we identify functionally important target proteins that integrate transcriptome, mineral metabolism and proteome profiles from human hair. To compare the protein expression data with the gene expression data from hair roots, we developed the protein processing method. We extracted the protein from five strands of hair using ISOGEN reagents. Then, these extracted proteins were analyzed by LC-MS/MS. These collected profiles will give us useful physiological information to examine the effect of space flight.

  12. ARG1 and ARL2 contribute to gravity signal transduction in the statocytes of Arabidopsis thaliana roots and hypocotyls

    Science.gov (United States)

    Masson, Patrick; Harrison, Benjamin; Stanga, John; Otegui, Marisa; Sedbrook, John

    Gravity is an important cue that plant organs use to guide their growth. Each organ is characterized by a defined gravity set point angle that dictates its optimal orientation within the gravity field. Specialized cells, named statocytes, enable this directional growth response by perceiving gravity via the sedimentation of, and/or tension/pressure exerted by, starch-filled plastids within their cytoplasm. Located in the columella region of the cap in roots and in the endodermis of hypocotyls and stems, these cells modulate the lateral transport of auxin across the corresponding organ in a gravistimulus-dependent manner. Upon plant reorientation within the gravity field, a gravity signal transduction pathway is activated within those cells, which in roots leads to a relocalization of the PIN3 auxin efflux carrier toward the lower membrane and an alkalinization of the cytoplasm. In turn, these events appear to promote a lateral transport of auxin toward the bottom side of the stimulated organ, which promotes a curvature. We previously uncovered ARG1 and ARL2 as essential contributors to these cellular processes. Mutations in these genes result in altered root and hypocotyl gravitropism. In roots, this abnormal growth behavior is associated with a lack of PIN3 relocalization within the statocytes and an absence of preferential downward auxin transport upon gravistimulation. These two genes encode paralogous J-domain proteins that are associated with the plasma membrane and other membranes of the vesicular trafficking pathway, and appear to modulate protein trafficking within the statocytes. An analysis of the root gravitropic phenotypes associated with different double mutant configurations affecting ARG1, ARL2 and PIN3 suggest that all three proteins function in a common gravity-signaling pathway. Surprisingly, when a mutation that affects starch biosynthesis (pgm) is introgressed into an arg1-2 mutant, the gravitropic defects are dramatically enhanced relative to

  13. Establishment of embryonic shoot–root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis

    OpenAIRE

    Su, Ying Hua; Liu, Yu Bo; Bai, Bo; Zhang, Xian Sheng

    2015-01-01

    Auxin and cytokinin signaling participates in regulating a large spectrum of developmental and physiological processes in plants. The shoots and roots of plants have specific and sometimes even contrary responses to these hormones. Recent studies have clearly shown that establishing the spatiotemporal distribution of auxin and cytokinin response signals is central for the control of shoot apical meristem (SAM) induction in cultured tissues. However, little is known about the role of these hor...

  14. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana.

    Science.gov (United States)

    Katz, Ella; Nisani, Sophia; Yadav, Brijesh S; Woldemariam, Melkamu G; Shai, Ben; Obolski, Uri; Ehrlich, Marcelo; Shani, Eilon; Jander, Georg; Chamovitz, Daniel A

    2015-05-01

    The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole-3-carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole-3-carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole-3-carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescues auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3-indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole-3-carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development. PMID:25758811

  15. Hair Loss

    Science.gov (United States)

    ... 2 • 3 • 4 For Teens For Kids For Parents MORE ON THIS TOPIC Trichotillomania Dealing With a Health Condition Taking Care of Your Hair Skin, Hair, and Nails Body Image and Self-Esteem Alopecia: Kayla's Story Dealing With Cancer Contact Us ...

  16. Method for evaluation of root hairs of common bean genotypes Método de avaliação de pêlos radicais de genótipos de feijão

    Directory of Open Access Journals (Sweden)

    Rogério Faria Vieira

    2007-09-01

    Full Text Available The objective of this work was to test a simple method for root hair evaluation of 21 common bean (Phaseolus vulgaris genotypes, most of them used in breeding programs in Brazil. Hairs of basal and primary roots of 5-day old seedlings, produced on germination paper with no phosphorus addition, were visually evaluated by a rating scale after staining with 0.05% trypan blue. The method reveals variability among the genotypes, and the standard error of the mean is relatively low.O objetivo deste trabalho foi testar um método simples para a avaliação de pêlos radicais de 21 genótipos de feijão (Phaseolus vulgaris, a maioria deles usada em programas de melhoramento no Brasil. Os pêlos de raízes basais e primárias de plântulas com idade de cinco dias, produzidas em papel de germinação sem adição de fósforo, foram avaliados visualmente, com o auxílio de uma escala de avaliação, depois de coloridos com "trypan blue" (0,05%. O método diferencia bem os genótipos, e o erro-padrão da média é relativamente pequeno.

  17. Optical coherence tomography examination of hair

    Science.gov (United States)

    Gong, Wei; Huang, Zheng; Xu, Jianshu; Yang, Hongqin; Li, Hui; Xie, Shusen

    2014-09-01

    Human hair is a keratinous tissue composed mostly of flexible keratin, which can form a complex architecture consisting of distinct compartments or units (e.g. hair bulb, inner root sheath, shaft). Variations in hair shaft morphology can reflect ethnical diversity, but may also indicate internal diseases, nutritional deficiency, or hair and scalp disorders. Hair shaft abnormalities in cross section and diameter, as well as ultramorphological characterization and follicle shapes, might be visualized non-invasively by high-speed 2D and 3D optical coherence tomography (OCT). In this study, swept source OCT (ThorLabs) was used to examine human hair. Preliminary results showed that the high-speed OCT was a suitable and promising tool for non-invasive analysis of hair conditions.

  18. Loss of Gravitropism in Farnesene-Treated Arabidopsis Is Due to Microtubule Malformations Related to Hormonal and ROS Unbalance

    Science.gov (United States)

    Araniti, Fabrizio; Graña, Elisa; Krasuska, Urszula; Bogatek, Renata; Reigosa, Manuel J.; Abenavoli, Maria Rosa; Sánchez-Moreiras, Adela M.

    2016-01-01

    Mode of action of farnesene, a volatile sesquiterpene commonly found in the essential oils of several plants, was deeply studied on the model species Arabidopsis thaliana. The effects of farnesene on the Arabidopsis root morphology were evaluated by different microscopic techniques. As well, microtubules immunolabeling, phytohormone measurements and ROS staining helped us to elucidate the single or multi-modes of action of this sesquiterpene on plant metabolism. Farnesene-treated roots showed a strong growth inhibition and marked modifications on morphology, important tissue alterations, cellular damages and anisotropic growth. Left-handed growth of farnesene-treated roots, reverted by taxol (a known microtubule stabilizer), was related to microtubule condensation and disorganization. As well, the inhibition of primary root growth, lateral root number, lateral root length, and both root hairs length and density could be explained by the strong increment in ethylene production and auxin content detected in farnesene-treated seedlings. Microtubule alteration and hormonal unbalance appear as important components in the mode of action of farnesene and confirm the strong phytotoxic potential of this sesquiterpene. PMID:27490179

  19. Arabidopsis CDS blastp result: AK065661 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065661 J013039D02 At5g45160.1 root hair ... defective 3 GTP-binding (RHD3) family protein contains ... Pfam profile: PF05879 root hair ... defective 3 GTP-binding protein (RHD3) family 7e-9 ...

  20. Arabidopsis CDS blastp result: AK070939 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070939 J023069K05 At5g45160.1 root hair ... defective 3 GTP-binding (RHD3) family protein contains ... Pfam profile: PF05879 root hair ... defective 3 GTP-binding protein (RHD3) family 0.0 ...

  1. Arabidopsis CDS blastp result: AK100485 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100485 J023097D22 At5g45160.1 root hair ... defective 3 GTP-binding (RHD3) family protein contains ... Pfam profile: PF05879 root hair ... defective 3 GTP-binding protein (RHD3) family 0.0 ...

  2. Einstein Hair

    CERN Document Server

    Kolyvaris, Theodoros; Papantonopoulos, Eleftherios; Siopsis, George

    2011-01-01

    We consider a gravitating system of vanishing cosmological constant consisting of an electromagnetic field and a scalar field coupled to the Einstein tensor. A Reissner-Nordstr{\\o}m black hole undergoes a second-order phase transition to a hairy black hole of generally anisotropic hair at a certain critical temperature which we compute. The no-hair theorem is evaded due to the coupling between the scalar field and the Einstein tensor ("Einstein hair"). We calculate explicitly the properties of a hairy black hole configuration near the critical temperature and show that it is energetically favorable over the corresponding Reissner-Nordstr{\\o}m black hole.

  3. Arabidopsis thaliana resistance to fusarium oxysporum 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection.

    Directory of Open Access Journals (Sweden)

    Yunping Shen

    2013-05-01

    Full Text Available In the plant Arabidopsis thaliana, multiple quantitative trait loci (QTLs, including RFO2, account for the strong resistance of accession Columbia-0 (Col-0 and relative susceptibility of Taynuilt-0 (Ty-0 to the vascular wilt fungus Fusarium oxysporum forma specialis matthioli. We find that RFO2 corresponds to diversity in receptor-like protein (RLP genes. In Col-0, there is a tandem pair of RLP genes: RFO2/At1g17250 confers resistance while RLP2 does not. In Ty-0, the highly diverged RFO2 locus has one RLP gene conferring weaker resistance. While the endogenous RFO2 makes a modest contribution to resistance, transgenic RFO2 provides strong pathogen-specific resistance. The extracellular leucine-rich repeats (eLRRs in RFO2 and RLP2 are interchangeable for resistance and remarkably similar to eLRRs in the receptor-like kinase PSY1R, which perceives tyrosine-sulfated peptide PSY1. Reduced infection in psy1r and mutants of related phytosulfokine (PSK receptor genes PSKR1 and PSKR2 shows that tyrosine-sulfated peptide signaling promotes susceptibility. The related eLRRs in RFO2 and PSY1R are not interchangeable; and expression of the RLP nPcR, in which eLRRs in RFO2 are replaced with eLRRs in PSY1R, results in constitutive resistance. Counterintuitively, PSY1 signaling suppresses nPcR because psy1r nPcR is lethal. The fact that PSK signaling does not similarly affect nPcR argues that PSY1 signaling directly downregulates the expression of nPcR. Our results support a speculative but intriguing model to explain RFO2's role in resistance. We propose that F. oxysporum produces an effector that inhibits the normal negative feedback regulation of PSY1R, which stabilizes PSY1 signaling and induces susceptibility. However, RFO2, acting as a decoy receptor for PSY1R, is also stabilized by the effector and instead induces host immunity. Overall, the quantitative resistance of RFO2 is reminiscent of the better-studied monogenic resistance traits.

  4. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    Science.gov (United States)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  5. Arabidopsis Hexokinase-Like1 and Hexokinase1 Form a Critical Node in Mediating Plant Glucose and Ethylene Responses

    Energy Technology Data Exchange (ETDEWEB)

    Karve, Abhijit A [ORNL; Xioxia, Xia [Clemson University; Moore, Brandon [Clemson University

    2012-01-01

    Arabidopsis (Arabidopsis thaliana) hexokinase-like1 (HKL1) lacks Glc phosphorylation activity and has been shown to act as a negative regulator of plant growth. Interestingly, the protein has a largely conserved Glc binding domain and protein overexpression was shown previously to promote seedling tolerance to exogenous 6% (w/v) Glc. Since these phenotypes occur independently of cellular Glc signaling activities, we have tested whether HKL1 might promote crosstalk between the normal antagonists Glc and ethylene. We show that repression by 1-aminocyclopropane-1-carboxylic acid (ACC) of the Glc-dependent developmental arrest of wild-type Arabidopsis seedlings requires the HKL1 protein. We also describe an unusual root hair phenotype associated with growth on high Glc media that occurs prominently in HKL1 overexpression lines and in gin2-1, a null mutant of hexokinase1 (HXK1). Seedlings of these lines produce bulbous root hairs with an enlarged base, after transfer from agar plates with normal media to plates with 6% Glc. Seedling transfer to plates with 2% Glc plus ACC mimics the high Glc affect in the HKL1 overexpression line, but not in gin2-1. A similar ACC-stimulated, bulbous root hair phenotype also was observed in wild-type seedlings transferred to plates with 9% Glc. From transcript expression analyses, we found that HKL1 and HXK1 have differential roles in Glc-dependent repression of some ethylene biosynthesis genes. Since we show by co-immunoprecipitation assays that HKL1 and HXK1 can interact, these two proteins likely form a critical node in Glc signaling that mediates overlapping, but also distinct cellular responses to Glc and ethylene treatments.

  6. Hair Loss

    Science.gov (United States)

    ... resources Meet our partners Español Donate Diseases and treatments Acne and rosacea Bumps and growths Color problems Contagious skin diseases Cosmetic treatments Dry / sweaty skin Eczema / dermatitis Hair and scalp ...

  7. Your Hair

    Science.gov (United States)

    ... warm and provides a little cushioning for your skull. Eyelashes protect your eyes by decreasing the amount ... Colors What kind of hair do you have — black and curly, blond and straight, or some other ...

  8. Differences of Free Salicylic Acid Content and Root Morphology in Arabidopsis Wild-type and Mutant sex1 under Environmental Stresses%逆境下拟南芥野生型和突变体sex1游离态水杨酸含量及根形态差异

    Institute of Scientific and Technical Information of China (English)

    赵培臣; 贺殿

    2011-01-01

    Changes on free salicylic acid (SA) were researched in 10 different growth-stages of Arabidopsis thaliana wild type (WT). Differences of free SA and seedling root morphology in WT and mutant sexl upon treatments with Pst. DC3000 (Pseudomonas syringae pv. Tomato DC3000) , H2O2 , MV (methyl violo-gen) and SA were analyzed by HPLC and microscope methods. The results showed that the level of free SA in WT was the lowest in flower production (6. 30 and 6. 50) and silique ripening (8. 0) growth-stages. After 2 mmol · L-1 SA treatment,we found that free SA levels both in sexl and in WT were higher than that of other treatments. However,free SA content in sexl was higher than in WT and it was about 10 times compared with other treatments. Under MV and H2O2 stresses,there were no significant differences in themain root growth. Treated by low concentration of MV,it showed that sexl seedlings had longer root hairs than WT seedlings,whereas there were no differences in the root hair density between WT seedlings and sexl seedlings. While treated by low concentration of H2O2 , the differences of the root hair in WT and sexl seedlings were similar to control group. However, upon different concentrations of SA treatments, the differences of the main root growth between WT and sexl seedlings became more prominent, especially when seedlings grew on 10 jumol · L-1 SA media in Petri plates. Interestingly, the root hair of WT and sexl seedlings gradually missed from high concentration of SA treatment to low concentration of SA treatment, but it was more distinct in sexl seedlings. Therefore,these results suggested that maybe it had some relationships between plant flowering,seed harvesting and SA-dependent pathway. Exogenous SA could accelerate more free SA production in sexl which compared with other treatments by Pst. DC3000,H2O2 and MV. Root development of sexl seedlings was more sensitive on growth environment than that of WT seedlings. In addition,root morphology of sexl

  9. The M3 phosphorylation motif has been functionally conserved for intracellular trafficking of long-looped PIN-FORMEDs in the Arabidopsis root hair cell

    OpenAIRE

    Sasayama, Daisuke; Ganguly, Anindya; Park, Minho; Cho, Hyung-Taeg

    2013-01-01

    Background PIN-FORMED (PIN) efflux carriers contribute to polar auxin transport and plant development by exhibiting dynamic and diverse asymmetrical localization patterns in the plasma membrane (PM). Phosphorylation of the central hydrophilic loop (HL) of PINs has been implicated in the regulation of PIN trafficking. Recently, we reported that a phosphorylatable motif (M3) in the PIN3-HL is necessary for the polarity, intracellular trafficking, and biological functions of PIN3. In this study,...

  10. Removing Hair Safely

    Science.gov (United States)

    ... For Consumers Home For Consumers Consumer Updates Removing Hair Safely Share Tweet Linkedin Pin it More sharing ... methods of hair removal. back to top Laser Hair Removal In this method, a laser destroys hair ...

  11. Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem differentiation

    Czech Academy of Sciences Publication Activity Database

    Kollmer, I.; Novák, Ondřej; Strnad, Miroslav; Schmülling, T.; Werner, T.

    2014-01-01

    Roč. 78, č. 3 (2014), s. 359-371. ISSN 0960-7412 Institutional support: RVO:61389030 Keywords : xylem differentiation * Arabidopsis thaliana * cytokinin oxidase/dehydrogenase Subject RIV: ED - Physiology Impact factor: 5.972, year: 2014

  12. Effects of natural and synthetic auxins on the gravitropic growth habit of roots in two auxin-resistant mutants of Arabidopsis, axr1 and axr4: evidence for defects in the auxin influx mechanism of axr4

    Science.gov (United States)

    Yamamoto, M.; Yamamoto, K. T.

    1999-01-01

    The partially agravitropic growth habit of roots of an auxin-resistant mutant of Arabidopsis thaliana, axr4, was restored by the addition of 30-300 nM 1-naphthaleneacetic acid (NAA) to the growth medium. Neither indole 3-acetic acid (IAA) nor 2,4-dichlorophenoxyacetic acid (2,4-D) showed such an effect. Growth of axr4 roots was resistant to IAA and 2,4-D, but not at all to NAA. The differential effects of the three auxins suggest that the defects of axr4 result from a lower auxin influx into its cells. The partially agravitropic growth habit of axr1 roots, which was less severe than that of axr4 roots, was only slightly affected by the three auxins in the growth medium at concentrations up to 300 nM; growth of axr1 roots was resistant to all three of the auxins. These results suggest that the lesion of axrl mutants is different from that of axr4.

  13. Arabidopsis CAPRICE (MYB and GLABRA3 (bHLH control tomato (Solanum lycopersicum anthocyanin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Takuji Wada

    Full Text Available In Arabidopsis thaliana the MYB transcription factor CAPRICE (CPC and the bHLH transcription factor GLABRA3 (GL3 are central regulators of root-hair differentiation and trichome initiation. By transforming the orthologous tomato genes SlTRY (CPC and SlGL3 (GL3 into Arabidopsis, we demonstrated that these genes influence epidermal cell differentiation in Arabidopsis, suggesting that tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation. CPC and GL3 are also known to be involved in anthocyanin biosynthesis. After transformation into tomato, 35S::CPC inhibited anthocyanin accumulation, whereas GL3::GL3 enhanced anthocyanin accumulation. Real-time reverse transcription PCR analyses showed that the expression of anthocyanin biosynthetic genes including Phe-ammonia lyase (PAL, the flavonoid pathway genes chalcone synthase (CHS, dihydroflavonol reductase (DFR, and anthocyanidin synthase (ANS were repressed in 35S::CPC tomato. In contrast, the expression levels of PAL, CHS, DFR, and ANS were significantly higher in GL3::GL3 tomato compared with control plants. These results suggest that CPC and GL3 also influence anthocyanin pigment synthesis in tomato.

  14. The Metabolic Response of Arabidopsis Roots to Oxidative Stress is Distinct from that of Heterotrophic Cells in Culture and Highlights a Complex Relationship between the Levels of Transcripts,Metabolites,and Flux

    Institute of Scientific and Technical Information of China (English)

    Martin Lehmann; Markus Schwarzl(a)inder; Toshihiro Obata; Supaart Sirikantaramas; Meike Burow; Carl Erik Olsen; Takayuki Tohge; Mark D.Fricker; Birger Lindberg Mφller; Alisdair R.Fernie; Lee J.Sweetloveb; Miriam Laxa

    2009-01-01

    Metabolic adjustments are a significant,but poorly understood,part of the response of plants to oxidative stress.In a previous study (Baxter et al.,2007),the metabolic response of Arabidopsis cells in culture to induction of ox-idative stress by menadione was characterized.An emergency survival strategy was uncovered in which anabolic primary metabolism was largely down-regulated in favour of catabolic and antioxidant metabolism.The response in whole plant tissues may be different and we have therefore investigated the response of Arabidopsis roots to menadione treatment,analyzing the transcriptome,metabolome and key metabolic fluxes with focus on primary as well as secondary metab-olism.Using a redox-sensitive GFP,it was also shown that menadione causes redox perturbation,not just in the mitochon-drion,but also in the cytosol and plastids of roots.In the first 30 min of treatment,the response was similar to the cell culture:there was a decrease in metabolites of the TCA cycle and amino acid biosynthesis and the transcriptomic response was dominated by up-regulation of DNA regulatory proteins.After 2 and 6 h of treatment,the response of the roots was different to the cell culture.Metabolite levels did not remain depressed,but instead recovered and,in the case of pyruvate,some amino acids and aliphatic glucosinolates showed a steady increase above control levels.However,no major changes in fluxes of central carbon metabolism were observed and metabolic transcripts changed largely independently of the corresponding metabolites.Together,the results suggest that root tissues can recover metabolic activity after oxidative inhibition and highlight potentially important roles for glycolysis and the oxidative pentose phosphate pathway.

  15. Endophytic colonization of plant roots by nitrogen-fixing bacteria

    International Nuclear Information System (INIS)

    Nitrogen-fixing bacteria are able to enter into roots from the rhizosphere, particularly at the base of emerging lateral roots, between epidermal cells and through root hairs. In the rhizosphere growing root hairs play an important role in symbiotic recognition in legume crops. Nodulated legumes in endosymbiosis with rhizobia are amongst the most prominent nitrogen-fixing systems in agriculture. The inoculation of non-legumes, especially cereals, with various non-rhizobial diazotrophic bacteria has been undertaken with the expectation that they would establish themselves intercellularly within the root system, fixing nitrogen endophytic ally and providing combined nitrogen for enhanced crop production. However, in most instances bacteria colonize only the surface of the roots and remain vulnerable to competition from other rhizosphere micro-organisms, even when the nitrogen-fixing bacteria are endophytic, benefits to the plant may result from better uptake of soil nutrients rather than from endophytic nitrogen fixation. Azorhizobium caulinodans is known to enter the root system of cereals, other nonlegume crops and Arabidopsis, by intercellular invasion between epidermal cells and to internally colonize the plant intercellularly, including the xylem. This raises the possibility that xylem colonization might provide a nonnodular niche for endosymbiotic nitrogen fixation in rice, wheat, maize, sorghum and other non-legume crops. A particularly interesting, naturally occurring, non-qodular xylem colonising endophytic diazotrophic interaction with evidence for endophytic nitrogen fixation is that of Gluconacetobacter diazotrophicus in sugarcane. Could this beneficial endophytic colonization of sugarcane by G. diazotrophicus be extended to other members of the Gramineae, including the major cereals, and to other major non-legume crops of the World? (author)

  16. Body Hair

    Science.gov (United States)

    ... and uncomfortable. If you decide to use a hair-removal cream, make sure it says it’s gentle enough for the pubic area. Don’t put on any product that could sting, like aftershave lotion. To help avoid irritation, don’t use products with added dyes or fragrances. If you have more questions about ...

  17. CPC,a Single-Repeat R3 MYB,Is a Negative Regulator of Anthocyanin Biosynthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Hui-Fen Zhu; Karen Fitzsimmons; Abha Khandelwal; Robert G.Kranz

    2009-01-01

    Single-repeat R3 MYB transcription factors like CPC (CAPRICE) are known to play roles in developmental processes such as root hair differentiation and trichome initiation.However,none of the six Arabidopsis single-repeat R3 MYB members has been reported to regulate flavonoid biosynthesis.We show here that CPC is a negative regulator of anthocyanin biosynthesis.In the process of using CPC to test GAL4-dependent driver lines,we observed a repression of anthocyanin synthesis upon GAL4-mediated CPC overexpression,We demonstrated that this is not due to an increase in nutrient uptake because of more root hairs.Rather,CPC expression level tightly controls anthocyanin accumulation.Microarray analysis on the whole genome showed that,of 37 000 features tested,85 genes are repressed greater than three-fold by CPC overexpression.Of these 85,seven are late anthocyanin biosynthesis genes.Also,anthocyanin synthesis genes were shown to be down-regulated in 35S::CPC overexpression plants.Transient expression results suggest that CPC competes with the R2R3-MYB transcription factor PAP1/2,which is an activator of anthocyanin biosynthesis genes.This report adds anthocyanin biosynthesis to the set of programs that are under CPC control,indicating that this regulator is not only for developmental programs (e.g.root hairs,trichomes),but can influence anthocyanin pigment synthesis.

  18. Hair care and dyeing.

    Science.gov (United States)

    Draelos, Zoe Diana

    2015-01-01

    Alopecia can be effectively camouflaged or worsened through the use of hair care techniques and dyeing. Proper hair care, involving hair styling and the use of mild shampoos and body-building conditioners, can amplify thinning scalp hair; however, chemical processing, including hair dyeing, permanent waving, and hair straightening, can encourage further hair loss through breakage. Many patients suffering from alopecia attempt to improve their hair through extensive manipulation, which only increases problems. Frequent haircuts to minimize split ends, accompanied by gentle handling of the fragile fibers, is best. This chapter offers the dermatologist insight into hair care recommendations for the alopecia patient. PMID:26370650

  19. Skin, Hair, and Nails

    Science.gov (United States)

    ... distribution of melanin in the cortex of each hair (the same melanin that's found in the epidermis). Hair also contains ... red pigment; people who have blonde or red hair have only a small amount of melanin in their hair. Hair becomes gray when people ...

  20. Activation of NADPH-recycling systems in leaves and roots of Arabidopsis thaliana under arsenic-induced stress conditions is accelerated by knock-out of Nudix hydrolase 19 (AtNUDX19) gene.

    Science.gov (United States)

    Corpas, Francisco J; Aguayo-Trinidad, Simeón; Ogawa, Takahisa; Yoshimura, Kazuya; Shigeoka, Shigeru

    2016-03-15

    NADPH is an important cofactor in cell growth, proliferation and detoxification. Arabidopsis thaliana Nudix hydrolase 19 (AtNUDX19) belongs to a family of proteins defined by the conserved amino-acid sequence GX5-EX7REUXEEXGU which has the capacity to hydrolyze NADPH as a physiological substrate in vivo. Given the importance of NADPH in the cellular redox homeostasis of plants, the present study compares the responses of the main NADPH-recycling systems including NADP-isocitrate dehydrogenase (ICDH), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and NADP-malic enzyme (ME) in the leaves and roots of Arabidopsis wild-type (Wt) and knock-out (KO) AtNUDX19 mutant (Atnudx19) plants under physiological and arsenic-induced stress conditions. Two major features were observed in the behavior of the main NADPH-recycling systems: (i) under optimal conditions in both organs, the levels of these activities were higher in nudx19 mutants than in Wt plants; and, (ii) under 500μM AsV conditions, these activities increase, especially in nudx19 mutant plants. Moreover, G6PDH activity in roots was the most affected enzyme in both Wt and nudx19 mutant plants, with a 4.6-fold and 5.0-fold increase, respectively. In summary, the data reveals a connection between the absence of chloroplastic AtNUDX19 and the rise in all NADP-dehydrogenase activities under physiological and arsenic-induced stress conditions, particularly in roots. This suggests that AtNUDX19 could be a key factor in modulating the NADPH pool in plants and consequently in redox homeostasis. PMID:26878367

  1. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress

    OpenAIRE

    Stefanie De Smet; Ann Cuypers; Jaco Vangronsveld; Tony Remans

    2015-01-01

    Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations...

  2. ESTROGEN RECEPTORS OF HAIRS BLACKS AND WHITES

    Directory of Open Access Journals (Sweden)

    H. Laswati

    2014-12-01

    Full Text Available Background: Aging is termed as same as degenerative process, in which all part of tissue organs retarted the microstructure either macrostructure, forming and function even the colour, including black hair change to white hair. Several researchers have been recommended that estrogen hormone be able ease black to white hair, but hormone without any presenting of receptor won’t be work properly. The main aim of this study were to determine amount of estrogen receptor contents in famales and males black and white hairs included the microscopically structure. Method: Twelve females and males there were 50 -56 years old each pairs black and white head hairs were plucked along with follicles. This estrogen receptors analyzed using radioreceptor binding assay there were 5mm eah hair follices including the root cutted and each pair put its in 2 ml glass tube already filled in with 500 µl 125I-estradiol and incubated in 37oC for 3 hrs. Following times were over the tube flushed twice carefully the hair won’t be flushed. Then count by putting in the gamma counter chamber for 1 minute each. The values that shown in the monitor as CPM (count per minute, recorded as receptor of estradiol. Results: Mean (±SD sum estrogen receptor in females black and white hairs were 479.3 ± 37.5 and 387.7 ± 33.0, but significantly decreased in male black hair was 316.9±17.8 and 274.0 ± 19.8. All those pairs significantly different either female black and white hairs or male black and white hair and also significantly different among groups. Conclusion: The lowest estrogen receptors recorded in male white hairs and microstructure decreasing of melanin contents.

  3. Constitutive salicylic acid accumulation in pi4kIII beta 1 beta 2 Arabidopsis plants stunts rosette but not root growth

    Czech Academy of Sciences Publication Activity Database

    Šašek, Vladimír; Janda, Martin; Delage, E.; Puyaubert, J.; Guivarc'h, A.; Maseda, Encarnación López; Dobrev, Petre; Caius, J.; Valentová, O.; Burketová, Lenka; Zachowski, A.; Ruelland, E.

    2014-01-01

    Roč. 203, č. 3 (2014), s. 805-816. ISSN 0028-646X R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional support: RVO:61389030 Keywords : Arabidopsis * dwarf phenotype * hormone transduction Subject RIV: CE - Biochemistry Impact factor: 7.672, year: 2014

  4. Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation

    Czech Academy of Sciences Publication Activity Database

    Smékalová, V.; Luptovčiak, I.; Komis, G.; Šamajová, O.; Ovečka, M.; Doskočilová, A.; Takáč, T.; Vadovič, P.; Novák, Ondřej; Pechan, T.; Ziemann, A.; Košútová, P.; Šamaj, J.

    2014-01-01

    Roč. 203, č. 4 (2014), s. 1175-1193. ISSN 0028-646X R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Arabidopsis * cell division plane * MAP65-1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.672, year: 2014

  5. Influence of the stage of the hair cycle on Cd deposition in hair

    International Nuclear Information System (INIS)

    Shortly after a single injection of Cd a much higher deposition of Cd was observed in growing hair (anaphase) than in resting hair (telophase). Shifting the time of the administration in a period ranging from 7 d before the onset of matrix production to full hair growth did not appreciably alter the initial deposition in spite of the rapid decline of Cd in blood plasma. After the initial deposition the concentration decreased in growing as well as in resting hair. In growing hair this is attributed to the addition of new matrix containing less Cd due to its declining supply via blood. In the resting hair it may reflect the decline of Cd in the follicular tissue adhering to the hair roots. The study demonstrates that the deposition of internal Cd in hair occurs mainly in those sections of hair growing at the time of the actual intake of Cd into the organism. The quantity of Cd found in a particular section of hair in the absence of external contamination, indicates first and foremost the quantity of Cd taken up into the blood stream - after ingestion or inhalation -at the time of the actual formation of this section notwithstanding the actual body burden at that time. (author)

  6. Study of colouring effect of herbal hair formulations on graying hair

    Directory of Open Access Journals (Sweden)

    Vijender Singh

    2015-01-01

    Full Text Available Objective: To screen the hair colouring properties of hair colorants/ herbal hair colouring formulations. Materials and Methods: The dried aqueous herbal extracts of Gudhal leaves (Hibiscus rosa-sinensis, Jatamansi rhizome (Nardostachys jatamansi, Kuth roots (Saussurea lappa, Kattha (Acacia catechu, Amla dried fruit (Embelica officinalis, were prepared. Coffee powder (Coffea arabicaand Henna powder (Lowsonia inermis were taken in the form of powder (# 40. Fourteen herbal hair colorants were prepared from these dried aqueous herbal extracts and powders. Activities of hair colorants were observed on sheep wool fibers. On the basis of the above observation six hair colorants were selected. These six formulations were taken for trials on human beings. Observation: The formulation coded HD-3 gave maximum colouring effect on sheep wool fibers as well as on human beings and percentage of acceptance among the volunteers were in the following order: HD- 3 > HD- 4 > HD-1 > HD-13 > HD-14 > HD-11. Results and Discussion: The remarkable results were obtained from five herbal hair colorants, viz., HD-1, HD- 3, HD- 4, HD-13 and HD-14 on sheep wool fibers and human beings. Formulation HD-3, having gudhal, jatamansi, kuth, kattha, amla, coffee and henna, was the maximum accepted formulation and suggested that these herbs in combination acts synergistically in hair colouring action. It also concluded that jatamansi, present in different hair colorants, was responsible to provide maximum blackening on hair

  7. Hair spray poisoning

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) hair ...

  8. Hair dye poisoning

    Science.gov (United States)

    Hair dye poisoning occurs when someone swallows dye or tint used to color hair. This article is for ... Different types of hair dye contain different harmful ingredients. ... aromatic amino compounds Phenylenediamines Toluene diamines ...

  9. Laser Hair Removal

    Science.gov (United States)

    ... rashes clinical tools newsletter | contact Share | Hair Removal, Laser A A A AFTER: Two laser hair removal treatments were performed. This picture is ... Procedure Overview With just the right type of laser or Intense Pulsed Light (IPL) technology, suitable hairs ...

  10. Changing Your Hair

    Science.gov (United States)

    ... Snowboarding, Skating Crushes What's a Booger? Changing Your Hair KidsHealth > For Kids > Changing Your Hair Print A ... straight when it's curly. Treatments That Can Damage Hair Are these treatments OK for kids? That's something ...

  11. Hair spray poisoning

    Science.gov (United States)

    Hair spray poisoning occurs when someone breathes in (inhales) hair spray or sprays it down their throat or into their eyes. ... The harmful ingredients in hair spray are: Carboxymethylcellulose ... Polyvinyl alcohol Propylene glycol Polyvinylpyrrolidone

  12. Hair dye poisoning

    Science.gov (United States)

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  13. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis

    International Nuclear Information System (INIS)

    Eleven loci that play a role in the synthesis of flavonoids in Arabidopsis are described. Mutations at these loci, collectively named transparent testa (tt), disrupt the synthesis of brown pigments in the seed coat (testa). Several of these loci (tt3, tt4, tt5 and ttg) are also required for the accumulation of purple anthocyanins in leaves and stems and one locus (ttg) plays additional roles in trichome and root hair development. Specific functions were previously assigned to tt1-7 and ttg. Here, the results of additional genetic, biochemical and molecular analyses of these mutants are described. Genetic map positions were determined for tt8, tt9 and tt10. Thin-layer chromatography identified tissue- and locus-specific differences in the flavonols and anthocyanidins synthesized by mutant and wild-type plants. It was found that UV light reveals distinct differences in the floral tissues of tt3, tt4, tt5, tt6 and ttg, even though these tissues are indistinguishable under visible light. Evidence was also uncovered that tt8 and ttg specifically affect dihydroflavonol reductase gene expression. A summary of these and previously published results are incorporated into an overview of the genetics of flavonoid biosynthesis in Arabidopsis

  14. Hoxc13 is a crucial regulator of murine hair cycle.

    Science.gov (United States)

    Qiu, Weiming; Lei, Mingxing; Tang, Hui; Yan, Hongtao; Wen, Xuhong; Zhang, Wei; Tan, Ranjing; Wang, Duan; Wu, Jinjin

    2016-04-01

    Hair follicles undergo cyclical growth and regression during postnatal life. Hair regression is an apoptosis-driven process strictly controlled by micro- and macro-environmental signals. However, how these signals are controlled remains largely unknown. Hoxc13, a member of the Hox gene family, is reported to play an important role in hair follicle differentiation. In the present study, we observed that Hoxc13 was highly expressed in the outer root sheath, matrix, medulla and inner root sheath of hair follicles in a hair cycle-dependent manner. We therefore investigated the role of Hoxc13 in hair follicle cycling. Injection of ShRNA (ShHoxc13) to suppress Hoxc13 in early anagen promoted premature catagen entry, shown by significantly decreased hair length and hair bulb size, increased percentage of catagen hair follicles, hair cycle score and TUNEL+ cells and inhibited proliferation. In contrast, local injection of recombinant Hoxc13 polypeptide (rhHoxc13) during the late anagen phase prolonged the anagen phase. Additionally, rhHoxc13 injections during the telogen phase significantly promoted hair growth and induced the anagen progression. At the molecular level, the expression of phosphorylated smad2 (p-smad2), a key factor of active TGF-β1 signaling, was up-regulated in the ShHoxc13-treated hair follicles and down-regulated in rhHoxc13-treated hair follicles, suggesting that Hoxc13 might block anagen-catagen transition by inhibiting the TGF-β1 signaling. Taken together, our data strongly suggest that Hoxc13 is a novel and crucial regulator of the hair cycle. This might also provide an understanding of the mechanism of the 'hair cycle clock' and the development of alopecia treatments. PMID:26553656

  15. Chronological ageing of human hair keratin fibres.

    Science.gov (United States)

    Thibaut, S; de Becker, E; Bernard, B A; Huart, M; Fiat, F; Baghdadli, N; Luengo, G S; Leroy, F; Angevin, P; Kermoal, A M; Muller, S; Peron, M; Provot, G; Kravtchenko, S; Saint-Léger, D; Desbois, G; Gauchet, L; Nowbuth, K; Galliano, A; Kempf, J Y; Silberzan, I

    2010-12-01

    Examination of very long hair (length > 2.4 m) using a large range of evaluation methods including physical, chemical, biochemical and microscopic techniques has enabled to attain a detailed understanding of natural ageing of human hair keratin fibres. Scrutinizing hair that has undergone little or no oxidative aggression--because of the absence of action of chemical agents such as bleaching or dyeing--from the root to the tip shows the deterioration process, which gradually takes place from the outside to the inside of the hair shaft: first, a progressive abrasion of the cuticle, whilst the cortex structure remains unaltered, is evidenced along a length of roughly 1 m onwards together with constant shine, hydrophobicity and friction characteristics. Further along the fibre, a significant damage to cuticle scales occurs, which correlates well with ceramides and 18-Methyl Eicosanoic Acid (18-MEA) decline, and progressive decrease in keratin-associated protein content. Most physical descriptors of mechanical and optical properties decay significantly. This detailed description of natural ageing of human hair fibres by a fine analysis of hair components and physical parameters in relationship with cosmetic characteristics provides a time-dependent 'damage scale' of human hair, which may help in designing new targeted hair care formulations. PMID:20384898

  16. The D-type cyclin CYCD4;1 modulates lateral root density in Arabidopsis by affecting the basal meristem region

    OpenAIRE

    Nieuwland, Jeroen; Maughan, Spencer; Dewitte, Walter; Scofield, Simon; Sanz, Luis; Murray, James A.H.

    2009-01-01

    Root cell division occurs primarily in the apical meristem, from which cells are displaced into the basal meristem, where division decreases and cell length increases before the final differentiation zone. The organization of the root in concentric files implies coordinated division and differentiation of cell types, including the xylem pole pericycle cells, which uniquely can resume division to initiate lateral roots (LR). Here, we show that D-type cyclin CYCD4;1 is expressed in meristematic...

  17. Lateral root stimulation in the early interaction between Arabidopsis thaliana and the ectomycorrhizal fungus Laccaria bicolor: Is fungal auxin the trigger?

    OpenAIRE

    Felten, Judith; Legué, Valérie; Ditengou, Franck Anicet

    2010-01-01

    Lateral root (LR) stimulation during early signal exchange between plant roots and ectomycorrhizal (ECM) fungi has recently been shown to be achieved by modulation of auxin gradients. We suggested that this modulation could occur through altered polar auxin transport (PAT) and through activation of auxin signalling pathways in the root. However, it remains unclear, which fungal molecules alter auxin pathways inside the plant partner. It has been suggested in previous studies that auxin releas...

  18. Analysis of human hair to assess exposure to organophosphate flame retardants: Influence of hair segments and gender differences.

    Science.gov (United States)

    Qiao, Lin; Zheng, Xiao-Bo; Zheng, Jing; Lei, Wei-Xiang; Li, Hong-Fang; Wang, Mei-Huan; He, Chun-Tao; Chen, She-Jun; Yuan, Jian-Gang; Luo, Xiao-Jun; Yu, Yun-Jiang; Yang, Zhong-Yi; Mai, Bi-Xian

    2016-07-01

    Hair is a promising, non-invasive, human biomonitoring matrix that can provide insight into retrospective and integral exposure to organic pollutants. In the present study, we measured the concentrations of organophosphate flame retardants (PFRs) in hair and serum samples from university students in Guangzhou, China, and compared the PFR concentrations in the female hair segments using paired distal (5~10cm from the root) and proximal (0~5cm from the root) samples. PFRs were not detected in the serum samples. All PFRs except tricresyl phosphate (TMPP) and tri-n-propyl phosphate (TPP) were detected in more than half of all hair samples. The concentrations of total PFRs varied from 10.1 to 604ng/g, with a median of 148ng/g. Tris(chloroisopropyl) phosphate (TCIPP) and tri(2-ethylexyl) phosphate (TEHP) were the predominant PFRs in hair. The concentrations of most PFRs in the distal segments were 1.5~8.6 times higher than those in the proximal segments of the hair (t-test, p<0.05), which may be due to the longer exposure time of the distal segments to external sources. The values of log (PFR concentrations-distal/PFR concentrations-proximal) were positively and significantly correlated with log KOA of PFRs (p<0.05, r=0.68), indicating that PFRs with a higher log KOA tend to accumulate in hair at a higher rate than PFRs with a lower log KOA. Using combined segments of female hair, significantly higher PFR concentrations were observed in female hair than in male hair. In contrast, female hair exhibited significantly lower PFR concentrations than male hair when using the same hair position for both genders (0-5cm from the scalp). The controversial results regarding gender differences in PFRs in hair highlight the importance of segmental analysis when using hair as an indicator of human exposure to PFRs. PMID:27078091

  19. The Arabidopsis thaliana CLAVATA3/EMBRYO-SURROUNDING REGION 26 (CLE26) peptide is able to alter root architecture of Solanum lycopersicum and Brassica napus.

    Science.gov (United States)

    Czyzewicz, Nathan; De Smet, Ive

    2016-01-01

    Optimal development of root architecture is vital to the structure and nutrient absorption capabilities of any plant. We recently demonstrated that AtCLE26 regulates A. thaliana root architecture development, possibly by altering auxin distribution to the root apical meristem via inhibition of protophloem development. In addition, we showed that AtCLE26 application is able to induce a root architectural change in the monocots Brachypodium distachyon and Triticum aestivum. Here, we showed that application of the synthetic AtCLE26 peptide similarly affects other important agricultural species, such as Brassica napus and Solanum lycopersicum. PMID:26669515

  20. Hair cosmetics: an overview.

    Science.gov (United States)

    Gavazzoni Dias, Maria Fernanda Reis

    2015-01-01

    Hair cosmetics are an important tool that helps to increase patient's adhesion to alopecia and scalp treatments. This article reviews the formulations and the mode of action of hair cosmetics: Shampoos, conditioners, hair straightening products, hair dyes and henna; regarding their prescription and safetiness. The dermatologist's knowledge of hair care products, their use, and their possible side effects can extend to an understanding of cosmetic resources and help dermatologists to better treat hair and scalp conditions according to the diversity of hair types and ethnicity. PMID:25878443

  1. Hair loss in women.

    Science.gov (United States)

    Harfmann, Katya L; Bechtel, Mark A

    2015-03-01

    Hair loss is a common cause of morbidity for many women. As a key member of the woman's health care team, the obstetrician/gynecologist may be the first person to evaluate the complaint of hair loss. Common types of nonscarring hair loss, including female pattern hair loss and telogen effluvium, may be diagnosed and managed by the obstetrician/gynecologist. A systematic approach to diagnosis and management of these common forms of hair loss is presented. PMID:25517757

  2. Hair Cosmetics: An Overview

    OpenAIRE

    Gavazzoni Dias, Maria Fernanda Reis

    2015-01-01

    Hair cosmetics are an important tool that helps to increase patient's adhesion to alopecia and scalp treatments. This article reviews the formulations and the mode of action of hair cosmetics: Shampoos, conditioners, hair straightening products, hair dyes and henna; regarding their prescription and safetiness. The dermatologist's knowledge of hair care products, their use, and their possible side effects can extend to an understanding of cosmetic resources and help dermatologists to better tr...

  3. miR390, Arabidopsis TAS3 tasiRNAs, and Their AUXIN RESPONSE FACTOR Targets Define an Autoregulatory Network Quantitatively Regulating Lateral Root Growth[W

    Science.gov (United States)

    Marin, Elena; Jouannet, Virginie; Herz, Aurélie; Lokerse, Annemarie S.; Weijers, Dolf; Vaucheret, Herve; Nussaume, Laurent; Crespi, Martin D.; Maizel, Alexis

    2010-01-01

    Plants adapt to different environmental conditions by constantly forming new organs in response to morphogenetic signals. Lateral roots branch from the main root in response to local auxin maxima. How a local auxin maximum translates into a robust pattern of gene activation ensuring the proper growth of the newly formed lateral root is largely unknown. Here, we demonstrate that miR390, TAS3-derived trans-acting short-interfering RNAs (tasiRNAs), and AUXIN RESPONSE FACTORS (ARFs) form an auxin-responsive regulatory network controlling lateral root growth. Spatial expression analysis using reporter gene fusions, tasi/miRNA sensors, and mutant analysis showed that miR390 is specifically expressed at the sites of lateral root initiation where it triggers the biogenesis of tasiRNAs. These tasiRNAs inhibit ARF2, ARF3, and ARF4, thus releasing repression of lateral root growth. In addition, ARF2, ARF3, and ARF4 affect auxin-induced miR390 accumulation. Positive and negative feedback regulation of miR390 by ARF2, ARF3, and ARF4 thus ensures the proper definition of the miR390 expression pattern. This regulatory network maintains ARF expression in a concentration range optimal for specifying the timing of lateral root growth, a function similar to its activity during leaf development. These results also show how small regulatory RNAs integrate with auxin signaling to quantitatively regulate organ growth during development. PMID:20363771

  4. WOX5-1AA17 Feedback Circuit-Mediated CellularAuxin Response Is Crucial for the Patterning ofRoot Stem Cell Niches in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    In plants, the patterning of stem cell-enriched meristems requires a graded auxin response maximum thatemerges from the concerted action of polar auxin transport, auxin biosynthesis, auxin metabolism, and cellular auxinresponse machinery. However, mechanisms underlying this auxin response maximum-mediated root stem cell mainte-nance are not fully understood. Here, we present unexpected evidence that WUSCHEL-RELATED HOMEOBOX 5 (WOX5)transcription factor modulates expression of auxin biosynthetic genes in the quiescent center (QC) of the root and thusprovides a robust mechanism for the maintenance of auxin response maximum in the root tip. This WOX5 action is bal-anced through the activity of indole-3-acetic acid 17 (IAA17) auxin response repressor. Our combined genetic, cell biol-ogy, and computational modeling studies revealed a previously uncharacterized feedback loop linking WOX5-mediatedauxin production to IAA17-dependent repression of auxin responses. This WOX5-1AA17 feedback circuit further assuresthe maintenance of auxin response maximum in the root tip and thereby contributes to the maintenance of distal stemcell (DSC) populations. Our experimental studies and in silico computer simulations both demonstrate that the WOX5-iAA17 feedback circuit is essential for the maintenance of auxin gradient in the root tip and the auxin-mediated root DSCdifferentiation.

  5. A Method for Preparing Spaceflight RNAlater-Fixed Arabidopsis thaliana (Brassicaceae Tissue for Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Eric R. Schultz

    2013-07-01

    Full Text Available Premise of the study: In spaceflight experiments, tissues for morphologic study are fixed in 3% glutaraldehyde, while tissues for molecular study are fixed in RNAlater; thus, an experiment containing both study components requires multiple fixation strategies. The possibility of using RNAlater-fixed materials for standard SEM-based morphometric investigation was explored to expand the library of tissues available for analysis and maximize usage of samples returned from spaceflight, but these technologies have wide application to any situation where recovery of biological resources is limited. Methods and Results: RNAlater-fixed samples were desalinated in distilled water, dehydrated through graded methanol, plunged into liquid ethane, and transferred to cryovials for freeze-substitution. Sample tissues were critical point dried, mounted, sputter-coated, and imaged. Conclusions: The protocol resulted in acceptable SEM images from RNAlater-fixed Arabidopsis thaliana tissue. The majority of the tissues remained intact, including general morphology and finer details such as root hairs and trichomes.

  6. Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shinsaku Ito

    Full Text Available Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in Arabidopsis are partially dependent on the strigolactone (SL signaling pathway. SL treatment induced root hair elongation, anthocyanin accumulation, activation of acid phosphatase, and reduced plant weight, which are characteristic responses to phosphate starvation. Furthermore, the expression profile of SL-response genes correlated with the expression of genes induced by Pi starvation. These results suggest a potential overlap between SL signaling and Pi starvation signaling pathways in plants.

  7. Bystander/abscopal effects induced in intact Arabidopsis seeds by low-energy heavy-ion radiation.

    Science.gov (United States)

    Yang, Gen; Mei, Tao; Yuan, Hang; Zhang, Weiming; Chen, Lianyun; Xue, Jianming; Wu, Lijun; Wang, Yugang

    2008-09-01

    To date, radiation-induced bystander effects have been observed largely in in vitro single-cell systems; verification of both the effects and the mechanisms in multicellular systems in vivo is important. Previously we showed that bystander/ abscopal effects can be induced by irradiating the shoot apical meristem cells in Arabidopsis embryos. In this study, we investigated the in vivo effects induced by 30 keV 40Ar ions in intact Arabidopsis seeds and traced the postembryonic development of both irradiated and nonirradiated shoot apical meristem and root apical meristem cells. Since the range of 30 keV 40Ar ions in water is about 0.07 microm, which is less than the distance from the testa to shoot apical meristem and root apical meristem in Arabidopsis seeds (about 100 microm), the incident low-energy heavy ions generally stop in the proximal surface. Our results showed that, after the 30 keV 40Ar-ion irradiation of shielded and nonshielded Arabidopsis seeds at a fluence of 1.5 x 10(17) ions/cm2, short- and long-term postembryonic development, including germination, root hair differentiation, primary root elongation, lateral root initiation and survival, was significantly inhibited. Since shoot apical meristem and root apical meristem cells were not damaged directly by radiation, the results suggested that a damage signal(s) is transferred from the irradiated cells to shoot apical meristem and root apical meristem cells and causes the ultimate developmental alterations, indicating that long-distance bystander/ abscopal effects exist in the intact seed. A further study of mechanisms showed that the effects are associated with either enhanced generation of reactive oxygen species (ROS) or decreased auxin-dependent transcription in postembryonic development. Treatment with the ROS scavenger dimethyl sulfoxide (DMSO) or synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) can significantly reverse both the alterations in postembryonic development and auxin

  8. The Morphology and Cell Biology of the Hair Apparatus : Recent Advances

    OpenAIRE

    Ito, Masaaki

    1990-01-01

    Recent advances in knowledge of the morphology and biology of hair apparatuses are introduced. The hair apparatus morphologically shows a cyclic change "hair cycle" from anagen through catagen to telogen. In anagen, the hair apparatus is composed of eight epithelial cell layers, one of which has been very recently discovered: the innermost cell layer of the outer root sheath. When the ultrastructures of these cell layers are compared with each other, the cells of each layer reveal unique ultr...

  9. The secretion of the bacterial phytase PHY-US417 by Arabidopsis roots reveals its potential for increasing phosphate acquisition and biomass production during co-growth.

    Science.gov (United States)

    Belgaroui, Nibras; Berthomieu, Pierre; Rouached, Hatem; Hanin, Moez

    2016-09-01

    Phytic acid (PA) is a major source of inorganic phosphate (Pi) in the soil; however, the plant lacks the capacity to utilize it for Pi nutrition and growth. Microbial phytases constitute a group of enzymes that are able to remobilize Pi from PA. Thus, the use of these phytases to increase the capacity of higher plants to remobilize Pi from PA is of agronomical interest. In the current study, we generate transgenic Arabidopsis lines (ePHY) overexpressing an extracellular form of the phytase PHY-US417 of Bacillus subtilis, which are characterized by high levels of secreted phytase activity. In the presence of PA as sole source of Pi, while the wild-type plants show hallmark of Pi deficiency phenotypes, including the induction of the expression of Pi starvation-induced genes (PSI, e.g. PHT1;4) and the inhibition of growth capacity, the ePHY overexpressing lines show a higher biomass production and no PSI induction. Interestingly, when co-cultured with ePHY overexpressors, wild-type Arabidopsis plants (or tobacco) show repression of the PSI genes, improvement of Pi content and increases in biomass production. In line with these results, mutants in the high-affinity Pi transporters, namely pht1;1 and pht1;1-1;4, both fail to accumulate Pi and to grow when co-cultured with ePHY overexpressors. Taken together, these data demonstrate the potential of secreted phytases in improving the Pi content and enhancing growth of not only the transgenic lines but also the neighbouring plants. PMID:26914451

  10. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis.

    Science.gov (United States)

    Sivaguru, Mayandi; Ezaki, Bunichi; He, Zheng-Hui; Tong, Hongyun; Osawa, Hiroki; Baluska, Frantisek; Volkmann, Dieter; Matsumoto, Hideaki

    2003-08-01

    Here, we report the aluminum (Al)-induced organ-specific expression of a WAK1 (cell wall-associated receptor kinase 1) gene and cell type-specific localization of WAK proteins in Arabidopsis. WAK1-specific reverse transcriptase-polymerase chain reaction analysis revealed an Al-induced WAK1 gene expression in roots. Short- and long-term analysis of gene expression in root fractions showed a typical "on" and "off" pattern with a first peak at 3 h of Al exposure followed by a sharp decline at 6 h and a complete disappearance after 9 h of Al exposure, suggesting the WAK1 is a further representative of Al-induced early genes. In shoots, upon root Al exposure, an increased but stable WAK1 expression was observed. Using confocal microscopy, we visualized Al-induced closure of leaf stomata, consistent with previous suggestions that the Al stress primarily experienced in roots associated with the transfer of root-shoot signals. Elevated levels of WAK protein in root cells were observed through western blots after 6 h of Al exposure, indicating a lag time between the Al-induced WAK transcription and translation. WAK proteins are localized abundantly to peripheries of cortex cells within the elongation zone of the root apex. In these root cells, disintegration of cortical microtubules was observed after Al treatment but not after the Al analog lanthanum treatments. Tip-growing control root hairs, stem stomata, and leaf stomatal pores are characterized with high amounts of WAKs, suggesting WAKs are accumulating at plasma membrane domains, which suffer from mechanical stress and lack dense arrays of supporting cortical microtubules. Further, transgenic plants overexpressing WAK1 showed an enhanced Al tolerance in terms of root growth when compared with the wild-type plants, making the WAK1 one of the important candidates for plant defense against Al toxicity. PMID:12913180

  11. Common Hair Problems

    Science.gov (United States)

    ... the top of the head. Women may develop female pattern baldness in which the hair becomes thin over the ... is most commonly seen in children. Hair Loss, Female Pattern Baldness (Female Pattern Alopecia) Female pattern baldness (alopecia) is ...

  12. Hair Treatments and Pregnancy

    Science.gov (United States)

    ... coloring/dye through my skin? Low levels of hair dye can be absorbed through the skin after application, ... am pregnant? There are very few studies of hair dye use during human pregnancy. In animal studies, at ...

  13. Hair Loss (Alopecia Areata)

    Science.gov (United States)

    ... rash and rashes clinical tools newsletter | contact Share | Hair Loss (Alopecia Areata) Information for adults A A A This ... scalp with a round area of non-scarring hair loss typical of alopecia areata. Overview Alopecia areata is ...

  14. Hair Loss (Alopecia)

    Science.gov (United States)

    ... Eating disorder: When a person has an eating disorder, hair loss is common. Anorexia (not eating enough) and bulimia (vomiting after eating) can cause hair loss. Medicine Some prescription medicines can cause ...

  15. Bubble Hair and Other Acquired Hair Shaft Anomalies due to Hot Ironing on Wet Hair

    OpenAIRE

    Savitha, AS; Sacchidanand, S; Revathy, TN

    2011-01-01

    Bubble hair is an acquired hair shaft abnormality characterized by multiple airfilled spaces within the hair shaft. It is a result of thermal injury. We report a classic case of 22-year-old female who complained of dry brittle hair of two-week duration. Patient had used hot iron on wet hair twice to straighten hair. Hair microscopy was diagnostic and showed multiple air-filled spaces within the hair shaft.

  16. Hair transplantation: Innovations, applications

    Directory of Open Access Journals (Sweden)

    Ekrem Civaş

    2014-06-01

    Full Text Available In recent years, there has been significant improvement in hair transplantation techniques and results owing to hair transplant experience and the development of more suitable microsurgery equipment. In fact, almost natural looking results are beginning to be achieved. This article provides a general assessment of the indications of technical innovations of hair transplant techniques by elaborating the effects of latest hair transplant techniques on patient selection.

  17. Hair transplantation: Innovations, applications

    OpenAIRE

    Ekrem Civaş

    2014-01-01

    In recent years, there has been significant improvement in hair transplantation techniques and results owing to hair transplant experience and the development of more suitable microsurgery equipment. In fact, almost natural looking results are beginning to be achieved. This article provides a general assessment of the indications of technical innovations of hair transplant techniques by elaborating the effects of latest hair transplant techniques on patient selection.

  18. Hair tourniquet syndrome

    Directory of Open Access Journals (Sweden)

    Bangroo A

    2005-01-01

    Full Text Available A frequently unrecognized and potentially devastating form of penile strangulation is that caused by human hair. Hair tourniquet syndrome frequently occurs during the time period when post partum mothers are experiencing increased hair loss. The majority of cases are thought to be accidental, however possibility of child abuse should be considered in every case.

  19. Hair transplantation surgery

    Directory of Open Access Journals (Sweden)

    Khanna Manoj

    2008-10-01

    Full Text Available Techniques in hair transplantation have evolved recently which make results look more natural. Hair restoration is one of the most exciting and innovative surgical fields in aesthetic surgery today. A precise appreciation of anatomy has allowed the use of follicular unit grafts. With better methods of harvesting and implantation, hair transplantation results represent a blend of art and science.

  20. Hair transplantation update.

    Science.gov (United States)

    Rogers, Nicole E

    2015-06-01

    Contemporary hair transplant surgery offers results that are natural and undetectable. It is an excellent treatment option for male and female pattern hair loss. Patients are encouraged to also use medical therapy to help protect their surgical results and prevent ongoing thinning of the surrounding hairs. The two major techniques of donor elliptical harvesting and follicular unit extraction are discussed here. PMID:26176286

  1. Hair transplantation surgery

    OpenAIRE

    Khanna Manoj

    2008-01-01

    Techniques in hair transplantation have evolved recently which make results look more natural. Hair restoration is one of the most exciting and innovative surgical fields in aesthetic surgery today. A precise appreciation of anatomy has allowed the use of follicular unit grafts. With better methods of harvesting and implantation, hair transplantation results represent a blend of art and science.

  2. Major Alterations of the Regulation of Root NO3− Uptake Are Associated with the Mutation of Nrt2.1 and Nrt2.2 Genes in Arabidopsis1

    Science.gov (United States)

    Cerezo, Miguel; Tillard, Pascal; Filleur, Sophie; Muños, Stéphane; Daniel-Vedele, Françoise; Gojon, Alain

    2001-01-01

    The role of AtNrt2.1 and AtNrt2.2 genes, encoding putative NO3− transporters in Arabidopsis, in the regulation of high-affinity NO3− uptake has been investigated in the atnrt2 mutant, where these two genes are deleted. Our initial analysis of the atnrt2 mutant (S. Filleur, M.F. Dorbe, M. Cerezo, M. Orsel, F. Granier, A. Gojon, F. Daniel-Vedele [2001] FEBS Lett 489: 220–224) demonstrated that root NO3− uptake is affected in this mutant due to the alteration of the high-affinity transport system (HATS), but not of the low-affinity transport system. In the present work, we show that the residual HATS activity in atnrt2 plants is not inducible by NO3−, indicating that the mutant is more specifically impaired in the inducible component of the HATS. Thus, high-affinity NO3− uptake in this genotype is likely to be due to the constitutive HATS. Root 15NO3− influx in the atnrt2 mutant is no more derepressed by nitrogen starvation or decrease in the external NO3− availability. Moreover, the mutant also lacks the usual compensatory up-regulation of NO3− uptake in NO3−-fed roots, in response to nitrogen deprivation of another portion of the root system. Finally, exogenous supply of NH4+ in the nutrient solution fails to inhibit 15NO3− influx in the mutant, whereas it strongly decreases that in the wild type. This is not explained by a reduced activity of NH4+ uptake systems in the mutant. These results collectively indicate that AtNrt2.1 and/or AtNrt2.2 genes play a key role in the regulation of the high-affinity NO3− uptake, and in the adaptative responses of the plant to both spatial and temporal changes in nitrogen availability in the environment. PMID:11553754

  3. Can a topical scalp treatment reduce hair bulb extraction?

    Science.gov (United States)

    Gruber, James V; Bouldin, Lisa; Lou, Kevin

    2007-01-01

    Generally speaking, when people talk about "hair breakage" they are typically referring to the idea that as they comb or brush their hair, the fibers are elongating and snapping at some weak point in the fiber length. It is well established that as people chemically treat their hair, the keratin proteins are degraded further and the hair become more brittle and susceptible to breakage. For the consumer, hair breakage is registered as hair fibers noted in their comb or brush, and in the drain that they see after a cosmetic treatment. However, a fundamental question that needs to be asked is whether or not the hairs that are seen in the drain are really the result of hair breakage (i.e., a fiber snapping) or are they the result of hairs that are actually being extracted from the scalp by their root bulbs. If the bulk of the hair fibers are actually extracted by the bulb, than it seems somewhat superfluous to try and improve hair strength by improving the exterior of the fiber. The fiber is dead and topical treatments can only smooth, and possibly moisten already established fiber structure and integrity. This paper will attempt to address hair strength by looking at the scalp and follicle as the target for treatment, showing that topical application of a product containing a blend of well-known skin active ingredients can demonstrate potential reductions in hair extractions. An in vivo testing protocol in which 15 voluntary participants with at least 12" hair length were professionally shampooed, and then treated, half-head, with a commercial conditioner, or the same conditioner that contained 5% of a mixture of yeast peptides, fruit acids and green tea polyphenols every day for five days will be discussed. At the beginning and end of the treatment period, the number of hairs that either broke along the fiber, or extracted by the bulb were gathered, separated and counted for both the treated and untreated side of the head. The results of this one-week study

  4. Gene Expression of the NO3– Transporter NRT1.1 and the Nitrate Reductase NIA1 Is Repressed in Arabidopsis Roots by NO2–, the Product of NO3– Reduction

    Science.gov (United States)

    Loqué, Dominique; Tillard, Pascal; Gojon, Alain; Lepetit, Marc

    2003-01-01

    NRT1.1 and NIA1 genes, which encode a nitrate (NO3–) transporter and the minor isoform of NO3– reductase (NR), respectively, are overexpressed in roots of NR-deficient mutants of Arabidopsis grown on nutrient solution containing NO3– and reduced N. The overexpression is found only in mutants with reduced NIA2 activity, and disruption of the NIA1 gene alone has no effect on NRT1.1 expression. Because the up-regulation of NRT1.1 and NIA1 is observed in N-sufficient NR mutant plants, it cannot be related to a release of the general feedback repression exerted by the N status of the plant. Our data do not support the hypothesis of overinduction of these genes by an increased concentration of NO3– in tissues. Furthermore, although a control by external pH might contribute to the regulation of NRT1.1, changes in external pH due to lack of NR activity cannot alone explain the up-regulation of both genes. The stimulation of NRT1.1 and NIA1 in NR mutants in these conditions suggests that NR activity is able to repress directly the expression of both genes independently of the availability of reduced N metabolites in wild-type plants. Accordingly, nitrite (NO2–) strongly represses NRT1.1 and NIA1 transcript accumulation in the roots. This effect is rapid, specific, and reversible. Furthermore, transport studies on plants exposed to NO2– show that down-regulation of the NRT1.1 gene is associated with a decrease in NO3– influx. These results indicate that feedback regulation of genes of NO3– assimilation relies not only on the repression exerted by reduced N metabolites, such as NH4+ or amino acids, but may also involve the action of NO2– as a regulatory signal. PMID:12805624

  5. WOX5–IAA17 feedback circuit-mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis

    OpenAIRE

    Tian, Huiyu; Wabnik, Krzysztof; Niu, Tiantian; Li, Hanbing; Yu, Qianqian; Pollmann, Stephan; Vanneste, Steffen; Govaerts, Willy; Rolčík, Jakub; Geisler, Markus; Friml, Jiří; Ding, Zhaojun

    2014-01-01

    In plants, the patterning of stem cell-enriched meristems requires a graded auxin response maximum that emerges from the concerted action of polar auxin transport, auxin biosynthesis, auxin metabolism, and cellular auxin response machinery. However, mechanisms underlying this auxin response maximum-mediated root stem cell maintenance are not fully understood. Here, we present unexpected evidence that WUSCHEL-RELATED HOMEOBOX 5 (WOX5) transcription factor modulates expression of auxin biosynth...

  6. Rhizosphere biophysics and root water uptake

    Science.gov (United States)

    Carminati, Andrea; Zarebanadkouki, Mohsen; Ahmed, Mutez A.; Passioura, John

    2016-04-01

    The flow of water into the roots and the (putative) presence of a large resistance at the root-soil interface have attracted the attention of plant and soil scientists for decades. Such resistance has been attributed to a partial contact between roots and soil, large gradients in soil matric potential around the roots, or accumulation of solutes at the root surface creating a negative osmotic potential. Our hypothesis is that roots are capable of altering the biophysical properties of the soil around the roots, the rhizosphere, facilitating root water uptake in dry soils. In particular, we expect that root hairs and mucilage optimally connect the roots to the soil maintaining the hydraulic continuity across the rhizosphere. Using a pressure chamber apparatus we measured the relation between transpiration rate and the water potential difference between soil and leaf xylem during drying cycles in barley mutants with and without root hairs. The samples were grown in well structured soils. At low soil moistures and high transpiration rates, large drops in water potential developed around the roots. These drops in water potential recovered very slowly, even after transpiration was severely decreased. The drops in water potential were much bigger in barley mutants without root hairs. These mutants failed to sustain high transpiration rates in dry conditions. To explain the nature of such drops in water potential across the rhizosphere we performed high resolution neutron tomography of the rhizosphere of the barleys with and without root hairs growing in the same soil described above. The tomograms suggested that the hydraulic contact between the soil structures was the highest resistance for the water flow in dry conditions. The tomograms also indicate that root hairs and mucilage improved the hydraulic contact between roots and soil structures. At high transpiration rates and low water contents, roots extracted water from the rhizosphere, while the bulk soil, due its

  7. Radioactivation analysis of hair

    International Nuclear Information System (INIS)

    With the aim of indicating environmental pollution effects by heavy metals on humans using hair, nondestructive activation analysis was applied to 382 normal Japanese hair samples (background level). Elemental contents of hair could be determined for Ag, Al, As, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, I, K, La, Mg, Mn, Na, S, Sb, Sc, Se, Sm, Ti, V and Zn. As these elements in hair have wide concentration ranges, the differences in concentration distribution between groups (sex, age, permanent treatment and regional difference) are discussed. A method for hair sampling is presented. (author)

  8. Effects of Wnt-10b on hair shaft growth in hair follicle cultures

    International Nuclear Information System (INIS)

    Wnts are deeply involved in the proliferation and differentiation of skin epithelial cells. We previously reported the differentiation of cultured primary skin epithelial cells toward hair shaft and inner root sheath (IRS) of the hair follicle via β-catenin stabilization caused by Wnt-10b, however, the effects of Wnt-10b on cultured hair follicles have not been reported. In the present study, we examined the effects of Wnt-10b on shaft growth using organ cultures of whisker hair follicles in serum-free conditions. No hair shaft growth was observed in the absence of Wnt-10b, whereas its addition to the culture promoted elongation of the hair shaft, intensive incorporation of BrdU in matrix cells flanking the dermal papilla (DP), and β-catenin stabilization in DP and IRS cells. These results suggest a promoting effect of Wnt-10b on hair shaft growth that is involved with stimulation of the DP via Wnt-10b/β-catenin signalling, proliferation of matrix cells next to the DP, and differentiation of IRS cells by Wnt-10b

  9. Root–Root Interactions:Towards A Rhizosphere Framework

    NARCIS (Netherlands)

    Mommer, L.; Ruijven, van J.; Kirkegaard, John

    2016-01-01

    Plant scientists have made great progress in understanding molecular mecha-
    nisms controlling root responses to nutrients of arabidopsis (Arabidopsis thali-
    ana) plants under controlled conditions. Simultaneously, ecologists and
    agronomists have demonstrated that root–root interactions i

  10. Probing Allelochemical Biosynthesis in Sorghum Root Hairs

    Science.gov (United States)

    Allelopathic interaction between plants is thought to involve the release of phytotoxic allelochemicals by one species, thus inhibiting the growth of neighboring species in competition for limited resources. Sorgoleone represents one of the more potent allelochemicals characterized to date, and its...

  11. Evidence of the direct adsorption of mercury in human hair during occupational exposure to mercury vapour.

    Science.gov (United States)

    Queipo Abad, Silvia; Rodríguez-González, Pablo; García Alonso, J Ignacio

    2016-07-01

    We have found clear evidence of direct adsorption of mercury in human hair after the occupational exposure to mercury vapour. We have performed both longitudinal analysis of human hair by laser ablation ICP-MS and speciation analysis by gas chromatography ICP-MS in single hair strands of 5 individuals which were occupationally exposed to high levels of mercury vapour and showed acute mercury poisoning symptoms. Hair samples, between 3.5 and 11cm long depending on the individual, were taken ca. three months after exposure. Single point laser ablation samples of 50μm diameter were taken at 1mm intervals starting from the root of the hairs. Sulfur-34 was used as internal standard. The ratio (202)Hg/(34)S showed a distinct pattern of mercury concentration with much lower levels of mercury near the root of the hair and high levels of mercury near the end of the hair. In all cases a big jump in the concentration of mercury in hair occurred at a given distance from the root, between 32 and 42mm depending on the individual, with a high and almost constant concentration of mercury for longer distances to the root. When we took into account the rate of hair growth in humans, 9-15mm/month, the jump in mercury concentration agreed approximately with the dates when the contamination occurred with the new growing hair showing much lower mercury concentration. In some cases the concentration of mercury at the tip of the hair was ca. 1000 times higher than that near the root. Additionally, speciation studies confirmed that mercury in all hair samples was present as inorganic mercury. The only explanation for these results was the direct adsorption of mercury vapour in hair at the time of exposure. PMID:27259347

  12. Evaluation of herbicide potential of sesquiterpene lactone and flavonoid: impact on germination, seedling growth indices and root length in arabidopsis thaliana

    International Nuclear Information System (INIS)

    Plants produce a vast array of natural products that mediate their interaction with the environment. Artemisinin is important sesquiterpene lactones, mostly isolated from the Artemisia annua plant, has a wide range of biological activities, including insecticidal, antibacterial and antifungal, antifeedants, and allelopathic properties. Flavonoids (rutin) have attracted attention, primarily as natural antioxidants, and many are allelopathic agents, commonly present in Fagopyrum esculentum Moench. In the present study, phytotoxic effect of artemisinin and rutin on germination and seedling growth of Arabidopsis thaliana were tested under controlled bioassays. Total germination % age was reduced in A. thaliana after treatment with artemisinin at 10, 20, 40, 80, 160 meu M concentration; while maximum reduction in germination %age was observed at highest concentrations of 160 and 80 meu M. Rutin at 100, 250, 500, 750 and 1000 mM concentration decreased germination % age in A. thaliana but the concentration 1000 mM proved to be most deleterious. Artemisinin at 10, 50, 40, 80, 160 mM concentration inhibited the speed of germination (S) of A. thaliana. Similarly, Rutin-delayed the A. thaliana S at all the concentration tested and maximum inhibition was recorded at 1000 mM concentration. The effect of artemisinin and rutin on radicle length (RL) of A. thaliana was concentration dependent. There was a gradual decrease in RL of A. thaliana due to rutin at all concentration. Seedling vigour index (SVI) of A. thaliana was decreased after treatment with both artemisinin and rutin at all concentration while the maximum reduction was observed at highest concentration tested. (author)

  13. Premature graying of hair

    Directory of Open Access Journals (Sweden)

    Deepika Pandhi

    2013-01-01

    Full Text Available Premature graying is an important cause of low self-esteem, often interfering with socio-cultural adjustment. The onset and progression of graying or canities correlate very closely with chronological aging, and occur in varying degrees in all individuals eventually, regardless of gender or race. Premature canities may occur alone as an autosomal dominant condition or in association with various autoimmune or premature aging syndromes. It needs to be differentiated from various genetic hypomelanotic hair disorders. Reduction in melanogenically active melanocytes in the hair bulb of gray anagen hair follicles with resultant pigment loss is central to the pathogenesis of graying. Defective melanosomal transfers to cortical keratinocytes and melanin incontinence due to melanocyte degeneration are also believed to contribute to this. The white color of canities is an optical effect; the reflection of incident light masks the intrinsic pale yellow color of hair keratin. Full range of color from normal to white can be seen both along individual hair and from hair to hair, and admixture of pigmented and white hair is believed to give the appearance of gray. Graying of hair is usually progressive and permanent, but there are occasional reports of spontaneous repigmentation of gray hair. Studies evaluating the association of canities with osteopenia and cardiovascular disease have revealed mixed results. Despite the extensive molecular research being carried out to understand the pathogenesis of canities, there is paucity of effective evidence-based treatment options. Reports of repigmentation of previously white hair following certain inflammatory processes and use of drugs have suggested the possibility of cytokine-induced recruitment of outer sheath melanocytes to the hair bulb and rekindled the hope for finding an effective drug for treatment of premature canities. In the end, camouflage techniques using hair colorants are outlined.

  14. A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN

    Science.gov (United States)

    Poupin, María J.; Greve, Macarena; Carmona, Vicente; Pinedo, Ignacio

    2016-01-01

    Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR). However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1) or auxin (axr1–5) signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2), indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control.

  15. A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN

    Directory of Open Access Journals (Sweden)

    María Josefina Poupin

    2016-04-01

    Full Text Available Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR. However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1 or auxin (axr1-5 signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2, indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control.

  16. A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN.

    Science.gov (United States)

    Poupin, María J; Greve, Macarena; Carmona, Vicente; Pinedo, Ignacio

    2016-01-01

    Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR). However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1) or auxin (axr1-5) signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2), indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control. PMID:27148317

  17. Taking Care of Your Hair

    Science.gov (United States)

    ... or pulling them out without professional help can cause hair and scalp damage or even hair loss. Sometimes hair breakage and dry, brittle hair are signs of a medical problem, such as hypothyroidism or an eating disorder. If your hair is breaking even though you ...

  18. Decoction and Fermentation of Selected Medicinal Herbs Promote Hair Regrowth by Inducing Hair Follicle Growth in Conjunction with Wnts Signaling

    Directory of Open Access Journals (Sweden)

    Su Kil Jang

    2016-01-01

    Full Text Available It is well recognized that regulating the hair follicle cycle in association with Wnt signaling is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether selected herbal medicines processed by decoction and fermentation promote hair growth by upregulating the number and size of hair follicles and Wnt signaling, including activation of β-catenin and Akt in telogen-synchronized C57BL/6N mice. The results revealed that the fermented extract after decoction (FDE more effectively promoted hair growth than that of a nonfermented extract (DE. Notably, FDE effectively enhanced formation of hair follicles with clearer differentiation between the inner and outer root sheath, which is observed during the anagen phase. Mechanistic evidence was found for increased β-catenin and Akt phosphorylation levels in dorsal skin tissue along with elevated expression of hair regrowth-related genes, such as Wnt3/10a/10b, Lef1, and fibroblast growth factor 7. In conclusion, our findings suggest that FDE plays an important role in regulating the hair cycle by increasing expression of hair regrowth-related genes and activating downstream Wnt signaling targets.

  19. Decoction and Fermentation of Selected Medicinal Herbs Promote Hair Regrowth by Inducing Hair Follicle Growth in Conjunction with Wnts Signaling.

    Science.gov (United States)

    Jang, Su Kil; Kim, Seung Tae; Lee, Do Ik; Park, Jun Sub; Jo, Bo Ram; Park, Jung Youl; Heo, Jong; Joo, Seong Soo

    2016-01-01

    It is well recognized that regulating the hair follicle cycle in association with Wnt signaling is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether selected herbal medicines processed by decoction and fermentation promote hair growth by upregulating the number and size of hair follicles and Wnt signaling, including activation of β-catenin and Akt in telogen-synchronized C57BL/6N mice. The results revealed that the fermented extract after decoction (FDE) more effectively promoted hair growth than that of a nonfermented extract (DE). Notably, FDE effectively enhanced formation of hair follicles with clearer differentiation between the inner and outer root sheath, which is observed during the anagen phase. Mechanistic evidence was found for increased β-catenin and Akt phosphorylation levels in dorsal skin tissue along with elevated expression of hair regrowth-related genes, such as Wnt3/10a/10b, Lef1, and fibroblast growth factor 7. In conclusion, our findings suggest that FDE plays an important role in regulating the hair cycle by increasing expression of hair regrowth-related genes and activating downstream Wnt signaling targets. PMID:27110266

  20. Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat.

    Science.gov (United States)

    Robin, Arif Hasan Khan; Matthew, Cory; Uddin, Md Jasim; Bayazid, Khandaker Nafiz

    2016-06-01

    The aim of this study was to investigate the effect of salinity stress on root growth at the phytomer level in wheat to provide novel site-specific understanding of salinity damage in roots. Seedlings of 13 wheat varieties were grown hydroponically. Plants were exposed to three concentrations of NaCl, 0 (control), 50 and 100mM, from 47 days after sowing. In a destructive harvest 12 days later we determined the number of live leaves, adventitious roots, seminal roots and newly formed roots at the youngest phytomer; length and diameter of main axes; and length and diameter of root hairs and their number per millimetre of root axis. Elongation rate of main axes and root hair density were then derived. Root surface area at each root-bearing phytomer (Pr) was mechanistically modelled. New root formation was increased by salt exposure, while number of live leaves per plant decreased. The greatest salinity effect on root axis elongation was observed at the youngest roots at Pr1 and Pr2. Both the 50mM and the 100mM levels of salinity reduced root hair length by approximately 25% and root hair density by 40% compared with the control whereas root hairs alone contributed around 93% of the estimated total root surface area of an individual tiller. Decrease in main axis length of new roots, root hair density and root hair length combined to reduce estimated root surface area by 36-66% at the higher NaCl concentration. The varietal response towards the three salinity levels was found to be trait-specific. The data highlight reduction in root surface area as a major but previously largely unrecognized component of salinity damage. Salinity resistance is trait-specific. Selection for retention of root surface area at a specific phytomer position following salt exposure might be useful in development of salinity-tolerant crop varieties. PMID:26951370

  1. Advances and challenges in hair restoration of curly Afrocentric hair.

    Science.gov (United States)

    Rogers, Nicole E; Callender, Valerie D

    2014-04-01

    Although the biochemical composition of hair is similar among racial and ethnic groups, the hair structure between them varies, and individuals with curly hair pose specific challenges and special considerations when a surgical option for alopecia is considered. Hair restoration in this population should therefore be approached with knowledge on the clinical characteristics of curly hair, hair grooming techniques that may influence the management, unique indications for the procedure, surgical instrumentation used, and the complications that may arise. PMID:24680003

  2. Female pattern hair loss

    Directory of Open Access Journals (Sweden)

    İdil Ünal

    2014-06-01

    Full Text Available Female androgenetic alopecia is the commonest cause of hair loss in women. It is characterized by a diffuse reduction in hair density over the crown and frontal scalp with retention of the frontal hairline and a characteristic pattern distribution in genetically predisposed women. Because of the uncertain relationship with the androgens Female Pattern Hair Loss (FPHL is the most preferred definition of the condition. This review has been focused on the clinical features, diagnosis and treatment alternatives of FPHL.

  3. Female pattern hair loss

    OpenAIRE

    İdil Ünal

    2014-01-01

    Female androgenetic alopecia is the commonest cause of hair loss in women. It is characterized by a diffuse reduction in hair density over the crown and frontal scalp with retention of the frontal hairline and a characteristic pattern distribution in genetically predisposed women. Because of the uncertain relationship with the androgens Female Pattern Hair Loss (FPHL) is the most preferred definition of the condition. This review has been focused on the clinical features, diagnosis and treatm...

  4. Female pattern hair loss

    OpenAIRE

    Archana Singal; Sidharth Sonthalia; Prashant Verma

    2013-01-01

    Female pattern hair loss (FPHL) is a common cause of hair loss in women characterized by diffuse reduction in hair density over the crown and frontal scalp with retention of the frontal hairline. Its prevalence increases with advancing age and is associated with significant psychological morbidity. The pathophysiology of FPHL is still not completely understood and seems to be multifactorial. Although androgens have been implicated, the involvement of androgen-independent mechanisms is evident...

  5. Mercury in human hair

    International Nuclear Information System (INIS)

    The analysis of mercury (Hg) in scalp hair obtained from individuals residing in five different localities in the Philippines - Metro Manila, Naga City in Bicol, Bataan, Oriental Mindoro, and Palawan is presented. An overall mean of 1.46 ug/g of hair was obtained for all samples excluding those from Palawan and represents a baseline value.'' In terms of the mercury levels found in hair, the Honda Bay area in Palawan is, relatively, a ''contaminated area.'' (author)

  6. Hair cell ribbon synapses

    OpenAIRE

    Moser, Tobias; Brandt, Andreas; Lysakowski, Anna

    2006-01-01

    Hearing and balance rely on the faithful synaptic coding of mechanical input by the auditory and vestibular hair cells of the inner ear. Mechanical deflection of their stereocilia causes the opening of mechanosensitive channels, resulting in hair cell depolarization, which controls the release of glutamate at ribbon-type synapses. Hair cells have a compact shape with strong polarity. Mechanoelectrical transduction and active membrane turnover associated with stereociliar renewal dominate the ...

  7. Hair Follicle Pigmentation

    OpenAIRE

    Slominski, Andrzej; Wortsman, Jacobo; Plonka, Przemyslaw M.; Schallreuter, Karin U.; Paus, Ralf; Tobin, Desmond J.

    2005-01-01

    Hair shaft melanin components (eu- or/and pheomelanin) are a long-lived record of precise interactions in the hair follicle pigmentary unit, e.g., between follicular melanocytes, keratinocytes, and dermal papilla fibroblasts. Follicular melanogenesis (FM) involves sequentially the melanogenic activity of follicular melanocytes, the transfer of melanin granules into cortical and medulla keratinocytes, and the formation of pigmented hair shafts. This activity is in turn regulated by an array of...

  8. Distribution of epidermal growth factor receptors in rat tissues during embryonic skin development, hair formation, and the adult hair growth cycle

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1984-01-01

    condensates marking the first stage of hair follicle development. This restricted and temporary loss of EGF receptors above these specialized mesenchymal condensates implies a role for the EGF receptor and possibly EGF or an EGF-like ligand in stimulating the epithelial downgrowth required for hair follicle...... binding distribution of [125I]EGF, representing the tissue localization of available EGF receptors, during embryonic rat skin development including hair follicle formation and the adult hair growth cycle. At 16 days embryonic development a relatively low receptor density is seen over all the epidermal...... development. In the anagen hair bulb, receptors for EGF are detected over the outer root sheath and the epithelial cell layers at the base of the follicle and show a correlation with the areas of epithelial proliferation in the hair bulb. During the catagen and telogen phases of the hair cycle, receptors are...

  9. Female hair restoration.

    Science.gov (United States)

    Unger, Robin H

    2013-08-01

    Female hair loss is a devastating issue for women that has only relatively recently been publicly acknowledged as a significant problem. Hair transplant surgery is extremely successful in correcting the most cosmetically problematic areas of alopecia. This article discusses the surgical technique of hair transplantation in women in detail, including pearls to reduce postoperative sequelae and planning strategies to ensure a high degree of patient satisfaction. A brief overview of some of the medical treatments found to be helpful in slowing or reversing female pattern hair loss is included, addressing the available hormonal and topical treatments. PMID:24017982

  10. Laser hair removal pearls.

    Science.gov (United States)

    Tierney, Emily P; Goldberg, David J

    2008-03-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the follicle through the targeting of melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Pearls of laser hair removal are presented in this review, focusing on four areas of recent development: 1 treatment of blond, white and gray hair; 2 paradoxical hypertrichosis; 3 laser hair removal in children; and 4 comparison of lasers and IPL. Laser and light-based technologies to remove hair represents one of the most exciting areas where discoveries by dermatologists have led to novel treatment approaches. It is likely that in the next decade, continued advancements in this field will bring us closer to the development of a more permanent and painless form of hair removal. PMID:18330794

  11. Tarantula hair keratitis.

    Science.gov (United States)

    Mangat, Simran Singh; Newman, Bill

    2012-10-26

    We describe a 12-year-old boy in England with keratitis secondary to tarantula hairs embedded within the stroma of his cornea. Every attempt must be made to isolate these hairs at the first visit as they have a barbed nature and have a propensity to propagate through ocular tissues. A chronic keratitis requiring long-term steroid use may result if hairs persist in the cornea. Children who keep tarantulas as pets should be instructed on safe handling to prevent the tarantula from adopting defence mechanisms and shedding their hairs. PMID:23242405

  12. Hair Dyes and Cancer Risk

    Science.gov (United States)

    ... Overview Cancer Prevention Overview–for health professionals Research Hair Dyes and Cancer Risk On This Page Why is ... over age 40 use some type of hair dye ( 1 ). Modern hair dyes are classified as permanent (or oxidative), semipermanent, ...

  13. Hair cosmetics and camouflage technics

    OpenAIRE

    Zahide Eriş Eken; Banu Taşkın; Sibel Alper

    2014-01-01

    Hair is composed of a mixture of trace elements in small quantities, proteins, lipids and water. Proteins consist of helical polypeptide amino acid molecules. In the hair cells; polypeptide chains of keratin protein would be organized in filaments. In recent years, hair cosmetics showed a significant change and development. The content of shampoos which is used to cleanse the hair has enhanced significantly. Hair conditioner, hair styling products, pomades, brilliantine, and gloss sprays, hai...

  14. Inhibition of strigolactones promotes adventitious root formation

    OpenAIRE

    Rasmussen, Amanda; Beveridge, Christine A.; Geelen, Danny

    2012-01-01

    Roots that form from non-root tissues (adventitious roots) are crucial for cutting propagation in the forestry and horticulture industries. Strigolactone has been demonstrated to be an important regulator of these roots in both Arabidopsis and pea using strigolactone deficient mutants and exogenous hormone applications. Strigolactones are produced from a carotenoid precursor which can be blocked using the widely available but broad terpenoid biosynthesis blocker, fluridone. We demonstrate her...

  15. Help! It's Hair Loss!

    Science.gov (United States)

    ... Homework? Here's Help White House Lunch Recipes Help! It's Hair Loss! KidsHealth > For Kids > Help! It's Hair Loss! Print A A A Text Size ... part above the skin, is dead. (That's why it doesn't hurt to get a haircut!) This ...

  16. Epidermal growth factor as a biologic switch in hair growth cycle

    OpenAIRE

    Mak, KKL; Chan, SY

    2003-01-01

    The hair growth cycle consists of three stages known as the anagen (growing), catagen (involution), and telogen (resting) phases. This cyclical growth of hair is regulated by a diversity of growth factors. Although normal expression of both epidermal growth factor and its receptor (EGFR) in the outer root sheath is down-regulated with the completion of follicular growth, here we show that continuous expression of epidermal growth factor in hair follicles of transgenic mice arrested follicular...

  17. Metagenomic analyses of bacteria on human hairs: a qualitative assessment for applications in forensic science

    OpenAIRE

    Tridico, Silvana R; Murray, Dáithí C.; Addison, Jayne; Kirkbride, Kenneth P; Bunce, Michael

    2014-01-01

    Background Mammalian hairs are one of the most ubiquitous types of trace evidence collected in the course of forensic investigations. However, hairs that are naturally shed or that lack roots are problematic substrates for DNA profiling; these hair types often contain insufficient nuclear DNA to yield short tandem repeat (STR) profiles. Whilst there have been a number of initial investigations evaluating the value of metagenomics analyses for forensic applications (e.g. examination of compute...

  18. A function for Rac1 in the terminal differentiation and pigmentation of hair

    DEFF Research Database (Denmark)

    Behrendt, Kristina; Klatte, Jennifer; Pofahl, Ruth;

    2012-01-01

    loss. The resulting 'rescue' mice exhibited a hair coat throughout their lives. Therefore, expression of Rac1 activity in the keratin-14-positive compartment of the skin is sufficient for the formation of hair follicles and hair in normal quantities. The quality of hair formed in rescue mice was......The small GTPase Rac1 is ubiquitously expressed in proliferating and differentiating layers of the epidermis and hair follicles. Previously, Rac1 was shown to regulate stem cell behaviour in these compartments. We have asked whether Rac1 has, in addition, a specific, stem-cell-independent function...... in the regulation of terminal hair follicle differentiation. To address this, we have expressed a constitutively active mutant of Rac1, L61Rac1, only in the basal epidermal layer and outer root sheath of mice possessing an epidermis-specific deletion of endogenous Rac1, which experience severe hair...

  19. Ion beam microanalysis of human hair follicles

    International Nuclear Information System (INIS)

    root sheath keratinocyte layers, 1000- 2000; hair shaft, 1000-2000. The induction of catagen transformation essentially did not change the Ca concentrations in the dermal papilla, bulb matrix regions nor in the hair shaft (1000-2000 in all parts). In contrast, we observed a remarkable increase in the outer/ inner root sheath keratinocyte layers up to 4000-8000 μg/g Ca concentration. In capsaicin-treated catagen HFs, the Ca concentration was increased mostly in those layers which possess a significant expression of TRPV1, the receptor for capsaicin. Since TRPV1 functions as a Ca-permeable channel, the elevated Ca in the TRPV1-expressing layers suggest that the activation of TRPV1 by capsaicin resulted in a prolonged elevation of intracellular Ca-concentration which, in turn, led to the inhibition of proliferation of HF keratinocytes as well as the induction of HF apoptosis. Moreover, our findings also show that ion microscopy may serve as a fine tool to detect changes in elemental distribution related to the human hair-cycle. (author)

  20. Biology of human hair : know your hair to control it

    OpenAIRE

    Araújo, Rita; Fernandes, Margarida M.; Paulo, Artur Cavaco; Gomes, Andreia

    2011-01-01

    Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for d...

  1. Why Does Hair Turn Gray?

    Science.gov (United States)

    ... sun . The dark or light color of someone's hair depends on how much melanin each hair contains. As we get older, the pigment cells ... cells in a hair follicle, that strand of hair will no longer contain as much melanin and will become a more transparent color — like ...

  2. Complications in hair restoration.

    Science.gov (United States)

    Lam, Samuel M

    2013-11-01

    Hair restoration requires a high level of specialized skill on the part of both the surgeon and the assistant team. Recipient-site problems can manifest from either surgeon or assistant error. The surgeon can create an unnatural hairline due to lack of knowledge of natural hair-loss patterns or badly executed recipient sites. He must also be cognizant of how hairs naturally are angled on the scalp to re-create a pattern that appears natural when making recipient sites. Assistants can also greatly contribute to the success or failure of surgery in their task of graft dissection and graft placement. PMID:24200385

  3. Advances in Understanding Hair Growth

    OpenAIRE

    Bernard, Bruno A.

    2016-01-01

    In this short review, I introduce an integrated vision of human hair follicle behavior and describe opposing influences that control hair follicle homeostasis, from morphogenesis to hair cycling. The interdependence and complementary roles of these influences allow us to propose that the hair follicle is a true paradigm of a “Yin Yang” type, that is a cold/slow-hot/fast duality. Moreover, a new promising field is emerging, suggesting that glycans are key elements of hair follicle growth contr...

  4. The amazing miniorgan: Hair follicle

    OpenAIRE

    Çiler Çelik Özenci

    2014-01-01

    Hair is a primary characteristic of mammals, and exerts a wide range of functions including thermoregulation, physical protection, sensory activity, and social interactions. The hair shaft consists of terminally differentiated keratinocytes that are produced by the hair follicle. Hair follicle development takes place during fetal skin development and relies on tightly regulated ectodermal–mesodermal interactions. Hair follicles form during embryonic development and, after birth, undergo recur...

  5. Computer-Generated Photorealistic Hair

    OpenAIRE

    Lin, Alice J.

    2002-01-01

    This paper presents an efficient method for generating and rendering photorealistic hair in two dimensional pictures. The method consists of three major steps. Simulating an artist drawing is used to design the rough hair shape. A convolution based filter is then used to generate photorealistic hair patches. A refine procedure is finally used to blend the boundaries of the patches with surrounding areas. This method can be used to create all types of photorealistic human hair (head hair, faci...

  6. Arabidopsis myosin XI-K localizes to the motile endomembrane vesicles associated with F-actin

    Directory of Open Access Journals (Sweden)

    Valera V. Peremyslov

    2012-09-01

    Full Text Available Plant myosins XI were implicated in cell growth, F-actin organization, and organelle transport, with myosin XI-K being a critical contributor to each of these processes. However, subcellular localization of myosins and the identity of their principal cargoes remain poorly understood. Here, we generated a functionally competent, fluorescent protein-tagged, myosin XI-K, and investigated its spatial distribution within Arabidopsis cells. This myosin was found to associate primarily not with larger organelles (e.g., Golgi as was broadly assumed, but with endomembrane vesicles trafficking along F-actin. Subcellular localization and fractionation experiments indicated that the nature of myosin-associated vesicles is organ- and cell type-specific. In leaves, a large proportion of these vesicles aligned and co-fractionated with a motile ER subdomain. In roots, non-ER vesicles were a dominant myosin cargo. Myosin XI-K showed a striking polar localization at the tips of growing, but not mature, root hairs. These results strongly suggest that a major mechanism whereby myosins contribute to plant cell physiology is vesicle transport, and that this activity can be regulated depending on the growth phase of a cell.

  7. Female Pattern Hair Loss

    Science.gov (United States)

    ... desired professional counseling might be of help. Perms, dyes and other cosmetic options can be used to give a fuller appearance to hair. Contrary to common wisdom, shampooing doesn't increase ...

  8. Tips for Healthy Hair

    Science.gov (United States)

    ... resources Meet our partners Español Donate Diseases and treatments Acne and rosacea Bumps and growths Color problems Contagious skin diseases Cosmetic treatments Dry / sweaty skin Eczema / dermatitis Hair and scalp ...

  9. Scurvy, corkscrew hair (image)

    Science.gov (United States)

    Scurvy is a nutritional disease caused by deficiency of vitamin C. Pinpoint bleeding around hair follicles, and " ... this picture, can occur as a result of scurvy. Bleeding along the gums is common. This disease ...

  10. A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features.

    Science.gov (United States)

    Adhikari, Kaustubh; Fontanil, Tania; Cal, Santiago; Mendoza-Revilla, Javier; Fuentes-Guajardo, Macarena; Chacón-Duque, Juan-Camilo; Al-Saadi, Farah; Johansson, Jeanette A; Quinto-Sanchez, Mirsha; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Barquera Lozano, Rodrigo; Macín Pérez, Gastón; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Gonzalez-José, Rolando; Headon, Denis; López-Otín, Carlos; Tobin, Desmond J; Balding, David; Ruiz-Linares, Andrés

    2016-01-01

    We report a genome-wide association scan in over 6,000 Latin Americans for features of scalp hair (shape, colour, greying, balding) and facial hair (beard thickness, monobrow, eyebrow thickness). We found 18 signals of association reaching genome-wide significance (P values 5 × 10(-8) to 3 × 10(-119)), including 10 novel associations. These include novel loci for scalp hair shape and balding, and the first reported loci for hair greying, monobrow, eyebrow and beard thickness. A newly identified locus influencing hair shape includes a Q30R substitution in the Protease Serine S1 family member 53 (PRSS53). We demonstrate that this enzyme is highly expressed in the hair follicle, especially the inner root sheath, and that the Q30R substitution affects enzyme processing and secretion. The genome regions associated with hair features are enriched for signals of selection, consistent with proposals regarding the evolution of human hair. PMID:26926045

  11. Female Pattern Hair Loss

    OpenAIRE

    Herskovitz, Ingrid; Tosti, Antonella

    2013-01-01

    Context: Female pattern hair loss (FPHL) also known as female androgenetic alopecia is a common condition afflicting millions of women that can be cosmetically disrupting. Prompt diagnosis and treatment are essential for obtaining optimal outcome. This review addresses the clinical presentation of female pattern hair loss, its differential diagnosis and treatment modalities. Evidence Acquisition: A) Diffuse thinning of the crown region with preservation of the frontal hairline (Ludwig’s type)...

  12. Nutrition of women with hair loss problem during the period of menopause.

    Science.gov (United States)

    Goluch-Koniuszy, Zuzanna Sabina

    2016-03-01

    During the period of menopause as an effect of changes in hormone status, one of the most common ailments for women is hair loss. Taking into consideration fact that the ingredients of diet contained in various groups of consumed food products are both precursors in steroid hormones synthesis as well as have direct impact on structure, growth and keeping hair in skin integument, this is the reason why nourishing support for women during this period of life as well as during the hair loss therapy is reasonable. Standard value proteins containing Sulphur amino-acids: cysteine and methionine as precursor to keratin hair protein synthesis are basic element of diet conditioning of hair building. Irreplaceable having impact on keeping hair in skin integument is exogenous L-lysine, mainly present in the inner part of hair root is responsible for hair shape and volume. Fats present in the diet take part in steroid hormones synthesis (from cholesterol) thus have influence on keeping hair in skin integument. Women diet should contain products rich in complex carbohydrates, with low glycemic index and load containing fiber regulating carbohydrate-lipid metabolism of the body. Vitamins also have impact on the state of hair: C vitamin, group B and A vitamins. Minerals which influence hair growth are: Zn, Fe, Cu, Se, Si, Mg and Ca. It is worthwhile to pay closer attention to diet in women who besides hormone changes and undertaken pharmacotherapy are additionally exposed to chronic stress and improperly conducted cosmetic's and hairdresser's treatments. PMID:27095961

  13. Modulation of root branching by a coumarin derivative

    OpenAIRE

    Li, Xiang; Gao, Ming-Jun

    2011-01-01

    A healthy root system is crucial to plant growth and survival. To maintain efficiency of root function, plants have to dynamically modulate root system architecture through various adaptive mechanisms such as lateral root formation to respond to a changing and diversified soil environment. Exogenous application of a coumarin derivative, 4-methylumbelliferone (4-MU), in Arabidopsis thaliana inhibits seed germination by mainly reducing primary root growth. UDP-glycosyltransferases play an integ...

  14. Constructing skin-equivalents using hair follicle stem cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To establish the method of constructing skin-equivalents (SE) using hair follicle stem cells(HFSC).Methods: K19 positive cells derived from hair were cultivated using serum-free medium KGM and seeded on dermal equivalents (DE).After the culture between the air-liquid interface for 14 days, SE were harvested and used for evaluation. Results: K19 positive cells chosen as HFSC were located in bulge of out root sheet in hair follicle. Cultivated HFSC could build a fully developed, multi-layered epidermis on the basis of DE, resembling the skin structure. Conclusion: HFSC located in out root sheet can differentiate into keratinocyte in vitro and be used for SE construction.

  15. Interlinked nonlinear subnetworks underlie the formation of robust cellular patterns in Arabidopsis epidermis: a dynamic spatial model

    Directory of Open Access Journals (Sweden)

    Padilla-Longoria Pablo

    2008-11-01

    Full Text Available Abstract Background Dynamical models are instrumental for exploring the way information required to generate robust developmental patterns arises from complex interactions among genetic and non-genetic factors. We address this fundamental issue of developmental biology studying the leaf and root epidermis of Arabidopsis. We propose an experimentally-grounded model of gene regulatory networks (GRNs that are coupled by protein diffusion and comprise a meta-GRN implemented on cellularised domains. Results Steady states of the meta-GRN model correspond to gene expression profiles typical of hair and non-hair epidermal cells. The simulations also render spatial patterns that match the cellular arrangements observed in root and leaf epidermis. As in actual plants, such patterns are robust in the face of diverse perturbations. We validated the model by checking that it also reproduced the patterns of reported mutants. The meta-GRN model shows that interlinked sub-networks contribute redundantly to the formation of robust hair patterns and permits to advance novel and testable predictions regarding the effect of cell shape, signalling pathways and additional gene interactions affecting spatial cell-patterning. Conclusion The spatial meta-GRN model integrates available experimental data and contributes to further understanding of the Arabidopsis epidermal system. It also provides a systems biology framework to explore the interplay among sub-networks of a GRN, cell-to-cell communication, cell shape and domain traits, which could help understanding of general aspects of patterning processes. For instance, our model suggests that the information needed for cell fate determination emerges from dynamic processes that depend upon molecular components inside and outside differentiating cells, suggesting that the classical distinction of lineage versus positional cell differentiation may be instrumental but rather artificial. It also suggests that interlinkage

  16. UV Damage of the Hair

    OpenAIRE

    Šebetić, Klaudija; Sjerobabski Masnec, Ines; Čavka, Vlatka; Biljan, Darko; Krolo, Ivan

    2008-01-01

    Hair is a very important for our self-confidence as well as a very important part of appearance and self-concept. It reflects our personality and hair loss or hair damages are considered aesthetic imperfections and social handicap. Outward part of the hair is a »hair shaft« keratin fiber structure sensible to external effects whether they are mechanical, physical or chemical. Excessive sun exposition is the most frequent cause of hair shaft’s structural impairment. Photochemical i...

  17. Immunology of the hair follicle

    Directory of Open Access Journals (Sweden)

    Sibel Doğan

    2014-06-01

    Full Text Available Hair follicles are accepted as a component of skin in mammals. Considering the continuous contact with environment and microorganisms in the normal flora, it is crucial that various elements of immune system are necessary to reside within hair follicles. On the contrary, the protection of hair follicles from the intense anti-infective elements and autoimmunity is mandatory; hence some antigens are not expressed in hair follicle and construct an immune privileged area. In this review, immunologic functions of hair follicle and hair follicle immunology’s effect in pathogenesis of dermatological diseases are discussed in the light of recent studies.

  18. Aging changes in hair and nails

    Science.gov (United States)

    ... Hair color is due to a pigment called melanin , which hair follicles produce. Follicles are structures in the skin that make and grow hair. With aging, the follicles make less melanin, and this causes gray hair. Graying often begins ...

  19. Managing Chemotherapy Side Effects: Hair Loss (Alopecia)

    Science.gov (United States)

    ... C ancer I nstitute Managing Chemotherapy Side Effects Hair Loss (Alopecia) “Losing my hair was hard at first. Then ... and anywhere on your body may fall out. Hair loss is called alopecia. When will my hair start ...

  20. Hypocotyl adventitious root organogenesis differs from lateral root development

    Directory of Open Access Journals (Sweden)

    Inge eVerstraeten

    2014-09-01

    Full Text Available Wound-induced adventitious root (AR formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR and the initiated AR share histological and developmental characteristics with lateral roots (LR. In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in Arabidopsis thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are

  1. 生长素类化合物及6-苯甲基腺嘌呤对拟南芥主根生长的抑制效应比较%Comparison of the Inhibit Effects of Auxins and 6-Benzyladenine on Arabidopsis Main Root Growth

    Institute of Scientific and Technical Information of China (English)

    李晓峰; 孟广目; 梁城磊; 李丹; 张瑞婷; 牟长军; 陈倪; 刘恒

    2012-01-01

    To study the effect of auxins and 6-BA on cell divison and cell elongation, we compared the inhibit effects of 1AA, NAA, 2,4-D and 6-BA on Arabidopsis main root development. We found that IAA and NAA has similar effects on root development that can increases the length of root meristem zone through promotes cell division and decreases the length of root elongation zone, but 2,4-D and 6-BA decreases both the length of root meristem zone through inhibit cell division and root elongation zone.%为更好的研究生长素类化合物及6-苯甲基腺嘌呤(6-BA)对细胞分裂和细胞伸长的影响,以拟南芥主根为材料,从组织学水平比较了IAA、NAA、2,4-D和6-BA对拟南芥主根分生区和伸长区的抑制效应,发现IAA和NAA效果是相似的,可以通过促进细胞分裂显著增加根分生区长度,但也显著缩短主根伸长区长度,而2,4-D和6-BA则通过抑制细胞分裂来显著缩短根分生区长度,同时也显著缩短根伸长区的长度.

  2. Dermatotoxicologic clinical solutions: hair dying in hair dye allergic patients?

    Science.gov (United States)

    Edwards, Ashley; Coman, Garrett; Blickenstaff, Nicholas; Maibach, Howard

    2015-03-01

    This article describes how to identify allergic contact dermatitis resulting from hair dye, and outlines interventions and prevention principles for those who wish to continue dyeing their hair despite being allergic. Hair dye chemicals thought to be the most frequent sensitizers are discussed with instructions for health care providers on how to counsel patients about techniques to minimize exposure to allergenic substances. This framework should allow many patients to continue dyeing their hair without experiencing adverse side effects. PMID:24754409

  3. 3D gel map of Arabidopsis complex I

    OpenAIRE

    Katrin ePeters; Katharina eBelt; Hans-Peter eBraun

    2013-01-01

    Complex I has a unique structure in plants and includes extra subunits. Here, we present a novel study to define its protein constituents. Mitochondria were isolated from Arabidopsis thaliana cell cultures, leaves and roots. Subunits of complex I were resolved by 3D blue native (BN)/SDS/SDS-PAGE and identified by mass spectrometry. Overall, 55 distinct proteins were found, 7 of which occur in pairs of isoforms. We present evidence that Arabidopsis complex I consists of 49 distinct types of su...

  4. Spaceflight Induces Specific Alterations in the Proteomes of Arabidopsis

    OpenAIRE

    Ferl, Robert J.; Koh, Jin; Denison, Fiona; Paul, Anna-Lisa

    2015-01-01

    Life in spaceflight demonstrates remarkable acclimation processes within the specialized habitats of vehicles subjected to the myriad of unique environmental issues associated with orbital trajectories. To examine the response processes that occur in plants in space, leaves and roots from Arabidopsis (Arabidopsis thaliana) seedlings from three GFP reporter lines that were grown from seed for 12 days on the International Space Station and preserved on orbit in RNAlater were returned to Earth a...

  5. Hair analysis using PIXE

    International Nuclear Information System (INIS)

    A simple new technique for examining single hair strands to obtain linear mass densities, longitudinal profiles and transverse distribution of each trace element is described. It is primarily based upon the PIXE technique, in combination with proton back- scattering. The three main components of this technique are: 1) An accurate way of using an interpolation method to evaluate the magnitude of the correction factor accounting for the proton energy loss and X-ray absorption in the bulk of the hair is formulated; 2) A simple method to qualitatively determine the transverse distribution of each trace element in a hair is in- troduced and proved to be effective; 3) Proton back-scattering is proved to be capable of providing an ideal linear measure of the geometric hair diameter, one of the most important parameters in quantifying the results of PIXE measurements in mass concentrations. Using the technique, a PIXE system designed and constructed for routine longitudinal scanning of single hair strands is also described. (Author)

  6. Body hair transplant: An additional source of donor hair in hair restoration surgery

    OpenAIRE

    Poswal Arvind

    2007-01-01

    Androgenic alopecia (pattern baldness) is a condition in which there is androgen mediated progressive miniaturization and loss of hair follicles in a genetically susceptible individual. A 47-year-old male patient with advanced degree of hair loss (Norwood 6 category) wanted to go for full hair restoration surgery. Due to the limited availability of donor hair in the scalp, a small session with 700-chest hair was performed. On follow-up at eight months it was observed that chest hair grew and ...

  7. Body hair transplant: An additional source of donor hair in hair restoration surgery

    Directory of Open Access Journals (Sweden)

    Poswal Arvind

    2007-01-01

    Full Text Available Androgenic alopecia (pattern baldness is a condition in which there is androgen mediated progressive miniaturization and loss of hair follicles in a genetically susceptible individual. A 47-year-old male patient with advanced degree of hair loss (Norwood 6 category wanted to go for full hair restoration surgery. Due to the limited availability of donor hair in the scalp, a small session with 700-chest hair was performed. On follow-up at eight months it was observed that chest hair grew and formed a cosmetically acceptable forelock.

  8. Today's Hair Style Could Cause Tomorrow's Hair Loss

    Science.gov (United States)

    ... nih.gov/medlineplus/news/fullstory_158581.html Today's Hair Style Could Cause Tomorrow's Hair Loss Black women who prefer scalp-pulling hairdos ... News) -- Black women who like to wear their hair pulled back tightly may be increasing their risk ...

  9. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria

    OpenAIRE

    Wintermans, P.C.A.; Bakker, P.A.H.M.; Pieterse, C.M.J.

    2016-01-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium. Here, we performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis for the ability to profit from rhizobacteria-mediated plant growth-promotion. To this end, 302 Arab...

  10. Future horizons in hair restoration.

    Science.gov (United States)

    Marshall, Bryan T; Ingraham, Chris A; Wu, Xunwei; Washenik, Ken

    2013-08-01

    This article reviews the history of hair follicle regeneration from follicular fragments and dissociated cells. The challenges of trichogenic in vitro culture and subsequent delivery into the patient are discussed, as well as cosmetic acceptance, recent achievements on regeneration of human hair follicles, and new potential cell sources for hair regeneration. PMID:24017993

  11. Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101

    NARCIS (Netherlands)

    Mortel, van de J.E.; Vos, de R.C.H.; Dekkers, E.; Pineda, A.; Guillod, L.; Bouwmeester, K.; Loon, van J.J.A.; Dicke, M.; Raaijmakers, J.M.

    2012-01-01

    Systemic resistance induced in plants by nonpathogenic rhizobacteria is typically effective against multiple pathogens. Here, we show that root-colonizing Pseudomonas fluorescens strain SS101 (Pf.SS101) enhanced resistance in Arabidopsis (Arabidopsis thaliana) against several bacterial pathogens, in

  12. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Wintermans, P.C.A.; Bakker, P.A.H.M.; Pieterse, C.M.J.

    2016-01-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium. Her

  13. Cyclic expression of lhx2 regulates hair formation.

    Directory of Open Access Journals (Sweden)

    Gunilla Törnqvist

    2010-04-01

    Full Text Available Hair is important for thermoregulation, physical protection, sensory activity, seasonal camouflage, and social interactions. Hair is generated in hair follicles (HFs and, following morphogenesis, HFs undergo cyclic phases of active growth (anagen, regression (catagen, and inactivity (telogen throughout life. The transcriptional regulation of this process is not well understood. We show that the transcription factor Lhx2 is expressed in cells of the outer root sheath and a subpopulation of matrix cells during both morphogenesis and anagen. As the HFs enter telogen, expression becomes undetectable and reappears prior to initiation of anagen in the secondary hair germ. In contrast to previously published results, we find that Lhx2 is primarily expressed by precursor cells outside of the bulge region where the HF stem cells are located. This developmental, stage- and cell-specific expression suggests that Lhx2 regulates the generation and regeneration of hair. In support of this hypothesis, we show that Lhx2 is required for anagen progression and HF morphogenesis. Moreover, transgenic expression of Lhx2 in postnatal HFs is sufficient to induce anagen. Thus, our results reveal an alternative interpretation of Lhx2 function in HFs compared to previously published results, since Lhx2 is periodically expressed, primarily in precursor cells distinct from those in the bulge region, and is an essential positive regulator of hair formation.

  14. Hair shafts in trichoscopy: clues for diagnosis of hair and scalp diseases.

    Science.gov (United States)

    Rudnicka, Lidia; Rakowska, Adriana; Kerzeja, Marta; Olszewska, Małgorzata

    2013-10-01

    Trichoscopy (hair and scalp dermoscopy) analyzes the structure and size of growing hair shafts, providing diagnostic clues for inherited and acquired causes of hair loss. Types of hair shaft abnormalities observed include exclamation mark hairs (alopecia areata, trichotillomania, chemotherapy-induced alopecia), Pohl-Pinkus constrictions (alopecia areata, chemotherapy-induced alopecia, blood loss, malnutrition), comma hairs (tinea capitis), corkscrew hairs (tinea capitis), coiled hairs (trichotillomania), flame hairs (trichotillomania), and tulip hairs (in trichotillomania, alopecia areata). Trichoscopy allows differential diagnosis of most genetic hair shaft disorders. This article proposes a classification of hair shaft abnormalities observed by trichoscopy. PMID:24075554

  15. Telogen Effluvium Hair Loss

    Science.gov (United States)

    ... for Authors Information for Reviewers Human & Animal Rights Job Postings Sections of the JAOCD JAOCD Archive Published Members Online Dermatology Journals Edit This Favorite Name: Category: Share: Yes No, Keep Private Telogen Effluvium Hair Loss Share | It is normal to lose up to ...

  16. Anacreon's pubic hair

    OpenAIRE

    Giangrande, Giusseppe

    1995-01-01

    Un análisis de Anacr. 13 Gent. demuestra que allen tina del verso 8 se refiere al vello púbico del poeta. An analysis of Anacr. 13 Gent. demonstrates that ᾶλλην τινά in line 8 denotes the poets's pubic hair.

  17. Hair Pulling (Trichotillomania)

    Science.gov (United States)

    ... children and adolescents may be teased, have low self esteem, anxiety or depression. Parents can become frustrated, as it is very difficult ... can’t simply stop pulling their hair. Neither parents nor children are to ... with self-esteem. In order to avoid punishment or embarrassment, children ...

  18. Expanding needle concept for better extraction of body hair grafts

    Directory of Open Access Journals (Sweden)

    Arvind Poswal

    2013-01-01

    Full Text Available In traditional follicular unit extraction technique, 0.8-1.4 mm punch is used to cut the dermis to the level of attachment of erector pili muscle, so that the intact follicular unit grafts can be extracted. However, the larger extraction sites and higher hair root transection rates are some difficulties encountered while using the punch to extract body hair grafts. To overcome these difficulties, expanding needle concept has been devised. It approaches the extraction process by customizing the extraction wound to the architecture of the follicular unit and by performing most of the dissection of the dermal attachments to the donor follicular unit under direct magnified vision.

  19. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  20. Black hole's 1/N hair

    International Nuclear Information System (INIS)

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers

  1. Female pattern hair loss

    Directory of Open Access Journals (Sweden)

    Archana Singal

    2013-01-01

    Full Text Available Female pattern hair loss (FPHL is a common cause of hair loss in women characterized by diffuse reduction in hair density over the crown and frontal scalp with retention of the frontal hairline. Its prevalence increases with advancing age and is associated with significant psychological morbidity. The pathophysiology of FPHL is still not completely understood and seems to be multifactorial. Although androgens have been implicated, the involvement of androgen-independent mechanisms is evident from frequent lack of clinical or biochemical markers of hyperandrogenism in affected women. The role of genetic polymorphisms involving the androgen and estrogen receptors is being increasingly recognized in its causation and predicting treatment response to anti-androgens. There are different clinical patterns and classifications of FPHL, knowledge of which facilitates patient management and research. Chronic telogen effluvium remains as the most important differential diagnosis. Thorough history, clinical examination, and evaluation are essential to confirm diagnosis. Patients with clinical signs of androgen excess require assessment of biochemical parameters and imaging studies. It is prudent to screen the patients for metabolic syndrome and cardiovascular risk factors. The treatment comprises medical and/or surgical modalities. Medical treatment should be initiated early as it effectively arrests hair loss progression rather than stimulating regrowth. Minoxidil continues to be the first line therapy whereas anti-androgens form the second line of treatment. The progressive nature of FPHL mandates long-term treatment for sustained effect. Medical therapy may be supplemented with cosmetic concealment in those desirous of greater hair density. Surgery may be worthwhile in some carefully selected patients.

  2. Inhibition of strigolactones promotes adventitious root formation.

    Science.gov (United States)

    Rasmussen, Amanda; Beveridge, Christine A; Geelen, Danny

    2012-06-01

    Roots that form from non-root tissues (adventitious roots) are crucial for cutting propagation in the forestry and horticulture industries. Strigolactone has been demonstrated to be an important regulator of these roots in both Arabidopsis and pea using strigolactone deficient mutants and exogenous hormone applications. Strigolactones are produced from a carotenoid precursor which can be blocked using the widely available but broad terpenoid biosynthesis blocker, fluridone. We demonstrate here that fluridone can be used to promote adventitious rooting in the model species Pisum sativum (pea). In addition, in the garden species Plumbago auriculata and Jasminium polyanthum fluridone was equally as successful at promoting roots as a commercial rooting compound containing NAA and IBA. Our findings demonstrate that inhibition of strigolactone signaling has the potential to be used to improve adventitious rooting in commercially relevant species. PMID:22580687

  3. On the use of hair analysis to assess the influence of exposure to some toxic elements

    International Nuclear Information System (INIS)

    The micro PIXE technique is an analytical method capable to measure trace element concentration distribution at ppm concentration level and at μm scale. This method opens the possibility to measure radial and longitudinal element distribution across and along hair samples. The incorporation of Cd and Pb in rat hair has been studied using two different analytical techniques, namely micro PIXE to measure the radial distribution of these elements across the hair root and in a section cut at 3 mm distance from the root, and synchrotron radiation X-ray fluorescence (SXRF) to measure the distribution of these elements over different protein fractions prepared by other CRP participant. Hair samples from 12 persons were also analyzed with micro PIXE. Inter element effects were observed in this case, especially the negative correlation between Cu and Zn. Also the data indicate correlations between Zn concentration in hair and bone (positive) and hair and liver (negative). Cu shows the same behaviour. A large number of hair and whole blood samples from a group of school children was also analyzed. In this data set, it was observed that Pb concentration affects other elements. It turned out that Ca and Zn concentrations in hair were lower, while Cu values were higher in the samples with high Pb values. (author). 8 refs, 2 figs, 1 tab

  4. Transcriptional profiling of Medicago truncatula meristematic root cells

    OpenAIRE

    Holmes, Peta; Goffard, Nicolas; Weiller, Georg F; Rolfe, Barry G.; Imin, Nijat

    2008-01-01

    Background The root apical meristem of crop and model legume Medicago truncatula is a significantly different stem cell system to that of the widely studied model plant species Arabidopsis thaliana. In this study we used the Affymetrix Medicago GeneChip® to compare the transcriptomes of meristem and non-meristematic root to identify root meristem specific candidate genes. Results Using mRNA from root meristem and non-meristem we were able to identify 324 and 363 transcripts differentially exp...

  5. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana

    OpenAIRE

    Umezawa, Taishi; Yoshida, Riichiro; Maruyama, Kyonoshin; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2004-01-01

    Protein phosphorylation/dephosphorylation are major signaling events induced by osmotic stress in higher plants. Here, we showed that a SNF1-related protein kinase 2 (SnRK2), SRK2C, is an osmotic-stress-activated protein kinase in Arabidopsis thaliana that can significantly impact drought tolerance of Arabidopsis plants. Knockout mutants of SRK2C exhibited drought hypersensitivity in their roots, suggesting that SRK2C is a positive regulator of drought tolerance in Arabidopsis roots. Addition...

  6. Nutritional factors and hair loss.

    Science.gov (United States)

    Rushton, D H

    2002-07-01

    The literature reveals what little is known about nutritional factors and hair loss. What we do know emanates from studies in protein-energy malnutrition, starvation, and eating disorders. In otherwise healthy individuals, nutritional factors appear to play a role in subjects with persistent increased hair shedding. Hård, 40 years ago, demonstrated the importance of iron supplements in nonanaemic, iron-deficient women with hair loss. Serum ferritin concentrations provide a good assessment of an individual's iron status. Rushton et al. first published data showing that serum ferritin concentrations were a factor in female hair loss and, 10 years later, Kantor et al. confirmed this association. What level of serum ferritin to employ in subjects with increased hair shedding is yet to be definitively established but 70 micro g/L, with a normal erythrocyte sedimentation rate (factors affect the hair directly, one should not forget that they also affect the skin. In the management of subjects with hair loss, eliminating scaling problems is important as is good hair care advice and the need to explain fully the hair cycle. Many individuals reduced their shampooing frequency due to fear of losing more hair but this increases the amount seen in subsequent shampoos fuelling their fear of going bald and adversely affecting their quality of life. PMID:12190640

  7. Rice8987 g_array: cDNA information: 8387 [RMOS[Archive

    Lifescience Database Archive (English)

    Full Text Available g_8387 ST3658 >ATU86081_1(U86081|pid:g1839188) Arabidopsis thaliana root hair ... defective 3 (RHD3) ... uired for regulated cell expansion and normal root hair ... development in Arabidopsis thaliana; For this reas ... on, the gene was designated Root Hair ... Defective3 (RHD3); encodes an evolutionarily conse ...

  8. Complex hair cycle domain patterns and regenerative hair waves in living rodents

    OpenAIRE

    Plikus, Maksim V.; Chuong, Cheng-Ming

    2008-01-01

    Single hair follicles go through regeneration and involution cycles. In a population, hair follicles may affect each other during anagen re-entry, thus forming propagating regenerative hair waves. We review these regenerative hair waves and complex hair cycle domains which were recently reported in transgenic mice. Two non-invasive methods to track the propagating hair wave in large populations of hair follicles in vivo are described. We also reviewed early accounts of "hair growth patterns" ...

  9. Roots Revisited.

    Science.gov (United States)

    Hughes, Barnabas

    1998-01-01

    Offers historical information about square roots. Presents three different methods--Hero's method, visual method, and remainder method--which can be used to teach the finding of square roots and one method for determining cube roots. (ASK)

  10. Cysteine and Cysteine-Related SignalingPathways in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor moleculeinvolved in the synthesis of essential biomolecules and defense compounds. Moreover, cysteine per se and its deriva-tive molecules play roles in the redox signaling of processes occurring in various cellular compartments. Cysteine issynthesized during the sulfate assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed byO-acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts, and cytosol, resultingin a complex array of isoforms and subcellular cysteine pools, in recent years, significant progress has been made inArabidopsis, in determining the specific roles of the OASTLs and the metabolites produced by them. Thus, the dis-covery of novel enzymatic activities of the less-abundant, like DES1 with L-cysteine desulfhydrase activity and SCSwith S-sulfocysteine synthase activity, has provided new perspectives on their roles, besides their metabolic functions.Thereby, the research has been demonstrated that cytosolic sulfide and chloroplastic S-sulfocysteine act as signalingmolecules regulating autophagy and protecting the photosystems, respectively. In the cytosol, cysteine plays an essentialrole in plant immunity; in the mitochondria, this molecule plays a central role in the detoxification of cyanide, which isessential for root hair development and plant responses to pathogens.

  11. Slimy hairs: Hair sensors made with slime mould

    OpenAIRE

    Adamatzky, Andrew

    2013-01-01

    Slime mould Physarum polycephalum is a large single cell visible by unaided eye. We design a slime mould implementation of a tactile hair, where the slime mould responds to repeated deflection of hair by an immediate high-amplitude spike and a prolonged increase in amplitude and width of its oscillation impulses. We demonstrate that signal-to-noise ratio of the Physarum tactile hair sensor averages near six for the immediate response and two for the prolonged response.

  12. 28 CFR 551.4 - Hair length.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  13. Normal and aging hair biology and structure 'aging and hair'.

    Science.gov (United States)

    Goodier, Molly; Hordinsky, Maria

    2015-01-01

    Much like an individual's hairstyle, hair fibers along the scalp see a number of changes over the course of one's lifetime. As the decades pass, the shine and volume synonymous with youthful hair may give way to thin, dull, and brittle hair commonly associated with aging. These changes are a result of a compilation of genetic and environmental elements influencing the cells of the hair follicle, specifically the hair follicle stem cells and melanocytes. Telomere shortening, decrease in cell numbers, and particular transcription factors have all been implicated in this process. In turn, these molecular alterations lead to structural modifications of the hair fiber, decrease in melanin production, and lengthening of the telogen phase of the hair cycle. Despite this inevitable progression with aging, there exists an array of treatments such as light therapy, minoxidil, and finasteride which have been designed to mitigate the effects of aging, particularly balding and thinning hair. Although each works through a different mechanism, all aim to maintain or potentially restore the youthful quality of hair. PMID:26370639

  14. Hair removal on dermoscopy images.

    Science.gov (United States)

    Maglogiannis, Ilias; Delibasis, Kostantinos

    2015-08-01

    Digital Dermoscopy is a tool commonly used by dermatologists for assisting the diagnosis of skin lesions. The presence of hair in such dermoscopic images frequently occludes significant diagnostic information and reduces their value. In this work we propose algorithms that successfully identify and remove hair from the dermoscopic images. The proposed algorithms consist of two parts; the first deals with the identification of hair, while the second part concerns the image restoration using interpolation. For the evaluation of the algorithms we used ground truth images with synthetic hair and compared the results with the commonly used in the literature DullRazor tool. According to the experimental results the proposed hair removal algorithms can be used successfully in the detection and removal of both dark and light colored hair. PMID:26736913

  15. Contact Allergy to Hair Dyes

    OpenAIRE

    Marie-Louise Anna Schuttelaar; Tatiana Alexandra Vogel

    2016-01-01

    Many strong and extreme sensitizing chemicals, such as para-phenylenediamine (PPD), toluene-2,5-diamine (TDA) and other aromatic amines or cross-reacting substances, are ingredients in hair dye products. The chemistry of hair dyeing and the immunological reactions to the potent sensitizing hair dye components are complex and have not been fully clarified up until now. Recently 2-methoxymethyl-p-phenylenediamine (ME-PPD), a PPD derivate with moderate skin-sensitizing properties, was developed....

  16. Soft Hair on Black Holes

    OpenAIRE

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-01-01

    It has recently been shown that BMS supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft ($i.e.$ zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This paper gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that com...

  17. Realistic Hair from a Sketch

    OpenAIRE

    Wither, Jamie; Bertails, Florence; Cani, Marie-Paule

    2007-01-01

    This paper explores a sketch-based interface for quickly yet accurately creating visually realistic hair for virtual characters. Recently, physically-based models have proved successful for generating a wide variety of hair types, but they do not provide a straightforward method for designing target hairstyles. The contribution of this paper is to propose a user-friendly method for controlling such a physically-based model, requiring no specific knowledge of mechanics or hair styling: the use...

  18. Hair whorls in the horse

    OpenAIRE

    Baxová, Edita

    2012-01-01

    SUMMARY This bachelor thesis is focused primaly on an assessment of hair whirls in the horses due to thein temperament, nature, behavior and movement mechanics. There is explained the biology of the hair growth, its structure, composition and pigmentation and its functions which are very important for the whole organism in the literature review. It is also explained how the hair whirls arise and why the breeders have long been showing interest and attach great importance to them....

  19. 6-Gingerol Inhibits Hair Shaft Growth in Cultured Human Hair Follicles and Modulates Hair Growth in Mice

    OpenAIRE

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi

    2013-01-01

    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on hu...

  20. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development

    Science.gov (United States)

    Hepworth, Christopher; Turner, Carla; Landim, Marcela Guimaraes; Cameron, Duncan; Gray, Julie E.

    2016-01-01

    Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development. PMID:27275842