Sample records for arabidopsis renders transgenic

  1. Epigenetic Regulation of Intronic Transgenes in Arabidopsis (United States)

    Osabe, Kenji; Harukawa, Yoshiko; Miura, Saori; Saze, Hidetoshi


    Defense mechanisms of plant genomes can epigenetically inactivate repetitive sequences and exogenous transgenes. Loss of mutant phenotypes in intronic T-DNA insertion lines by interaction with another T-DNA locus, termed T-DNA suppression, has been observed in Arabidopsis thaliana, although the molecular basis of establishment and maintenance of T-DNA suppression is poorly understood. Here we show that maintenance of T-DNA suppression requires heterochromatinisation of T-DNA sequences and the nuclear proteins, INCREASED IN BONSAI METHYLATION 2 (IBM2) and ENHANCED DOWNY MILDEW 2 (EDM2), which prevent ectopic 3′ end processing of mRNA in atypically long introns containing T-DNA sequences. Initiation of T-DNA suppression is mediated by the canonical RdDM pathway after hybridisation of two T-DNA strains, accompanied by DNA hypermethylation of T-DNA sequences in the F1 generation. Our results reveal the presence of a genome surveillance mechanism through genome hybridisation that masks repetitive DNAs intruding into transcription units. PMID:28338020

  2. Bacterial pathogen phytosensing in transgenic tobacco and Arabidopsis plants. (United States)

    Liu, Wusheng; Mazarei, Mitra; Rudis, Mary R; Fethe, Michael H; Peng, Yanhui; Millwood, Reginald J; Schoene, Gisele; Burris, Jason N; Stewart, C Neal


    Plants are subject to attack by a wide range of phytopathogens. Current pathogen detection methods and technologies are largely constrained to those occurring post-symptomatically. Recent efforts were made to generate plant sentinels (phytosensors) that can be used for sensing and reporting pathogen contamination in crops. Engineered phytosensors indicating the presence of plant pathogens as early-warning sentinels potentially have tremendous utility as wide-area detectors. We previously showed that synthetic promoters containing pathogen and/or defence signalling inducible cis-acting regulatory elements (RE) fused to a fluorescent protein (FP) reporter could detect phytopathogenic bacteria in a transient phytosensing system. Here, we further advanced this phytosensing system by developing stable transgenic tobacco and Arabidopsis plants containing candidate constructs. The inducibility of each synthetic promoter was examined in response to biotic (bacterial pathogens) or chemical (plant signal molecules salicylic acid, ethylene and methyl jasmonate) treatments using stably transgenic plants. The treated plants were visualized using epifluorescence microscopy and quantified using spectrofluorometry for FP synthesis upon induction. Time-course analyses of FP synthesis showed that both transgenic tobacco and Arabidopsis plants were capable to respond in predictable ways to pathogen and chemical treatments. These results provide insights into the potential applications of transgenic plants as phytosensors and the implementation of emerging technologies for monitoring plant disease outbreaks in agricultural fields.

  3. Fluorescent Screening of Transgenic Arabidopsis Seeds without Germination1 (United States)

    Wei, Shu; Bravdo, Ben-Ami; Shoseyov, Oded


    In this paper, we describe a reliable method for the screening and selection of Arabidopsis transgenic seeds within minutes without germination. Expression of the Aspergillus niger β-glucosidase gene BGL1 in the plant's endoplasmic reticulum was used as a visual marker, together with 4-methylumbelliferyl-β-d-glucopyranoside (MUGluc) as a substrate. Subsequent to incubation in a solution of MUGluc at room temperature for 2 to 15 min, transgenic seeds expressing BGL1 demonstrated a distinct fluorescent signal under UV light. Optimal screening conditions at room temperature were achieved between 75 and 450 μm MUGluc, at a pH of 2.5 to 5.0 and 2 to 5 min of incubation. No significant loss of viability was detected in transgenic seeds that were redried and stored for 45 d after incubation in MUGluc solution for 2 to 150 min. Transgenic plants expressing BGL1 displayed normal phenotypes relative to the wild type. Selection frequency was 3.1% ± 0.34% for the fluorescence selection method, while kanamycin resistant selection resulted in only 0.56% ± 0.13% using the same seed batch. This novel selection method is nondestructive, practical, and efficient, and eliminates the use of antibiotic genes. In addition, the procedure shortens the selection time from weeks to minutes. PMID:15208418

  4. An illustrated gardener's guide to transgenic Arabidopsis field experiments. (United States)

    Frenkel, Martin; Jänkänpää, Hanna Johansson; Moen, Jon; Jansson, Stefan


    Field studies with transgenic Arabidopsis lines have been performed over 8 yr, to better understand the influence that certain genes have on plant performance. Many (if not most) plant phenotypes cannot be observed under the near constant, low-stress conditions in growth chambers, making field experiments necessary. However, there are challenges in performing such experiments: permission must be obtained and regulations obeyed, the profound influence of uncontrollable biotic and abiotic factors has to be considered, and experimental design has to be strictly controlled. The aim here is to provide inspiration and guidelines for researchers who are not used to setting up such experiments, allowing others to learn from our mistakes. This is believed to be the first example of a 'manual' for field experiments with transgenic Arabidopsis plants. Many of the challenges encountered are common for all field experiments, and many researchers from ecological backgrounds are skilled in such methods. There is huge potential in combining the detailed mechanistic understanding of molecular biologists with ecologists' expertise in examining plant performance under field conditions, and it is suggested that more interdisciplinary collaborations will open up new scientific avenues to aid analyses of the roles of genetic and physiological variation in natural systems.

  5. Overexpression of several Arabidopsis histone genes increases agrobacterium-mediated transformation and transgene expression in plants. (United States)

    Tenea, Gabriela N; Spantzel, Joerg; Lee, Lan-Ying; Zhu, Yanmin; Lin, Kui; Johnson, Susan J; Gelvin, Stanton B


    The Arabidopsis thaliana histone H2A-1 is important for Agrobacterium tumefaciens-mediated plant transformation. Mutation of HTA1, the gene encoding histone H2A-1, results in decreased T-DNA integration into the genome of Arabidopsis roots, whereas overexpression of HTA1 increases transformation frequency. To understand the mechanism by which HTA1 enhances transformation, we investigated the effects of overexpression of numerous Arabidopsis histones on transformation and transgene expression. Transgenic Arabidopsis containing cDNAs encoding histone H2A (HTA), histone H4 (HFO), and histone H3-11 (HTR11) displayed increased transformation susceptibility, whereas histone H2B (HTB) and most histone H3 (HTR) cDNAs did not increase transformation. A parallel increase in transient gene expression was observed when histone HTA, HFO, or HTR11 overexpression constructs were cotransfected with double- or single-stranded forms of a gusA gene into tobacco (Nicotiana tabacum) protoplasts. However, these cDNAs did not increase expression of a previously integrated transgene. We identified the N-terminal 39 amino acids of H2A-1 as sufficient to increase transient transgene expression in plants. After transfection, transgene DNA accumulates more rapidly in the presence of HTA1 than with a control construction. Our results suggest that certain histones enhance transgene expression, protect incoming transgene DNA during the initial stages of transformation, and subsequently increase the efficiency of Agrobacterium-mediated transformation.

  6. Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. (United States)

    François, Isabelle E J A; De Bolle, Miguel F C; Dwyer, Geoff; Goderis, Inge J W M; Woutors, Piet F J; Verhaert, Peter D; Proost, Paul; Schaaper, Wim M M; Cammue, Bruno P A; Broekaert, Willem F


    We developed a method for expression in Arabidopsis of a transgene encoding a cleavable chimeric polyprotein. The polyprotein precursor consists of a leader peptide and two different antimicrobial proteins (AMPs), DmAMP1 originating from Dahlia merckii seeds and RsAFP2 originating from Raphanus sativus seeds, which are linked by an intervening sequence ("linker peptide") originating from a natural polyprotein occurring in seed of Impatiens balsamina. The chimeric polyprotein was found to be cleaved in transgenic Arabidopsis plants and the individual AMPs were secreted into the extracellular space. Both AMPs were found to exert antifungal activity in vitro. It is surprising that the amount of AMPs produced in plants transformed with some of the polyprotein transgene constructs was significantly higher compared with the amount in plants transformed with a transgene encoding a single AMP, indicating that the polyprotein expression strategy may be a way to boost expression levels of small proteins.

  7. Overexpression of SOS (Salt Overly Sensitive)Genes Increases Salt Tolerance in Transgenic Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Qing Yang; Zhi-Zhong Chen; Xiao-Feng Zhoua; Hai-Bo Yin; Xia Li; Xiu-Fang Xin; Xu-Hui Hong; Jian-Kang Zhu; Zhizhong Gong


    Soil salinity is a major abiotic stress that decreases plant growth and productivity. Recently, it was reported that plants overexpressing AtNHX1 or SOS1 have significantly increased salt tolerance. To test whether overexpression of multiple genes can improve plant salt tolerance even more, we produced six different transgenic Arabidopsis plants that overexpress AtNHX1, SOS3, AtNHXl + SOS3, SOS1, SOS2 + SOS3, or SOS1 + SOS2 + SOS3. Northern blot analyses confirmed the presence of high levels of the relevant gene transcripts in transgenic plants. Transgenic Arabidopsis plants overexpressing AtNHX1 alone did not present any significant increase in salt tolerance, contrary to earlier reports. We found that transgenic plants overexpressing SOS3 exhibit increased salt tolerance similar to plants overexpressing SOS1. Moreover, salt tolerance of transgenic plants overexpressing AtNHXl + SOS3, 50S2 + SOS3, or SOS1 + SOS2 +SOS3, respectively, appeared similar to the tolerance of transgenic plants overexpressing either SOS1 or SOS3 alone.

  8. Fruit preferential activity of the tomato RIP1 gene promoter in transgenic tomato and Arabidopsis. (United States)

    Agarwal, Priyanka; Kumar, Rahul; Pareek, Amit; Sharma, Arun K


    Isolation and functional characterization of tissue- and stage-specific gene promoters is beneficial for genetic improvement of economically important crops. Here, we have characterized a putative promoter of a ripening-induced gene RIP1 (Ripening induced protein 1) in tomato. Quantification of the transcript level of RIP1 showed that its expression is fruit preferential, with maximum accumulation in red ripe fruits. To test the promoter activity, we made a reporter construct by cloning 1450 bp putative RIP1 promoter driving the GUS (ß-glucuronidase) gene expression and generated stable transgenic lines in tomato and Arabidopsis. Histochemical and fluorometric assays validated the fruit-specific expression of RIP1 as the highest GUS activity was found in red ripe tomatoes. Similarly, we detected high levels of GUS activity in the siliques of Arabidopsis. On the contrary, weak GUS activity was found in the flower buds in both tomato and Arabidopsis. To characterize the specific regions of the RIP1 promoter that might be essential for its maximum activity and specificity in fruits, we made stable transgenic lines of tomato and Arabidopsis with 5'-deletion constructs. Characterization of these transgenic plants showed that the full length promoter is essential for its function. Overall, we report the identification and characterization of a ripening-induced promoter of tomato, which would be useful for the controlled manipulation of the ripening-related agronomic traits in genetic manipulation studies in future.

  9. Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis Plants

    NARCIS (Netherlands)

    Aharoni, A.; Giri, A.P.; Deuerlein, S.; Griepink, F.C.; Kogel, de W.J.; Verstappen, F.W.A.; Verhoeven, H.A.; Jongsma, M.A.; Schwab, W.; Bouwmeester, H.J.


    Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are

  10. An Arabidopsis thaliana ABC transporter that confers kanamycin resistance in transgenic plants does not endow resistance to Escherichia coli


    Burris, Kellie; Mentewab, Ayalew; Ripp, Steven; Stewart, C. Neal


    Summary Concerns have been raised about potential horizontal gene transfer (HGT) of antibiotic resistance markers (ARMs) from transgenic plants to bacteria of medical and environmental importance. All ARMs used in transgenic plants have been bacterial in origin, but it has been recently shown that an Arabidopsis thaliana ABC transporter, Atwbc19, confers kanamycin resistance when overexpressed in transgenic plants. Atwbc19 was evaluated for its ability to transfer kanamycin resistance to Esch...

  11. Phenotypic Characterization of Transgenic Miscanthus sinensis Plants Overexpressing Arabidopsis Phytochrome B

    Directory of Open Access Journals (Sweden)

    Ok-Jin Hwang


    Full Text Available Phytochromes are dimeric pigment proteins with reversible photochromism between red and far-red light-absorbing forms. They are photoreceptors that regulate various aspects of plant growth and development and have been used for biotechnological applications to improve agricultural performance of crops. Miscanthus species have been suggested as one of the most promising energy crops. In this paper, Arabidopsis phytochrome B (PHYB gene was introduced into Miscanthus sinensis using Agrobacterium-mediated transformation method that we developed recently, with the herbicide resistance gene (BAR as a selection marker. After putative transgenic plants were selected using the herbicide resistance assay, genomic integration of the transgene was confirmed by genomic PCR and Southern blot analysis, and transgene expression was validated by Northern blot analysis. Compared to nontransformed control plants, transgenic plants overexpressing PHYB showed phenotypes with increased phytochrome B function, which includes increased chlorophyll content, decreased plant height, and delayed flowering. Therefore, these results suggest that Arabidopsis phytochrome B is functional in M. sinensis and provide a method to develop Miscanthus varieties with enhanced agricultural performance using phytochromes.

  12. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis. (United States)

    van Erp, Harrie; Shockey, Jay; Zhang, Meng; Adhikari, Neil D; Browse, John


    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies.

  13. Functional characterization of aroA from Rhizobium leguminosarum with significant glyphosate tolerance in transgenic Arabidopsis. (United States)

    Han, Jing; Tian, Yong-Sheng; Xu, Jing; Wang, Li-Juan; Wang, Bo; Peng, Ri-He; Yao, Quan-Hong


    Glyphosate is the active component of the top-selling herbicide, the phytotoxicity of which is due to its inhibition of the shikimic acid pathway. 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the shikimic acid pathway. Glyphosate tolerance in plants can be achieved by the expression of a glyphosate-insensitive aroA gene (EPSPS). In this study, we used a PCR-based two-step DNA synthesis method to synthesize a new aroA gene (aroAR. leguminosarum) from Rhizobium leguminosarum. In vitro glyphosate sensitivity assays showed that aroAR. leguminosarum is glyphosate tolerant. The new gene was then expressed in E. coli and key kinetic values of the purified enzyme were determined. Furthermore, we transformed the aroA gene into Arabidopsis thaliana by the floral dip method. Transgenic Arabidopsis with the aroAR. leguminosarum gene was obtained to prove its potential use in developing glyphosate-resistant crops.

  14. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana. (United States)

    Yuan, Xiaowei; Li, Yaxiao; Liu, Shiyang; Xia, Fei; Li, Xinzheng; Qi, Baoxiu


    IgASE1, a C₁₈ Δ(9)-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ(8) desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300 mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA.

  15. Ascorbate peroxidase from Jatropha curcas enhances salt tolerance in transgenic Arabidopsis. (United States)

    Chen, Y; Cai, J; Yang, F X; Zhou, B; Zhou, L R


    Ascorbate peroxidase (APX) plays a central role in the ascorbate-glutathione cycle and is a key enzyme in cellular H2O2 me-tabolism. It includes a family of isoenzymes with different character-istics, which are identified in many higher plants. In the present study, we isolated the APX gene from Jatropha curcas L, which is similar with other previously characterized APXs as revealed by alignment and phylogenetic analysis of its deduced amino acid sequence. Real-time qPCR analysis showed that the expression level of JcAPX transcript significantly increased under NaCl stress. Subsequently, to elucidate the contribution of JcAPX to the protection against salt-induced oxi-dative stress, the expression construct p35S: JcAPX was created and transformed into Arabidopsis and transcribed. Under 150-mM NaCl stress, compared with wild type (WT), the overexpression of JcAPX in Arabidopsis increased the germination rate, the number of leaves, and the rosette area. In addition, the transgenic plants had longer roots, higher total chlorophyll content, higher total APX activity, and lower H2O2 content than the WT under NaCl stress conditions. These results suggested that higher APX activity in transgenic lines increases the salt tolerance by enhancing scavenging capacity for reactive oxygen spe-cies under NaCl stress conditions.

  16. An Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants.

    Directory of Open Access Journals (Sweden)

    Kevin Begcy

    Full Text Available BACKGROUND: Plants are challenged by a large number of environmental stresses that reduce productivity and even cause death. Both chloroplasts and mitochondria produce reactive oxygen species under normal conditions; however, stress causes an imbalance in these species that leads to deviations from normal cellular conditions and a variety of toxic effects. Mitochondria have uncoupling proteins (UCPs that uncouple electron transport from ATP synthesis. There is evidence that UCPs play a role in alleviating stress caused by reactive oxygen species overproduction. However, direct evidence that UCPs protect plants from abiotic stress is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Tolerances to salt and water deficit were analyzed in transgenic tobacco plants that overexpress a UCP (AtUCP1 from Arabidopsis thaliana. Seeds of AtUCP1 transgenic lines germinated faster, and adult plants showed better responses to drought and salt stress than wild-type (WT plants. These phenotypes correlated with increased water retention and higher gas exchange parameters in transgenic plants that overexpress AtUCP1. WT plants exhibited increased respiration under stress, while transgenic plants were only slightly affected. Furthermore, the transgenic plants showed reduced accumulation of hydrogen peroxide in stressed leaves compared with WT plants. CONCLUSIONS/SIGNIFICANCE: Higher levels of AtUCP1 improved tolerance to multiple abiotic stresses, and this protection was correlated with lower oxidative stress. Our data support previous assumptions that UCPs reduce the imbalance of reactive oxygen species. Our data also suggest that UCPs may play a role in stomatal closure, which agrees with other evidence of a direct relationship between these proteins and photosynthesis. Manipulation of the UCP protein expression in mitochondria is a new avenue for crop improvement and may lead to crops with greater tolerance for challenging environmental conditions.

  17. Soybean GmDREBL Increases Lipid Content in Seeds of Transgenic Arabidopsis (United States)

    Zhang, Yu-Qin; Lu, Xiang; Zhao, Fei-Yi; Li, Qing-Tian; Niu, Su-Ling; Wei, Wei; Zhang, Wan-Ke; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song


    A DREB-type transcription factor gene GmDREBL has been characterized for its functions in oil accumulation in seeds. The gene is specifically expressed in soybean seeds. The GmDREBL is localized in nucleus and has transcriptional activation ability. Overexpression of GmDREBL increased the fatty acid content in the seeds of transgenic Arabidopsis plants. GmDREBL can bind to the promoter region of WRI1 to activate its expression. Several other genes in the fatty acid biosynthesis pathway were also enhanced in the GmDREBL-transgenic plants. The GmDREBL can be up-regulated by GmABI3 and GmABI5. Additionally, overexpression of GmDREBL significantly promoted seed size in transgenic plants compared to that of WT plants. Expression of the DREBL is at higher level on the average in cultivated soybeans than that in wild soybeans. The promoter of the DREBL may have been subjected to selection during soybean domestication. Our results demonstrate that GmDREBL participates in the regulation of fatty acid accumulation by controlling the expression of WRI1 and its downstream genes, and manipulation of the gene may increase the oil contents in soybean plants. Our study provides novel insights into the function of DREB-type transcription factors in oil accumulation in addition to their roles in stress response. PMID:27694917

  18. Over-expression of Arabidopsis CAP causes decreased cell expansion leading to organ size reduction in transgenic tobacco plants. (United States)

    Barrero, Roberto A; Umeda, Masaaki; Yamamura, Saburo; Uchimiya, Hirofumi


    Cyclase-associated proteins (CAP) are multifunctional proteins involved in Ras-cAMP signalling and regulation of the actin cytoskeleton. It has recently been demonstrated that over-expression of AtCAP1 in transgenic arabidopsis plants causes severe morphological defects owing to loss of actin filaments. To test the generality of the function of AtCAP1 in plants, transgenic tobacco plants over-expressing an arabidopsis CAP (AtCAP1) under the regulation of a glucocorticoid-inducible promoter were produced. Over-expression of AtCAP1 in transgenic tobacco plants led to growth abnormalities, in particular a reduction in the size of leaves. Morphological alterations in leaves were the result of reduced elongation of epidermal and mesophyll cells.

  19. Specimen block counter-staining for localization of GUS expression in transgenic arabidopsis and tobacco (United States)

    Kim, M. K.; Choi, J-W; Jeon, J-H; Franceschi, V. R.; Davin, L. B.; Lewis, N. G.


    A simple counter-staining procedure has been developed for comparative beta-glucuronidase (GUS) expression and anatomical localization in transgenic herbaceous arabidopsis and tobacco. This protocol provides good anatomical visualization for monitoring chimeric gene expression at both the organ and tissue levels. It can be used with different histochemical stains and can be extended to the study of woody species. The specimens are paraffin-embedded, the block is trimmed to reveal internal structure, safranin-O staining solution is briefly applied to the surface of the block, then washed off and, after drying, a drop of immersion oil is placed on the stained surface for subsequent photographic work. This gives tissue counter-staining with good structural preservation without loss of GUS staining product; moreover, sample observation is rapid and efficient compared to existing procedures.

  20. Overexpression of a glycosyltransferase gene SrUGT74G1 from Stevia improved growth and yield of transgenic Arabidopsis by catechin accumulation. (United States)

    Guleria, Praveen; Yadav, Sudesh Kumar


    Steviol glycoside and gibberellin biosynthetic routes are known as divergent branches of a common origin in Stevia. A UDP-glycosyltransferase encoded by SrUGT74G1 catalyses the conversion of steviolbioside into stevioside in Stevia rebaudiana leaves. In the present study, transgenic Arabidopsis thaliana overexpressing SrUGT74G1 cDNA from Stevia were developed to check the probability of stevioside biosynthesis in them. However, stevioside accumulation was not evident in transgenics. Also, the transgenic Arabidopsis showed no change in GA3 content on SrUGT74G1 overexpression. Surprisingly, significant accumulation of catechin was noticed in transgenics. The transgenics showed a considerable increase in shoot length, root length and rosette area. An increase in free radical scavenging activity of transgenics was noticed. Moreover, the seed yield of transgenics was also increased by 6-15% than control. Additionally, variation in trichome branching pattern on leaf surface of transgenics was observed. The trichome branching pattern was also validated by exogenous catechin exposure (10, 50, 100 ng ml(-1)) to control plants. Hence, present study reports the probable role of SrUGT74G1 from Stevia in catechin accumulation of transgenic Arabidopsis thaliana. Thus, detailed study in present perspective has revealed the role of Stevia SrUGT74G1 gene in trichome branching pattern, improved vegetative growth, scavenging potential and seed yield by catechin accumulation in transgenic Arabidopsis.

  1. The influence of matrix attachment regions on transgene expression in Arabidopsis thaliana wild type and gene silencing mutants. (United States)

    De Bolle, Miguel F C; Butaye, Katleen M J; Goderis, Inge J W M; Wouters, Piet F J; Jacobs, Anni; Delauré, Stijn L; Depicker, Ann; Cammue, Bruno P A


    Many studies in both animal and plant systems have shown that matrix attachment regions (MARs) can increase the expression of flanking transgenes. However, our previous studies revealed no effect of the chicken lysozyme MARs (chiMARs) on transgene expression in the first generation transgenic Arabidopsis thaliana plants transformed with a beta-glucuronidase gene (uidA) unless gene silencing mutants were used as genetic background for transformation. In the present study, we investigated why chiMARs do not influence transgene expression in transgenic wild-type Arabidopsis plants. We first studied the effect of chiMARs on transgene expression in the progeny of primary transformants harboring chiMAR-flanked T-DNAs. Our data indicate that chiMARs do not affect transgene expression in consecutive generations of wild-type A. thaliana plants. Next, we examined whether these observed results in A. thaliana transformants are influenced by the applied transformation method. The results from in vitro transformed A. thaliana plants are in accordance with those from in planta transformed A. thaliana plants and again reveal no influence of chiMARs on transgene expression in A. thaliana wild-type transformants. The effect of chi-MARs on transgene expression is also examined in in vitro transformed Nicotiana tabacum plants, but as for A. thaliana, the transgene expression in tobacco transformants is not altered by the presence of chi-MARs. Taken together, our results show that the applied method or the plant species used for transformation does not influence whether and how chiMARs have an effect on transgene expression. Finally, we studied the effect of MARs (tabMARs) of plant origin (tobacco) on the transgene expression in A. thaliana wild-type plants and suppressed gene silencing (sgs2) mutants. Our results clearly show that similar to chiMARs, the tobacco-derived MARs do not enhance transgene expression in a wild-type background but can be used to enhance transgene expression

  2. Over-expression of an Arabidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice

    Institute of Scientific and Technical Information of China (English)

    WU Liangqi; FAN Zhanmin; GUO Lei; LI Yongqing; ZHANG Wenjing; QU Li-Jia; CHEN Zhangliang


    δ-OAT, ornithine-δ-aminotransferase, is the key enzyme involved in proline biosynthesis. In this study the Arabidopsisδ-OAT gene was transferred into rice (Oryza sativa L. ssp japonica cv. Zhongzuo 321), whose successful integration was demonstrated by PCR and Southern blot analysis. The over-expression of the gene in transgenic rice was also confirmed. Biochemical analysis showed that, under salt or drought stress conditions, proline contents in the leaves and roots in transgenic rice plants were 5- to 15-fold of those in non-transgenic controls. Under stress conditions, germinating rate of transgenic lines is higher than that of controls. Although the growth of rice plants tested were more and more retarded with the increasing of NaCl concentration, the transgenic plants grow faster compared to the controls under the same stress condition. Meanwhile, the resistance to KCl and MgSO4 stresses was also found enhanced in transgenic rice. Furthermore, the over-expression ofδ-OAT also improved the yield of transgenic plants under stress conditions. The average yield per plant of transgenic lines increases about 12%-41% more than that of control lines under 0.1 mol/L NaCl stress. These data indicated that the over-expression of δ-OAT, with the accumulation of proline, resulted in the enhancement of salt and drought tolerance and an increase of rice yield, which is of significance in agriculture.

  3. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants. (United States)

    Azab, Ehab; Hegazy, Ahmad K; El-Sharnouby, Mohamed E; Abd Elsalam, Hassan E


    The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants.

  4. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. (United States)

    Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C; Del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; González, María E; Ruiz, Oscar A; Carrasco, Pedro


    Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC are more sensitive than the wild type to this stress. Although it is speculated that the over-expression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlated with the induction of known stress-responsive genes, and suggested that putrescine may be directly or indirectly involved in ABA metabolism and gene expression.

  5. Mechanisms of Salt Tolerance in Transgenic Arabidopsis thaliana Carrying a Peroxisomal Ascorbate Peroxidase Gene from Barley

    Institute of Scientific and Technical Information of China (English)

    XU Wei-Feng; SHI Wei-Ming; A. UEDA; T. TAKABE


    Ascorbate peroxidases (APX), localized in the cytosol, peroxisome, mitochondria, and chloroplasts of plant cells,catalyze the reduction of H2O2 to water by using ascorbic acid as the specific electron donor. To determine the role of peroxisomal type ascorbate peroxidasc (pAPX), an antioxidant enzyme, in protection against salt-induced oxidative stress, transgenic Arabidopsis thaliana plant carrying a pAPX gene (HvAPX1) from barley (Hordeum vulgare L.) was analyzed. The transgenic line pAPX3 was found to be more tolerant to salt stress than the wild type. Irrespective of salt stress, there were no significant differences in Na+, K+, Ca2+, and Mg2+ contents and the ratio of K+ to Na+ between pAPX3 and the wild type. Clearly, the salt tolerance in pAPX3 was not due to the maintenance and reestablishment of cellular ion homeostasis. However, the degree of H2O2 and lipid peroxidation (measured as the levels of malondialdehyde)accumulation under salt stress was higher in the wild type than in pAPX3. The mechanism of salt tolerance in transgenic pAPX3 can thus be explained by reduction of oxidative stress injury. Under all conditions tested, activities of superoxide,glutathionc reductase, and catalase were not significantly different between pAPX3 and the wild type. In contrast, the activity of APX was significantly higher in the transgcnic plant than in wild type under salt stress. These results suggested that in higher plants, HvAPX1 played an important role in salt tolerance and was a candidate gene for developing salt-tolerant crop plants.

  6. The Mechanism of the Silencing of a Transgene, NCED3‐LUC, in Arabidopsis Thaliana

    KAUST Repository

    Zhao, Junsong


    The Arabidopsis thaliana NCED3‐LUC transgenic line was constructed by several groups to study the regulatory network of the NCED3 gene, the protein of which catalyzes the rate‐limiting step of ABA biosynthesis under drought. The transgenic luciferase gene is expressed when the plants encounter drought stress. Intriguingly, this transgenic luciferase gene is silenced after propagation for several generations. To determine the mechanism of this gene silencing, we used a forward genetics approach. The seeds of NCED3‐LUC (referred as the ‘wild type’) were mutagenized by ethane methyl sulfonate (EMS). One mutant line, denoted as #73, with recovered luciferase activity was selected for further study. Analysis of the methylation status by bisulfite sequencing revealed that the transgenic NCED3 promoter in the #73 mutant had less methylation than the wild type. Demethylation was also evident for the endogenous NCED3 promoter and retrotransposon AtSN1 in the #73 mutant. The phenotype of #73 mutant includes small size, rapid dehydration rate, altered morphology, and a thin epicuticular wax layer. By use of map‐based cloning, the region containing the mutated gene was delimited to a contig of two BAC clones, F11F19 and F9C22, on chromosome 2. Our results indicate that NCED3‐LUC gene silencing results from hypermethylation of its promoter region, but additional study is required to determine the exact position of the mutated gene and to fully understand the mechanism of NCED3‐LUC silencing. 4 ACKNOWLEDGEMENTS I would like to take this opportunity to thank my committee chair, Professor Jian‐Kang Zhu, who is also the supervisor of my master’s thesis, for his guidance throughout the course of this research. I also would like to thank my committee members, Professor Liming Xiong and Professor Samir Hamdan, for their patience and support in reviewing my thesis. My appreciation also goes to Dr. Zhenyu Wang for taking time to teach me basic experimental skills and

  7. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. (United States)

    Wu, Tingquan; Tang, Dingzhong; Chen, Weida; Huang, Hexun; Wang, Rui; Chen, Yongfang


    Thanatin(S) is an analog of thanatin, an insect antimicrobial peptide possessing strong and broad spectrum of antimicrobial activity. In order to investigate if the thanatin could be used in engineering transgenic plants for increased resistance against phytopathogens, the synthetic thanatin(S) was introduced into Arabidopsis thaliana plants. To increase the expression level of thanatin(S) in plants, the coding sequence was optimized by plant-preference codon. To avoid cellular protease degradation, signal peptide of rice Cht1 was fused to N terminal of thanatin(S) for secreting the expressed thanatin(S) into intercellular spaces. To evaluate the application value of thanatin(S) in plant disease control, the synthesized coding sequence of Cht1 signal peptide (Cht1SP)-thanatin(S) was ligated to plant gateway destination binary vectors pGWB11 (with FLAG tag). Meanwhile, in order to observe the subcellular localization of Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP, the sequences of Cht1SP-thanatin(S) and thanatin(S) were respectively linked to pGWB5 (with GFP tag). The constructs were transformed into Arabidopsis ecotype Col-0 and mutant pad4-1 via Agrobacterium-mediated transformation. The transformants with Cht1SP-thanatin(S)-FLAG fusion gene were analyzed by genomic PCR, real-time PCR, and western blots and the transgenic Arabidopsis plants introduced respectively Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP were observed by confocal microscopy. Transgenic plants expressing Cht1SP-thanatin(S)-FLAG fusion protein showed antifungal activity against Botrytis cinerea and powdery mildew, as well as antibacterial activity against Pseudomonas syringae pv. tomato. And the results from confocal observation showed that the GFP signal from Cht1SP-thanatin(S)-GFP transgenic Arabidopsis plants occurred mainly in intercellular space, while that from thanatin(S)-GFP transgenic plants was mainly detected in the cytoplasm and that from empty vector transgenic plants was distributed

  8. Transgenic Arabidopsis thaliana containing increased levels of ATP and sucrose is more susceptible to Pseudomonas syringae (United States)

    Zhang, Renshan; Qi, Hua; Sun, Yuzhe; Xiao, Shi


    Disease resistance exerts a fitness cost on plants, presumably due to the extra consumption of energy and carbon. In this study, we examined whether transgenic Arabidopsis thaliana with increased levels of ATP and sucrose is more resistant or susceptible to pathogen infection. Lines of A. thaliana over-expressing purple acid phosphatase 2 (AtPAP2) (OE lines) contain increased levels of ATP and sucrose, with improved growth rate and seed production. Compared to wild type (WT) and pap2 lines, the OE lines were more susceptible to several Pseudomonas syringae pv. tomato (Pst) strains carrying AvrRpm1, AvrRpt2 AvrRps4, AvrPtoB, HrcC and WT strain DC3000. The increased susceptibility of the OE lines to Pst strains cannot solely be attributed to the suppressed expression of R-genes but must also be attributed to the suppression of downstream signaling components, such as MOS2, EDS1 and EDS5. Before infection, the levels of salicylic acid (SA) and jasmonic acid (JA) precursor OPDA were similar in the leaves of OE, pap2 and WT plants, whereas the levels of JA and its derivative JA-Ile were significantly lower in the leaves of OE lines and higher in the pap2 line. The expression of JA marker defense gene PDF1.2 was up-regulated in the OE lines compared to the WT prior to Pst DC3000 infection, but its expression was lower in the OE lines after infection. In summary, high fitness Arabidopsis thaliana exhibited altered JA metabolism and broad suppression of R-genes and downstream genes as well as a higher susceptibility to Pst infections. PMID:28152090

  9. Functional analysis of the rice rubisco activase promoter in transgenic Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang [Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China); Chen, Fan [Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080 (China); Lu, Congming, E-mail: [Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China)


    Highlights: Black-Right-Pointing-Pointer Rice rubisco activase promoter was analyzed in transgenic Arabidopsis system. Black-Right-Pointing-Pointer Region conferring tissue specific and light inducible expression of Rca was identified. Black-Right-Pointing-Pointer -58 to +43 bp region mediates tissue-specific expression of rice Rca. Black-Right-Pointing-Pointer Light inducible expression of rice Rca is mediated by -297 to -58 bp region. Black-Right-Pointing-Pointer Rice nuclear proteins bind specifically with the light inducible region. -- Abstract: To gain a better understanding of the regulatory mechanism of the rice rubisco activase (Rca) gene, variants of the Rca gene promoter (one full-length and four deletion mutants) fused to the coding region of the bacterial reporter gene {beta}-glucuronidase (GUS) were introduced into Arabidopsis via Agrobacterium-mediated transformation. Our results show that a 340 bp fragment spanning from -297 to +43 bp relative to the transcription initiation site is enough to promote tissue-specific and light-inducible expression of the rice Rca gene as done by the full-length promoter (-1428 to +43 bp). Further deletion analysis indicated that the region conferring tissue-specificity of Rca expression is localized within a 105 bp fragment from -58 to +43 bp, while light-inducible expression of Rca is mediated by the region from -297 to -58 bp. Gel shift assays and competition experiments demonstrated that rice nuclear proteins bind specifically with the fragment conferring light responsiveness at more than one binding site. This implies that multiple cis-elements may be involved in light-induced expression of the rice Rca gene. These works provide a useful reference for understanding transcriptional regulation mechanism of the rice Rca gene, and lay a strong foundation for further detection of related cis-elements and trans-factors.

  10. Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. (United States)

    Yu, Linhui; Chen, Xi; Wang, Zhen; Wang, Shimei; Wang, Yuping; Zhu, Qisheng; Li, Shigui; Xiang, Chengbin


    Enhancing drought tolerance without yield decrease has been a great challenge in crop improvement. Here, we report the Arabidopsis (Arabidopsis thaliana) homodomain-leucine zipper transcription factor Enhanced Drought Tolerance/HOMEODOMAIN GLABROUS11 (EDT1/HDG11) was able to confer drought tolerance and increase grain yield in transgenic rice (Oryza sativa) plants. The improved drought tolerance was associated with a more extensive root system, reduced stomatal density, and higher water use efficiency. The transgenic rice plants also had higher levels of abscisic acid, proline, soluble sugar, and reactive oxygen species-scavenging enzyme activities during stress treatments. The increased grain yield of the transgenic rice was contributed by improved seed setting, larger panicle, and more tillers as well as increased photosynthetic capacity. Digital gene expression analysis indicated that AtEDT1/HDG11 had a significant influence on gene expression profile in rice, which was consistent with the observed phenotypes of transgenic rice plants. Our study shows that AtEDT1/HDG11 can improve both stress tolerance and grain yield in rice, demonstrating the efficacy of AtEDT1/HDG11 in crop improvement.

  11. Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants.

    Directory of Open Access Journals (Sweden)

    Wei Wei

    Full Text Available BACKGROUND: Soybean [Glycine max (L. Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production. PRINCIPAL FINDINGS: Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressions differentially responded to drought, salt, cold and ABA treatments. The six GmPHDs were nuclear proteins and showed ability to bind the cis-element "GTGGAG". The N-terminal domain of GmPHD played a major role in DNA binding. Using a protoplast assay system, we find that GmPHD1 to GmPHD5 had transcriptional suppression activity whereas GmPHD6 did not have. In yeast assay, the GmPHD6 can form homodimer and heterodimer with the other GmPHDs except GmPHD2. The N-terminal plus the variable regions but not the PHD-finger is required for the dimerization. Transgenic Arabidopsis plants overexpressing the GmPHD2 showed salt tolerance when compared with the wild type plants. This tolerance was likely achieved by diminishing the oxidative stress through regulation of downstream genes. SIGNIFICANCE: These results provide important clues for soybean stress tolerance through manipulation of PHD-type transcription regulator.

  12. PPF1 May Suppress Plant Senescence via Activating TFL1 in Transgenic Arabidopsis Plants

    Institute of Scientific and Technical Information of China (English)

    Da-Yong Wang; Qing Li; Ke-Ming Cui; Yu-Xian Zhu


    Senescence, a sequence of biochemical and physiological events, constitutes the final stage of development In higher plants and is modulated by a variety of environmental factors and intemal factors. PPF1 possesses an important biological function in plant development by controlling the Ca2+ storage capacity within chloroplasts. Here we show that the expression of PPF1 might play a pivotal role in negatively regulating plant senescence as revealed by the regulation of overexpression and suppression of PPF1 on plant development. Moreover, TFL1, a key regulator in the floral repression pathway, was screened out as one of the downstream targets for PPF1 in the senescence-signaling pathway. Investigation of the senescence-related phenotypes in PPF1(-) tfl1-1 and PPF1(+) tfl1-1 double mutants confirmed and further highlighted the relation of PPF1 with TFL1 in tranegenic plants. The activation of TFL1 expression by PPF1 defines an important pathway possibly essential for the negative regulation of plant senescence in transgenic Arabidopsis.

  13. Strong seed-specific protein expression from the Vigna radiata storage protein 8SGα promoter in transgenic Arabidopsis seeds. (United States)

    Chen, Mo-Xian; Zheng, Shu-Xiao; Yang, Yue-Ning; Xu, Chao; Liu, Jie-Sheng; Yang, Wei-Dong; Chye, Mee-Len; Li, Hong-Ye


    Vigna radiata (mung bean) is an important crop plant and is a major protein source in developing countries. Mung bean 8S globulins constitute nearly 90% of total seed storage protein and consist of three subunits designated as 8SGα, 8SGα' and 8SGβ. The 5'-flanking sequences of 8SGα' has been reported to confer high expression in transgenic Arabidopsis seeds. In this study, a 472-bp 5'-flanking sequence of 8SGα was identified by genome walking. Computational analysis subsequently revealed the presence of numerous putative seed-specific cis-elements within. The 8SGα promoter was then fused to the gene encoding β-glucuronidase (GUS) to create a reporter construct for Arabidopsis thaliana transformation. The spatial and temporal expression of 8SGα∷GUS, as investigated using GUS histochemical assays, showed GUS expression exclusively in transgenic Arabidopsis seeds. Quantitative GUS assays revealed that the 8SGα promoter showed 2- to 4-fold higher activity than the Cauliflower Mosaic Virus (CaMV) 35S promoter. This study has identified a seed-specific promoter of high promoter strength, which is potentially useful for directing foreign protein expression in seed bioreactors.

  14. Inhibition of cell proliferation, cell expansion and differentiation by the Arabidopsis SUPERMAN gene in transgenic tobacco plants. (United States)

    Bereterbide, A; Hernould, M; Castera, S; Mouras, A


    Plant development depends upon the control of growth, organization and differentiation of cells derived from shoot and root meristems. Among the genes involved in flower organ determination, the cadastral gene SUPERMAN controls the boundary between whorls 3 and 4 and the growth of the adaxial outer ovule integument by down-regulating cell divisions. To determine the precise function of this gene we overexpressed ectopically the Arabidopsis thaliana (L.) Heynh. SUPERMAN gene in tobacco (Nicotiana tabacum L.). The transgenic plants exhibited a dwarf phenotype. Histologically and cytologically detailed analyses showed that dwarfism is correlated with a reduction in cell number, which is in agreement with the SUPERMAN function in Arabidopsis. Furthermore, a reduction in cell expansion and an impairment of cell differentiation were observed in tobacco organs. These traits were observed in differentiated vegetative and floral organs but not in meristem structures. A potential effect of the SUPERMAN transcription factor in the control of gibberellin biosynthesis is discussed.

  15. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis

    Indian Academy of Sciences (India)

    Ji Bao Chen; Jian Wei Yang; Zhao Yuan Zhang; Xiao Fan Feng; Shu Min Wang


    Many plants accumulate proline in response to salt stress. -pyrroline-5-carboxylate synthetase (P5CS) is the rate-limiting enzyme in proline biosynthesis in plants. Plasmid DNA (pCHF3-PvP5CS1 and pCHF3-PvP5CS2) containing the selectable neomycin phosphotransferase gene for kanamycin resistance and Phaseolus vulgaris P5CS (PvP5CS1 and PvP5CS2) cDNA was introduced into Arabidopsis plants using Agrobacterium-mediated gene transfer. Southern blot, northern blot and RT-PCR analyses demonstrated that the foreign genes were integrated into Arabidopsis chromosomal DNA and expressed. Single-gene transformants were analysed in this study. Transgenic plants expressed higher levels of PvP5CS1 and PvP5CS2 transcripts under salt stress conditions than under normal conditions. When treated with 0, 100 and 200 mM NaCl, the average proline content in leaves of transgenic plants was significantly higher $(P \\lt 0.01)$ than control plants. The average relative electrical conductivity (REC) of transgenic lines was significantly lower $(P \\lt 0.01)$ than control plants under salt stress condition. Biomass production of transgenic lines was significantly higher $(P \\lt 0.05)$ than control plants under 200 mM NaCl stress treatment. These results indicated that introducing PvP5CS1 and PvP5CS2 cDNA into transgenic Arabidopsis caused proline overproduction, increasing salt tolerance. Although the expression of PvP5CS1 in L4 lines and PvP5CS2 in S4 lines was the same under salt stress condition, the S4 lines accumulated 1.6 and 1.9 times more proline than the L4 lines under 100 and 200 mM NaCl treatments, respectively. The REC of S4 plants was 0.5 (100 mM NaCl) and 0.6 times (200 mM NaCl) that of L4 plants. The biomass production of S4 plants was 1.6 times (200 mM NaCl) more than in L4 plants. Total P5CS enzyme activity of S4 was significantly higher than that of L4. These results implied that the PvP5CS2 protein had stronger capacity to catalyze proline synthesis than PvP5CS1 under salt

  16. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. (United States)

    Butaye, Katleen M J; Goderis, Inge J W M; Wouters, Piet F J; Pues, Jonathan M-T G; Delauré, Stijn L; Broekaert, Willem F; Depicker, Ann; Cammue, Bruno P A; De Bolle, Miguel F C


    Basic and applied research involving transgenic plants often requires consistent high-level expression of transgenes. However, high inter-transformant variability of transgene expression caused by various phenomena, including gene silencing, is frequently observed. Here, we show that stable, high-level transgene expression is obtained using Arabidopsis thaliana post-transcriptional gene silencing (PTGS) sgs2 and sgs3 mutants. In populations of first generation (T1) A. thaliana plants transformed with a beta-glucuronidase (GUS) gene (uidA) driven by the 35S cauliflower mosaic virus promoter (p35S), the incidence of highly expressing transformants shifted from 20% in wild type background to 100% in sgs2 and sgs3 backgrounds. Likewise, when sgs2 mutants were transformed with a cyclin-dependent kinase inhibitor 6 gene under control of p35S, all transformants showed a clear phenotype typified by serrated leaves, whereas such phenotype was only observed in about one of five wild type transformants. p35S-driven uidA expression remained high and steady in T2 sgs2 and sgs3 transformants, in marked contrast to the variable expression patterns observed in wild type T2 populations. We further show that T-DNA constructs flanked by matrix attachment regions of the chicken lysozyme gene (chiMARs) cause a boost in GUS activity by fivefold in sgs2 and 12-fold in sgs3 plants, reaching up to 10% of the total soluble proteins, whereas no such boost is observed in the wild type background. MAR-based plant transformation vectors used in a PTGS mutant background might be of high value for efficient high-throughput screening of transgene-based phenotypes as well as for obtaining extremely high transgene expression in plants.

  17. The better growth phenotype of DvGS1-transgenic arabidopsis thaliana is attributed to the improved efficiency of nitrogen assimilation

    Directory of Open Access Journals (Sweden)

    Zhu Chenguang


    Full Text Available The overexpression of the algal glutamine synthetase (GS gene DvGS1 in Arabidopsis thaliana resulted in higher plant biomass and better growth phenotype. The purpose of this study was to recognize the biological mechanism for the growth improvement of DvGS1-transgenic Arabidopsis. A series of molecular and biochemical investigations related to nitrogen and carbon metabolism in the DvGS1-transgenic line was conducted. Analysis of nitrogen use efficiency (NUE-related gene transcription and enzymatic activity revealed that the transcriptional level and enzymatic activity of the genes encoding GS, glutamate synthase, glutamate dehydrogenase, alanine aminotransferase and aspartate aminotransferase, were significantly upregulated, especially from leaf tissues of the DvGS1-transgenic line under two nitrate conditions. The DvGS1-transgenic line showed increased total nitrogen content and decreased carbon: nitrogen ratio compared to wild-type plants. Significant reduced concentrations of free nitrate, ammonium, sucrose, glucose and starch, together with higher concentrations of total amino acids, individual amino acids (glutamate, aspartate, asparagine, methionine, soluble proteins and fructose in leaf tissues confirmed that the DvGS1-transgenic line demonstrated a higher efficiency of nitrogen assimilation, which subsequently affected carbon metabolism. These improved metabolisms of nitrogen and carbon conferred the DvGS1-transgenic Arabidopsis higher NUE, more biomass and better growth phenotype compared with the wild-type plants.

  18. Using biomass of starch-rich transgenic Arabidopsis vacuolar as feedstock for fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung; Cheng, Chieh-Lun; Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Huang, Li-Fen; Chang, Jo-Shu [Yuan Ze Univ., Tao-yuan, Taiwan (China). Graduate School of Biotechnology and Bioengineering


    Cellulose is the major constitute of plant biomass and highly available in agricultural wastes and industrial effluents, thereby being a cost-effective feedstock for bioenergy production. However, most hydrogen producing bacteria (HPB) could not directly convert cellulosic materials (such as rice husk and rice straw) into hydrogen whereas most HPB could utilize sugar and starch for hydrogen production. In this work, we used an indigenous bacterial isolate Clostridium butyricum CGS2 as HPB, which could directly convert soluble starch into H2 with a maximum H2 production rate and a H2 yield of 205.07 ml H2/h/l and 6.46 mmol H2/g starch, respectively. However, C. butyricum CGS2 could not ferment pure cellulosic materials such as carboxymethyl cellulose and xylan. Moreover, we found that C. butyricum CGS2 could utilize rich husk to produce H2 at a rate of 13.19 ml H2/h/l due to the starch content in rice husk (H2 yield = 1.49 mmol H2/g rice husk). In contrast, since lacking starch content, rice straw cannot be converted to H2 by C. butyricum CGS2. The foregoing results suggest that increasing the starch content in the natural agricultural wastes may make them better feedstock for fermentative H2 production. Hence, a genetically modified plant (Arabidopsis vacuolar) was constructed to enhance its starch concentration. The starch concentration of mutant plant S1 increased to 10.67 mg/fresh weight, which is four times higher than that of wild type plant. Using mutant plant S1 as carbon source, C. butyricum CGS2 was able to give a high cumulative H2 production and H2 production rate of 285.4 ml H2/l and 43.6 ml/h/l, respectively. The cumulative H2 production and H2 production rate both increased when the concentration of the transgenic plant was increased. Therefore, this study successful demonstrated the feasibility of expressing starch on genetically-modified plants to create a more effective feedstock for dark H2 fermentation. (orig.)

  19. Functional Characterization of Cotton GaMYB62L, a Novel R2R3 TF in Transgenic Arabidopsis (United States)

    Butt, Hamama Islam; Yang, Zhaoen; Chen, Eryong; Zhao, Ge; Gong, Qian; Yang, Zuoren; Zhang, Xueyan


    Drought stress can trigger the production of ABA in plants, in response to adverse conditions, which induces the transcript of stress-related marker genes. The R2R3 MYB TFs are implicated in regulation of various plants developmental, metabolic and multiple environmental stress responses. Here, a R2R3-MYB cloned gene, GaMYB62L, was transformed in Arabidopsis and was functionally characterized. The GaMYB62L protein contains two SANT domains with a conserved R2R3 imperfect repeats. The GaMYB62L cDNA is 1,017 bp with a CDS of 879, encodes a 292-residue polypeptide with MW of 38.78 kD and a pI value of 8.91. Overexpressed GaMYB62L transgenic Arabidopsis have increased proline and chlorophyll content, superior seed germination rate under salt and osmotic stress, less water loss rate with reduced stomatal apertures, high drought avoidance as compared to WT on water deprivation and also significant plant survival rates at low temperature. In addition, overexpressed GaMYB62L lines were more sensitive to ABA mediated germination and root elongation assay. Moreover, ABA induced GaMYB62L overexpression, enhanced the expression of ABA stress related marker genes like RD22, COR15A, ADH1, and RD29A. Together, overexpression of GaMYB62L suggested having developed better drought, salt and cold tolerance in transgenic Arabidopsis and thus presented it as a prospective candidate gene to achieve better abiotic stress tolerance in cotton crop. PMID:28125637

  20. Successful expression of a novel bacterial gene for pinoresinol reductase and its effect on lignan biosynthesis in transgenic Arabidopsis thaliana. (United States)

    Tamura, Masayuki; Tsuji, Yukiko; Kusunose, Tatsuya; Okazawa, Atsushi; Kamimura, Naofumi; Mori, Tetsuya; Nakabayashi, Ryo; Hishiyama, Shojiro; Fukuhara, Yuki; Hara, Hirofumi; Sato-Izawa, Kanna; Muranaka, Toshiya; Saito, Kazuki; Katayama, Yoshihiro; Fukuda, Masao; Masai, Eiji; Kajita, Shinya


    Pinoresinol reductase and pinoresinol/lariciresinol reductase play important roles in an early step of lignan biosynthesis in plants. The activities of both enzymes have also been detected in bacteria. In this study, pinZ, which was first isolated as a gene for bacterial pinoresinol reductase, was constitutively expressed in Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. Higher reductive activity toward pinoresinol was detected in the resultant transgenic plants but not in wild-type plant. Principal component analysis of data from untargeted metabolome analyses of stem, root, and leaf extracts of the wild-type and two independent transgenic lines indicate that pinZ expression caused dynamic metabolic changes in stems, but not in roots and leaves. The metabolome data also suggest that expression of pinZ influenced the metabolisms of lignan and glucosinolates but not so much of neolignans such as guaiacylglycerol-8-O-4'-feruloyl ethers. In-depth quantitative analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) indicated that amounts of pinoresinol and its glucoside form were markedly reduced in the transgenic plant, whereas the amounts of glucoside form of secoisolariciresinol in transgenic roots, leaves, and stems increased. The detected levels of lariciresinol in the transgenic plant following β-glucosidase treatment also tended to be higher than those in the wild-type plant. Our findings indicate that overexpression of pinZ induces change in lignan compositions and has a major effect not only on lignan biosynthesis but also on biosynthesis of other primary and secondary metabolites.

  1. Overexpression of ZmIRT1 and ZmZIP3 Enhances Iron and Zinc Accumulation in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Suzhen Li

    Full Text Available Iron and zinc are important micronutrients for both the growth and nutrient availability of crop plants, and their absorption is tightly controlled by a metal uptake system. Zinc-regulated transporters, iron-regulated transporter-like proteins (ZIP, is considered an essential metal transporter for the acquisition of Fe and Zn in graminaceous plants. Several ZIPs have been identified in maize, although their physiological function remains unclear. In this report, ZmIRT1 was shown to be specifically expressed in silk and embryo, whereas ZmZIP3 was a leaf-specific gene. Both ZmIRT1 and ZmZIP3 were shown to be localized to the plasma membrane and endoplasmic reticulum. In addition, transgenic Arabidopsis plants overexpressing ZmIRT1 or ZmZIP3 were generated, and the metal contents in various tissues of transgenic and wild-type plants were examined based on ICP-OES and Zinpyr-1 staining. The Fe and Zn concentration increased in roots and seeds of ZmIRT1-overexpressing plants, while the Fe content in shoots decreased. Overexpressing ZmZIP3 enhanced Zn accumulation in the roots of transgenic plants, while that in shoots was repressed. In addition, the transgenic plants showed altered tolerance to various Fe and Zn conditions compared with wild-type plants. Furthermore, the genes associated with metal uptake were stimulated in ZmIRT1 transgenic plants, while those involved in intra- and inter- cellular translocation were suppressed. In conclusion, ZmIRT1 and ZmZIP3 are functional metal transporters with different ion selectivities. Ectopic overexpression of ZmIRT1 may stimulate endogenous Fe uptake mechanisms, which may facilitate metal uptake and homeostasis. Our results increase our understanding of the functions of ZIP family transporters in maize.

  2. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation. (United States)

    Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng


    GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.

  3. OsSGL, a Novel DUF1645 Domain-Containing Protein, Confers Enhanced Drought Tolerance in Transgenic Rice and Arabidopsis. (United States)

    Cui, Yanchun; Wang, Manling; Zhou, Huina; Li, Mingjuan; Huang, Lifang; Yin, Xuming; Zhao, Guoqiang; Lin, Fucheng; Xia, Xinjie; Xu, Guoyun


    Drought is a major environmental factor that limits plant growth and crop productivity. Genetic engineering is an effective approach to improve drought tolerance in various crops, including rice (Oryza sativa). Functional characterization of relevant genes is a prerequisite when identifying candidates for such improvements. We investigated OsSGL (Oryza sativa Stress tolerance and Grain Length), a novel DUF1645 domain-containing protein from rice. OsSGL was up-regulated by multiple stresses and localized to the nucleus. Transgenic plants over-expressing or hetero-expressing OsSGL conferred significantly improved drought tolerance in transgenic rice and Arabidopsis thaliana, respectively. The overexpressing plants accumulated higher levels of proline and soluble sugars but lower malondialdehyde (MDA) contents under osmotic stress. Our RNA-sequencing data demonstrated that several stress-responsive genes were significantly altered in transgenic rice plants. We unexpectedly observed that those overexpressing rice plants also had extensive root systems, perhaps due to the altered transcript levels of auxin- and cytokinin-associated genes. These results suggest that the mechanism by which OsSGL confers enhanced drought tolerance is due to the modulated expression of stress-responsive genes, higher accumulations of osmolytes, and enlarged root systems.

  4. Two Groups of Thellungiella salsuginea RAVs Exhibit Distinct Responses and Sensitivity to Salt and ABA in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shaohui Yang

    Full Text Available Containing both AP2 domain and B3 domain, RAV (Related to ABI3/VP1 transcription factors are involved in diverse functions in higher plants. A total of eight TsRAV genes were isolated from the genome of Thellungiella salsuginea and could be divided into two groups (A- and B-group based on their sequence similarity. The mRNA abundance of all Thellungiella salsuginea TsRAVs followed a gradual decline during seed germination. In Thellungiella salsuginea seedling, transcripts of TsRAVs in the group A (A-TsRAVs were gradually and moderately reduced by salt treatment but rapidly and severely repressed by ABA treatment. In comparison, with a barely detectable constitutive expression, the transcriptional level of TsRAVs in the group B (B-TsRAVs exhibited a moderate induction in cotyledons when confronted with ABA. We then produced the "gain-of-function" transgenic Arabidopsis plants for each TsRAV gene and found that only 35S:A-TsRAVs showed weak growth retardation including reduced root elongation, suggesting their roles in negatively controlling plant growth. Under normal conditions, the germination process of all TsRAVs overexpressing transgenic seeds was inhibited with a stronger effect observed in 35S:A-TsRAVs seeds than in 35S:B-TsRAVs seeds. With the presence of NaCl, seed germination and seedling root elongation of all plants including wild type and 35S:TsRAVs plants were retarded and a more severe inhibition occurred to the 35S:A-TsRAV transgenic plants. ABA treatment only negatively affected the germination rates of 35S:A-TsRAV transgenic seeds but not those of 35S:B-TsRAV transgenic seeds. All 35S:TsRAVs transgenic plants showed a similar degree of reduction in root growth compared with untreated seedlings in the presence of ABA. Furthermore, the cotyledon greening/expansion was more severely inhibited 35S:A-TsRAVs than in 35S:B-TsRAVs seedlings. Upon water deficiency, with a wider opening of stomata, 35S:A-TsRAVs plants experienced a faster

  5. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiangbo [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Inner Mongolia Key Laboratory of Biomass-Energy Conversion, The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou 040100 (China); Xu, Wenzhong [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Ma, Mi, E-mail: [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China)


    Highlights: Black-Right-Pointing-Pointer Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. Black-Right-Pointing-Pointer Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. Black-Right-Pointing-Pointer Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. Black-Right-Pointing-Pointer A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2-10 folds cadmium/arsenite and 2-3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  6. Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress. (United States)

    Ke, Qingbo; Wang, Zhi; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Kwak, Sang-Soo


    YUCCA6, a member of the YUCCA family of flavin monooxygenase-like proteins, is involved in the tryptophan-dependent IAA biosynthesis pathway and responses to environmental cues in Arabidopsis. However, little is known about the role of the YUCCA pathway in auxin biosynthesis in poplar. Here, we generated transgenic poplar (Populus alba × P. glandulosa) expressing the Arabidopsis YUCCA6 gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SY plants). Three SY lines (SY7, SY12 and SY20) were selected based on the levels of AtYUCCA6 transcript. SY plants displayed auxin-overproduction morphological phenotypes, such as rapid shoot growth and retarded main root development with increased root hair formation. In addition, SY plants had higher levels of free IAA and early auxin-response gene transcripts. SY plants exhibited tolerance to drought stress, which was associated with reduced levels of reactive oxygen species. Furthermore, SY plants showed delayed hormone- and dark-induced senescence in detached leaves due to higher photosystem II efficiency and less membrane permeability. These results suggest that the conserved IAA biosynthesis pathway mediated by YUCCA family members exists in poplar.

  7. Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. (United States)

    Gunapati, Samatha; Naresh, Ram; Ranjan, Sanjay; Nigam, Deepti; Hans, Aradhana; Verma, Praveen C; Gadre, Rekha; Pathre, Uday V; Sane, Aniruddha P; Sane, Vidhu A


    NAC proteins are plant-specific transcription factors that play essential roles in regulating development and responses to abiotic and biotic stresses. We show that over-expression of the cotton GhNAC2 under the CaMV35S promoter increases root growth in both Arabidopsis and cotton under unstressed conditions. Transgenic Arabidopsis plants also show improved root growth in presence of mannitol and NaCl while transgenic cotton expressing GhNAC2 show reduced leaf abscission and wilting upon water stress compared to control plants. Transgenic Arabidopsis plants also have larger leaves, higher seed number and size under well watered conditions, reduced transpiration and higher relative leaf water content. Micro-array analysis of transgenic plants over-expressing GhNAC2 reveals activation of the ABA/JA pathways and a suppression of the ethylene pathway at several levels to reduce expression of ERF6/ERF1/WRKY33/ MPK3/MKK9/ACS6 and their targets. This probably suppresses the ethylene-mediated inhibition of organ expansion, leading to larger leaves, better root growth and higher yields under unstressed conditions. Suppression of the ethylene pathway and activation of the ABA/JA pathways also primes the plant for improved stress tolerance by reduction in transpiration, greater stomatal control and suppression of growth retarding factors.

  8. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase. (United States)

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal


    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants.

  9. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. (United States)

    Mao, Hude; Yu, Lijuan; Han, Ran; Li, Zhanjie; Liu, Hui


    Abiotic stress has been shown to significantly limit the growth and productivity of crops. NAC transcription factors play essential roles in response to various abiotic stresses. However, only little information regarding stress-related NAC genes is available in maize. Here, we cloned a maize NAC transcription factor ZmNAC55 and identified its function in drought stress. Transient expression and transactivation assay demonstrated that ZmNAC55 was localized in the nucleus and had transactivation activity. Expression analysis of ZmNAC55 in maize showed that this gene was induced by drought, high salinity and cold stresses and by abscisic acid (ABA). Promoter analysis demonstrated that multiple stress-related cis-acting elements exist in promoter region of ZmNAC55. Overexpression of ZmNAC55 in Arabidopsis led to hypersensitivity to ABA at the germination stage, but enhanced drought resistence compared to wild-type seedlings. Transcriptome analysis identified a number of differentially expressed genes between 35S::ZmNAC55 transgenic and wild-type plants, and many of which are involved in stress response, including twelve qRT-PCR confirmed well-known drought-responsive genes. These results highlight the important role of ZmNAC55 in positive regulates of drought resistence, and may have potential applications in transgenic breeding of drought-tolerant crops.

  10. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress


    Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C.; del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F.; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; María E. González; Carrasco, Pedro; Ruiz, Oscar A.


    Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC are more sensitive than the wild type to this stress. Although it is speculated that the overexpression of ADC genes m...

  11. TaSK5, an abiotic stress-inducible GSK3/shaggy-like kinase from wheat, confers salt and drought tolerance in transgenic Arabidopsis. (United States)

    Christov, Nikolai Kirilov; Christova, Petya Koeva; Kato, Hideki; Liu, Yuelin; Sasaki, Kentaro; Imai, Ryozo


    A novel cold-inducible GSK3/shaggy-like kinase, TaSK5, was isolated from winter wheat using a macroarray-based differential screening approach. TaSK5 showed high similarity to Arabidopsis subgroup I GSK3/shaggy-like kinases ASK-alpha, AtSK-gamma and ASK-epsilon. RNA gel blot analyses revealed TaSK5 induction by cold and NaCl treatments and to a lesser extent by drought treatment. TaSK5 functionally complemented the cold- and salt-sensitive phenotypes of a yeast GSK3/shaggy-like kinase mutant, △mck1. Transgenic Arabidopsis plants overexpressing TaSK5 cDNA showed enhanced tolerance to salt and drought stresses. By contrast, the tolerance of the transgenic plants to freezing stress was not altered. Microarray analysis revealed that a number of abiotic stress-inducible genes were constitutively induced in the transgenic Arabidopsis plants, suggesting that TaSK5 may function in a novel signal transduction pathway that appears to be unrelated to DREB1/CBF regulon and may involve crosstalk between abiotic and hormonal signals.

  12. Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress. (United States)

    Lai, Shu-Jung; Lai, Mei-Chin; Lee, Ren-Jye; Chen, Yu-Hsuan; Yen, Hungchen Emilie


    Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1(T) is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments.

  13. Constitutive over-expression of rice chymotrypsin protease inhibitor gene OCPI2 results in enhanced growth, salinity and osmotic stress tolerance of the transgenic Arabidopsis plants. (United States)

    Tiwari, Lalit Dev; Mittal, Dheeraj; Chandra Mishra, Ratnesh; Grover, Anil


    Protease inhibitors are involved primarily in defense against pathogens. In recent years, these proteins have also been widely implicated in response of plants to diverse abiotic stresses. Rice chymotrypsin protease inhibitor gene OCPI2 is highly induced under salt and osmotic stresses. The construct containing the complete coding sequence of OCPI2 cloned downstream to CaMV35S promoter was transformed in Arabidopsis and single copy, homozygous transgenic lines were produced. The transgenic plants exhibited significantly enhanced tolerance to NaCl, PEG and mannitol stress as compared to wild type plants. Importantly, the vegetative and reproductive growth of transgenic plants under unstressed, control conditions was also enhanced: transgenic plants were more vigorous than wild type, resulting into higher yield in terms of silique number. The RWC values and membrane stability index of transgenic in comparison to wild type plants was higher. Higher proline content was observed in the AtOCPI2 lines, which was associated with higher transcript expression of pyrroline-5-carboxylate synthase and lowered levels of proline dehydrogenase genes. The chymotrypsin protease activities were lower in the transgenic as against wild type plants, under both unstressed, control as well as stressed conditions. It thus appears that rice chymotrypsin protease inhibitor gene OCPI2 is a useful candidate gene for genetic improvement of plants against salt and osmotic stress.

  14. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis. (United States)

    Lardizabal, K D; Metz, J G; Sakamoto, T; Hutton, W C; Pollard, M R; Lassner, M W


    Wax synthase (WS, fatty acyl-coenzyme A [coA]: fatty alcohol acyltransferase) catalyzes the final step in the synthesis of linear esters (waxes) that accumulate in seeds of jojoba (Simmondsia chinensis). We have characterized and partially purified this enzyme from developing jojoba embryos. A protein whose presence correlated with WS activity during chromatographic fractionation was identified and a cDNA encoding that protein was cloned. Seed-specific expression of the cDNA in transgenic Arabidopsis conferred high levels of WS activity on developing embryos from those plants. The WS sequence has significant homology with several Arabidopsis open reading frames of unknown function. Wax production in jojoba requires, in addition to WS, a fatty acyl-CoA reductase (FAR) and an efficient fatty acid elongase system that forms the substrates preferred by the FAR. We have expressed the jojoba WS cDNA in Arabidopsis in combination with cDNAs encoding the jojoba FAR and a beta-ketoacyl-CoA synthase (a component of fatty acid elongase) from Lunaria annua. (13)C-Nuclear magnetic resonance analysis of pooled whole seeds from transgenic plants indicated that as many as 49% of the oil molecules in the seeds were waxes. Gas chromatography analysis of transmethylated oil from individual seeds suggested that wax levels may represent up to 70% (by weight) of the oil present in those seeds.

  15. A highly efficient miPCR method for isolating FSTs from transgenic Arabidopsis thaliana plants

    Indian Academy of Sciences (India)

    Gennady V. Pogorelko; Oksana V. Fursova


    The exact localization of an insertion in the genome of transgenic plants obtained by Agrobacterium-mediated transformation is an integral part of most experiments aimed at studying these types of mutants. There are several methods for isolating unknown nucleotide sequences of genomic DNA which flank the borders of T-DNA integrated in the genome of plants. However, all the methods based on PCR have limitations which in some cases do not permit the desired objective to be achieved. We have developed a new technique for isolating flanking sequence tags (FSTs) via modified inverse PCR. This method is highly efficient and simple, but also retains the advantages of previously well-documented approaches.

  16. Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. (United States)

    Gasic, Ksenija; Korban, Schuyler S


    Phytochelatins (PCs) are post-translationally synthesized thiol reactive peptides that play important roles in detoxification of heavy metal and metalloids in plants and other living organisms. The overall goal of this study is to develop transgenic plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A FLAG-tagged AtPCS1 gDNA, under its native promoter, is expressed in Indian mustard, and transgenic pcs lines have been compared with wild-type plants for tolerance to and accumulation of cadmium (Cd) and arsenic (As). Compared to wild type plants, transgenic plants exhibit significantly higher tolerance to Cd and As. Shoots of Cd-treated pcs plants have significantly higher concentrations of PCs and thiols than those of wild-type plants. Shoots of wild-type plants accumulated significantly more Cd than those of transgenic plants, while accumulation of As in transgenic plants was similar to that in wild type plants. Although phytochelatin synthase improves the ability of Indian mustard to tolerate higher levels of the heavy metal Cd and the metalloid As, it does not increase the accumulation potential of these metals in the above ground tissues of Indian mustard plants.

  17. The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants. (United States)

    Cabello, Julieta V; Giacomelli, Jorge I; Gómez, María C; Chan, Raquel L


    Homeodomain-leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom; members of subfamily I are known to be involved in abiotic stress responses. HaHB11 belongs to this subfamily and it was previously shown that it is able to confer improved yield and tolerance to flooding via a quiescent strategy. Here we show that HaHB11 expression is induced by ABA, NaCl and water deficit in sunflower seedlings and leaves. Arabidopsis transgenic plants expressing HaHB11, controlled either by its own promoter or by the constitutive 35S CaMV, presented rolled leaves and longer roots than WT when grown under standard conditions. In addition, these plants showed wider stems and more vascular bundles. To deal with drought, HaHB11 transgenic plants closed their stomata faster and lost less water than controls, triggering an enhanced tolerance to such stress condition and also to salinity stress. Concomitantly, ABA-synthesis and sensing related genes were differentially regulated in HaHB11 transgenic plants. Either under long-term salinity stress or mild drought stress, HaHB11 transgenic plants did not exhibit yield penalties. Moreover, alfalfa transgenic plants were generated which also showed enhanced drought tolerance. Altogether, the results indicated that HaHB11 was able to confer drought and salinity tolerance via a complex mechanism which involves morphological, physiological and molecular changes.

  18. Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens. (United States)

    Pogorelko, Gennady; Lionetti, Vincenzo; Fursova, Oksana; Sundaram, Raman M; Qi, Mingsheng; Whitham, Steven A; Bogdanove, Adam J; Bellincampi, Daniela; Zabotina, Olga A


    The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens.

  19. Heterologous expression of a chloroplast outer envelope protein from Suaeda salsa confers oxidative stress tolerance and induces chloroplast aggregation in transgenic Arabidopsis plants. (United States)

    Wang, Fang; Yang, Chun-Lin; Wang, Li-Li; Zhong, Nai-Qin; Wu, Xiao-Min; Han, Li-Bo; Xia, Gui-Xian


    Suaeda salsa is a euhalophytic plant that is tolerant to coastal seawater salinity. In this study, we cloned a cDNA encoding an 8.4 kDa chloroplast outer envelope protein (designated as SsOEP8) from S. salsa and characterized its cellular function. Steady-state transcript levels of SsOEP8 in S. salsa were up-regulated in response to oxidative stress. Consistently, ectopic expression of SsOEP8 conferred enhanced oxidative stress tolerance in transgenic Bright Yellow 2 (BY-2) cells and Arabidopsis, in which H(2) O(2) content was reduced significantly in leaf cells. Further studies revealed that chloroplasts aggregated to the sides of mesophyll cells in transgenic Arabidopsis leaves, and this event was accompanied by inhibited expression of genes encoding proteins for chloroplast movements such as AtCHUP1, a protein involved in actin-based chloroplast positioning and movement. Moreover, organization of actin cytoskeleton was found to be altered in transgenic BY-2 cells. Together, these results suggest that SsOEP8 may play a critical role in oxidative stress tolerance by changing actin cytoskeleton-dependent chloroplast distribution, which may consequently lead to the suppressed production of reactive oxygen species (ROS) in chloroplasts. One significantly novel aspect of this study is the finding that the small chloroplast envelope protein is involved in oxidative stress tolerance.

  20. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant.The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment.The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  1. Isolation of Persicaria minor sesquiterpene synthase promoter and its deletions for transgenic Arabidopsis thaliana (United States)

    Omar, Aimi Farehah; Ismail, Ismanizan


    Sesquiterpene synthase (SS) catalyzes the formation of sesquiterpenes from farnesyl diphosphate (FDP) via carbocation intermediates. In this study, the promoter region of sesquiterpene synthase was isolated from Persicaria minor to identify possible cis-acting elements in the promoter. The full-length PmSS promoter of P. minor is 1824-bp sequences. The sequence was analyzed and several putative cis-acting regulatory elements were identified. Three cis-acting regulatory elements were selected for deletion analysis which are cis-acting element involved in wound responsiveness (WUN), cis - acting element involved in defense and stress responsiveness (TC) and cis-acting element involved in ABA responsiveness (ABRE). Series of deletions were conducted to assess the promoter activity producing three truncated fragments promoter; Prom 2 1606-bp, Prom 3 1144- bp, and Prom 4 921-bp. The full-length promoter and its deletion series were cloned into the pBGWFS7 vector which contain β-glucuronidase (GUS) gene and green fluorescent protein (GFP) as the reporter gene. All constructs were successfully transformed into Arabidopsis thaliana based on PCR of positive BASTA resistance plants.

  2. Impact of ubiquitous inhibitors on the GUS gene reporter system: evidence from the model plants Arabidopsis, tobacco and rice and correction methods for quantitative assays of transgenic and endogenous GUS

    Directory of Open Access Journals (Sweden)

    Gerola Paolo D


    Full Text Available Abstract Background The β-glucuronidase (GUS gene reporter system is one of the most effective and employed techniques in the study of gene regulation in plant molecular biology. Improving protocols for GUS assays have rendered the original method described by Jefferson amenable to various requirements and conditions, but the serious limitation caused by inhibitors of the enzyme activity in plant tissues has thus far been underestimated. Results We report that inhibitors of GUS activity are ubiquitous in organ tissues of Arabidopsis, tobacco and rice, and significantly bias quantitative assessment of GUS activity in plant transformation experiments. Combined with previous literature reports on non-model species, our findings suggest that inhibitors may be common components of plant cells, with variable affinity towards the E. coli enzyme. The reduced inhibitory capacity towards the plant endogenous GUS discredits the hypothesis of a regulatory role of these compounds in plant cells, and their effect on the bacterial enzyme is better interpreted as a side effect due to their interaction with GUS during the assay. This is likely to have a bearing also on histochemical analyses, leading to inaccurate evaluations of GUS expression. Conclusions In order to achieve reliable results, inhibitor activity should be routinely tested during quantitative GUS assays. Two separate methods to correct the measured activity of the transgenic and endogenous GUS are presented.

  3. Diversion of carbon flux from gibberellin to steviol biosynthesis by over-expressing SrKA13H induced dwarfism and abnormality in pollen germination and seed set behaviour of transgenic Arabidopsis. (United States)

    Guleria, Praveen; Masand, Shikha; Yadav, Sudesh Kumar


    This paper documents the engineering of Arabidopsis thaliana for the ectopic over-expression of SrKA13H (ent-kaurenoic acid-13 hydroxylase) cDNA from Stevia rebaudiana. HPLC analysis revealed the significant accumulation of steviol (1-3 μg g(-1) DW) in two independent transgenic Arabidopsis lines over-expressing SrKA13H compared with the control. Independent of the steviol concentrations detected, both transgenic lines showed similar reductions in endogenous bioactive gibberellins (GA1 and GA4). They possessed phenotypic similarity to gibberellin-deficient mutants. The reduction in endogenous gibberellin content was found to be responsible for dwarfism in the transgenics. The exogenous application of GA3 could rescue the transgenics from dwarfism. The hypocotyl, rosette area, and stem length were all considerably reduced in the transgenics. A noteworthy decrease in pollen viability was noticed and, similarly, a retardation of 60-80% in pollen germination rate was observed. The exogenous application of steviol (0.2, 0.5, and 1.0 μg ml(-1)) did not influence pollen germination efficiency. This has suggested that in planta formation of steviol was not responsible for the observed changes in transgenic Arabidopsis. Further, the seed yield of the transgenics was reduced by 24-48%. Hence, this study reports for the first time that over-expression of SrKA13H cDNA in Arabidopsis has diverted the gibberellin biosynthetic route towards steviol biosynthesis. The Arabidopsis transgenics showed a significant reduction in endogenous gibberellins that might be responsible for the dwarfism, and the abnormal behaviour of pollen germination and seed set.

  4. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    KAUST Repository

    Schilling, Rhiannon K.


    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. The Study of the Participation of Heat Shock Proteins in the Resistance to High and Low Temperatures with the Use of Thellungiella (Thellungiella salsuguinea and Transgenic Lines of Arabidopsis (Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    K.Z. Gamburg


    Full Text Available Transgenic lines of Arabidopsis with HSP101 gene in sense and anti sense orientations acquired resistance to hard heat shock (50° C 10 min or 45-47° C 1 hour and to freezing (-4° C 2 hours due to the preliminary 2 hour’s heating at 37° C. Thus, it was shown at the first time that the induction of the resistance to hard heat shock and freezing with mild heat shock is possible in the absence of HSP101 synthesis. Thellungiella with the genome to 95-97% identical to the genome of Arabidopsis did not have higher resistance to high temperature, but was significantly more resistant to freezing. It differed from Arabidopsis by several times higher contents of HSP101, HSP60 and HSC70. Contents of these HSPs in Arabidopsis increased as a result of hardening at 4° C what was accompanied by the increase of the resistance to freezing. It is supposed that the resistances to heat and cold shocks are dependent not only from HSP101, but also from other HSPs.

  6. The Peanut (Arachis hypogaea L. Gene AhLPAT2 Increases the Lipid Content of Transgenic Arabidopsis Seeds.

    Directory of Open Access Journals (Sweden)

    Silong Chen

    Full Text Available Lysophosphatidic acid acyltransferase (LPAT, which converts lysophosphatidic acid (LPA to phosphatidic acid (PA, catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG biosynthesis. We recently reported the cloning and temporal-spatial expression of a peanut (Arachis hypogaea AhLPAT2gene, showing that an increase in AhLPAT2 transcript levels was closely correlated with an increase in seed oil levels. However, the function of the enzyme encoded by the AhLPAT2 gene remains unclear. Here, we report that AhLPAT2 transcript levels were consistently higher in the seeds of a high-oil cultivar than in those of a low-oil cultivar across different seed developmental stages. Seed-specific overexpression of AhLPAT2 in Arabidopsis results in a higher percentage of oil in the seeds and greater-than-average seed weight in the transgenic plants compared with the wild-type plants, leading to a significant increase in total oil yield per plant. The total fatty acid (FA content and the proportion of unsaturated FAs also increased. In the developing siliques of AhLPAT2-overexpressing plants, the expression levels of genes encoding crucial enzymes involved in de novo FA synthesis, acetyl-CoA subunit (AtBCCP2 and acyl carrier protein 1 (AtACP1 were elevated. AhLPAT2 overexpression also promoted the expression of several key genes related to TAG assembly, sucrose metabolism, and glycolysis. These results demonstrate that the expression of AhLPAT2 plays an important role in glycerolipid production in peanuts.

  7. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. (United States)

    Jiang, Shanshan; Zhang, Dan; Wang, Li; Pan, Jiaowen; Liu, Yang; Kong, Xiangpei; Zhou, Yan; Li, Dequan


    Calcium-dependent protein kinases (CDPKs) play essential roles in calcium-mediated signal transductions in plant response to abiotic stress. Several members have been identified to be regulators for plants response to abscisic acid (ABA) signaling. Here, we isolated a subgroup I CDPK gene, ZmCPK4, from maize. Quantitative real time PCR (qRT-PCR) analysis revealed that the ZmCPK4 transcripts were induced by various stresses and signal molecules. Transient and stable expression of the ZmCPK4-GFP fusion proteins revealed ZmCPK4 localized to the membrane. Moreover, overexpression of ZmCPK4 in the transgenic Arabidopsis enhanced ABA sensitivity in seed germination, seedling growth and stomatal movement. The transgenic plants also enhanced drought stress tolerance. Taken together, the results suggest that ZmCPK4 might be involved in ABA-mediated regulation of stomatal closure in response to drought stress.

  8. Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. (United States)

    Zhu, Lin; Guo, Jiansheng; Zhu, Jian; Zhou, Cheng


    Drought can activate several stress responses in plants, such as stomatal closure, accumulation of cuticular wax and ascorbic acid (AsA), which have been correlated with improvement of drought tolerance. In this study, a novel MYB gene, designed as EsWAX1, was isolated and characterized from Eutrema salsugineum. EsWAX1 contained a full-length open reading frame (ORF) of 1068 bp, which encoding 355 amino acids. Transcript levels of EsWAX1 were quickly inducible by drought stress and ABA treatment, indicating that EsWAX1 may act as a positive regulator in response to drought stress. Ectopic expression of EsWAX1 increased accumulation of cuticular wax via modulating the expression of several wax-related genes, such as CER1, KCS2 and KCR1. Scanning electron microscopy further revealed higher densities of wax crystalline structures on the adaxial surfaces of leaves in transgenic Arabidopsis plants. In addition, the expression of several AsA biosynthetic genes (VTC1, GLDH and MIOX4) was significantly up-regulated in EsWAX1-overexpressing lines and these transgenic plants have approximately 23-27% more total AsA content than WT plants. However, the high-level expression of EsWAX1 severely disrupted plant normal growth and development. To reduce negative effects of EsWAX1 over-expression on plant growth, we generated transgenic Arabidopsis plants expressing EsWAX1 driven by the stress-inducible RD29A promoter. Our data indicated the RD29A::EsWAX1 transgenic plants had greater tolerance to drought stress than wild-type plants. Taken together, the EsWAX1 gene is a potential regulator that may be utilized to improve plant drought tolerance by genetic manipulation.

  9. T cell receptor (TCR-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G


    Full Text Available Abstract Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ, which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN, were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.

  10. An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene. (United States)

    Moghaieb, Reda E A; Sharaf, Ahmed N; Soliman, Mohamed H; El-Arabi, Nagwa I; Momtaz, Osama A


    We present an efficient method for the production of transgenic salt tolerant hexaploid wheat plants expressing the Arabidopsis AtNHX1 gene. Wheat mature zygotic embryos were isolated from two hexaploid bread wheat (Triticum aestivum) cultivars (namely: Gemmeiza 9 and Gemmeiza 10) and were transformed with the A. tumefaciens LBA4404 harboring the pBI-121 vector containing the AtNHX1 gene. Transgenic wheat lines that express the gus intron was obtained and used as control. The results confirmed that npt-II gene could be transmitted and expressed in the T2 following 3:1 Mendelian segregation while the control plant couldn't. The data indicate that, the AtNHX1 gene was integrated in a stable manner into the wheat genome and the corresponding transcripts were expressed. The transformation efficiency was 5.7 and 7.5% for cultivars Gemmeiza 10 and Gemmeiza 9, respectively. A greenhouse experiment was conducted to investigate the effect of AtNHX1 gene in wheat salt tolerance. The transgenic wheat lines could maintain high growth rate under salt stress condition (350 mM NaCl) while the control plant couldn't. The results confirmed that Na(+)/H(+) antiporter gene AtNHX1 increased salt tolerance by increasing Na(+) accumulation and keeping K+/Na(+) balance. Thus, transgenic plants showed high tolerance to salt stress and can be considered as a new genetic resource in breeding programs.

  11. Expression of an alfalfa (Medicago sativa L.) peroxidase gene in transgenic Arabidopsis thaliana enhances resistance to NaCl and H2O2. (United States)

    Teng, K; Xiao, G Z; Guo, W E; Yuan, J B; Li, J; Chao, Y H; Han, L B


    Peroxidases (PODs) are enzymes that play important roles in catalyzing the reduction of H2O2 and the oxidation of various substrates. They function in many different and important biological processes, such as defense mechanisms, immune responses, and pathogeny. The POD genes have been cloned and identified in many plants, but their function in alfalfa (Medicago sativa L.) is not known, to date. Based on the POD gene sequence (GenBank accession No. L36157.1), we cloned the POD gene in alfalfa, which was named MsPOD. MsPOD expression increased with increasing H2O2. The gene was expressed in all of the tissues, including the roots, stems, leaves, and flowers, particularly in stems and leaves under light/dark conditions. A subcellular analysis showed that MsPOD was localized outside the cells. Transgenic Arabidopsis with MsPOD exhibited increased resistance to H2O2 and NaCl. Moreover, POD activity in the transgenic plants was significantly higher than that in wild-type Arabidopsis. These results show that MsPOD plays an important role in resistance to H2O2 and NaCl.

  12. Biomonitoring of non-dioxin-like polychlorinated biphenyls in transgenic Arabidopsis using the mammalian pregnane X receptor system: a role of pectin in pollutant uptake.

    Directory of Open Access Journals (Sweden)

    Lieming Bao

    Full Text Available Polychlorinated biphenyls (PCBs are persistent organic pollutants damaging to human health and the environment. Techniques to indicate PCB contamination in planta are of great interest to phytoremediation. Monitoring of dioxin-like PCBs in transgenic plants carrying the mammalian aryl hydrocarbon receptor (AHR has been reported previously. Herein, we report the biomonitoring of non-dioxin-like PCBs (NDL-PCBs using the mammalian pregnane X receptor (PXR. In the transgenic Arabidopsis designated NDL-PCB Reporter, the EGFP-GUS reporter gene was driven by a promoter containing 18 repeats of the xenobiotic response elements, while PXR and its binding partner retinoid X receptor (RXR were coexpressed. Results showed that, in live cells, the expression of reporter gene was insensitive to endogenous lignans, carotenoids and flavonoids, but responded to all tested NDL-PCBs in a dose- and time- dependent manner. Two types of putative PCB metabolites, hydroxy- PCBs and methoxy- PCBs, displayed different activation properties. The vascular tissues seemed unable to transport NDL-PCBs, whereas mutation in QUASIMODO1 encoding a 1,4-galacturonosyltransferase led to reduced PCB accumulation in Arabidopsis, revealing a role for pectin in the control of PCB translocation. Taken together, the reporter system may serve as a useful tool to biomonitor the uptake and metabolism of NDL-PCBs in plants.

  13. Suppression of cell expansion by ectopic expression of the Arabidopsis SUPERMAN gene in transgenic petunia an tobacco

    NARCIS (Netherlands)

    Kater, M.M.; Franken, J.; Aelst, van A.; Angenent, G.C.


    Molecular and genetic analyses have shown that the Arabidopsis thaliana gene SUPERMAN (SUP) has at least two functions in Arabidopsis flower development. SUP is necessary to control the correct distribution of cells with either a stamen or carpel fate, and is essential for proper outgrowth of the ov

  14. An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic arabidopsis and tobacco plants.

    Directory of Open Access Journals (Sweden)

    Joydeep Banerjee

    Full Text Available On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985 are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85 showed stronger expression (about 3.5 fold compared to the At4g35987 promoter (P87. The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications.

  15. Overexpression of SrUGT85C2 from Stevia reduced growth and yield of transgenic Arabidopsis by influencing plastidial MEP pathway. (United States)

    Guleria, Praveen; Masand, Shikha; Yadav, Sudesh Kumar


    The transcript expression of a gene SrUGT85C2 has been documented for direct relation with steviol glycoside content in Stevia plant. Steviol glycoside and gibberellin biosynthetic routes are divergent branches of methyl erythritol-4 phosphate (MEP) pathway. So, SrUGT85C2 might be an influencing gibberellin content. Hence in the present study, transgenic Arabidopsis thaliana overexpressing SrUGT85C2 cDNA from Stevia rebaudiana was developed to check its effect on gibberellin accumulation and related plant growth parameters. The developed transgenics showed a noteworthy decrease of 78-83% in GA3 content. Moreover, the transgenics showed a gibberellin deficient phenotype comprising stunted hypocotyl length, reduced shoot growth and a significant fall in relative water content. Transgenics also showed 17-37 and 64-76% reduction in chlorophyll a and chlorophyll b contents, respectively. Reduction in photosynthetic pigments could be responsible for the noticed significant decrease in plant biomass. Like steviol glycoside and gibberellin biosynthesis, chlorophyll biosynthesis also occurs from the precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) of MEP pathway in the plastids. The observed downregulated expression of genes encoding MEP pathway enzymes geranyl geranyl diphosphate synthase (GGDPS), copalyl diphosphate synthase (CDPS), kaurenoic acid oxidase (KAO), chlorophyll synthetase and chlorophyll a oxygenase in transgenics overexpressing SrUGT85C2 might be responsible for the reduction in gibberellins as well as chlorophyll. This study has documented for the first time the regulatory role of SrUGT85C2 in the biosynthesis of steviol glycoside, gibberellins and chlorophyll.

  16. Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana. (United States)

    Zhu, Chenguang; Fan, Qianlan; Wang, Wei; Shen, Chunlei; Meng, Xiangzong; Tang, Yuanping; Mei, Bing; Xu, Zhengkai; Song, Rentao


    The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%-48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%-43%), total GS activity (39%-45%) and soluble protein concentration (23%-24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency.

  17. The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. (United States)

    Nir, Ido; Moshelion, Menachem; Weiss, David


    Previous studies have shown that reduced gibberellin (GA) level or signal promotes plant tolerance to environmental stresses, including drought, but the underlying mechanism is not yet clear. Here we studied the effects of reduced levels of active GAs on tomato (Solanum lycopersicum) plant tolerance to drought as well as the mechanism responsible for these effects. To reduce the levels of active GAs, we generated transgenic tomato overexpressing the Arabidopsis thaliana GA METHYL TRANSFERASE 1 (AtGAMT1) gene. AtGAMT1 encodes an enzyme that catalyses the methylation of active GAs to generate inactive GA methyl esters. Tomato plants overexpressing AtGAMT1 exhibited typical GA-deficiency phenotypes and increased tolerance to drought stress. GA application to the transgenic plants restored normal growth and sensitivity to drought. The transgenic plants maintained high leaf water status under drought conditions, because of reduced whole-plant transpiration. The reduced transpiration can be attributed to reduced stomatal conductance. GAMT1 overexpression inhibited the expansion of leaf-epidermal cells, leading to the formation of smaller stomata with reduced stomatal pores. It is possible that under drought conditions, plants with reduced GA activity and therefore, reduced transpiration, will suffer less from leaf desiccation, thereby maintaining higher capabilities and recovery rates.

  18. Overexpression of WsSGTL1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    Directory of Open Access Journals (Sweden)

    Manoj K Mishra

    Full Text Available BACKGROUND: Sterol glycosyltrnasferases (SGT are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant's adaptation to abiotic stress. METHODOLOGY: The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses--salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA and the 3D structures were predicted by using Discovery Studio Ver. 2.5. RESULTS: The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. CONCLUSIONS: Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found

  19. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling.

    Directory of Open Access Journals (Sweden)

    Yuanzhong Jiang

    Full Text Available The plant hormones jasmonic acid (JA and salicylic acid (SA play key roles in plant defenses against pathogens and several WRKY transcription factors have been shown to have a role in SA/JA crosstalk. In a previous study, overexpression of the poplar WRKY gene PtrWRKY89 enhanced resistance to pathogens in transgenic poplars. In this study, the promoter of PtrWRKY89 (ProPtrWRKY89 was isolated and used to drive GUS reporter gene. High GUS activity was observed in old leaves of transgenic Arabidopsis containing ProPtrWRKY89-GUS construct and GUS expression was extremely induced by SA solution and SA+MeJA mixture but not by MeJA treatment. Subcellular localization and transactivation assays showed that PtrWRKY89 acted as a transcription activator in the nucleus. Constitutive expression of PtrWRKY89 in Arabidopsis resulted in more susceptible to Pseudomonas syringae and Botrytis cinerea compared to wild-type plants. Quantitative real-time PCR (qRT-PCR analysis confirmed that marker genes of SA and JA pathways were down-regulated in transgenic Arabidopsis after pathogen inoculations. Overall, our results indicated that PtrWRKY89 modulates a cross talk in resistance to P. syringe and B. cinerea by negatively regulating both SA and JA pathways in Arabidopsis.

  20. The fungicidal and phytotoxic properties of benomyl and PPM in supplemented agar media supporting transgenic arabidopsis plants for a Space Shuttle flight experiment (United States)

    Paul, A. L.; Semer, C.; Kucharek, T.; Ferl, R. J.


    Fungal contamination is a significant problem in the use of sucrose-enriched agar-based media for plant culture, especially in closed habitats such as the Space Shuttle. While a variety of fungicides are commercially available, not all are equal in their effectiveness in inhibiting fungal contamination. In addition, fungicide effectiveness must be weighed against its phytotoxicity and in this case, its influence on transgene expression. In a series of experiments designed to optimize media composition for a recent shuttle mission, the fungicide benomyl and the biocide "Plant Preservative Mixture" (PPM) were evaluated for effectiveness in controlling three common fungal contaminants, as well as their impact on the growth and development of arabidopsis seedlings. Benomyl proved to be an effective inhibitor of all three contaminants in concentrations as low as 2 ppm (parts per million) within the agar medium, and no evidence of phytotoxicity was observed until concentrations exceeded 20 ppm. The biocide mix PPM was effective as a fungicide only at concentrations that had deleterious effects on arabidopsis seedlings. As a result of these findings, a concentration of 3 ppm benomyl was used in the media for experiment PGIM-01 which flew on shuttle Columbia mission STS-93 in July 1999.

  1. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene, GhAOC1, in upland cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    Yuange Wang; Huaihua Liu; Qingguo Xin


    Allene oxide cyclase (AOC, E is an essential enzyme in the jasmonic acid (JA) biosynthetic pathway and mediates a wide range of adaptive responses. In this report, five AOC genes (GhAOC1–GhAOC5) were cloned from upland cotton (Gossypium hirsutum L.), sequenced, and characterized. Real-time PCR analysis indicated that the transcripts of GhAOCs were abundantly expressed in roots and less in fibers, and regulated in cotton plants under methyl jasmonate (MeJA) and CuCl2 stresses. To investigate the role of GhAOC under copper stress, transgenic Arabidopsis plants overexpressing cotton GhAOC1 under control of the Cauliflower mosaic virus 35S (CaMV 35S) promoter were generated. Compared to untransformed plants, GhAOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate, shoot fresh weight, shoot dry weight, and photosynthetic efficiency, and reduced cell membrane damage and lipid peroxidation under copper stress. This study provides the first evidence that GhAOC1 plays an important role in copper stress tolerance.

  2. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene, GhAOC1, in upland cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Yuange Wang


    Full Text Available Allene oxide cyclase (AOC, E is an essential enzyme in the jasmonic acid (JA biosynthetic pathway and mediates a wide range of adaptive responses. In this report, five AOC genes (GhAOC1–GhAOC5 were cloned from upland cotton (Gossypium hirsutum L., sequenced, and characterized. Real-time PCR analysis indicated that the transcripts of GhAOCs were abundantly expressed in roots and less in fibers, and regulated in cotton plants under methyl jasmonate (MeJA and CuCl2 stresses. To investigate the role of GhAOC under copper stress, transgenic Arabidopsis plants overexpressing cotton GhAOC1 under control of the Cauliflower mosaic virus 35S (CaMV 35S promoter were generated. Compared to untransformed plants, GhAOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate, shoot fresh weight, shoot dry weight, and photosynthetic efficiency, and reduced cell membrane damage and lipid peroxidation under copper stress. This study provides the first evidence that GhAOC1 plays an important role in copper stress tolerance.

  3. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene,GhA OC1, in upland cotton(Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    Yuange; Wang; Huaihua; Liu; Qingguo; Xin


    Allene oxide cyclase(AOC, E is an essential enzyme in the jasmonic acid(JA)biosynthetic pathway and mediates a wide range of adaptive responses. In this report, five AOC genes(Gh AOC1–Gh AOC5) were cloned from upland cotton(Gossypium hirsutum L.),sequenced, and characterized. Real-time PCR analysis indicated that the transcripts of Gh AOCs were abundantly expressed in roots and less in fibers, and regulated in cotton plants under methyl jasmonate(Me JA) and Cu Cl2 stresses. To investigate the role of Gh AOC under copper stress, transgenic Arabidopsis plants overexpressing cotton Gh AOC1 under control of the Cauliflower mosaic virus 35S(Ca MV 35S) promoter were generated. Compared to untransformed plants, Gh AOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate, shoot fresh weight, shoot dry weight, and photosynthetic efficiency, and reduced cell membrane damage and lipid peroxidation under copper stress.This study provides the first evidence that Gh AOC1 plays an important role in copper stress tolerance.

  4. Overexpression of MpCYS4, A Phytocystatin Gene from Malus prunifolia (Willd.) Borkh., Enhances Stomatal Closure to Confer Drought Tolerance in Transgenic Arabidopsis and Apple. (United States)

    Tan, Yanxiao; Li, Mingjun; Yang, Yingli; Sun, Xun; Wang, Na; Liang, Bowen; Ma, Fengwang


    Phytocystatins (PhyCys) comprise a group of inhibitors for cysteine proteinases in plants. They play a wide range of important roles in regulating endogenous processes and protecting plants against various environmental stresses, but the underlying mechanisms remain largely unknown. Here, we detailed the biological functions of MpCYS4, a member of cystatin genes isolated from Malus prunifolia. This gene was activated under water deficit, heat (40°C), exogenous abscisic acid (ABA), or methyl viologen (MV) (Tan et al., 2014a). At cellular level, MpCYS4 protein was found to be localized in the nucleus, cytoplasm, and plasma membrane of onion epidermal cells. Recombinant MpCYS4 cystatin expressed in Escherichia coli was purified and it exhibited cysteine protease inhibitor activity. Transgenic overexpression of MpCYS4 in Arabidopsis (Arabidopsis thaliana) and apple (Malus domestica) led to ABA hypersensitivity and series of ABA-associated phenotypes, such as enhanced ABA-induced stomatal closing, altered expression of many ABA/stress-responsive genes, and enhanced drought tolerance. Taken together, our results demonstrate that MpCYS4 is involved in ABA-mediated stress signal transduction and confers drought tolerance at least in part by enhancing stomatal closure and up-regulating the transcriptional levels of ABA- and drought-related genes. These findings provide new insights into the molecular mechanisms by which phytocystatins influence plant growth, development, and tolerance to stress.

  5. Over-Expression of GmGIa-Regulated Soybean miR172a Confers Early Flowering in Transgenic Arabidopsis thaliana. (United States)

    Wang, Tao; Sun, Ming-Yang; Wang, Xue-Song; Li, Wen-Bin; Li, Yong-Guang


    Flowering is a pivotal event in the life cycle of plants. miR172 has been widely confirmed to play critical roles in flowering time control by regulating its target gene expression in Arabidopsis. However, the role of its counterpart in soybean remains largely unclear. In the present study, we found that the gma-miR172a was regulated by a GIGANTEA ortholog, GmGIa, in soybean through miRNA metabolism. The expression analysis revealed that gma-miR172a has a pattern of diurnal rhythm expression and its abundance increased rapidly as plants grew until the initiation of flowering phase in soybean. One target gene of gma-miR172a, Glyma03g33470, was predicted and verified using a modified RLM 5'-RACE (RNA ligase-mediated rapid amplification of 5' cDNA ends) assay. Overexpression of gma-miR172a exhibited an early flowering phenotype and the expression of FT, AP1 and LFY were simultaneously increased in gma-miR172a-transgenic Arabidopsis plants, suggesting that the early flowering phenotype was associated with up-regulation of these genes. The overexpression of the gma-miR172a-resistant version of Glyma03g33470 weakened early flowering phenotype in the toe1 mutant of Arabidopsis. Taken together, our results suggested that gma-miR172a played an important role in GmGIa-mediated flowering by repressing Glyma03g33470, which in turn increased the expression of FT, AP1 and LFY to promote flowering in soybean.

  6. Drought and salt tolerance enhancement of transgenic Arabidopsis by overexpression of the vacuolar pyrophosphatase 1 (EVP1) gene from Eucalyptus globulus. (United States)

    Gamboa, M C; Baltierra, F; Leon, G; Krauskopf, E


    Vacuolar solute accumulation has been shown to be a mechanism by which plants are capable of increasing drought and salt tolerance. The exposure of plants to NaCl induces H+ transport into the vacuole by specialized pumps. One of them corresponds to the vacuolar H+-pyrophosphatase, which generates a H+ gradient across the vacuolar membrane. In our laboratory we isolated the first cDNA sequence of a vacuolar pyrophosphatase type I (EVP1) from Eucalyptus globulus. Using real-time PCR we confirmed that EVP1 participates in Eucalyptus plants' response to drought and salt stress through an ABA independent pathway. Additionally, the overexpression of EVP1 in transgenic Arabidopsis resulted in an enhancement of drought and salt tolerance. Interestingly we established that the transgenic plants had a higher number of root hairs, which may have a positive effect on the plant's response to drought and salt stress. These results suggest that EVP1 plays an active role in abiotic stress tolerance in E. globulus, and that it may be potentially used to enhance drought and stress tolerance of plants.

  7. Characterization of Circadian-associated pseudo-response regulators: I. Comparative studies on a series of transgenic lines misexpressing five distinctive PRR Genes in Arabidopsis thaliana. (United States)

    Matsushika, Akinori; Murakami, Masaya; Ito, Shogo; Nakamichi, Norihito; Yamashino, Takafumi; Mizuno, Takeshi


    Every member of a small family of Pseudo-Response Regulator (PRR) genes, including Timing of Cab Expression 1 (TOC1 [or PRR1]), are believed to play roles close to the circadian clock in the model higher plant Arabidopsis thaliana. In this study we established a transgenic line that misexpresses (or overexpresses) the PRR7 gene. As compared with wild-type plants, the resulting PRR7-misexpressing plants (designated PRR7-ox) showed characteristic phenotypes as to hallmarked circadian-associated biological events: (i) early flowering in a manner independent of photoperiodicity, (ii) hypersensitive response to red light during early photomorphogenesis, and (iii) altered free-running rhythms with long period of clock-associated genes. Finally, a series of all transgenic lines (PRR1-ox, PRR3-ox, PRR5-ox, PRR7-ox, and PRR9-ox) were characterized comparatively with regard to their clock-associated roles. The results suggested that the five homologous PRR factors play coordinate roles, distinctively from one another, and closely to the circadian clock in higher plants.

  8. Combination of the ALCR/alcA ethanol switch and GAL4/VP16-UAS enhancer trap system enables spatial and temporal control of transgene expression in Arabidopsis. (United States)

    Jia, Hongge; Van Loock, Bram; Liao, Mingjun; Verbelen, Jean-Pierre; Vissenberg, Kris


    The experimental control of gene expression in specific tissues or cells at defined time points is a useful tool for the analysis of gene function. GAL4/VP16-UAS enhancer trap lines can be used to selectively express genes in specific tissues or cells, and an ethanol-inducible system can help to control the time of expression. In this study, the combination of the two methods allowed the successful regulation of gene expression in both time and space. For this purpose, a binary vector, 962-UAS::GUS, was constructed in which the ALCR activator and beta-glucuronidase (GUS) reporter gene were placed under the control of upstream activator sequence (UAS) elements and the alcA response element, respectively. Three different GAL4/VP16-UAS enhancer trap lines of Arabidopsis were transformed, resulting in transgenic plants in which GUS activity was detected only on ethanol induction and exclusively in the predicted tissues of the enhancer trap lines. As a library of different enhancer trap lines with distinct green fluorescent protein (GFP) patterns exist, transformation with a similar vector, in which GUS is replaced by another gene, would enable the control of the time and place of transgene expression. We have constructed two vectors for easy cloning of the gene of interest, one with a polylinker site and one that is compatible with the GATEWAY vector conversion system. The method can be extended to other species when enhancer trap lines become available.

  9. Ectopic overexpression of a novel Glycine soja stress-induced plasma membrane intrinsic protein increases sensitivity to salt and dehydration in transgenic Arabidopsis thaliana plants. (United States)

    Wang, Xi; Cai, Hua; Li, Yong; Zhu, Yanming; Ji, Wei; Bai, Xi; Zhu, Dan; Sun, Xiaoli


    Plasma membrane intrinsic proteins (PIPs) belong to the aquaporin family and facilitate water movement across plasma membranes. Existing data indicate that PIP genes are associated with the abilities of plants to tolerate certain stress conditions. A review of our Glycine soja expressed sequence tag (EST) dataset revealed that abiotic stress stimulated expression of a PIP, herein designated as GsPIP2;1 (GenBank_Accn: FJ825766). To understand the roles of this PIP in stress tolerance, we generated a coding sequence for GsPIP2;1 by in silico elongation and cloned the cDNA by 5'-RACE. Semiquantitative RT-PCR showed that GsPIP2;1 expression was stimulated in G. soja leaves by cold, salt, or dehydration stress, whereas the same stresses suppressed GsPIP2;1 expression in the roots. Transgenic Arabidopsis thaliana plants overexpressing GsPIP2;1 grew normally under unstressed and cold conditions, but exhibited depressed tolerance to salt and dehydration stresses. Moreover, greater changes in water potential were detected in the transgenic A. thaliana shoots, implying that GsPIP2;1 may negatively impact stress tolerance by regulating water potential. These results, deviating from those obtained in previous reports, provide new insights into the relationship between PIPs and abiotic stress tolerance in plants.

  10. Soybean GmMYB76,GmMYB92,and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants

    Institute of Scientific and Technical Information of China (English)

    Yong Liao; Hong-Feng Zou; Hui-Wen Wang; Wan-Ke Zhang; Biao Ma; Jin-Song Zhang; Shou-Yi Chen


    MYB-type transcription factors contain the conserved MYB DNA-binding domain of approximately 50 amino acids and are involved in the regulation of many aspects of plant growth,development,metabolism and stress responses.From soybean plants,we identified 156 GmMYB genes using our previously obtained 206 MYB unigenes,and 48 were found to have full-length open-reading frames.Expressions of all these identified genes were examined,and we found that expressions of 43 genes were changed upon treatment with ABA,salt,drought and/or cold stress.Three GmMYB genes,GmMYB76,GmMYB92 and GmMYB177,were chosen for further analysis.Using the yeast assay system,GmMYB76 and GmMYB92 were found to have transactivation activity and can form homodimers.GmMYBI77 did not appear to have transactivation activity but can form heterodimers with GmMYB76.Yeast onehybrid assay revealed that all the three GmMYBs could bind to cis-elements TAT AAC GGT TTT TT and CCG GAA AAAAGG AT,but with different affinity,and GmMYB92 could also bind to TCT CAC CTA CC.The transgenic Arabidopsis plants overexpressing GmMYB76 or GmMYB177 showed better performance than the GmMYB92-transgenic plants in salt and freezing tolerance.However,these transgenic plants exhibited reduced sensitivity to ABA treatment at germination stage in comparison with the wild-type plants.The three GmMYB genes differentially affected a subset of stress-responsive genes in addition to their regulation of a common subset of stress-responsive genes.These results indicate that the three GmMYB genes may play differential roles in stress tolerance,possibly through regulation of stress-responsive genes.

  11. Suppression of cell expansion by ectopic expression of the Arabidopsis SUPERMAN gene in transgenic petunia and tobacco. (United States)

    Kater, M M; Franken, J; van Aelst, A; Angenent, G C


    Molecular and genetic analyses have shown that the Arabidopsis thaliana gene SUPERMAN (SUP) has at least two functions in Arabidopsis flower development. SUP is necessary to control the correct distribution of cells with either a stamen or carpel fate, and is essential for proper outgrowth of the ovule outer integument. Both these functions indicate a role for SUP in cell proliferation. To study the function of the Arabidopsis SUP gene in more detail, we over-expressed the SUP gene in petunia and tobacco in a tissue-specific manner. The petunia FLORAL BINDING PROTEIN 1 (FBP1) gene promoter was used to restrict the expression of SUP to petals and stamens. The development of petals and stamens was severely affected in both petunia and tobacco plants over-expressing SUP. Petals remained small and did not unfold, resulting in closed flowers. Stamen filaments were thin and very short. Detailed analysis of these floral organs from the petunia transformants showed that cell expansion was dramatically reduced without affecting cell division. These results reveal a novel activity for SUP as a regulator of cell expansion.

  12. Practical Parallel Rendering

    CERN Document Server

    Chalmers, Alan


    Meeting the growing demands for speed and quality in rendering computer graphics images requires new techniques. Practical parallel rendering provides one of the most practical solutions. This book addresses the basic issues of rendering within a parallel or distributed computing environment, and considers the strengths and weaknesses of multiprocessor machines and networked render farms for graphics rendering. Case studies of working applications demonstrate, in detail, practical ways of dealing with complex issues involved in parallel processing.

  13. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration ofa transgene.

    Directory of Open Access Journals (Sweden)

    Tomoyuki eFurukawa


    Full Text Available The DNA double-strand break (DSB is a critical type of damage, and can be induced by both endogenous sources (e.g. errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork and exogenous sources (e.g. ionizing radiation or radiomimetic chemicals. Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ, much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1 displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2, both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway.

  14. An evolutionarily conserved mitochondrial orf108 is associated with cytoplasmic male sterility in different alloplasmic lines of Brassica juncea and induces male sterility in transgenic Arabidopsis thaliana. (United States)

    Kumar, Pankaj; Vasupalli, Naresh; Srinivasan, R; Bhat, Shripad R


    Nuclear-mitochondrial gene interactions governing cytoplasmic male sterility (CMS) in angiosperms have been found to be unique to each system. Fertility restoration of three diverse alloplasmic CMS lines of Brassica juncea by a line carrying the fertility-restorer gene introgressed from Moricandia arvensis prompted this investigation to examine the molecular basis of CMS in these lines. Since previous studies had found altered atpA transcription associated with CMS in these lines, the atpA genes and transcripts of CMS, fertility-restored, and euplasmic lines were cloned and compared. atpA coding and downstream sequences were conserved among CMS and euplasmic lines but major differences were found in the 5' flanking sequences of atpA. A unique open reading frame (ORF), orf108, co-transcribed with atpA, was found in male sterile flowers of CMS lines carrying mitochondrial genomes of Diplotaxis berthautii, D. catholica, or D. erucoides. In presence of the restorer gene, the bicistronic orf108-atpA transcript was cleaved within orf108 to yield a monocistronic atpA transcript. Transgenic expression of orf108 with anther-specific Atprx18 promoter in Arabidopsis thaliana gave 50% pollen sterility, indicating that Orf108 is lethal at the gametophytic stage. Further, lack of transmission of orf108 to the progeny showed for the first time that mitochondrial ORFs could also cause female sterility. orf108 was found to be widely distributed among wild relatives of Brassica, indicating its ancient origin. This is the first report that shows that CMS lines of different origin and morphology could share common molecular basis. The gametic lethality of Orf108 offers a novel opportunity for transgene containment.

  15. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na/H antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. (United States)

    Liu, Hua; Wang, Qiuqing; Yu, Mengmeng; Zhang, Yanyan; Wu, Yingbao; Zhang, Hongxia


    In Arabidopsis thaliana, six vacuolar Na(+)/H(+) antiporters (AtNHX1-6) were identified. Among them, AtNHX1, 2 and 5 are functional Na(+)/H(+) antiporters with the most abundant expression levels in seedling shoots and roots. However, the expression of AtNHX3 in Arabidopsis can only be detected by RT-PCR, and its physiological function still remains unclear. In this work, we demonstrate that constitutive expression of AtNHX3 in sugar beet (Beta vulgaris L.) conferred augmented resistance to high salinity on transgenic plants. In the presence of 300 or 500 mm NaCl, transgenic plants showed very high potassium accumulation in the roots and storage roots. Furthermore, the transcripts of sucrose phosphate synthase (SPS), sucrose synthase (SS) and cell wall sucrose invertase (SI) genes were maintained in transgenic plants. The accumulation of soluble sugar in the storage roots of transgenic plants grown under high salt stress condition was also higher. Our results implicate that AtNHX3 is also a functional antiporter responsible for salt tolerance by mediating K(+)/H(+) exchange in higher plants. The salt accumulation in leaves but not in the storage roots, and the increased yield of storage roots with enhanced constituent soluble sugar contents under salt stress condition demonstrate a great potential use of this gene in improving the quality and yield of crop plants.

  16. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. (United States)

    Misra, Rajesh Chandra; Sandeep; Kamthan, Mohan; Kumar, Santosh; Ghosh, Sumit


    Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops.

  17. Transgenic Arabidopsis thaliana plants expressing a β-1,3-glucanase from sweet sorghum (Sorghum bicolor L.) show reduced callose deposition and increased tolerance to aluminium toxicity. (United States)

    Zhang, Hui; Shi, Wu Liang; You, Jiang Feng; Bian, Ming Di; Qin, Xiao Mei; Yu, Hui; Liu, Qing; Ryan, Peter R; Yang, Zhen Ming


    Seventy-one cultivars of sweet sorghum (Sorghum bicolor L.) were screened for aluminium (Al) tolerance by measuring relative root growth (RRG). Two contrasting cultivars, ROMA (Al tolerant) and POTCHETSTRM (Al sensitive), were selected to study shorter term responses to Al stress. POTCHETSTRM had higher callose synthase activity, lower β-1,3-glucanase activity and more callose deposition in the root apices during Al treatment compared with ROMA. We monitored the expression of 12 genes involved in callose synthesis and degradation and found that one of these, SbGlu1 (Sb03g045630.1), which encodes a β-1,3-glucanase enzyme, best explained the contrasting deposition of callose in ROMA and POTCHETSTRM during Al treatment. Full-length cDNAs of SbGlu1 was prepared from ROMA and POTCHETSTRM and expressed in Arabidopsis thaliana using the constitutive cauliflower mosaic virus (CaMV) 35S promoter. Independent transgenic lines displayed significantly greater Al tolerance than wild-type plants and vector-only controls. This phenotype was associated with greater total β-1,3-glucanase activity, less Al accumulation and reduced callose deposition in the roots. These results suggest that callose production is not just an early indicator of Al stress in plants but likely to be part of the toxicity pathway that leads to the inhibition of root growth.

  18. Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) results in enhanced drought tolerance. (United States)

    Yue, Yuesen; Zhang, Mingcai; Zhang, Jiachang; Duan, Liusheng; Li, Zhaohu


    Drought is a major environmental stress factor that affects growth and development of plants. Abscisic acid (ABA), osmotically active compounds, and synthesis of specific proteins, such as proteins that scavenge oxygen radicals, are crucial for plants to adapt to water deficit. LOS5/ABA3 (LOS5) encodes molybdenum-cofactor sulfurase, which is a key regulator of ABA biosynthesis. We overexpressed LOS5 in tobacco using Agrobacterium-mediated transformation. Detached leaves of LOS5-overexpressing seedlings showed lower transpirational water loss than that of nontransgenic seedlings in the same period under normal conditions. When subjected to water-deficit stress, transgenic plants showed less wilting, maintained higher water content and better cellular membrane integrity, accumulated higher quantities of ABA and proline, and exhibited higher activities of antioxidant enzymes, i.e., superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, as compared with control plants. Furthermore, LOS5-overexpressing plants treated with 30% polyethylene glycol showed similar performance in cellular membrane protection, ABA and proline accumulation, and activities of catalase and peroxidase to those under drought stress. Thus, overexpression of LOS5 in transgenic tobacco can enhance drought tolerance.

  19. Characterization and Ectopic Expression of CoWRI1, an AP2/EREBP Domain-Containing Transcription Factor from Coconut (Cocos nucifera L.) Endosperm, Changes the Seeds Oil Content in Transgenic Arabidopsis thaliana and Rice (Oryza sativa L.) (United States)

    Sun, RuHao; Ye, Rongjian; Gao, Lingchao; Zhang, Lin; Wang, Rui; Mao, Ting; Zheng, Yusheng; Li, Dongdong; Lin, Yongjun


    Coconut (Cocos nucifera L.) is a key tropical crop and a member of the monocotyledonous family Arecaceae (Palmaceae). Few genes and related metabolic processes involved in coconut endosperm development have been investigated. In this study, a new member of the WRI1 gene family was isolated from coconut endosperm and was named CoWRI1. Its transcriptional activities and interactions with the acetyl-CoA carboxylase (BCCP2) promoter of CoWRI1 were confirmed by the yeast two-hybrid and yeast one-hybrid approaches, respectively. Functional characterization was carried out through seed-specific expression in Arabidopsis and endosperm-specific expression in rice. In transgenic Arabidopsis, high over-expressions of CoWRI1 in seven independent T2 lines were detected by quantitative real-time PCR. The relative mRNA accumulation of genes encoding enzymes involved in either fatty acid biosynthesis or triacylglycerols assembly (BCCP2, KASI, MAT, ENR, FATA, and GPDH) were also assayed in mature seeds. Furthermore, lipid and fatty acids C16:0 and C18:0 significantly increased. In two homozygous T2 transgenic rice lines (G5 and G2), different CoWRI1 expression levels were detected, but no CoWRI1 transcripts were detected in the wild type. Analyses of the seed oil content, starch content, and total protein content indicated that the two T2 transgenic lines showed a significant increase (P < 0.05) in seed oil content. The transgenic lines also showed a significant increase in starch content, whereas total protein content decreased significantly. Further analysis of the fatty acid composition revealed that palmitic acid (C16:0) and linolenic acid (C18:3) increased significantly in the seeds of the transgenic rice lines, but oleic acid (C18:1) levels significantly declined. PMID:28179911

  20. Characterization and Ectopic Expression of CoWRI1, an AP2/EREBP Domain-Containing Transcription Factor from Coconut (Cocos nucifera L.) Endosperm, Changes the Seeds Oil Content in Transgenic Arabidopsis thaliana and Rice (Oryza sativa L.). (United States)

    Sun, RuHao; Ye, Rongjian; Gao, Lingchao; Zhang, Lin; Wang, Rui; Mao, Ting; Zheng, Yusheng; Li, Dongdong; Lin, Yongjun


    Coconut (Cocos nucifera L.) is a key tropical crop and a member of the monocotyledonous family Arecaceae (Palmaceae). Few genes and related metabolic processes involved in coconut endosperm development have been investigated. In this study, a new member of the WRI1 gene family was isolated from coconut endosperm and was named CoWRI1. Its transcriptional activities and interactions with the acetyl-CoA carboxylase (BCCP2) promoter of CoWRI1 were confirmed by the yeast two-hybrid and yeast one-hybrid approaches, respectively. Functional characterization was carried out through seed-specific expression in Arabidopsis and endosperm-specific expression in rice. In transgenic Arabidopsis, high over-expressions of CoWRI1 in seven independent T2 lines were detected by quantitative real-time PCR. The relative mRNA accumulation of genes encoding enzymes involved in either fatty acid biosynthesis or triacylglycerols assembly (BCCP2, KASI, MAT, ENR, FATA, and GPDH) were also assayed in mature seeds. Furthermore, lipid and fatty acids C16:0 and C18:0 significantly increased. In two homozygous T2 transgenic rice lines (G5 and G2), different CoWRI1 expression levels were detected, but no CoWRI1 transcripts were detected in the wild type. Analyses of the seed oil content, starch content, and total protein content indicated that the two T2 transgenic lines showed a significant increase (P < 0.05) in seed oil content. The transgenic lines also showed a significant increase in starch content, whereas total protein content decreased significantly. Further analysis of the fatty acid composition revealed that palmitic acid (C16:0) and linolenic acid (C18:3) increased significantly in the seeds of the transgenic rice lines, but oleic acid (C18:1) levels significantly declined.

  1. Overexpression of Nictaba-Like Lectin Genes from Glycine max Confers Tolerance towards Pseudomonas syringae Infection, Aphid Infestation and Salt Stress in Transgenic Arabidopsis Plants

    Directory of Open Access Journals (Sweden)

    Sofie Van Holle


    Full Text Available Plants have evolved a sophisticated immune system that allows them to recognize invading pathogens by specialized receptors. Carbohydrate-binding proteins or lectins are part of this immune system and especially the lectins that reside in the nucleocytoplasmic compartment are known to be implicated in biotic and abiotic stress responses. The class of Nictaba-like lectins (NLL groups all proteins with homology to the tobacco (Nicotiana tabacum lectin, known as a stress-inducible lectin. Here we focus on two Nictaba homologs from soybean (Glycine max, referred to as GmNLL1 and GmNLL2. Confocal laser scanning microscopy of fusion constructs with the green fluorescent protein either transiently expressed in Nicotiana benthamiana leaves or stably transformed in tobacco BY-2 suspension cells revealed a nucleocytoplasmic localization for the GmNLLs under study. RT-qPCR analysis of the transcript levels for the Nictaba-like lectins in soybean demonstrated that the genes are expressed in several tissues throughout the development of the plant. Furthermore, it was shown that salt treatment, Phytophthora sojae infection and Aphis glycines infestation trigger the expression of particular NLL genes. Stress experiments with Arabidopsis lines overexpressing the NLLs from soybean yielded an enhanced tolerance of the plant towards bacterial infection (Pseudomonas syringae, insect infestation (Myzus persicae and salinity. Our data showed a better performance of the transgenic lines compared to wild type plants, indicating that the NLLs from soybean are implicated in the stress response. These data can help to further elucidate the physiological importance of the Nictaba-like lectins from soybean, which can ultimately lead to the design of crop plants with a better tolerance to changing environmental conditions.

  2. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor

    DEFF Research Database (Denmark)

    Zhang, Xia; Wollenweber, Bernd; Jiang, Dong


    The effects of water deficits (WD), heat shock (HS), and both (HSWD) on photosynthetic carbon- and light-use efficiencies together with leaf ABA content, pigment composition and expressions of stress- and light harvesting-responsive genes were investigated in ABP9 [ABA-responsive-element (ABRE......, altered expression of stress-regulated or light harvesting-responsive genes was observed. Collectively, our results indicate that constitutive expression of ABP9 improves the photosynthetic capacity of plants under stress by adjusting photosynthetic pigment composition, dissipating excess light energy......) binding protein 9] transgenic Arabidopsis (5P2). WD, HS, and HSWD significantly decreased photosynthetic rate (A) and stomatal conductance (gs) in wild-type plants (WT). A and gs of 5P2 transgenic plants were slightly reduced by a single stress and were hardly modified by HSWD. Although A and electron...

  3. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants. (United States)

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane bound sodium/proton (Sodium/Hydrogen) antiporter that transports sodium into the vacuole and exports hydrogen into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane bound sodium/hydrogen antiporter that exports sodium to the ex...

  4. Video-based rendering

    CERN Document Server

    Magnor, Marcus A


    Driven by consumer-market applications that enjoy steadily increasing economic importance, graphics hardware and rendering algorithms are a central focus of computer graphics research. Video-based rendering is an approach that aims to overcome the current bottleneck in the time-consuming modeling process and has applications in areas such as computer games, special effects, and interactive TV. This book offers an in-depth introduction to video-based rendering, a rapidly developing new interdisciplinary topic employing techniques from computer graphics, computer vision, and telecommunication en

  5. Assays of polychlorinated biphenyl congeners and co-contaminated heavy metals in the transgenic Arabidopsis plants carrying the recombinant guinea pig aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system. (United States)

    Shimazu, Sayuri; Ohta, Masaya; Ohkawa, Hideo; Ashida, Hitoshi


    The transgenic Arabidopsis plant XgD2V11-6 carrying the recombinant guinea pig (g) aryl hydrocarbon receptor (AhR)-mediated β-glucuronidase (GUS) reporter gene expression system was examined for assay of polychlorinated biphenyl (PCB) congeners and co-contaminated heavy metals. When the transgenic Arabidopsis plants were treated with PCB126 (toxic equivalency factor; TEF: 0.1) and PCB169 (TEF: 0.03), the GUS activity of the whole plants was increased significantly. After treatment with PCB80 (TEF: 0), the GUS activity was nearly the same level as that treated with 0.1% dimethylsulfoxide (DMSO) as a vehicle control. After exposure to a 1:1 mixture of PCB126 and PCB169, the GUS activity was increased additively. However, after exposure to a mixture of PCB126 and PCB80, the GUS activity was lower than that of the treatment with PCB126 alone. Thus, PCB80 seemed to be an antagonist towards AhR. When the transgenic plants were treated with each of the heavy metals Fe, Cu, Zn, Cd and Pb together with PCB126, Cd and Pb increased the PCB126-induced GUS activity. On the other hand, Fe, Cu and Zn did not affect the PCB126-induced GUS activity. In the presence of the biosurfactant mannosylerythritol lipid-B (MEL-B) and the carrier protein bovine serum albumin (BSA), the PCB126-induced GUS activity was increased, but the Cd-assisted PCB126-induced GUS activity was not affected. Thus, MEL-B and BSA seemed to increase uptake and transport of PCB126, respectively.

  6. Reference: 710 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available n factor family in Arabidopsis (Arabidopsis thaliana). Treatment with abscisic acid (ABA) induced AtMYB44 tr...anscript accumulation within 30 min. The gene was also activated under various abiotic stre...sses, such as dehydration, low temperature, and salinity. In transgenic Arabidopsis carrying an At...MYB44 promoter-driven beta-glucuronidase (GUS) construct, strong GUS activity was observed in the vasculature... and leaf epidermal guard cells. Transgenic Arabidopsis overexpressing AtMYB44 is more

  7. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae

    Directory of Open Access Journals (Sweden)

    Sun Weiwei


    Full Text Available Abstract Background Treatment of plants with HrpNEa, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid Myzus persicae, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2, one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the Arabidopsis thaliana (Arabidopsis PP2-encoding gene AtPP2-A1 in resistance to M. persicae when the plant was treated with HrpNEa and after the plant was transformed with AtPP2-A1. Results The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic M. persicae females on leaves of Arabidopsis plants treated with HrpNEa and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpNEa in wild-type (WT Arabidopsis but not in atpp2-a1/E/142, the plant mutant that had a defect in the AtPP2-A1 gene, the most HrpNEa-responsive of 30 AtPP2 genes. In WT rather than atpp2-a1/E/142, the deterrent effect of HrpNEa treatment on the phloem-feeding activity accompanied an enhancement of AtPP2-A1 expression. In PP2OETAt (AtPP2-A1-overexpression transgenic Arabidopsis thaliana plants, abundant amounts of the AtPP2-A1 gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpNEa-treated WT and PP2OETAt plants, respectively, compared with control plants. Conclusions The repression in phloem-feeding activities of

  8. Rendering the Topological Spines

    Energy Technology Data Exchange (ETDEWEB)

    Nieves-Rivera, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Many tools to analyze and represent high dimensional data already exits yet most of them are not flexible, informative and intuitive enough to help the scientists make the corresponding analysis and predictions, understand the structure and complexity of scientific data, get a complete picture of it and explore a greater number of hypotheses. With this in mind, N-Dimensional Data Analysis and Visualization (ND²AV) is being developed to serve as an interactive visual analysis platform with the purpose of coupling together a number of these existing tools that range from statistics, machine learning, and data mining, with new techniques, in particular with new visualization approaches. My task is to create the rendering and implementation of a new concept called topological spines in order to extend ND²AV's scope. Other existing visualization tools create a representation preserving either the topological properties or the structural (geometric) ones because it is challenging to preserve them both simultaneously. Overcoming such challenge by creating a balance in between them, the topological spines are introduced as a new approach that aims to preserve them both. Its render using OpenGL and C++ and is currently being tested to further on be implemented on ND²AV. In this paper I will present what are the Topological Spines and how they are rendered.

  9. NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. (United States)

    Zhou, Yuliang; Chen, Huhui; Chu, Pu; Li, Yin; Tan, Bin; Ding, Yu; Tsang, Edward W T; Jiang, Liwen; Wu, Keqiang; Huang, Shangzhi


    In plants, small heat shock proteins (sHSPs) are unusually abundant and diverse proteins involved in various abiotic stresses, but their functions in seed vigor remain to be fully explored. In this study, we report the isolation and functional characterization of a sHSP gene, NnHSP17.5, from sacred lotus (Nelumbo nucifera Gaertn.) in seed germination vigor and seedling thermotolerance. Sequence alignment and phylogenetic analysis indicate that NnHSP17.5 is a cytosolic class II sHSP, which was further supported by the cytosolic localization of the NnHSP17.5-YFP fusion protein. NnHSP17.5 was specifically expressed in seeds under normal conditions, and was strongly up-regulated in germinating seeds upon heat and oxidative stresses. Transgenic Arabidopsis seeds ectopically expressing NnHSP17.5 displayed enhanced seed germination vigor and exhibited increased superoxide dismutase activity after accelerated aging treatment. In addition, improved basal thermotolerance was also observed in the transgenic seedlings. Taken together, this work highlights the importance of a plant cytosolic class II sHSP both in seed germination vigor and seedling thermotolerance.

  10. Comparative proteomics and metallomics studies in Arabidopsis thaliana leaf tissues: evaluation of the selenium addition in transgenic and nontransgenic plants using two-dimensional difference gel electrophoresis and laser ablation imaging. (United States)

    Maciel, Bruna C M; Barbosa, Herbert S; Pessôa, Gustavo S; Salazar, Marcela M; Pereira, Gonçalo A G; Gonçalves, Danieli C; Ramos, Carlos H I; Arruda, Marco A Z


    The main goal of this work is to evaluate some differential protein species in transgenic (T) and nontransgenic (NT) Arabidopsis thaliana plants after their cultivation in the presence or absence of sodium selenite. The transgenic line was obtained through insertion of CaMV 35S controlling nptII gene. Comparative proteomics through 2D-DIGE is carried out in four different groups (NT × T; NT × Se-NT (where Se is selenium); Se-NT × Se-T, and T × Se-T). Although no differential proteins are achieved in the T × Se-T group, for the others, 68 differential proteins (by applying a regulation factor ≥1.5) are achieved, and 27 of them accurately characterized by ESI-MS/MS. These proteins are classified into metabolism, energy, signal transduction, disease/defense categories, and some of them are involved in the glycolysis pathway-Photosystems I and II and ROS combat. Additionally, laser ablation imaging is used for evaluating the Se and sulfur distribution in leaves of different groups, corroborating some results obtained and related to proteins involved in the glycolysis pathway. From these results, it is possible to conclude that the genetic modification also confers to the plant resistance to oxidative stress.

  11. Ectopic expression of Arabidopsis genes encoding salicylic acid- and jasmonic acid-related proteins confers partial resistance to soybean cyst nematode (Heterodera glycines) in transgenic soybean roots (United States)

    Background. Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) an...

  12. Reference: 67 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available A complete knockout of AGD2 renders embryos inviable. We suggest that AGD2 synthesizes an important amino acid-derived molecule important for activating defense signaling. Divergent roles in Arabidopsis thaliana

  13. High Fidelity Haptic Rendering

    CERN Document Server

    Otaduy, Miguel A


    The human haptic system, among all senses, provides unique and bidirectional communication between humans and their physical environment. Yet, to date, most human-computer interactive systems have focused primarily on the graphical rendering of visual information and, to a lesser extent, on the display of auditory information. Extending the frontier of visual computing, haptic interfaces, or force feedback devices, have the potential to increase the quality of human-computer interaction by accommodating the sense of touch. They provide an attractive augmentation to visual display and enhance t

  14. Reference: 645 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available rter AtDUR3 in nitrogen nutrition in Arabidopsis. In transgenic lines expressing ... impaired growth on urea as a sole nitrogen source were used to investigate a role of the H+/urea co-transpo

  15. Reference: 783 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available sis ACBP6 was confirmed by analyses of transgenic Arabidopsis expressing autofluorescence-tagged ACBP6 and w... mRNA encoding phospholipase Ddelta. Lipid profiling analyses of rosettes from co

  16. A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana. (United States)

    Lu, Xiang; Yang, Lei; Yu, Mengyuan; Lai, Jianbin; Wang, Chao; McNeil, David; Zhou, Meixue; Yang, Chengwei


    The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response.

  17. ARE: Ada Rendering Engine

    Directory of Open Access Journals (Sweden)

    Stefano Penge


    Full Text Available E' ormai pratica diffusa, nello sviluppo di applicazioni web, l'utilizzo di template e di potenti template engine per automatizzare la generazione dei contenuti da presentare all'utente. Tuttavia a volte la potenza di tali engine è€ ottenuta mescolando logica e interfaccia, introducendo linguaggi diversi da quelli di descrizione della pagina, o addirittura inventando nuovi linguaggi dedicati.ARE (ADA Rendering Engine è€ pensato per gestire l'intero flusso di creazione del contenuto HTML/XHTML dinamico, la selezione del corretto template, CSS, JavaScript e la produzione dell'output separando completamente logica e interfaccia. I templates utilizzati sono puro HTML senza parti in altri linguaggi, e possono quindi essere gestiti e visualizzati autonomamente. Il codice HTML generato è€ uniforme e parametrizzato.E' composto da due moduli, CORE (Common Output Rendering Engine e ALE (ADA Layout Engine.Il primo (CORE viene utilizzato per la generazione OO degli elementi del DOM ed è pensato per aiutare lo sviluppatore nella produzione di codice valido rispetto al DTD utilizzato. CORE genera automaticamente gli elementi del DOM in base al DTD impostato nella configurazioneIl secondo (ALE viene utilizzato come template engine per selezionare automaticamente in base ad alcuni parametri (modulo, profilo utente, tipologia del nodo, del corso, preferenze di installazione il template HTML, i CSS e i file JavaScript appropriati. ALE permette di usare templates di default e microtemplates ricorsivi per semplificare il lavoro del grafico.I due moduli possono in ogni caso essere utilizzati indipendentemente l'uno dall'altro. E' possibile generare e renderizzare una pagina HTML utilizzando solo CORE oppure inviare gli oggetti CORE al template engine ALE che provvede a renderizzare la pagina HTML. Viceversa è possibile generare HTML senza utilizzare CORE ed inviarlo al template engine ALECORE è alla prima release ed è€ già utilizzato all

  18. Sea modeling and rendering (United States)

    Cathala, Thierry; Latger, Jean


    More and more defence and civil applications require simulation of marine synthetic environment. Currently, the "Future Anti-Surface-Guided-Weapon" (FASGW) or "anti-navire léger" (ANL) missile needs this kind of modelling. This paper presents a set of technical enhancement of the SE-Workbench that aim at better representing the sea profile and the interaction with targets. The operational scenario variability is a key criterion: the generic geographical area (e.g. Persian Gulf, coast of Somalia,...), the type of situation (e.g. peace keeping, peace enforcement, anti-piracy, drug interdiction,...)., the objectives (political, strategic, or military objectives), the description of the mission(s) (e.g. antipiracy) and operation(s) (e.g. surveillance and reconnaissance, escort, convoying) to achieve the objectives, the type of environment (Weather, Time of day, Geography [coastlines, islands, hills/mountains]). The paper insists on several points such as the dual rendering using either ray tracing [and the GP GPU optimization] or rasterization [and GPU shaders optimization], the modelling of sea-surface based on hypertextures and shaders, the wakes modelling, the buoyancy models for targets, the interaction of coast and littoral, the dielectric infrared modelling of water material.

  19. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.


    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  20. Reference: 207 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available generated Arabidopsis transgenic lines showing various albino patterns caused by IspH transgene-induced gen...he late dark period (4-6 h). The expression patterns of DXS and IspG are similar to that of IspH, indicating

  1. Characterization of the Ubiquitin E2 Enzyme Variant Gene Family in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yu Zhang; Pei Wen; On-Sun Lau; Xing-Wang Deng


    Ubiquitin E2 enzyme variant (UEV) proteins are similar to ubiquitin-conjugating enzyme (E2) in both sequence and structure, but the lack of a catalytic cysteine residue renders them incapable of forming a thiolester linkage with ubiquitin. While the functional roles of several UEVs have been defined in yeast and animal systems, Arabidopsis COP10, a photomorphogenesis repressor, is the only UEV characterized in plants. Phylogenetic analysis revealed that the eight Arabidopsis UEV genes belong to three subfamilies.The expression of those genes is supported by either the presence of ESTs or RT-PCR analysis. We also characterized the other members of the COP10 subfamily, UEV2. Semi-quantitative RT-PCR analysis indicated that the UEV2 transcripts can be detected in most organs of Arabidopsis. Analysis of UEV2::GUS transgenic lines also showed its ubiquitous expression in nearly all the developmental stages of Arabidopsis.Transient expression analysis indicated that the sGFP-UEV2 fusion protein can localize to both the cytoplasm and nucleus. A T-DNA insertion mutant, uev2-1, which abolished the transcription of UEV2, displays no visible phenotype. Further, the cop10-4 uev2-1 double mutant exhibits the same phenotype as the cop10-4mutant in darkness. UEV2 is therefore not functionally redundant with COP10.

  2. A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana. (United States)

    Wang, Xi; Li, Yong; Ji, Wei; Bai, Xi; Cai, Hua; Zhu, Dan; Sun, Xiao-Li; Chen, Lian-Jiang; Zhu, Yan-Ming


    Tonoplast intrinsic protein (TIP) is a subfamily of the aquaporin (AQP), also known as major intrinsic protein (MIP) family, and regulates water movement across vacuolar membranes. Some reports have implied that TIP genes are associated with plant tolerance to some abiotic stresses that cause water loss, such as drought and high salinity. In our previous work, we found that an expressed sequence tag (EST) representing a TIP gene in our Glycine soja EST library was inducible by abiotic stresses. This TIP was subsequently isolated from G. soja with cDNA library screening, EST assembly and PCR, and named as GsTIP2;1. The expression patterns of GsTIP2;1 in G. soja under low temperature, salt and dehydration stress were different in leaves and roots. Though GsTIP2;1 is a stress-induced gene, overexpression of GsTIP2;1 in Arabidopsis thaliana depressed tolerance to salt and dehydration stress, but did not affect seedling growth under cold or favorable conditions. Higher dehydration speed was detected in Arabidopsis plants overexpressing GsTIP2;1, implying GsTIP2;1 might mediate stress sensitivity by enhancing water loss in the plant. Such a result is not identical to previous reports, providing some new information about the relationship between TIP and plant abiotic stress tolerance.

  3. Metabolic changes in Arabidopsis thaliana plants overexpressing chalcone synthase

    NARCIS (Netherlands)

    Dao, Thi Thanh Hien


    The study has shown that it is possible to introduce the heterologous CHS gene in Arabidopsis thaliana and common multicopies of transgenes containing plants were obtained. Analysis of the change in metabolome of CHS transgenic plants, high expression transgenic lines can be identified by markers su

  4. Over-expression of JcDREB, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana. (United States)

    Tang, Mingjuan; Liu, Xiaofei; Deng, Huaping; Shen, Shihua


    Jatropha curcas L. is an all-purpose biodiesel plant and is widely distributed in tropical and subtropical climates. It can grow well on poor quality soil which is not qualified for crop cultivation. This is very important for relieving land, food and energy crises. However, tropical and subtropical distribution limits the production of J. curcas seed. So it is valuable to know the molecular mechanism of J. curcas response to adverse abiotic environmental factors, especially freezing stress, in order to change the plant's characteristics. Until now there are just a few reports about J. curcas molecular biology. In this paper, we cloned and characterized a DNA binding protein from this plant, designated as JcDREB. Sequence analysis and yeast one-hybrid assays show that JcDREB can effectively function as a transcription factor of DREB protein family belonging to A-6 subgroup member. Expression patterns of JcDREB showed that it was induced by cold, salt and drought stresses, not by ABA. Over-expression of JcDREB in transgenic Arabidopsis exhibited enhanced salt and freezing stresses. Understanding the molecular mechanisms of J. curcas responses to environmental stresses, for example, high salinity, drought and low temperature, is crucial for improving their stress tolerance and productivity. This work provides more information about A-6 subgroup members of DREB subfamily.

  5. A GRAS-like gene of sunflower (Helianthus annuus L.) alters the gibberellin content and axillary meristem outgrowth in transgenic Arabidopsis plants. (United States)

    Fambrini, M; Mariotti, L; Parlanti, S; Salvini, M; Pugliesi, C


    The GRAS proteins belong to a plant transcriptional regulator family that function in the regulation of plant growth and development. Despite their important roles, in sunflower only one GRAS gene (HaDella1) with the DELLA domain has been reported. Here, we provide a functional characterisation of a GRAS-like gene from Helianthus annuus (Ha-GRASL) lacking the DELLA motif. The Ha-GRASL gene contains an intronless open reading frame of 1,743 bp encoding 580 amino acids. Conserved motifs in the GRAS domain are detected, including VHIID, PFYRE, SAW and two LHR motifs. Within the VHII motif, the P-H-N-D-Q-L residues are entirely maintained. Phylogenetic analysis reveals that Ha-GRASL belongs to the SCARECROW LIKE4/7 (SCL4/7) subfamily of the GRAS consensus tree. Accumulation of Ha-GRASL mRNA at the adaxial boundaries from P6/P7 leaf primordia suggests a role of Ha-GRASL in the initiation of median and basal axillary meristems (AMs) of sunflower. When Ha-GRASL is over-expressed in Arabidopsis wild-type plants, the number of lateral bolts increases differently from untransformed plants. However, Ha-GRASL slightly affects the lateral suppressor (las-4-) mutation. Therefore, we hypothesise that Ha-GRASL and LAS are not functionally equivalent. The over-expression of Ha-GRASL reduces metabolic flow of gibberellins (GAs) in Arabidopsis and this modification could be relevant in AM development. Phylogenetic analysis includes LAS and SCL4/7 in the same major clade, suggesting a more recent separation of these genes with respect to other GRAS members. We propose that some features of their ancestor, as well as AM initiation and outgrowth, are partially retained in both LAS and SCL4/7.

  6. Entropy, color, and color rendering. (United States)

    Price, Luke L A


    The Shannon entropy [Bell Syst. Tech J.27, 379 (1948)] of spectral distributions is applied to the problem of color rendering. With this novel approach, calculations for visual white entropy, spectral entropy, and color rendering are proposed, indices that are unreliant on the subjectivity inherent in reference spectra and color samples. The indices are tested against real lamp spectra, showing a simple and robust system for color rendering assessment. The discussion considers potential roles for white entropy in several areas of color theory and psychophysics and nonextensive entropy generalizations of the entropy indices in mathematical color spaces.

  7. WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops. (United States)

    Borhan, Mohammad Hossein; Holub, Eric B; Kindrachuk, Colin; Omidi, Mansour; Bozorgmanesh-Frad, Ghazaleh; Rimmer, S Roger


    White blister rust caused by Albugo candida (Pers.) Kuntze is a common and often devastating disease of oilseed and vegetable brassica crops worldwide. Physiological races of the parasite have been described, including races 2, 7 and 9 from Brassica juncea, B. rapa and B. oleracea, respectively, and race 4 from Capsella bursa-pastoris (the type host). A gene named WRR4 has been characterized recently from polygenic resistance in the wild brassica relative Arabidopsis thaliana (accession Columbia) that confers broad-spectrum white rust resistance (WRR) to all four of the above Al. candida races. This gene encodes a TIR-NB-LRR (Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat) protein which, as with other known functional members in this subclass of intracellular receptor-like proteins, requires the expression of the lipase-like defence regulator, enhanced disease susceptibility 1 (EDS1). Thus, we used RNA interference-mediated suppression of EDS1 in a white rust-resistant breeding line of B. napus (transformed with a construct designed from the A. thaliana EDS1 gene) to determine whether defence signalling via EDS1 is functionally intact in this oilseed brassica. The eds1-suppressed lines were fully susceptible following inoculation with either race 2 or 7 isolates of Al. candida. We then transformed white rust-susceptible cultivars of B. juncea (susceptible to race 2) and B. napus (susceptible to race 7) with the WRR4 gene from A. thaliana. The WRR4-transformed lines were resistant to the corresponding Al. candida race for each host species. The combined data indicate that WRR4 could potentially provide a novel source of white rust resistance in oilseed and vegetable brassica crops.

  8. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. (United States)

    Wang, Fengtao; Lin, Ruiming; Feng, Jing; Chen, Wanquan; Qiu, Dewen; Xu, Shichang


    Plant-specific NAC transcription factors (TFs) constitute a large family and play important roles in regulating plant developmental processes and responses to environmental stresses, but only some of them have been investigated for effects on disease reaction in cereal crops. Virus-induced gene silencing (VIGS) is an effective strategy for rapid functional analysis of genes in plant tissues. In this study, TaNAC1, encoding a new member of the NAC1 subgroup, was cloned from bread wheat and characterized. It is a TF localized in the cell nucleus, and contains an activation domain in its C-terminal. TaNAC1 was strongly expressed in wheat roots and was involved in responses to infection by the obligate pathogen Puccinia striiformis f. sp. tritici and defense-related hormone treatments such as salicylic acid (SA), methyl jasmonate, and ethylene. Knockdown of TaNAC1 with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) enhanced stripe rust resistance. TaNAC1-overexpression in Arabidopsis thaliana plants gave enhanced susceptibility, attenuated systemic-acquired resistance to Pseudomonas syringae DC3000, and promoted lateral root development. Jasmonic acid-signaling pathway genes PDF1.2 and ORA59 were constitutively expressed in transgenic plants. TaNAC1 overexpression suppressed the expression levels of resistance-related genes PR1 and PR2 involved in SA signaling and AtWRKY70, which functions as a connection node between the JA- and SA-signaling pathways. Collectively, TaNAC1 is a novel NAC member of the NAC1 subgroup, negatively regulates plant disease resistance, and may modulate plant JA- and SA-signaling defense cascades.

  9. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fengtao eWang


    Full Text Available Plant-specific NAC transcription factors constitute a large family and play important roles in regulating plant developmental processes and responses to environmental stresses, but only some of them have been investigated for effects on disease reaction in cereal crops. Virus-induced gene silencing (VIGS is an effective strategy for rapid functional analysis of genes in plant tissues. In this study, TaNAC1, encoding a new member of the NAC1 subgroup, was cloned from bread wheat and characterized. It is a transcription factor localized in the cell nucleus, and contains an activation domain in its C-terminal. TaNAC1 was strongly expressed in wheat roots and was involved in responses to infection by the obligate pathogen Puccinia striiformis f. sp. tritici and defense-related hormone treatments such as salicylic acid, methyl jasmonate and ethylene. Knockdown of TaNAC1 with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS enhanced stripe rust resistance. TaNAC1-overexpression in Arabidopsis plants gave enhanced susceptibility, attenuated systemic-acquired resistance to Pseudomonas syringae DC3000, and promoted lateral root development. Jasmonic acid-signaling pathway genes PDF1.2 and ORA59 were constitutively expressed in transgenic plants. TaNAC1 overexpression suppressed the expression levels of resistance-related genes PR1 and PR2 involved in SA signaling and AtWRKY70, which functions as a connection node between the JA- and SA-signaling pathways. Collectively, TaNAC1 is a novel NAC member of the NAC1 subgroup, negatively regulates plant disease resistance, and may modulate plant JA- and SA-signaling defense cascades.

  10. Exposure render: an interactive photo-realistic volume rendering framework.

    Directory of Open Access Journals (Sweden)

    Thomas Kroes

    Full Text Available The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR by integrating a number of visually plausible but often effect-specific rendering techniques, for instance modeling of light occlusion and depth of field. Besides yielding more attractive renderings, especially the more realistic lighting has a positive effect on perceptual tasks. Although these new rendering techniques yield impressive results, they exhibit limitations in terms of their exibility and their performance. Monte Carlo ray tracing (MCRT, coupled with physically based light transport, is the de-facto standard for synthesizing highly realistic images in the graphics domain, although usually not from volumetric data. Due to the stochastic sampling of MCRT algorithms, numerous effects can be achieved in a relatively straight-forward fashion. For this reason, we have developed a practical framework that applies MCRT techniques also to direct volume rendering (DVR. With this work, we demonstrate that a host of realistic effects, including physically based lighting, can be simulated in a generic and flexible fashion, leading to interactive DVR with improved realism. In the hope that this improved approach to DVR will see more use in practice, we have made available our framework under a permissive open source license.

  11. RenderMan design principles (United States)

    Apodaca, Tony; Porter, Tom


    The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.

  12. Exposure Render: An Interactive Photo-Realistic Volume Rendering Framework

    NARCIS (Netherlands)

    Kroes, T.; Post, F.H.; Botha, C.P.


    The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR) by i

  13. Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. (United States)

    Persak, Helene; Pitzschke, Andrea


    Abiotic stress poses a huge, ever-increasing problem to plants and agriculture. The dissection of signalling pathways mediating stress tolerance is a prerequisite to develop more resistant plant species. Mitogen-activated protein kinase (MAPK) cascades are universal signalling modules. In Arabidopsis, the MAPK MPK3 and its upstream regulator MAPK kinase MKK4 initiate the adaptation response to numerous abiotic and biotic stresses. Yet, molecular steps directly linked with MKK4-MPK3 activation are largely unknown. Starting with a yeast-two-hybrid screen for interacting partners of MKK4, we identified a transcription factor, MYB44. MYB44 is controlled at multiple levels by and strongly inter-connected with MAPK signalling. As we had shown earlier, stress-induced expression of the MYB44 gene is regulated by a MPK3-targeted bZIP transcription factor VIP1. At the protein level, MYB44 interacts with MPK3 in vivo. MYB44 is phosphorylated by MPK3 in vitro at a single residue, Ser145. Although replacement of Ser145 by a non-phosphorylatable (S145A) or phosphomimetic (S145D) residue did not alter MYB44 subcellular localisation, dimerization behaviour nor DNA-binding characteristics, abiotic stress tolerance tests in stable transgenic Arabidopsis plants clearly related S145 phosphorylation to MYB44 function: Compared to Arabidopsis wild type plants, MYB44 overexpressing lines exhibit an enhanced tolerance to osmotic stress and are slightly more sensitive to abscisic acid. Interestingly, overexpression of the S145A variant revealed that impaired phosphorylation does not render the MYB44 protein non-functional. Instead, S145A lines are highly sensitive to abiotic stress, and thereby remarkably similar to mpk3-deficient plants. Its in vivo interaction with the nuclear sub-pools of both MPK3 and MKK4 renders MYB44 the first plant transcription factor to have a second function as putative MAPK cascade scaffolding protein.

  14. GPU Pro advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang


    This book covers essential tools and techniques for programming the graphics processing unit. Brought to you by Wolfgang Engel and the same team of editors who made the ShaderX series a success, this volume covers advanced rendering techniques, engine design, GPGPU techniques, related mathematical techniques, and game postmortems. A special emphasis is placed on handheld programming to account for the increased importance of graphics on mobile devices, especially the iPhone and iPod touch.Example programs and source code can be downloaded from the book's CRC Press web page. 

  15. Homologous electron transport components fail to increase fatty acid hydroxylation in transgenic Arabidopsis thaliana [v2; ref status: indexed,

    Directory of Open Access Journals (Sweden)

    Laura L. Wayne


    Full Text Available Ricinoleic acid, a hydroxylated fatty acid (HFA present in castor (Ricinus communis seeds, is an important industrial commodity used in products ranging from inks and paints to polymers and fuels. However, due to the deadly toxin ricin and allergens also present in castor, it would be advantageous to produce ricinoleic acid in a different agricultural crop. Unfortunately, repeated efforts at heterologous expression of the castor fatty acid hydroxylase (RcFAH12 in the model plant Arabidopsis thaliana have produced only 17-19% HFA in the seed triacylglycerols (TAG, whereas castor seeds accumulate up to 90% ricinoleic acid in the endosperm TAG. RcFAH12 requires an electron supply from NADH:cytochrome b5 reductase (CBR1 and cytochrome b5 (Cb5 to synthesize ricinoleic acid. Previously, our laboratory found a mutation in the Arabidopsis CBR1 gene, cbr1-1, that caused an 85% decrease in HFA levels in the RcFAH12 Arabidopsis line. These results raise the possibility that electron supply to the heterologous RcFAH12 may limit the production of HFA. Therefore, we hypothesized that by heterologously expressing RcCb5, the reductant supply to RcFAH12 would be improved and lead to increased HFA accumulation in Arabidopsis seeds. Contrary to this proposal, heterologous expression of the top three RcCb5 candidates did not increase HFA accumulation. Furthermore, coexpression of RcCBR1 and RcCb5 in RcFAH12 Arabidopsis also did not increase in HFA levels compared to the parental lines. These results demonstrate that the Arabidopsis electron transfer system is supplying sufficient reductant to RcFAH12 and that there must be other bottlenecks limiting the accumulation of HFA.

  16. Real-time graphics rendering engine

    CERN Document Server

    Bao, Hujun


    ""Real-Time Graphics Rendering Engine"" reveals the software architecture of the modern real-time 3D graphics rendering engine and the relevant technologies based on the authors' experience developing this high-performance, real-time system. The relevant knowledge about real-time graphics rendering such as the rendering pipeline, the visual appearance and shading and lighting models are also introduced. This book is intended to offer well-founded guidance for researchers and developers who are interested in building their own rendering engines. Hujun Bao is a professor at the State Key Lab of

  17. Hardware Accelerated Point Rendering of Isosurfaces

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Christensen, Niels Jørgen


    an approximate technique for point scaling using distance attenuation which makes it possible to render points stored in display lists or vertex arrays. This enables us to render points quickly using OpenGL. Our comparisons show that point generation is significantly faster than triangle generation...... and that the advantage of rendering points as opposed to triangles increases with the size and complexity of the volumes. To gauge the visual quality of future hardware accelerated point rendering schemes, we have implemented a software based point rendering method and compare the quality to both MC and our OpenGL based...

  18. Divergent regulation of CBF regulon on cold tolerance and plant phenotype in cassava overexpressing Arabidopsis CBF3 gene

    Directory of Open Access Journals (Sweden)

    Dong An


    Full Text Available Cassava is a tropical origin plant that is sensitive to chilling stress. In order to understand the CBF cold response pathway, a well-recognized regulatory mechanism in temperate plants, in cassava, overexpression of an Arabidopsis CBF3 gene is studied. This gene renders cassava increasingly tolerant to cold and drought stresses but is associated with retarded plant growth, leaf curling, reduced storage root yield, and reduced anthocyanin accumulation in a transcript abundance-dependent manner. Physiological analysis revealed that the transgenic cassava increased proline accumulation, reduced malondialdehyde production, and electrolyte leakage under cold stress. These transgenic lines also showed high relative water content when faced with drought. The expression of partial CBF-targeted genes in response to cold displayed temporal and spatial variations in the wild-type and transgenic plants: highly inducible in leaves and less altered in apical buds. In addition, anthocyanin accumulation was inhibited by downregulating the expression of genes involved in its biosynthesis and by interplaying between the CBF3 and the endogenous transcription factors. Thus, the heterologous CBF3 modulates the expression of stress-related genes and carries out a series of physiological adjustments under stressful conditions, showing a varied regulation pattern of CBF regulon from that of cassava CBFs.

  19. Cluster parallel rendering based on encoded mesh

    Institute of Scientific and Technical Information of China (English)

    QIN Ai-hong; XIONG Hua; PENG Hao-yu; LIU Zhen; SHI Jiao-ying


    Use of compressed mesh in parallel rendering architecture is still an unexplored area, the main challenge of which is to partition and sort the encoded mesh in compression-domain. This paper presents a mesh compression scheme PRMC (Parallel Rendering based Mesh Compression) supplying encoded meshes that can be partitioned and sorted in parallel rendering system even in encoded-domain. First, we segment the mesh into submeshes and clip the submeshes' boundary into Runs, and then piecewise compress the submeshes and Runs respectively. With the help of several auxiliary index tables, compressed submeshes and Runs can serve as rendering primitives in parallel rendering system. Based on PRMC, we design and implement a parallel rendering architecture. Compared with uncompressed representation, experimental results showed that PRMC meshes applied in cluster parallel rendering system can dramatically reduce the communication requirement.

  20. Overexpression of Vacuole H+-ATPase E Subunit Gene SiVHA-Efrom Foxtail Millet Enhances Salt Resistance in Transgenic Arabidopsis thaliana%过表达谷子液泡H+-ATPase E亚基基因在拟南芥中的耐盐性

    Institute of Scientific and Technical Information of China (English)

    冯露; 钟理; 陈丹丹; 马有志; 徐兆师; 李连城; 周永斌; 陈明; 张小红


    were significantly longer as well as fresh weight and survival rate were significantly higher in transgenic lines than in wild type plant under salt treatment. Compared with wild type plant, trans-genic plant reduced the content of Na+and increased the relative water content inside cells. In addition, the results of germination experiment used ABA showed thatSiVHA-E transgenicArabidopsis was more sensitive to ABA than wild type plant during post-germination. In short, overexpressingSiVHA-Ein transgenicArabidopsis lines enhances salt tolerance, which might be relates to positive regulation of ABA signaling pathway or reduction of Na+ accumulation and water loss in transgenic plants.

  1. Binaural Rendering in MPEG Surround

    Directory of Open Access Journals (Sweden)

    Kristofer Kjörling


    Full Text Available This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate “binaural parameters” that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  2. Arabidopsis gene expression patterns during spaceflight (United States)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  3. RenderToolbox3: MATLAB tools that facilitate physically based stimulus rendering for vision research. (United States)

    Heasly, Benjamin S; Cottaris, Nicolas P; Lichtman, Daniel P; Xiao, Bei; Brainard, David H


    RenderToolbox3 provides MATLAB utilities and prescribes a workflow that should be useful to researchers who want to employ graphics in the study of vision and perhaps in other endeavors as well. In particular, RenderToolbox3 facilitates rendering scene families in which various scene attributes and renderer behaviors are manipulated parametrically, enables spectral specification of object reflectance and illuminant spectra, enables the use of physically based material specifications, helps validate renderer output, and converts renderer output to physical units of radiance. This paper describes the design and functionality of the toolbox and discusses several examples that demonstrate its use. We have designed RenderToolbox3 to be portable across computer hardware and operating systems and to be free and open source (except for MATLAB itself). RenderToolbox3 is available at

  4. Image Based Rendering under Varying Illumination

    Institute of Scientific and Technical Information of China (English)

    Wang Chengfeng (王城峰); Hu Zhanyi


    A new approach for photorealistic rendering of a class of objects at arbitrary illumination is presented. The approach of the authors relies entirely on image based rendering techniques. A scheme is utilized for re-illumination of objects based on linear combination of low dimensional image representations. The minimum rendering condition of technique of the authors is three sample images under varying illumination of a reference object and a single input image of an interested object. Important properties of this approach are its simplicity, robustness and speediness. Experimental results validate the proposed rendering approach.

  5. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  6. Moisture movements in render on brick wall

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Munch, Thomas Astrup; Thorsen, Peter Schjørmann


    A three-layer render on brick wall used for building facades is studied in the laboratory. The vertical render surface is held in contact with water for 24 hours simulating driving rain while it is measured with non-destructive X-ray equipment every hour in order to follow the moisture front...... through the render and into the brick. The test specimen is placed between the source and the detector. The test specimens are all scanned before they are exposed to water. In that way the loss of counts from the dry scan to the wet scan qualitatively shows the presence of water. The results show nearly...... no penetration of water through the render and into the brick, and the results are independent of the start condition of the test specimens. Also drying experiments are performed. The results show a small difference in the rate of drying, in favour of the bricks without render....

  7. Optimization-Based Wearable Tactile Rendering. (United States)

    Perez, Alvaro G; Lobo, Daniel; Chinello, Francesco; Cirio, Gabriel; Malvezzi, Monica; San Martin, Jose; Prattichizzo, Domenico; Otaduy, Miguel A


    Novel wearable tactile interfaces offer the possibility to simulate tactile interactions with virtual environments directly on our skin. But, unlike kinesthetic interfaces, for which haptic rendering is a well explored problem, they pose new questions about the formulation of the rendering problem. In this work, we propose a formulation of tactile rendering as an optimization problem, which is general for a large family of tactile interfaces. Based on an accurate simulation of contact between a finger model and the virtual environment, we pose tactile rendering as the optimization of the device configuration, such that the contact surface between the device and the actual finger matches as close as possible the contact surface in the virtual environment. We describe the optimization formulation in general terms, and we also demonstrate its implementation on a thimble-like wearable device. We validate the tactile rendering formulation by analyzing its force error, and we show that it outperforms other approaches.

  8. Physically based rendering from theory to implementation

    CERN Document Server

    Pharr, Matt


    "Physically Based Rendering, 2nd Edition" describes both the mathematical theory behind a modern photorealistic rendering system as well as its practical implementation. A method - known as 'literate programming'- combines human-readable documentation and source code into a single reference that is specifically designed to aid comprehension. The result is a stunning achievement in graphics education. Through the ideas and software in this book, you will learn to design and employ a full-featured rendering system for creating stunning imagery. This book features new sections on subsurface scattering, Metropolis light transport, precomputed light transport, multispectral rendering, and much more. It includes a companion site complete with source code for the rendering system described in the book, with support for Windows, OS X, and Linux. Code and text are tightly woven together through a unique indexing feature that lists each function, variable, and method on the page that they are first described.

  9. 3D Rendering - Techniques and Challenges

    Directory of Open Access Journals (Sweden)

    Ekta Walia


    Full Text Available Computer generated images and animations are getting more and more common. They are used in many different contexts such as movies,mobiles, medical visualization, architectural visualization and CAD. Advanced ways of describing surface and light source properties are important to ensure that artists are able to create realistic and stylish looking images. Even when using advanced rendering algorithms such as ray tracing, time required for shading may contribute towards a large part of the image creation time. Therefore both performance and flexibility is important in a rendering system. This paper gives a comparative study of various 3D Rendering techniques and their challenges in a complete and systematic manner.

  10. Visibility-Aware Direct Volume Rendering

    Institute of Scientific and Technical Information of China (English)

    Wai-Ho Mak; Yingcai Wu; Ming-Yuen Chan; Huamin Qu


    Direct volume rendering (DVR) is a powerful visualization technique which allows users to effectively explore and study volumetric datasets. Different transparency settings can be flexibly assigned to different structures such that some valuable information can be revealed in direct volume rendered images (DVRIs). However, end-users often feel that some risks are always associated with DVR because they do not know whether any important information is missing from the transparent regions of DVRIs. In this paper, we investigate how to semi-automatically generate a set of DVRIs and also an animation which can reveal information missed in the original DVRIs and meanwhile satisfy some image quality criteria such as coherence. A complete framework is developed to tackle various problems related to the generation and quality evaluation of visibility-aware DVRIs and animations. Our technique can reduce the risk of using direct volume rendering and thus boost the confidence of users in volume rendering systems.

  11. Composed Scattering Model for Direct Volume Rendering

    Institute of Scientific and Technical Information of China (English)

    蔡文立; 石教英


    Based on the equation of transfer in transport theory of optical physics,a new volume rendering model,called composed scattering model(CSM),is presented.In calculating the scattering term of the equation,it is decomposed into volume scattering intensity and surface scattering intensity,and they are composed with the boundary detection operator as the weight function.This proposed model differs from the most current volume rendering models in the aspect that in CSM segmentation and illumination intensity calculation are taken as two coherent parts while in existing models they are regarded as two separate ones.This model has been applied to the direct volume rendering of 3D data sets obtained by CT and MRI.The resultant images show not only rich details but also clear boundary surfaces.CSM is demonstrated to be an accurate volume rendering model suitable for CT and MRI data sets.

  12. ARC Code TI: SLAB Spatial Audio Renderer (United States)

    National Aeronautics and Space Administration — SLAB is a software-based, real-time virtual acoustic environment rendering system being developed as a tool for the study of spatial hearing. SLAB is designed to...

  13. Layered Textures for Image-Based Rendering

    Institute of Scientific and Technical Information of China (English)

    en-Cheng Wang; ui-Yu Li; in Zheng; n-Hua Wu


    An extension to texture mapping is given in this paper for improving the efficiency of image-based rendering. For a depth image with an orthogonal displacement at each pixel, it is decomposed by the displacement into a series of layered textures (LTs) with each one having the same displacement for all its texels. Meanwhile,some texels of the layered textures are interpolated for obtaining a continuous 3D approximation of the model represented in the depth image. Thus, the plane-to-plane texture mapping can be used to map these layered textures to produce novel views and the advantages can be obtained as follows: accelerating the rendering speed,supporting the 3D surface details and view motion parallax, and avoiding the expensive task of hole-filling in the rendering stage. Experimental results show the new method can produce high-quality images and run faster than many famous image-based rendering techniques.


    Directory of Open Access Journals (Sweden)

    Kaya OĞUZ


    Full Text Available Computer games, with the speed advancements of graphical processors, are coming closer to the quality of cinema industry. Contrary to offline rendering of the scenes in a motion picture, computer games should be able to render at 30 frames per second. Therefore, CPU and memory performance are sought by using various techniques. This paper is about using instancing feature of contemporary graphical processors along with level of detail techniques which has been in use for a very long time. Using instancing, 15,000 instances were successfully rendered at 30 frames per second using a very low %10 CPU usage. The application can render 40,000 instances at 13 frames per second.

  15. Rendering and Compositing Infrastructure Improvements to VisIt for Insitu Rendering

    Energy Technology Data Exchange (ETDEWEB)

    Loring, Burlen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ruebel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Compared to posthoc rendering, insitu rendering often generates larger numbers of images, as a result rendering performance and scalability are critical in the insitu setting. In this work we present improvements to VisIt's rendering and compositing infrastructure that deliver increased performance and scalability in both posthoc and insitu settings. We added the capability for alpha blend compositing and use it with ordered compositing when datasets have disjoint block domain decomposition to optimize the rendering of transparent geometry. We also made improvements that increase overall efficiency by reducing communication and data movement and have addressed a number of performance issues. We structured our code to take advantage of SIMD parallelization and use threads to overlap communication and compositing. We tested our improvements on a 20 core workstation using 8 cores to render geometry generated from a $256^3$ cosmology dataset and on a Cray XC31 using 512 cores to render geometry generated from a $2000^2 \\times 800$ plasma dataset. Our results show that ordered compositing provides a speed up of up to $4 \\times$ over the current sort first strategy. The other improvements resulted in modest speed up with one notable exception where we achieve up to $40 \\times$ speed up of rendering and compositing of opaque geometry when both opaque and transparent geometry are rendered together. We also investigated the use of depth peeling, but found that the implementation provided by VTK is substantially slower,both with and without GPU acceleration, than a local camera order sort.

  16. Brain Image Representation and Rendering: A Survey

    Directory of Open Access Journals (Sweden)

    Mudassar Raza


    Full Text Available Brain image representation and rendering processes are basically used for evaluation, development and investigation consent experimental examination and formation of brain images of a variety of modalities that includes the major brain types like MEG, EEG, PET, MRI, CT or microscopy. So, there is a need to conduct a study to review the existing work in this area. This paper provides a review of different existing techniques and methods regarding the brain image representation and rendering. Image Rendering is the method of generating an image by means of a model, through computer programs. The basic purpose of brain image representation and rendering processes is to analyze the brain images precisely in order to effectively diagnose and examine the diseases and problems. The basic objective of this study is to evaluate and discuss different techniques and approaches proposed in order to handle different brain imaging types. The paper provides a short overview of different methods, in the form of advantages and limitations, presented in the prospect of brain image representation and rendering along with their sub categories proposed by different authors.

  17. Equalizer: a scalable parallel rendering framework. (United States)

    Eilemann, Stefan; Makhinya, Maxim; Pajarola, Renato


    Continuing improvements in CPU and GPU performances as well as increasing multi-core processor and cluster-based parallelism demand for flexible and scalable parallel rendering solutions that can exploit multipipe hardware accelerated graphics. In fact, to achieve interactive visualization, scalable rendering systems are essential to cope with the rapid growth of data sets. However, parallel rendering systems are non-trivial to develop and often only application specific implementations have been proposed. The task of developing a scalable parallel rendering framework is even more difficult if it should be generic to support various types of data and visualization applications, and at the same time work efficiently on a cluster with distributed graphics cards. In this paper we introduce a novel system called Equalizer, a toolkit for scalable parallel rendering based on OpenGL which provides an application programming interface (API) to develop scalable graphics applications for a wide range of systems ranging from large distributed visualization clusters and multi-processor multipipe graphics systems to single-processor single-pipe desktop machines. We describe the system architecture, the basic API, discuss its advantages over previous approaches, present example configurations and usage scenarios as well as scalability results.

  18. Adaptive Rendering Based on Visual Acuity Equations

    Institute of Scientific and Technical Information of China (English)


    A new method of adaptable rendering for interaction in Virtual Environment(VE) through different visual acuity equations is proposed. An acuity factor equation of luminance vision is first given. Secondly, five equations which calculate the visual acuity through visual acuity factors are presented, and adaptive rendering strategy based on different visual acuity equations is given. The VE system may select one of them on the basis of the host's load, hereby select LOD for each model which would be rendered. A coarser LOD is selected where the visual acuity is lower, and a better LOD is used where it is higher. This method is tested through experiments and the experimental results show that it is effective.

  19. Rendering Falling Leaves on Graphics Hardware

    Directory of Open Access Journals (Sweden)

    Marcos Balsa


    Full Text Available There is a growing interest in simulating natural phenomena in computer graphics applications. Animating natural scenes in real time is one of the most challenging problems due to the inherent complexity of their structure, formed by millions of geometric entities, and the interactions that happen within. An example of natural scenario that is needed for games or simulation programs are forests. Forests are difficult to render because the huge amount of geometric entities and the large amount of detail to be represented. Moreover, the interactions between the objects (grass, leaves and external forces such as wind are complex to model. In this paper we concentrate in the rendering of falling leaves at low cost. We present a technique that exploits graphics hardware in order to render thousands of leaves with different falling paths in real time and low memory requirements.

  20. Arabidopsis gene expression patterns are altered during spaceflight (United States)

    Paul, Anna-Lisa; Popp, Michael P.; Gurley, William B.; Guy, Charles; Norwood, Kelly L.; Ferl, Robert J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments results in differential gene expression. A 5-day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β-Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on gene expression patterns initially by using the Adh/GUS transgene to address specifically the possibility that spaceflight induces a hypoxic stress response (Paul, A.L., Daugherty, C.J., Bihn, E.A., Chapman, D.K., Norwood, K.L., Ferl, R.J., 2001. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis, Plant Physiol. 126, 613-621). As a follow-on to the reporter gene analysis, we report here the evaluation of genome-wide patterns of native gene expression within Arabidopsis shoots utilizing the Agilent DNA array of 21,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes was further characterized with quantitative Real-Time RT PCR (ABI - Taqman®). Comparison of the patterns of expression for arrays probed with RNA isolated from plants exposed to spaceflight compared to RNA isolated from ground control plants revealed 182 genes that were differentially expressed in response to the spaceflight mission by more than 4-fold, and of those only 50 genes were expressed at levels chosen to support a conservative change call. None of the genes that are hallmarks of hypoxic stress were induced to this level. However, genes related to heat shock were dramatically induced - but in a pattern and under growth conditions that are not easily explained by elevated temperatures. These gene expression data are discussed in light of current models for plant responses to the spaceflight environment and with regard to potential future spaceflight experiment

  1. Digital color acquisition, perception, coding and rendering

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic


    In this book the authors identify the basic concepts and recent advances in the acquisition, perception, coding and rendering of color. The fundamental aspects related to the science of colorimetry in relation to physiology (the human visual system) are addressed, as are constancy and color appearance. It also addresses the more technical aspects related to sensors and the color management screen. Particular attention is paid to the notion of color rendering in computer graphics. Beyond color, the authors also look at coding, compression, protection and quality of color images and videos.

  2. GPU Pro 5 advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang


    In GPU Pro5: Advanced Rendering Techniques, section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Marius Bjorge have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book covers rendering, lighting, effects in image space, mobile devices, 3D engine design, and compute. It explores rasterization of liquids, ray tracing of art assets that would otherwise be used in a rasterized engine, physically based area lights, volumetric light

  3. Volume Rendering for Curvilinear and Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Max, N; Williams, P; Silva, C; Cook, R


    We discuss two volume rendering methods developed at Lawrence Livermore National Laboratory. The first, cell projection, renders the polygons in the projection of each cell. It requires a global visibility sort in order to composite the cells in back to front order, and we discuss several different algorithms for this sort. The second method uses regularly spaced slice planes perpendicular to the X, Y, or Z axes, which slice the cells into polygons. Both methods are supplemented with anti-aliasing techniques to deal with small cells that might fall between pixel samples or slice planes, and both have been parallelized.

  4. Blender cycles lighting and rendering cookbook

    CERN Document Server

    Iraci, Bernardo


    An in-depth guide full of step-by-step recipes to explore the concepts behind the usage of Cycles. Packed with illustrations, and lots of tips and tricks; the easy-to-understand nature of the book will help the reader understand even the most complex concepts with ease.If you are a digital artist who already knows your way around Blender, and you want to learn about the new Cycles' rendering engine, this is the book for you. Even experts will be able to pick up new tips and tricks to make the most of the rendering capabilities of Cycles.

  5. Haptic rendering for simulation of fine manipulation

    CERN Document Server

    Wang, Dangxiao; Zhang, Yuru


    This book introduces the latest progress in six degrees of freedom (6-DoF) haptic rendering with the focus on a new approach for simulating force/torque feedback in performing tasks that require dexterous manipulation skills. One of the major challenges in 6-DoF haptic rendering is to resolve the conflict between high speed and high fidelity requirements, especially in simulating a tool interacting with both rigid and deformable objects in a narrow space and with fine features. The book presents a configuration-based optimization approach to tackle this challenge. Addressing a key issue in man

  6. Neuroanatomy and transgenic technologies (United States)

    This is a short review that introduces recent advances of neuroanatomy and transgenic technologies. The anatomical complexity of the nervous system remains a subject of tremendous fascination among neuroscientists. In order to tackle this extraordinary complexity, powerful transgenic technologies a...

  7. ProteinShader: illustrative rendering of macromolecules

    Directory of Open Access Journals (Sweden)

    Weber Joseph R


    Full Text Available Abstract Background Cartoon-style illustrative renderings of proteins can help clarify structural features that are obscured by space filling or balls and sticks style models, and recent advances in programmable graphics cards offer many new opportunities for improving illustrative renderings. Results The ProteinShader program, a new tool for macromolecular visualization, uses information from Protein Data Bank files to produce illustrative renderings of proteins that approximate what an artist might create by hand using pen and ink. A combination of Hermite and spherical linear interpolation is used to draw smooth, gradually rotating three-dimensional tubes and ribbons with a repeating pattern of texture coordinates, which allows the application of texture mapping, real-time halftoning, and smooth edge lines. This free platform-independent open-source program is written primarily in Java, but also makes extensive use of the OpenGL Shading Language to modify the graphics pipeline. Conclusion By programming to the graphics processor unit, ProteinShader is able to produce high quality images and illustrative rendering effects in real-time. The main feature that distinguishes ProteinShader from other free molecular visualization tools is its use of texture mapping techniques that allow two-dimensional images to be mapped onto the curved three-dimensional surfaces of ribbons and tubes with minimum distortion of the images.

  8. Rendering Visible: Painting and Sexuate Subjectivity (United States)

    Daley, Linda


    In this essay, I examine Luce Irigaray's aesthetic of sexual difference, which she develops by extrapolating from Paul Klee's idea that the role of painting is to render the non-visible rather than represent the visible. This idea is the premise of her analyses of phenomenology and psychoanalysis and their respective contributions to understanding…

  9. Haptic rendering for dental training system

    Institute of Scientific and Technical Information of China (English)

    WANG DangXiao; ZHANG YuRu; WANG Yong; L(U) PeiJun; ZHOU RenGe; ZHOU WanLin


    Immersion and Interaction are two key features of virtual reality systems,which are especially important for medical applications.Based on the requirement of motor skill training in dental surgery,haptic rendering method based on triangle model is investigated in this paper.Multi-rate haptic rendering architecture is proposed to solve the contradiction between fidelity and efficiency requirements.Realtime collision detection algorithm based on spatial partition and time coherence is utilized to enable fast contact determination.Proxy-based collision response algorithm is proposed to compute surface contact point.Cutting force model based on piecewise contact transition model is proposed for dental drilling simulation during tooth preparation.Velocity-driven levels of detail hapUc rendering algorithm is proposed to maintain high update rate for complex scenes with a large number of triangles.Hapticvisual collocated dental training prototype is established using half-mirror solution.Typical dental operations have been realized Including dental caries exploration,detection of boundary within dental crose-section plane,and dental drilling during tooth preparation.The haptic rendering method is a fundamental technology to improve Immersion and interaction of virtual reality training systems,which is useful not only in dental training,but also in other surgical training systems.

  10. Over-Expression of ICE1 Gene in Transgenic Rice Improves Cold Tolerance

    Institute of Scientific and Technical Information of China (English)

    XIANG Dian-jun; HU Xiang-yang; ZHANG Yu; YIN Kui-de


    ICE1, an Arabidopsis thaliana transcription factor gene, was cloned by RT-PCR and successfully transformed into rice variety Kenjiandao 10 by the Agrobacterium-mediated transformation method. PCR amplification and Southern blot analysis indicated that ICE1 had been integrated into rice genome. Compared with the non-transgenic plants, the transgenic plants exhibited high resistance to hygromycin B and were consistent with the Mendelian inheritance of a single copy of the transgenic ICE1. Under the low temperature stress, the transgenic plants showed the lower mortality rate and the increased proline content. These results suggest that the Arabidopsis ICE1 is functional in rice and the over-expression of ICE1 improves the tolerance to cold stress in rice.

  11. Anti-Aliased Rendering of Water Surface

    Institute of Scientific and Technical Information of China (English)

    Xue-Ying Qin; Eihachiro Nakamae; Wei Hua; Yasuo Nagai; Qun-Sheng Peng


    Water surface is one of the most important components of landscape scenes. When rendering spacious far from the viewpoint. This is because water surface consists of stochastic water waves which are usually modeled by periodic bump mapping. The incident rays on the water surface are actually scattered by the bumped waves,pattern, we estimate this solid angle of reflected rays and trace these rays. An image-based accelerating method is adopted so that the contribution of each reflected ray can be quickly obtained without elaborate intersection calculation. We also demonstrate anti-aliased shadows of sunlight and skylight on the water surface. Both the rendered images and animations show excellent effects on the water surface of a reservoir.

  12. Automatic Image-Based Pencil Sketch Rendering

    Institute of Scientific and Technical Information of China (English)

    王进; 鲍虎军; 周伟华; 彭群生; 徐迎庆


    This paper presents an automatic image-based approach for converting greyscale images to pencil sketches, in which strokes follow the image features. The algorithm first extracts a dense direction field automatically using Logical/Linear operators which embody the drawing mechanism. Next, a reconstruction approach based on a sampling-and-interpolation scheme is introduced to generate stroke paths from the direction field. Finally, pencil strokes are rendered along the specified paths with consideration of image tone and artificial illumination.As an important application, the technique is applied to render portraits from images with little user interaction. The experimental results demonstrate that the approach can automatically achieve compelling pencil sketches from reference images.

  13. Visualization of Medpor implants using surface rendering

    Institute of Scientific and Technical Information of China (English)

    WANG Meng; GUI Lai; LIU Xiao-jing


    Background The Medpor surgical implant is one of the easiest implants in clinical practice, especially in craniomaxillofacial surgery. It is often used as a bone substitute material for the repair of skull defects and facial deformities. The Medpor implant has several advantages but its use is limited because it is radiolucent in both direct radiography and conventional computed tomography, causing serious problems with visualization.Methods In this study, a new technique for visualizing Medpor implants was evaluated in 10 patients who had undergone facial reconstruction using the material. Continuous volume scans were made using a 16-channel tomographic scanner and 3D reconstruction software was used to create surface renderings. The threshold values for surface renderings of the implant ranged from -70 HU to -20 HU, with bone as the default.Results The shape of the implants and the spatial relationship between bone and implant could both be displayed.Conclusion Surface rendering can allow successful visualization of Medpor implants in the body.

  14. Hypermethylated SUPERMAN epigenetic alleles in arabidopsis. (United States)

    Jacobsen, S E; Meyerowitz, E M


    Mutations in the SUPERMAN gene affect flower development in Arabidopsis. Seven heritable but unstable sup epi-alleles (the clark kent alleles) are associated with nearly identical patterns of excess cytosine methylation within the SUP gene and a decreased level of SUP RNA. Revertants of these alleles are largely demethylated at the SUP locus and have restored levels of SUP RNA. A transgenic Arabidopsis line carrying an antisense methyltransferase gene, which shows an overall decrease in genomic cytosine methylation, also contains a hypermethylated sup allele. Thus, disruption of methylation systems may yield more complex outcomes than expected and can result in methylation defects at known genes. The clark kent alleles differ from the antisense line because they do not show a general decrease in genomic methylation.

  15. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. (United States)

    Hsieh, Tsai-Hung; Lee, Jent-turn; Charng, Yee-yung; Chan, Ming-Tsair


    A DNA cassette containing an Arabidopsis C repeat/dehydration-responsive element binding factor 1 (CBF1) cDNA and a nos terminator, driven by a cauliflower mosaic virus 35S promoter, was transformed into the tomato (Lycopersicon esculentum) genome. These transgenic tomato plants were more resistant to water deficit stress than the wild-type plants. The transgenic plants exhibited growth retardation by showing dwarf phenotype, and the fruit and seed numbers and fresh weight of the transgenic tomato plants were apparently less than those of the wild-type plants. Exogenous gibberellic acid treatment reversed the growth retardation and enhanced growth of transgenic tomato plants, but did not affect the level of water deficit resistance. The stomata of the transgenic CBF1 tomato plants closed more rapidly than the wild type after water deficit treatment with or without gibberellic acid pretreatment. The transgenic tomato plants contained higher levels of Pro than those of the wild-type plants under normal or water deficit conditions. Subtractive hybridization was used to isolate the responsive genes to heterologous CBF1 in transgenic tomato plants and the CAT1 (CATALASE1) was characterized. Catalase activity increased, and hydrogen peroxide concentration decreased in transgenic tomato plants compared with the wild-type plants with or without water deficit stress. These results indicated that the heterologous Arabidopsis CBF1 can confer water deficit resistance in transgenic tomato plants.

  16. GPU PRO 3 Advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang


    GPU Pro3, the third volume in the GPU Pro book series, offers practical tips and techniques for creating real-time graphics that are useful to beginners and seasoned game and graphics programmers alike. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Wessam Bahnassi, and Sebastien St-Laurent have once again brought together a high-quality collection of cutting-edge techniques for advanced GPU programming. With contributions by more than 50 experts, GPU Pro3: Advanced Rendering Techniques covers battle-tested tips and tricks for creating interesting geometry, realistic sha

  17. Haptic rendering foundations, algorithms, and applications

    CERN Document Server

    Lin, Ming C


    For a long time, human beings have dreamed of a virtual world where it is possible to interact with synthetic entities as if they were real. It has been shown that the ability to touch virtual objects increases the sense of presence in virtual environments. This book provides an authoritative overview of state-of-theart haptic rendering algorithms and their applications. The authors examine various approaches and techniques for designing touch-enabled interfaces for a number of applications, including medical training, model design, and maintainability analysis for virtual prototyping, scienti

  18. GPU Pro 4 advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang


    GPU Pro4: Advanced Rendering Techniques presents ready-to-use ideas and procedures that can help solve many of your day-to-day graphics programming challenges. Focusing on interactive media and games, the book covers up-to-date methods producing real-time graphics. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Sebastien St-Laurent have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book begins with discussions on the abi

  19. Defects of organization in rendering medical aid

    Directory of Open Access Journals (Sweden)

    Shavkat Islamov


    Full Text Available The defects of organization at the medical institution mean disturbance of rules, norms and order of rendering of medical aid. The number of organization defects in Uzbekistan increased from 20.42%, in 1999 to 25.46% in 2001 with gradual decrease to 19.9% in 2003 and 16.66%, in 2006 and gradual increase to 21.95% and 28.28% (P<0.05 in 2005 and 2008. Among the groups of essential defects of organization there were following: disturbance of transportation rules, lack of dispensary care, shortcomings in keeping medical documentation.

  20. HAL1 mediate salt adaptation in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)


    The yeast HAL1 gene was introduced into Arabidopsis thaliana by Agrobacterium tumefaciens-mediated transformation with vacuum infiltration under the control of CaMV 35S promoter.Thirty-three individual kanamycin resistant plants were obtained from 75,000 seeds.Southern blotting analysis indicated that HAL1 gene had been integrated into all of the transgenic plants' genomes.The copy number of HAL1 gene in transgenic plants was mostly 1 to 3 by Southern analysis.Phenotypes of transgenic plants have no differences with wild type plants.Several samples of transformants were self-pollinated,and progenies from transformed and non-transformed plants(controls)were evaluated for salt tolerance and gene expression.Measurement of concentrations of intracellular K+ and Na+ showed that transgenic lines were able to retain less Na+ than that of the control under salt stress.Results from different tests indicated the expression of HAL1 gene promotes a higher level of salt tolerance in vivo in the transgenic Arabidopsis plants.

  1. Rendering of 3D Dynamic Virtual Environments

    CERN Document Server

    Catanese, Salvatore; Fiumara, Giacomo; Pagano, Francesco


    In this paper we present a framework for the rendering of dynamic 3D virtual environments which can be integrated in the development of videogames. It includes methods to manage sounds and particle effects, paged static geometries, the support of a physics engine and various input systems. It has been designed with a modular structure to allow future expansions. We exploited some open-source state-of-the-art components such as OGRE, PhysX, ParticleUniverse, etc.; all of them have been properly integrated to obtain peculiar physical and environmental effects. The stand-alone version of the application is fully compatible with Direct3D and OpenGL APIs and adopts OpenAL APIs to manage audio cards. Concluding, we devised a showcase demo which reproduces a dynamic 3D environment, including some particular effects: the alternation of day and night infuencing the lighting of the scene, the rendering of terrain, water and vegetation, the reproduction of sounds and atmospheric agents.

  2. A Multiresolution Image Cache for Volume Rendering

    Energy Technology Data Exchange (ETDEWEB)

    LaMar, E; Pascucci, V


    The authors discuss the techniques and implementation details of the shared-memory image caching system for volume visualization and iso-surface rendering. One of the goals of the system is to decouple image generation from image display. This is done by maintaining a set of impostors for interactive display while the production of the impostor imagery is performed by a set of parallel, background processes. The system introduces a caching basis that is free of the gap/overlap artifacts of earlier caching techniques. instead of placing impostors at fixed, pre-defined positions in world space, the technique is to adaptively place impostors relative to the camera viewpoint. The positions translate with the camera but stay aligned to the data; i.e., the positions translate, but do not rotate, with the camera. The viewing transformation is factored into a translation transformation and a rotation transformation. The impostor imagery is generated using just the translation transformation and visible impostors are displayed using just the rotation transformation. Displayed image quality is improved by increasing the number of impostors and the frequency that impostors are re-rendering is improved by decreasing the number of impostors.

  3. Immersive volume rendering of blood vessels (United States)

    Long, Gregory; Kim, Han Suk; Marsden, Alison; Bazilevs, Yuri; Schulze, Jürgen P.


    In this paper, we present a novel method of visualizing flow in blood vessels. Our approach reads unstructured tetrahedral data, resamples it, and uses slice based 3D texture volume rendering. Due to the sparse structure of blood vessels, we utilize an octree to efficiently store the resampled data by discarding empty regions of the volume. We use animation to convey time series data, wireframe surface to give structure, and utilize the StarCAVE, a 3D virtual reality environment, to add a fully immersive element to the visualization. Our tool has great value in interdisciplinary work, helping scientists collaborate with clinicians, by improving the understanding of blood flow simulations. Full immersion in the flow field allows for a more intuitive understanding of the flow phenomena, and can be a great help to medical experts for treatment planning.

  4. Constructing And Rendering Vectorised Photographic Images

    Directory of Open Access Journals (Sweden)

    P. J. Willis


    Full Text Available We address the problem of representing captured images in the continuous mathematical space more usually associated with certain forms of drawn ('vector' images. Such an image is resolution-independent so can be used as a master for varying resolution-specific formats. We briefly describe the main features of a vectorising codec for photographic images, whose significance is that drawing programs can access images and image components as first-class vector objects. This paper focuses on the problem of rendering from the isochromic contour form of a vectorised image and demonstrates a new fill algorithm which could also be used in drawing generally. The fill method is described in terms of level set diffusion equations for clarity. Finally we show that image warping is both simplified and enhanced in the vector form and that we can demonstrate real histogram equalisation with genuinely rectangular histograms straightforwardly.

  5. Photon Differential Splatting for Rendering Caustics

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Schjøth, Lars; Erleben, Kenny;


    We present a photon splatting technique which reduces noise and blur in the rendering of caustics. Blurring of illumination edges is an inherent problem in photon splatting, as each photon is unaware of its neighbours when being splatted. This means that the splat size is usually based...... on heuristics rather than knowledge of the local flux density. We use photon differentials to determine the size and shape of the splats such that we achieve adaptive anisotropic flux density estimation in photon splatting. As compared to previous work that uses photon differentials, we present the first method...... where no photons or beams or differentials need to be stored in a map. We also present improvements in the theory of photon differentials, which give more accurate results and a faster implementation. Our technique has good potential for GPU acceleration, and we limit the number of parameters requiring...

  6. Differential response of methionine metabolism in two grain legumes, soybean and azuki bean, expressing a mutated form of Arabidopsis cystathionine γ-synthase. (United States)

    Hanafy, Moemen S; Rahman, Shaikh M; Nakamoto, Yumi; Fujiwara, Toru; Naito, Satoshi; Wakasa, Kyo; Ishimoto, Masao


    Methionine (Met) is a sulfur-containing amino acid that is essential in mammals and whose low abundance limits the nutritional value of grain legumes. Cystathionine γ-synthase (CGS) catalyzes the first committed step of Met biosynthesis, and the stability of its mRNA is autoregulated by the cytosolic concentration of S-adenosyl-l-methionine (SAM), a direct metabolite of Met. The mto1-1 mutant of Arabidopsis thaliana harbors a mutation in the AtCGS1 gene that renders the mRNA resistant to SAM-dependent degradation and therefore results in the accumulation of free Met to high levels in young leaves. To manipulate Met biosynthesis in soybean and azuki bean, we introduced the AtCGS1 mto1-1 gene into the two grain legumes under the control of a seed-specific glycinin gene promoter. Transgenic seeds of both species accumulated soluble Met to levels at least twice those apparent in control seeds. However, the increase in free Met did not result in an increase in total Met content of the transgenic seeds. In transgenic azuki bean seeds, the amount of cystathionine, the direct product of CGS, was markedly increased whereas the total content of Met was significantly decreased compared with control seeds. Similar changes were not detected in soybean. Our data suggest that the regulation of Met biosynthesis differs between soybean and azuki bean, and that the expression of AtCGS1 mto1-1 differentially affects the metabolic stability of sulfur amino acids and their metabolites in the two grain legumes.

  7. Arabidopsis hybrid speciation processes. (United States)

    Schmickl, Roswitha; Koch, Marcus A


    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation.

  8. Resolution-independent surface rendering using programmable graphics hardware (United States)

    Loop, Charles T.; Blinn, James Frederick


    Surfaces defined by a Bezier tetrahedron, and in particular quadric surfaces, are rendered on programmable graphics hardware. Pixels are rendered through triangular sides of the tetrahedra and locations on the shapes, as well as surface normals for lighting evaluations, are computed using pixel shader computations. Additionally, vertex shaders are used to aid interpolation over a small number of values as input to the pixel shaders. Through this, rendering of the surfaces is performed independently of viewing resolution, allowing for advanced level-of-detail management. By individually rendering tetrahedrally-defined surfaces which together form complex shapes, the complex shapes can be rendered in their entirety.

  9. The Impact of Transgenic Mosquitoes on Dengue Virulence to Humans and Mosquitoes


    Medlock, Jan; Luz, Paula M; Struchiner,Claudio J.; Galvani, Alison P.


    Dengue is a major public health concern in the tropics and subtropics. Innovative transgenic strategies to render Aedes aegypti mosquitoes, the primary vector of dengue, incompetent for dengue transmission are under development. We modeled the evolutionary impact of different transgenic mosquito strategies on dengue-induced mortality, that is, dengue virulence, to both humans and mosquitoes. This model incorporates various evolutionary trade-offs in dengue virus epidemiological traits, for ex...

  10. Efficient and Effective Volume Visualization with Enhanced Isosurface Rendering

    CERN Document Server

    Yang, Fei; Tian, Jie


    Compared with full volume rendering, isosurface rendering has several well recognized advantages in efficiency and accuracy. However, standard isosurface rendering has some limitations in effectiveness. First, it uses a monotone colored approach and can only visualize the geometry features of an isosurface. The lack of the capability to illustrate the material property and the internal structures behind an isosurface has been a big limitation of this method in applications. Another limitation of isosurface rendering is the difficulty to reveal physically meaningful structures, which are hidden in one or multiple isosurfaces. As such, the application requirements of extract and recombine structures of interest can not be implemented effectively with isosurface rendering. In this work, we develop an enhanced isosurface rendering technique to improve the effectiveness while maintaining the performance efficiency of the standard isosurface rendering. First, an isosurface color enhancement method is proposed to il...

  11. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)

    YANG Ye-hua; WANG Xue-kui; YAO Ming-jing; FAN Yu-peng; GAO Da-yu


    @@ To date,more and more transgenic varieties of upland cotton (Gossypium hirsuturn L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct transgenic lines in a cultivar and possibly makes a significant contribution to cultivar improvement.

  12. Direct volume rendering methods for cell structures. (United States)

    Martišek, Dalibor; Martišek, Karel


    The study of the complicated architecture of cell space structures is an important problem in biology and medical research. Optical cuts of cells produced by confocal microscopes enable two-dimensional (2D) and three-dimensional (3D) reconstructions of observed cells. This paper discuses new possibilities for direct volume rendering of these data. We often encounter 16 or more bit images in confocal microscopy of cells. Most of the information contained in these images is unsubstantial for the human vision. Therefore, it is necessary to use mathematical algorithms for visualization of such images. Present software tools as OpenGL or DirectX run quickly in graphic station with special graphic cards, run very unsatisfactory on PC without these cards and outputs are usually poor for real data. These tools are black boxes for a common user and make it impossible to correct and improve them. With the method proposed, more parameters of the environment can be set, making it possible to apply 3D filters to set the output image sharpness in relation to the noise. The quality of the output is incomparable to the earlier described methods and is worth increasing the computing time. We would like to offer mathematical methods of 3D scalar data visualization describing new algorithms that run on standard PCs very well.

  13. Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene

    DEFF Research Database (Denmark)

    Le Gall, G.; Metzdorff, Stine Broeng; Pedersen, Jan W.;


    A metabolite profiling study has been carried out on Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija and a series of transgenic lines of the ecotype transformed with a CHS (chalcone synthase) antisense construct. Compound identifications by LC/MS and H-1 NMR are discussed. The glucosinolate...

  14. Transgenic Animal Mutation Assays

    Institute of Scientific and Technical Information of China (English)

    Tao Chen; Ph.D.D.A.B.T.


    @@ The novel transgenic mouse and rat mutation assays have provided a tool for analyzing in vivo mutation in any tissue, thus permitting the direct comparison of cancer incidence with mutant frequency.

  15. Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA

    Directory of Open Access Journals (Sweden)

    Xue-Rong eZhou


    Full Text Available Metabolic engineering of omega-3 long-chain (≥C20 polyunsaturated fatty acids (ω3 LC-PUFA in oilseeds has been one of the key metabolic engineering targets in recent years. By expressing a transgenic pathway for enhancing the synthesis of the ω3 LC-PUFA docosahexaenoic acid (DHA from endogenous -linolenic acid (ALA, we obtained the production of fish oil-like proportions of DHA in Arabidopsis seed oil. Liquid chromatography-mass spectrometry (LC-MS was used to characterize the triacylglycerol (TAG, diacylglycerol (DAG and phospholipid (PL lipid classes in the transgenic and wild type Arabidopsis seeds at both developing and mature stages. The analysis identified the appearance of several abundant DHA-containing phosphatidylcholine (PC, DAG and TAG molecular species in mature seeds. The relative abundances of PL, DAG and TAG species showed a preferred combination of LC-PUFA with ALA in the transgenic seeds, where LC-PUFA were esterified in positions usually occupied by 20:1ω9. Trace amounts of di-DHA PC and tri-DHA TAG were identified, and confirmed by high resolution MS/MS. Studying the lipidome in transgenic seeds provides insights into where DHA accumulated and composed with other fatty acids of neutral and phospholipids from the developing and mature seeds.

  16. Weeding with transgenes. (United States)

    Duke, Stephen O


    Transgenes promise to reduce insecticide and fungicide use but relatively little has been done to significantly reduce herbicide use through genetic engineering. Recently, three strategies for transgene utilization have been developed that have the potential to change this. These are the improvement of weed-specific biocontrol agents, enhancement of crop competition or allelopathic traits, and production of cover crops that will self-destruct near the time of planting. Failsafe risk mitigation technologies are needed for most of these strategies.

  17. Profilin Plays a Role in Cell Elongation, Cell Shape Maintenance, and Flowering in Arabidopsis

    DEFF Research Database (Denmark)

    Ramachandran, S.; Christensen, Hans Erik Mølager; Ishimaru, Y.


    carrying a 35S-PFN-1 or 35S-antisense PFN-1 transgene. Etiolated seedlings underexpressing PFN (PFN-U) displayed an overall dwarf phenotype with short hypocotyls whose lengths were 20% to 25% that of wild type (WT) at low temperatures. Light-grown PFN-U plants were smaller in stature and flowered early......Profilin (PFN) is an ubiquitous, low-M-r, actin-binding protein involved in the organization of the cytoskeleton of eukaryotes including higher plants. PFNs are encoded by a multigene family in Arabidopsis. We have analyzed in vivo functions of Arabidopsis PFN by generating transgenic plants...... expressed in the vascular bundles of cotyledons and leaves. Our results show that Arabidopsis PFNs play a role in cell elongation, cell shape maintenance, polarized growth of root hair, and unexpectedly, in determination of flowering time....

  18. Functional analysis of the Hikeshi-like protein and its interaction with HSP70 in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Shinya; Ohama, Naohiko; Mizoi, Junya [Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shinozaki, Kazuo [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 (Japan); Yamaguchi-Shinozaki, Kazuko, E-mail: [Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)


    Highlights: • HKL, a Hikeshi homologous gene is identified in Arabidopsis. • HKL interacts with two HSP70 isoforms and regulates the subcellular localization of HSC70-1. • The two HSP70 translocate into nucleus in response to heat stress. • Overexpression of HKL confers thermotolerance in transgenic plants. - Abstract: Heat shock proteins (HSPs) refold damaged proteins and are an essential component of the heat shock response. Previously, the 70 kDa heat shock protein (HSP70) has been reported to translocate into the nucleus in a heat-dependent manner in many organisms. In humans, the heat-induced translocation of HSP70 requires the nuclear carrier protein Hikeshi. In the Arabidopsis genome, only one gene encodes a protein with high homology to Hikeshi, and we named this homolog Hikeshi-like (HKL) protein. In this study, we show that two Arabidopsis HSP70 isoforms accumulate in the nucleus in response to heat shock and that HKL interacts with these HSP70s. Our histochemical analysis revealed that HKL is predominantly expressed in meristematic tissues, suggesting the potential importance of HKL during cell division in Arabidopsis. In addition, we show that HKL regulates HSP70 localization, and HKL overexpression conferred thermotolerance to transgenic Arabidopsis plants. Our results suggest that HKL plays a positive role in the thermotolerance of Arabidopsis plants and cooperatively interacts with HSP70.

  19. Fast combinative volume rendering by indexed data structure

    Institute of Scientific and Technical Information of China (English)

    孙文武; 王文成; 吴恩华


    It is beneficial to study the interesting contents in a data set by combining and rendering variouscontents of the data. In this regard, an indexed data structure is proposed to facilitate the reorganization of data so that the contents of the data can be combined conveniently and only the selected contents in the data are processed for rendering. Based on the structure, the cells of different contents can be queued up easily so that the volume rendering can be conducted more accurately and quickly. Experimental results show that the indexed data structure is very efficient in improving combinative volume rendering.

  20. An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hongyan eGuo


    Full Text Available Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown. Here we report the identification of OsCLE48, a rice (Oryza sativa CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION gene, as an auxin response gene, and the functional characterization of OsCLE48 in Arabidopsis and rice. OsCLE48 encodes a CLE peptide hormone that is similar to Arabidopsis CLEs. RT-PCR analysis showed that OsCLE48 was induced by exogenously application of IAA (indole-3-acetic acid, a naturally occurred auxin. Expression of integrated OsCLE48p:GUS reporter gene in transgenic Arabidopsis plants was also induced by exogenously IAA treatment. These results indicate that OsCLE48 is an auxin responsive gene. Histochemical staining showed that GUS activity was detected in all the tissue and organs of the OsCLE48p:GUS transgenic Arabidopsis plants. Expression of OsCLE48 under the control of the 35S promoter in Arabidopsis inhibited shoot apical meristem development. Expression of OsCLE48 under the control of the CLV3 native regulatory elements almost completely complemented clv3-2 mutant phenotypes, suggesting that OsCLE48 is functionally similar to CLV3. On the other hand, expression of OsCLE48 under the control of the 35S promoter in Arabidopsis has little, if any effects on root apical meristem development, and transgenic rice plants overexpressing OsCLE48 are morphologically indistinguishable from wild type plants, suggesting that the functions of some CLE peptides may not be fully conserved in Arabidopsis and rice.

  1. Transgenic mosquitoes and the fight against malaria: managing technology push in a turbulent GMO world

    NARCIS (Netherlands)

    Knols, B.G.J.; Bossin, H.C.; Mukabana, W.R.; Robinson, A.S.


    Genetic modification (GM) of mosquitoes (which renders them genetically modified organisms, GMOs) offers opportunities for controlling malaria. Transgenic strains of mosquitoes have been developed and evaluation of these to 1) replace or suppress wild vector populations and 2) reduce transmission an

  2. Method of producing hydrogen, and rendering a contaminated biomass inert (United States)

    Bingham, Dennis N [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID


    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  3. Realistic real-time outdoor rendering in augmented reality.

    Directory of Open Access Journals (Sweden)

    Hoshang Kolivand

    Full Text Available Realistic rendering techniques of outdoor Augmented Reality (AR has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps. Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.

  4. 7 CFR 54.15 - Advance information concerning service rendered. (United States)


    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 54.15... Service § 54.15 Advance information concerning service rendered. Upon request of any applicant, all or any... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED)...

  5. Local and Global Illumination in the Volume Rendering Integral

    Energy Technology Data Exchange (ETDEWEB)

    Max, N; Chen, M


    This article is intended as an update of the major survey by Max [1] on optical models for direct volume rendering. It provides a brief overview of the subject scope covered by [1], and brings recent developments, such as new shadow algorithms and refraction rendering, into the perspective. In particular, we examine three fundamentals aspects of direct volume rendering, namely the volume rendering integral, local illumination models and global illumination models, in a wavelength-independent manner. We review the developments on spectral volume rendering, in which visible light are considered as a form of electromagnetic radiation, optical models are implemented in conjunction with representations of spectral power distribution. This survey can provide a basis for, and encourage, new efforts for developing and using complex illumination models to achieve better realism and perception through optical correctness.

  6. A Volume Rendering Algorithm for Sequential 2D Medical Images

    Institute of Scientific and Technical Information of China (English)

    吕忆松; 陈亚珠


    Volume rendering of 3D data sets composed of sequential 2D medical images has become an important branch in image processing and computer graphics.To help physicians fully understand deep-seated human organs and focuses(e.g.a tumour)as 3D this paper,we present a modified volume rendering algorithm to render volumetric data,Using this method.the projection images of structures of interest from different viewing directions can be obtained satisfactorily.By rotating the light source and the observer eyepoint,this method avoids rotates the whole volumetric data in main memory and thus reduces computational complexity and rendering time.Experiments on CT images suggest that the proposed method is useful and efficient for rendering 3D data sets.

  7. Perception-based transparency optimization for direct volume rendering. (United States)

    Chan, Ming-Yuen; Wu, Yingcai; Mak, Wai-Ho; Chen, Wei; Qu, Huamin


    The semi-transparent nature of direct volume rendered images is useful to depict layered structures in a volume. However, obtaining a semi-transparent result with the layers clearly revealed is difficult and may involve tedious adjustment on opacity and other rendering parameters. Furthermore, the visual quality of layers also depends on various perceptual factors. In this paper, we propose an auto-correction method for enhancing the perceived quality of the semi-transparent layers in direct volume rendered images. We introduce a suite of new measures based on psychological principles to evaluate the perceptual quality of transparent structures in the rendered images. By optimizing rendering parameters within an adaptive and intuitive user interaction process, the quality of the images is enhanced such that specific user requirements can be met. Experimental results on various datasets demonstrate the effectiveness and robustness of our method.

  8. Light Field Rendering for Head Mounted Displays using Pixel Reprojection

    DEFF Research Database (Denmark)

    Hansen, Anne Juhler; Kraus, Martin; Klein, Jákup


    Light field displays have advantages over traditional stereoscopic head mounted displays, for example, because they can overcome the vergence-accommodation conflict. However, rendering light fields can be a heavy task for computers due to the number of images that have to be rendered. Since much...... of the information of the different images is redundant, we use pixel reprojection from the corner cameras to compute the remaining images in the light field. We compare the reprojected images with directly rendered images in a user test. In most cases, the users were unable to distinguish the images. In extreme...... cases, the reprojection approach is not capable of creating the light field. We conclude that pixel reprojection is a feasible method for rendering light fields as far as quality of perspective and diffuse shading is concerned, but render time needs to be reduced to make the method practical....

  9. Research of global illumination algorithms rendering in glossy scene

    Institute of Scientific and Technical Information of China (English)

    BAI Shuangxue; ZHANG Qiang; ZHOU Dongsheng


    In computer graphic (CG), illumination rendering generated realistic effect at virtual scene is amazing. Not only plausible lighting effect is to show the relative position between of the objects, but also to reflect the material of visual appearance of the vir- tual objects. The diffuse-scene rendering reflectance credibility has gradually matured. Global illumination rendering method for the glossy material is still a challenge for the CG research. Because of the shiny materials is highly energy reflection between the com- plex light paths. Whether we trace glossy reflection paths, or use of one-reflection or multi-reflection approximate above complex il- lumination transmission is a difficult working. This paper we gather some commonly used global illumination algorithms recently year and its extension glossy scene improvements. And we introduce the limitation of classical algorithms rendering glossy scene and some extended solution. Finally, we will summarize the illumination rendering for specular scene, there are still some open prob- lems.

  10. Generation of transgenic frogs. (United States)

    Loeber, Jana; Pan, Fong Cheng; Pieler, Tomas


    The possibility of generating transgenic animals is of obvious advantage for the analysis of gene function in development and disease. One of the established vertebrate model systems in developmental biology is the amphibian Xenopus laevis. Different techniques have been successfully applied to create Xenopus transgenics; in this chapter, the so-called meganuclease method is described. This technique is not only technically simple, but also comparably efficient and applicable to both Xenopus laevis and Xenopus tropicalis. The commercially available endonuclease I-SceI (meganuclease) mediates the integration of foreign DNA into the frog genome after coinjection into fertilized eggs. Tissue-specific gene expression, as well as germline transmission, has been observed.

  11. Transgenic Crops for Herbicide Resistance (United States)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  12. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)


    To date,more and more transgenic varieties of upland cotton(Gossypium hirsutum L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct

  13. Transgenic Farm Animals (United States)

    The development of recombinant DNA technology has enabled scientists to isolate single genes, analyze and modify their nucleotide structure(s), make copies of these isolated genes, and insert copies of these genes into the genome of plants and animals. The transgenic technology of adding genes to li...

  14. [Progress on transgenic mosquitoes]. (United States)

    Yang, Pin


    The genetically modified mosquitoes have been developed aiming to control mosquito-borne diseases by either reducing population sizes or replacing existing populations with vectors unable to transmit the disease. introduces some progress on the generation of transgenic mosquitoes and their fitness in wild population. This paper

  15. Overexpression of Nelumbo nucifera metallothioneins 2a and 3 enhances seed germination vigor in Arabidopsis. (United States)

    Zhou, Yuliang; Chu, Pu; Chen, Huhui; Li, Yin; Liu, Jun; Ding, Yu; Tsang, Edward W T; Jiang, Liwen; Wu, Keqiang; Huang, Shangzhi


    Metallothioneins (MTs) are small, cysteine-rich and metal-binding proteins which are involved in metal homeostasis and scavenging of reactive oxygen species. Although plant MTs have been intensively studied, their roles in seeds remain to be clearly established. Here, we report the isolation and characterization of NnMT2a, NnMT2b and NnMT3 from sacred lotus (Nelumbo nucifera Gaertn.) and their roles in seed germination vigor. The transcripts of NnMT2a, NnMT2b and NnMT3 were highly expressed in developing and germinating sacred lotus seeds, and were dramatically up-regulated in response to high salinity, oxidative stresses and heavy metals. Analysis of transformed Arabidopsis protoplasts showed that NnMT2a-YFP and NnMT3-YFP were localized in cytoplasm and nucleoplasm. Transgenic Arabidopsis seeds overexpressing NnMT2a and NnMT3 displayed improved resistance to accelerated aging (AA) treatment, indicating their significant roles in seed germination vigor. These transgenic seeds also exhibited higher superoxide dismutase activity compared to wild-type seeds after AA treatment. In addition, we showed that NnMT2a and NnMT3 conferred improved germination ability to NaCl and methyl viologen on transgenic Arabidopsis seeds. Taken together, these data demonstrate that overexpression of NnMT2a and NnMT3 in Arabidopsis significantly enhances seed germination vigor after AA treatment and under abiotic stresses.

  16. Transgenic sugar beet tolerant to imidazolinone obtained by Agrobacterium-mediated transformation. (United States)

    Kishchenko, E M; Komarnitskii, I K; Kuchuk, N V


    Sugar beet is highly sensitive to imidazolinone herbicides thus rotational restrictions exist. In order to develop imidazolinone tolerant sugar beets als gene from Arabidopsis thaliana encoding acetolactate synthase with S653N mutation was used for genetic transformation. Transgenic sugar beet plants were obtained by Agrobacterium-mediated transformation of aseptic seedlings using vacuum-infiltration. The efficiency of genetic transformation was 5.8%. RT-PCR analysis of obtained plants revealed accumulation of specific als transcript. The resistance to imidazolinone was proved for developed transgenic sugar beet plants in vitro and in greenhouse conditions after spraying with imazethapyr (Pursuit, BASF).

  17. Novel sulI binary vectors enable an inexpensive foliar selection method in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Smith Jamison


    Full Text Available Abstract Background Sulfonamide resistance is conferred by the sulI gene found on many Enterobacteriaceae R plasmids and Tn21 type transposons. The sulI gene encodes a sulfonamide insensitive dihydropteroate synthase enzyme required for folate biosynthesis. Transformation of tobacco, potato or Arabidopsis using sulI as a selectable marker generates sulfadiazine-resistant plants. Typically sulI-based selection of transgenic plants is performed on tissue culture media under sterile conditions. Findings A set of novel binary vectors containing a sulI selectable marker expression cassette were constructed and used to generate transgenic Arabidopsis. We demonstrate that the sulI selectable marker can be utilized for direct selection of plants grown in soil with a simple foliar spray application procedure. A highly effective and inexpensive high throughput screening strategy to identify transgenic Arabidopsis without use of tissue culture was developed. Conclusion Novel sulI-containing Agrobacterium binary vectors designed to over-express a gene of interest or to characterize a test promoter in transgenic plants have been constructed. These new vector tools combined with the various beneficial attributes of sulfonamide selection and the simple foliar screening strategy provide an advantageous alternative for plant biotechnology researchers. The set of binary vectors is freely available upon request.

  18. Efficient and high-throughput vector construction and Agrobacterium-mediated transformation of Arabidopsis thaliana suspension-cultured cells for functional genomics. (United States)

    Ogawa, Yoichi; Dansako, Tomoko; Yano, Kentaro; Sakurai, Nozomu; Suzuki, Hideyuki; Aoki, Koh; Noji, Masaaki; Saito, Kazuki; Shibata, Daisuke


    We established a large-scale, high-throughput protocol to construct Arabidopsis thaliana suspension-cultured cell lines, each of which carries a single transgene, using Agrobacterium-mediated transformation. We took advantage of RIKEN Arabidopsis full-length (RAFL) cDNA clones and the Gateway cloning system for high-throughput preparation of binary vectors carrying individual full-length cDNA sequences. Throughout all cloning steps, multiple-well plates were used to treat 96 samples simultaneously in a high-throughput manner. The optimal conditions for Agrobacterium-mediated transformation of 96 independent binary vector constructs were established to obtain transgenic cell lines efficiently. We evaluated the protocol by generating transgenic Arabidopsis T87 cell lines carrying individual 96 metabolism-related RAFL cDNA fragments, and showed that the protocol was useful for high-throughput and large-scale production of gain-of-function lines for functional genomics.

  19. Foggy Scene Rendering Based on Transmission Map Estimation

    Directory of Open Access Journals (Sweden)

    Fan Guo


    Full Text Available Realistic rendering of foggy scene is important in game development and virtual reality. Traditional methods have many parameters to control or require a long time to compute, and they are usually limited to depicting a homogeneous fog without considering the foggy scene with heterogeneous fog. In this paper, a new rendering method based on transmission map estimation is proposed. We first generate perlin noise image as the density distribution texture of heterogeneous fog. Then we estimate the transmission map using the Markov random field (MRF model and the bilateral filter. Finally, virtual foggy scene is realistically rendered with the generated perlin noise image and the transmission map according to the atmospheric scattering model. Experimental results show that the rendered results of our approach are quite satisfactory.

  20. High-quality multi-resolution volume rendering in medicine

    Institute of Scientific and Technical Information of China (English)

    XIE Kai; YANG Jie; LI Xiao-liang


    In order to perform a high-quality interactive rendering of large medical data sets on a single off-theshelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, which uses an adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume away from this region at lower resolutions. The algorithm is based on several important criteria, and rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from this area. In addition, our hierarchical level-of-detail representation guarantees consistent interpolation between different resolution levels. Experiments have been applied to a number of large medical data and have produced high quality images at interactive frame rates using standard PC hardware.

  1. Experiencing "Macbeth": From Text Rendering to Multicultural Performance. (United States)

    Reisin, Gail


    Shows how one teacher used innovative methods in teaching William Shakespeare's "Macbeth." Outlines student assignments including text renderings, rewriting a scene from the play, and creating a multicultural scrapbook for the play. (HB)

  2. View compensated compression of volume rendered images for remote visualization. (United States)

    Lalgudi, Hariharan G; Marcellin, Michael W; Bilgin, Ali; Oh, Han; Nadar, Mariappan S


    Remote visualization of volumetric images has gained importance over the past few years in medical and industrial applications. Volume visualization is a computationally intensive process, often requiring hardware acceleration to achieve a real time viewing experience. One remote visualization model that can accomplish this would transmit rendered images from a server, based on viewpoint requests from a client. For constrained server-client bandwidth, an efficient compression scheme is vital for transmitting high quality rendered images. In this paper, we present a new view compensation scheme that utilizes the geometric relationship between viewpoints to exploit the correlation between successive rendered images. The proposed method obviates motion estimation between rendered images, enabling significant reduction to the complexity of a compressor. Additionally, the view compensation scheme, in conjunction with JPEG2000 performs better than AVC, the state of the art video compression standard.

  3. Accelerating Monte Carlo Renderers by Ray Histogram Fusion

    Directory of Open Access Journals (Sweden)

    Mauricio Delbracio


    Full Text Available This paper details the recently introduced Ray Histogram Fusion (RHF filter for accelerating Monte Carlo renderers [M. Delbracio et al., Boosting Monte Carlo Rendering by Ray Histogram Fusion, ACM Transactions on Graphics, 33 (2014]. In this filter, each pixel in the image is characterized by the colors of the rays that reach its surface. Pixels are compared using a statistical distance on the associated ray color distributions. Based on this distance, it decides whether two pixels can share their rays or not. The RHF filter is consistent: as the number of samples increases, more evidence is required to average two pixels. The algorithm provides a significant gain in PSNR, or equivalently accelerates the rendering process by using many fewer Monte Carlo samples without observable bias. Since the RHF filter depends only on the Monte Carlo samples color values, it can be naturally combined with all rendering effects.

  4. Polyploidization increases meiotic recombination frequency in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Rehmsmeier Marc


    Full Text Available Abstract Background Polyploidization is the multiplication of the whole chromosome complement and has occurred frequently in vascular plants. Maintenance of stable polyploid state over generations requires special mechanisms to control pairing and distribution of more than two homologous chromosomes during meiosis. Since a minimal number of crossover events is essential for correct chromosome segregation, we investigated whether polyploidy has an influence on the frequency of meiotic recombination. Results Using two genetically linked transgenes providing seed-specific fluorescence, we compared a high number of progeny from diploid and tetraploid Arabidopsis plants. We show that rates of meiotic recombination in reciprocal crosses of genetically identical diploid and autotetraploid Arabidopsis plants were significantly higher in tetraploids compared to diploids. Although male and female gametogenesis differ substantially in meiotic recombination frequency, both rates were equally increased in tetraploids. To investigate whether multivalent formation in autotetraploids was responsible for the increased recombination rates, we also performed corresponding experiments with allotetraploid plants showing strict bivalent pairing. We found similarly increased rates in auto- and allotetraploids, suggesting that the ploidy effect is independent of chromosome pairing configurations. Conclusions The evolutionary success of polyploid plants in nature and under domestication has been attributed to buffering of mutations and sub- and neo-functionalization of duplicated genes. Should the data described here be representative for polyploid plants, enhanced meiotic recombination, and the resulting rapid creation of genetic diversity, could have also contributed to their prevalence.

  5. Improvements in the transformation of Arabidopsis thaliana em>C24 leaf-discs by Agrobacterium tumefaciens

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Hooykaas, P J


    We report here an efficient Arabidopsis leafdisc transformation protocol yielding an average transformation frequency of 1.6 transgenic shoots per leaf explant 4 weeks after the bacterial infection period. Subsequent cultivation in vitro is such that a high percentage (85-90%) of the primary tran...

  6. Selection of Arabidopsis mutants overexpressing genes driven by the promoter of an auxin-inducible glutathione S-transferase gene

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Pinas, J.E.; Zaal, B.J. van der; Hooykaas, P.J.J.


    Transgenic arabidopsis plants were isolated that contained a T-DNA construct in which the promoter of an auxin-inducible glutathione S-transferase (GST) gene from tobacco was fused to the kanamycin resistance (nptII) as well as to the β-glucuronidase (gusA) reporter gene. Subsequently, seeds were tr

  7. Anisotropic 3D texture synthesis with application to volume rendering

    DEFF Research Database (Denmark)

    Laursen, Lasse Farnung; Ersbøll, Bjarne Kjær; Bærentzen, Jakob Andreas


    images using a 12.1 megapixel camera. Next, we extend the volume rendering pipeline by creating a transfer function which yields not only color and opacity from the input intensity, but also texture coordinates for our synthesized 3D texture. Thus, we add texture to the volume rendered images....... This method is applied to a high quality visualization of a pig carcass, where samples of meat, bone, and fat have been used to produce the anisotropic 3D textures....

  8. A parallel architecture for interactively rendering scattering and refraction effects. (United States)

    Bernabei, Daniele; Hakke-Patil, Ajit; Banterle, Francesco; Di Benedetto, Marco; Ganovelli, Fabio; Pattanaik, Sumanta; Scopigno, Roberto


    A new method for interactive rendering of complex lighting effects combines two algorithms. The first performs accurate ray tracing in heterogeneous refractive media to compute high-frequency phenomena. The second applies lattice-Boltzmann lighting to account for low-frequency multiple-scattering effects. The two algorithms execute in parallel on modern graphics hardware. This article includes a video animation of the authors' real-time algorithm rendering a variety of scenes.

  9. Wavelet subdivision methods gems for rendering curves and surfaces

    CERN Document Server

    Chui, Charles


    OVERVIEW Curve representation and drawing Free-form parametric curves From subdivision to basis functions Wavelet subdivision and editing Surface subdivision BASIS FUNCTIONS FOR CURVE REPRESENTATION Refinability and scaling functions Generation of smooth basis functions Cardinal B-splines Stable bases for integer-shift spaces Splines and polynomial reproduction CURVE SUBDIVISION SCHEMES Subdivision matrices and stencils B-spline subdivision schemes Closed curve rendering Open curve rendering BASIS FUNCTIONS GENERATED BY SUBDIVISION MATRICES Subdivision operators The up-sampling convolution ope

  10. Remote volume rendering pipeline for mHealth applications (United States)

    Gutenko, Ievgeniia; Petkov, Kaloian; Papadopoulos, Charilaos; Zhao, Xin; Park, Ji Hwan; Kaufman, Arie; Cha, Ronald


    We introduce a novel remote volume rendering pipeline for medical visualization targeted for mHealth (mobile health) applications. The necessity of such a pipeline stems from the large size of the medical imaging data produced by current CT and MRI scanners with respect to the complexity of the volumetric rendering algorithms. For example, the resolution of typical CT Angiography (CTA) data easily reaches 512^3 voxels and can exceed 6 gigabytes in size by spanning over the time domain while capturing a beating heart. This explosion in data size makes data transfers to mobile devices challenging, and even when the transfer problem is resolved the rendering performance of the device still remains a bottleneck. To deal with this issue, we propose a thin-client architecture, where the entirety of the data resides on a remote server where the image is rendered and then streamed to the client mobile device. We utilize the display and interaction capabilities of the mobile device, while performing interactive volume rendering on a server capable of handling large datasets. Specifically, upon user interaction the volume is rendered on the server and encoded into an H.264 video stream. H.264 is ubiquitously hardware accelerated, resulting in faster compression and lower power requirements. The choice of low-latency CPU- and GPU-based encoders is particularly important in enabling the interactive nature of our system. We demonstrate a prototype of our framework using various medical datasets on commodity tablet devices.

  11. A Sort-Last Rendering System over an Optical Backplane

    Directory of Open Access Journals (Sweden)

    Yasuhiro Kirihata


    Full Text Available Sort-Last is a computer graphics technique for rendering extremely large data sets on clusters of computers. Sort-Last works by dividing the data set into even-sized chunks for parallel rendering and then composing the images to form the final result. Since sort-last rendering requires the movement of large amounts of image data among cluster nodes, the network interconnecting the nodes becomes a major bottleneck. In this paper, we describe a sort-last rendering system implemented on a cluster of computers whose nodes are connected by an all-optical switch. The rendering system introduces the notion of the Photonic Computing Engine, a computing system built dynamically by using the optical switch to create dedicated network connections among cluster nodes. The sort-last volume rendering algorithm was implemented on the Photonic Computing Engine, and its performance is evaluated. Prelimi- nary experiments show that performance is affected by the image composition time and average payload size. In an attempt to stabilize the performance of the system, we have designed a flow control mechanism that uses feedback messages to dynamically adjust the data flow rate within the computing engine.

  12. Over-Expression of ScMnSOD, a SOD Gene Derived from Jojoba, Improve Drought Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-fei; ZHANG Gen-fa; SUN Wei-min; LI Ze-qin; BAI Rui-xue; LI Jing-xiao; SHI Zi-han; GENG Hong-wei; ZHENG Ying; ZHANG Jun


    Jojoba (Simmondsia chinensis) is mainly distributed in desert, and the molecular mechanisms of jojoba in response to abiotic stress still remain elusive. In this paper, we cloned and characterized a SOD gene from jojoba named as ScMnSOD, and introduced into Arabidopsis to investigate its functions of responding to drought stress. The transgenic Arabidopsis showed an improvement in drought tolerance. Moreover, under a water deifcit condition, the accumulation of reactive oxygen species (ROS) was remarkably decreased in the transgenic lines compared to the WT. Furthermore, the ScMnSOD promoter was cloned to the 5´-upstream of GUS coding region in a binary vector, and introduced into Arabidopsis. And results showed that ScMnSOD expression can be induced by drought, salt, ABA, and low temperature. In conclusion, ScMnSOD plays an important role in drought tolerance which is, at least partially, attributed to its role in ROS detoxiifcation.

  13. Transgenic plants expressing the AaIT/GNA fusion protein show increased resistance and toxicity to both chewing and sucking pests. (United States)

    Liu, Shu-Min; Li, Jie; Zhu, Jin-Qi; Wang, Xiao-Wei; Wang, Cheng-Shu; Liu, Shu-Sheng; Chen, Xue-Xin; Li, Sheng


    The adoption of pest-resistant transgenic plants to reduce yield losses and decrease pesticide use has been successful. To achieve the goal of controlling both chewing and sucking pests in a given transgenic plant, we generated transgenic tobacco, Arabidopsis, and rice plants expressing the fusion protein, AaIT/GNA, in which an insecticidal scorpion venom neurotoxin (Androctonus australis toxin, AaIT) is fused to snowdrop lectin (Galanthus nivalis agglutinin, GNA). Compared with transgenic tobacco and Arabidopsis plants expressing AaIT or GNA, transgenic plants expressing AaIT/GNA exhibited increased resistance and toxicity to one chewing pest, the cotton bollworm, Helicoverpa armigera. Transgenic tobacco and rice plants expressing AaIT/GNA showed increased resistance and toxicity to two sucking pests, the whitefly, Bemisia tabaci, and the rice brown planthopper, Nilaparvata lugens, respectively. Moreover, in the field, transgenic rice plants expressing AaIT/GNA exhibited a significant improvement in grain yield when infested with N. lugens. This study shows that expressing the AaIT/GNA fusion protein in transgenic plants can be a useful approach for controlling pests, particularly sucking pests which are not susceptible to the toxin in Bt crops.

  14. Expression of a High Mobility Group Protein Isolated from Cucumis sativus Affects the Germination of Arabidopsis thaliana under Abiotic Stress Conditions

    Institute of Scientific and Technical Information of China (English)

    Ji Young Jang; Kyung Jin Kwak; Hunseung Kang


    Although high mobility group B (HMGB) proteins have been identified from a variety of plant species, their importance and functional roles in plant responses to changing environmental conditions are largely unknown. Here, we investigated the functional roles of a CsHMGB isolated from cucumber (Cucurnis sativus L.) in plant responses to environmental stimuli. Under normal growth conditions or when subjected to cold stress, no differences in plant growth were found between the wild.type and transgenic Arabidopsis thaliana overexpressing CsHMGB. By contrast, the transgenic Arabidopsis plants displayed retarded germination compared with the wild-type plants when grown under high salt or dehydration stress conditions. Germination of the transgenic plants was delayed by the addition of abscisic acid (ABA), implying that CsHMGB affects germination through an ABA-dependent way. The expression of CsHMGB had affected only the germination stage, and CsHMGB did not affect the seedling growth of the transgenic plants under the stress conditions. The transcript levels of several germination-responsive genes were modulated by the expression of CsHMGB in Arabidopsis. Taken together, these results suggest that ectopic expression of a CsHMGB in Arabidopsis modulates the expression of several germination-responsive genes, and thereby affects the germination of Arabidopsis plants under different stress conditions.

  15. Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. (United States)

    Shi, Haitao; Ye, Tiantian; Zhu, Jian-Kang; Chan, Zhulong


    Nitric oxide (NO) is involved in plant responses to many environmental stresses. Transgenic Arabidopsis lines that constitutively express rat neuronal NO synthase (nNOS) were described recently. In this study, it is reported that the nNOS transgenic Arabidopsis plants displayed high levels of osmolytes and increased antioxidant enzyme activities. Transcriptomic analysis identified 601 or 510 genes that were differentially expressed as a consequence of drought stress or nNOS transformation, respectively. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in photosynthesis, redox, stress, and phytohormone and secondary metabolism were greatly affected by the nNOS transgene. Several CBF genes and members of zinc finger gene families, which are known to regulate transcription in the stress response, were changed by the nNOS transgene. Genes regulated by both the nNOS transgene and abscisic acid (ABA) treatments were compared and identified, including those for two ABA receptors (AtPYL4 and AtPYL5). Moreover, overexpression of AtPYL4 and AtPYL5 enhanced drought resistance, antioxidant enzyme activity, and osmolyte levels. These observations increase our understanding of the role of NO in drought stress response in Arabidopsis.

  16. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis

    Indian Academy of Sciences (India)

    Song Yu; Chen Ligang; Zhang Liping; Yu Diqiu


    Through activating specific transcriptional programmes, plants can launch resistance mechanisms to stressful environments and acquire a new equilibrium between development and defence. To screen the rice WRKY transcription factor which functions in abiotic stress tolerance and modulates the abscisic acid (ABA) response, we generated a whole array of 35S-OsWRKY transgenic Arabidopsis. In this study, we report that 35S-OsWRKY72 transgenic Arabidopsis, whose seed germination was retarded under normal conditions, emerged more sensitive to mannitol, NaCl, ABA stresses and sugar starvation than vector plants. Meanwhile, 35S-OsWRKY72 transgenic Arabidopsis displayed early flowering, reduced apical dominance, lost high temperature-induced hypocotyl elongation response, and enhanced gravitropism response, which were similar to the auxin-related gene mutants aux1, axr1 and bud1. Further, semi-quantitative RT-PCR showed that the expression patterns of three auxin-related genes AUX1, AXR1 and BUD1 were significantly altered in rosette leaves and inflorescences of 35S-OsWRKY72 plants compared with control Arabidopsis, and two ABA-related genes ABA2 and ABI4 were induced in 35S-OsWRKY72 seedlings. In addition, northern blot analysis indicated that, in rice, OsWRKY72 was inducible by polyethylene glycol (PEG), NaCl, naphthalene acetic acid (NAA), ABA and 42°C, similar to its orthologue AtWRKY75 in Arabidopsis, implying that these two WRKY genes might be required for multiple physiological processes in their plants. Together, these results suggest that OsWRKY72 interferes in the signal cross-talk between the ABA signal and auxin transport pathway in transgenic Arabidopsis.

  17. Identification of a retroelement from the resurrection plant Boea hygrometrica that confers osmotic and alkaline tolerance in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    Full Text Available Functional genomic elements, including transposable elements, small RNAs and non-coding RNAs, are involved in regulation of gene expression in response to plant stress. To identify genomic elements that regulate dehydration and alkaline tolerance in Boea hygrometrica, a resurrection plant that inhabits drought and alkaline Karst areas, a genomic DNA library from B. hygrometrica was constructed and subsequently transformed into Arabidopsis using binary bacterial artificial chromosome (BIBAC vectors. Transgenic lines were screened under osmotic and alkaline conditions, leading to the identification of Clone L1-4 that conferred osmotic and alkaline tolerance. Sequence analyses revealed that L1-4 contained a 49-kb retroelement fragment from B. hygrometrica, of which only a truncated sequence was present in L1-4 transgenic Arabidopsis plants. Additional subcloning revealed that activity resided in a 2-kb sequence, designated Osmotic and Alkaline Resistance 1 (OAR1. In addition, transgenic Arabidopsis lines carrying an OAR1-homologue also showed similar stress tolerance phenotypes. Physiological and molecular analyses demonstrated that OAR1-transgenic plants exhibited improved photochemical efficiency and membrane integrity and biomarker gene expression under both osmotic and alkaline stresses. Short transcripts that originated from OAR1 were increased under stress conditions in both B. hygrometrica and Arabidopsis carrying OAR1. The relative copy number of OAR1 was stable in transgenic Arabidopsis under stress but increased in B. hygrometrica. Taken together, our results indicated a potential role of OAR1 element in plant tolerance to osmotic and alkaline stresses, and verified the feasibility of the BIBAC transformation technique to identify functional genomic elements from physiological model species.

  18. Leaf Downward Curvature and Delayed Flowering Caused by AtLH Overexpression in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    WUHao; YULin; TANGXiang-Rong; SHENRui-Juan; HEYu-Ke


    AtLHgene of Arabidopsis is a BcpLH(leafy head) homolog of Chinese cabbage, which encodes a double-stranded RNA-binding protein related to the curvature of folding leaf leading to the formation of leafy head. In order to elucidate the regulatory function of AtLH in the development of leaf curvature, we made a construct of 35S::AtLHand transformed it to Arabidopsis. In transgenic plants for sense-AtLH, transcripts of AtLH gene were increased significantly in leaves and flowers, giving rise to the AtLH-overexpressed plants in which the rosette leaves curved downward or outward in a manner of enhanced epinastic growth. Compared with normal plants, bolting and flowering time of the transgenic plants was significantly delayed. Moreover, the apical dominance of transgenic plants was weaker in vegetative shoots since more axillary shoots emerged from axil of rosette leaves, while stronger in flowering shoots because fewer cauline inflorescences were observed on the main inflorescence. In other aspects, these transgenic plants exhibited an increase in root-stimulating response to IAA and decrease in root-inhibitory reaction on ABA. It indicates that overexpression of AtLH causes downward curvature of transgenic plants.

  19. Transgenic algae engineered for higher performance

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J


    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  20. Adaptive image contrast enhancement algorithm for point-based rendering (United States)

    Xu, Shaoping; Liu, Xiaoping P.


    Surgical simulation is a major application in computer graphics and virtual reality, and most of the existing work indicates that interactive real-time cutting simulation of soft tissue is a fundamental but challenging research problem in virtual surgery simulation systems. More specifically, it is difficult to achieve a fast enough graphic update rate (at least 30 Hz) on commodity PC hardware by utilizing traditional triangle-based rendering algorithms. In recent years, point-based rendering (PBR) has been shown to offer the potential to outperform the traditional triangle-based rendering in speed when it is applied to highly complex soft tissue cutting models. Nevertheless, the PBR algorithms are still limited in visual quality due to inherent contrast distortion. We propose an adaptive image contrast enhancement algorithm as a postprocessing module for PBR, providing high visual rendering quality as well as acceptable rendering efficiency. Our approach is based on a perceptible image quality technique with automatic parameter selection, resulting in a visual quality comparable to existing conventional PBR algorithms. Experimental results show that our adaptive image contrast enhancement algorithm produces encouraging results both visually and numerically compared to representative algorithms, and experiments conducted on the latest hardware demonstrate that the proposed PBR framework with the postprocessing module is superior to the conventional PBR algorithm and that the proposed contrast enhancement algorithm can be utilized in (or compatible with) various variants of the conventional PBR algorithm.

  1. Osmotic stress-regulated the expression of glutathione peroxidase 3 in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    MIAO YuChen; GUO JingGong; LIU ErTao; LI Kun; DAI Jie; WANG PengCheng; CHEN Jia; SONG ChunPeng


    Gene expression of glutathione peroxidase 3 (ATGPX3) in response to osmotic stress was analyzed in Arabidopsis using ATGPX3 promoter-glucuronidase (GUS) transgenic plants. High levels of GUS expression were detected under osmotic stress in ATGPX3 promoter-GUS transgenic plants. Compared with the wild type, the growth and development of ATGPX3 mutants (atgpx3-1) were more sensitive to mannitol. In addition, the expression of RD29A, ABI1, ABI2 and RbohD in atgpx3-1 was induced by ABA stress. These results suggest that ATGPX3 might be involved in the signal transduction of osmotic stress.

  2. Reference: 517 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available d isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to iden...tify components of the Arabidopsis seed that contribute to seed dormancy and to lea

  3. Molecular cloning of cryptochrome 1 from apple and its functional characterization in Arabidopsis. (United States)

    Li, Yuan-Yuan; Mao, Ke; Zhao, Cheng; Zhang, Rui-Fen; Zhao, Xian-Yan; Zhang, Hua-Lei; Shu, Huai-Rui; Zhao, Yu-Jin


    Cryptochromes are blue-light photoreceptors involved in regulating many aspects of plant growth and development. Investigations of cryptochromes in plants have largely focused on Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), rice (Oryza sativa) and pea (Pisum sativum). Here, we isolated the cryptochrome 1 gene from apple (Malus domestica) (MdCRY1) and analyzed its function in transgenic Arabidopsis. The predicted MdCRY1 protein was most closely homologous to strawberry CRY1. In terms of transcript levels, MdCRY1 expression was up-regulated by light. The function of MdCRY1 was analyzed through heterologous expression in Arabidopsis. Overexpression of MdCRY1 in Arabidopsis is able to rescue the cry1 mutant phenotype, inhibit hypocotyl elongation, promote root growth, and enhance anthocyanin accumulation in wild-type seedlings under blue light. These data provide functional evidence for a role of MdCRY1 in controlling photomorphogenesis under blue light and indicate that CRY1 function is conserved between Arabidopsis and apple. Furthermore, we found that MdCRY1 interacts with AtCOP1 in both yeast and onion cells. This interaction may represent an important regulatory mechanism in blue-light signaling pathway in apple.

  4. Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses. (United States)

    Rivero, Luz; Scholl, Randy; Holomuzki, Nicholas; Crist, Deborah; Grotewold, Erich; Brkljacic, Jelena


    Growing healthy plants is essential for the advancement of Arabidopsis thaliana (Arabidopsis) research. Over the last 20 years, the Arabidopsis Biological Resource Center (ABRC) has collected and developed a series of best-practice protocols, some of which are presented in this chapter. Arabidopsis can be grown in a variety of locations, growth media, and environmental conditions. Most laboratory accessions and their mutant or transgenic derivatives flower after 4-5 weeks and set seeds after 7-8 weeks, under standard growth conditions (soil, long day, 23 ºC). Some mutant genotypes, natural accessions, and Arabidopsis relatives require strict control of growth conditions best provided by growth rooms, chambers, or incubators. Other lines can be grown in less-controlled greenhouse settings. Although the majority of lines can be grown in soil, certain experimental purposes require utilization of sterile solid or liquid growth media. These include the selection of primary transformants, identification of homozygous lethal individuals in a segregating population, or bulking of a large amount of plant material. The importance of controlling, observing, and recording growth conditions is emphasized and appropriate equipment required to perform monitoring of these conditions is listed. Proper conditions for seed harvesting and preservation, as well as seed quality control, are also described. Plant transformation and genetic crosses, two of the methods that revolutionized Arabidopsis genetics, are introduced as well.

  5. The impact of altered herbicide residues in transgenic herbicide-resistant crops on standard setting for herbicide residues

    NARCIS (Netherlands)

    Kleter, G.A.; Unsworth, J.B.; Harris, C.A.


    The global area covered with transgenic (genetically modified) crops has rapidly increased since their introduction in the mid-1990s. Most of these crops have been rendered herbicide resistant, for which it can be envisaged that the modification has an impact on the profile and level of herbicide re

  6. Clustered deep shadow maps for integrated polyhedral and volume rendering

    KAUST Repository

    Bornik, Alexander


    This paper presents a hardware-accelerated approach for shadow computation in scenes containing both complex volumetric objects and polyhedral models. Our system is the first hardware accelerated complete implementation of deep shadow maps, which unifies the computation of volumetric and geometric shadows. Up to now such unified computation was limited to software-only rendering . Previous hardware accelerated techniques can handle only geometric or only volumetric scenes - both resulting in the loss of important properties of the original concept. Our approach supports interactive rendering of polyhedrally bounded volumetric objects on the GPU based on ray casting. The ray casting can be conveniently used for both the shadow map computation and the rendering. We show how anti-aliased high-quality shadows are feasible in scenes composed of multiple overlapping translucent objects, and how sparse scenes can be handled efficiently using clustered deep shadow maps. © 2012 Springer-Verlag.

  7. [A hybrid volume rendering method using general hardware]. (United States)

    Li, Bin; Tian, Lianfang; Chen, Ping; Mao, Zongyuan


    In order to improve the effect and efficiency of the reconstructed image after hybrid volume rendering of different kinds of volume data from medical sequential slices or polygonal models, we propose a hybrid volume rendering method based on Shear-Warp with economical hardware. First, the hybrid volume data are pre-processed by Z-Buffer method and RLE (Run-Length Encoded) data structure. Then, during the process of compositing intermediate image, a resampling method based on the dual-interpolation and the intermediate slice interpolation methods is used to improve the efficiency and the effect. Finally, the reconstructed image is rendered by the texture-mapping technology of OpenGL. Experiments demonstrate the good performance of the proposed method.

  8. Universal Rendering Mechanism Supporting Dual-Mode Presentation

    Institute of Scientific and Technical Information of China (English)

    徐鹏; 杨文军; 王克宏


    XML is a standard for the exchange of business data that is completely platform and vendor neutral. Because XML data comes in many forms, one of the most important technologies needed for XML applications is the ability to convert the data into visible renderings. This paper focuses on the rendering of XML/XSL documents into a readable and printable format by means of a platform-independent process that enables high-quality printing of the product. This paper introduces the core components in the data rendering engine, the X2P server and different levels of object abstraction. The design pattern and the complete formatting and representation of the XSL stylesheet into different types of output formats in the X2P server are also given. The results show that the X2P sever simultaneously constructs the formatting object tree and the area tree in a very efficient design that saves execution time and memory.

  9. Virtual try-on through image-based rendering. (United States)

    Hauswiesner, Stefan; Straka, Matthias; Reitmayr, Gerhard


    Virtual try-on applications have become popular because they allow users to watch themselves wearing different clothes without the effort of changing them physically. This helps users to make quick buying decisions and, thus, improves the sales efficiency of retailers. Previous solutions usually involve motion capture, 3D reconstruction or modeling, which are time consuming and not robust for all body poses. Our method avoids these steps by combining image-based renderings of the user and previously recorded garments. It transfers the appearance of a garment recorded from one user to another by matching input and recorded frames, image-based visual hull rendering, and online registration methods. Using images of real garments allows for a realistic rendering quality with high performance. It is suitable for a wide range of clothes and complex appearances, allows arbitrary viewing angles, and requires only little manual input. Our system is particularly useful for virtual try-on applications as well as interactive games.

  10. Real-Time Rendering of Teeth with No Preprocessing

    DEFF Research Database (Denmark)

    Larsen, Christian Thode; Frisvad, Jeppe Revall; Jensen, Peter Dahl Ejby


    We present a technique for real-time rendering of teeth with no need for computational or artistic preprocessing. Teeth constitute a translucent material consisting of several layers; a highly scattering material (dentine) beneath a semitransparent layer (enamel) with a transparent coating (saliva......). In this study we examine how light interacts with this multilayered structure. In the past, rendering of teeth has mostly been done using image-based texturing or volumetric scans. We work with surface scans and have therefore developed a simple way of estimating layer thicknesses. We use scattering properties...... based on measurements reported in the optics literature, and we compare rendered results qualitatively to images of ceramic teeth created by denturists....

  11. Ethical issues in transgenics. (United States)

    Sherlock, R; Morrey, J D


    The arguments of critics and concerns of the public on generating transgenic cloned animals are analyzed for the absence or presence of logical structure. Critics' arguments are symbolically compared with "genetic trespassing," "genetic speeding," or "going the wrong way," and responses are provided to these arguments. Scientists will be empowered to participate in the public discussion and to engage the critics on these issues as they consider thoughtful, plausible responses to their concerns. Temporary moratoriums are recognized as a plausible approach to dealing with possible concerns of new scientific advancements.

  12. Efficient rendering of breaking waves using MPS method

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; ZHENG Yao; CHEN Chun; FUJIMOTO Tadahiro; CHIBA Norishige


    This paper proposes an approach for rendering breaking waves out of large-scale ofparticle-based simulation. Moving particle semi-implicit (MPS) is used to solve the governing equation, and 2D simulation is expanded to 3D representation by giving motion variation using fractional Brownian motion (fBm). The waterbody surface is reconstructed from the outlines of 2D simulation. The splashing effect is computed according to the properties of the particles. Realistic features of the wave are rendered on GPU, including the reflective and refractive effect and the effect of splash. Experiments showed that the proposed method can simulate large scale breaking waves efficiently.

  13. Chromium Renderserver: Scalable and Open Source Remote RenderingInfrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Brian; Ahern, Sean; Bethel, E. Wes; Brugger, Eric; Cook,Rich; Daniel, Jamison; Lewis, Ken; Owen, Jens; Southard, Dale


    Chromium Renderserver (CRRS) is software infrastructure thatprovides the ability for one or more users to run and view image outputfrom unmodified, interactive OpenGL and X11 applications on a remote,parallel computational platform equipped with graphics hardwareaccelerators via industry-standard Layer 7 network protocolsand clientviewers. The new contributions of this work include a solution to theproblem of synchronizing X11 and OpenGL command streams, remote deliveryof parallel hardware-accelerated rendering, and a performance analysis ofseveral different optimizations that are generally applicable to avariety of rendering architectures. CRRSis fully operational, Open Sourcesoftware.

  14. Morphological study of transpterional-insula approach using volume rendering. (United States)

    Jia, Linpei; Su, Lue; Sun, Wei; Wang, Lina; Yao, Jihang; Li, Youqiong; Luo, Qi


    This study describes the measurements of inferior circular insular sulcus (ICIS) and the shortest distance from ICIS to the temporal horn and determines the position of the incision, which does less harm to the temporal stem in the transpterional-insula approach using volume-rendering technique. Results of the research showed that one-third point over the anterior side of ICIS may be the ideal penetration point during operation. And there is no difference between 2 hemispheres (P ICIS from other Chinese researches demonstrated that volume rendering is a reliable method in insular research that enables mass measurements.

  15. Depth of Field Effects for Interactive Direct Volume Rendering

    KAUST Repository

    Schott, Mathias


    In this paper, a method for interactive direct volume rendering is proposed for computing depth of field effects, which previously were shown to aid observers in depth and size perception of synthetically generated images. The presented technique extends those benefits to volume rendering visualizations of 3D scalar fields from CT/MRI scanners or numerical simulations. It is based on incremental filtering and as such does not depend on any precomputation, thus allowing interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions. © 2011 The Author(s).

  16. Beaming teaching application: recording techniques for spatial xylophone sound rendering

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Olesen, Søren Krarup;


    BEAMING is a telepresence research project aiming at providing a multimodal interaction between two or more participants located at distant locations. One of the BEAMING applications allows a distant teacher to give a xylophone playing lecture to the students. Therefore, rendering of the xylophone...... played at student's location is required at teacher's site. This paper presents a comparison of different recording techniques for a spatial xylophone sound rendering. Directivity pattern of the xylophone was measured and spatial properties of the sound field created by a xylophone as a distributed sound...

  17. The Arabidopsis NPR1 gene confers broad-spectrum disease resistance in strawberry. (United States)

    Silva, Katchen Julliany P; Brunings, Asha; Peres, Natalia A; Mou, Zhonglin; Folta, Kevin M


    Although strawberry is an economically important fruit crop worldwide, production of strawberry is limited by its susceptibility to a wide range of pathogens and the lack of major commercial cultivars with high levels of resistance to multiple pathogens. The objective of this study is to ectopically express the Arabidopsis thaliana NPR1 gene (AtNPR1) in the diploid strawberry Fragaria vesca L. and to test transgenic plants for disease resistance. AtNPR1 is a key positive regulator of the long-lasting broad-spectrum resistance known as systemic acquired resistance (SAR) and has been shown to confer resistance to a number of pathogens when overexpressed in Arabidopsis or ectopically expressed in several crop species. We show that ectopic expression of AtNPR1 in strawberry increases resistance to anthracnose, powdery mildew, and angular leaf spot, which are caused by different fungal or bacterial pathogens. The increased resistance is related to the relative expression levels of AtNPR1 in the transgenic plants. In contrast to Arabidopsis plants overexpressing AtNPR1, which grow normally and do not constitutively express defense genes, the strawberry transgenic plants are shorter than non-transformed controls, and most of them fail to produce runners and fruits. Consistently, most of the transgenic lines constitutively express the defense gene FvPR5, suggesting that the SAR activation mechanisms in strawberry and Arabidopsis are different. Nevertheless, our results indicate that overexpression of AtNPR1 holds the potential for generation of broad-spectrum disease resistance in strawberry.

  18. A bacterial haloalkane dehalogenase gene as a negative selectable marker in Arabidopsis

    DEFF Research Database (Denmark)

    Næsted, Henrik; Fennema, M.; Hao, L.


    The dhlA gene of Xanthobacter autotrophicus GJ10 encodes a dehalogenase which hydrolyzes dihalo- alkanes, such as 1,2-dichloroethane (DCE), to a halo- genated alcohol and an inorganic halide ( Janssen et al. 1994 , Annu. Rev. Microbiol. 48, 163-191). In Xanthobacter, these alcohols are further...... catabolized by alcohol and aldehyde dehydrogenase activities, and by the product of the dhlB gene to a second halide and a hydroxyacid. The intermediate halogenated alcohols and, in particular, the aldehydes are more toxic than the haloalkane substrates or the pathway products. We show here that plants......, including Arabidopsis, tobacco, oil seed rape and rice, do not express detectable haloalkane dehalogenase activities, and that wild-type Arabidopsis grows in the presence of DCE. In contrast, DCE applied as a volatile can be used to select on plates or in soil transgenic Arabidopsis which express dhl...

  19. Epigenetic silencing in transgenic plants

    Directory of Open Access Journals (Sweden)

    Sarma eRajeev Kumar


    Full Text Available Epigenetic silencing is a natural phenomenon in which the expression of gene is regulated through modifications of DNA, RNA or histone proteins. It is a mechanism for defending host genomes against the effects of transposable element, viral infection and acts as a modulator of expression of duplicated gene family members and as a silencer of transgenes. A major breakthrough in understanding the mechanism of epigenetic silencing was discovery of silencing in transgenic tobacco plants due to interaction between two homologous promoters. The molecular mechanism of epigenetic mechanism is highly complicated and it is not completely understood yet. Two different molecular routes have been proposed for this, i.e. transcriptional gene silencing (TGS, which is associated with heavy methylation of promoter regions and blocks the transcription of transgene. The basic mechanism underlying post-transcriptional gene silencing (PTGS is degradation of the cytosolic mRNA of transgenes or endogenous genes. Undesired transgene silencing is of a major concern in transgenic technology used in crop improvement. A complete understanding of this phenomenon will be very useful for transgenic applications, where silencing of specific genes are required. The current status of epigenetic silencing in transgenic technology has been discussed and summarized in this mini-review.

  20. Virtual Environment of Real Sport Hall and Analyzing Rendering Quality

    Directory of Open Access Journals (Sweden)

    Filip Popovski


    Full Text Available Here is presented virtual environment of a real sport hall created in Quest3D VR Edition. All analyzes of the rendering quality, techniques of interaction and performance of the system in real time are presented. We made critical analysis on all of these techniques on different machines and have excellent results.

  1. Democratizing rendering for multiple viewers in surround VR systems

    KAUST Repository

    Schulze, Jürgen P.


    We present a new approach for how multiple users\\' views can be rendered in a surround virtual environment without using special multi-view hardware. It is based on the idea that different parts of the screen are often viewed by different users, so that they can be rendered from their own view point, or at least from a point closer to their view point than traditionally expected. The vast majority of 3D virtual reality systems are designed for one head-tracked user, and a number of passive viewers. Only the head tracked user gets to see the correct view of the scene, everybody else sees a distorted image. We reduce this problem by algorithmically democratizing the rendering view point among all tracked users. Researchers have proposed solutions for multiple tracked users, but most of them require major changes to the display hardware of the VR system, such as additional projectors or custom VR glasses. Our approach does not require additional hardware, except the ability to track each participating user. We propose three versions of our multi-viewer algorithm. Each of them balances image distortion and frame rate in different ways, making them more or less suitable for certain application scenarios. Our most sophisticated algorithm renders each pixel from its own, optimized camera perspective, which depends on all tracked users\\' head positions and orientations. © 2012 IEEE.

  2. Partitioning of biocides between water and inorganic phases of render

    DEFF Research Database (Denmark)

    Urbanczyk, Michal; Bollmann, Ulla E.; Bester, Kai

    , and tebuconazole towards minerals were studied. A mixture of biocides listed above was used to estimate partitioning constants between water and five different minerals, commonly used as fillers in renders: barite, calcium carbonate, kaolinite, mica and talc. The resulting Kd values for all minerals analysed were...

  3. Interacting with Stroke-Based Rendering on a Wall Display

    NARCIS (Netherlands)

    Grubert, Jens; Hanckock, Mark; Carpendale, Sheelagh; Tse, Edward; Isenberg, Tobias


    We introduce two new interaction techniques for creating and interacting with non-photorealistic images using stroke-based rendering. We provide bimanual control of a large interactive canvas through both remote pointing and direct touch. Remote pointing allows people to sit and interact at a distan

  4. Depth-Dependent Halos : Illustrative Rendering of Dense Line Data

    NARCIS (Netherlands)

    Everts, Maarten H.; Bekker, Henk; Roerdink, Jos B.T.M.; Isenberg, Tobias


    We present a technique for the illustrative rendering of 3D line data at interactive frame rates. We create depth-dependent halos around lines to emphasize tight line bundles while less structured lines are de-emphasized. Moreover, the depth-dependent halos combined with depth cueing via line width

  5. An experiment on the color rendering of different light sources (United States)

    Fumagalli, Simonetta; Bonanomi, Cristian; Rizzi, Alessandro


    The color rendering index (CRI) of a light source attempts to measure how much the color appearance of objects is preserved when they are illuminated by the given light source. This problem is of great importance for various industrial and scientific fields, such as lighting architecture, design, ergonomics, etc. Usually a light source is specified through the Correlated Color Temperature or CCT. However two (or more) light sources with the same CCT but different spectral power distribution can exist. Therefore color samples viewed under two light sources with equal CCTs can appear different. Hence, the need for a method to assess the quality of a given illuminant in relation to color. Recently CRI has had a renewed interest because of the new LED-based lighting systems. They usually have a color rendering index rather low, but good preservation of color appearance and a pleasant visual appearance (visual appeal). Various attempts to develop a new color rendering index have been done so far, but still research is working for a better one. This article describes an experiment performed by human observers concerning the appearance preservation of color under some light sources, comparing it with a range of available color rendering indices.

  6. Fast Rendering of Realistic Virtual Character in Game Scene

    Directory of Open Access Journals (Sweden)

    Mengzhao Yang


    Full Text Available Human skin is made up of multiple translucent layers and rendering of skin appearance usually acquire complex modeling and massive calculation. In some practical applications such as 3D game development, we not only approximate the realistic looking skin but also develop efficient method to implement easily for meeting needs of real-time rendering. In this study, we solve the problem of wrap lighting and introduce a surface details approximation method to give realistic rendering of virtual character. Our method considers that different thicknesses of geometry on the skin surface can result in different scattering degree of incident light and so pre-calculate the diffuse falloff into a look-up texture. Also, we notice that scattering is strongly color dependent and small bumps are common on the skin surface and so pre-soften the finer details on the skin surface according to the R/G/B channel. At last, we linearly interpolate the diffuse lighting with different scattering degree from the look-up texture sampled with the curvature and NdotL. Experiment results show that the proposed approach yields realistic virtual character and obtains high frames per second in real-time rendering.

  7. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel


    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  8. 7 CFR 54.1016 - Advance information concerning service rendered. (United States)


    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 54..., Processing, and Packaging of Livestock and Poultry Products § 54.1016 Advance information concerning service... MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE...

  9. 7 CFR 53.17 - Advance information concerning service rendered. (United States)


    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 53.17... (CONTINUED) LIVESTOCK (GRADING, CERTIFICATION, AND STANDARDS) Regulations Service § 53.17 Advance information... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED)...

  10. BROTHER OF LUX ARRHYTHMO is a component of the Arabidopsis circadian clock. (United States)

    Dai, Shunhong; Wei, Xiaoping; Pei, Liping; Thompson, Rebecca L; Liu, Yi; Heard, Jacqueline E; Ruff, Thomas G; Beachy, Roger N


    BROTHER OF LUX ARRHYTHMO (BOA) is a GARP family transcription factor in Arabidopsis thaliana and is regulated by circadian rhythms. Transgenic lines that constitutively overexpress BOA exhibit physiological and developmental changes, including delayed flowering time and increased vegetative growth under standard growing conditions. Arabidopsis circadian clock protein CIRCADIAN CLOCK ASSOCIATED1 (CCA1) binds to the evening element of the BOA promoter and negatively regulates its expression. Furthermore, the period of BOA rhythm was shortened in cca1-11, lhy-21 (for LATE ELONGATED HYPOCOTYL), and cca1-11 lhy-21 genetic backgrounds. BOA binds to the promoter of CCA1 through newly identified promoter binding sites and activates the transcription of CCA1 in vivo and in vitro. In transgenic Arabidopsis lines that overexpress BOA, the period length of CCA1 rhythm was increased and the amplitude was enhanced. Rhythmic expression of other clock genes, including LHY, GIGANTEA (GI), and TIMING OF CAB EXPRESSION1 (TOC1), was altered in transgenic lines that overexpress BOA. Rhythmic expression of BOA was also affected in mutant lines of toc1-1, gi-3, and gi-4. Results from these studies indicate that BOA is a critical component of the regulatory circuit of the circadian clock.

  11. ABA Inducible Rice Protein Phosphatase 2C Confers ABA Insensitivity and Abiotic Stress Tolerance in Arabidopsis (United States)

    Singh, Amarjeet; Jha, Saroj K.; Bagri, Jayram; Pandey, Girdhar K.


    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions. PMID:25886365

  12. Synthetic phytochelatins complement a phytochelatin-deficient Arabidopsis mutant and enhance the accumulation of heavy metal(loid)s. (United States)

    Shukla, Devesh; Tiwari, Manish; Tripathi, Rudra D; Nath, Pravendra; Trivedi, Prabodh Kumar


    Phytochelatins (PCs) are naturally occurring thiol-rich peptides containing gamma (γ) peptide bonds and are well known for their metal-binding and detoxification capabilities. Whether synthetic phytochelatins (ECs) can be used as an alternative approach for enhancing the metal-binding capacity of plants has been investigated in this study. The metal-binding potential of ECs has been demonstrated in bacteria; however, no report has investigated the expression of ECs in plants. We have expressed three synthetic genes encoding ECs of different lengths in wild type (WT) Arabidopsis (Col-0 background) and a phytochelatin-deficient Arabidopsis mutant (cad1-3). After exposure to different heavy metals, the transgenic plants were examined for phenotypic changes, and metal accumulation was evaluated. The expression of EC genes rescued the sensitive phenotype of the cad1-3 mutant under heavy metal(loid) stress. Transgenic Arabidopsis plants expressing EC genes accumulated a significantly enhanced level of heavy metal(loid)s in comparison with the WT plant. The mutant complementation and enhanced heavy metal(loid) accumulation in the transgenic Arabidopsis plants suggest that ECs work in a manner similar to that of PCs in plants and that ECs could be used as an alternative for phytoremediation of heavy metal(loid) exposure.

  13. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. (United States)

    Osakabe, Yuriko; Mizuno, Shinji; Tanaka, Hidenori; Maruyama, Kyonoshin; Osakabe, Keishi; Todaka, Daisuke; Fujita, Yasunari; Kobayashi, Masatomo; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko


    RPK1 (receptor-like protein kinase 1) localizes to the plasma membrane and functions as a regulator of abscisic acid (ABA) signaling in Arabidopsis. In our current study, we investigated the effect of RPK1 disruption and overproduction upon plant responses to drought stress. Transgenic Arabidopsis overexpressing the RPK1 protein showed increased ABA sensitivity in their root growth and stomatal closure and also displayed less transpirational water loss. In contrast, a mutant lacking RPK1 function, rpk1-1, was found to be resistant to ABA during these processes and showed increased water loss. RPK1 overproduction in these transgenic plants thus increased their tolerance to drought stress. We performed microarray analysis of RPK1 transgenic plants and observed enhanced expression of several stress-responsive genes, such as Cor15a, Cor15b, and rd29A, in addition to H(2)O(2)-responsive genes. Consistently, the expression levels of ABA/stress-responsive genes in rpk1-1 had decreased compared with wild type. The results suggest that the overproduction of RPK1 enhances both the ABA and drought stress signaling pathways. Furthermore, the leaves of the rpk1-1 plants exhibit higher sensitivity to oxidative stress upon ABA-pretreatment, whereas transgenic plants overproducing RPK1 manifest increased tolerance to this stress. Our current data suggest therefore that RPK1 overproduction controls reactive oxygen species homeostasis and enhances both water and oxidative stress tolerance in Arabidopsis.

  14. Ectopically expressed sweet pepper ferredoxin PFLP enhances disease resistance to Pectobacterium carotovorum subsp. carotovorum affected by harpin and protease-mediated hypersensitive response in Arabidopsis. (United States)

    Ger, Mang-Jye; Louh, Guan-Yu; Lin, Yi-Hsien; Feng, Teng-Yung; Huang, Hsiang-En


    Plant ferredoxin-like protein (PFLP) is a photosynthesis-type ferredoxin (Fd) found in sweet pepper. It contains an iron-sulphur cluster that receives and delivers electrons between enzymes involved in many fundamental metabolic processes. It has been demonstrated that transgenic plants overexpressing PFLP show a high resistance to many bacterial pathogens, although the mechanism remains unclear. In this investigation, the PFLP gene was transferred into Arabidopsis and its defective derivatives, such as npr1 (nonexpresser of pathogenesis-related gene 1) and eds1 (enhanced disease susceptibility 1) mutants and NAHG-transgenic plants. These transgenic plants were then infected with the soft-rot bacterial pathogen Pectobacterium carotovorum subsp. carotovorum (Erwinia carotovora ssp. carotovora, ECC) to investigate the mechanism behind PFLP-mediated resistance. The results revealed that, instead of showing soft-rot symptoms, ECC activated hypersensitive response (HR)-associated events, such as the accumulation of hydrogen peroxide (H2 O2 ), electrical conductivity leakage and expression of the HR marker genes (ATHSR2 and ATHSR3) in PFLP-transgenic Arabidopsis. This PFLP-mediated resistance could be abolished by inhibitors, such as diphenylene iodonium (DPI), 1-l-trans-epoxysuccinyl-leucylamido-(4-guanidino)-butane (E64) and benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), but not by myriocin and fumonisin. The PFLP-transgenic plants were resistant to ECC, but not to its harpin mutant strain ECCAC5082. In the npr1 mutant and NAHG-transgenic Arabidopsis, but not in the eds1 mutant, overexpression of the PFLP gene increased resistance to ECC. Based on these results, we suggest that transgenic Arabidopsis contains high levels of ectopic PFLP; this may lead to the recognition of the harpin and to the activation of the HR and other resistance mechanisms, and is dependent on the protease-mediated pathway.

  15. 9 CFR 315.1 - Carcasses and parts passed for cooking; rendering into lard or tallow. (United States)


    ...; rendering into lard or tallow. 315.1 Section 315.1 Animals and Animal Products FOOD SAFETY AND INSPECTION... PARTS PASSED FOR COOKING § 315.1 Carcasses and parts passed for cooking; rendering into lard or tallow... subchapter or rendered into tallow, provided such rendering is done in the following manner: (a) When...


    Directory of Open Access Journals (Sweden)

    Peter Chrenek


    Full Text Available Transgenic founder rabbits carrying a gene construct consisting of a 2.5 kb murine whey acidic protein promoter (mWAP, 7.2 kb of the human clotting factor VIII (hFVIII cDNA and 4.6 kb of 3’ flanking sequences of mWAP gene were crossed for five generations. Transgenic females showed high level of recombinant hFVIII (rhFVIII mRNA expression in biopsed mammary gland tissues. The presence of the mWAP-hFVIII transgene in rabbit genome and secretion of rhFVIII into milk of transgenic females (F1, F2, F3, F4 and F5 generation did not have any adverse phenotypic effect on milk quality.

  17. Transgenics, agroindustry and food sovereignty

    Directory of Open Access Journals (Sweden)

    Xavier Alejandro León Vega


    Full Text Available Food sovereignty has been implemented constitutionally in Ecuador; however, many of the actions and policies are designed to benefit the dominant model of food production, based in agroindustry, intensive monocultures, agrochemicals and transgenics. This article reflects upon the role of family farming as a generator of food sovereignty, and secondly the threat to them by agroindustry agriculture based in transgenic. The role played by food aid in the introduction of transgenic in Latin America and other regions of the world is also analyzed.

  18. Overexpression of a MADS-box gene from birch (Betula platyphylla promotes flowering and enhances chloroplast development in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Guan-Zheng Qu

    Full Text Available In this study, a MADS-box gene (BpMADS, which is an ortholog of AP1 from Arabidopsis, was isolated from birch (Betula platyphylla. Transgenic Arabidopsis containing a BpMADS promoter::GUS construct was produced, which exhibited strong GUS staining in sepal tissues. Ectopic expression of BpMADS significantly enhanced the flowering of tobacco (35S::BpMADS. In addition, the chloroplasts of transgenic tobacco exhibited much higher growth and division rates, as well rates of photosynthesis, than wild-type. A grafting experiment demonstrated that the flowering time of the scion was not affected by stock that overexpressed BpMADS. In addition, the overexpression of BpMADS resulted in the upregulation of some flowering-related genes in tobacco.

  19. Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. (United States)

    Onouchi, H; Nishihama, R; Kudo, M; Machida, Y; Machida, C


    Excision of a DNA segment can occur in Arabidopsis thaliana by reciprocal recombination between two specific recombination sites (RSs) when the recombinase gene (R) from Zygosaccharomyces rouxii is expressed in the plant. To monitor recombination events, we generated several lines of transgenic Arabidopsis plants that carried a cryptic beta-glucuronidase (GUS) reporter gene which was designed in such a way that expression of the reporter gene could be induced by R gene-mediated recombination. We also made several transgenic lines with an R gene linked to the 35S promoter of cauliflower mosaic virus. Each transgenic line carrying the cryptic reporter gene was crossed with each line carrying the R gene. Activity of GUS in F1 and F2 progeny was examined histochemically and recombination between two RSs was analyzed by Southern blotting and the polymerase chain reaction. In seedlings and plantlets of F1 progeny and most of the F2 progeny, a variety of patterns of activity of GUS, including sectorial chimerism in leaves, was observed. A small percentage of F2 individuals exhibited GUS activity in the entire plant. This pattern of expression was ascribed to germinal recombination in the F1 generation on the basis of an analysis of DNA structure by Southern blotting. These results indicate that R gene-mediated recombination can be induced in both somatic and germ cells of A. thaliana by cross-pollination of parental transgenic lines.

  20. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. (United States)

    Bell, E; Creelman, R A; Mullet, J E


    Plant lipoxygenases are thought to be involved in the biosynthesis of lipid-derived signaling molecules. The potential involvement of a specific Arabidopsis thaliana lipoxygenase isozyme, LOX2, in the biosynthesis of the plant growth regulators jasmonic acid (JA) and abscisic acid was investigated. Our characterization of LOX2 indicates that the protein is targeted to chloroplasts. The physiological role of this chloroplast lipoxygenase was analyzed in transgenic plants where cosuppression reduced LOX2 accumulation. The reduction in LOX2 levels caused no obvious changes in plant growth or in the accumulation of abscisic acid. However, the wound-induced accumulation of JA observed in control plants was absent in leaves of transgenic plants that lacked LOX2. Thus, LOX2 is required for the wound-induced synthesis of the plant growth regulator JA in leaves. We also examined the expression of a wound- and JA-inducible Arabidopsis gene, vsp, in transgenic and control plants. Leaves of transgenic plants lacking LOX2 accumulated less vsp mRNA than did control leaves in response to wounding. This result suggests that wound-induced JA (or some other LOX2-requiring component of the wound response pathway) is involved in the wound-induced regulation of this gene.

  1. Realistic Haptic Rendering of Interacting Deformable Objects in Virtual Environments

    CERN Document Server

    Duriez, Christian; Kheddar, Abderrahmane; Andriot, Claude


    A new computer haptics algorithm to be used in general interactive manipulations of deformable virtual objects is presented. In multimodal interactive simulations, haptic feedback computation often comes from contact forces. Subsequently, the fidelity of haptic rendering depends significantly on contact space modeling. Contact and friction laws between deformable models are often simplified in up to date methods. They do not allow a "realistic" rendering of the subtleties of contact space physical phenomena (such as slip and stick effects due to friction or mechanical coupling between contacts). In this paper, we use Signorini's contact law and Coulomb's friction law as a computer haptics basis. Real-time performance is made possible thanks to a linearization of the behavior in the contact space, formulated as the so-called Delassus operator, and iteratively solved by a Gauss-Seidel type algorithm. Dynamic deformation uses corotational global formulation to obtain the Delassus operator in which the mass and s...

  2. Chromium Renderserver: scalable and open remote rendering infrastructure. (United States)

    Paul, Brian; Ahern, Sean; Bethel, E Wes; Brugger, Eric; Cook, Rich; Daniel, Jamison; Lewis, Ken; Owen, Jens; Southard, Dale


    Chromium Renderserver (CRRS) is software infrastructure that provides the ability for one or more users to run and view image output from unmodified, interactive OpenGL and X11 applications on a remote, parallel computational platform equipped with graphics hardware accelerators via industry-standard Layer 7 network protocols and client viewers. The new contributions of this work include a solution to the problem of synchronizing X11 and OpenGL command streams, remote delivery of parallel hardware accelerated rendering, and a performance analysis of several different optimizations that are generally applicable to a variety of rendering architectures. CRRS is fully operational, Open Source software. imagery and sending it to a remote viewer.

  3. Hybrid fur rendering: combining volumetric fur with explicit hair strands

    DEFF Research Database (Denmark)

    Andersen, Tobias Grønbeck; Falster, Viggo; Frisvad, Jeppe Revall


    Hair is typically modeled and rendered using either explicitly defined hair strand geometry or a volume texture of hair densities. Taken each on their own, these two hair representations have difficulties in the case of animal fur as it consists of very dense and thin undercoat hairs in combination...... with coarse guard hairs. Explicit hair strand geometry is not well-suited for the undercoat hairs, while volume textures are not well-suited for the guard hairs. To efficiently model and render both guard hairs and undercoat hairs, we present a hybrid technique that combines rasterization of explicitly...... defined guard hairs with ray marching of a prismatic shell volume with dynamic resolution. The latter is the key to practical combination of the two techniques, and it also enables a high degree of detail in the undercoat. We demonstrate that our hybrid technique creates a more detailed and soft fur...

  4. Tactile display for virtual 3D shape rendering

    CERN Document Server

    Mansutti, Alessandro; Bordegoni, Monica; Cugini, Umberto


    This book describes a novel system for the simultaneous visual and tactile rendering of product shapes which allows designers to simultaneously touch and see new product shapes during the conceptual phase of product development. This system offers important advantages, including potential cost and time savings, compared with the standard product design process in which digital 3D models and physical prototypes are often repeatedly modified until an optimal design is achieved. The system consists of a tactile display that is able to represent, within a real environment, the shape of a product. Designers can explore the rendered surface by touching curves lying on the product shape, selecting those curves that can be considered style features and evaluating their aesthetic quality. In order to physically represent these selected curves, a flexible surface is modeled by means of servo-actuated modules controlling a physical deforming strip. The tactile display is designed so as to be portable, low cost, modular,...

  5. Potential use of a serpin from Arabidopsis for pest control.

    Directory of Open Access Journals (Sweden)

    Fernando Alvarez-Alfageme

    Full Text Available Although genetically modified (GM plants expressing toxins from Bacillus thuringiensis (Bt protect agricultural crops against lepidopteran and coleopteran pests, field-evolved resistance to Bt toxins has been reported for populations of several lepidopteran species. Moreover, some important agricultural pests, like phloem-feeding insects, are not susceptible to Bt crops. Complementary pest control strategies are therefore necessary to assure that the benefits provided by those insect-resistant transgenic plants are not compromised and to target those pests that are not susceptible. Experimental GM plants producing plant protease inhibitors have been shown to confer resistance against a wide range of agricultural pests. In this study we assessed the potential of AtSerpin1, a serpin from Arabidopsis thaliana (L. Heynh., for pest control. In vitro assays were conducted with a wide range of pests that rely mainly on either serine or cysteine proteases for digestion and also with three non-target organisms occurring in agricultural crops. AtSerpin1 inhibited proteases from all pest and non-target species assayed. Subsequently, the cotton leafworm Spodoptera littoralis Boisduval and the pea aphid Acyrthosiphon pisum (Harris were fed on artificial diets containing AtSerpin1, and S. littoralis was also fed on transgenic Arabidopsis plants overproducing AtSerpin1. AtSerpin1 supplied in the artificial diet or by transgenic plants reduced the growth of S. littoralis larvae by 65% and 38%, respectively, relative to controls. Nymphs of A. pisum exposed to diets containing AtSerpin1 suffered high mortality levels (LC(50 = 637 µg ml(-1. The results indicate that AtSerpin1 is a good candidate for exploitation in pest control.

  6. Arabidopsis HFR1 Is a Potential Nuclear Substrate Regulated by the Xanthomonas Type III Effector XopD Xcc8004


    Choon Meng Tan; Meng-Ying Li; Pei-Yun Yang; Shu Heng Chang; Yi-Ping Ho; Hong Lin; Wen-Ling Deng; Jun-Yi Yang


    XopD Xcc8004, a type III effector of Xanthomonas campestris pv. campestris (Xcc) 8004, is considered a shorter version of the XopD, which lacks the N-terminal domain. To understand the functions of XopD Xcc8004, in planta, a transgenic approach combined with inducible promoter to analyze the effects of XopD Xcc8004 in Arabidopsis was done. Here, the expression of XopD Xcc8004, in Arabidopsis elicited the accumulation of host defense-response genes. These molecular changes were dependent on sa...

  7. Partition of biocides between water and inorganic phases of renders with organic binder

    DEFF Research Database (Denmark)

    Urbanczyk, Michal M; Bollmann, Ulla E; Bester, Kai


    , the partition of biocides between water and inorganic phases of render with organic binder was investigated. The partition constants of carbendazim, diuron, iodocarb, isoproturon, cybutryn (irgarol), octylisothiazolinone, terbutryn, and tebuconazole towards minerals typically used in renders, e.g. barite...... with render-water distribution constants of two artificially made renders showed that the distribution constants can be estimated based on partition constants of compounds for individual components of the render....

  8. Binaural technology for e.g. rendering auditory virtual environments

    DEFF Research Database (Denmark)

    Hammershøi, Dorte


    , helped mediate the understanding that if the transfer functions could be mastered, then important dimensions of the auditory percept could also be controlled. He early understood the potential of using the HRTFs and numerical sound transmission analysis programs for rendering auditory virtual...... environments. Jens Blauert participated in many European cooperation projects exploring  this field (and others), among other the SCATIS project addressing the auditory-tactile dimensions in the absence of visual information....

  9. Rendering Optical Effects Based on Spectra Representation in Complex Scenes


    Dong, Weiming

    2006-01-01; Rendering the structural color of natural objects or modern industrial products in the 3D environment is not possible with RGB-based graphics platforms and software and very time consuming, even with the most efficient spectra representation based methods previously proposed. Our framework allows computing full spectra light object interactions only when it is needed, i.e. for the part of the scene that requires simulating special spectra sensitive phenomena. Ach...

  10. Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. (United States)

    Guo, Jiangbo; Dai, Xiaojing; Xu, Wenzhong; Ma, Mi


    The goal of this study was to develop transgenic plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by simultaneous overexpression of AsPCS1 and GSH1 (derived from garlic and baker's yeast) in Arabidopsis thaliana. Phytochelatins (PCs) and glutathione (GSH) are the main binding peptides involved in chelating heavy metal ions in plants and other living organisms. Single-gene transgenic lines had higher tolerance to and accumulated more Cd and As than wild-type. Compared to single-gene transgenic lines, dual-gene transformants exhibited significantly higher tolerance to and accumulated more Cd and As. One of the dual-gene transgenic lines, PG1, accumulated twice the amount of Cd as single-gene transgenic lines. Simultaneous overexpression of AsPCS1 and GSH1 led to elevated total PC production in transgenic Arabidopsis. These results indicate that such a stacking of modified genes is capable of increasing Cd and As tolerance and accumulation in transgenic lines, and represents a highly promising new tool for use in phytoremediation efforts.

  11. High Performance GPU-Based Fourier Volume Rendering. (United States)

    Abdellah, Marwan; Eldeib, Ayman; Sharawi, Amr


    Fourier volume rendering (FVR) is a significant visualization technique that has been used widely in digital radiography. As a result of its (N (2)log⁡N) time complexity, it provides a faster alternative to spatial domain volume rendering algorithms that are (N (3)) computationally complex. Relying on the Fourier projection-slice theorem, this technique operates on the spectral representation of a 3D volume instead of processing its spatial representation to generate attenuation-only projections that look like X-ray radiographs. Due to the rapid evolution of its underlying architecture, the graphics processing unit (GPU) became an attractive competent platform that can deliver giant computational raw power compared to the central processing unit (CPU) on a per-dollar-basis. The introduction of the compute unified device architecture (CUDA) technology enables embarrassingly-parallel algorithms to run efficiently on CUDA-capable GPU architectures. In this work, a high performance GPU-accelerated implementation of the FVR pipeline on CUDA-enabled GPUs is presented. This proposed implementation can achieve a speed-up of 117x compared to a single-threaded hybrid implementation that uses the CPU and GPU together by taking advantage of executing the rendering pipeline entirely on recent GPU architectures.

  12. High Performance GPU-Based Fourier Volume Rendering

    Directory of Open Access Journals (Sweden)

    Marwan Abdellah


    Full Text Available Fourier volume rendering (FVR is a significant visualization technique that has been used widely in digital radiography. As a result of its O(N2log⁡N time complexity, it provides a faster alternative to spatial domain volume rendering algorithms that are O(N3 computationally complex. Relying on the Fourier projection-slice theorem, this technique operates on the spectral representation of a 3D volume instead of processing its spatial representation to generate attenuation-only projections that look like X-ray radiographs. Due to the rapid evolution of its underlying architecture, the graphics processing unit (GPU became an attractive competent platform that can deliver giant computational raw power compared to the central processing unit (CPU on a per-dollar-basis. The introduction of the compute unified device architecture (CUDA technology enables embarrassingly-parallel algorithms to run efficiently on CUDA-capable GPU architectures. In this work, a high performance GPU-accelerated implementation of the FVR pipeline on CUDA-enabled GPUs is presented. This proposed implementation can achieve a speed-up of 117x compared to a single-threaded hybrid implementation that uses the CPU and GPU together by taking advantage of executing the rendering pipeline entirely on recent GPU architectures.

  13. Real-time rendering of optical effects using spatial convolution (United States)

    Rokita, Przemyslaw


    Simulation of special effects such as: defocus effect, depth-of-field effect, raindrops or water film falling on the windshield, may be very useful in visual simulators and in all computer graphics applications that need realistic images of outdoor scenery. Those effects are especially important in rendering poor visibility conditions in flight and driving simulators, but can also be applied, for example, in composing computer graphics and video sequences- -i.e. in Augmented Reality systems. This paper proposes a new approach to the rendering of those optical effects by iterative adaptive filtering using spatial convolution. The advantage of this solution is that the adaptive convolution can be done in real-time by existing hardware. Optical effects mentioned above can be introduced into the image computed using conventional camera model by applying to the intensity of each pixel the convolution filter having an appropriate point spread function. The algorithms described in this paper can be easily implemented int the visualization pipeline--the final effect may be obtained by iterative filtering using a single hardware convolution filter or with the pipeline composed of identical 3 X 3 filters placed as the stages of this pipeline. Another advantage of the proposed solution is that the extension based on proposed algorithm can be added to the existing rendering systems as a final stage of the visualization pipeline.

  14. Capturing, processing, and rendering real-world scenes (United States)

    Nyland, Lars S.; Lastra, Anselmo A.; McAllister, David K.; Popescu, Voicu; McCue, Chris; Fuchs, Henry


    While photographs vividly capture a scene from a single viewpoint, it is our goal to capture a scene in such a way that a viewer can freely move to any viewpoint, just as he or she would in an actual scene. We have built a prototype system to quickly digitize a scene using a laser rangefinder and a high-resolution digital camera that accurately captures a panorama of high-resolution range and color information. With real-world scenes, we have provided data to fuel research in many area, including representation, registration, data fusion, polygonization, rendering, simplification, and reillumination. The real-world scene data can be used for many purposes, including immersive environments, immersive training, re-engineering and engineering verification, renovation, crime-scene and accident capture and reconstruction, archaeology and historic preservation, sports and entertainment, surveillance, remote tourism and remote sales. We will describe our acquisition system, the necessary processing to merge data from the multiple input devices and positions. We will also describe high quality rendering using the data we have collected. Issues about specific rendering accelerators and algorithms will also be presented. We will conclude by describing future uses and methods of collection for real- world scene data.

  15. Modification of plant Rac/Rop GTPase signalling using bacterial toxin transgenes. (United States)

    Singh, Manoj K; Ren, Fugang; Giesemann, Torsten; Dal Bosco, Cristina; Pasternak, Taras P; Blein, Thomas; Ruperti, Benedetto; Schmidt, Gudula; Aktories, Klaus; Molendijk, Arthur J; Palme, Klaus


    Bacterial protein toxins which modify Rho GTPase are useful for the analysis of Rho signalling in animal cells, but these toxins cannot be taken up by plant cells. We demonstrate in vitro deamidation of Arabidopsis Rop4 by Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1) and glucosylation by Clostridium difficile toxin B. Expression of the catalytic domain of CNF1 caused modification and activation of co-expressed Arabidopsis Rop4 GTPase in tobacco leaves, resulting in hypersensitive-like cell death. By contrast, the catalytic domain of toxin B modified and inactivated co-expressed constitutively active Rop4, blocking the hypersensitive response caused by over-expression of active Rops. In transgenic Arabidopsis, both CNF1 and toxin B inhibited Rop-dependent polar morphogenesis of leaf epidermal cells. Toxin B expression also inhibited Rop-dependent morphogenesis of root hairs and trichome branching, and resulted in root meristem enlargement and dwarf growth. Our results show that CNF1 and toxin B transgenes are effective tools in Rop GTPase signalling studies.

  16. Functional analysis of the theobroma cacao NPR1 gene in arabidopsis

    Directory of Open Access Journals (Sweden)

    Verica Joseph


    Full Text Available Abstract Background The Arabidopsis thaliana NPR1 gene encodes a transcription coactivator (NPR1 that plays a major role in the mechanisms regulating plant defense response. After pathogen infection and in response to salicylic acid (SA accumulation, NPR1 translocates from the cytoplasm into the nucleus where it interacts with other transcription factors resulting in increased expression of over 2000 plant defense genes contributing to a pathogen resistance response. Results A putative Theobroma cacao NPR1 cDNA was isolated by RT-PCR using degenerate primers based on homologous sequences from Brassica, Arabidopsis and Carica papaya. The cDNA was used to isolate a genomic clone from Theobroma cacao containing a putative TcNPR1 gene. DNA sequencing revealed the presence of a 4.5 kb coding region containing three introns and encoding a polypeptide of 591 amino acids. The predicted TcNPR1 protein shares 55% identity and 78% similarity to Arabidopsis NPR1, and contains each of the highly conserved functional domains indicative of this class of transcription factors (BTB/POZ and ankyrin repeat protein-protein interaction domains and a nuclear localization sequence (NLS. To functionally define the TcNPR1 gene, we transferred TcNPR1 into an Arabidopsis npr1 mutant that is highly susceptible to infection by the plant pathogen Pseudomonas syringae pv. tomato DC3000. Driven by the constitutive CaMV35S promoter, the cacao TcNPR1 gene partially complemented the npr1 mutation in transgenic Arabidopsis plants, resulting in 100 fold less bacterial growth in a leaf infection assay. Upon induction with SA, TcNPR1 was shown to translocate into the nucleus of leaf and root cells in a manner identical to Arabidopsis NPR1. Cacao NPR1 was also capable of participating in SA-JA signaling crosstalk, as evidenced by the suppression of JA responsive gene expression in TcNPR1 overexpressing transgenic plants. Conclusion Our data indicate that the TcNPR1 is a functional

  17. Transgenic mice in developmental toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Woychik, R.P.


    Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areas of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.

  18. Transgenic mice in developmental toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Woychik, R.P.


    Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areas of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.

  19. Effects of transgenic soybean on growth and phosphorus acquisition in mixed culture system

    Institute of Scientific and Technical Information of China (English)

    Jianna Xie; Jia Zhou; Xiurong Wang; Hong Liao


    Transgenic soybean plants overexpressing the Arabidopsis purple acid phosphatase gene AtPAP15 (OXp) or the soybean expansin gene GmEXPB2 (OXe) can improve phosphorous (P) efficiency in pure culture by increasing Apase secretion or changing root morphology. In this study, soybean‐soybean mixed cultures were employed to il uminate P acquisition among plants in mixed stands of transgenic and wild‐type soybean. Our results showed that transgenic soybean plants were much more competitive, and had greater growth and P uptake than wild‐type soybean in mixed culture in both low P calcareous and acid soils. Furthermore, OXe plants had an advantage in calcareous soils when mixed with OXp, whereas the latter performed much better in acid soils. In soybean‐maize mixed culture, transgenic soybean had no impact on maize growth compared to controls in both acid and calcareous soils with different P conditions. As for soybean in mixed culture, OXp plants had no significant advantages regardless of P availability or soil type, while P efficiency improved in OXe in calcareous soils compared to controls. These results imply that physiological traits could be easily affected by the mixed maize. Transgenic soybean plants with enhanced root traits had more competitive advantages than those with improved root physiology in mixed culture.

  20. Production of Transgenic Tall Fescue Plants with Enhanced Stress Tolerances by Agrobacterium tumefaciens-Mediated Transformation

    Institute of Scientific and Technical Information of China (English)

    WU Guan-ting; CHEN Jin-qing; HU Zhang-hua; LANG Chun-xiu; CHEN Xiao-yun; WANG Fu-lin; JIN Wei; XIA Ying-wu


    In order to improve stress tolerances of turf-type tall fescue (Festuca arundinacea Schreb.), Agrobacterium tumefaciens strain EHA105 carrying plasmid pCMD containing stress tolerance-related CBF1 gene from Arabidopsis thaliana was used to transform mature seeds-derived embryogenic calli of four cultivars. A total of 112 transgenic plants were regenerated from 32 independent lines and verified by histochemical detection of GUS activity, PCR assay and Southern hybridization analysis. The transformation frequency ranged from 0.92 to 2.87% with apparent differences among the cultivars. Stress tolerances of transgenic plants were enhanced, which was shown by the facts that transgenic plants had distinct growth superiority and significantly higher survival rate than non-transformed ones under high salinity and high osmosis stresses,and that relative electronic conductivity of in vitro leaves treated with low and high temperatures, dehydration and high salinity stresses was 25-30% lower in transgenic plants than in control plants. In addition, it was observed that growth of transgenic plants was inhibited due to constitutive overexpression of CBF1 gene under normal environmental conditions.

  1. Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress. (United States)

    Oraby, Hesham; Ahmad, Rashid


    Salinity is a major abiotic constraint affecting oat productivity. Several physiological and biochemical traits have been found to be related to yield maintenance under salinity. The impact of introducing the Arabidopsis CBF3 gene controlled by the rd29A stress-inducible promoter in T(2) transgenic oat on salinity tolerance and associated physiological changes were studied. Compared with the non-transgenic control, transgenic T(2) plants exhibited greater growth and showed significant maintenance of leaf area, relative water content, chlorophyll content, photosynthetic and transpiration rates as well as increased levels of proline and soluble sugars under high salt stress. These physiological changes delayed leaf-wilting symptoms, increased tolerance and reduced yield loss. At a salinity stress level of 100mM, the CBF3-overexpressing transgenic oat showed a yield loss of 4-11% compared with >56% for the non-transgenic control. These results demonstrate that stress-inducible over-expression of CBF3 may have the potential to enhance abiotic stress tolerance in oat.

  2. Gravity-regulated gene expression in Arabidopsis thaliana (United States)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  3. Heterologous expression in transgenic mosquitoes

    Institute of Scientific and Technical Information of China (English)

    Santhosh P K; Yu hua Deng; Weidong Gu; Xiaoguang Chen


    Arthropod-borne diseases such as malaria and dengue virus afflict billions of people worldwide imposing major economic and social burdens. Control of such pathogens is mainly performed by vector management and treatment of affected individuals with drugs. The failure of these conventional approaches due to emergence of insecticide-resistant insects and drug-resistant parasites demonstrate the need of novel and efficacious control strategies to combat these diseases. Genetic modification(GM) of mosquito vectors to impair their ability to be infected and transmit pathogens has emerged as a new strategy to reduce transmission of many vector-borne diseases and deliver public health gains. Several advances in developing transgenic mosquitoes unable to transmit pathogens have gained support, some of them attempt to manipulate the naturally occurring endogenous refractory mechanisms, while others initiate the identification of an exogenous foreign gene which disrupt the pathogen development in insect vectors. Heterologous expression of transgenes under a native or heterologous promoter is important for the screening and effecting of the transgenic mosquitoes. The effect of the transgene on mosquito fitness is a crucial parameter influencing the success of this transgenic approach. This review examines these two aspects and describes the basic research work that has been accomplished towards understanding the complex relation between the parasite and its vector and focuses on recent advances and perspectives towards construction of transgenic mosquitoes refractory to vector-borne disease transmission.

  4. Pharming and transgenic plants. (United States)

    Liénard, David; Sourrouille, Christophe; Gomord, Véronique; Faye, Loïc


    Plant represented the essence of pharmacopoeia until the beginning of the 19th century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. In the last decades, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. More recently, molecular farming has rapidly pushed towards plants among the major players in recombinant protein production systems. Indeed, therapeutic protein production is safe and extremely cost-effective in plants. Unlike microbial fermentation, plants are capable of carrying out post-translational modifications and, unlike production systems based on mammalian cell cultures, plants are devoid of human infective viruses and prions. Furthermore, a large panel of strategies and new plant expression systems are currently developed to improve the plant-made pharmaceutical's yields and quality. Recent advances in the control of post-translational maturations in transgenic plants will allow them, in the near future, to perform human-like maturations on recombinant proteins and, hence, make plant expression systems suitable alternatives to animal cell factories.

  5. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole


    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  6. Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Rong


    Full Text Available Abstract Background Metabolic engineering of seed biosynthetic pathways to diversify and improve crop product quality is a highly active research area. The validation of genes driven by seed-specific promoters is time-consuming since the transformed plants must be grown to maturity before the gene function can be analysed. Results In this study we demonstrate that genes driven by seed-specific promoters contained within complex constructs can be transiently-expressed in the Nicotiana benthamiana leaf-assay system by co-infiltrating the Arabidopsis thaliana LEAFY COTYLEDON2 (LEC2 gene. A real-world case study is described in which we first assembled an efficient transgenic DHA synthesis pathway using a traditional N. benthamiana Cauliflower Mosaic Virus (CaMV 35S-driven leaf assay before using the LEC2-extended assay to rapidly validate a complex seed-specific construct containing the same genes before stable transformation in Arabidopsis. Conclusions The LEC2-extended N. benthamiana assay allows the transient activation of seed-specific promoters in leaf tissue. In this study we have used the assay as a rapid preliminary screen of a complex seed-specific transgenic construct prior to stable transformation, a feature that will become increasingly useful as genetic engineering moves from the manipulation of single genes to the engineering of complex pathways. We propose that the assay will prove useful for other applications wherein rapid expression of transgenes driven by seed-specific constructs in leaf tissue are sought.

  7. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. (United States)

    Ellinger, Dorothea; Naumann, Marcel; Falter, Christian; Zwikowics, Claudia; Jamrow, Torsten; Manisseri, Chithra; Somerville, Shauna C; Voigt, Christian A


    A common response by plants to fungal attack is deposition of callose, a (1,3)-β-glucan polymer, in the form of cell wall thickenings called papillae, at site of wall penetration. While it has been generally believed that the papillae provide a structural barrier to slow fungal penetration, this idea has been challenged in recent studies of Arabidopsis (Arabidopsis thaliana), where fungal resistance was found to be independent of callose deposition. To the contrary, we show that callose can strongly support penetration resistance when deposited in elevated amounts at early time points of infection. We generated transgenic Arabidopsis lines that express POWDERY MILDEW RESISTANT4 (PMR4), which encodes a stress-induced callose synthase, under the control of the constitutive 35S promoter. In these lines, we detected callose synthase activity that was four times higher than that in wild-type plants 6 h post inoculation with the virulent powdery mildew Golovinomyces cichoracearum. The callose synthase activity was correlated with enlarged callose deposits and the focal accumulation of green fluorescent protein-tagged PMR4 at sites of attempted fungal penetration. We observed similar results from infection studies with the nonadapted powdery mildew Blumeria graminis f. sp. hordei. Haustoria formation was prevented in resistant transgenic lines during both types of powdery mildew infection, and neither the salicylic acid-dependent nor jasmonate-dependent pathways were induced. We present a schematic model that highlights the differences in callose deposition between the resistant transgenic lines and the susceptible wild-type plants during compatible and incompatible interactions between Arabidopsis and powdery mildew.

  8. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. (United States)

    Marion, Jessica; Bach, Lien; Bellec, Yannick; Meyer, Christian; Gissot, Lionel; Faure, Jean-Denis


    The functional genomics approach requires systematic analysis of protein subcellular distribution and interaction networks, preferably by optimizing experimental simplicity and physiological significance. Here, we present an efficient in planta transient transformation system that allows single or multiple expression of constructs containing various fluorescent protein tags in Arabidopsis cotyledons. The optimized protocol is based on vacuum infiltration of agrobacteria directly into young Arabidopsis seedlings. We demonstrate that Arabidopsis epidermal cells show a subcellular distribution of reference markers similar to that in tobacco epidermal cells, and can be used for co-localization or bi-molecular fluorescent complementation studies. We then used this new system to investigate the subcellular distribution of enzymes involved in sphingolipid metabolism. In contrast to transformation systems using tobacco epidermal cells or cultured Arabidopsis cells, our system provides the opportunity to take advantage of the extensive collections of mutant and transgenic lines available in Arabidopsis. The fact that this assay uses conventional binary vectors and a conventional Agrobacterium strain, and is compatible with a large variety of fluorescent tags, makes it a versatile tool for construct screening and characterization before stable transformation. Transient expression in Arabidopsis seedlings is thus a fast and simple method that requires minimum handling and potentially allows medium- to high-throughput analyses of fusion proteins harboring fluorescent tags in a whole-plant cellular context.

  9. Horse-shoe lung-rediscovered via volume rendered images

    Directory of Open Access Journals (Sweden)

    Alpa Bharati


    Full Text Available Horseshoe lung, usually associated with pulmonary venolobar syndrome, is a rare congenital anomaly involving the fusion of the postero-basal segments of the right and left lungs across the midline. The fused segment or the isthmus lies posterior to the pericardium and anterior to the aorta.The associated pulmonary venolobar syndrome involves anomalous systemic arterial supply and anomlaous systemic venous drainage of the right lung. With the advent of MDCT imaging, we can diagnose this rare condition as well all its associated anomalies non-invasively. Volume-rendered techniques greatly simplify the complex anatomy and provide easy understanding of the same.

  10. An example of quantum imaging: rendering an object undetectable

    CERN Document Server

    Ataman, Stefan


    In this paper we propose and analyse a Gedankenexperiment involving three non-linear crystals and two objects inserted in the idler beams. We show that, besides the behaviour that can be extrapolated from previous experiments involving two crystals and one object, we are able to predict a new effect: under certain circumstances, one of the objects can be rendered undetectable to any single detection rate on the signal photons with discarded idler photons. This effect could find applications in future developments of quantum imaging techniques.

  11. An example of quantum imaging: rendering an object undetectable (United States)

    Ataman, Stefan


    In this paper we propose and analyse a Gedankenexperiment involving three non-linear crystals and two objects inserted in the idler beams. We show that, besides the behaviour that can be extrapolated from previous experiments involving two crystals and one object, we are able to predict a new effect: under certain circumstances, one of the objects can be rendered undetectable to any single detection rate on the signal photons with discarded idler photons. This effect could find applications in future developments of quantum imaging techniques.

  12. A survey on hair modeling: styling, simulation, and rendering. (United States)

    Ward, Kelly; Bertails, Florence; Kim, Tae-Yong; Marschner, Stephen R; Cani, Marie-Paule; Lin, Ming C


    Realistic hair modeling is a fundamental part of creating virtual humans in computer graphics. This paper surveys the state of the art in the major topics of hair modeling: hairstyling, hair simulation, and hair rendering. Because of the difficult, often unsolved problems that arise in all these areas, a broad diversity of approaches are used, each with strengths that make it appropriate for particular applications. We discuss each of these major topics in turn, presenting the unique challenges facing each area and describing solutions that have been presented over the years to handle these complex issues. Finally, we outline some of the remaining computational challenges in hair modeling.

  13. Software System for Vocal Rendering of Printed Documents

    Directory of Open Access Journals (Sweden)

    Marian DARDALA


    Full Text Available The objective of this paper is to present a software system architecture developed to render the printed documents in a vocal form. On the other hand, in the paper are described the software solutions that exist as software components and are necessary for documents processing as well as for multimedia device controlling used by the system. The usefulness of this system is for people with visual disabilities that can access the contents of documents without that they be printed in Braille system or to exist in an audio form.

  14. Transformation of Arabidopsis thaliana via Agrobacterium tumefacience with an endochitinase gene from Trichoderma, and enhanced resistance to Sclerotinia sclerotiorum

    Institute of Scientific and Technical Information of China (English)

    DAI Fu-ming; XU Tong


    @@ Sclerotinia sclerotiorum is an important pathogen to many crops and is especially damaging to rape in China. As a model plant Arabidopsis thaliana (ColO) was transformed by spraying Agrobacterium tumefacience with Trichoderma endochitinase gene ThEn-42 at initial bud stage. Eleven seedlings (corresponding to about 0.22 percent transformation) exhibited resistance to hygromycin. The DNA fragment unique to endochitinase ( ThEn-42 ) was amplified by Arabidopsis leaf-PCR or genomic DNA PCR. Unfertile, dwarf and normal phenotypes appeared in the T1 generation. In addition, an enhanced resistance to S. sclerotiorum was observed. The mortality percentage (7.7% to 33.3%) in transgenic plants was significantly lower than in non-transgenic plants (86. 7%) 10 days after inoculation with the pathogen.


    Directory of Open Access Journals (Sweden)

    S. Kereša


    Full Text Available Proteinase inhibitors are secondary metabolites present in all plants and it seems that their major role is protection of plants against attacks of animals, insects and microorganisms. One of the family of proteinase inhibitors are squash inhibitors of serine proteinases purified from seeds belonging to genera Cucurbita, Cucumis and Momordica. Squash inhibitors consist of 29-32 amino acid residues and are considered to be the smallest inhibitors of the serine proteinases known. Because of shortness, genes for these inhibitors could be synthesised and modified at different ways. Modifications could lead to changes in inhibitor activity. Tobacco as a model plant was transformed with 12 different genes of squash inhibitors. Stable integration of transgenes in putative transgenic plants was determined by PCR analysis using genomic DNA and primers that anneal to promoter and terminator region. The first step of proteinase inhibitor gene expression in transgenic plants was revealed by RT-PCR analysis. In entomological tests where larvae were fed with leaves, influence of transgenic T0 plants, as well as non-transgenic control plants on retardation of larval growth of S. littoralis was examined. Results of entomological tests showed that it is possible to express squash proteinase inhibitors in plants at level that significantly reduces S. littoralis larval growth.

  16. Non-Photorealistic Rendering in Chinese Painting of Animals

    Institute of Scientific and Technical Information of China (English)


    A set of algorithms is proposed in this paper to automatically transform 3D animal models to Chinese painting style. Inspired by real painting process in Chinese painting of animals, we divide the whole rendering process into two parts: borderline stroke making and interior shading. In borderline stroke making process we first find 3D model silhouettes in real-time depending on the viewing direction of a user. After retrieving silhouette information from all model edges, a stroke linking mechanism is applied to link these independent edges into a long stroke. Finally we grow a plain thin silhouette line to a stylus stroke with various widths at each control point and a 2D brush model is combined with it to simulate a Chinese painting stroke. In the interior shading pipeline, three stages are used to convert a Gouraud-shading image to a Chinese painting style image: color quantization, ink diffusion and box filtering. The color quantization stage assigns all pixels in an image into four color levels and each level represents a color layer in a Chinese painting. Ink diffusion stage is used to transfer inks and water between different levels and to grow areas in an irregular way. The box filtering stage blurs sharp borders between different levels to embellish the appearance of final interior shading image. In addition to automatic rendering, an interactive Chinese painting system which is equipped with friendly input devices can be also combined to generate more artistic Chinese painting images manually.

  17. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    KAUST Repository

    Sicat, Ronell Barrera


    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  18. Protein and mineral characterisation of rendered meat and bone meal. (United States)

    Buckley, M; Penkman, K E H; Wess, T J; Reaney, S; Collins, M J


    We report the characterisation of meat and bone meal (MBM) standards (Set B-EFPRA) derived from cattle, sheep, pig and chicken, each rendered at four different temperatures (133, 137, 141 and 145 °C). The standards, prepared for an EU programme STRATFEED (to develop new methodologies for the detection and quantification of illegal addition of mammalian tissues in feeding stuffs), have been widely circulated and used to assess a range of methods for identification of the species composition of MBM. The overall state of mineral alteration and protein preservation as a function of temperature was monitored using small angle X-ray diffraction (SAXS), amino acid composition and racemization analyses. Progressive increases in protein damage and mineral alteration in chicken and cattle standards was observed. In the case of sheep and pig, there was greater damage to the proteins and alteration of the minerals at the lowest treatment temperature (133 °C), suggesting that the thermal treatments must have been compromised in some way. This problem has probably impacted upon the numerous studies which tested methods against these heat treatments. We use protein mass spectrometric methods to explore if thermostable proteins could be used to identify rendered MBM. In more thermally altered samples, so-called 'thermostable' proteins such as osteocalcin which has been proposed as a ideal target to speciate MBM were no longer detectable, but the structural protein type I collagen could be used to differentiate all four species, even in the most thermally altered samples.

  19. Plant hemoglobin gene expression adjusts Arabidopsis susceptibility to Pseudomonas synringae and Botrytis cinerea though scavenging of nitric oxide

    DEFF Research Database (Denmark)

    Sivakumaran, Anushen; Hebelstrup, Kim; Cristescu, Simona


    NO has earlier been shown to influence ethylene production during Pseudomonas syringae elicited hypersensitive response in tobacco. In this work Arabidopsis plants with silencing or null mutation of hemoglobin genes (glb1 and glb2) and transgenic lines over-expressing Glb1 and Glb2 demonstrated a...... a causal link between NO generation, hemoglobin-dependent NO scavenging, the production of ethylene and resistance to Botrytis or Pseudomonas....

  20. Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes. (United States)

    Abdel-Ghany, Salah E; Day, Irene; Heuberger, Adam L; Broeckling, Corey D; Reddy, Anireddy S N


    1,2,4-butanetriol (butanetriol) is a useful precursor for the synthesis of the energetic material butanetriol trinitrate and several pharmaceutical compounds. Bacterial synthesis of butanetriol from xylose or arabinose takes place in a pathway that requires four enzymes. To produce butanetriol in plants by expressing bacterial enzymes, we cloned native bacterial or codon optimized synthetic genes under different promoters into a binary vector and stably transformed Arabidopsis plants. Transgenic lines expressing introduced genes were analyzed for the production of butanetriol using gas chromatography coupled to mass spectrometry (GC-MS). Soil-grown transgenic plants expressing these genes produced up to 20 µg/g of butanetriol. To test if an exogenous supply of pentose sugar precursors would enhance the butanetriol level, transgenic plants were grown in a medium supplemented with either xylose or arabinose and the amount of butanetriol was quantified. Plants expressing synthetic genes in the arabinose pathway showed up to a forty-fold increase in butanetriol levels after arabinose was added to the medium. Transgenic plants expressing either bacterial or synthetic xylose pathways, or the arabinose pathway showed toxicity symptoms when xylose or arabinose was added to the medium, suggesting that a by-product in the pathway or butanetriol affected plant growth. Furthermore, the metabolite profile of plants expressing arabinose and xylose pathways was altered. Our results demonstrate that bacterial pathways that produce butanetriol can be engineered into plants to produce this chemical. This proof-of-concept study for phytoproduction of butanetriol paves the way to further manipulate metabolic pathways in plants to enhance the level of butanetriol production.

  1. Transgenic woody plants for biofuel

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Anna Y.Tang


    Transgenic trees as a new source for biofuel have brought a great interest in tree biotechnology. Genetically modifying forest trees for ethanol production have advantages in technical challenges, costs, environmental concerns, and financial problems over some of crops. Genetic engineering of forest trees can be used to reduce the level of lignin, to produce the fast-growing trees, to develop trees with higher cellulose, and to allow the trees to be grown more widely. Trees can establish themselves in the field with less care of farmers, compared to most of crops. Transgenic crops as a new source for biofuel have been recently reviewed in several reviews. Here, we overview transgenic woody plants as a new source for biofuel including genetically modified woody plants and environment; main focus of woody plants genetic modifications;solar to chemical energy transfer; cellulose biosynthesis;lignin biosynthesis;and cellulosic ethanol as biofuel.

  2. Transgenic agriculture and environmental indicators

    Directory of Open Access Journals (Sweden)

    Denize Dias de Carvalho


    Full Text Available Despite the rapid diffusion of transgenic crops, there are still few environmental impact studies capable of supplying a conclusive scientific response in regard to its technical and economic advantages and disadvantages. Prospective scenarios were elaborated to assist environmental impact assessment, using techniques derived from SWOT (Strength, Weakness, Opportunity, Threat analysis and the DPSIR (Driving Force – human activity, Pressure, State, Impact, Response model, to evaluate the environmental indicators and the relationship between them. Control and management actions were identified, searching the integration of aspects related to the biotechnology applied to transgenic processes, biodiversity, biosafety and intellectual property. It was demonstrated that the DPSIR model is, in fact, an instrument for integrated environmental assessment and the application of the proposed methodology resulted in favorable indicators to the adoption of transgenic agriculture. The elaborated scenarios are useful to develop an Environmental Management System (EMS to agriculture.

  3. Arabidopsis SOI33/AtENT8 Gene Encodes a Putative Equilibrative Nucleoside Transporter That Is Involved in Cytokinin Transport In Planta

    Institute of Scientific and Technical Information of China (English)

    Jiaqiang SUN; Naoya HIROSE; Xingchun WANG; Pei WEN; Li XUE; Hitoshi SAKAKIBARA; Jianru ZUO


    The plant phytohormone cytokinin plays an important role in many facets of plant growth and development by regulating cell division and differentiation. Recent studies have shed significant light into the mechanisms of cytokinin metabolism and signaling. However, little is known about how the hormone is transported in planta, although it has been proposed that the hormone is presumably transported in nucleoside-conjugated forms. Here, we report the identification and characterization of cytokinin transport ers in Arabidopsis. We previously reported that a gain-of-function mutation in the PGA22/AtIPT8 gene caused overproduction of cytokinins in planta. In an effort to screen for suppressor of pga22/atipt8 (soi) mutants, we identified a mutant soi33-1. Molecular and genetic analyses indicated that SOI33 encodes a putative equilibrative nucleoside transporter (ENT), previously designated as AtENT8. Members of this small gene family are presumed to be involved in the transport of nucleosides in eukaryotic cells. Under conditions of nitrogen starvation, loss-of-function mutations in SOI33/AtENT8 or in a related gene AtENT3 cause a reduced sensitivity to the nucleoside-type cytokinins isopentenyladenine riboside (iPR) and trans zeatin riboside (tZR), but display a normal response to the free base-type cytokinins isopentenyladenine (iP) and trans-zeatin (tZ). Conversely, overexpression of SOI33/AtENT8 renders transgenic plants hyper sensitive to iPR but not to iP. An in planta measurement experiment indicated that uptake efficiency of 3H labeled iPR was reduced more than 40% in soi33 and atent3 mutants. However, a mutation inAtENT1 had no substantial effect on the cytokinin response and iPR uptake efficiency. Our results suggest that SOI33/ AtENT8 and AtENT3 are involved in the transport of nucleoside-type cytokinins in Arabidopsis.

  4. Ectopic expression of a hyacinth AGL6 homolog caused earlier flowering and homeotic conversion in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    FAN; JinHui; LI; WenQing; DONG; XiuChun; GUO; Wei; SHU; HuaiRui


    MADS-box genes are involved in floral organ development. Here we report that an AGL6(Agamous-like 6)-like MADS-box gene, HoAGL6, was isolated from Hyacinthus orientalis L. Expression pattern analysis demonstrated that HoAGL6 transcript was detected in inflorescence buds, tepals, carpels and ovules, but not in stamina, leaves or scales. Transgenic Arabidopsis plants ectopically expressing HoAGL6 exhibited novel phenotypes of significantly reduced plant size, extremely early flowering, and losing inflorescence indeterminacy. In addition, wide homeotic conversion of sepals, petals, and leaves into carpel-like or ovary structures, and disappearance or number reduction of stamens in 35S::HoAGL6 Arabidopsis plants were also observed. RT-PCR analysis indicated that the expressions of flowering time gene SOC1 and flower meristem identity gene LFY were significantly up-regulated in 35S::HoAGL6 transgenic Arabidopsis plants, and the expression levels of floral organ identity genes AG and SEP1 in leaves were also elevated. These results indicated that HoAGL6 was involved in the regulation of flower transition and flower organ formation.

  5. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana. (United States)

    Wu, Xinxin; Li, Ren; Shi, Jin; Wang, Jinfang; Sun, Qianqian; Zhang, Haijun; Xing, Yanxia; Qi, Yan; Zhang, Na; Guo, Yang-Dong


    The secretion of organic acid anions from roots is an important mechanism for plant aluminum (Al) tolerance. Here we report cloning and characterizing BoMATE (KF031944), a multidrug and toxic compound extrusion (MATE) family gene from cabbage (Brassica oleracea). The expression of BoMATE was more abundant in roots than in shoots, and it was highly induced by Al treatment. The (14)C-citrate efflux experiments in oocytes demonstrated that BoMATE is a citrate transporter. Electrophysiological analysis and SIET analysis of Xenopus oocytes expressing BoMATE indicated BoMATE is activated by Al. Transient expression of BoMATE in onion epidermal cells demonstrated that it localized to the plasma membrane. Compared with the wild-type Arabidopsis, the transgenic lines constitutively overexpressing BoMATE enhanced Al tolerance and increased citrate secretion. In addition, Arabidopsis transgenic lines had a lower K(+) efflux and higher H(+) efflux, in the presence of Al, than control wild type in the distal elongation zone (DEZ). This is the first direct evidence that MATE protein is involved in the K(+) and H(+) flux in response to Al treatment. Taken together, our results show that BoMATE is an Al-induced citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

  6. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN (United States)

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.


    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  7. Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. (United States)

    Ito, Takuya; Nagata, Noriko; Yoshiba, Yoshu; Ohme-Takagi, Masaru; Ma, Hong; Shinozaki, Kazuo


    The Arabidopsis thaliana MALE STERILITY1 (MS1) gene encodes a nuclear protein with Leu zipper-like and PHD-finger motifs and is important for postmeiotic pollen development. Here, we examined MS1 function using both cell biological and molecular biological approaches. We introduced a fusion construct of MS1 and a transcriptional repression domain (MS1-SRDX) into wild-type Arabidopsis, and the transgenic plants showed a semisterile phenotype similar to that of ms1. Since the repression domain can convert various kinds of transcriptional activators to dominant repressors, this suggested that MS1 functioned as a transcriptional activator. The Leu zipper-like region and the PHD motif were required for the MS1 function. Phenotypic analysis of the ms1 mutant and the MS1-SRDX transgenic Arabidopsis indicated that MS1 was involved in formation of pollen exine and pollen cytosolic components as well as tapetum development. Next, we searched for MS1 downstream genes by analyzing publicly available microarray data and identified 95 genes affected by MS1. Using a transgenic ms1 plant showing dexamethasone-inducible recovery of fertility, we further examined whether these genes were immediately downstream of MS1. From these results, we discuss a role of MS1 in pollen and tapetum development and the conservation of MS1 function in flowering plants.

  8. Overexpression of the phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of cotton (Gossypium hirsutum)

    Institute of Scientific and Technical Information of China (English)

    Abdul Qayyum RAO; Muhammad IRFAN; Zafar SALEEM; Idrees Ahmad NASIR; Sheikh RIAZUDDIN; Tayyab HUSNAIN


    The phytochrome B (PHYB) gene of Arabidopsis thaliana was introduced into cotton through Agrobacterium tumefaciens. Integration and expression of PHYB gene in cotton plants were confirmed by molecular evidence.Messenger RNA (mRNA) expression in one of the transgenic lines, QCC11, was much higher than those of control and other transgenic lines. Transgenic cotton plants showed more than a two-fold increase in photosynthetic rate and more than a four-fold increase in transpiration rate and stomatal conductance. The increase in photosynthetic rate led to a 46% increase in relative growth rate and an 18% increase in net assimilation rate. Data recorded up to two generations,both in the greenhouse and in the field, revealed that overexpression ofArabidopsis thaliana PHYB gene in transgeniccotton plants resulted in an increase in the production of cotton by improving the cotton plant growth, with 35% more yield. Moreover, the presence of the Arabidopsis thaliana PHYB gene caused pleiotropic effects like semi-dwarfism,decrease in apical dominance, and increase in boll size.

  9. Screening of tissue-specific genes and promoters in tomato by comparing genome wide expression profiles of Arabidopsis orthologues. (United States)

    Lim, Chan Ju; Lee, Ha Yeon; Kim, Woong Bom; Lee, Bok-Sim; Kim, Jungeun; Ahmad, Raza; Kim, Hyun A; Yi, So Young; Hur, Cheol-Goo; Kwon, Suk-Yoon


    Constitutive overexpression of transgenes occasionally interferes with normal growth and developmental processes in plants. Thus, the development of tissue-specific promoters that drive transgene expression has become agriculturally important. To identify tomato tissue-specific promoters, tissue-specific genes were screened using a series of in silico-based and experimental procedures, including genome-wide orthologue searches of tomato and Arabidopsis databases, isolation of tissue-specific candidates using an Arabidopsis microarray database, and validation of tissue specificity by reverse transcription-polymerase chain reaction (RT-PCR) analysis and promoter assay. Using these procedures, we found 311 tissue-specific candidate genes and validated 10 tissue-specific genes by RT-PCR. Among these identified genes, histochemical analysis of five isolated promoter::GUS transgenic tomato and Arabidopsis plants revealed that their promoters have different but distinct tissue-specific activities in anther, fruit, and root, respectively. Therefore, it appears these in silico-based screening approaches in addition to the identification of new tissue-specific genes and promoters will be helpful for the further development of tailored crop development.

  10. Human anti-rhesus D IgG1 antibody produced in transgenic plants

    DEFF Research Database (Denmark)

    Bouquin, Thomas; Thomsen, Mads; Nielsen, Leif Kofoed;


    Transgenic plants represent an alternative to cell culture systems for producing cheap and safe antibodies for diagnostic and therapeutic use. To evaluate the functional properties of a 'plantibody', we generated transgenic Arabidopsis plants expressing full-length human IgG1 against the Rhesus D...... antigen, which is responsible for alloimmunization of RhD- mothers carrying an RhD+ fetus. Anti-RhD extracted from plants specifically reacted with RhD+ cells in antiglobulin technique, and elicited a respiratory burst in human peripheral blood mononuclear cells. Plant-derived antibody had equivalent...... properties to CHO cell-produced anti-RhD antibody, indicating its potential usefulness in diagnostic and therapeutic programs....

  11. Arabidopsis LOS5 Gene Enhances Chilling and Salt Stress Tolerance in Cucumber

    Institute of Scientific and Technical Information of China (English)

    LIU Li-ying; DUAN Liu-sheng; ZHANG Jia-chang; MI Guo-quan; ZHANG Xiao-lan; ZHANG Zhen-xian; REN Hua-zhong


    Low temperature and high salinity are the major abiotic stresses that restrict cucumber growth and production, breeding materials with multiple abiotic resistance are in greatly need. Here we investigated the effect of introducing the LOS5 gene, a key regulator of ABA biosynthesis in Arabidopsis thaliana, under the stress-responsive RD29A promoter into cucumber (Cucumis sativus L. cv. S516). We found that T1 RD29A-LOS5 transgenic lines have enhanced tolerance to cold and salt stresses. Specifically, transgenic lines exhibited dwarf phenotypes with reduced leaf number, shorter internode, decreased length of the biggest leaf, fewer female flowers, shorter fruit neck and lower vitamin C (Vc). The increased cold tolerance can be reflected from the significantly decreased cold index, the reduced electrolyte leakage index and the MDA content upon cold treatment as compared to those in the control. This may result from the accumulation of internal ABA, soluble sugars and proline, and the enhanced activities of protective enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in the transgenic lines. Under salt treatment, the transgenic lines exhibited increased germination index, vigor index, more lateral roots and increased root fresh weight. Moreover, RD29A-LOS5 transgenic plants displayed quicker responses in salt stress than that in low-temperature stress.

  12. Expression of the dspA/E gene of Erwinia amylovora in non-host plant Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hasan Murat Aksoy


    Full Text Available In the Erwinia amylovora genome, the hrp gene cluster containing the dspA/E/EB/F operon plays a crucial role in mediating the pathogenicity and the hypersensitive response (HR in the host plant. The role of the dspA/E gene derived from E. amylovora was investigated by monitoring the expression of the β-glucuronidase (GUS reporter system in transgenic Arabidopsis thaliana cv. Pri-Gus seedlings. A mutant ΔdspA/E strain of E. amylovora was generated to contain a deletion of the dspA/E gene for the purpose of this study. Two-week-old seedlings of GUS transgenic Arabidopsis were vacuum-infiltrated with the wild-type and the mutant (ΔdspA/E E. amylovora strains. The Arabidopsis seedlings were fixed and stained for GUS activity after 3–5 days following infiltration. The appearance of dense spots with blue staining on the Arabidopsis leaves indicated the typical characteristic of GUS activity. This observation indicated that the wild-type E. amylovora strain had induced a successful and efficient infection on the A. thaliana Pri-Gus leaves. In contrast, there was no visible GUS expression on leaf tissues which were inoculated with the ΔdspA/E mutant E. amylovora strain. These results indicate that the dspA/E gene is required by the bacterial cells to induce HR in non-host plants.

  13. Overexpression of Arabidopsis YUCCA6 in Potato Results in High-Auxin Developmental Phenotypes and Enhanced Resistance to Water Deficit

    Institute of Scientific and Technical Information of China (English)

    Jeong Im Kim; Dongwon Baek; Hyeong Cheol Park; Hyun Jin Chun; Dong-Ha Oh; Min Kyung Lee; Joon-Yung Cha


    Indole-3-acetic acid (IAA),a major plant auxin,is produced in both tryptophan-dependent and tryptophanindependent pathways.A major pathway in Arabidopsis thaliana generates IAA in two reactions from tryptophan.Step one converts tryptophan to indole-3-pyruvic acid (IPA) by tryptophan aminotransferases followed by a rate-limiting step converting IPA to IAA catalyzed by YUCCA proteins.We identified eight putative StYUC (Solanum tuberosum YUCCA)genes whose deduced amino acid sequences share 50%-70% identity with those of Arabidopsis YUCCA proteins.All include canonical,conserved YUCCA sequences:FATGY motif,FMO signature sequence,and FAD-binding and NADP-binding sequences.In addition,five genes were found with-50% amino acid sequence identity to Arabidopsis tryptophan aminotransferases.Transgenic potato (Solanum tuberosum cv.Jowon) constitutively overexpressing Arabidopsis AtYUC6 displayed high-auxin phenotypes such as narrow downward-curled leaves,increased height,erect stature,and longevity.Transgenic potato plants overexpressing AtYUC6 showed enhanced drought tolerance based on reduced water loss.The phenotype was correlated with reduced levels of reactive oxygen species in leaves.The results suggest a functional YUCCA pathway of auxin biosynthesis in potato that may be exploited to alter plant responses to the environment.

  14. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize. (United States)

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P


    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions.

  15. Reference: 774 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available an essential gene, the disruption of which causes embryonic lethality. Plants carrying a hypomorphic smg7 mu...e progression from anaphase to telophase in the second meiotic division in Arabidopsis. Arabidopsis SMG7 is

  16. Reference: 398 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available plays attenuated chloroplast movements under intermediate and high light intensitie...hese movements. In this work, we describe plastid movement impaired 2 (pmi2), a mutant in Arabidopsis (Arabidopsis thaliana) that dis

  17. Reference: 173 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available mical approaches to elucidate the action mechanisms of sirtinol in Arabidopsis. A...tic and chemical analyses of the action mechanisms of sirtinol in Arabidopsis. 8 3129-34 15710899 2005 Feb P

  18. Reference: 718 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available displayed a moderate but significant decrease in germination in the presence of D...NA damage. This report links Ubc13-Uev with functions in DNA damage response in Arabidopsis. Arabidopsis UEV

  19. Arabidopsis CDS blastp result: AK068856 [KOME

    Lifescience Database Archive (English)

    Full Text Available eme oxygenase (HY1) [Arabidopsis thaliana] GI:4877362, heme oxygenase 1 [Arabidopsis thaliana] GI:4530591 GB:AF132475; annotation upd...ated per Seth J. Davis at University of Wisconsin-Madison 3e-90 ...

  20. Arabidopsis CDS blastp result: AK104955 [KOME

    Lifescience Database Archive (English)

    Full Text Available B:AF132475; annotation updated per Seth J. Davis at University of Wisconsin-Madison 3e-90 ... ...heme oxygenase (HY1) [Arabidopsis thaliana] GI:4877362, heme oxygenase 1 [Arabidopsis thaliana] GI:4530591 G

  1. Reference: 110 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available on process. Our study shows that an Arabidopsis SNM protein, although structurally closer to the SNM1/PSO2 members, shares some prope...rties with ARTEMIS but also has novel characteristics. Arabidopsis plants defective

  2. 9 CFR 319.703 - Rendered animal fat or mixture thereof. (United States)


    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Rendered animal fat or mixture thereof... INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Fats, Oils, Shortenings § 319.703 Rendered animal fat or mixture thereof. “Rendered Animal Fat,” or any mixture of...

  3. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. (United States)

    Carretero-Paulet, Lorenzo; Cairó, Albert; Botella-Pavía, Patricia; Besumbes, Oscar; Campos, Narciso; Boronat, Albert; Rodríguez-Concepción, Manuel


    The methylerythritol 4-phosphate (MEP) pathway synthesizes the precursors for an astonishing diversity of plastid isoprenoids, including the major photosynthetic pigments chlorophylls and carotenoids. Since the identification of the first two enzymes of the pathway, deoxyxylulose 5-phoshate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), they both were proposed as potential control points. Increased DXS activity has been shown to up-regulate the production of plastid isoprenoids in all systems tested, but the relative contribution of DXR to the supply of isoprenoid precursors is less clear. In this work, we have generated transgenic Arabidopsis thaliana plants with altered DXS and DXR enzyme levels, as estimated from their resistance to clomazone and fosmidomycin, respectively. The down-regulation of DXR resulted in variegation, reduced pigmentation and defects in chloroplast development, whereas DXR-overexpressing lines showed an increased accumulation of MEP- derived plastid isoprenoids such as chlorophylls, carotenoids, and taxadiene in transgenic plants engineered to produce this non-native isoprenoid. Changes in DXR levels in transgenic plants did not result in changes in DXS gene expression or enzyme accumulation, confirming that the observed effects on plastid isoprenoid levels in DXR-overexpressing lines were not an indirect consequence of altering DXS levels. The results indicate that the biosynthesis of MEP (the first committed intermediate of the pathway) limits the production of downstream isoprenoids in Arabidopsis chloroplasts, supporting a role for DXR in the control of the metabolic flux through the MEP pathway.

  4. Modification of tomato growth by expression of truncated ERECTA protein from Arabidopsis thaliana. (United States)

    Villagarcia, Hector; Morin, Anne-Claire; Shpak, Elena D; Khodakovskaya, Mariya V


    ERECTA family genes encode leucine-rich repeat receptor-like kinases that control multiple aspects of plant development such as elongation of aboveground organs, leaf initiation, development of flowers, and epidermis differentiation. These receptors have also been implicated in responses to biotic and abiotic stress, probably as a consequence of their involvement in regulation of plant architecture. Here, ERECTA signalling in tomatoes (Solanum lycopersicum) was manipulated by expressing truncated ERECTA protein (AtΔKinase) from Arabidopsis using two different promoters. In Arabidopsis, this protein functions in a dominant-negative manner, disrupting signalling of the whole ERECTA gene family. Expression of AtΔKinase under a constitutive 35S promoter dramatically reduced vegetative growth and led to the formation of fruits with a reduced seed set. Similarly, expression of AtΔKinase under its own promoter resulted in transgenic tomato plants with diminished growth, a reduced number of leaves, changed flowering time, and slightly increased stomata density. The transgenic plants also exhibited increased tolerance to water deficit stress, at least partially due to their diminished surface area. These phenotypes of the transgenic plants were the result of ERECTA signalling disruption at the protein level, as the expression of two endogenous tomato ERECTA family genes was not suppressed. These results demonstrate the significance of ERECTA family genes for development and stress responses in tomato and suggest that truncated ERECTA can be used to manipulate the growth of crop species.

  5. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. (United States)

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping


    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 (-) were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis.

  6. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis (United States)

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping


    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 − were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis. PMID:27162276

  7. Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees. (United States)

    Jin, Yan-Li; Tang, Ren-Jie; Wang, Hai-Hai; Jiang, Chun-Mei; Bao, Yan; Yang, Yang; Liang, Mei-Xia; Kong, Fanjing; Li, Bei; Zhang, Hong-Xia


    Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyze the conversion of castasterone (CS) to brassinolide (BL), a final rate-limiting step in the BR biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded-growth phenotype of the Arabidopsis cyp85a2-2 and tomato d(x) mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type (WT), plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggest that PtCYP85A3 could be used as a potential candidate gene for engineering fast growing trees with improved wood production. This article is protected by copyright. All rights reserved.

  8. Efficient Unbiased Rendering using Enlightened Local Path Sampling

    DEFF Research Database (Denmark)

    Kristensen, Anders Wang

    . The downside to using these algorithms is that they can be slow to converge. Due to the nature of Monte Carlo methods, the results are random variables subject to variance. This manifests itself as noise in the images, which can only be reduced by generating more samples. The reason these methods are slow...... is because of a lack of eeffective methods of importance sampling. Most global illumination algorithms are based on local path sampling, which is essentially a recipe for constructing random walks. Using this procedure paths are built based on information given explicitly as part of scene description......, such as the location of the light sources or cameras, or the re flection models at each point. In this work we explore new methods of importance sampling paths. Our idea is to analyze the scene before rendering and compute various statistics that we use to improve importance sampling. The first of these are adjoint...

  9. Real-time Flame Rendering with GPU and CUDA

    Directory of Open Access Journals (Sweden)

    Wei Wei


    Full Text Available This paper proposes a method of flame simulation based on Lagrange process and chemical composition, which was non-grid and the problems associated with there grids were overcome. The turbulence movement of flame was described by Lagrange process and chemical composition was added into flame simulation which increased the authenticity of flame. For real-time applications, this paper simplified the EMST model. GPU-based particle system combined with OpenGL VBO and PBO unique technology was used to accelerate finally, the speed of vertex and pixel data interaction between CPU and GPU increased two orders of magnitude, frame rate of rendering increased by 30%, which achieved fast dynamic flame real-time simulation. For further real-time applications, this paper presented a strategy to implement flame simulation with CUDA on GPU, which achieved a speed up to 2.5 times the previous implementation.

  10. Latency in Distributed Acquisition and Rendering for Telepresence Systems. (United States)

    Ohl, Stephan; Willert, Malte; Staadt, Oliver


    Telepresence systems use 3D techniques to create a more natural human-centered communication over long distances. This work concentrates on the analysis of latency in telepresence systems where acquisition and rendering are distributed. Keeping latency low is important to immerse users in the virtual environment. To better understand latency problems and to identify the source of such latency, we focus on the decomposition of system latency into sub-latencies. We contribute a model of latency and show how it can be used to estimate latencies in a complex telepresence dataflow network. To compare the estimates with real latencies in our prototype, we modify two common latency measurement methods. This presented methodology enables the developer to optimize the design, find implementation issues and gain deeper knowledge about specific sources of latency.

  11. Technologies Render Views of Earth for Virtual Navigation (United States)


    On a December night in 1995, 159 passengers and crewmembers died when American Airlines Flight 965 flew into the side of a mountain while in route to Cali, Colombia. A key factor in the tragedy: The pilots had lost situational awareness in the dark, unfamiliar terrain. They had no idea the plane was approaching a mountain until the ground proximity warning system sounded an alarm only seconds before impact. The accident was of the kind most common at the time CFIT, or controlled flight into terrain says Trey Arthur, research aerospace engineer in the Crew Systems and Aviation Operations Branch at NASA s Langley Research Center. In situations such as bad weather, fog, or nighttime flights, pilots would rely on airspeed, altitude, and other readings to get an accurate sense of location. Miscalculations and rapidly changing conditions could contribute to a fully functioning, in-control airplane flying into the ground. To improve aviation safety by enhancing pilots situational awareness even in poor visibility, NASA began exploring the possibilities of synthetic vision creating a graphical display of the outside terrain on a screen inside the cockpit. How do you display a mountain in the cockpit? You have to have a graphics-powered computer, a terrain database you can render, and an accurate navigation solution, says Arthur. In the mid-1990s, developing GPS technology offered a means for determining an aircraft s position in space with high accuracy, Arthur explains. As the necessary technologies to enable synthetic vision emerged, NASA turned to an industry partner to develop the terrain graphical engine and database for creating the virtual rendering of the outside environment.

  12. On-the-Fly Decompression and Rendering of Multiresolution Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, P; Cohen, J D


    We present a streaming geometry compression codec for multiresolution, uniformly-gridded, triangular terrain patches that supports very fast decompression. Our method is based on linear prediction and residual coding for lossless compression of the full-resolution data. As simplified patches on coarser levels in the hierarchy already incur some data loss, we optionally allow further quantization for more lossy compression. The quantization levels are adaptive on a per-patch basis, while still permitting seamless, adaptive tessellations of the terrain. Our geometry compression on such a hierarchy achieves compression ratios of 3:1 to 12:1. Our scheme is not only suitable for fast decompression on the CPU, but also for parallel decoding on the GPU with peak throughput over 2 billion triangles per second. Each terrain patch is independently decompressed on the fly from a variable-rate bitstream by a GPU geometry program with no branches or conditionals. Thus we can store the geometry compressed on the GPU, reducing storage and bandwidth requirements throughout the system. In our rendering approach, only compressed bitstreams and the decoded height values in the view-dependent 'cut' are explicitly stored on the GPU. Normal vectors are computed in a streaming fashion, and remaining geometry and texture coordinates, as well as mesh connectivity, are shared and re-used for all patches. We demonstrate and evaluate our algorithms on a small prototype system in which all compressed geometry fits in the GPU memory and decompression occurs on the fly every rendering frame without any cache maintenance.

  13. Distributed Dimensonality-Based Rendering of LIDAR Point Clouds (United States)

    Brédif, M.; Vallet, B.; Ferrand, B.


    Mobile Mapping Systems (MMS) are now commonly acquiring lidar scans of urban environments for an increasing number of applications such as 3D reconstruction and mapping, urban planning, urban furniture monitoring, practicability assessment for persons with reduced mobility (PRM)... MMS acquisitions are usually huge enough to incur a usability bottleneck for the increasing number of non-expert user that are not trained to process and visualize these huge datasets through specific softwares. A vast majority of their current need is for a simple 2D visualization that is both legible on screen and printable on a static 2D medium, while still conveying the understanding of the 3D scene and minimizing the disturbance of the lidar acquisition geometry (such as lidar shadows). The users that motivated this research are, by law, bound to precisely georeference underground networks for which they currently have schematics with no or poor absolute georeferencing. A solution that may fit their needs is thus a 2D visualization of the MMS dataset that they could easily interpret and on which they could accurately match features with their user datasets they would like to georeference. Our main contribution is two-fold. First, we propose a 3D point cloud stylization for 2D static visualization that leverages a Principal Component Analysis (PCA)-like local geometry analysis. By skipping the usual and error-prone estimation of a ground elevation, this rendering is thus robust to non-flat areas and has no hard-to-tune parameters such as height thresholds. Second, we implemented the corresponding rendering pipeline so that it can scale up to arbitrary large datasets by leveraging the Spark framework and its Resilient Distributed Dataset (RDD) and Dataframe abstractions.

  14. Evidences for involvement of endogenous cAMP in Arabidopsis defense responses to Verticillium toxins

    Institute of Scientific and Technical Information of China (English)

    Jing JIANG; Ling Wen FAN; Wei Hua WU


    Although there were reports suggesting the involvement of endogenous cAMP in plant defense signaling cascades,there is no direct evidence supporting this notion yet and the detailed mechanism is unclear. In the present study, we have used pathogenic fungi Verticillium dahliae and Arabidopsis plants as a model system of plant-microb interaction to demonstrate the function of endogenous cAMP in Arabidopsis defense responses. Both V. dahliae inoculation and Verticillium toxins injection induced typical "wilt" symptoms in Arabidopsis seedlings. When either 8-Br-AMP (a membrane permeable cAMP analogue) or salicylic acid (SA) was applied to Arabidopsis, the plants became resistant to V. dahliae toxins. However, addition of 8-Br-AMP did not increase the resistance of Arabidopsis transgenic plants deficient in SA to the toxins, suggesting that cAMP might act upstream of SA in plant defense signaling pathway.Indeed, 8-Br-cAMP and forskolin, an activator of adenylyl cyclase, significantly stimulated the endogenous SA level in plants, whereas DDA, an inhibitor of adenylyl cyclase dramatically reduced toxin-induced SA increase. Both the endogenous cAMP and SA increased significantly in Arabidopsis seedlings treated with toxins. Furthermore, transcription level of pathogenesis-related protein 1 gene (PR1) was strongly induced by both 8-Br-cAMP and the toxin treatment. Taken together, our data demonstrate that endogenous cAMP is involved in plant defense responses against Verticilliumsecreted toxins by regulating the production of the known signal SA in plant defense pathway.

  15. Apoplastic polyesters in Arabidopsis surface tissues--a typical suberin and a particular cutin. (United States)

    Franke, Rochus; Briesen, Isabel; Wojciechowski, Tobias; Faust, Andrea; Yephremov, Alexander; Nawrath, Christiane; Schreiber, Lukas


    Cutinized and suberized cell walls form physiological important plant-environment interfaces as they act as barriers limiting water and nutrient loss and protect from radiation and invasion by pathogens. Due to the lack of protocols for the isolation and analysis of cutin and suberin in Arabidopsis, the model plant for molecular biology, mutants and transgenic plants with a defined altered cutin or suberin composition are unavailable, causing that structure and function of these apoplastic barriers are still poorly understood. Transmission electron microscopy (TEM) revealed that Arabidopsis leaf cuticle thickness ranges from only 22 nm in leaf blades to 45 nm on petioles, causing the difficulty in cuticular membrane isolation. We report the use of polysaccharide hydrolases to isolate Arabidopsis cuticular membranes, suitable for depolymerization and subsequent compositional analysis. Although cutin characteristic omega-hydroxy acids (7%) and mid-chain hydroxylated fatty acids (8%) were detected, the discovery of alpha,omega-diacids (40%) and 2-hydroxy acids (14%) as major depolymerization products reveals a so far novel monomer composition in Arabidopsis cutin, but with chemical analogy to root suberin. Histochemical and TEM analysis revealed that suberin depositions were localized to the cell walls in the endodermis of primary roots and the periderm of mature roots of Arabidopsis. Enzyme digested and solvent extracted root cell walls when subjected to suberin depolymerization conditions released omega-hydroxy acids (43%) and alpha,omega-diacids (24%) as major components together with carboxylic acids (9%), alcohols (6%) and 2-hydroxyacids (0.1%). This similarity to suberin of other species indicates that Arabidopsis roots can serve as a model for suberized tissue in general.

  16. Introduction of AtNHX1 into beet improved salt-tolerance of transgenic plants

    Institute of Scientific and Technical Information of China (English)

    Yang Aifang; Zhao Shilan; Yin Xiaoyan; Gao Feng; Zhang Juren


    AtNHX1 gene encoding the Na+/H+ antiport on the vacuole membrane of Arabidopsis was transferred into small bud tips of 1-3mm in length derived from immature inflorescence cultures of six genotypes of beet ( Beta vulgaris L. ) by the infection of Agrobacterium tumefaciens and transgenic plants with improved salt-tolerance were obtained. When transgenic plants at 5-leaf stage were potted in sand and irrigated with solutions containing a range of concentrations of NaCl (171-513mM), they showed minor symptoms of damage from salinity and better tolerance than the controls. There were considerable discrepancies of salt-tolerance between transgenic plants originated from the same genotype and also between different genotypes. After vernalization, bolting transgenic plants were enveloped with two layers of gauzes for self-pollination. T1 seedlings tolerant to 342-427mM NaCl were obtained respectively. These results revealed that it was feasible to improve salt-tolerance of beets by the introduction of AtNHX1 gene into cultured bud cells.

  17. Transgene landbouwhuisdieren : het overwegen waard?

    NARCIS (Netherlands)

    Linskens, M.


    Het rapport geeft informatie over de ontwikkelingen die, momenteel nog vooral in het onderzoek, op dit terrein gaande zijn. Het geeft aan wanneer de eerste transgene landbouwhuisdieren, bij een ongewijzigd beleid, op de boerderij kunnen rondlopen. Verder wordt er inzicht verschaft in de maatschappel

  18. Putrescine regulating by stress-responsive MAPK cascade contributes to bacterial pathogen defense in Arabidopsis. (United States)

    Kim, Su-Hyun; Kim, Sun-Hwa; Yoo, Seung-Jin; Min, Kwang-Hyun; Nam, Seung-Hee; Cho, Baik Ho; Yang, Kwang-Yeol


    Polyamines in plants are involved in various physiological and developmental processes including abiotic and biotic stress responses. We investigated the expression of ADCs, which are key enzymes in putrescine (Put) biosynthesis, and roles of Put involving defense response in Arabidopsis. The increased expression of ADC1 and ADC2, and the induction of Put were detected in GVG-NtMEK2(DD) transgenic Arabidopsis, whereas, their performance was partially compromised in GVG-NtMEK2(DD)/mpk3 and GVG-NtMEK2(DD)/mpk6 mutant following DEX treatment. The expression of ADC2 was highly induced by Pst DC3000 inoculation, while the transcript levels of ADC1 were slightly up-regulated. Compared to the WT plant, Put content in the adc2 knock-out mutant was reduced after Pst DC3000 inoculation, and showed enhanced susceptibility to pathogen infection. The adc2 mutant exhibited reduced expression of PR-1 after bacterial infection and the growth of the pathogen was about 4-fold more than that in the WT plant. Furthermore, the disease susceptibility of the adc2 mutant was recovered by the addition of exogenous Put. Taken together, these results suggest that Arabidopsis MPK3 and MPK6 play a positive role in the regulation of Put biosynthesis, and that Put contributes to bacterial pathogen defense in Arabidopsis.

  19. Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system

    Directory of Open Access Journals (Sweden)

    Lalonde Sylvie


    Full Text Available Abstract Background The Arabidopsis genome contains nine sucrose transporter paralogs falling into three clades: SUT1-like, SUT2 and SUT4. The carriers differ in their kinetic properties. Many transport proteins are known to exist as oligomers. The yeast-based split ubiquitin system can be used to analyze the ability of membrane proteins to interact. Results Promoter-GUS fusions were used to analyze the cellular expression of the three transporter genes in transgenic Arabidopsis plants. All three fusion genes are co-expressed in companion cells. Protein-protein interactions between Arabidopsis sucrose transporters were tested using the split ubiquitin system. Three paralogous sucrose transporters are capable of interacting as either homo- or heteromers. The interactions are specific, since a potassium channel and a glucose transporter did not show interaction with sucrose transporters. Also the biosynthetic and metabolizing enzymes, sucrose phosphate phosphatase and sucrose synthase, which were found to be at least in part bound to the plasma membrane, did not specifically interact with sucrose transporters. Conclusions The split-ubiquitin system provides a powerful tool to detect potential interactions between plant membrane proteins by heterologous expression in yeast, and can be used to screen for interactions with membrane proteins as baits. Like other membrane proteins, the Arabidopsis sucrose transporters are able to form oligomers. The biochemical approaches are required to confirm the in planta interaction.

  20. In vivo imaging of the tonoplast intrinsic protein family in Arabidopsis roots

    Directory of Open Access Journals (Sweden)

    Khonsari Roman H


    Full Text Available Abstract Background Tonoplast intrinsic proteins (TIPs are widely used as markers for vacuolar compartments in higher plants. Ten TIP isoforms are encoded by the Arabidopsis genome. For several isoforms, the tissue and cell specific pattern of expression are not known. Results We generated fluorescent protein fusions to the genomic sequences of all members of the Arabidopsis TIP family whose expression is predicted to occur in root tissues (TIP1;1 and 1;2; TIP2;1, 2;2 and 2;3; TIP4;1 and expressed these fusions, both individually and in selected pairwise combinations, in transgenic Arabidopsis. Analysis by confocal microscopy revealed that TIP distribution varied between different cell layers within the root axis, with extensive co-expression of some TIPs and more restricted expression patterns for other isoforms. TIP isoforms whose expression overlapped appeared to localise to the tonoplast of the central vacuole, vacuolar bulbs and smaller, uncharacterised structures. Conclusion We have produced a comprehensive atlas of TIP expression in Arabidopsis roots, which reveals novel expression patterns for not previously studied TIPs.

  1. Two Arabidopsis ADP-glucose pyrophosphorylase large subunits (APL1 and APL2) are catalytic. (United States)

    Ventriglia, Tiziana; Kuhn, Misty L; Ruiz, Ma Teresa; Ribeiro-Pedro, Marina; Valverde, Federico; Ballicora, Miguel A; Preiss, Jack; Romero, José M


    ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (alpha(2)beta(2)) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1-APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta.

  2. Two Arabidopsis ADP-Glucose Pyrophosphorylase Large Subunits (APL1 and APL2) Are Catalytic1 (United States)

    Ventriglia, Tiziana; Kuhn, Misty L.; Ruiz, Ma Teresa; Ribeiro-Pedro, Marina; Valverde, Federico; Ballicora, Miguel A.; Preiss, Jack; Romero, José M.


    ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (α2β2) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1–APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta. PMID:18614708

  3. Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. (United States)

    Ren, Maozhi; Venglat, Prakash; Qiu, Shuqing; Feng, Li; Cao, Yongguo; Wang, Edwin; Xiang, Daoquan; Wang, Jinghe; Alexander, Danny; Chalivendra, Subbaiah; Logan, David; Mattoo, Autar; Selvaraj, Gopalan; Datla, Raju


    Target of Rapamycin (TOR) is a major nutrition and energy sensor that regulates growth and life span in yeast and animals. In plants, growth and life span are intertwined not only with nutrient acquisition from the soil and nutrition generation via photosynthesis but also with their unique modes of development and differentiation. How TOR functions in these processes has not yet been determined. To gain further insights, rapamycin-sensitive transgenic Arabidopsis thaliana lines (BP12) expressing yeast FK506 Binding Protein12 were developed. Inhibition of TOR in BP12 plants by rapamycin resulted in slower overall root, leaf, and shoot growth and development leading to poor nutrient uptake and light energy utilization. Experimental limitation of nutrient availability and light energy supply in wild-type Arabidopsis produced phenotypes observed with TOR knockdown plants, indicating a link between TOR signaling and nutrition/light energy status. Genetic and physiological studies together with RNA sequencing and metabolite analysis of TOR-suppressed lines revealed that TOR regulates development and life span in Arabidopsis by restructuring cell growth, carbon and nitrogen metabolism, gene expression, and rRNA and protein synthesis. Gain- and loss-of-function Ribosomal Protein S6 (RPS6) mutants additionally show that TOR function involves RPS6-mediated nutrition and light-dependent growth and life span in Arabidopsis.

  4. Mobility of the maize transposable element En/Spm in Arabidopsis thaliana. (United States)

    Cardon, G H; Frey, M; Saedler, H; Gierl, A


    The autonomous element En-1 of the maize En/Spm transposable element system is capable of frequent somatic and germinal excision in the heterologous host Arabidopsis thaliana. The pattern of En-homologous transcripts generated in transgenic Arabidopsis resembles En transcription in maize. An excision reporter construct based on NPT-II gene (pKEn2) can be used reliably for the isolation of En-1 germinal revertants by seed germination on kanamycin-containing medium. Re-insertion after germinal excision is apparently frequent. A dSpm receptor element can be efficiently trans-activated in Arabidopsis either by En-1 or by expressing cDNAs of tnpA and tnpD. Excision and re-insertion of En/Spm take place with similar characteristics as in maize. This is the first description of En/Spm transposition in Arabidopsis and the parameters analysed here suggest that transposon tagging with En should be feasible in this species.

  5. [Regulation pattern of the FRUITFULL (FUL) gene of Arabidopsis thaliana]. (United States)

    Chu, Tingting; Xie, Hua; Xu, Yong; Ma, Rongcai


    FRUITFULL (FUL) is an MADS box gene that functions early in controlling flowering time, meristem identity and cauline leaf morphology and later in carpel and fruit development in Arabidopsis thaliana. In order to clarify the regulation of FUL expression the upstream regulatory region, -2148 bp - +96 bp and the first intron of the FUL gene were cloned, and vectors with a series of deletion of FUL promoter, and the ones fused with the first intron were constructed. Vectors harboring the fusion of cis-acting elements with the constitutive promoters of TUBULIN and ACTIN were also constructed. Beta-Glucuronidase activity assays of the transgenic Arabidopsis plants showed that two cis-elements were involved in the repression of FUL expression, with one of the two being probably the binding site of the transcriptional factor AP1. And the two CArG boxes played a important role in FUL initiation particularly. Furthermore, the first intron of FUL was shown to participate in the development of carpel and stamen as an enhancer.

  6. An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. (United States)

    Chen, Alice; Komives, Elizabeth A; Schroeder, Julian I


    Phytochelatins (PCs) are peptides that function in heavy-metal chelation and detoxification in plants and fungi. A recent study showed that PCs have the ability to undergo long-distance transport in a root-to-shoot direction in transgenic Arabidopsis (Arabidopsis thaliana). To determine whether long-distance transport of PCs can occur in the opposite direction, from shoots to roots, the wheat (Triticum aestivum) PC synthase (TaPCS1) gene was expressed under the control of a shoot-specific promoter (CAB2) in an Arabidopsis PC-deficient mutant, cad1-3 (CAB2TaPCS1/cad1-3). Analyses demonstrated that TaPCS1 is expressed only in shoots and that CAB2TaPCS1/cad1-3 lines complement the cadmium (Cd) and arsenic metal sensitivity of cad1-3 shoots. CAB2TaPCS1/cad1-3 plants exhibited higher Cd accumulation in roots and lower Cd accumulation in shoots compared to wild type. Fluorescence HPLC coupled to mass spectrometry analyses directly detected PC2 in the roots of CAB2:TaPCS1/cad1-3 but not in cad1-3 controls, suggesting that PC2 is transported over long distances in the shoot-to-root direction. In addition, wild-type shoot tissues were grafted onto PC synthase cad1-3 atpcs2-1 double loss-of-function mutant root tissues. An Arabidopsis grafting technique for mature plants was modified to obtain an 84% success rate, significantly greater than a previous rate of approximately 11%. Fluorescence HPLC-mass spectrometry showed the presence of PC2, PC3, and PC4 in the root tissue of grafts between wild-type shoots and cad1-3 atpcs2-1 double-mutant roots, demonstrating that PCs are transported over long distances from shoots to roots in Arabidopsis.

  7. The Arabidopsis NIMIN proteins affect NPR1 differentially

    Directory of Open Access Journals (Sweden)

    Meike eHermann


    Full Text Available NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1 is the central regulator of the pathogen defense reaction systemic acquired resistance (SAR. NPR1 acts by sensing the SAR signal molecule salicylic acid (SA to induce expression of PATHOGENESIS-RELATED (PR genes. Mechanistically, NPR1 is the core of a transcription complex interacting with TGA transcription factors and NIM1 INTERACTING (NIMIN proteins. Arabidopsis NIMIN1 has been shown to suppress NPR1 activity in transgenic plants. The Arabidopsis NIMIN family comprises four structurally related, yet distinct members. Here, we show that NIMIN1, NIMIN2 and NIMIN3 are expressed differentially, and that the encoded proteins affect expression of the SAR marker PR-1 differentially. NIMIN3 is expressed constitutively at a low level, but NIMIN2 and NIMIN1 are both responsive to SA. While NIMIN2 is an immediate early SA-induced and NPR1-independent gene, NIMIN1 is activated after NIMIN2, but clearly before PR-1. Notably, NIMIN1, like PR-1, depends on NPR1. In a transient assay system, NIMIN3 suppresses SA-induced PR-1 expression, albeit to a lesser extent than NIMIN1, whereas NIMIN2 does not negatively affect PR-1 gene activation. Furthermore, although binding to the same domain in the C-terminus, NIMIN1 and NIMIN2 interact differentially with NPR1, thus providing a molecular basis for their opposing effects on NPR1. Together, our data suggest that the Arabidopsis NIMIN proteins are regulators of the SAR response. We propose that NIMINs act in a strictly consecutive and SA-regulated manner on the SA sensor protein NPR1, enabling NPR1 to monitor progressing threat by pathogens and to promote appropriate defense gene activation at distinct stages of SAR. In this scenario, the defense gene PR-1 is repressed at the onset of SAR by SA-induced, yet instable NIMIN1.

  8. Plantacyanin plays a role in reproduction in Arabidopsis. (United States)

    Dong, Juan; Kim, Sun Tae; Lord, Elizabeth M


    Plantacyanins belong to the phytocyanin family of blue copper proteins. In the Arabidopsis (Arabidopsis thaliana) genome, only one gene encodes plantacyanin. The T-DNA-tagged mutant is a knockdown mutant that shows no visible phenotype. We used both promoter-beta-glucuronidase transgenic plants and immunolocalization to show that Arabidopsis plantacyanin is expressed most highly in the inflorescence and, specifically, in the transmitting tract of the pistil. Protein levels show a steep gradient in expression from the stigma into the style and ovary. Overexpression plants were generated using cauliflower mosaic virus 35S, and protein levels in the pistil were examined as well as the pollination process. Seed set in these plants is highly reduced mainly due to a lack of anther dehiscence, which is caused by degeneration of the endothecium. Callose deposits occur on the pollen walls in plants that overexpress plantacyanin, and a small percentage of these pollen grains germinate in the closed anthers. When wild-type pollen was used on the overexpression stigma, seed set was still decreased compared to the control pollinations. We detected an increase in plantacyanin levels in the overexpression pistil, including the transmitting tract. Guidance of the wild-type pollen tube on the overexpression stigma is disrupted as evidenced by the growth behavior of pollen tubes after they penetrate the papillar cell. Normally, pollen tubes travel down the papilla cell and into the style. Wild-type pollen tubes on the overexpression stigma made numerous turns around the papilla cell before growing toward the style. In some rare cases, pollen tubes circled up the papilla cell away from the style and were arrested there. We propose that when plantacyanin levels in the stigma are increased, pollen tube guidance into the style is disrupted.

  9. Quantitative PCR for detection of the OT-1 transgene

    Directory of Open Access Journals (Sweden)

    Crispe Nicholas I


    Full Text Available Abstract Background Transgenic TCR mice are often used experimentally as a source of T cells of a defined specificity. One of the most widely used transgenic TCR models is the OT-1 transgenic mouse in which the CD8+ T cells express a TCR specific for the SIINFEKL peptide of ovalbumin presented on kb. Although OT-1 CD8+ can be used in a variety of different experimental settings, we principally employ adoptive transfer and peptide-driven expansion of OT-1 cells in order to explore the distribution and fate of these antigen-specific OT-1 T cells. We set out to develop a quantitative PCR assay for OT-1 cells in order to assess the distribution of OT-1 CD8+ T cells in tissues that are either intrinsically difficult to dissociate for flow cytometric analysis or rendered incompatible with flow cytometric analysis through freezing or fixation. Results We show excellent correlation between flow cytometric assessment of OT-1 cells and OT-1 signal by qPCR assays in cell dilutions as well as in in vivo adoptive transfer experiments. We also demonstrate that qPCR can be performed from archival formalin-fixed paraffin-embedded tissue sections. In addition, the non-quantitative PCR using the OT-1-specific primers without the real-time probe is a valuable tool for OT-1 genotyping, obviating the need for peripheral blood collection and subsequent flow cytometric analysis. Conclusion An OT-1 specific qPCR assay has been developed to quantify adoptively transferred OT-1 cells. OT-1 qPCR to determine cell signal is a valuable adjunct to the standard flow cytometric analysis of OT-1 cell number, particularly in experimental settings where tissue disaggregation is not desirable or in tissues which are not readily disassociated

  10. EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis

    DEFF Research Database (Denmark)

    Aubert, D.; Chen, L.; Moon, Y.-H.


    shares common motifs that include nuclear localization signals, P-loop, and LXXLL elements. Alteration of EMF1 expression in transgenic plants caused progressive changes in flowering time, shoot determinacy, and inflorescence architecture. EMF1 and its related sequence may belong to a new class......Shoot architecture and flowering time in angiosperms depend on the balanced expression of a large number of flowering time and flower meristem identity genes. Loss-of-function mutations in the Arabidopsis EMBRYONIC FLOWER (EMF) genes cause Arabidopsis to eliminate rosette shoot growth and transform...... the apical meristem from indeterminate to determinate growth by producing a single terminal flower on all nodes. We have identified the EMF1 gene by positional cloning. The deduced polypeptide has no homology with any protein of known function except a putative protein in the rice genome with which EMF1...

  11. Overexpression of the Rap2.4f transcriptional factor in Arabidopsis promotes leaf senescence

    Institute of Scientific and Technical Information of China (English)


    Senescence is a complex and highly regulated process. Leaf senescence is influenced by endogenous developmental and external environmental signals. In this work, we found that expression of an Ap2/DREB-type transcription factor gene, Arabidopsis Rap2.4f (At4g28140), was upregulated by salt, mannitol, and dark treatments. Constitutively overexpressing Rap2.4f under the control of the CaMV 35S promoter led to an increased chlorophyll degradation rate and upregulation of many senescence-associated genes in the transgenic Arabidopsis lines. Our results show that Rap2.4f is a positive regulator of senescence, promoting both developmental and dark-induced leaf senescence.

  12. Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. (United States)

    Li, Yuanyuan; Cai, Huixian; Liu, Pu; Wang, Chunyan; Gao, Huiyang; Wu, Changai; Yan, Kang; Zhang, Shizhong; Huang, Jinguang; Zheng, Chengchao


    Mitogen-activated protein kinase (MAPK) cascades are conserved and vital signaling components in the responses to various ambient stresses. Here, we report the identification of MAPKKK18, a drought resistance associated MAPK kinase kinase in Arabidopsis. The mapkkk18 knockout mutants displayed hypersensitivity to drought stress, whereas overaccumulation of MAPKKK18 in transgenic Arabidopsis plants significantly enhanced the resistance to drought. Expression pattern analysis revealed that the inducible expression of MAPKKK18 by osmotic stress was ABA and the canonical ABA signaling pathway dependent. Furthermore, MAPKKK18 mainly exerted its regulatory roles via downstream MAPKK3. These findings uncovered important roles for MAPKKK18 in drought resistance and expanded our understanding of the MAPK pathways in modulating abiotic stress responses.

  13. Enhanced transformation of TNT by Arabidopsis plants expressing an old yellow enzyme. (United States)

    Zhu, Bo; Peng, Ri-He; Fu, Xiao-Yan; Jin, Xiao-Fen; Zhao, Wei; Xu, Jing; Han, Hong-Juan; Gao, Jian-Jie; Xu, Zhi-Sheng; Bian, Lin; Yao, Quan-Hong


    2,4,6-Trinitrotoluene (TNT) is released in nature from manufacturing or demilitarization facilities, as well as after the firing or detonation of munitions or leakage from explosive remnants of war. Environmental contamination by TNT is associated with human health risks, necessitating the development of cost-effective remediation techniques. The lack of affordable and effective cleanup technologies for explosives contamination requires the development of better processes. In this study, we present a system for TNT phytoremediation by overexpressing the old yellow enzyme (OYE3) gene from Saccharomyces cerevisiae. The resulting transgenic Arabidopsis plants demonstrated significantly enhanced TNT tolerances and a strikingly higher capacity to remove TNT from their media. The current work indicates that S. cerevisiae OYE3 overexpression in Arabidopsis is an efficient method for the phytoremoval and degradation of TNT. Our findings have the potential to provide a suitable remediation strategy for sites contaminated by TNT.

  14. Enhanced transformation of TNT by Arabidopsis plants expressing an old yellow enzyme.

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    Full Text Available 2,4,6-Trinitrotoluene (TNT is released in nature from manufacturing or demilitarization facilities, as well as after the firing or detonation of munitions or leakage from explosive remnants of war. Environmental contamination by TNT is associated with human health risks, necessitating the development of cost-effective remediation techniques. The lack of affordable and effective cleanup technologies for explosives contamination requires the development of better processes. In this study, we present a system for TNT phytoremediation by overexpressing the old yellow enzyme (OYE3 gene from Saccharomyces cerevisiae. The resulting transgenic Arabidopsis plants demonstrated significantly enhanced TNT tolerances and a strikingly higher capacity to remove TNT from their media. The current work indicates that S. cerevisiae OYE3 overexpression in Arabidopsis is an efficient method for the phytoremoval and degradation of TNT. Our findings have the potential to provide a suitable remediation strategy for sites contaminated by TNT.

  15. Auxin distribution and transport during embryogenesis and seed germi-nation of Arabidopsis

    Institute of Scientific and Technical Information of China (English)


    Auxin distribution during embryogenesis and seed germination were studied with transgenic Arabidopsis plants expressing GUS gene driven by a synthetic DR5 promoter, an auxin responsive promoter. The results showed that GUS activity is higher in ends of hypophysis and cotyledon primordia of heart-, torpedo- and cotyledon-stage embryos, leaf tip area, lateral root primordia, root apex and cotyledon of young seedlings.And GUS accumulated in root apex of the seedlings grown on auxin transport inhibitor containing media.All these suggested that above-mentioned part of the organs and tissues have a higher level of auxin, and auxin polar transport inhibitor could cause the accumulation of auxin in root apex. And auxin transport inhibitor also resulted in aberration of Arabidopsis leaf pattern formation, root gravitropism and elongation.

  16. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy.

    Directory of Open Access Journals (Sweden)

    Alex Costa

    Full Text Available Selective Plane Illumination Microscopy (SPIM is an imaging technique particularly suited for long term in-vivo analysis of transparent specimens, able to visualize small organs or entire organisms, at cellular and eventually even subcellular resolution. Here we report the application of SPIM in Calcium imaging based on Förster Resonance Energy Transfer (FRET. Transgenic Arabidopsis plants expressing the genetically encoded-FRET-based Ca(2+ probe Cameleon, in the cytosol or nucleus, were used to demonstrate that SPIM enables ratiometric fluorescence imaging at high spatial and temporal resolution, both at tissue and single cell level. The SPIM-FRET technique enabled us to follow nuclear and cytosolic Ca(2+ dynamics in Arabidopsis root tip cells, deep inside the organ, in response to different stimuli. A relevant physiological phenomenon, namely Ca(2+ signal percolation, predicted in previous studies, has been directly visualized.

  17. Constitutive Expression of OsIAA9 Affects Starch Granules Accumulation and Root Gravitropic Response in Arabidopsis. (United States)

    Luo, Sha; Li, Qianqian; Liu, Shanda; Pinas, Nicholaas M; Tian, Hainan; Wang, Shucai


    Auxin/Indole-3-Acetic Acid (Aux/IAA) genes are early auxin response genes ecoding short-lived transcriptional repressors, which regulate auxin signaling in plants by interplay with Auxin Response Factors (ARFs). Most of the Aux/IAA proteins contain four different domains, namely Domain I, Domain II, Domain III, and Domain IV. So far all Aux/IAA mutants with auxin-related phenotypes identified in both Arabidopsis and rice (Oryza sativa) are dominant gain-of-function mutants with mutations in Domain II of the corresponding Aux/IAA proteins, suggest that Aux/IAA proteins in both Arabidopsis and rice are largely functional redundantly, and they may have conserved functions. We report here the functional characterization of a rice Aux/IAA gene, OsIAA9. RT-PCR results showed that expression of OsIAA9 was induced by exogenously applied auxin, suggesting that OsIAA9 is an auxin response gene. Bioinformatic analysis showed that OsIAA9 has a repressor motif in Domain I, a degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. By generating transgenic plants expressing GFP-OsIAA9 and examining florescence in the transgenic plants, we found that OsIAA9 is localized in the nucleus. When transfected into protoplasts isolated from rosette leaves of Arabidopsis, OsIAA9 repressed reporter gene expression, and the repression was partially released by exogenously IAA. These results suggest that OsIAA9 is a canonical Aux/IAA protein. Protoplast transfection assays showed that OsIAA9 interacted ARF5, but not ARF6, 7, 8 and 19. Transgenic Arabidopsis plants expressing OsIAA9 have increased number of lateral roots, and reduced gravitropic response. Further analysis showed that OsIAA9 transgenic Arabidopsis plants accumulated fewer granules in their root tips and the distribution of granules was also affected. Taken together, our study showed that OsIAA9 is a transcriptional repressor, and it regulates gravitropic

  18. Constitutive expression of OsIAA9 affects starch granules accumulation and root gravitropic response in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sha eLuo


    Full Text Available Auxin/Indole-3-Acetic Acid (Aux/IAA genes are early auxin response genes ecoding short-lived transcriptional repressors, which regulate auxin signaling in plants by interplay with Auxin Response Factors (ARFs. Most of the Aux/IAA proteins contain four different domains, namely Domain I, Domain II, Domain III and Domain IV. So far all Aux/IAA mutants with auxin-related phenotypes identified in both Arabidopsis and rice (Oryza sativa are dominant gain-of-function mutants with mutations in Domain II of the corresponding Aux/IAA proteins, suggest that Aux/IAA proteins in both Arabidopsis and rice are largely functional redundantly, and they may have conserved functions. We report here the functional characterization of a rice Aux/IAA gene, OsIAA9. RT-PCR results showed that expression of OsIAA9 was induced by exogenously applied auxin, suggesting that OsIAA9 is an auxin response gene. Bioinformatic analysis showed that OsIAA9 has a repressor motif in Domain I, a degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. By generating transgenic plants expressing GFP-OsIAA9 and examining florescence in the transgenic plants, we found that OsIAA9 is localized in the nucleus. When transfected into protoplasts isolated from rosette leaves of Arabidopsis, OsIAA9 repressed reporter gene expression, and the repression was partially released by exogenously IAA. These results suggest that OsIAA9 is a canonical Aux/IAA protein. Protoplast transfection assays showed that OsIAA9 interacted ARF5, but not ARF6, 7, 8 and 19. Transgenic Arabidopsis plants expressing OsIAA9 have increased number of lateral roots, and reduced gravitropic response. Further analysis showed that OsIAA9 transgenic Arabidopsis plants accumulated fewer granules in their root tips and the distribution of granules was also affected. Taken together, our study showed that OsIAA9 is a transcriptional repressor, and it regulates

  19. Philosophical Reflection on Risks of Transgenic Technology

    Institute of Scientific and Technical Information of China (English)

    Xiaolu WANG


    Abstract [Objective] The aim was to analyze risks of transgenic technology. [Method] Discussions on risks of transgenic technologies were conducted from per- spective of philosophy. [Result] Mechanistic philosophy and reductionism are causes of reflection on risks of transgenic technology. Considering transgene is an artificial choice taking place of natural choice, it is inevitable for risks of transgenic technolo- gy to be found, in addition, social system constitutes the root for out-of-control of transgenic technology, hence, mechanism risk is the primary cause of transgenic risks. [Conclusion] It is inescapable for science view to be changed from arbitrary and lopsided to reflective and comprehensive and for technology view to be changed from exterminative and genesic to protective and symbiotic.

  20. Expression of Cucumber mosaic virus suppressor 2b alters FWA methylation and its siRNA accumulation in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Sadia Hamera


    Full Text Available The Cucumber mosaic virus (CMV suppressor 2b co-localizes with AGO4 in cytoplasmic and nuclear fractions of Arabidopsis thaliana. Biochemical fractionation of A. thaliana cellular extracts revealed that 2b and AGO4 coexist in multiple size exclusions. 2b transgenic A. thaliana exhibited an enhanced accumulation of 24nt siRNAs from flowering wageningen (FWA and other heterochromatic loci. These plants also exhibited hypo-methylation of an endogenous- as well as transgene-FWA promoter at non-CG sites. In corroboration, both transgenic 2b and CMV infection affected the regulation of transposons which mimics the ago4 phenotype. In conclusion, 2b perturbs plant defense by interfering with AGO4-regulated transcriptional gene silencing.

  1. Expression of Cucumber mosaic virus suppressor 2b alters FWA methylation and its siRNA accumulation in Arabidopsis thaliana. (United States)

    Hamera, Sadia; Yan, Youngsheng; Song, Xiaoguang; Chaudhary, Safee Ullah; Murtaza, Iram; Su, Lei; Tariq, Muhammad; Chen, Xiaoying; Fang, Rongxiang


    The Cucumber mosaic virus (CMV) suppressor 2b co-localizes with AGO4 in cytoplasmic and nuclear fractions of Arabidopsis thaliana Biochemical fractionation of A. thaliana cellular extracts revealed that 2b and AGO4 coexist in multiple size exclusions. 2b transgenic A. thaliana exhibited an enhanced accumulation of 24nt siRNAs from flowering wageningen (FWA) and other heterochromatic loci. These plants also exhibited hypo-methylation of an endogenous- as well as transgene-FWA promoter at non-CG sites. In corroboration, both transgenic 2b and CMV infection affected the regulation of transposons which mimics the ago4 phenotype. In conclusion, 2b perturbs plant defense by interfering with AGO4-regulated transcriptional gene silencing.

  2. Reduced Triacylglycerol Mobilization during Seed Germination and Early Seedling Growth in Arabidopsis Containing Nutritionally Important Polyunsaturated Fatty Acids (United States)

    Shrestha, Pushkar; Callahan, Damien L.; Singh, Surinder P.; Petrie, James R.; Zhou, Xue-Rong


    There are now several examples of plant species engineered to synthesize and accumulate nutritionally important polyunsaturated fatty acids in their seed triacylglycerols (TAG). The utilization of TAG in germinating seeds of such transgenic plants was unknown. In this study, we examined the TAG utilization efficiency during seed germination in transgenic Arabidopsis seeds containing several examples of these fatty acids. Seed TAG species with native fatty acids had higher utilization rate than the TAG species containing transgenically produced polyunsaturated fatty acids. Conversely, quantification of the fatty acid components remaining in the total TAG after early stages of seed germination revealed that the undigested TAGs tended to contain elevated levels of the engineered polyunsaturated fatty acids (PUFA). LC-MS analysis further revealed asymmetrical mobilization rates for the individual TAG species. TAGs which contained multiple PUFA fatty acids were mobilized slower than the species containing single PUFA. The mobilized engineered fatty acids were used in de novo membrane lipid synthesis during seedling development.

  3. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L


    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...... (HRP C). HRP C is 54% identical to ATP N in sequence. When the structures of four class III plant peroxidases are superimposed, the regions with structural differences are non-randomly distributed; all are located in one half of the molecule. The architecture of the haem pocket of ATP N is very similar...... to that of HRP C, in agreement with the low small-molecule substrate specificity of all class III peroxidases. The structure of ATP N suggests that the pH dependence of the substrate turnover will differ from that of HRP C owing to differences in polarity of the residues in the substrate-access channel. Since...

  4. Hydrogen Sulfide Regulates Ethylene-induced Stomatal Closure in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Zhihui Hou; Lanxiang Wang; Jing Liu; Lixia Hou; Xin Liu


    Hydrogen sulfide (H2S) is a newly-discovered signaling molecule in plants and has caused increasing attention in recent years,but its function in stomatal movement is unclear.In plants,H2S is synthesized via cysteine degradation catalyzed by D-/L-cysteine desulfhydrase (D-/L-CDes).AtD-/L-CDes::GUS transgenic Arabidopsis thaliana (L.) Heynh.plants were generated and used to investigate gene expression patterns,and results showed that AtD-/L-CDes can be expressed in guard cells.We also determined the subcellular localization of AtD-/L-CDes using transgenic plants of AtD-/L-CDes::GFP,and the results showed that AtD-CDes and AtL-CDes are located in the chloroplast and in the cytoplasm,respectively.The transcript levels of AtD-CDes and AtL-CDes were affected by the chemicals that cause stomatal closure.Among these factors,ACC,a precursor of ethylene,has the most significant effect,which indicates that the H2S generated from D-/L-CDes may play an important role in ethylene-induced stomatal closure.Meanwhile,H2S synthetic inhibitors significantly inhibited ethylene-induced stomatal closure in Arabidopsis.Ethylene treatment caused an increase of H2S production and of AtD-/L-CDes activity in Arabidopsis leaves.AtD-/L-CDes over-expressing plants exhibited enhanced induction of stomatal closure compared to the wild-type after ethylene treatment; however,the effect was not observed in the Atd-cdes and Atl-cdes mutants.In conclusion,our results suggest that the D-/L-CDes-generated H2S is involved in the regulation of ethylene-induced stomatal closure in Arabidopsis thaliana.

  5. Chromosomal proteins of Arabidopsis thaliana. (United States)

    Moehs, C P; McElwain, E F; Spiker, S


    In plants with large genomes, each of the classes of the histones (H1, H2A, H2B, H3 and H4) are not unique polypeptides, but rather families of closely related proteins that are called histone variants. The small genome and preponderance of single-copy DNA in Arabidopsis thaliana has led us to ask if this plant has such families of histone variants. We have thus isolated histones from Arabidopsis and analyzed them on four polyacrylamide gel electrophoretic systems: an SDS system; an acetic acid-urea system; a Triton transverse gradient system; and a two-dimensional system combining SDS and Triton-acetic acid-urea systems. This approach has allowed us to identify all four of the nucleosomal core histones in Arabidopsis and to establish the existence of a set of H2A and H2B variants. Arabidopsis has at least four H2A variants and three H2B variants of distinct molecular weights as assessed by electrophoretic mobility on SDS-polyacrylamide gels. Thus, Arabidopsis displays a diversity in these histones similar to the diversity displayed by plants with larger genomes such as wheat.The high mobility group (HMG) non-histone chromatin proteins have attracted considerable attention because of the evidence implicating them as structural proteins of transcriptionally active chromatin. We have isolated a group of non-histone chromatin proteins from Arabidopsis that meet the operational criteria to be classed as HMG proteins and that cross-react with antisera to HMG proteins of wheat.

  6. Insertion DNA Accelerates Meiotic Interchromosomal Recombination in Arabidopsis thaliana. (United States)

    Sun, Xiao-Qin; Li, Ding-Hong; Xue, Jia-Yu; Yang, Si-Hai; Zhang, Yan-Mei; Li, Mi-Mi; Hang, Yue-Yu


    Nucleotide insertions/deletions are ubiquitous in eukaryotic genomes, and the resulting hemizygous (unpaired) DNA has significant, heritable effects on adjacent DNA. However, little is known about the genetic behavior of insertion DNA. Here, we describe a binary transgenic system to study the behavior of insertion DNA during meiosis. Transgenic Arabidopsis lines were generated to carry two different defective reporter genes on nonhomologous chromosomes, designated as "recipient" and "donor" lines. Double hemizygous plants (harboring unpaired DNA) were produced by crossing between the recipient and the donor, and double homozygous lines (harboring paired DNA) via self-pollination. The transfer of the donor's unmutated sequence to the recipient generated a functional β-glucuronidase gene, which could be visualized by histochemical staining and corroborated by polymerase chain reaction amplification and sequencing. More than 673 million seedlings were screened, and the results showed that meiotic ectopic recombination in the hemizygous lines occurred at a frequency  >6.49-fold higher than that in the homozygous lines. Gene conversion might have been exclusively or predominantly responsible for the gene correction events. The direct measurement of ectopic recombination events provided evidence that an insertion, in the absence of an allelic counterpart, could scan the entire genome for homologous counterparts with which to pair. Furthermore, the unpaired (hemizygous) architectures could accelerate ectopic recombination between itself and interchromosomal counterparts. We suggest that the ectopic recombination accelerated by hemizygous architectures may be a general mechanism for interchromosomal recombination through ubiquitously dispersed repeat sequences in plants, ultimately contributing to genetic renovation and eukaryotic evolution.

  7. WikiPrints: rendering enterprise Wiki content for printing (United States)

    Berkner, Kathrin


    Wikis have become a tool of choice for collaborative, informative communication. In contrast to the immense Wikipedia, that serves as a reference web site and typically covers only one topic per web page, enterprise wikis are often used as project management tools and contain several closely related pages authored by members of one project. In that scenario it is useful to print closely related content for review or teaching purposes. In this paper we propose a novel technique for rendering enterprise wiki content for printing called WikiPrints, that creates a linearized version of wiki content formatted as a mixture between web layout and conventional document layout suitable for printing. Compared to existing print options for wiki content, Wikiprints automatically selects content from different wiki pages given user preferences and usage scenarios. Meta data such as content authors or time of content editing are considered. A preview of the linearized content is shown to the user and an interface for making manual formatting changes provided.

  8. Differentiation renders susceptibility to excitotoxicity in HT22 neurons

    Institute of Scientific and Technical Information of China (English)

    Minchao He; Jun Liu; Shaowu Cheng; Yigang Xing; William Z Suo


    HT22 is an immortalized mouse hippocampal neuronal cell line that does not express cholinergic and glutamate receptors like mature hippocampal neurons in vivo. This in part prevents its use as a model for mature hippocampal neurons in memory-related studies. We now report that HT22 cells were appropriately induced to differentiate and possess properties similar to those of mature hippocampal neurons in vivo, such as becoming more glutamate-receptive and excitatory. Results showed that sensitivity of HT22 cells to glutamate-induced toxicity changed dramatically when comparing undifferentiated with differentiated cells, with the half-effective concentration for differentiated cells reducing approximately two orders of magnitude. Moreover, glutamate-induced toxicity in differentiated cells, but not undifferentiated cells, was inhibited by the N-methyl-D- aspartate receptor antagonists MK-801 and memantine. Evidently, differentiated HT22 cells expressed N-methyl-D-aspartate receptors, while undifferentiated cells did not. Our experimental findings indicated that differentiation is important for immortalized cell lines to render post-mitotic neuronal properties, and that differentiated HT22 neurons represent a better model of hippocampal neurons than undifferentiated cells.

  9. VITRAIL: Acquisition, Modeling, and Rendering of Stained Glass. (United States)

    Thanikachalam, Niranjan; Baboulaz, Loic; Prandoni, Paolo; Trumpler, Stefan; Wolf, Sophie; Vetterli, Martin


    Stained glass windows are designed to reveal their powerful artistry under diverse and time-varying lighting conditions; virtual relighting of stained glass, therefore, represents an exceptional tool for the appreciation of this age old art form. However, as opposed to most other artifacts, stained glass windows are extremely difficult if not impossible to analyze using controlled illumination because of their size and position. In this paper, we present novel methods built upon image based priors to perform virtual relighting of stained glass artwork by acquiring the actual light transport properties of a given artifact. In a preprocessing step, we build a material-dependent dictionary for light transport by studying the scattering properties of glass samples in a laboratory setup. We can now use the dictionary to recover a light transport matrix in two ways: under controlled illuminations the dictionary constitutes a sparsifying basis for a compressive sensing acquisition, while in the case of uncontrolled illuminations the dictionary is used to perform sparse regularization. The proposed basis preserves volume impurities and we show that the retrieved light transport matrix is heterogeneous, as in the case of real world objects. We present the rendering results of several stained glass artifacts, including the Rose Window of the Cathedral of Lausanne, digitized using the presented methods.

  10. Age, Health and Attractiveness Perception of Virtual (Rendered) Human Hair (United States)

    Fink, Bernhard; Hufschmidt, Carla; Hirn, Thomas; Will, Susanne; McKelvey, Graham; Lankhof, John


    The social significance of physical appearance and beauty has been documented in many studies. It is known that even subtle manipulations of facial morphology and skin condition can alter people’s perception of a person’s age, health and attractiveness. While the variation in facial morphology and skin condition cues has been studied quite extensively, comparably little is known on the effect of hair on social perception. This has been partly caused by the technical difficulty of creating appropriate stimuli for investigations of people’s response to systematic variation of certain hair characteristics, such as color and style, while keeping other features constant. Here, we present a modeling approach to the investigation of human hair perception using computer-generated, virtual (rendered) human hair. In three experiments, we manipulated hair diameter (Experiment 1), hair density (Experiment 2), and hair style (Experiment 3) of human (female) head hair and studied perceptions of age, health and attractiveness. Our results show that even subtle changes in these features have an impact on hair perception. We discuss our findings with reference to previous studies on condition-dependent quality cues in women that influence human social perception, thereby suggesting that hair is a salient feature of human physical appearance, which contributes to the perception of beauty. PMID:28066276

  11. Moisture Transfer through Facades Covered with Organic Binder Renders

    Directory of Open Access Journals (Sweden)

    Carmen DICO


    Full Text Available Year after year we witness the negative effect of water over buildings, caused by direct or indirect actions. This situation is obvious in case of old, historical building, subjected to this aggression for a long period of time, but new buildings are also affected. Moisture in building materials causes not only structural damage, but also reduces the thermal insulation capacity of building components.Materials like plasters or paints have been used historically for a long period of time, fulfilling two basics functions: Decoration and Protection. The most acute demands are made on exterior plasters, as they, besides being an important decorative element for the facade, must perform two different functions simultaneously: protect the substrate against weathering and moisture without sealing, providing it a certain ability to “breathe” (Heilen, 2005. In order to accomplish this aim, the first step is to understand the hygrothermal behavior of coating and substrate and define the fundamental principles of moisture transfer; According to Künzel’s Facade Protection Theory, two material properties play the most important role: Water absorption and Vapor permeability.In the context of recently adoption (2009 of the “harmonized” European standard EN 15824 – „Specifications for external renders and internal plasters based on organic binders”, this paper deals extensively with the interaction of the two mentioned above properties for the coating materials, covered by EN 15824.

  12. Age, Health and Attractiveness Perception of Virtual (Rendered) Human Hair. (United States)

    Fink, Bernhard; Hufschmidt, Carla; Hirn, Thomas; Will, Susanne; McKelvey, Graham; Lankhof, John


    The social significance of physical appearance and beauty has been documented in many studies. It is known that even subtle manipulations of facial morphology and skin condition can alter people's perception of a person's age, health and attractiveness. While the variation in facial morphology and skin condition cues has been studied quite extensively, comparably little is known on the effect of hair on social perception. This has been partly caused by the technical difficulty of creating appropriate stimuli for investigations of people's response to systematic variation of certain hair characteristics, such as color and style, while keeping other features constant. Here, we present a modeling approach to the investigation of human hair perception using computer-generated, virtual (rendered) human hair. In three experiments, we manipulated hair diameter (Experiment 1), hair density (Experiment 2), and hair style (Experiment 3) of human (female) head hair and studied perceptions of age, health and attractiveness. Our results show that even subtle changes in these features have an impact on hair perception. We discuss our findings with reference to previous studies on condition-dependent quality cues in women that influence human social perception, thereby suggesting that hair is a salient feature of human physical appearance, which contributes to the perception of beauty.

  13. Evaluation of four phloem-specific promoters in vegetative tissues of transgenic citrus plants. (United States)

    Dutt, M; Ananthakrishnan, G; Jaromin, M K; Brlansky, R H; Grosser, J W


    'Mexican' lime (Citrus aurantifolia Swingle) was transformed with constructs that contained chimeric promoter-gus gene fusions of phloem-specific rolC promoter of Agrobacterium rhizogenes, Arabidopsis thaliana sucrose-H(+) symporter (AtSUC2) gene promoter of Arabidopsis thaliana, rice tungro bacilliform virus (RTBV) promoter and sucrose synthase l (RSs1) gene promoter of Oryza sativa (rice). Histochemical β-glucuronidase (GUS) analysis revealed vascular-specific expression of the GUS protein in citrus. The RTBV promoter was the most efficient promoter in this study while the RSs1 promoter could drive low levels of gus gene expression in citrus. These results were further validated by reverse transcription real-time polymerase chain reaction and northern blotting. Southern blot analysis confirmed stable transgene integration, which ranged from a single insertion to four copies per genome. The use of phloem-specific promoters in citrus will allow targeted transgene expression of antibacterial constructs designed to battle huanglongbing disease (HLB or citrus greening disease), associated with a phloem-limited Gram-negative bacterium.

  14. Enhancement of production of eugenol and its glycosides in transgenic aspen plants via genetic engineering. (United States)

    Koeduka, Takao; Suzuki, Shiro; Iijima, Yoko; Ohnishi, Toshiyuki; Suzuki, Hideyuki; Watanabe, Bunta; Shibata, Daisuke; Umezawa, Toshiaki; Pichersky, Eran; Hiratake, Jun


    Eugenol, a volatile phenylpropene found in many plant species, exhibits antibacterial and acaricidal activities. This study attempted to modify the production of eugenol and its glycosides by introducing petunia coniferyl alcohol acetyltransferase (PhCFAT) and eugenol synthase (PhEGS) into hybrid aspen. Gas chromatography analyses revealed that wild-type hybrid aspen produced small amount of eugenol in leaves. The heterologous overexpression of PhCFAT alone resulted in up to 7-fold higher eugenol levels and up to 22-fold eugenol glycoside levels in leaves of transgenic aspen plants. The overexpression of PhEGS alone resulted in a subtle increase in either eugenol or eugenol glycosides, and the overexpression of both PhCFAT and PhEGS resulted in significant increases in the levels of both eugenol and eugenol glycosides which were nonetheless lower than the increases seen with overexpression of PhCFAT alone. On the other hand, overexpression of PhCFAT in transgenic Arabidopsis and tobacco did not cause any synthesis of eugenol. These results indicate that aspen leaves, but not Arabidopsis and tobacco leaves, have a partially active pathway to eugenol that is limited by the level of CFAT activity and thus the flux of this pathway can be increased by the introduction of a single heterologous gene.

  15. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets

    KAUST Repository

    Zhang, ShouDong


    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1–1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1–1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci.

  16. PL1 fusion gene: a novel visual selectable marker gene that confers tolerance to multiple abiotic stresses in transgenic tomato. (United States)

    Jin, Feng; Li, Shu; Dang, Lijie; Chai, Wenting; Li, Pengli; Wang, Ning Ning


    Visual selectable markers, including the purple color caused by the accumulation of anthocyanins, have been proposed for use as antibiotic-free alternatives. However, the excessive accumulation of anthocyanins seriously inhibits the growth and development of transgenic plants. In our study, the AtDWF4 promoter from Arabidopsis and the tomato LeANT1 gene, encoding a MYB transcription factor, were used to construct the PL1 fusion gene to test whether it could be used as a visual selectable marker gene for tomato transformation. All the PL1 transgenic shoots exhibited intense purple color on shoot induction medium. In the transgenic tomato plants, PL1 was highly expressed in the cotyledons, but expressed only slightly in the true leaves and other organs. The expression of PL1 had no significantly adverse effects on the growth or development of the transgenic tomato plants, and conferred tolerance to multiple abiotic stresses in them. With the “cut off green shoots” method, multiple independent 35S::GFP transgenic tomato lines were successfully obtained using PL1 as the selectable marker gene. These results suggest that PL1 has potential application of visual selectable marker gene for tomato transformation.

  17. Engineering the production of sugar alcohols in transgenic plants: Extending the limits of photosynthesis. Final technical report

    Energy Technology Data Exchange (ETDEWEB)



    In the different tobacco lines expressing different polyols, the authors have investigated how the presence of polyols affects ion uptake during short periods of stress. In addition, they began investigations on recovery from short periods of stress, e.g. eight days of drought and/or five days in 400 mM NaCl. The transgenic plants take up sodium more slowly. The next set of experiments, modeled after the experiments done with Mesembryanthemum will investigate ion transport and partitioning in control and transgenic tobacco. Photosynthetic activities of drought-stressed mannitol/ononitrol tobacco were investigated. Measurements of fluorescence, carbon fixation rates and electron transport indicated that the polyol-containing plants loose photosynthetic competence more slowly than controls. Transfer of the mtlD gene (mannitol production) into Arabidopsis has been accomplished. The transgenic plants are phenotypically normal. They survive 300 mM NaCl when the stress is started when the plants are mature--in contrast to wild type which is killed at 150 mM. Seeds from mannitol-containing plants germinate (100%) in 100 mM NaCl while germination rate of wild type is about 20%. In 200 mM NaCl n wild type germinates, while in some transgenic lines still 50% of the seeds germinated. At 250 mM NaCl during germination, the transgenic seeds are severely impaired, only 10 to 20% begin germination.

  18. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). (United States)

    Tang, Lili; Cai, Hua; Ji, Wei; Luo, Xiao; Wang, Zhenyu; Wu, Jing; Wang, Xuedong; Cui, Lin; Wang, Yang; Zhu, Yanming; Bai, Xi


    GsZFP1 encodes a Cys2/His2-type zinc-finger protein. In our previous study, when GsZFP1 was heterologously expressed in Arabidopsis, the transgenic Arabidopsis plants exhibited enhanced drought and cold tolerance. However, it is still unknown whether GsZFP1 is also involved in salt stress. GsZFP1 is from the wild legume Glycine soja. Therefore, the aims of this study were to further elucidate the functions of the GsZFP1 gene under salt and drought stress in the forage legume alfalfa and to investigate its biochemical and physiological functions under these stress conditions. Our data showed that overexpression of GsZFP1 in alfalfa resulted in enhanced salt tolerance. Under high salinity stress, greater relative membrane permeability and malondialdehyde (MDA) content were observed and more free proline and soluble sugars accumulated in transgenic alfalfa than in the wild-type (WT) plants; in addition, the transgenic lines accumulated less Na(+) and more K(+) in both the shoots and roots. Overexpression of GsZFP1 also enhanced the drought tolerance of alfalfa. The fold-inductions of stress-responsive marker gene expression, including MtCOR47, MtRAB18, MtP5CS, and MtRD2, were greater in transgenic alfalfa than those of WT under drought stress conditions. In conclusion, the transgenic alfalfa plants generated in this study could be used for farming in salt-affected as well as arid and semi-arid areas.

  19. Herbicide-resistance conferred by expression of a catalytic antibody in Arabidopsis thaliana. (United States)

    Weiss, Yael; Shulman, Avidor; Ben Shir, Irina; Keinan, Ehud; Wolf, Shmuel


    Engineering herbicide resistance in crops facilitates control of weed species, particularly those that are closely related to the crop, and may be useful in selecting lines that have undergone multiple transformation events. Here we show that herbicide-resistant plants can be engineered by designing an herbicide and expressing a catalytic antibody that destroys the herbicide in planta. First, we developed a carbamate herbicide that can be catalytically destroyed by the aldolase antibody 38C2. This compound has herbicidal activity on all three plant species tested. Second, the light chain and half of the heavy chain (Fab) of the catalytic antibody were targeted to the endoplasmic reticulum in two classes of Arabidopsis thaliana transformants. Third, the two transgenic plants were crossed to produce an herbicide-resistant F1 hybrid. The in vitro catalytic activity of the protein from F1 hybrids corroborates that catalytic antibodies can be constitutively expressed in transgenic plants, and that they can confer a unique trait.

  20. Germline-transmitted genome editing in Arabidopsis thaliana Using TAL-effector-nucleases.

    Directory of Open Access Journals (Sweden)

    Joachim Forner

    Full Text Available Transcription activator-like effector nucleases (TALENs are custom-made bi-partite endonucleases that have recently been developed and applied for genome engineering in a wide variety of organisms. However, they have been only scarcely used in plants, especially for germline-modification. Here we report the efficient creation of small, germline-transmitted deletions in Arabidopsis thaliana via TALENs that were delivered by stably integrated transgenes. Using meristem specific promoters to drive expression of two TALEN arms directed at the CLV3 coding sequence, we observed very high phenotype frequencies in the T2 generation. In some instances, full CLV3 loss-of-function was already observed in the T1 generation, suggesting that transgenic delivery of TALENs can cause highly efficient genome modification. In contrast, constitutive TALEN expression in the shoot apical meristem (SAM did not cause additional phenotypes and genome re-sequencing confirmed little off-target effects, demonstrating exquisite target specificity.

  1. Germline-transmitted genome editing in Arabidopsis thaliana Using TAL-effector-nucleases. (United States)

    Forner, Joachim; Pfeiffer, Anne; Langenecker, Tobias; Manavella, Pablo A; Manavella, Pablo; Lohmann, Jan U


    Transcription activator-like effector nucleases (TALENs) are custom-made bi-partite endonucleases that have recently been developed and applied for genome engineering in a wide variety of organisms. However, they have been only scarcely used in plants, especially for germline-modification. Here we report the efficient creation of small, germline-transmitted deletions in Arabidopsis thaliana via TALENs that were delivered by stably integrated transgenes. Using meristem specific promoters to drive expression of two TALEN arms directed at the CLV3 coding sequence, we observed very high phenotype frequencies in the T2 generation. In some instances, full CLV3 loss-of-function was already observed in the T1 generation, suggesting that transgenic delivery of TALENs can cause highly efficient genome modification. In contrast, constitutive TALEN expression in the shoot apical meristem (SAM) did not cause additional phenotypes and genome re-sequencing confirmed little off-target effects, demonstrating exquisite target specificity.

  2. Transgene expression systems in the Triticeae cereals. (United States)

    Hensel, Götz; Himmelbach, Axel; Chen, Wanxin; Douchkov, Dimitar K; Kumlehn, Jochen


    The control of transgene expression is vital both for the elucidation of gene function and for the engineering of transgenic crops. Given the dominance of the Triticeae cereals in the agricultural economy of the temperate world, the development of well-performing transgene expression systems of known functionality is of primary importance. Transgenes can be expressed either transiently or stably. Transient expression systems based on direct or virus-mediated gene transfer are particularly useful in situations where the need is to rapidly screen large numbers of genes. However, an unequivocal understanding of gene function generally requires that a transgene functions throughout the plant's life and is transmitted through the sexual cycle, since this alone allows its effect to be decoupled from the plant's response to the generally stressful gene transfer event. Temporal, spatial and quantitative control of a transgene's expression depends on its regulatory environment, which includes both its promoter and certain associated untranslated region sequences. While many transgenic approaches aim to manipulate plant phenotype via ectopic gene expression, a transgene sequence can be also configured to down-regulate the expression of its endogenous counterpart, a strategy which exploits the natural gene silencing machinery of plants. In this review, current technical opportunities for controlling transgene expression in the Triticeae species are described. Apart from protocols for transient and stable gene transfer, the choice of promoters and other untranslated regulatory elements, we also consider signal peptides, as they too govern the abundance and particularly the sub-cellular localization of transgene products.

  3. Defining the Functional Network of Epigenetic Regulators in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Chongyuan Luo; Brittany G.Durgin; Naohide Watanabe; Eric Lam


    Development of ChiP-chip and ChlP-seq technologies has allowed genome-wide high-resolution profiling of chromatin-associated marks and binding sites for epigenetic regulators.However,signals for directing epigenetic modi fiers to their target sites are not understood.In this paper,we tested the hypothesis that genome location can affect the involvement of epigenetic regulators using Chromatin Charting (CC) Lines,which have an identical transgene construct inserted at different locations in the Arabidopsis genome.Four CC lines that showed evidence for epigenetic silencing of the luciferase reporter gene were transformed with RNAi vectors individually targeting epigenetic regulators LHP1,MOM1,CMT3,DRD1,DRM2,SUVH2,CLF,and HD1.Involvement of a particular epigenetic regulator in silencing the transgene locus in a CC line was determined by significant alterations in luciferase expression after suppression of the regulator's expression.Our results suggest that the targeting of epigenetic regulators can be influenced by genome location as well as sequence context.In addition,the relative importance of an epigenetic regulator can be influenced by tissue identity.We also report a novel approach to predict interactions between epigenetic regulators through clustering analysis of the regulators using alterations in gene expression of putative downstream targets,including endogenous loci and transgenes,in epigenetic mutants or RNAi lines.Our data support the existence of a complex and dynamic network of epigenetic regulators that serves to coordinate and control global gene expression in higher plants.

  4. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. (United States)

    Yu, Lin-Hui; Wu, Shen-Jie; Peng, Yi-Shu; Liu, Rui-Na; Chen, Xi; Zhao, Ping; Xu, Ping; Zhu, Jian-Bo; Jiao, Gai-Li; Pei, Yan; Xiang, Cheng-Bin


    Drought and salinity are two major environmental factors limiting crop production worldwide. Improvement of drought and salt tolerance of crops with transgenic approach is an effective strategy to meet the demand of the ever-growing world population. Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a homeodomain-START transcription factor, has been demonstrated to significantly improve drought tolerance in Arabidopsis, tobacco, tall fescue and rice. Here we report that AtHDG11 also confers drought and salt tolerance in upland cotton (Gossypium hirsutum) and woody plant poplar (Populus tomentosa Carr.). Our results showed that both the transgenic cotton and poplar exhibited significantly enhanced tolerance to drought and salt stress with well-developed root system. In the leaves of the transgenic cotton plants, proline content, soluble sugar content and activities of reactive oxygen species-scavenging enzymes were significantly increased after drought and salt stress compared with wild type. Leaf stomatal density was significantly reduced, whereas stomatal and leaf epidermal cell size were significantly increased in both the transgenic cotton and poplar plants. More importantly, the transgenic cotton showed significantly improved drought tolerance and better agronomic performance with higher cotton yield in the field both under normal and drought conditions. These results demonstrate that AtHDG11 is not only a promising candidate for crops improvement but also for woody plants.

  5. The impact of transgenic mosquitoes on dengue virulence to humans and mosquitoes. (United States)

    Medlock, Jan; Luz, Paula M; Struchiner, Claudio J; Galvani, Alison P


    Dengue is a major public health concern in the tropics and subtropics. Innovative transgenic strategies to render Aedes aegypti mosquitoes, the primary vector of dengue, incompetent for dengue transmission are under development. We modeled the evolutionary impact of different transgenic mosquito strategies on dengue-induced mortality, that is, dengue virulence, to both humans and mosquitoes. This model incorporates various evolutionary trade-offs in dengue virus epidemiological traits, for example, a trade-off between dengue transmission rate and its virulence to humans. Our results indicate that strategies that block transmission or reduce mosquito biting impose selection on dengue virulence in humans. This selection can be for either higher or lower virulence, depending on the interaction between the effect of the transgene and the trade-offs in epidemiological traits, highlighting the need for detailed quantitative data to understand more fully the impact of mosquito transgenesis on dengue virulence. Dengue virulence in mosquitoes can be selected on by transgenic strategies of blocking transmission, decreased mosquito biting, increased mosquito background mortality, and increased mosquito infection-induced mortality. Our results suggest that dengue control strategies that raise mosquito background mortality or mosquito infection-induced mortality pose less risk of causing increased virulence to humans than strategies that block transmission or reduce mosquito biting.

  6. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na(+)/H (+) antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). (United States)

    Chen, Li-Hong; Zhang, Bo; Xu, Zi-Qin


    Agriculture productivity is severely affected by soil salinity. One possible mechanism by which plants could survive salt stress is to compartmentalize sodium ions away from the cytosol. In the present work, transgenic buckwheat plants overexpressing AtNHX1, a vacuolar Na(+)/H(+) antiporter gene from Arabidopsis thaliana, were regenerated after transformation with Agrobacterium tumefaciens. These plants were able to grow, flower and accumulate more rutin in the presence of 200 mmol/l sodium chloride. Moreover, the content of important nutrients in buckwheat was not affected by the high salinity of the soil. These results demonstrated the potential value of these transgenic plants for agriculture use in saline soil.

  7. Exploiting Natural Variation in Arabidopsis

    NARCIS (Netherlands)

    Molenaar, J.A.; Keurentjes, J.J.B.


    Natural variation for many traits is present within the species Arabidopsis thaliana . This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of

  8. Exploiting natural variation in Arabidopsis

    NARCIS (Netherlands)

    J.A. Molenaar; J.J.B. Keurentjes


    Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of g

  9. The salty tale of Arabidopsis. (United States)

    Sanders, D


    High concentrations of sodium chloride are toxic to most plant species. New insights into the mechanisms by which plants tolerate salt have emerged from the identification of genes in Arabidopsis thaliana that play a critical part in physiological resistance to salt.

  10. New light field camera based on physical based rendering tracing (United States)

    Chung, Ming-Han; Chang, Shan-Ching; Lee, Chih-Kung


    Even though light field technology was first invented more than 50 years ago, it did not gain popularity due to the limitation imposed by the computation technology. With the rapid advancement of computer technology over the last decade, the limitation has been uplifted and the light field technology quickly returns to the spotlight of the research stage. In this paper, PBRT (Physical Based Rendering Tracing) was introduced to overcome the limitation of using traditional optical simulation approach to study the light field camera technology. More specifically, traditional optical simulation approach can only present light energy distribution but typically lack the capability to present the pictures in realistic scenes. By using PBRT, which was developed to create virtual scenes, 4D light field information was obtained to conduct initial data analysis and calculation. This PBRT approach was also used to explore the light field data calculation potential in creating realistic photos. Furthermore, we integrated the optical experimental measurement results with PBRT in order to place the real measurement results into the virtually created scenes. In other words, our approach provided us with a way to establish a link of virtual scene with the real measurement results. Several images developed based on the above-mentioned approaches were analyzed and discussed to verify the pros and cons of the newly developed PBRT based light field camera technology. It will be shown that this newly developed light field camera approach can circumvent the loss of spatial resolution associated with adopting a micro-lens array in front of the image sensors. Detailed operational constraint, performance metrics, computation resources needed, etc. associated with this newly developed light field camera technique were presented in detail.

  11. Design and Implementation of an Application. Programming Interface for Volume Rendering


    Selldin, Håkan


    To efficiently examine volumetric data sets from CT or MRI scans good volume rendering applications are needed. This thesis describes the design and implementation of an application programming interface (API) to be used when developing volume-rendering applications. A complete application programming interface has been designed. The interface is designed so that it makes writing application programs containing volume rendering fast and easy. The interface also makes created application progr...

  12. Overexpression of OsRAA1 promotes flowering and hypocotyls elongation in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    WANG JinLan; CHONG Kang; XU YunYuan


    Previously,OsRAA1,an AtFPF1 homologue gene,was found to play an important role in modulating rice root development.In the current study,OsRAA1 was overexpressed in Arabidopsis,and the transgenic plants showed early flowering and elongated hypocotyl phenotypes as compared with the wild-type under white-light conditions.The hypocotyls of transgenic lines were twice as long as those of wild-type plants under red-light conditions but were indistinguishable from those of the wild-type under blue and far-red light and darkness.In addition,the phenotypes of AtFPF1 transgenic lines were similar to those of OsRAA1 transgenic lines.These results suggested that OsRAA1/AtFPF1 protein is involved in regulating flowering time and plays an important role in the inhibition of hypocotyl elongation under continuous red light.The functions were preserved during the evolution.

  13. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa. (United States)

    Wang, Zhi; Su, Guoxia; Li, Min; Ke, Qingbo; Kim, Soo Young; Li, Hongbing; Huang, Jin; Xu, Bingcheng; Deng, Xi-Ping; Kwak, Sang-Soo


    Arabidopsis ABSCISIC ACID-RESPONSIVE ELEMENT-BINDING FACTOR 3 (ABF3), a bZIP transcription factor, plays an important role in regulating multiple stress responses in plants. Overexpressing AtABF3 increases tolerance to various stresses in several plant species. Alfalfa (Medicago sativa L.), one of the most important perennial forage crops worldwide, has high yields, high nutritional value, and good palatability and is widely distributed in irrigated and semi-arid regions throughout the world. However, drought and salt stress pose major constraints to alfalfa production. In this study, we developed transgenic alfalfa plants (cv. Xinjiang Daye) expressing AtABF3 under the control of the sweetpotato oxidative stress-inducible SWPA2 promoter (referred to as SAF plants) via Agrobacterium tumefaciens-mediated transformation. After drought stress treatment, we selected two transgenic lines with high expression of AtABF3, SAF5 and SAF6, for further characterization. Under normal conditions, SAF plants showed smaller leaf size compared to non-transgenic (NT) plants, while no other morphological changes were observed. Moreover, SAF plants exhibited enhanced drought stress tolerance and better growth under drought stress treatment, which was accompanied by a reduced transpiration rate and lower reactive oxygen species contents. In addition, SAF plants showed an increased tolerance to salt and oxidative stress. Therefore, these transgenic AtABF3 alfalfa plants might be useful for breeding forage crops with enhanced tolerance to environmental stress for use in sustainable agriculture on marginal lands.

  14. Performance Assessment of Three Rendering Engines in 3D Computer Graphics Software

    Directory of Open Access Journals (Sweden)

    Žan Vidmar


    Full Text Available The aim of the research was the determination of testing conditions and visual and numerical evaluation of renderings made with three different rendering engines in Maya software, which is widely used for educational and computer art purposes. In the theoretical part the overview of light phenomena and their simulation in virtual space is presented. This is followed by a detailed presentation of the main rendering methods and the results and limitations of their applications to 3D objects. At the end of the theoretical part the importance of a proper testing scene and especially the role of Cornell box are explained. In the experimental part the terms and conditions as well as hardware and software used for the research are presented. This is followed by a description of the procedures, where we focused on the rendering quality and time, which enabled the comparison of settings of different render engines and determination of conditions for further rendering of testing scenes. The experimental part continued with rendering a variety of simple virtual scenes including Cornell box and virtual object with different materials and colours. Apart from visual evaluation, which was the starting point for comparison of renderings, a procedure for numerical estimation and colour deviations of renderings using the selected regions of interest in the final images is presented.

  15. Real-time volume rendering of digital medical images on an iOS device (United States)

    Noon, Christian; Holub, Joseph; Winer, Eliot


    Performing high quality 3D visualizations on mobile devices, while tantalizingly close in many areas, is still a quite difficult task. This is especially true for 3D volume rendering of digital medical images. Allowing this would empower medical personnel a powerful tool to diagnose and treat patients and train the next generation of physicians. This research focuses on performing real time volume rendering of digital medical images on iOS devices using custom developed GPU shaders for orthogonal texture slicing. An interactive volume renderer was designed and developed with several new features including dynamic modification of render resolutions, an incremental render loop, a shader-based clipping algorithm to support OpenGL ES 2.0, and an internal backface culling algorithm for properly sorting rendered geometry with alpha blending. The application was developed using several application programming interfaces (APIs) such as OpenSceneGraph (OSG) as the primary graphics renderer coupled with iOS Cocoa Touch for user interaction, and DCMTK for DICOM I/O. The developed application rendered volume datasets over 450 slices up to 50-60 frames per second, depending on the specific model of the iOS device. All rendering is done locally on the device so no Internet connection is required.

  16. Transgene-induced gene silencing is not affected by a change in ploidy level.

    Directory of Open Access Journals (Sweden)

    Daniela Pignatta

    Full Text Available BACKGROUND: Whole genome duplication, which results in polyploidy, is a common feature of plant populations and a recurring event in the evolution of flowering plants. Polyploidy can result in changes to gene expression and epigenetic instability. Several epigenetic phenomena, occurring at the transcriptional or post-transcriptional level, have been documented in allopolyploids (polyploids derived from species hybrids of Arabidopsis thaliana, yet findings in autopolyploids (polyploids derived from the duplication of the genome of a single species are limited. Here, we tested the hypothesis that an increase in ploidy enhances transgene-induced post-transcriptional gene silencing using autopolyploids of A. thaliana. METHODOLOGY/PRINCIPAL FINDINGS: Diploid and tetraploid individuals of four independent homozygous transgenic lines of A. thaliana transformed with chalcone synthase (CHS inverted repeat (hairpin constructs were generated. For each line diploids and tetraploids were compared for efficiency in post-transcriptional silencing of the endogenous CHS gene. The four lines differed substantially in their silencing efficiency. Yet, diploid and tetraploid plants derived from these plants and containing therefore identical transgene insertions showed no difference in the efficiency silencing CHS as assayed by visual scoring, anthocyanin assays and quantification of CHS mRNA. CONCLUSIONS/SIGNIFICANCE: Our results in A. thaliana indicated that there is no effect of ploidy level on transgene-induced post-transcriptional gene silencing. Our findings that post-transcriptional mechanisms were equally effective in diploids and tetraploids supports the use of transgene-driven post-transcriptional gene silencing as a useful mechanism to modify gene expression in polyploid species.

  17. Integration mechanisms of transgenes and population fitness of GH transgenic fish

    Institute of Scientific and Technical Information of China (English)


    It has been more than 20 years since the first batch of transgenic fish was produced. Five stable germ-line transmitted growth hormone (GH) transgenic fish lines have been generated. This paper reviews the mechanisms of integration and gene targeting of the transgene, as well as the viability, reproduction and transgenic approaches for the reproductive containment of GH-transgenic fish. Further, we propose that it should be necessary to do the following studies, in particularly, of the breeding of transgenic fish: to assess the fitness of transgenic fish in an aqueous environment with a large space and a complex structure; and to develop a controllable on-off strategy of reproduction in transgenic fish.

  18. Expression Systems and Species Used for Transgenic Animal Bioreactors


    Yanli Wang; Sihai Zhao; Liang Bai; Jianglin Fan; Enqi Liu


    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm ...

  19. Optimization of Biofuel Production From Transgenic Microalgae (United States)


    AFRL-OSR-VA-TR-2013-0145 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Richard Sayre Donald Danforth...Technical 20080815 to 20120630 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE FA9550-08-1-0451 Richard Sayre Donald Danforth Plant...BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Grant/Contract Number: FA9550-08-1-0451 Reporting Period: Final Report Abstract: We have compared the

  20. The conservative cysteines in transmembrane domain of AtVKOR/LTO1 are critical for photosynthetic growth and photosystem II activity in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jia-Jia eDu


    Full Text Available Thylakoid protein vitamin K epoxide reductase (AtVKOR/LTO1 is involved in oxidoreduction. The deficiency of this compound causes pleiotropic defects in Arabidopsis thaliana, such as severely stunted growth, smaller sized leaves, and delay of flowering. Transgenic complementation of wild-type AtVKOR (VKORWT to vkor mutant lines ultimately demonstrates that the phenotype changes are due to this gene. However, whether AtVKOR functions in Arabidopsis through its protein oxidoreduction is unknown. To further study the redox-active sites of AtVKOR in vivo, a series of plasmids containing cysteine-mutant VKORs were constructed and transformed into vkor deficient lines. Compared with transgenic AtVKORWT plants, the size of the transgenic plants with a single conservative cysteine mutation (VKORC109A, VKORC116A, VKORC195A, and VKORC198A were smaller, and two double-cysteine mutations (VKORC109AC116A and VKORC195AC198A showed significantly stunted growth, similar with the vkor mutant line. However, mutations of two nonconservative cysteines (VKORC46A and VKORC230A displayed little obvious changes in the phenotypes of Arabidopsis. Consistently, the maximum and actual efficiency of photosystem II in double-cysteine mutation plants decreased significantly to the level similar to that of the vkor mutant line both under normal growth light and high light. A significantly decreased amount of D1 protein and increased accumulation of reactive oxygen species were observed in two double-cysteine mutations under high light. All of the results above indicated that the conservative cysteines in transmembrane domains were the functional sites of AtVKOR in Arabidopsis and that the oxidoreductase activities of AtVKOR were directly related to the autotrophic photosynthetic growth and photosystem II activity of Arabidopsis thaliana.

  1. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. (United States)

    van der Zaal, B J; Neuteboom, L W; Pinas, J E; Chardonnens, A N; Schat, H; Verkleij, J A; Hooykaas, P J


    We describe the isolation of an Arabidopsis gene that is closely related to the animal ZnT genes (Zn transporter). The protein encoded by the ZAT (Zn transporter of Arabidopsis thaliana) gene has 398 amino acid residues and is predicted to have six membrane-spanning domains. To obtain evidence for the postulated function of the Arabidopsis gene, transgenic plants with the ZAT coding sequence under control of the cauliflower mosaic virus 35S promoter were analyzed. Plants obtained with ZAT in the sense orientation exhibited enhanced Zn resistance and strongly increased Zn content in the roots under high Zn exposure. Antisense mRNA-producing plants were viable, with a wild-type level of Zn resistance and content, like plants expressing a truncated coding sequence lacking the C-terminal cytoplasmic domain of the protein. The availability of ZAT can lead to a better understanding of the mechanism of Zn homeostasis and resistance in plants.

  2. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. (United States)

    Meng, Xiangzong; Xu, Juan; He, Yunxia; Yang, Kwang-Yeol; Mordorski, Breanne; Liu, Yidong; Zhang, Shuqun


    Arabidopsis thaliana MPK3 and MPK6, two mitogen-activated protein kinases (MAPKs or MPKs), play critical roles in plant disease resistance by regulating multiple defense responses. Previously, we characterized the regulation of phytoalexin biosynthesis by Arabidopsis MPK3/MPK6 cascade and its downstream WRKY33 transcription factor. Here, we report another substrate of MPK3/MPK6, ETHYLENE RESPONSE FACTOR6 (ERF6), in regulating Arabidopsis defense gene expression and resistance to the necrotrophic fungal pathogen Botrytis cinerea. Phosphorylation of ERF6 by MPK3/MPK6 in either the gain-of-function transgenic plants or in response to B. cinerea infection increases ERF6 protein stability in vivo. Phospho-mimicking ERF6 is able to constitutively activate defense-related genes, especially those related to fungal resistance, including PDF1.1 and PDF1.2, and confers enhanced resistance to B. cinerea. By contrast, expression of ERF6-EAR, in which ERF6 was fused to the ERF-associated amphiphilic repression (EAR) motif, strongly suppresses B. cinerea-induced defense gene expression, leading to hypersusceptibility of the ERF6-EAR transgenic plants to B. cinerea. Different from ERF1, the regulation and function of ERF6 in defensin gene activation is independent of ethylene. Based on these data, we conclude that ERF6, another substrate of MPK3 and MPK6, plays important roles downstream of the MPK3/MPK6 cascade in regulating plant defense against fungal pathogens.

  3. Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism. (United States)

    Hewezi, Tarek; Howe, Peter; Maier, Tom R; Hussey, Richard S; Mitchum, Melissa Goellner; Davis, Eric L; Baum, Thomas J


    Plant-parasitic cyst nematodes secrete a complex of cell wall-digesting enzymes, which aid in root penetration and migration. The soybean cyst nematode Heterodera glycines also produces a cellulose binding protein (Hg CBP) secretory protein. To determine the function of CBP, an orthologous cDNA clone (Hs CBP) was isolated from the sugar beet cyst nematode Heterodera schachtii, which is able to infect Arabidopsis thaliana. CBP is expressed only in the early phases of feeding cell formation and not during the migratory phase. Transgenic Arabidopsis expressing Hs CBP developed longer roots and exhibited enhanced susceptibility to H. schachtii. A yeast two-hybrid screen identified Arabidopsis pectin methylesterase protein 3 (PME3) as strongly and specifically interacting with Hs CBP. Transgenic plants overexpressing PME3 also produced longer roots and exhibited increased susceptibility to H. schachtii, while a pme3 knockout mutant showed opposite phenotypes. Moreover, CBP overexpression increases PME3 activity in planta. Localization studies support the mode of action of PME3 as a cell wall-modifying enzyme. Expression of CBP in the pme3 knockout mutant revealed that PME3 is required but not the sole mechanism for CBP overexpression phenotype. These data indicate that CBP directly interacts with PME3 thereby activating and potentially targeting this enzyme to aid cyst nematode parasitism.

  4. Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. (United States)

    Yang, Deok Hee; Kwak, Kyung Jin; Kim, Min Kyung; Park, Su Jung; Yang, Kwang-Yeol; Kang, Hunseung


    Although posttranscriptional regulation of RNA metabolism is increasingly recognized as a key regulatory process in plant response to environmental stresses, reports demonstrating the importance of RNA metabolism control in crop improvement under adverse environmental stresses are severely limited. To investigate the potential use of RNA-binding proteins (RBPs) in developing stress-tolerant transgenic crops, we generated transgenic rice plants (Oryza sativa) that express Arabidopsis thaliana glycine-rich RBP (AtGRP) 2 or 7, which have been determined to harbor RNA chaperone activity and confer stress tolerance in Arabidopsis, and analyzed the response of the transgenic rice plants to abiotic stresses. AtGRP2- or AtGRP7-expressing transgenic rice plants displayed similar phenotypes comparable with the wild-type plants under high salt or cold stress conditions. By contrast, AtGRP2- or AtGRP7-expressing transgenic rice plants showed much higher recovery rates and grain yields compared with the wild-type plants under drought stress conditions. The higher grain yield of the transgenic rice plants was due to the increases in filled grain numbers per panicle. Collectively, the present results show the importance of posttranscriptional regulation of RNA metabolism in plant response to environmental stress and suggest that GRPs can be utilized to improve the yield potential of crops under stress conditions.


    Directory of Open Access Journals (Sweden)

    Zuzana Polóniová


    Full Text Available In this work we used the Cre/loxP recombination system to study the activity of the Arabidopsis DLL promoter under water stress treatment. For this, the T-DNA containing the Cre/loxP self-excision recombination cassette was introduced into tobacco genome via A. tumefaciens LBA 4404. The expression of the cre gene was regulated by the DLL promoter. On activity of the DLL the Cre recombinase was expected to remove Cre/loxP cassette. Transgenic nature of regenerated transgenic T0 tobacco plantlets was proved by GUS and PCR analyses. The selected 10 transgenic T0 plants were subjected to the water stress analyses under in vitro as well as under in vivo conditions. The osmotic stress experiments were performed with 10 % PEG and 100 mmol.l-1 mannitol (individually. The activity of the DLL was evaluated after 24 hours. For drought stress experiments, the watering was withheld for 10 days. The activity of the DLL was monitored using PCR approach. Under given abiotic stress conditions, no activity of the DLL was observed. The DLL promoter remained stable. It points out the DLL as the promoter with precise control of the gene expression with wide usability in plant biotechnology.

  6. Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis. (United States)

    Li, Li-Ya; Cai, Qiu-Yi; Yu, Dian-Si; Guo, Chang-Hong


    The Arabidopsis gene FRO6(AtFRO6) encodes ferric chelate reductase and highly expressed in green tissues of plants. We have expressed the gene AtFRO6 under the control of a 35S promoter in transgenic tobacco plants. High-level expression of AtFRO6 in transgenic plants was confirmed by northern blot analysis. Ferric reductase activity in leaves of transgenic plants grown under iron-sufficient or iron-deficient conditions is 2.13 and 1.26 fold higher than in control plants respectively. The enhanced ferric reductase activity led to increased concentrations of ferrous iron and chlorophyll, and reduced the iron deficiency chlorosis in the transgenic plants, compared to the control plants. In roots, the concentration of ferrous iron and ferric reductase activity were not significantly different in the transgenic plants compared to the control plants. These results suggest that FRO6 functions as a ferric chelate reductase for iron uptake by leaf cells, and overexpression of AtFRO6 in transgenic plants can reduce iron deficiency chlorosis.

  7. 31 CFR 515.548 - Services rendered by Cuba to United States aircraft. (United States)


    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Services rendered by Cuba to United... REGULATIONS Licenses, Authorizations, and Statements of Licensing Policy § 515.548 Services rendered by Cuba to United States aircraft. Specific licenses are issued for payment to Cuba of charges for...

  8. Frequency domain volume rendering by the wavelet X-ray transform

    NARCIS (Netherlands)

    Westenberg, Michel A.; Roerdink, Jos B.T.M.


    We describe a wavelet-based X-ray rendering method in the frequency domain with a smaller time complexity than wavelet splatting. Standard Fourier volume rendering is summarized and interpolation and accuracy issues are briefly discussed. We review the implementation of the fast wavelet transform in

  9. Overexpression of ALDH10A8 and ALDH10A9 Genes Provides Insight into Their Role in Glycine Betaine Synthesis and Affects Primary Metabolism in Arabidopsis thaliana. (United States)

    Missihoun, Tagnon D; Willée, Eva; Guegan, Jean-Paul; Berardocco, Solenne; Shafiq, Muhammad R; Bouchereau, Alain; Bartels, Dorothea


    Betaine aldehyde dehydrogenases oxidize betaine aldehyde to glycine betaine in species that accumulate glycine betaine as a compatible solute under stress conditions. In contrast, the physiological function of betaine aldehyde dehydrogenase genes is at present unclear in species that do not accumulate glycine betaine, such as Arabidopsis thaliana. To address this question, we overexpressed the Arabidopsis ALDH10A8 and ALDH10A9 genes, which were identified to code for betaine aldehyde dehydrogenases, in wild-type A. thaliana. We analysed changes in metabolite contents of transgenic plants in comparison with the wild type. Using exogenous or endogenous choline, our results indicated that ALDH10A8 and ALDH10A9 are involved in the synthesis of glycine betaine in Arabidopsis. Choline availability seems to be a factor limiting glycine betaine synthesis. Moreover, the contents of diverse metabolites including sugars (glucose and fructose) and amino acids were altered in fully developed transgenic plants compared with the wild type. The plant metabolic response to salt and the salt stress tolerance were impaired only in young transgenic plants, which exhibited a delayed growth of the seedlings early after germination. Our results suggest that a balanced expression of the betaine aldehyde dehydrogenase genes is important for early growth of A. thaliana seedlings and for salt stress mitigation in young seedlings.

  10. Method and system for rendering and interacting with an adaptable computing environment (United States)

    Osbourn, Gordon Cecil [Albuquerque, NM; Bouchard, Ann Marie [Albuquerque, NM


    An adaptable computing environment is implemented with software entities termed "s-machines", which self-assemble into hierarchical data structures capable of rendering and interacting with the computing environment. A hierarchical data structure includes a first hierarchical s-machine bound to a second hierarchical s-machine. The first hierarchical s-machine is associated with a first layer of a rendering region on a display screen and the second hierarchical s-machine is associated with a second layer of the rendering region overlaying at least a portion of the first layer. A screen element s-machine is linked to the first hierarchical s-machine. The screen element s-machine manages data associated with a screen element rendered to the display screen within the rendering region at the first layer.

  11. Accelerating Time-Varying Hardware Volume Rendering Using TSP Trees and Color-Based Error Metrics (United States)

    Ellsworth, David; Chiang, Ling-Jen; Shen, Han-Wei; Kwak, Dochan (Technical Monitor)


    This paper describes a new hardware volume rendering algorithm for time-varying data. The algorithm uses the Time-Space Partitioning (TSP) tree data structure to identify regions within the data that have spatial or temporal coherence. By using this coherence, the rendering algorithm can improve performance when the volume data is larger than the texture memory capacity by decreasing the amount of textures required. This coherence can also allow improved speed by appropriately rendering flat-shaded polygons instead of textured polygons, and by not rendering transparent regions. To reduce the polygonization overhead caused by the use of the hierarchical data structure, we introduce an optimization method using polygon templates. The paper also introduces new color-based error metrics, which more accurately identify coherent regions compared to the earlier scalar-based metrics. By showing experimental results from runs using different data sets and error metrics, we demonstrate that the new methods give substantial improvements in volume rendering performance.

  12. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis. (United States)

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P


    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development.

  13. A Non-canonical Transferred DNA Insertion at the BRI 1 Locus in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Zhong Zhao; Yan Zhu; Mathieu Erhardt; Ying Ruan; Wen-Hui Shen


    Agrobacterium-mediated transformation is widely used in transgenic plant englnserlng and has been proven to be a powerful tool for insertional mutagenesis of the plant genome.The transferred DNA (T-DNA) from Agrobacterlum is Integrated into the plant genome through illegitimate recombination between the T-DNA and the plant DNA.Contrasting to the canonical insertion,here we report on a locus showing a complex mutation associated with T-DNA insertion at the BRI 1 gene in Arabidopsis thaliana.We obtained a mutant line,named salade for its phenotype of dwarf stature and proliferating rosette,Molecular charactedzation of this mutant revealed that in addition to T-DNA a non.T.DNA-Iocalized transposon from bacteda was inserted in the Arabidopsis genome and that a region of more than 11.5 kb of the Arebidopsis genome was deleted at the insertion site.The deleted region contains the brassinosteroid receptor gene BRI 1 and the transcdption factor gene WRKY13.Our finding reveals non-canonical T-DNA insertion,implicating horizontal gene transfer and cautioning the use of T-DNA as mutagen in transgenic research.

  14. Engineering carpel-specific cold stress tolerance: a case study in Arabidopsis. (United States)

    Artlip, Timothy S; Wisniewski, Michael E; Takatsuji, Hiroshi; Bassett, Carole L


    Climate change predictions forecast an increase in early spring frosts that could result in severe damage to perennial crops. For example, the Easter freeze of April 2007 left several states in the United States reporting a complete loss of that year's peach crop. The most susceptible organ to early frost damage in fruit trees is the carpel, particularly during bloom opening. In this study, we explored the use of a carpel-specific promoter (ZPT2-10) from petunia (Petunia hybrida var. Mitchell) to drive expression of the peach dehydrin PpDhn1. In peach, this gene is exceptionally responsive to low temperature but has not been observed to be expressed in carpels. This study examined carpel-specific properties of a petunia promoter driving the expression of the GUS gene (uidA) in transgenic Arabidopsis flowers and developed a carpel-specific ion leakage test to assess freezing tolerance. A homozygous Arabidopsis line (line 1-20) carrying the petunia ZPT2-10 promoter::PpDhn1 construct was obtained and freezing tolerance in the transgenic line was compared with an untransformed control. Overexpression of PpDhn1 in line 1-20 provided as much as a 1.9°C increase in carpel freezing tolerance as measured by electrolyte leakage.

  15. Diurnal Regulation of the Brassinosteroid-Biosynthetic CPD Gene in Arabidopsis1[W (United States)

    Bancos, Simona; Szatmári, Anna-Mária; Castle, Julie; Kozma-Bognár, László; Shibata, Kyomi; Yokota, Takao; Bishop, Gerard J.; Nagy, Ferenc; Szekeres, Miklós


    Plant steroid hormones, brassinosteroids (BRs), are essential for normal photomorphogenesis. However, the mechanism by which light controls physiological functions via BRs is not well understood. Using transgenic plants carrying promoter-luciferase reporter gene fusions, we show that in Arabidopsis (Arabidopsis thaliana) the BR-biosynthetic CPD and CYP85A2 genes are under diurnal regulation. The complex diurnal expression profile of CPD is determined by dual, light-dependent, and circadian control. The severely decreased expression level of CPD in phytochrome-deficient background and the red light-specific induction in wild-type plants suggest that light regulation of CPD is primarily mediated by phytochrome signaling. The diurnal rhythmicity of CPD expression is maintained in brassinosteroid insensitive 1 transgenic seedlings, indicating that its transcriptional control is independent of hormonal feedback regulation. Diurnal changes in the expression of CPD and CYP85A2 are accompanied by changes of the endogenous BR content during the day, leading to brassinolide accumulation at the middle of the light phase. We also show that CPD expression is repressed in extended darkness in a BR feedback-dependent manner. In the dark the level of the bioactive hormone did not increase; therefore, our data strongly suggest that light also influences the sensitivity of plants to BRs. PMID:16531479

  16. Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis. (United States)

    Bancos, Simona; Szatmári, Anna-Mária; Castle, Julie; Kozma-Bognár, László; Shibata, Kyomi; Yokota, Takao; Bishop, Gerard J; Nagy, Ferenc; Szekeres, Miklós


    Plant steroid hormones, brassinosteroids (BRs), are essential for normal photomorphogenesis. However, the mechanism by which light controls physiological functions via BRs is not well understood. Using transgenic plants carrying promoter-luciferase reporter gene fusions, we show that in Arabidopsis (Arabidopsis thaliana) the BR-biosynthetic CPD and CYP85A2 genes are under diurnal regulation. The complex diurnal expression profile of CPD is determined by dual, light-dependent, and circadian control. The severely decreased expression level of CPD in phytochrome-deficient background and the red light-specific induction in wild-type plants suggest that light regulation of CPD is primarily mediated by phytochrome signaling. The diurnal rhythmicity of CPD expression is maintained in brassinosteroid insensitive 1 transgenic seedlings, indicating that its transcriptional control is independent of hormonal feedback regulation. Diurnal changes in the expression of CPD and CYP85A2 are accompanied by changes of the endogenous BR content during the day, leading to brassinolide accumulation at the middle of the light phase. We also show that CPD expression is repressed in extended darkness in a BR feedback-dependent manner. In the dark the level of the bioactive hormone did not increase; therefore, our data strongly suggest that light also influences the sensitivity of plants to BRs.

  17. Nematode neuropeptides as transgenic nematicides. (United States)

    Warnock, Neil D; Wilson, Leonie; Patten, Cheryl; Fleming, Colin C; Maule, Aaron G; Dalzell, Johnathan J


    Plant parasitic nematodes (PPNs) seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP) family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars.

  18. Hydration kinetics of transgenic soybeans

    Directory of Open Access Journals (Sweden)

    Aline Francielle Fracasso


    Full Text Available The kinetic and experimental analyses of the hydration process of transgenic soybeans (BRS 225 RR are provided. The importance of the hydration process consists of the grain texture modifications which favor grinding and extraction of soybeans. The soaking isotherms were obtained for four different temperatures. Results showed that temperature affected transgenic soybeans´ hydration rate and time. Moisture content d.b. of the soybeans increased from 0.12 ± 0.01 kg kg-1 to 1.45 ± 0.19 kg kg-1 during 270 min. of process. Two models were used to fit the kinetic curves: an empirical model developed by Peleg (1988 and a phenomenological one, proposed by Omoto et al. (2009. The two models adequately represented the hydration kinetics. Peleg model was applied to the experimental data and the corresponding parameters were obtained and correlated to temperature. The model by Omoto et al. (2009 showed a better statistical fitting. Although Ks was affected by temperature (Ks = 0.38079 exp (-2289.3 T-1, the equilibrium concentration remained practically unchanged.

  19. Thermodynamic and structural properties of tuber starches from transgenic potato plants grown in vitro and in vivo. (United States)

    Wasserman, Luybov A; Sergeev, Andrey I; Vasil'ev, Viktor G; Plashchina, Irina G; Aksenova, Nina P; Konstantinova, Tatyana N; Golyanovskaya, Svetlana A; Sergeeva, Lidiya I; Romanov, Georgy A


    Potato plants harboring Phytochrome B (PHYB) gene from Arabidopsis thaliana or rol genes from Agrobacterium rhizogenes were used to study the effect of transgene expression on structure and properties of starch in tubers. Thermodynamic characteristics of starch (melting temperature, enthalpy of melting, thickness of crystalline lamellae) were shown to be variable depending on the transgene expression and plant culturing mode: in vitro or in soil. The expression of rolB or rolC genes in in vitro cultured plants evoked opposite effects on starch melting temperature and crystalline lamellae thickness. AtPHYB or rolB expression in the soil-grown potato led to the formation of more defective or more ordered starch structures, respectively, in comparison with starches of the same lines grown in vitro. On the whole, our study revealed genotype-dependent differences between starches extracted from tubers of in vitro or in vivo grown plants.

  20. Establishment of multiple shoot clumps from maize(Zea mays L.) and regeneration of herbicide-resistant transgenic plantlets

    Institute of Scientific and Technical Information of China (English)

    李国圣; 张卿伟; 张举仁; 毕玉平; 单雷


    A kind of quick, efficient and season-free inducing embryoid and multiple shoot clumps system from shoot tip meristems that derived from elite inbreds of maize was established. The herbicide-resistant gene als(coding Acetolactate synthase) isolated from a mutant of Arabidopsis thaliana was transferred to tissue pieces of maize multiple shoot clumps by microprojectile bombardment. Herbicide-resistant tissue and regenerants were obtained through selections with herbicide chlorsulfuron. PCR analysis and Southern blot hybridization indicated that gene als has been transferred to some regenerants. The test of spraying chlorsulfuron displayed that the transgenic plantlets and R1 plants had favorable herbicide-resistant trait. We have established a new genotype-free system of maize which could rapidly and efficiently produce large quantities of transgenic plantlets.

  1. 3D Plant Cell Architecture of Arabidopsis thaliana (Brassicaceae Using Focused Ion Beam–Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)



    Full Text Available Premise of the study: Focused ion beam–scanning electron microscopy (FIB-SEM combines the ability to sequentially mill the sample surface and obtain SEM images that can be used to create 3D renderings with micron-level resolution. We have applied FIB-SEM to study Arabidopsis cell architecture. The goal was to determine the efficacy of this technique in plant tissue and cellular studies and to demonstrate its usefulness in studying cell and organelle architecture and distribution. Methods: Seed aleurone, leaf mesophyll, stem cortex, root cortex, and petal lamina from Arabidopsis were fixed and embedded for electron microscopy using protocols developed for animal tissues and modified for use with plant cells. Each sample was sectioned using the FIB and imaged with SEM. These serial images were assembled to produce 3D renderings of each cell type. Results: Organelles such as nuclei and chloroplasts were easily identifiable, and other structures such as endoplasmic reticula, lipid bodies, and starch grains were distinguishable in each tissue. Discussion: The application of FIB-SEM produced 3D renderings of five plant cell types and offered unique views of their shapes and internal content. These results demonstrate the usefulness of FIB-SEM for organelle distribution and cell architecture studies.

  2. [Progress in transgenic fish techniques and application]. (United States)

    Ye, Xing; Tian, Yuan-Yuan; Gao, Feng-Ying


    Transgenic technique provides a new way for fish breeding. Stable lines of growth hormone gene transfer carps, salmon and tilapia, as well as fluorescence protein gene transfer zebra fish and white cloud mountain minnow have been produced. The fast growth characteristic of GH gene transgenic fish will be of great importance to promote aquaculture production and economic efficiency. This paper summarized the progress in transgenic fish research and ecological assessments. Microinjection is still the most common used method, but often resulted in multi-site and multi-copies integration. Co-injection of transposon or meganuclease will greatly improve the efficiency of gene transfer and integration. "All fish" gene or "auto gene" should be considered to produce transgenic fish in order to eliminate misgiving on food safety and to benefit expression of the transferred gene. Environmental risk is the biggest obstacle for transgenic fish to be commercially applied. Data indicates that transgenic fish have inferior fitness compared with the traditional domestic fish. However, be-cause of the genotype-by-environment effects, it is difficult to extrapolate simple phenotypes to the complex ecological interactions that occur in nature based on the ecological consequences of the transgenic fish determined in the laboratory. It is critical to establish highly naturalized environments for acquiring reliable data that can be used to evaluate the environ-mental risk. Efficacious physical and biological containment strategies remain to be crucial approaches to ensure the safe application of transgenic fish technology.

  3. Positron emission tomography : measurement of transgene expression

    NARCIS (Netherlands)

    de Vries, EFJ; Vaalburg, W


    Noninvasive and repetitive imaging of transgene expression can play a pivotal role in the development of gene therapy strategies, as it offers investigators a means to determine the effectiveness of their gene transfection protocols. In the last decade, imaging of transgene expression using positron

  4. Transcription-dependent silencing of inducible convergent transgenes in transgenic mice

    Directory of Open Access Journals (Sweden)

    Calero-Nieto Fernando J


    Full Text Available Abstract Background Silencing of transgenes in mice is a common phenomenon typically associated with short multi-copy transgenes. We have investigated the regulation of the highly inducible human granulocyte-macrophage colony-stimulating-factor gene (Csf2 in transgenic mice. Results In the absence of any previous history of transcriptional activation, this transgene was expressed in T lineage cells at the correct inducible level in all lines of mice tested. In contrast, the transgene was silenced in a specific subset of lines in T cells that had encountered a previous episode of activation. Transgene silencing appeared to be both transcription-dependent and mediated by epigenetic mechanisms. Silencing was accompanied by loss of DNase I hypersensitive sites and inability to recruit RNA polymerase II upon stimulation. This pattern of silencing was reflected by increased methylation and decreased acetylation of histone H3 K9 in the transgene. We found that silenced lines were specifically associated with a single pair of tail-to-tail inverted repeated copies of the transgene embedded within a multi-copy array. Conclusions Our study suggests that epigenetic transgene silencing can result from convergent transcription of inverted repeats which can lead to silencing of an entire multi-copy transgene array. This mechanism may account for a significant proportion of the reported cases of transgene inactivation in mice.

  5. Ectopic expression of soybean GmKNT1 in Arabidopsis results in altered leaf morphology and flower identity

    Institute of Scientific and Technical Information of China (English)

    Jun Liu; Da Ha; Zongming Xie; Chunmei Wang; Huiwen Wang; Wanke Zhang; Jinsong Zhang; Shouyi Chen


    Plant morphology is specified by leaves and flowers, and the shoot apical meristem (SAM) defines the architecture of plant leaves and flowers. Here, we reported the characterization of a soybean KNOX gene GmKNT1, which was highly homologous to Arabidopsis STM. The GmKNT1 was strongly expressed in roots, flowers and developing seeds. Its expression could be induced by IAA, ABA and JA, but inhibited by GA or cytokinin. Staining of the transgenic plants overexpressing GmKNT1-GUS fusion protein revealed that the GmKNT1 was mainly expressed at lobe region, SAM of young leaves, sepal and carpel, not in seed and mature leaves. Scanning electron micros- copy (SEM) disclosed multiple changes in morphology of the epidermal cells and stigma. The transgenic Arabidopsis plants overexpress- ing the GmKNT1 showed small and lobed leaves, shortened internodes and small clustered inflorescence. The lobed leaves might result from the function of the meristems located at the boundary of the leaf. Compared with wild type plants, transgenic plants had higher ex- pression of the SAM-related genes including the CUP, WUS, CUC1, KNAT2 and KNAT6. These results indicated that the GmKNT1 could affect multiple aspects of plant growth and development by regulation of downstream genes expression.

  6. Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis. (United States)

    Wu, Bei; Li, Yun-He; Wu, Jian-Yong; Chen, Qi-Zhu; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin


    An auxin response factor 2 gene, MiARF2, was cloned in our previous study [1] from the cotyledon section of mango (Mangifera indica L. cv. Zihua) during adventitious root formation, which shares an 84% amino acid sequence similarity to Arabidopsis ARF2. This study was to examine the effects of over-expression of the full-length MiARF2 open reading frame on the root and hypocotyl growth in Arabidopsis. Phenotype analysis showed that the T(3) transgenic lines had about 20-30% reduction in the length of hypocotyls and roots of the seedlings in comparison with the wild-type. The transcription levels of ANT and ARGOS genes which play a role in controlling organ size and cell proliferation in the transgenic seedlings also decreased. Therefore, the inhibited root and hypocotyl growth in the transgenic seedlings may be associated with the down-regulated transcription of ANT and ARGOS by the over-expression of MiARF2. This study also suggests that although MiARF2 only has a single DNA-binding domain (DBD), it can function as other ARF-like proteins containing complete DBD, middle region (MR) and carboxy-terminal dimerization domain (CTD).

  7. Constitutive activation of AtMEK5, a MAPK kinase, induces salicylic acid-independent cell death in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    LIU Hongxia; WANG Ying; ZHOU Tianhong; SUN Yujing; LIU Guoqin; REN Dongtao


    AtMEK5DD is an active mutant of AtMEK5, a MAP kinase kinase in Arabidopsis. Induction of AtMEK5DD expression in transgenic plants leads to activation of 44 and 48 kD MAPKs and causes a rapid cell death. To compare the cell death induced by the expression of AtMEK5DD with the HR-cell death induced by avirulence pathogen infection, we analyzed the activation of downstream MAP Kinase and induction of PR genes expression in permanent transgenic Arabidopsis plants. In-gel kinase activity assay revealed that the infection of Pseudomonas syringae DC3000 harboring Avr Rpt2 gene also lead to activation of 44 and 48 kD MAPKs. PAL, PR1 and PR5 were strongly induced in plants undergoing HR-cell death caused by the infection of P. Syringae DC3000, while only the expression of PR5 was strongly induced in transgenic plants expressing AtMEK5DD protein. NahG protein in AtMEK5DD×NahG plants cannot suppress the cell death induced by AtMEK5DD. And AtMEK5DD protein expressed AtMEK5DD×NahG plants showed no significant change in salicylic acid (SA)level.All these suggest that the cell death induced by the activation of AtMEK5 is salicylic acid-independent.

  8. The Identification of Maize and Arabidopsis Type I FLAVONE SYNTHASEs Links Flavones with Hormones and Biotic Interactions. (United States)

    Falcone Ferreyra, María Lorena; Emiliani, Julia; Rodriguez, Eduardo José; Campos-Bermudez, Valeria Alina; Grotewold, Erich; Casati, Paula


    Flavones are a major group of flavonoids with diverse functions and are extensively distributed in land plants. There are two different classes of FLAVONE SYNTHASE (FNS) enzymes that catalyze the conversion of the flavanones into flavones. The FNSI class comprises soluble Fe(2+)/2-oxoglutarate-dependent dioxygenases, and FNSII enzymes are oxygen- and NADPH-dependent cytochrome P450 membrane-bound monooxygenases. Here, we describe the identification and characterization of FNSI enzymes from maize (Zea mays) and Arabidopsis (Arabidopsis thaliana). In maize, ZmFNSI-1 is expressed at significantly higher levels in silks and pericarps expressing the 3-deoxy flavonoid R2R3-MYB regulator P1, suggesting that ZmFNSI-1 could be the main enzyme for the synthesis of flavone O-glycosides. We also show here that DOWNY MILDEW RESISTANT6 (AtDMR6), the Arabidopsis homologous enzyme to ZmFNSI-1, has FNSI activity. While dmr6 mutants show loss of susceptibility to Pseudomonas syringae, transgenic dmr6 plants expressing ZmFNSI-1 show similar susceptibility to wild-type plants, demonstrating that ZmFNSI-1 can complement the mutant phenotype. AtDMR6 expression analysis showed a tissue- and developmental stage-dependent pattern, with high expression in cauline and senescing leaves. Finally, we show that Arabidopsis cauline and senescing leaves accumulate apigenin, demonstrating that Arabidopsis plants have an FNSI activity involved in the biosynthesis of flavones. The results presented here also suggest cross talk between the flavone and salicylic acid pathways in Arabidopsis; in this way, pathogens would induce flavones to decrease salicylic acid and, hence, increase susceptibility.

  9. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. (United States)

    Kim, Hyun Uk; Lee, Kyeong-Ryeol; Go, Young Sam; Jung, Jin Hee; Suh, Mi-Chung; Kim, Jong Bum


    Ricinoleic acid (12-hydroxy-octadeca-9-enoic acid) is a major unusual fatty acid in castor oil. This hydroxy fatty acid is useful in industrial materials. This unusual fatty acid accumulates in triacylglycerol (TAG) in the seeds of the castor bean (Ricinus communis L.), even though it is synthesized in phospholipids, which indicates that the castor plant has an editing enzyme, which functions as a phospholipid:diacylglycerol acyltransferase (PDAT) that is specific to ricinoleic acid. Transgenic plants containing fatty acid Δ12-hydroxylase encoded by the castor bean FAH12 gene produce a limited amount of hydroxy fatty acid, a maximum of around 17% of TAGs present in Arabidopsis seeds, and this unusual fatty acid remains in phospholipids of cell membranes in seeds. Identification of ricinoleate-specific PDAT from castor bean and manipulation of the phospholipid editing system in transgenic plants will enhance accumulation of the hydroxy fatty acid in transgenic seeds. The castor plant has three PDAT genes; PDAT1-1 and PDAT2 are homologs of PDAT, which are commonly found in plants; however, PDAT1-2 is newly grouped as a castor bean-specific gene. PDAT1-2 is expressed in developing seeds and localized in the endoplasmic reticulum, similar to FAH12, indicating its involvement in conversion of ricinoleic acid into TAG. PDAT1-2 significantly enhances accumulation of total hydroxy fatty acid up to 25%, with a significant increase in castor-like oil, 2-OH TAG, in seeds of transgenic Arabidopsis, which is an identification of the key gene for oilseed engineering in production of unusual fatty acids.

  10. Immunomodulation by the Pseudomonas syringae HopZ type III effector family in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jennifer D Lewis

    Full Text Available Pseudomonas syringae employs a type III secretion system to inject 20-30 different type III effector (T3SE proteins into plant host cells. A major role of T3SEs is to suppress plant immune responses and promote bacterial infection. The YopJ/HopZ acetyltransferases are a superfamily of T3SEs found in both plant and animal pathogenic bacteria. In P. syringae, this superfamily includes the evolutionarily diverse HopZ1, HopZ2 and HopZ3 alleles. To investigate the roles of the HopZ family in immunomodulation, we generated dexamethasone-inducible T3SE transgenic lines of Arabidopsis for HopZ family members and characterized them for immune suppression phenotypes. We show that all of the HopZ family members can actively suppress various facets of Arabidopsis immunity in a catalytic residue-dependent manner. HopZ family members can differentially suppress the activation of mitogen-activated protein (MAP kinase cascades or the production of reactive oxygen species, whereas all members can promote the growth of non-virulent P. syringae. Localization studies show that four of the HopZ family members containing predicted myristoylation sites are localized to the vicinity of the plasma membrane while HopZ3 which lacks the myristoylation site is at least partially nuclear localized, suggesting diversification of immunosuppressive mechanisms. Overall, we demonstrate that despite significant evolutionary diversification, all HopZ family members can suppress immunity in Arabidopsis.

  11. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis. (United States)

    Ghareeb, Hassan; Drechsler, Frank; Löfke, Christian; Teichmann, Thomas; Schirawski, Jan


    The biotrophic fungus Sporisorium reilianum causes head smut of maize (Zea mays) after systemic plant colonization. Symptoms include the formation of multiple female inflorescences at subapical nodes of the stalk because of loss of apical dominance. By deletion analysis of cluster 19-1, the largest genomic divergence cluster in S. reilianum, we identified a secreted fungal effector responsible for S. reilianum-induced loss of apical dominance, which we named SUPPRESSOR OF APICAL DOMINANCE1 (SAD1). SAD1 transcript levels were highly up-regulated during biotrophic fungal growth in all infected plant tissues. SAD1-green fluorescent protein fusion proteins expressed by recombinant S. reilianum localized to the extracellular hyphal space. Transgenic Arabidopsis (Arabidopsis thaliana)-expressing green fluorescent protein-SAD1 displayed an increased number of secondary rosette-leaf branches. This suggests that SAD1 manipulates inflorescence branching architecture in maize and Arabidopsis through a conserved pathway. Using a yeast (Saccharomyces cerevisiae) two-hybrid library of S. reilianum-infected maize tissues, we identified potential plant interaction partners that had a predicted function in ubiquitination, signaling, and nuclear processes. Presence of SAD1 led to an increase of the transcript levels of the auxin transporter PIN-FORMED1 in the root and a reduction of the branching regulator TEOSINTE BRANCHED1 in the stalk. This indicates a role of SAD1 in regulation of apical dominance by modulation of branching through increasing transcript levels of the auxin transporter PIN1 and derepression of bud outgrowth.

  12. Seed-Specific Overexpression of the Pyruvate Transporter BASS2 Increases Oil Content in Arabidopsis Seeds (United States)

    Lee, Eun-Jung; Oh, Minwoo; Hwang, Jae-Ung; Li-Beisson, Yonghua; Nishida, Ikuo; Lee, Youngsook


    Seed oil is important not only for human and animal nutrition, but also for various industrial applications. Numerous genetic engineering strategies have been attempted to increase the oil content per seed, but few of these strategies have involved manipulating the transporters. Pyruvate is a major source of carbon for de novo fatty acid biosynthesis in plastids, and the embryo's demand for pyruvate is reported to increase during active oil accumulation. In this study, we tested our hypothesis that oil biosynthesis could be boosted by increasing pyruvate flux into plastids. We expressed the known plastid-localized pyruvate transporter BILE ACID:SODIUM SYMPORTER FAMILY PROTEIN 2 (BASS2) under the control of a seed-specific soybean (Glycine max) glycinin-1 promoter in Arabidopsis thaliana. The resultant transgenic Arabidopsis plants (OEs), which expressed high levels of BASS2, produced seeds that were larger and heavier and contained 10–37% more oil than those of the wild type (WT), but were comparable to the WT seeds in terms of protein and carbohydrate contents. The total seed number did not differ significantly between the WT and OEs. Therefore, oil yield per plant was increased by 24–43% in the OE lines compared to WT. Taken together, our results demonstrate that seed-specific overexpression of the pyruvate transporter BASS2 promotes oil production in Arabidopsis seeds. Thus, manipulating the level of specific transporters is a feasible approach for increasing the seed oil content.

  13. Essential role of VIPP1 in chloroplast envelope maintenance in Arabidopsis. (United States)

    Zhang, Lingang; Kato, Yusuke; Otters, Stephanie; Vothknecht, Ute C; Sakamoto, Wataru


    VESICLE-INDUCING PROTEIN IN PLASTIDS1 (VIPP1), proposed to play a role in thylakoid biogenesis, is conserved in photosynthetic organisms and is closely related to Phage Shock Protein A (PspA), which is involved in plasma membrane integrity in Escherichia coli. This study showed that chloroplasts/plastids in Arabidopsis thaliana vipp1 knockdown and knockout mutants exhibit a unique morphology, forming balloon-like structures. This altered morphology, as well as lethality of vipp1, was complemented by expression of VIPP1 fused to green fluorescent protein (VIPP1-GFP). Several lines of evidence show that the balloon chloroplasts result from chloroplast swelling related to osmotic stress, implicating VIPP1 in the maintenance of plastid envelopes. In support of this, Arabidopsis VIPP1 rescued defective proton leakage in an E. coli pspA mutant. Microscopy observation of VIPP1-GFP in transgenic Arabidopsis revealed that VIPP1 forms large macrostructures that are integrated into various morphologies along the envelopes. Furthermore, live imaging revealed that VIPP1-GFP is highly mobile when chloroplasts are subjected to osmotic stress. VIPP1-GFP showed dynamic movement in the transparent area of spherical chloroplasts, as the fluorescent molecules formed filament-like structures likely derived from disassembly of the large VIPP1 complex. Collectively, our data demonstrate that VIPP1 is a multifunctional protein in chloroplasts that is critically important for envelope maintenance.

  14. Expression of human ARGONAUTE 2 inhibits endogenous microRNA activity in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ira eDeveson


    Full Text Available Plant and animal microRNA (miRNA pathways share many analogous components, the ARGONAUTE (AGO proteins being foremost among them. We sought to ascertain the degree of functional conservation shared by Homo sapiens ARGONAUTE 2 (HsAGO2 and Arabidopsis thaliana ARGONAUTE 1 (AtAGO1, which are the predominant AGO family members involved with miRNA activity in their respective species. Transgenic Arabidopsis plants expressing HsAGO2 were indistinguishable from counterparts over-expressing AtAGO1, each group exhibiting the morphological and molecular hallmarks of miRNA-pathway loss-of-function alleles. However, unlike AtAGO1, HsAGO2 was unable to rescue the ago1-27 allele. We conclude that, despite the evolutionary gulf between them, HsAGO2 is likely capable of interacting with some component/s of the Arabidopsis miRNA pathway, thereby perturbing its operation, although differences have arisen such that HsAGO2 alone is insufficient to confer efficient silencing of miRNA targets in planta.

  15. Mutational effects of γ-rays and carbon ion beams on Arabidopsis seedlings (United States)

    Yoshihara, Ryouhei; Nozawa, Shigeki; Hase, Yoshihiro; Narumi, Issay; Hidema, Jun; Sakamoto, Ayako N.


    To assess the mutational effects of radiation on vigorously proliferating plant tissue, the mutation spectrum was analyzed with Arabidopsis seedlings using the plasmid-rescue method. Transgenic plants containing the Escherichia coli rpsL gene were irradiated with γ-rays and carbon ion beams (320-MeV 12C6+), and mutations in the rpsL gene were analyzed. Mutant frequency increased significantly following irradiation by γ-rays, but not by 320-MeV 12C6+. Mutation spectra showed that both radiations increased the frequency of frameshifts and other mutations, including deletions and insertions, but only γ-rays increased the frequency of total base substitutions. These results suggest that the type of DNA lesions which cause base substitutions were less often induced by 320-MeV 12C6+ than by γ-rays in Arabidopsis seedlings. Furthermore, γ-rays never increased the frequencies of G:C to T:A or A:T to C:G transversions, which are caused by oxidized guanine; 320-MeV 12C6+, however, produced a slight increase in both transversions. Instead, γ-rays produced a significant increase in the frequency of G:C to A:T transitions. These results suggest that 8-oxoguanine has little effect on mutagenesis in Arabidopsis cells. PMID:23728320

  16. Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. (United States)

    Hewezi, Tarek; Howe, Peter J; Maier, Tom R; Hussey, Richard S; Mitchum, Melissa G; Davis, Eric L; Baum, Thomas J


    Cyst nematodes are sedentary plant parasites that cause dramatic cellular changes in the plant root to form feeding cells, so-called syncytia. 10A06 is a cyst nematode secretory protein that is most likely secreted as an effector into the developing syncytia during early plant parasitism. A homolog of the uncharacterized soybean cyst nematode (Heterodera glycines), 10A06 gene was cloned from the sugar beet cyst nematode (Heterodera schachtii), which is able to infect Arabidopsis (Arabidopsis thaliana). Constitutive expression of 10A06 in Arabidopsis affected plant morphology and increased susceptibility to H. schachtii as well as to other plant pathogens. Using yeast two-hybrid assays, we identified Spermidine Synthase2 (SPDS2), a key enzyme involved in polyamine biosynthesis, as a specific 10A06 interactor. In support of this protein-protein interaction, transgenic plants expressing 10A06 exhibited elevated SPDS2 mRNA abundance, significantly higher spermidine content, and increased polyamine oxidase (PAO) activity. Furthermore, the SPDS2 promoter was strongly activated in the nematode-induced syncytia, and transgenic plants overexpressing SPDS2 showed enhanced plant susceptibility to H. schachtii. In addition, in planta expression of 10A06 or SPDS2 increased mRNA abundance of a set of antioxidant genes upon nematode infection. These data lend strong support to a model in which the cyst nematode effector 10A06 exerts its function through the interaction with SPDS2, thereby increasing spermidine content and subsequently PAO activity. Increasing PAO activity results in stimulating the induction of the cellular antioxidant machinery in syncytia. Furthermore, we observed an apparent disruption of salicylic acid defense signaling as a function of 10A06. Most likely, increased antioxidant protection and interruption of salicylic acid signaling are key aspects of 10A06 function in addition to other physiological and morphological changes caused by altered polyamines

  17. A synthetic antimicrobial peptide BTD-S expressed in Arabidopsis thaliana confers enhanced resistance to Verticillium dahliae. (United States)

    Li, Feng; Shen, Hao; Wang, Ming; Fan, Kai; Bibi, Noreen; Ni, Mi; Yuan, Shuna; Wang, Xuede


    BTD-S is a synthetic non-cyclic θ-defensin derivative which was previously designed in our laboratory based on baboon θ-defensins (BTDs). It shows robust antimicrobial activity against economically important phytopathogen, Verticillium dahliae. Here, we deduced the coding nucleotide sequence of BTD-S and introduced the gene into wild-type (ecotype Columbia-0) Arabidopsis thaliana plants. Results demonstrated that BTD-S-transgenic lines displayed in bioassays inhibitory effects on the growth of V. dahliae in vivo and in vitro. Based on symptom severity, enhanced resistance was found in a survey of BTD-S-transgenic lines. Besides, crude protein extracts from root tissues of BTD-S-transformed plants significantly restricted the growth of fungal hyphae and the germination of conidia. Also, fungal biomass over time determined by real-time PCR demonstrated the overgrowth of V. dahliae in wild-type plants 2-3 weeks after inoculation, while almost no fungal DNA was detected in aerial tissues of their transgenic progenitors. The result suggested that fungus failed to invade and progress acropetally up to establish a systemic infection in BTD-S-transgenic plants. Moreover, the assessment of basal defense responses was performed in the leaves of WT and BTD-S-transgenic plants. The mitigated oxidative stress and low antioxidase level in BTD-S-transgenic plants revealed that BTD-S acts via permeabilizing target microbial membranes, which is in a category different from hypersensitive response-dependent defense. Taken together, our results demonstrate that BTD-S is a promising gene to be explored for transgenic engineering for plant protection against Verticillium wilt.

  18. Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum. (United States)

    Khoudi, Habib; Maatar, Yafa; Brini, Faïçal; Fourati, Amine; Ammar, Najoua; Masmoudi, Khaled


    Phosphogypsum (PG) is a by-product of the phosphorus-fertiliser industry and represents an environmental concern since it contains pollutants such as cadmium (Cd). We have recently shown that the overexpression of a proton pump gene (TaVP1) in transgenic tobacco (Nicotiana tabacum) led to an enhanced Cd tolerance and accumulation. The aim of this study was to evaluate the potential of transgenic Arabidopsis thaliana plants harbouring the TaVP1 gene to phytoremediate phosphogypsum. A pot experiment was carried out under greenhouse conditions. Transgenic A. thaliana plants harbouring the TaVP1 gene were grown on various substrates containing phosphogypsum (0, 25, 50 and 100 %) for 40 days. At the end of the growth period, we examined the growth (germination, root length, fresh weight) and physiological parameters (chlorophyll and protein contents, catalase activity and proteolysis) as well as the cadmium, Mg, Ca, and P contents of the A. thaliana plants. In order to evaluate Cd tolerance of the A. thaliana lines harbouring the TaVP1 gene, an in vitro experiment was also carried out. One week-old seedlings were transferred to Murashige and Skoog agar plates containing various concentrations of cadmium; the germination, total leaf area and root length were determined. The growth and physiological parameters of all A. thaliana plants were significantly altered by PG. The germination capacity, root growth and biomass production of wild-type (WT) plants were more severely inhibited by PG compared with the TaVP1 transgenic A. thaliana lines. In addition, TaVP1 transgenic A. thaliana plants maintained a higher antioxidant capacity than the WT. Interestingly, elemental analysis of leaf material derived from plants grown on PG revealed that the transgenic A. thaliana line accumulated up to ten times more Cd than WT. Despite its higher Cd content, the transgenic A. thaliana line performed better than the WT counterpart. In vitro evaluation of Cd tolerance showed that TaVP1

  19. An International Bioinformatics Infrastructure to Underpin the Arabidopsis Community (United States)

    The future bioinformatics needs of the Arabidopsis community as well as those of other scientific communities that depend on Arabidopsis resources were discussed at a pair of recent meetings held by the Multinational Arabidopsis Steering Committee (MASC) and the North American Arabidopsis Steering C...

  20. A Cre/loxP-mediated self-activating gene excision system to produce marker gene free transgenic soybean plants. (United States)

    Li, Zhongsen; Xing, Aiqiu; Moon, Bryan P; Burgoyne, Susan A; Guida, Anthony D; Liang, Huiling; Lee, Catharina; Caster, Cheryl S; Barton, Joanne E; Klein, Theodore M; Falco, Saverio C


    Marker-gene-free transgenic soybean plants were produced by isolating a developmentally regulated embryo-specific gene promoter, app1, from Arabidopsis and developing a self-activating gene excision system using the P1 bacteriophage Cre/loxP recombination system. To accomplish this, the Cre recombinase gene was placed under control of the app1 promoter and, together with a selectable marker gene (hygromycin phosphotransferase), were cloned between two loxP recombination sites. This entire sequence was then placed between a constitutive promoter and a coding region for either beta-glucuronidase (Gus) or glyphosate acetyltransferase (Gat). Gene excision would remove the entire sequence between the two loxP sites and bring the coding region to the constitutive promoter for expression. Using this system marker gene excision occurred in over 30% of the stable transgenic events as indicated by the activation of the gus reporter gene or the gat gene in separate experiments. Transgenic plants with 1 or 2 copies of a functional excision-activated gat transgene and without any marker gene were obtained in T0 or T1 generation. This demonstrates the feasibility of using developmentally controlled promoters to mediate marker excision in soybean.

  1. Arabidopsis CDS blastp result: AK240652 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240652 J023098G11 At5g63090.2 68418.m07919 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 1e-13 ...

  2. Arabidopsis CDS blastp result: AK241761 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241761 J065205C18 At5g63090.1 68418.m07918 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 5e-32 ...

  3. Arabidopsis CDS blastp result: AK240652 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240652 J023098G11 At5g63090.1 68418.m07918 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 1e-13 ...

  4. Arabidopsis CDS blastp result: AK240652 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240652 J023098G11 At5g63090.4 68418.m07921 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 1e-13 ...

  5. Arabidopsis CDS blastp result: AK241761 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241761 J065205C18 At5g63090.3 68418.m07920 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 5e-32 ...

  6. Arabidopsis CDS blastp result: AK241761 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241761 J065205C18 At5g63090.2 68418.m07919 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 5e-32 ...

  7. Arabidopsis CDS blastp result: AK241761 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241761 J065205C18 At5g63090.4 68418.m07921 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 5e-32 ...

  8. Arabidopsis CDS blastp result: AK240652 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240652 J023098G11 At5g63090.3 68418.m07920 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 1e-13 ...

  9. Arabidopsis CDS blastp result: AK105527 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105527 001-127-G05 At5g63090.4 LOB domain protein / lateral organ boundaries prot...ein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 3e-52 ...

  10. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics (United States)

    Zhang, Xiaorong


    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  11. Arabidopsis CDS blastp result: AK240730 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240730 J043030K09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 2e-11 ...

  12. Arabidopsis CDS blastp result: AK288052 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288052 J075151I09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 6e-14 ...

  13. Arabidopsis CDS blastp result: AK240911 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240911 J065037E05 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 4e-22 ...

  14. Arabidopsis CDS blastp result: AK241119 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241119 J065094C22 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 2e-13 ...

  15. Arabidopsis CDS blastp result: AK243149 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243149 J100032I21 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 7e-12 ...

  16. Arabidopsis CDS blastp result: AK241581 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241581 J065181K09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 4e-15 ...

  17. Arabidopsis CDS blastp result: AK287479 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287479 J043023O14 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 1e-17 ...

  18. Reference: 631 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ggest that atRZ-1a has a negative impact on seed germination and seedling growth of Arabidopsis under salt o...binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thali

  19. Transgenerational stress memory is not a general response in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ales Pecinka

    Full Text Available Adverse conditions can trigger DNA damage as well as DNA repair responses in plants. A variety of stress factors are known to stimulate homologous recombination, the most accurate repair pathway, by increasing the concentration of necessary enzymatic components and the frequency of events. This effect has been reported to last into subsequent generations not exposed to the stress. To establish a basis for a genetic analysis of this transgenerational stress memory, a broad range of treatments was tested for quantitative effects on homologous recombination in the progeny. Several Arabidopsis lines, transgenic for well-established recombination traps, were exposed to 10 different physical and chemical stress treatments, and scored for the number of somatic homologous recombination (SHR events in the treated generation as well as in the two subsequent generations that were not treated. These numbers were related to the expression level of genes involved in homologous recombination and repair. SHR was enhanced after the majority of treatments, confirming previous data and adding new effective stress types, especially interference with chromatin. Compounds that directly modify DNA stimulated SHR to values exceeding previously described induction rates, concomitant with an induction of genes involved in SHR. In spite of the significant stimulation in the stressed generations, the two subsequent non-treated generations only showed a low and stochastic increase in SHR that did not correlate with the degree of stimulation in the parental plants. Transcripts coding for SHR enzymes generally returned to pre-treatment levels in the progeny. Thus, transgenerational effects on SHR frequency are not a general response to abiotic stress in Arabidopsis and may require special conditions.

  20. Small RNA-directed epigenetic natural variation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jixian Zhai


    Full Text Available Progress in epigenetics has revealed mechanisms that can heritably regulate gene function independent of genetic alterations. Nevertheless, little is known about the role of epigenetics in evolution. This is due in part to scant data on epigenetic variation among natural populations. In plants, small interfering RNA (siRNA is involved in both the initiation and maintenance of gene silencing by directing DNA methylation and/or histone methylation. Here, we report that, in the model plant Arabidopsis thaliana, a cluster of approximately 24 nt siRNAs found at high levels in the ecotype Landsberg erecta (Ler could direct DNA methylation and heterochromatinization at a hAT element adjacent to the promoter of FLOWERING LOCUS C (FLC, a major repressor of flowering, whereas the same hAT element in ecotype Columbia (Col with almost identical DNA sequence, generates a set of low abundance siRNAs that do not direct these activities. We have called this hAT element MPF for Methylated region near Promoter of FLC, although de novo methylation triggered by an inverted repeat transgene at this region in Col does not alter its FLC expression. DNA methylation of the Ler allele MPF is dependent on genes in known silencing pathways, and such methylation is transmissible to Col by genetic crosses, although with varying degrees of penetrance. A genome-wide comparison of Ler and Col small RNAs identified at least 68 loci matched by a significant level of approximately 24 nt siRNAs present specifically in Ler but not Col, where nearly half of the loci are related to repeat or TE sequences. Methylation analysis revealed that 88% of the examined loci (37 out of 42 were specifically methylated in Ler but not Col, suggesting that small RNA can direct epigenetic differences between two closely related Arabidopsis ecotypes.

  1. Stability of monocentric and dicentric ring minichromosomes in Arabidopsis. (United States)

    Yokota, Etsuko; Shibata, Fukashi; Nagaki, Kiyotaka; Murata, Minoru


    A dicentric ring minichromosome (miniδ) was identified in transgenic Arabidopsis thaliana and added to a wild type as a supernumerary chromosome. This line is relatively stable and has been maintained for generations, notwithstanding its ring and dicentric structure. To determine the mechanism for stable transmission of miniδ, the structure and behavior of two new types of ring minichromosomes (miniδ1 and miniδ1-1) derived from miniδ were investigated. Fluorescence in situ hybridization analysis revealed that miniδ1 is dicentric just like miniδ, whereas miniδ1-1 is monocentric. The estimated sizes of miniδ1 and miniδ1-1 were 3.8~5.0 and 1.7 Mb, respectively. The sizes of the two centromeres on miniδ1 were identical (ca. 270 kb) and similar to that of miniδ1-1 (ca. 250 kb). Miniδ1 was relatively stable during mitosis and meiosis, as is miniδ, whereas miniδ1-1 was unstable during mitosis, and the number of minichromosomes per cell varied. This possibly resulted from misdivision caused by a short centromere on monocentric miniδ1-1. Transmission through the female was quite limited for all three ring minichromosomes (0-3.2%), whereas that through the male was relatively high (15.4-27.3%) compared with that of other supernumerary chromosomes in Arabidopsis. Ring structure without telomeres itself seems not to limit the female transmission.

  2. Protein Geranylgeranyltransferase I Is Involved in Specific Aspects of Abscisic Acid and Auxin Signaling in Arabidopsis1 (United States)

    Johnson, Cynthia D.; Chary, S. Narasimha; Chernoff, Ellen A.; Zeng, Qin; Running, Mark P.; Crowell, Dring N.


    Arabidopsis (Arabidopsis thaliana) mutants lacking a functional ERA1 gene, which encodes the β-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects that establish roles for protein prenylation in abscisic acid (ABA) signaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsis GGB gene, which encodes the β-subunit of protein geranylgeranyltransferase type I (PGGT I). Stomatal apertures of ggb plants were smaller than those of wild-type plants at all concentrations of ABA tested, suggesting that PGGT I negatively regulates ABA signaling in guard cells. However, germination of ggb seeds in response to ABA was similar to the wild type. Lateral root formation in response to exogenous auxin was increased in ggb seedlings compared to the wild type, but no change in auxin inhibition of primary root growth was observed, suggesting that PGGT I is specifically involved in negative regulation of auxin-induced lateral root initiation. Unlike era1 mutants, ggb mutants exhibited no obvious developmental phenotypes. However, era1 ggb double mutants exhibited more severe developmental phenotypes than era1 mutants and were indistinguishable from plp mutants lacking the shared α-subunit of PFT and PGGT I. Furthermore, overexpression of GGB in transgenic era1 plants partially suppressed the era1 phenotype, suggesting that the relatively weak phenotype of era1 plants is due to partial redundancy between PFT and PGGT I. These results are discussed in the context of Arabidopsis proteins that are putative substrates of PGGT I. PMID:16183844

  3. The interconversion of UDP-arabinopyranose and UDP-arabinofuranose is indispensable for plant development in Arabidopsis. (United States)

    Rautengarten, Carsten; Ebert, Berit; Herter, Thomas; Petzold, Christopher J; Ishii, Tadashi; Mukhopadhyay, Aindrila; Usadel, Björn; Scheller, Henrik Vibe


    L-Ara, an important constituent of plant cell walls, is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. Nucleotide sugar mutases have been demonstrated to interconvert UDP-Larabinopyranose (UDP-Arap) and UDP-L-arabinofuranose (UDP-Araf) in rice (Oryza sativa). These enzymes belong to a small gene family encoding the previously named Reversibly Glycosylated Proteins (RGPs). RGPs are plant-specific cytosolic proteins that tend to associate with the endomembrane system. In Arabidopsis thaliana, the RGP protein family consists of five closely related members. We characterized all five RGPs regarding their expression pattern and subcellular localizations in transgenic Arabidopsis plants. Enzymatic activity assays of recombinant proteins expressed in Escherichia coli identified three of the Arabidopsis RGP protein family members as UDP-L-Ara mutases that catalyze the formation of UDP-Araf from UDP-Arap. Coimmunoprecipitation and subsequent liquid chromatography-electrospray ionization-tandem mass spectrometry analysis revealed a distinct interaction network between RGPs in different Arabidopsis organs. Examination of cell wall polysaccharide preparations from RGP1 and RGP2 knockout mutants showed a significant reduction in total L-Ara content (12–31%) compared with wild-type plants. Concomitant downregulation of RGP1 and RGP2 expression results in plants almost completely deficient in cell wall–derived L-Ara and exhibiting severe developmental defects.

  4. COMPANION ANIMALS SYMPOSIUM: Rendered ingredients significantly influence sustainability, quality, and safety of pet food. (United States)

    Meeker, D L; Meisinger, J L


    The rendering industry collects and safely processes approximately 25 million t of animal byproducts each year in the United States. Rendering plants process a variety of raw materials from food animal production, principally offal from slaughterhouses, but include whole animals that die on farms or in transit and other materials such as bone, feathers, and blood. By recycling these byproducts into various protein, fat, and mineral products, including meat and bone meal, hydrolyzed feather meal, blood meal, and various types of animal fats and greases, the sustainability of food animal production is greatly enhanced. The rendering industry is conscious of its role in the prevention of disease and microbiological control and providing safe feed ingredients for livestock, poultry, aquaculture, and pets. The processing of otherwise low-value OM from the livestock production and meat processing industries through rendering drastically reduces the amount of waste. If not rendered, biological materials would be deposited in landfills, burned, buried, or inappropriately dumped with large amounts of carbon dioxide, ammonia, and other compounds polluting air and water. The majority of rendered protein products are used as animal feed. Rendered products are especially valuable to the livestock and pet food industries because of their high protein content, digestible AA levels (especially lysine), mineral availability (especially calcium and phosphorous), and relatively low cost in relation to their nutrient value. The use of these reclaimed and recycled materials in pet food is a much more sustainable model than using human food for pets.

  5. Three-dimensional rendering of segmented object using matlab - biomed 2010. (United States)

    Anderson, Jeffrey R; Barrett, Steven F


    The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.

  6. Cloning of a Vacuolar H+-pyrophosphatase Gene from the Halophyte Suaeda corniculata whose Heterologous Overexpression Improves Salt,Saline-alkali and Drought Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Liang Liu; Ying Wang; Nan Wana; Yuan-Yuan Dong; Xiu-Duo Fan; Xiu-Ming Liu; Jing Yang


    Salt,saline-alkali conditions,and drought are major environmental factors limiting plant growth and productivity.The vacuolar H+-translocating inorganic pyrophosphatase (V-H+-PPase) is an electrogenic proton pump that translocates protons into vacuoles in plant cells.Expression of V-H+-PPase increases in plants under a number of abiotic stresses,and is thought to have an important role in adaptation to abiotic stress.In this work,we report the isolation and characterization of the gene,ScVP,encoding a vacuolar inorganic pyrophosphatase (V-H+-PPase) from the halophyte,Suaeda corniculata.Semiquantitative reverse transcription-polymerase chain reaction analysis showed that ScVP was induced in roots,stems and leaves under treatment with salt,saline-alkali and drought.Compared with wild-type (WT) Arabidopsis,transgenic plants overexpressing ScVP accumulated more Na+ in leaves and roots,and showed increased tolerance to high salinity,saline-alkali and drought stresses.The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under the abiotic stresses.The root length of transgenic plants under salt stress was longer than that of WT plants.Furthermore,the rate of water loss during drought stress was higher in WT than in transgenic plants.Collectively,these results indicate that ScVP plays an important role in plant tolerance to salt,saline-alkali and drought stress.

  7. Selection of Arabidopsis mutants overexpressing genes driven by the promoter of an auxin-inducible glutathione S-transferase gene. (United States)

    van der Kop, D A; Schuyer, M; Pinas, J E; van der Zaal, B J; Hooykaas, P J


    Transgenic arabidopsis plants were isolated that contained a T-DNA construct in which the promoter of an auxin-inducible glutathione S-transferase (GST) gene from tobacco was fused to the kanamycin resistance (nptII) as well as to the beta-glucuronidase (gusA) reporter gene. Subsequently, seeds were treated with EMS to obtain mutants in which both reporter gene fusions were up-regulated. Northern analysis showed that the mRNA level of a related, endogenous auxin-inducible GST gene of Arabidopsis was increased in some of these mutants as well. Two of the gup (GST up-regulated) mutants were characterized in more detail and roughly mapped. Both had epinastic cotyledons and leaves, a phenotype that turned out to be linked to the gup mutation.

  8. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy (United States)

    Luna, Aderval S.; da Silva, Arnaldo P.; Pinho, Jéssica S. A.; Ferré, Joan; Boqué, Ricard

    Near infrared (NIR) spectroscopy and multivariate classification were applied to discriminate soybean oil samples into non-transgenic and transgenic. Principal Component Analysis (PCA) was applied to extract relevant features from the spectral data and to remove the anomalous samples. The best results were obtained when with Support Vectors Machine-Discriminant Analysis (SVM-DA) and Partial Least Squares-Discriminant Analysis (PLS-DA) after mean centering plus multiplicative scatter correction. For SVM-DA the percentage of successful classification was 100% for the training group and 100% and 90% in validation group for non transgenic and transgenic soybean oil samples respectively. For PLS-DA the percentage of successful classification was 95% and 100% in training group for non transgenic and transgenic soybean oil samples respectively and 100% and 80% in validation group for non transgenic and transgenic respectively. The results demonstrate that NIR spectroscopy can provide a rapid, nondestructive and reliable method to distinguish non-transgenic and transgenic soybean oils.

  9. Photometric and Colorimeric Comparison of HDR and Spctrally Resolved Rendering Images

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Soreze, Thierry Silvio Claude; Thorseth, Anders


    used a scene similar to the cornel box (CUPCG, 1998) but with a spectrally controllable LED light source, neutral grey walls and a colour checker board for colorimetric assessments. The luminance value and colour information of the HDR camera and rendering images are used for the comparison....... The spectral irradiances of the light source were measured for two lighting scenarios: low and high correlated colour temperature (CCT) white lighting conditions for the modelling of the light source. Based on these measurements, we have conducted spectrally resolved renderings with a spectral renderer, Ocean...

  10. TractRender: a new generalized 3D medical image visualization and output platform (United States)

    Hwang, Darryl H.; Tsao, Sinchai; Gajawelli, Niharika; Law, Meng; Lepore, Natasha


    Diffusion MRI allows us not only voxelized diffusion characteristics but also the potential to delineate neuronal fiber path through tractography. There is a dearth of flexible open source tractography software programs for visualizing these complicated 3D structures. Moreover, rendering these structures using various shading, lighting, and representations will result in vastly different graphical feel. In addition, the ability to output these objects in various formats increases the utility of this platform. We have created TractRender that leverages openGL features through Matlab, allowing for maximum ease of use but still maintain the flexibility of custom scene rendering.

  11. Methods for Quantifying and Characterizing Errors in Pixel-Based 3D Rendering. (United States)

    Hagedorn, John G; Terrill, Judith E; Peskin, Adele P; Filliben, James J


    We present methods for measuring errors in the rendering of three-dimensional points, line segments, and polygons in pixel-based computer graphics systems. We present error metrics for each of these three cases. These methods are applied to rendering with OpenGL on two common hardware platforms under several rendering conditions. Results are presented and differences in measured errors are analyzed and characterized. We discuss possible extensions of this error analysis approach to other aspects of the process of generating visual representations of synthetic scenes.

  12. Spatial sound rendering of a playing xylophone for the telepresence application

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Hoffmann, Pablo F.


    xylophone sound rendering is proposed. The recorded signal is processed in order to define multiple virtual sources which are spatially distributed for the auditory width representation of the virtual xylophone. The results of the analyzed recording and rendering techniques are compared in terms...... played at the student's location is required at the teacher’s site. This paper presents a comparison of different recording techniques for a spatial xylophone sound rendering, focusing on the horizontal width of the xylophone auditory image. The directivity pattern of the xylophone was measured...

  13. Pleiotropic effects of the wheat dehydrin DHN-5 on stress responses in Arabidopsis. (United States)

    Brini, Faïçal; Yamamoto, Akiko; Jlaiel, Lobna; Takeda, Shin; Hobo, Tokunori; Dinh, Huy Q; Hattori, Tsukaho; Masmoudi, Khaled; Hanin, Moez


    We have previously reported that transgenic Arabidopsis plants overexpressing the wheat dehydrin DHN-5 show enhanced tolerance to osmotic stresses. In order to understand the mechanisms through which DHN-5 exerts this effect, we performed transcriptome profiling using the Affymetrix ATH1 microarray. Our data show an altered expression of 77 genes involved mainly in transcriptional regulation, cellular metabolism, stress tolerance and signaling. Among the up-regulated genes, we identified those which are known to be stress-related genes. Several late embryogenesis abundant (LEA) genes, ABA/stress-related genes (such as RD29B) and those involved in pathogen responses (PR genes) are among the most up-regulated genes. In addition, the MDHAR gene involved in the ascorbate biosynthetic pathway was also up-regulated. This up-regulation was correlated with higher ascorbate content in two dehydrin transgenic lines. In agreement with this result and as ascorbate is known to be an antioxidant, we found that both transgenic lines show enhanced tolerance to oxidative stress caused by H₂O₂. On the other hand, multiple types of transcription factors constitute the largest group of the down-regulated genes. Moreover, three members of the jasmonate-ZIM domain (JAZ) proteins which are negative regulators of jasmonate signaling were severely down-regulated. Interestingly, the dehydrin-overexpressing lines exhibit less sensitivity to jasmonate than wild-type plants and changes in regulation of jasmonate-responsive genes, in a manner similar to that in the jasmonate-insensitive jai3-1 mutant. Altogether, our data unravel the potential pleiotropic effects of DHN-5 on both abiotic and biotic stress responses in Arabidopsis.

  14. MicroRNA (miR396) negatively regulates expression of ceramidase-like genes in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Dongmei Liu; Diqiu Yu


    MicroRNAs (miRNAs) are 21-23 nucleotide (nt), endogenous RNAs that regulate gene expression by targeting mRNAs for direct cleavage or translational repression in plants. In Arabidopsis, miR396 is encoded by two different loci (MIR396a and M1R396b) and sequence analysis suggests it may target three ceramidase-like genes (Atceramidase-like 1, Atceramidase-like 2 and Atceramidase-like 3). To demonstrate the biological function of miR396, we inserted the synthetic precursors, MIR396a or MIR396b, under the control of the enhanced cauliflower mosaic virus (CaMV) 35S promoter, into a plant transformation vector (pOCA30) and transformed the con-structs into Arabidopsis. The promoter increased miR396 levels by more than 2-fold, indicating appropriate maturation of the synthetic precursor MIR396a or MIR396b transcript in transgenic plants. Microarray analysis showed that the transcript levels of two ceramidase-like genes (Atceramidase-like 1, Atceramidase-like 2) were decreased by more than 2-fold and lactosylceramide 4-α-galactosyltransferase increased by more than 2-fold in transgenic plants compared with the empty vector-transformed plants. Northern blot analysis showed that the mRNA levels of the two ceramidase-like genes were significantly reduced in transgenic plants. These results indicated that miR396 probably plays a crucial role in the ceramide metabolism pathway by negatively regulating the expression of ceramidase-like genes in Arabidopsis.

  15. Generation of red fluorescent protein transgenic dogs. (United States)

    Hong, So Gun; Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Park, Jung Eun; Kang, Jung Taek; Koo, Ok Jae; Kim, Teoan; Kwon, Mo Sun; Koo, Bon Chul; Ra, Jeong Chan; Kim, Dae Yong; Ko, CheMyong; Lee, Byeong Chun


    Dogs (Canis familiaris) share many common genetic diseases with humans and development of disease models using a transgenic approach has long been awaited. However, due to the technical difficulty in obtaining fertilizable eggs and the unavailability of embryonic stem cells, no transgenic dog has been generated. Canine fetal fibroblasts were stably transfected with a red fluorescent protein (RFP) gene-expressing construct using retrovirus gene delivery method. Somatic cell nuclear transfer was then employed to replace the nucleus of an oocyte with the nucleus of the RFP-fibroblasts. Using this approach, we produced the first generation of transgenic dogs with four female and two male expressing RFP.

  16. Genotype-independent transmission of transgenic fluorophore protein by boar spermatozoa.

    Directory of Open Access Journals (Sweden)

    Wiebke Garrels

    Full Text Available Recently, we generated transposon-transgenic boars (Sus scrofa, which carry three monomeric copies of a fluorophore marker gene. Amazingly, a ubiquitous fluorophore expression in somatic, as well as in germ cells was found. Here, we characterized the prominent fluorophore load in mature spermatozoa of these animals. Sperm samples were analyzed for general fertility parameters, sorted according to X and Y chromosome-bearing sperm fractions, assessed for potential detrimental effects of the reporter, and used for inseminations into estrous sows. Independent of their genotype, all spermatozoa were uniformly fluorescent with a subcellular compartmentalization of the fluorophore protein in postacrosomal sheath, mid piece and tail. Transmission of the fluorophore protein to fertilized oocytes was shown by confocal microscopic analysis of zygotes. The monomeric copies of the transgene segregated during meiosis, rendering a certain fraction of the spermatozoa non-transgenic (about 10% based on analysis of 74 F1 offspring. The genotype-independent transmission of the fluorophore protein by spermatozoa to oocytes represents a non-genetic contribution to the mammalian embryo.

  17. The Arabidopsis EDR1 Protein Kinase Negatively Regulates the ATL1 E3 Ubiquitin Ligase to Suppress Cell Death[W (United States)

    Serrano, Irene; Gu, Yangnan; Qi, Dong; Dubiella, Ullrich


    Loss-of-function mutations in the Arabidopsis thaliana ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced programmed cell death under a variety of abiotic and biotic stress conditions. All edr1 mutant phenotypes can be suppressed by missense mutations in the KEEP ON GOING gene, which encodes a trans-Golgi network/early endosome (TGN/EE)-localized E3 ubiquitin ligase. Here, we report that EDR1 interacts with a second E3 ubiquitin ligase, ARABIDOPSIS TOXICOS EN LEVADURA1 (ATL1), and negatively regulates its activity. Overexpression of ATL1 in transgenic Arabidopsis induced severe growth inhibition and patches of cell death, while transient overexpression in Nicotiana benthamiana leaves induced cell death and tissue collapse. The E3 ligase activity of ATL1 was required for both of these processes. Importantly, we found that ATL1 interacts with EDR1 on TGN/EE vesicles and that EDR1 suppresses ATL1-mediated cell death in N. benthamiana and Arabidopsis. Lastly, knockdown of ATL1 expression suppressed cell death phenotypes associated with the edr1 mutant and made Arabidopsis hypersusceptible to powdery mildew infection. Taken together, our data indicate that ATL1 is a positive regulator of programmed cell death and EDR1 negatively regulates ATL1 activity at the TGN/EE and thus controls stress responses initiated by ATL1-mediated ubiquitination events. PMID:25398498

  18. Flight-appropriate 3D Terrain-rendering Toolkit for Synthetic Vision Project (United States)

    National Aeronautics and Space Administration — The TerraBlocksTM 3D terrain data format and terrain-block-rendering methodology provides an enabling basis for successful commercial deployment of...

  19. Hybrid Rendering Architecture for Realtime and Photorealistic Simulation of Robot-Assisted Surgery. (United States)

    Müller, Sebastijan; Bihlmaier, Andreas; Irgenfried, Stephan; Wörn, Heinz


    In this paper we present a method for combining realtime and non-realtime (photorealistic) rendering with open source software. Realtime rendering provides sufficient realism and is a good choice for most simulation and regression testing purposes in robot-assisted surgery. However, for proper end-to-end testing of the system, some computer vision algorithms require high fidelity images that capture more minute details of the real scene. One of the central practical obstacles to combining both worlds in a uniform way is creating models that are suitable for both kinds of rendering paradigms. We build a modeling pipeline using open source tools that builds on established, open standards for data exchange. The result is demonstrated through a unified model of the medical OpenHELP phantom used in the Gazebo robotics simulator, which can at the same time be rendered with more visual fidelity in the Cycles raytracer.

  20. Flight-appropriate 3D Terrain-rendering Toolkit for Synthetic Vision Project (United States)

    National Aeronautics and Space Administration — TerraMetrics proposes an SBIR Phase I R/R&D effort to develop a key 3D terrain-rendering technology that provides the basis for successful commercial deployment...