WorldWideScience

Sample records for arabidopsis mutants lacking

  1. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex.

    Science.gov (United States)

    Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-05-01

    The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific 'carbonic anhydrase domain' of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe 'life without complex I'.

  2. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2006-08-01

    Non-phosphorylating glyceraldehyde- 3-phosphate dehydrogenase (NP-GAPDH) is a conserved cytosolic protein found in higher plants. In photosynthetic cells, the enzyme is involved in a shuttle transfer mechanism to export NADPH from the chloroplast to the cytosol. To investigate the role of this enzyme in plant tissues, we characterized a mutant from Arabidopsis thaliana having an insertion at the NP-GAPDH gene locus. The homozygous mutant was determined to be null respect to NP-GAPDH, as it exhibited undetectable levels of both transcription of NP-GAPDH mRNA, protein expression and enzyme activity. Transcriptome analysis demonstrated that the insertion mutant plant shows altered expression of several enzymes involved in carbohydrate metabolism. Significantly, cytosolic phosphorylating (NAD-dependent) glyceraldehyde-3-phosphate dehydrogenase mRNA levels are induced in the mutant, which correlates with an increase in enzyme activity. mRNA levels and enzymatic activity of glucose-6-phosphate dehydrogenase were also elevated, correlating with an increase in NADPH concentration. Moreover, increased ROS levels were measured in the mutant plants. Down-regulation of several glycolytic and photosynthetic genes suggests that NP-GAPDH is important for the efficiency of both metabolic processes. The results presented demonstrate that NP-GAPDH has a relevant role in plant growth and development.

  3. Classical Ethylene Insensitive Mutants of the Arabidopsis EIN2Orthologue Lack the Expected 'hypernodulation' Response in Lotus japonicus

    Institute of Scientific and Technical Information of China (English)

    Pick Kuen Chan; Bandana Biswas; Peter M.Gresshoff

    2013-01-01

    Three independent ethylene insensitive mutants were selected from an EMS-mutagenized population of Lotus japonicus MG-20 (Miyakojima).The mutants,called 'Enigma',were mutated in the LjEIN2a gene from Lotus chromosome 1,sharing significant homology with Arabidopsis EIN2 (ethylene-insensitive2).All three alleles showed classical ethylene insensitivity phenotypes (e.g.,Triple Response),but lacked the increased nodulation phenotype commonly associated with ethylene insensitivity.Indeed,all showed a marginal reduction in nodule number per plant,a phenotype that is enigmatic to sickle,an ethyleneinsensitive EIN2 mutant in Medicago truncatula.In contrast to wild type,but similar to an ETR1-1 ethylene ethylene-insensitive transgenic of L.japonicus,enigma mutants formed nodules in between the protoxylem poles,demonstrating the influence of ethylene on radial positioning.Suppression of nodule numbers by nitrate and colonisation by mycorrhizal fungi in the enigma-1 mutant were indistinguishable from the wild-type MG-20.However,reflecting endogenous ethylene feedback,the enigma-1 mutant released more than twice the wild-type amount of ethylene.enigma-1 had a moderate reduction in growth,greater root mass (and lateral root formation),delayed flowering and ripening,smaller pods and seeds.Expression analysis of ethylene-regulated genes,such as ETR1,NRL1 (neverripe-like 1),and ElL3 in shoots and roots of enigma-1 and MG-20 illustrated that the ethylene-insensitive mutation strongly affected transcriptional responses in the root.These mutants open the possibility that EIN2 in L.japonicus,a determinate nodulating legume,acts in a more complex fashion possibly through the presence of a duplicated copy of LjEIN2.

  4. Classical ethylene insensitive mutants of the Arabidopsis EIN2 orthologue lack the expected 'hypernodulation' response in Lotus japonicus.

    Science.gov (United States)

    Chan, Pick Kuen; Biswas, Bandana; Gresshoff, Peter M

    2013-04-01

    Three independent ethylene insensitive mutants were selected from an EMS- mutagenized population of Lotus japonicus MG-20 (Miyakojima). The mutants, called 'Enigma', were mutated in the LjEIN2a gene from Lotus chromosome 1, sharing significant homology with Arabidopsis EIN2 (ethylene-insensitive2). All three alleles showed classical ethylene insensitivity phenotypes (e.g., Triple Response), but lacked the increased nodulation phenotype commonly associated with ethylene insensitivity. Indeed, all showed a marginal reduction in nodule number per plant, a phenotype that is enigmatic to sickle, an ethylene-insensitive EIN2 mutant in Medicago truncatula. In contrast to wild type, but similar to an ETR1-1 ethylene ethylene-insensitive transgenic of L. japonicus, enigma mutants formed nodules in between the protoxylem poles, demonstrating the influence of ethylene on radial positioning. Suppression of nodule numbers by nitrate and colonisation by mycorrhizal fungi in the enigma-1 mutant were indistinguishable from the wild-type MG-20. However, reflecting endogenous ethylene feedback, the enigma-1 mutant released more than twice the wild-type amount of ethylene. enigma-1 had a moderate reduction in growth, greater root mass (and lateral root formation), delayed flowering and ripening, smaller pods and seeds. Expression analysis of ethylene-regulated genes, such as ETR1, NRL1 (neverripe-like 1), and EIL3 in shoots and roots of enigma-1 and MG-20 illustrated that the ethylene-insensitive mutation strongly affected transcriptional responses in the root. These mutants open the possibility that EIN2 in L. japonicus, a determinate nodulating legume, acts in a more complex fashion possibly through the presence of a duplicated copy of LjEIN2.

  5. Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein

    Directory of Open Access Journals (Sweden)

    Roncaglia Enrica

    2011-04-01

    Full Text Available Abstract Background Reactive oxygen species (ROS are unavoidable by-products of oxygenic photosynthesis, causing progressive oxidative damage and ultimately cell death. Despite their destructive activity they are also signalling molecules, priming the acclimatory response to stress stimuli. Results To investigate this role further, we exposed wild type Arabidopsis thaliana plants and the double mutant npq1lut2 to excess light. The mutant does not produce the xanthophylls lutein and zeaxanthin, whose key roles include ROS scavenging and prevention of ROS synthesis. Biochemical analysis revealed that singlet oxygen (1O2 accumulated to higher levels in the mutant while other ROS were unaffected, allowing to define the transcriptomic signature of the acclimatory response mediated by 1O2 which is enhanced by the lack of these xanthophylls species. The group of genes differentially regulated in npq1lut2 is enriched in sequences encoding chloroplast proteins involved in cell protection against the damaging effect of ROS. Among the early fine-tuned components, are proteins involved in tetrapyrrole biosynthesis, chlorophyll catabolism, protein import, folding and turnover, synthesis and membrane insertion of photosynthetic subunits. Up to now, the flu mutant was the only biological system adopted to define the regulation of gene expression by 1O2. In this work, we propose the use of mutants accumulating 1O2 by mechanisms different from those activated in flu to better identify ROS signalling. Conclusions We propose that the lack of zeaxanthin and lutein leads to 1O2 accumulation and this represents a signalling pathway in the early stages of stress acclimation, beside the response to ADP/ATP ratio and to the redox state of both plastoquinone pool. Chloroplasts respond to 1O2 accumulation by undergoing a significant change in composition and function towards a fast acclimatory response. The physiological implications of this signalling specificity are

  6. Excitation energy transfer and charge separation are affected in Arabidopsis thaliana mutants lacking light-harvesting chlorophyll a/b binding protein Lhcb3.

    Science.gov (United States)

    Adamiec, Małgorzata; Gibasiewicz, Krzysztof; Luciński, Robert; Giera, Wojciech; Chełminiak, Przemysław; Szewczyk, Sebastian; Sipińska, Weronika; van Grondelle, Rienk; Jackowski, Grzegorz

    2015-12-01

    The composition of LHCII trimers as well as excitation energy transfer and charge separation in grana cores of Arabidopsis thaliana mutant lacking chlorophyll a/b binding protein Lhcb3 have been investigated and compared to those in wild-type plants. In grana cores of lhcb3 plants we observed increased amounts of Lhcb1 and Lhcb2 apoproteins per PSII core. The additional copies of Lhcb1 and Lhcb2 are expected to substitute for Lhcb3 in LHCII trimers M as well as in the LHCII "extra" pool, which was found to be modestly enlarged as a result of the absence of Lhcb3. Time-resolved fluorescence measurements reveal a deceleration of the fast phase of excitation dynamics in grana cores of the mutant by ~15 ps, whereas the average fluorescence lifetime is not significantly altered. Monte Carlo modeling predicts a slowing down of the mean hopping time and an increased stabilization of the primary charge separation in the mutant. Thus our data imply that absence of apoprotein Lhcb3 results in detectable differences in excitation energy transfer and charge separation.

  7. Loss-of-function mutations of retromer large subunit genes suppress the phenotype of an Arabidopsis zig mutant that lacks Qb-SNARE VTI11.

    Science.gov (United States)

    Hashiguchi, Yasuko; Niihama, Mitsuru; Takahashi, Tetsuya; Saito, Chieko; Nakano, Akihiko; Tasaka, Masao; Morita, Miyo Terao

    2010-01-01

    Arabidopsis thaliana zigzag (zig) is a loss-of-function mutant of Qb-SNARE VTI11, which is involved in membrane trafficking between the trans-Golgi network and the vacuole. zig-1 exhibits abnormalities in shoot gravitropism and morphology. Here, we report that loss-of-function mutants of the retromer large subunit partially suppress the zig-1 phenotype. Moreover, we demonstrate that three paralogous VPS35 genes of Arabidopsis have partially overlapping but distinct genetic functions with respect to zig-1 suppression. Tissue-specific complementation experiments using an endodermis-specific SCR promoter show that expression of VPS35B or VPS35C cannot complement the function of VPS35A. The data suggest the existence of functionally specialized paralogous VPS35 genes that nevertheless share common functions.

  8. Loss-of-Function Mutations of Retromer Large Subunit Genes Suppress the Phenotype of an Arabidopsis zig Mutant That Lacks Qb-SNARE VTI11[C][W

    Science.gov (United States)

    Hashiguchi, Yasuko; Niihama, Mitsuru; Takahashi, Tetsuya; Saito, Chieko; Nakano, Akihiko; Tasaka, Masao; Morita, Miyo Terao

    2010-01-01

    Arabidopsis thaliana zigzag (zig) is a loss-of-function mutant of Qb-SNARE VTI11, which is involved in membrane trafficking between the trans-Golgi network and the vacuole. zig-1 exhibits abnormalities in shoot gravitropism and morphology. Here, we report that loss-of-function mutants of the retromer large subunit partially suppress the zig-1 phenotype. Moreover, we demonstrate that three paralogous VPS35 genes of Arabidopsis have partially overlapping but distinct genetic functions with respect to zig-1 suppression. Tissue-specific complementation experiments using an endodermis-specific SCR promoter show that expression of VPS35B or VPS35C cannot complement the function of VPS35A. The data suggest the existence of functionally specialized paralogous VPS35 genes that nevertheless share common functions. PMID:20086190

  9. Multiple defects in Escherichia coli mutants lacking HU protein.

    OpenAIRE

    Huisman, O; Faelen, M; Girard, D; Jaffé, A; Toussaint, A; Rouvière-Yaniv, J

    1989-01-01

    The HU protein isolated from Escherichia coli, composed of two partially homologous subunits, alpha and beta, shares some of the properties of eucaryotic histones and is a major constituent of the bacterial nucleoid. We report here the construction of double mutants totally lacking both subunits of HU protein. These mutants exhibited poor growth and a perturbation of cell division, resulting in the formation of anucleate cells. In the absence of HU, phage Mu was unable to grow, to lysogenize,...

  10. Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis.

    Science.gov (United States)

    Fukushima, Atsushi; Kusano, Miyako; Mejia, Ramon Francisco; Iwasa, Mami; Kobayashi, Makoto; Hayashi, Naomi; Watanabe-Takahashi, Akiko; Narisawa, Tomoko; Tohge, Takayuki; Hur, Manhoi; Wurtele, Eve Syrkin; Nikolau, Basil J; Saito, Kazuki

    2014-05-14

    Despite recent intensive research efforts in functional genomics, the functions of only a limited number of Arabidopsis (Arabidopsis thaliana) genes have been determined experimentally, and improving gene annotation remains a major challenge in plant science. As metabolite profiling can characterize the metabolomic phenotype of a genetic perturbation in the plant metabolism, it provides clues to the function(s) of genes of interest. We chose 50 Arabidopsis mutants, including a set of characterized and uncharacterized mutants, that resemble wild-type plants. We performed metabolite profiling of the plants using gas chromatography-mass spectrometry. To make the data set available as an efficient public functional genomics tool for hypothesis generation, we developed the Metabolite Profiling Database for Knock-Out Mutants in Arabidopsis (MeKO). It allows the evaluation of whether a mutation affects metabolism during normal plant growth and contains images of mutants, data on differences in metabolite accumulation, and interactive analysis tools. Nonprocessed data, including chromatograms, mass spectra, and experimental metadata, follow the guidelines set by the Metabolomics Standards Initiative and are freely downloadable. Proof-of-concept analysis suggests that MeKO is highly useful for the generation of hypotheses for genes of interest and for improving gene annotation. MeKO is publicly available at http://prime.psc.riken.jp/meko/.

  11. Isolation and characterization of Escherichia coli mutants lacking inducible cyanase.

    Science.gov (United States)

    Guilloton, M; Karst, F

    1987-03-01

    To determine the physiological role of cyanate aminohydrolase (cyanase, EC 3.5.5.3) in bacteria, mutants of Escherichia coli K12 devoid of this inducible activity were isolated and their properties investigated. Five independent mutations were localized next to lac; three of them lay between lacY and codA. Thus cyanase activity could depend on the integrity of one gene or set of clustered genes; we propose for this locus the symbol cnt. Growth of the mutant stains was more sensitive to cyanate than growth of wild-type strains. This difference was noticeable in synthetic medium in the presence of low concentrations of cyanate (less than or equal to 1 mM). Higher concentrations inhibited growth of both wild-type and mutant strains. Urea in aqueous solutions dissociates slowly into ammonium cyanate. Accordingly wild-type strains were able to grow on a synthetic medium containing 0.5 M-urea whereas mutants lacking cyanase were not. We conclude that cyanase could play a role in destroying exogenous cyanate originating from the dissociation of carbamoyl compounds such as urea; alternatively cyanate might constitute a convenient nitrogen source for bacteria able to synthesize cyanase in an inducible way.

  12. Epigenetic Suppression of T-DNA Insertion Mutants in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yangbin Gao; Yunde Zhao

    2013-01-01

    T-DNA insertion mutants have been widely used to define gene functions in Arabidopsis and in other plants.Here,we report an unexpected phenomenon of epigenetic suppression of T-DNA insertion mutants in Arabidopsis.When the two T-DNA insertion mutants,yucl-1 and ag-TD,were crossed together,the defects in all of the ag-TD plants in the F2 population were partially suppressed regardless of the presence of yucl-1.Conversion of ag-TD to the suppressed ag-TD (named as ag-TD*) did not follow the laws of Mendelian genetics.The ag-TD* could be stably transmitted for many generations without reverting to ag-TD,and ag-TD* had the capacity to convert ag-TD to ag-TD*.We show that epigenetic suppression of T-DNA mutants is not a rare event,but certain structural features in the T-DNA mutants are needed in order for the suppression to take place.The suppressed T-DNA mutants we observed were all intronic T-DNA mutants and the T-DNA fragments in both the trigger T-DNA as well as in the suppressed T-DNA shared stretches of identical sequences.We demonstrate that the suppression of intronic T-DNA mutants is mediated by trans-interactions between two ToDNA insertions.This work shows that caution is needed when intronic T-DNA mutants are used.

  13. Characterisation of cuticular mutants in Arabidopsis thaliana

    OpenAIRE

    Faust, Andrea

    2006-01-01

    Plants are protected by the extracellular cuticle, which is made up of cutin, cutan and waxes. The cutin composition of a variety of plants has been known and models of the biosynthesis of cutin monomers exist but not many enzymes have been identified. It is generally accepted that a defect in the cuticle leads to an organ fusion phenotype. In the model plant A. thaliana many fusion mutants have been identified but the identification of genes involved have not lead to a complete picture of th...

  14. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism

    OpenAIRE

    Rohde, Antje; Morreel, Kris; Ralph, John; Goeminne, Geert; Hostyn, Vanessa; De Rycke, Riet; Kushnir, Sergei; Van Doorsselaere, Jan; Joseleau, Jean-Paul; Vuylsteke, Marnik; Van Driessche, Gonzalez; Van Beeumen, Jozef; Messens, Eric; Boerjan, Wout

    2004-01-01

    The first enzyme of the phenylpropanoid pathway, Phe ammonia-lyase (PAL), is encoded by four genes in Arabidopsis thaliana. Whereas PAL function is well established in various plants, an insight into the functional significance of individual gene family members is lacking. We show that in the absence of clear phenotypic alterations in the Arabidopsis pall and pal2 single mutants and with limited phenotypic alterations in the pall pal2 double mutant, significant modifications occur in the tran...

  15. Characterization of Sugar Insensitive (sis) Mutants of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Susan I.

    2009-06-08

    Despite the fact that soluble sugar levels have been postulated to play an important role in the control of a wide variety of plant metabolic and developmental pathways, the mechanisms by which plants respond to soluble sugar levels remain poorly understood. Plant responses to soluble sugar levels are also important in bioenergy production, as plant sugar responses are believed to help regulate both carbon fixation and carbon partitioning. For example, accumulation of soluble sugars, such as sucrose and glucose, in source tissues leads to feedback inhibition of photosynthesis, thereby decreasing rates of carbon fixation. Soluble sugar levels can also affect sink strengths, affecting the rates of accumulation of carbon-based compounds into both particular molecular forms (e.g. carbohydrates versus lipids versus proteins) and particular plant organs and tissues. Mutants of Arabidopsis that are defective in the ability to respond to soluble sugar levels were isolated and used as tools to identify some of the factors involved in plant sugar response. These sugar insensitive (sis) mutants were isolated by screening mutagenized seeds for those that were able to germinate and develop relatively normal shoot systems on media containing 0.3 M glucose or 0.3 M sucrose. At these sugar concentrations, wild-type Arabidopsis germinate and produce substantial root systems, but show little to no shoot development. Twenty-eight sis mutants were isolated during the course of four independent mutant screens. Based on a preliminary characterization of all of these mutants, sis3 and sis6 were chosen for further study. Both of these mutations appear to lie in previously uncharacterized loci. Unlike many other sugar-response mutants, sis3 mutants exhibit a wild-type or near wild-type response in all phytohormone-response assays conducted to date. The sis6-1 mutation is unusual in that it appears to be due to overexpression of a gene, rather than representing a loss of function mutation

  16. Mighty Dwarfs: Arabidopsis Autoimmune Mutants and Their Usages in Genetic Dissection of Plant Immunity

    Science.gov (United States)

    van Wersch, Rowan; Li, Xin; Zhang, Yuelin

    2016-01-01

    Plants lack the adaptive immune system possessed by mammals. Instead they rely on innate immunity to defend against pathogen attacks. Genomes of higher plants encode a large number of plant immune receptors belonging to different protein families, which are involved in the detection of pathogens and activation of downstream defense pathways. Plant immunity is tightly controlled to avoid activation of defense responses in the absence of pathogens, as failure to do so can lead to autoimmunity that compromises plant growth and development. Many autoimmune mutants have been reported, most of which are associated with dwarfism and often spontaneous cell death. In this review, we summarize previously reported Arabidopsis autoimmune mutants, categorizing them based on their functional groups. We also discuss how their obvious morphological phenotypes make them ideal tools for epistatic analysis and suppressor screens, and summarize genetic screens that have been carried out in various autoimmune mutant backgrounds. PMID:27909443

  17. Human GLTP and mutant forms of ACD11 suppress cell death in the Arabidopsis acd11 mutant

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; McKinney, Lea V; Pike, Helen

    2008-01-01

    The Arabidopsis acd11 mutant exhibits runaway, programmed cell death due to the loss of a putative sphingosine transfer protein (ACD11) with homology to mammalian GLTP. We demonstrate that transgenic expression in Arabidopsis thaliana of human GLTP partially suppressed the phenotype of the acd11 ...

  18. Flavonoid accumulation patterns of transparent testa mutants of arabidopsis

    Science.gov (United States)

    Peer, W. A.; Brown, D. E.; Tague, B. W.; Muday, G. K.; Taiz, L.; Murphy, A. S.

    2001-01-01

    Flavonoids have been implicated in the regulation of auxin movements in Arabidopsis. To understand when and where flavonoids may be acting to control auxin movement, the flavonoid accumulation pattern was examined in young seedlings and mature tissues of wild-type Arabidopsis. Using a variety of biochemical and visualization techniques, flavonoid accumulation in mature plants was localized in cauline leaves, pollen, stigmata, and floral primordia, and in the stems of young, actively growing inflorescences. In young Landsberg erecta seedlings, aglycone flavonols accumulated developmentally in three regions, the cotyledonary node, the hypocotyl-root transition zone, and the root tip. Aglycone flavonols accumulated at the hypocotyl-root transition zone in a developmental and tissue-specific manner with kaempferol in the epidermis and quercetin in the cortex. Quercetin localized subcellularly in the nuclear region, plasma membrane, and endomembrane system, whereas kaempferol localized in the nuclear region and plasma membrane. The flavonoid accumulation pattern was also examined in transparent testa mutants blocked at different steps in the flavonoid biosynthesis pathway. The transparent testa mutants were shown to have precursor accumulation patterns similar to those of end product flavonoids in wild-type Landsberg erecta, suggesting that synthesis and end product accumulation occur in the same cells.

  19. Comparison of arabidopsis stomatal density mutants indicates variation in water stress responses and potential epistatic effects

    Science.gov (United States)

    Shaneka S. Lawson; Paula M. Pijut; Charles H. Michler

    2014-01-01

    Recent physiological analysis of Arabidopsis stomatal density (SD) mutants indicated that SD was not the major factor controlling aboveground biomass accumulation. Despite the general theory that plants with fewer stomata have limited biomass acquisition capabilities, epf1 and several other Arabidopsis mutants varied significantly in leaf fresh...

  20. Arabidopsis mutant bik1 exhibits strong resistance to Plasmodiophora brassicae

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2016-09-01

    Full Text Available Botrytis-induced kinase1 (BIK1, a receptor-like cytoplasmic kinase, plays an important role in resistance against pathogens and insects in Arabidopsis thaliana. However, it remains unknown whether BIK1 functions against Plasmodiophora brassicae, an obligate biotrophic protist that attacks cruciferous plants and induces gall formation on roots. Here, we investigated the potential roles of receptors FLS2, BAK1 and BIK1 in the infection of P. brassicae cruciferous plants. Wild-type plants, fls2 and bak1 mutants showed typical symptom on roots, and the galls were filled with large quantities of resting spores, while bik1 mutant plants exhibited strong resistance to P. brassicae. Compared with that of the wild-type plants, the root hair and cortical infection rate of bik1 mutant were significantly reduced by about 40-50%. A considerable portion of bik1 roots failed to form typical galls. Even if some small galls were formed, they were filled with multinucleate secondary plasmodia. The bik1 plants accumulated less reactive oxygen species (ROS at infected roots than other mutants and wild-type plants. Exogenous salicylic acid (SA treatment alleviated the clubroot symptoms in wild-type plants, and the expression of the SA signaling marker gene PR1 was significantly increased in bik1. Both sid2 (salicylic acid induction-deficient 2 and npr1-1 (non-expresser of PR genes that regulate systemic acquired resistance (SAR mutants showed increased susceptibility to P. brassicae compared with wild-type plants. These results suggest that the resistance of bik1 to P. brassicae is possibly mediated by SA inducible mechanisms enhance the resistance to clubroot disease.

  1. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system

    Science.gov (United States)

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-01-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na+, (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na+/K+ homeostasis and hormonal balance. PMID:23299430

  2. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system.

    Science.gov (United States)

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-02-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na(+), (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na(+)/K(+) homeostasis and hormonal balance.

  3. Mutants of GABA transaminase (POP2 suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh mutants in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Frank Ludewig

    Full Text Available BACKGROUND: The gamma-aminubutyrate (GABA shunt bypasses two steps of the tricarboxylic acid cycle, and is present in both prokaryotes and eukaryotes. In plants, the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase (GAD, the mitochondrial enzymes GABA transaminase (GABA-T; POP2 and succinic semialdehyde dehydrogenase (SSADH. We have previously shown that compromising the function of the GABA-shunt, by disrupting the SSADH gene of Arabidopsis, causes enhanced accumulation of reactive oxygen intermediates (ROIs and cell death in response to light and heat stress. However, to date, genetic investigations of the relationships between enzymes of the GABA shunt have not been reported. PRINCIPAL FINDINGS: To elucidate the role of succinic semialdehyde (SSA, gamma-hydroxybutyrate (GHB and GABA in the accumulation of ROIs, we combined two genetic approaches to suppress the severe phenotype of ssadh mutants. Analysis of double pop2 ssadh mutants revealed that pop2 is epistatic to ssadh. Moreover, we isolated EMS-generated mutants suppressing the phenotype of ssadh revealing two new pop2 alleles. By measuring thermoluminescence at high temperature, the peroxide contents of ssadh and pop2 mutants were evaluated, showing that only ssadh plants accumulate peroxides. In addition, pop2 ssadh seedlings are more sensitive to exogenous SSA or GHB relative to wild type, because GHB and/or SSA accumulate in these plants. SIGNIFICANCE: We conclude that the lack of supply of succinate and NADH to the TCA cycle is not responsible for the oxidative stress and growth retardations of ssadh mutants. Rather, we suggest that the accumulation of SSA, GHB, or both, produced downstream of the GABA-T transamination step, is toxic to the plants, resulting in high ROI levels and impaired development.

  4. Photocontrol of seed germination of wild type and long-hypocotyl mutants of Arabidopsis thaliana

    NARCIS (Netherlands)

    Cone, J.W.

    1985-01-01

    This thesis reports research on the photocontrol of seed germination of wildtype and long-hypocotyl mutants of Arabidopsis thaliana. The mutants show reduced photoinhibition of hypocotyl growth in white light in comparison to that of wildtype. In monochromatic light some of the mutants also show no

  5. Inverse polymerase chain reaction for rapid gene isolation in Arabidopsis thaliana insertion mutants

    NARCIS (Netherlands)

    Vanderhaeghen, R.; Scheres, B.J.G.; Montagu, M. van; Lijsebetten, M. van

    1992-01-01

    Recently, many mutants have been isolated in the model plant Arabidopsis thaliana by the insertion of the Agrobacterium tumefaciens T-DNA into the plant genome. Instead of applying Southern analysis on these insertion mutants and to avoid the construction of mutant- derived genomic libraries, we pro

  6. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Rodermel, Steven

    2015-11-16

    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  7. Hydroxyproline O-arabinosyltransferase mutants oppositely alter tip growth in Arabidopsis thaliana and Physcomitrella patens.

    Science.gov (United States)

    MacAlister, Cora A; Ortiz-Ramírez, Carlos; Becker, Jörg D; Feijó, José A; Lippman, Zachary B

    2016-01-01

    Hydroxyproline O-arabinosyltransferases (HPATs) are members of a small, deeply conserved family of plant-specific glycosyltransferases that add arabinose sugars to diverse proteins including cell wall-associated extensins and small signaling peptides. Recent genetic studies in flowering plants suggest that different HPAT homologs have been co-opted to function in diverse species-specific developmental contexts. However, nothing is known about the roles of HPATs in basal plants. We show that complete loss of HPAT function in Arabidopsis thaliana and the moss Physcomitrella patens results in a shared defect in gametophytic tip cell growth. Arabidopsis hpat1/2/3 triple knockout mutants suffer from a strong male sterility defect as a consequence of pollen tubes that fail to fully elongate following pollination. Knocking out the two HPAT genes of Physcomitrella results in larger multicellular filamentous networks due to increased elongation of protonemal tip cells. Physcomitrella hpat mutants lack cell-wall associated hydroxyproline arabinosides and can be rescued with exogenous cellulose, while global expression profiling shows that cell wall-associated genes are severely misexpressed, implicating a defect in cell wall formation during tip growth. Our findings point to a major role for HPATs in influencing cell elongation during tip growth in plants.

  8. Isolation of a Rhodobacter capsulatus mutant that lacks c-type cytochromes and excretes porphyrins.

    OpenAIRE

    Biel, S W; Biel, A J

    1990-01-01

    A Rhodobacter capsulatus mutant lacking cytochrome oxidase activity was isolated by Tn5 mutagenesis. Difference spectroscopy of crude extracts and extracted c-type cytochromes demonstrated that this mutant completely lacked all c-type cytochromes. The strain did, however, synthesize normal amounts of b-type cytochromes and nonheme iron. This mutant also excreted large amounts of coproporphyrin and protoporphyrin and synthesized reduced amounts of bacteriochlorophyll, suggesting a link between...

  9. Phenotypic analysis of Arabidopsis mutants: quantitative analysis of root growth.

    Science.gov (United States)

    Doerner, Peter

    2008-03-01

    INTRODUCTIONThe growth of plant roots is very easy to measure and is particularly straightforward in Arabidopsis thaliana, because the increase in organ size is essentially restricted to one dimension. The precise measurement of root apical growth can be used to accurately determine growth activity (the rate of growth at a given time) during development in mutants, transgenic backgrounds, or in response to experimental treatments. Root growth is measured in a number of ways, the simplest of which is to grow the seedlings in a Petri dish and record the position of the advancing root tip at appropriate time points. The increase in root length is measured with a ruler and the data are entered into Microsoft Excel for analysis. When dealing with large numbers of seedlings, however, this procedure can be tedious, as well as inaccurate. An alternative approach, described in this protocol, uses "snapshots" of the growing plants, which are taken using gel-documentation equipment (i.e., a video camera with a frame-grabber unit, now commonly used to capture images from ethidium-bromide-stained electrophoresis gels). The images are analyzed using publicly available software (NIH-Image), which allows the user simply to cut and paste data into Microsoft Excel.

  10. Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis1[W][OPEN

    Science.gov (United States)

    Fukushima, Atsushi; Kusano, Miyako; Mejia, Ramon Francisco; Iwasa, Mami; Kobayashi, Makoto; Hayashi, Naomi; Watanabe-Takahashi, Akiko; Narisawa, Tomoko; Tohge, Takayuki; Hur, Manhoi; Wurtele, Eve Syrkin; Nikolau, Basil J.; Saito, Kazuki

    2014-01-01

    Despite recent intensive research efforts in functional genomics, the functions of only a limited number of Arabidopsis (Arabidopsis thaliana) genes have been determined experimentally, and improving gene annotation remains a major challenge in plant science. As metabolite profiling can characterize the metabolomic phenotype of a genetic perturbation in the plant metabolism, it provides clues to the function(s) of genes of interest. We chose 50 Arabidopsis mutants, including a set of characterized and uncharacterized mutants, that resemble wild-type plants. We performed metabolite profiling of the plants using gas chromatography-mass spectrometry. To make the data set available as an efficient public functional genomics tool for hypothesis generation, we developed the Metabolite Profiling Database for Knock-Out Mutants in Arabidopsis (MeKO). It allows the evaluation of whether a mutation affects metabolism during normal plant growth and contains images of mutants, data on differences in metabolite accumulation, and interactive analysis tools. Nonprocessed data, including chromatograms, mass spectra, and experimental metadata, follow the guidelines set by the Metabolomics Standards Initiative and are freely downloadable. Proof-of-concept analysis suggests that MeKO is highly useful for the generation of hypotheses for genes of interest and for improving gene annotation. MeKO is publicly available at http://prime.psc.riken.jp/meko/. PMID:24828308

  11. Characterization Of Laccase T-DNA Mutants In Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Andersen, Jeppe R; Asp, Torben; Mansfield, Shawn

    Laccases (P-diphenol:O2 oxidoreductase; EC 1.10.3.2), also termed laccase-like multicopper oxidases, are blue copper-containing oxidases which comprise multigene families in plants. In the Arabidopsis thaliana genome, 17 laccase genes (LAC1 to LAC17) have been annotated. To identify laccases invo...... different and distinct biochemical pathways and that laccases might be involved in polymerization of both polysaccharides and monolignols in the Arabidopsis cell wall....

  12. Protection of Chloroplast Membranes by VIPP1 Rescues Aberrant Seedling Development in Arabidopsis nyc1 Mutant

    Directory of Open Access Journals (Sweden)

    Lingang eZhang

    2016-04-01

    Full Text Available Chlorophylls (Chl in photosynthetic apparatuses, along with other macromolecules in chloroplasts, are known to undergo degradation during leaf senescence. Several enzymes involved in Chl degradation, by which detoxification of Chl is safely implemented, have been identified. Chl degradation also occurs during embryogenesis and seedling development. Some genes encoding Chl degradation enzymes such as Chl b reductase (CBR function during these developmental stages. Arabidopsis mutants lacking CBR (NYC1 and NOL reportedly exhibit reduced seed storability and compromised germination and cotyledon development. This study examined aberrant cotyledon development, finding that NYC1 is solely responsible for this phenotype. We inferred that oxidative damage of chloroplast membranes caused the aberrant cotyledon. To test the inference, we attempted to trans-complement nyc1 mutant with overexpressing VIPP1 protein that is unrelated to Chl degradation but which supports chloroplast membrane integrity. VIPP1 expression actually complemented the aberrant cotyledon of nyc1, whereas stay-green phenotype during leaf senescence remained. The swollen chloroplasts observed in unfixed cotyledons of nyc1, which are characteristics of chloroplasts receiving envelope membrane damage, were recovered by overexpressing VIPP1. These results suggest that chloroplast membranes are a target for oxidative damage caused by the impairment in Chl degradation. Trans-complementation of nyc1 with VIPP1 also suggests that VIPP1 is useful for protecting chloroplasts against oxidative stress.

  13. Characterization of Arabidopsis calreticulin mutants in response to calcium and salinity stresses

    Institute of Scientific and Technical Information of China (English)

    Zhigang Li; Yangrong Cao; Jinsong Zhang; Shouyi Chen

    2008-01-01

    As an important calcium-binding protein,calreticulin plays an important role in regulating calcium homeostasis in endoplasmic reticulum (ER) of plants.Here,we identified three loss-of-function mutants ofcalreticulin genes in Arabidopsis to demonstrate the function of calreticulin in response to calcium and salinity stresses.There are three genes encoding calreticulin in Arabidopsis,and they are named AtCRT1,2,and 3,respectively.We found that both single mutant of crt3 and double mutant of crtl crt2 were more sensitive to low calcium environment than wild-type Arabidopsis.Moreover,crt3 mutant showed more sensitivity to salt treatment at germination stage,but tolerance to salt stress at later stage compared with wild-type plant.However,there was no obvious growth difference in the mutant crt1 and crt2 compared with wild-type Arabidopsis under calcium and salt stresses.These results suggest that calreticulin functions in plant responses to calcium and salt stresses.

  14. Lack of fructose 2,6-bisphosphate compromises photosynthesis and growth in Arabidopsis in fluctuating environments.

    Science.gov (United States)

    McCormick, Alistair J; Kruger, Nicholas J

    2015-03-01

    The balance between carbon assimilation, storage and utilisation during photosynthesis is dependent on partitioning of photoassimilate between starch and sucrose, and varies in response to changes in the environment. However, the extent to which the capacity to modulate carbon partitioning rapidly through short-term allosteric regulation may contribute to plant performance is unknown. Here we examine the physiological role of fructose 2,6-bisphosphate (Fru-2,6-P2 ) during photosynthesis, growth and reproduction in Arabidopsis thaliana (L.). In leaves this signal metabolite contributes to coordination of carbon assimilation and partitioning during photosynthesis by allosterically modulating the activity of cytosolic fructose-1,6-bisphosphatase. Three independent T-DNA insertional mutant lines deficient in 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (F2KP), the bifunctional enzyme responsible for both the synthesis and degradation of Fru-2,6-P2 , lack Fru-2,6-P2 . These plants have normal steady-state rates of photosynthesis, but exhibit increased partitioning of photoassimilate into sucrose and have delayed photosynthetic induction kinetics. The F2KP-deficient plants grow normally in constant environments, but show reduced growth and seed yields relative to wildtype plants in fluctuating light and/or temperature. We conclude that Fru-2,6-P2 is required for optimum regulation of photosynthetic carbon metabolism under variable growth conditions. These analyses suggest that the capacity of Fru-2,6-P2 to modulate partitioning of photoassimilate is an important determinant of growth and fitness in natural environments.

  15. The phenotype of Arabidopsis thaliana det1 mutants suggest a role for cytokinins in greening

    Energy Technology Data Exchange (ETDEWEB)

    Chory, J.; Aguilar, N.; Peto, C.A.

    1990-01-01

    When grown in the absence of light, the det1 mutants of Arabidopsis thaliana develop characteristics of light-grown plants by morphological, cellular, and molecular criteria. Further, in light-grown plants, mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and the chloroplast developmental program. Here we show that the addition of exogenously added cytokinins (either 2-isopentenyl adenine, kinetin, or benzyladenine) to the growth medium of dark-germinated wild-type seedlings results in seedlings that resemble det1 mutants, instead of having the normal etiolated morphology. Like det1 mutants, these dark-grown seedlings now contain chloroplasts and have high levels of expression of genes that are normally light''-regulated. These results suggest an important role for cytokinins during greening of Arabidopsis, and may implicate cytokinin levels or an increased sensitivity to cytokinins as explanations for some of the observed phenotypes of det1 mutants.

  16. Characterization Of Laccase T-DNA Mutants In Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Andersen, Jeppe R; Asp, Torben; Mansfield, Shawn

    Laccases (P-diphenol:O2 oxidoreductase; EC 1.10.3.2), also termed laccase-like multicopper oxidases, are blue copper-containing oxidases which comprise multigene families in plants. In the Arabidopsis thaliana genome, 17 laccase genes (LAC1 to LAC17) have been annotated. To identify laccases...

  17. Structural changes of DNA in heavy ion-induced mutants on Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tano, S.; Shikazono, N.; Tanaka, A.; Yokota, Y.; Watanabe, H. [Japan Atomic Research Research Inst., Watanuki, Takasaki (Japan). Advanced Science Research Center

    1997-09-01

    In order to investigate the frequency of structural changes induced by high LET radiation in plants, a comparison was made between DNA fragments amplified by the polymerase chain reaction (PCR) from C ion- and electron-induced Arabidopsis mutants at GL and TT loci. (orig./MG)

  18. Complementation of the pha2 yeast mutant suggests functional differences for arogenate dehydratases from Arabidopsis thaliana.

    Science.gov (United States)

    Bross, Crystal D; Corea, Oliver R A; Kaldis, Angelo; Menassa, Rima; Bernards, Mark A; Kohalmi, Susanne E

    2011-08-01

    The final steps of phenylalanine (Phe) biosynthesis in bacteria, fungi and plants can occur via phenylpyruvate or arogenate intermediates. These routes are determined by the presence of prephenate dehydratase (PDT, EC4.2.1.51), which forms phenylpyruvate from prephenate, or arogenate dehydratase (ADT, EC4.2.1.91), which forms phenylalanine directly from arogenate. We compared sequences from select yeast species to those of Arabidopsis thaliana. The in silico analysis showed that plant ADTs and yeast PDTs share many common features allowing them to act as dehydratase/decarboxylases. However, plant and yeast sequences clearly group independently conferring distinct substrate specificities. Complementation of the Saccharomyces cerevisiae pha2 mutant, which lacks PDT activity and cannot grow in the absence of exogenous Phe, was used to test the PDT activity of A. thaliana ADTs in vivo. Previous biochemical characterization showed that all six AtADTs had high catalytic activity with arogenate as a substrate, while AtADT1, AtADT2 and AtADT6 also had limited activity with prephenate. Consistent with these results, the complementation test showed AtADT2 readily recovered the pha2 phenotype after ∼6 days growth at 30 °C, while AtADT1 required ∼13 days to show visible growth. By contrast, AtADT6 (lowest PDT activity) and AtADT3-5 (no PDT activity) were unable to recover the phenotype. These results suggest that only AtADT1 and AtADT2, but not the other four ADTs from Arabidopsis, have functional PDT activity in vivo, showing that there are two functional distinct groups. We hypothesize that plant ADTs have evolved to use the arogenate route for Phe synthesis while keeping some residual PDT activity.

  19. Fusion genetic analysis of jasmonate-signalling mutants in Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Anders Bøgh; Raventos, D.; Mundy, John Williams

    2002-01-01

    Jasmonates induce plant-defence responses and act to regulate defence-related genes including positive feedback of the lipoxygenase 2 (LOX2) gene involved in jasmonate synthesis. To identify jasmonate-signalling mutants, we used a fusion genetic strategy in which the firefly luciferase (FLUC...... as two recessive mutants, designated joe1 and 2, that overexpress the reporter. Genetic analysis indicated that reporter overexpression in the joe mutants requires COI. joe1 responded to MeJA with increased anthocyanin accumulation, while joe2 responded with decreased root growth inhibition. In addition...

  20. NADP+-dependent glutamate dehydrogenase activity is impaired in mutants of Saccharomyces cerevisiae that lack aconitase.

    Science.gov (United States)

    González, A; Rodríguez, L; Olivera, H; Soberón, M

    1985-10-01

    A mutant of Saccharomyces cerevisiae lacking aconitase did not grow on minimal medium (MM) and had five- to tenfold less NADP+-dependent glutamate dehydrogenase (GDH) activity than the wild-type, although its glutamine synthetase (GS) activity was still inducible. When this mutant was incubated with glutamate as the sole nitrogen source, the 2-oxoglutarate content rose, and the NADP+-dependent GDH activity increased. Furthermore, carbon-limited cultures showed a direct relation between NADP+-dependent GDH activity and the intracellular 2-oxoglutarate content. We propose that the low NADP+-dependent GDH activity found in the mutant was due to the lack of 2-oxoglutarate or some other intermediate of the tricarboxylic acid cycle.

  1. Activating Ras mutations fail to ensure efficient replication of adenovirus mutants lacking VA-RNA

    DEFF Research Database (Denmark)

    Schümann, Michael; Dobbelstein, Matthias

    2006-01-01

    Adenoviruses lacking their PKR-antagonizing VA RNAs replicate poorly in primary cells. It has been suggested that these virus recombinants still replicate efficiently in tumor cells with Ras mutations and might therefore be useful in tumor therapy. The ability of interferon-sensitive viruses...... to grow in Ras-mutant tumor cells is generally ascribed to a postulated inhibitory effect of mutant Ras on PKR. We have constructed a set of isogenic adenoviruses that lack either or both VA RNA species, and tested virus replication in a variety of cell species with different Ras status. In tendency, VA...... mutational status, upon infection with VA-less adenoviruses in the presence of interferon, but also upon addition of the PKR activator polyIC to cells. When comparing two isogenic cell lines that differ solely with regard to the presence or absence of mutant Ras, no difference was observed concerning...

  2. Agrobacterium tumefaciens T-DNA Integration and Gene Targeting in Arabidopsis thaliana Non-Homologous End-Joining Mutants

    Directory of Open Access Journals (Sweden)

    Qi Jia

    2012-01-01

    Full Text Available In order to study the role of AtKu70 and AtKu80 in Agrobacterium-mediated transformation and gene targeting, plant lines with a T-DNA insertion in AtKu80 or AtKu70 genes were functionally characterized. Such plant lines lacked both subunits, indicating that heterodimer formation between AtKu70 and AtKu80 is needed for the stability of the proteins. Homozygous mutants were phenotypically indistinguishable from wild-type plants and were fertile. However, they were hypersensitive to the genotoxic agent bleomycin, resulting in more DSBs as quantified in comet assays. They had lower end-joining efficiency, suggesting that NHEJ is a critical pathway for DSB repair in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in Agrobacterium T-DNA integration via floral dip transformation, indicating that AtKu70, AtKu80, and AtMre11 play an important role in T-DNA integration in Arabidopsis. The frequency of gene targeting was not significantly increased in the Atku80 and Atku70 mutants, but it was increased at least 10-fold in the Atmre11 mutant compared with the wild type.

  3. Homologous Recombination Defective Arabidopsis Mutants Exhibit Enhanced Sensitivity to Abscisic Acid

    Science.gov (United States)

    Roy, Sujit; Das, Kali Pada

    2017-01-01

    Abscisic acid (ABA) acts as an important plant hormone in regulating various aspects of plant growth and developmental processes particularly under abiotic stress conditions. An increased ABA level in plant cells inhibits DNA replication and cell division, causing plant growth retardation. In this study, we have investigated the effects of ABA on the growth responses of some major loss-of-function mutants of DNA double-stand break (DSB) repair genes in Arabidopsis during seed germination and early stages of seedling growth for understanding the role of ABA in the induction of genome instability in plants. A comparative analysis of ABA sensitivity of wild-type Arabidopsis and the knockout mutant lines related to DSB sensors, including atatm, atatr, the non-homologous end joining (NHEJ) pathway genes, and mutants related to homologous recombination (HR) pathway genes showed relatively enhanced sensitivity of atatr and HR-related mutants to ABA treatment. The expression levels of HR-related genes were increased in wild-type Arabidopsis (Col-0) during seed germination and early stages of seedling growth. Immunoblotting experiments detected phosphorylation of histone H2AX in wild-type (Col-0) and DSB repair gene mutants after ABA treatment, indicating the activation of DNA damage response due to ABA treatment. Analyses of DSB repair kinetics using comet assay under neutral condition have revealed comparatively slower DSB repair activity in HR mutants. Overall, our results have provided comprehensive information on the possible effect of ABA on DNA repair machinery in plants and also indicated potential functional involvement of HR pathway in repairing ABA induced DNA damage in Arabidopsis. PMID:28046013

  4. An Arabidopsis embryonic lethal mutant with reduced expression of alanyl—t RNA synthetase gene

    Institute of Scientific and Technical Information of China (English)

    SUNJIANGE; XIAOLIYAO; 等

    1998-01-01

    In present paper,one of the T-DNA insertional embryonic lethal mutant of Arabidopsis is identified and designated as acd mutant.The embryo developmant of this mutant is arrested in globular stage,The cell division pattern is abnormal during early embryogenesis and results in distubed cellular differentiation.Most of mutant embryos are finally degenerated and aborted in globular stage,However,a few of them still can germinate in agar palte and produce seedlings with shoter hypoctyl and distorted shoot meristem.To understand the molecular basis of the phenotype of this mutant,the joint fragment of T-DNA/plant DNA is isolated by plasmid rescue and Dig-labeled as probe for cDNA library screening.According to the sequence analysis and similarity searching,a 936 bp cDNA sequence(EMBL accession #:Y12555)from selectoed positive clone shows a 99.8%(923/925bp) sequence homolgy with Alanyl-tRNA Synthetase(AlaRS) gene of Arabidopsis thaliana.Furthermore,the data of in situ hybridization experiment indicate that the expression of Ala RS gene is weak in early embryogenesis and declines along with globular embryodevelopment in this mutant Accordingly,the reduced expression of Ala RS gene may be closely related to the morphological changes in early embryogenesis of this lethal mutant.

  5. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    NARCIS (Netherlands)

    Simeonova, I.; Jaber, S.; Draskovic, I.; Bardot, B.; Fang, M.; Bouarich-Bourimi, R.; Lejour, V.; Charbonnier, L.; Soudais, C.; Bourdon, J.C.; Huerre, M.; Londono-Vallejo, A.; Toledo, F.

    2013-01-01

    Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53(Delta31), a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis,

  6. Regulation of Amidase Formation in Mutants from Pseudomonas aeruginosa PAO Lacking Glutamine Synthetase Activity

    NARCIS (Netherlands)

    Janssen, Dick B.; Herst, Patricia M.; Joosten, Han M.L.J.; Drift, Chris van der

    1982-01-01

    The formation of amidase was studied in mutants from Pseudomonas aeruginosa PAO lacking glutamine synthetase activity. It appeared that catabolite repression of amidase synthesis by succinate was partially relieved when cellular growth was limited by glutamine. Under these conditions, a correlation

  7. Regulation of Amidase Formation in Mutants from Pseudomonas aeruginosa PAO Lacking Glutamine Synthetase Activity

    NARCIS (Netherlands)

    Janssen, Dick B.; Herst, Patricia M.; Joosten, Han M.L.J.; Drift, Chris van der

    1982-01-01

    The formation of amidase was studied in mutants from Pseudomonas aeruginosa PAO lacking glutamine synthetase activity. It appeared that catabolite repression of amidase synthesis by succinate was partially relieved when cellular growth was limited by glutamine. Under these conditions, a correlation

  8. A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis.

    Science.gov (United States)

    Eapen, Delfeena; Barroso, María Luisa; Campos, María Eugenia; Ponce, Georgina; Corkidi, Gabriel; Dubrovsky, Joseph G; Cassab, Gladys I

    2003-02-01

    For most plants survival depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Because land plants cannot escape environmental stress they use developmental solutions to remodel themselves in order to better adapt to the new conditions. The primary site for perception of underground signals is the root cap (RC). Plant roots have positive hydrotropic response and modify their growth direction in search of water. Using a screening system with a water potential gradient, we isolated a no hydrotropic response (nhr) semi-dominant mutant of Arabidopsis that continued to grow downwardly into the medium with the lowest water potential contrary to the positive hydrotropic and negative gravitropic response seen in wild type-roots. The lack of hydrotropic response of nhr1 roots was confirmed in a system with a gradient in air moisture. The root gravitropic response of nhr1 seedlings was significantly faster in comparison with those of wild type. The frequency of the waving pattern in nhr1 roots was increased compared to those of wild type. nhr1 seedlings had abnormal root cap morphogenesis and reduced root growth sensitivity to abscisic acid (ABA) and the polar auxin transport inhibitor N-(1-naphtyl)phtalamic acid (NPA). These results showed that hydrotropism is amenable to genetic analysis and that an ABA signaling pathway participates in sensing water potential gradients through the root cap.

  9. Mutants in Arabidopsis thaliana with altered shoot gravitropism

    Energy Technology Data Exchange (ETDEWEB)

    Bullen, B.L.; Poff, K.L.

    1987-04-01

    A procedure has been developed and used to screen 40,000 m-2 seedlings of Arabidopsis thaliana for strains with altered shoot gravitropism. Several strains have been identified for which shoot gravitropism is considerably more random than that of their wild-type parent (based on frequency distribution histograms of the gravitropic response to a 1 g stimulus). One such strain exhibits normal hypocotyl phototropism and normal root gravitropism. Thus, the gravitropism pathway in the shoot contains at least one mutable element which is not required for root gravitropism.

  10. Nodules Initiated by Rhizobium meliloti Exopolysaccharide Mutants Lack a Discrete, Persistent Nodule Meristem 1

    Science.gov (United States)

    Yang, Cheng; Signer, Ethan R.; Hirsch, Ann M.

    1992-01-01

    Infection of alfalfa with Rhizobium meliloti exo mutants deficient in exopolysaccharide results in abnormal root nodules that are devoid of bacteria and fail to fix nitrogen. Here we report further characterization of these abnormal nodules. Tightly curled root hairs or shepherd's crooks were found after inoculation with Rm 1021-derived exo mutants, but curling was delayed compared with wild-type Rm 1021. Infection threads were initiated in curled root hairs by mutants as well as by wild-type R. meliloti, but the exo mutant-induced threads aborted within the peripheral cells of the developing nodule. Also, nodules elicited by Rm 1021-derived exo mutants were more likely to develop on secondary roots than on the primary root. In contrast with wild-type R. meliloti-induced nodules, the exo mutant-induced nodules lacked a well defined apical meristem, presumably due to the abortion of the infection threads. The relationship of these findings to the physiology of nodule development is discussed. ImagesFigure 3Figure 1Figure 2Figure 4 PMID:16668605

  11. Lack of a surface layer in Tannerella forsythia mutants deficient in the type IX secretion system

    OpenAIRE

    Narita, Yuka; Sato, Keiko; Yukitake, Hideharu; Shoji, Mikio; Nakane, Daisuke; Nagano, Keiji; Yoshimura, Fuminobu; Naito, Mariko; Nakayama, Koji

    2014-01-01

    Tannerella forsythia, a Gram-negative anaerobic bacterium, is an important pathogen in periodontal disease. This bacterium possesses genes encoding all known components of the type IX secretion system (T9SS). T. forsythia mutants deficient in genes orthologous to the T9SS-encoding genes porK, porT and sov were constructed. All porK, porT and sov single mutants lacked the surface layer (S-layer) and expressed less-glycosylated versions of the S-layer glycoproteins TfsA and TfsB. In addition, t...

  12. A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology.

    Science.gov (United States)

    Lewis, Derrick L; Notey, Jaspreet S; Chandrayan, Sanjeev K; Loder, Andrew J; Lipscomb, Gina L; Adams, Michael W W; Kelly, Robert M

    2015-03-01

    A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targeted gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.

  13. Imipenem- and meropenem-resistant mutants of Enterobacter cloacae and Proteus rettgeri lack porins.

    Science.gov (United States)

    Raimondi, A; Traverso, A; Nikaido, H

    1991-01-01

    Carbapenems such as imipenem and meropenem are not rapidly hydrolyzed by commonly occurring beta-lactamases. Nevertheless, it was possible, by mutagenesis and selection, to isolate mutant strains of Enterobacter cloacae and Proteus rettgeri that are highly resistant to meropenem and imipenem. Two alterations were noted in the E. cloacae mutants. First, the mutant strains appeared to be strongly derepressed in the production of beta-lactamases, which reached a very high level when the strains were grown in the presence of imipenem. Second, these mutants were deficient in the production of nonspecific porins, as judged by the pattern of outer membrane proteins as well as by reconstitution assays of permeability. As with most porin-deficient mutants, their cultures were unstable, and their cultivation in the absence of carbapenems rapidly led to an overgrowth of porin-producing revertants. Analysis of the data suggests that the synergism between the lowered outer membrane permeability and the slow but significant hydrolysis of carbapenems by the overproduced enzymes can explain the resistance phenotypes quantitatively, although the possibility of alteration of the target cannot be excluded at present. With P. rettgeri mutants, there was no indication of further derepression of beta-lactamase, but the enzyme hydrolyzed imipenem much more efficiently than the E. cloacae enzyme did. In addition, the major porin was absent in one mutant strain. These results suggest that a major factor for the carbapenem resistance of these enteric bacteria is the porin deficiency, and this conclusion forms a contrast to the situation in Pseudomonas aeruginosa, in which the most prevalent class of imipenem-resistant mutants appears to lack the specific channel protein D2 yet retains the major nonspecific porin F. Images PMID:1656855

  14. A direct screening procedure for gravitropism mutants in Arabidopsis thaliana (L. ) Heynh

    Energy Technology Data Exchange (ETDEWEB)

    Bullen, B.L.; Best, T.R.; Gregg, M.M.; Barsel, S.E.; Poff, K.L. (Michigan State Univ., East Lansing (USA))

    1990-06-01

    In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable.

  15. Identification and primary genetic analysis of Arabidopsis stomatal mutants in response to multiple stresses

    Institute of Scientific and Technical Information of China (English)

    SONG Yuwei; KANG Yanli; LIU Hao; ZHAO Xiaoliang; WANG Pengtao; AN Guoyong; ZHOU Yun; MIAO Chen; SONG Chunpeng

    2006-01-01

    In response to variable environmental conditions, guard cells located in the leaf epidermis can integrate and cope with a multitude of complicated stimuli, thereby making stomata in an appropriate state. However, many signaling components in guard cell signaling remain elusive. In our laboratory,a tool for non-invasive remote infrared thermal images was used to screen an ethyl methane sulfonate-mutagenized population for Arabidopsis stomatal response mutants under multiple stresses (ABA, H2O2, CO2, etc.). More than forty "hot" or "cold"mutants were isolated (above or below 0.5℃ in contrast to normal plantlets). Identification and primary genetic analysis of these mutants show that they are monogenic recessive mutations and there exist distinct difference in stomata apertures compared to wild type. These mutants in response to various environmental stresses and hormones were comprehensively investigated, which enables us to further understand the cross-talk in different signal transduction pathways.

  16. Effect of plant growth regulators on leaf anatomy of the has mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Janosević, D; Uzelac, B; Budimir, S

    2008-12-01

    In this study, the effect of plant growth regulators on leaf morphogenesis of the recessive T-DNA insertion mutant of Arabidopsis thaliana was analyzed. The morpho-anatomical analysis revealed that leaves of the has mutant are small and narrow, with lobed blades and disrupted tissue organization. When has plants were grown on the medium supplied with plant growth regulators: benzylaminopurine (BAP) or ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), the leaf anatomy was partially restored to the wild type, although plants still exhibited morphological abnormalities.

  17. Meiotic and Mitotic Cell Cycle Mutants Involved in Gametophyte Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Jingjing Liu; Li-Jia Qu

    2008-01-01

    The alternation between diploid and haploid generations is fundamentalin the life cycles of both animals and plants.The meiotic cell cycle is common to both animals and plants gamete formation, but in animals the products of meiosis are gametes,whereas for most plants,subsequent mitotic cell cycles are needed for their formation. Clarifying the regulatory mechanisms of mitotic cell cycle progression during gametophyte development will help understanding of sexual reproduction in plants.Many mutants defective in gametophyte development and,in particular,many meiotic and mitotic cell cycle mutants in Arabidopsis male and female gametophyte development were identified through both forward and reverse genetics approaches.

  18. Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases.

    Science.gov (United States)

    Zhu, Fan; Bertoft, Eric; Szydlowski, Nicolas; d'Hulst, Christophe; Seetharaman, Koushik

    2015-01-12

    This is the first report on the cluster structure of transitory starch from Arabidopsis leaves. In addition to wild type, the molecular structures of leaf starch from mutants deficient in starch synthases (SS) including single enzyme mutants ss1-, ss2-, or ss3-, and also double mutants ss1-ss2- and ss1-ss3- were characterized. The mutations resulted in increased amylose content. Clusters from whole starch were isolated by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens. The clusters were then further hydrolyzed with concentrated α-amylase of B. amyloliquefaciens to produce building blocks (α-limit dextrins). Structures of the clusters and their building blocks were characterized by chromatography of samples before and after debranching treatment. While the mutations increased the size of clusters, the reasons were different as reflected by the composition of their unit chains and building blocks. In general, all mutants contained more of a-chains that preferentially increased the number of small building blocks with only two chains. The clusters of the double mutant ss1-ss3- were very large and possessed also more of large building blocks with four or more chains. The results from transitory starch are compared with those from agriculturally important crops in the context that to what extent the Arabidopsis can be a true biotechnological reflection for starch modifications through genetic means.

  19. Photochemistry of PSII in CYP38 Arabidopsis thaliana Deletion Mutant

    Directory of Open Access Journals (Sweden)

    Hrvoje Lepeduš

    2009-01-01

    Full Text Available Chloroplast protein CYP38 is a cyclophilin-like peptidyl-prolyl cis-trans isomerase involved in photosystem II (PSII assembly. It also serves as a regulator of thylakoid protein phosphatase. In this work the efficiency of PSII in CYP38 deficient Arabidopsis thaliana M13 plants has been analyzed by measuring in vivo chlorophyll a (Chl a fluorescence transient (OJIP test. Significant differences in overall photosynthetic performance (PIABS, absorption (ABS/RC, trapping (TRo/RC, electron transport (ETo/RC, and dissipation (DIo/RC were observed between A. thaliana M13 and the wild type (WT plants. Increased Chl a and Chl b levels, as well as decreased Chl a/Chl b ratio were measured in M13 plants, indicating the adjustment of PSII antenna for increasing light absorption capability. Based on the obtained results, it can be concluded that the deficiency in CYP38 protein leads to impaired function of PSII due to the conversion of a certain fraction of active reaction centres to dissipative ones. This leads to a decrease in overall photosynthetic performance (PIABS in M13 plants. Such effect was due to lowering of TRo/DIo parameter, which was influenced mostly by significant increases in energy dissipation (DIo/RC and in trapping of electrons (TRo/RC per active reaction centre.

  20. The TOC159 mutant of Arabidopsis thaliana accumulates altered levels of saturated and polyunsaturated fatty acids.

    Science.gov (United States)

    Afitlhile, Meshack; Fry, Morgan; Workman, Samantha

    2015-02-01

    We evaluated whether the TOC159 mutant of Arabidopsis called plastid protein import 2-2 (ppi2-2) accumulates normal levels of fatty acids, and transcripts of fatty acid desaturases and galactolipid synthesis enzymes. The ppi2-2 mutant accumulates decreased pigments and total fatty acid content. The MGD1 gene was downregulated and the mutant accumulates decreased levels of monogalactosyldiacylglycerol (MGDG) and 16:3, which suggests that the prokaryotic pathway was impaired in the mutant. The HY5 gene, which encodes long hypocotyl5 transcription factor, was upregulated in the mutant. The DGD1 gene, an HY5 target was marginally increased and the mutant accumulates digalactosyldiacylglycerol at the control level. The mutant had increased expression of 3-ketoacyl-ACP synthase II gene, which encodes a plastid enzyme that elongates 16:0 to 18:0. Interestingly, glycerolipids in the mutant accumulate increased levels of 18:0. A gene that encodes stearoyl-ACP desaturase (SAD) was expressed at the control level and 18:1 was increased, which suggest that SAD may be strongly regulated at the posttranscriptional level. The molar ratio of MGDG to bilayer forming plastid lipids was decreased in the cold-acclimated wild type but not in the ppi2-2 mutant. This indicates that the mutant was unresponsive to cold-stress, and is consistent with increased levels of 18:0, and decreased 16:3 and 18:3 in the ppi2-2 mutant. Overall, these data indicate that a defective Toc159 receptor impaired the synthesis of MGDG, and affected desaturation of 16 and 18-carbon fatty acids. We conclude that expression of the MGD1 gene and synthesis of MGDG are tightly linked to plastid biogenesis.

  1. Arabidopsis thaliana siRNA biogenesis mutants have the lower frequency of homologous recombination.

    Science.gov (United States)

    Yao, Youli; Bilichak, Andriy; Golubov, Andrey; Kovalchuk, Igor

    2016-07-02

    Small interfering RNAs (siRNAs) are involved in the regulation of plant development and response to stress. We have previously shown that mutants impaired in Dicer-like 2 (DCL2), DCL3 and DCL4, RDR2, RDR6 and NPRD1 are partially impaired in their response to stress and dcl2 and dcl3 plants are also impaired in transgenerational response to stress, including changes in homologous recombination frequency (HRF). Here, we have analyzed genome stability of dcl2, dcl3, dcl4, dcl2 dcl3, dcl2 dcl3 dcl4 and rdr6 mutants by measuring the non-induced and the stress-induced recombination frequency. We found that all mutants had the lower spontaneous HRF. The analysis of strand breaks showed that all tested Arabidopsis mutants had a higher level of spontaneous strand breaks, suggesting that the lower HRF is not due to the unusually low level of breaks. Exposure to methyl methane sulfonate (MMS) resulted in an increase in the level of strand breaks in wild-type plants and a decrease in mutants. All mutants had the higher methylation of cytosines at CpG sites under non-induced conditions. Exposure to MMS resulted in a decrease in methylation level in wild-type plants and an increase in methylation in all dcl mutants. The expression of several DNA repair genes was altered in dcl4 plants under non-induced and induced conditions. Our data suggest that siRNA biogenesis may be essential for the maintenance of the genome stability and stress response in Arabidopsis.

  2. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  3. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@qst.go.jp [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nozawa, Shigeki [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Narumi, Issay [Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193 (Japan); Oono, Yutaka [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2017-01-15

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or {sup 60}Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30–110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  4. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant.

    Science.gov (United States)

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2014-09-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  5. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    Science.gov (United States)

    Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Oono, Yutaka

    2017-01-01

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or 60Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30-110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  6. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  7. An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress.

    Science.gov (United States)

    Michal Johnson, Joy; Reichelt, Michael; Vadassery, Jyothilakshmi; Gershenzon, Jonathan; Oelmüller, Ralf

    2014-06-11

    Ca2+, a versatile intracellular second messenger in various signaling pathways, initiates many responses involved in growth, defense and tolerance to biotic and abiotic stress. Endogenous and exogenous signals induce cytoplasmic Ca2+ ([Ca2+]cyt) elevation, which are responsible for the appropriate downstream responses. Here we report on an ethyl-methane sulfonate-mediated Arabidopsis mutant that fails to induce [Ca2+]cyt elevation in response to exudate preparations from the pathogenic mibrobes Alternaria brassicae, Rhizoctonia solani, Phytophthora parasitica var. nicotianae and Agrobacterium tumefaciens. The cytoplasmic Ca2+elevation mutant1 (cycam1) is susceptible to infections by A. brassicae, its toxin preparation and sensitive to abiotic stress such as drought and salt. It accumulates high levels of reactive oxygen species and contains elevated salicylic acid, abscisic acid and bioactive jasmonic acid iso-leucine levels. Reactive oxygen species- and phytohormone-related genes are higher in A. brassicae-treated wild-type and mutant seedlings. Depending on the analysed response, the elevated levels of defense-related compounds are either caused by the cycam mutation and are promoted by the pathogen, or they are mainly due to the pathogen infection or application of pathogen-associated molecular patterns. Furthermore, cycam1 shows altered responses to abscisic acid treatments: the hormone inhibits germination and growth of the mutant. We isolated an Arabidopsis mutant which fails to induce [Ca2+]cyt elevation in response to exudate preparations from various microbes. The higher susceptibility of the mutant to pathogen infections correlates with the higher accumulation of defense-related compounds, such as phytohormones, reactive oxygen-species, defense-related mRNA levels and secondary metabolites. Therefore, CYCAM1 couples [Ca2+]cyt elevation to biotic, abiotic and oxidative stress responses.

  8. Gravity-Induced Modifications to Development in Hypocotyls of Arabidopsis Tubulin Mutants1[W][OA

    Science.gov (United States)

    Matsumoto, Shouhei; Kumasaki, Saori; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Takashi; Hoson, Takayuki

    2010-01-01

    We investigated the roles of cortical microtubules in gravity-induced modifications to the development of stem organs by analyzing morphology and orientation of cortical microtubule arrays in hypocotyls of Arabidopsis (Arabidopsis thaliana) tubulin mutants, tua3(D205N), tua4(S178Δ), and tua6(A281T), cultivated under 1g and hypergravity (300g) conditions. Hypocotyls of tubulin mutants were shorter and thicker than the wild type even at 1g, and hypergravity further suppressed elongation and stimulated expansion. The degree of such changes was clearly smaller in tubulin mutants, in particular in tua6. Hypocotyls of tubulin mutants also showed either left-handed or right-handed helical growth at 1g, and the degree of twisting phenotype was intensified under hypergravity conditions, especially in tua6. Hypergravity induced reorientation of cortical microtubules from transverse to longitudinal directions in epidermal cells of wild-type hypocotyls. In tubulin mutants, especially in tua6, the percentage of cells with longitudinal microtubules was high even at 1g, and it was further increased by hypergravity. The twisting phenotype was most obvious at cells 10 to 12 from the top, where reorientation of cortical microtubules from transverse to longitudinal directions occurred. Moreover, the left-handed helical growth mutants (tua3 and tua4) had right-handed microtubule arrays, whereas the right-handed mutant (tua6) had left-handed arrays. There was a close correlation between the alignment angle of epidermal cell files and the alignment of cortical microtubules. Gadolinium ions, blockers of mechanosensitive ion channels (mechanoreceptors), suppressed the twisting phenotype in tubulin mutants under both 1g and 300g conditions. Microtubule arrays in tubulin mutants were oriented more transversely by gadolinium treatment, irrespective of gravity conditions. These results support the hypothesis that cortical microtubules play an essential role in maintenance of normal growth

  9. Gravity-induced modifications to development in hypocotyls of Arabidopsis tubulin mutants.

    Science.gov (United States)

    Matsumoto, Shouhei; Kumasaki, Saori; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Takashi; Hoson, Takayuki

    2010-02-01

    We investigated the roles of cortical microtubules in gravity-induced modifications to the development of stem organs by analyzing morphology and orientation of cortical microtubule arrays in hypocotyls of Arabidopsis (Arabidopsis thaliana) tubulin mutants, tua3(D205N), tua4(S178Delta), and tua6(A281T), cultivated under 1g and hypergravity (300g) conditions. Hypocotyls of tubulin mutants were shorter and thicker than the wild type even at 1g, and hypergravity further suppressed elongation and stimulated expansion. The degree of such changes was clearly smaller in tubulin mutants, in particular in tua6. Hypocotyls of tubulin mutants also showed either left-handed or right-handed helical growth at 1g, and the degree of twisting phenotype was intensified under hypergravity conditions, especially in tua6. Hypergravity induced reorientation of cortical microtubules from transverse to longitudinal directions in epidermal cells of wild-type hypocotyls. In tubulin mutants, especially in tua6, the percentage of cells with longitudinal microtubules was high even at 1g, and it was further increased by hypergravity. The twisting phenotype was most obvious at cells 10 to 12 from the top, where reorientation of cortical microtubules from transverse to longitudinal directions occurred. Moreover, the left-handed helical growth mutants (tua3 and tua4) had right-handed microtubule arrays, whereas the right-handed mutant (tua6) had left-handed arrays. There was a close correlation between the alignment angle of epidermal cell files and the alignment of cortical microtubules. Gadolinium ions, blockers of mechanosensitive ion channels (mechanoreceptors), suppressed the twisting phenotype in tubulin mutants under both 1g and 300 g conditions. Microtubule arrays in tubulin mutants were oriented more transversely by gadolinium treatment, irrespective of gravity conditions. These results support the hypothesis that cortical microtubules play an essential role in maintenance of normal

  10. New molecular phenotypes in the dst mutants of Arabidopsis revealed by DNA microarray analysis.

    Science.gov (United States)

    Pérez-Amador, M A; Lidder, P; Johnson, M A; Landgraf, J; Wisman, E; Green, P J

    2001-12-01

    In this study, DNA microarray analysis was used to expand our understanding of the dst1 mutant of Arabidopsis. The dst (downstream) mutants were isolated originally as specifically increasing the steady state level and the half-life of DST-containing transcripts. As such, txhey offer a unique opportunity to study rapid sequence-specific mRNA decay pathways in eukaryotes. These mutants show a threefold to fourfold increase in mRNA abundance for two transgenes and an endogenous gene, all containing DST elements, when examined by RNA gel blot analysis; however, they show no visible aberrant phenotype. Here, we use DNA microarrays to identify genes with altered expression levels in dst1 compared with the parental plants. In addition to verifying the increase in the transgene mRNA levels, which were used to isolate these mutants, we were able to identify new genes with altered mRNA abundance in dst1. RNA gel blot analysis confirmed the microarray data for all genes tested and also was used to catalog the first molecular differences in gene expression between the dst1 and dst2 mutants. These differences revealed previously unknown molecular phenotypes for the dst mutants that will be helpful in future analyses. Cluster analysis of genes altered in dst1 revealed new coexpression patterns that prompt new hypotheses regarding the nature of the dst1 mutation and a possible role of the DST-mediated mRNA decay pathway in plants.

  11. Phenotypical and structural characterization of the Arabidopsis mutant involved in shoot apical meristem

    Institute of Scientific and Technical Information of China (English)

    Zhe HU; Ping LI; Jinfang MA; Yunlong WANG; Xinyu WANG; Chongying WANG

    2008-01-01

    An Arabidopsis mutant induced by T-DNA insertion was studied with respect to its phenotype, micro-structure of shoot apical meristem (SAM) and histo-chemical localization of the GUS gene in comparison with the wild type. Phenotypical observation found that the mutant exhibited a dwarf phenotype with smaller organs (such as smaller leaves, shorter petioles), and slower development and flowering time compared to the wild type. Optical microscopic analysis of the mutant showed that it had a smaller and more flattened SAM, with reduced cell layers and a shortened distance between two leaf primordia compared with the wild type. In addi-tion, analysis of the histo-chemical localization of the GUS gene revealed that it was specifically expressed in the SAM and the vascular tissue of the mutant, which suggests that the gene trapped by T-DNA may function in the SAM, and T-DNA insertion could influence the functional activity of the related gene in the mutant, lead-ing to alterations in the SAM and a series of phenotypes in the mutant.

  12. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation.

    Science.gov (United States)

    Melo-Oliveira, R; Oliveira, I C; Coruzzi, G M

    1996-05-14

    Glutamate dehydrogenase (GDH) is ubiquitous to all organisms, yet its role in higher plants remains enigmatic. To better understand the role of GDH in plant nitrogen metabolism, we have characterized an Arabidopsis mutant (gdh1-1) defective in one of two GDH gene products and have studied GDH1 gene expression. GDH1 mRNA accumulates to highest levels in dark-adapted or sucrose-starved plants, and light or sucrose treatment each repress GDH1 mRNA accumulation. These results suggest that the GDH1 gene product functions in the direction of glutamate catabolism under carbon-limiting conditions. Low levels of GDH1 mRNA present in leaves of light-grown plants can be induced by exogenously supplied ammonia. Under such conditions of carbon and ammonia excess, GDH1 may function in the direction of glutamate biosynthesis. The Arabidopsis gdh-deficient mutant allele gdh1-1 cosegregates with the GDH1 gene and behaves as a recessive mutation. The gdh1-1 mutant displays a conditional phenotype in that seedling growth is specifically retarded on media containing exogenously supplied inorganic nitrogen. These results suggest that GDH1 plays a nonredundant role in ammonia assimilation under conditions of inorganic nitrogen excess. This notion is further supported by the fact that the levels of mRNA for GDH1 and chloroplastic glutamine synthetase (GS2) are reciprocally regulated by light.

  13. Chloroplast 2010: a database for large-scale phenotypic screening of Arabidopsis mutants.

    Science.gov (United States)

    Lu, Yan; Savage, Linda J; Larson, Matthew D; Wilkerson, Curtis G; Last, Robert L

    2011-04-01

    Large-scale phenotypic screening presents challenges and opportunities not encountered in typical forward or reverse genetics projects. We describe a modular database and laboratory information management system that was implemented in support of the Chloroplast 2010 Project, an Arabidopsis (Arabidopsis thaliana) reverse genetics phenotypic screen of more than 5,000 mutants (http://bioinfo.bch.msu.edu/2010_LIMS; www.plastid.msu.edu). The software and laboratory work environment were designed to minimize operator error and detect systematic process errors. The database uses Ruby on Rails and Flash technologies to present complex quantitative and qualitative data and pedigree information in a flexible user interface. Examples are presented where the database was used to find opportunities for process changes that improved data quality. We also describe the use of the data-analysis tools to discover mutants defective in enzymes of leucine catabolism (heteromeric mitochondrial 3-methylcrotonyl-coenzyme A carboxylase [At1g03090 and At4g34030] and putative hydroxymethylglutaryl-coenzyme A lyase [At2g26800]) based upon a syndrome of pleiotropic seed amino acid phenotypes that resembles previously described isovaleryl coenzyme A dehydrogenase (At3g45300) mutants. In vitro assay results support the computational annotation of At2g26800 as hydroxymethylglutaryl-coenzyme A lyase.

  14. Cross-protection provided by live Shigella mutants lacking major antigens.

    Science.gov (United States)

    Szijártó, Valéria; Hunyadi-Gulyás, Eva; Emődy, Levente; Pál, Tibor; Nagy, Gábor

    2013-05-01

    The immune response elicited by Shigella infections is dominated by serotype-specific antibodies recognizing the LPS O-antigens. Although a marked antibody response to invasion plasmid antigens (Ipa-s) shared by all virulent strains is also induced, the varying level of immunity elicited by natural infections is serotype-restricted. Previous vaccines have tried to mimic and achieve this serotype-specific, infection-induced immunity. As, however, the four Shigella species can express 50 different types of O-antigens, current approaches with the aim to induce a broad coverage use a mixture of the most common O-antigens combined in single vaccines. In the current study we present data on an alternative approach to generate immunity protective against multiple serotypes. Mutants lacking both major immune-determinant structures (i.e. the Ipa and O-antigens) were not only highly attenuated, but, unlike their avirulent counterparts still expressing these antigens, elicited a protective immune response to heterologous serotypes in a murine model. Evidence is provided that protection was mediated by the enhanced immunogenic potential of minor conserved antigens. Furthermore, the rough, non-invasive double mutants triggered an immune response different from that induced by the smooth, invasive strains regarding the isotype of antibodies generated. These non-invasive, rough mutants may represent promising candidates for further development into live vaccines for the prophylaxis of bacillary dysentery in areas with multiple endemic serotypes.

  15. Lack of a surface layer in Tannerella forsythia mutants deficient in the type IX secretion system.

    Science.gov (United States)

    Narita, Yuka; Sato, Keiko; Yukitake, Hideharu; Shoji, Mikio; Nakane, Daisuke; Nagano, Keiji; Yoshimura, Fuminobu; Naito, Mariko; Nakayama, Koji

    2014-10-01

    Tannerella forsythia, a Gram-negative anaerobic bacterium, is an important pathogen in periodontal disease. This bacterium possesses genes encoding all known components of the type IX secretion system (T9SS). T. forsythia mutants deficient in genes orthologous to the T9SS-encoding genes porK, porT and sov were constructed. All porK, porT and sov single mutants lacked the surface layer (S-layer) and expressed less-glycosylated versions of the S-layer glycoproteins TfsA and TfsB. In addition, these mutants exhibited decreased haemagglutination and increased biofilm formation. Comparison of the proteins secreted by the porK and WT strains revealed that the secretion of several proteins containing C-terminal domain (CTD)-like sequences is dependent on the porK gene. These results indicate that the T9SS is functional in T. forsythia and contributes to the translocation of CTD proteins to the cell surface or into the extracellular milieu.

  16. Effects of salt stress on wild type and vte4 mutant Arabidopsis thaliana: Model plant to engineer tolerance towards salinity

    Directory of Open Access Journals (Sweden)

    Khalatbari Amir Ali

    2013-01-01

    Full Text Available One of the major environmental constraints impairing plant distribution and yield is believed to be salt stress. Additionally, engineered abiotic stress resistance or/and tolerance is considered as an indispensable target in order to enhance plant productivity. In this study, the effects of salinity on physiological and morphological of wild type (Columbia-0 and vte4 mutant Arabidopsis thaliana were investigated under different NaCl concentrations. These salt treatments, including control condition, 50mM and 100mM NaCl were imposed on the plants. Each salt treatment was replicated three times in a complete randomized design with factorial arrangement. Wild type and mutant A.thaliana plants were subjected to the abiotic stress (salinity for up to 11 days to evaluate the parameters of growth, development and water relations. As a result, the performance of wild type plants was stronger than vte4 mutant under different salt treatments. Under control condition, rosette dry weight, maximum quantum efficiency (PSII and specific leaf area obtained the highest values of 13.85 mg, considered, wild type A.thaliana recorded higher value of 0.82 gW/gFW for relative water content (RWC under 50mM NaCl whereas mutant plants gained the value of 0.78 gW/gFW under the same condition. However, root mass fraction indicated an increase for both wild type and vte4 mutant plants after 11 days of salt stress onset. The reduction of water potential was observed for wild type and mutant A.thaliana where it scored -1.3 MPa and -1.4, respectively. As a conclusion, these findings implied that under different salt treatments morphological and physiological responses of wild type and vte4 mutant were affected in which wild type plants showed more tolerance. Lack of γ-tocopherol methyltransferase (γ -TMT gene in vte4 seemed to impair defence mechanism of this mutant against salinity.

  17. Characterization of N-Glycans from Arabidopsis. Application to a Fucose-Deficient Mutant1

    Science.gov (United States)

    Rayon, Catherine; Cabanes-Macheteau, Marion; Loutelier-Bourhis, Corinne; Salliot-Maire, Isabelle; Lemoine, Jérome; Reiter, Wolf-Dieter; Lerouge, Patrice; Faye, Loïc

    1999-01-01

    The structures of glycans N-linked to Arabidopsis proteins have been fully identified. From immuno- and affinodetections on blots, chromatography, nuclear magnetic resonance, and glycosidase sequencing data, we show that Arabidopsis proteins are N-glycosylated by high-mannose-type N-glycans from Man5GlcNAc2 to Man9GlcNAc2, and by xylose- and fucose (Fuc)-containing oligosaccharides. However, complex biantenary structures containing the terminal Lewis a epitope recently reported in the literature (A.-C. Fitchette-Lainé, V. Gomord, M. Cabanes, J.-C. Michalski, M. Saint Macary, B. Foucher, B. Cavalier, C. Hawes, P. Lerouge, and L. Faye [1997] Plant J 12: 1411–1417) were not detected. A similar study was done on the Arabidopsis mur1 mutant, which is affected in the biosynthesis of l-Fuc. In this mutant, one-third of the Fuc residues of the xyloglucan has been reported to be replaced by l-galactose (Gal) (E. Zablackis, W.S. York, M. Pauly, S. Hantus, W.D. Reiter, C.C.S. Chapple, P. Albersheim, and A. Darvill [1996] Science 272: 1808–1810). N-linked glycans from the mutant were identified and their structures were compared with those isolated from the wild-type plants. In about 95% of all N-linked glycans from the mur1 plant, l-Fuc residues were absent and were not replaced by another monosaccharide. However, in the remaining 5%, l-Fuc was found to be replaced by a hexose residue. From nuclear magnetic resonance and mass spectrometry data of the mur1 N-glycans, and by analogy with data reported on mur1 xyloglucan, this subpopulation of N-linked glycans was proposed to be l-Gal-containing N-glycans resulting from the replacement of l-Fuc by l-Gal. PMID:9952469

  18. The toc132toc120 heterozygote mutant of Arabidopsis thaliana accumulates reduced levels of hexadecatrienoic acid.

    Science.gov (United States)

    Afitlhile, Meshack; Duffield-Duncan, Kayla; Fry, Morgan; Workman, Samantha; Hum-Musser, Sue; Hildebrand, David

    2015-11-01

    A null and heterozygous mutant for the Arabidopsis thaliana TOC132 and TOC120 genes accumulates increased levels of 16:0 and decreased 16:3, suggesting altered homeostasis in fatty acid synthesis. The FAD5 gene encodes a plastid desaturase that catalyzes the first step in the synthesis of 16:3 in monogalactosyldiacylglycerol (MGDG). In non-acclimated toc132toc120+/- mutant plants, the FAD5 gene was repressed and this correlated with decreased levels of 16:3. In cold-acclimated mutant however, the FAD5 gene was upregulated and there was a small increase in 16:3 levels relative to the non-acclimated mutant plants. The MGD1 gene was expressed at control levels and the mutant accumulated levels of MGDG that were similar to the wild type. In the mutant however, MGDG had decreased 16:3 levels, suggesting that the activity of FAD5 desaturase was compromised. In the mutant, the FAD2 and FAD3 genes were downregulated but levels of 18:3-PC were increased, suggesting posttranscriptional regulation for the ER-localized fatty acid desaturases. The Toc120 or Toc159 receptor is likely to compensate for a defective Toc132 receptor. In the cold-acclimated mutant, the TOC159 gene was repressed ca. 300-fold, whereas the TOC120 gene was repressed 7-fold relative to the non-acclimated wild type. Thus, the TOC159 gene is more sensitive to cold-stress and might not compensate for defect in the TOC132 gene under these conditions. Overall, these data show that a mutation in the TOC132 gene results in decreased 16:3 levels, indicating the need for an intact Toc132/Toc120 receptor, presumably to facilitate the import of the FAD5 preprotein into chloroplasts.

  19. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant

    Energy Technology Data Exchange (ETDEWEB)

    Ogas, J.; Somerville, C. [Carnegie Institution of Washington, Stanford, CA (United States); Cheng, Jin-Chen; Sung, R. [Univ. of California, Berkeley, CA (United States)

    1997-07-04

    The plant growth regulator gibberellin (GA) has a profound effect on shoot development and promotes developmental transitions such as flowering. Little is known about any analogous effect GA might have on root development. In a screen for mutants, Arabi-dopsis plants carrying a mutation designated pickle (pkl) were isolated in which the primary root meristem retained characteristics of embryonic tissue. Expression of this aberrant differentiation state was suppressed by GA. Root tissue from plants carrying the pkl mutation spontaneously regenerated new embryos and plants. 19 refs., 3 figs., 1 tab.

  20. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation.

    OpenAIRE

    Melo-Oliveira, R; I.C. Oliveira; Coruzzi, G M

    1996-01-01

    Glutamate dehydrogenase (GDH) is ubiquitous to all organisms, yet its role in higher plants remains enigmatic. To better understand the role of GDH in plant nitrogen metabolism, we have characterized an Arabidopsis mutant (gdh1-1) defective in one of two GDH gene products and have studied GDH1 gene expression. GDH1 mRNA accumulates to highest levels in dark-adapted or sucrose-starved plants, and light or sucrose treatment each repress GDH1 mRNA accumulation. These results suggest that the GDH...

  1. Developmental defects in mutants of the PsbP domain protein 5 in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Johnna L Roose

    Full Text Available Plants contain an extensive family of PsbP-related proteins termed PsbP-like (PPL and PsbP domain (PPD proteins, which are localized to the thylakoid lumen. The founding member of this family, PsbP, is an established component of the Photosystem II (PS II enzyme, and the PPL proteins have also been functionally linked to other photosynthetic processes. However, the functions of the remaining seven PPD proteins are unknown. To elucidate the function of the PPD5 protein (At5g11450 in Arabidopsis, we have characterized a mutant T-DNA insertion line (SALK_061118 as well as several RNAi lines designed to suppress the expression of this gene. The functions of the photosynthetic electron transfer reactions are largely unaltered in the ppd5 mutants, except for a modest though significant decrease in NADPH dehydrogenase (NDH activity. Interestingly, these mutants show striking plant developmental and morphological defects. Relative to the wild-type Col-0 plants, the ppd5 mutants exhibit both increased lateral root branching and defects associated with axillary bud formation. These defects include the formation of additional rosettes originating from axils at the base of the plant as well as aerial rosettes formed at the axils of the first few nodes of the shoot. The root-branching phenotype is chemically complemented by treatment with the synthetic strigolactone, GR24. We propose that the developmental defects observed in the ppd5 mutants are related to a deficiency in strigolactone biosynthesis.

  2. Photosynthetic Properties of Photosystem Ⅱ in Arabidopsis thaliana Ipa1 Mutant

    Institute of Scientific and Technical Information of China (English)

    Lian-Wei Peng; Jin-Kui Guo; Jin-Fang Ma; Wei Chi; Li-Xin Zhang

    2006-01-01

    In a previous study, we characterized a high chlorophyll fluorescence Ipa1 mutant of Arabidopsis thaliana,in which approximately 20% photosystem (PS) Ⅱ protein is accumulated. In the present study, analysis of fluorescence decay kinetics and thermoluminescence profiles demonstrated that the electron transfer reaction on either the donor or acceptor side of PSll remained largely unaffected in the Ipa1 mutant. In the mutant, maximal photochemical efficiency (Fv/Fm, where Fm is the maximum fluorescence yield and Fv is variable fluorescence) decreased with increasing light intensity and remained almost unchanged in wildtype plants under different light conditions. The Fv/Fm values also increased when mutant plants were transferred from standard growth light to low light conditions. Analysis of PSⅡ protein accumulation further confirmed that the amount of PSll reaction center protein is correlated with changes in Fv/Fm in Ipa1 plants.Thus, the assembled PSll in the mutant was functional and also showed increased photosensitivity compared with wild-type plants.

  3. Genome stability of Arabidopsis atm, ku80 and rad51b mutants: somatic and transgenerational responses to stress.

    Science.gov (United States)

    Yao, Youli; Bilichak, Andriy; Titov, Viktor; Golubov, Andrey; Kovalchuk, Igor

    2013-06-01

    DNA double-strand breaks (DSBs) can be repaired via two main mechanisms: non-homologous end joining (NHEJ) and homologous recombination (HR). Our previous work showed that exposure to abiotic stresses resulted in an increase in point mutation frequency (PMF) and homologous recombination frequency (HRF), and these changes were heritable. We hypothesized that mutants impaired in DSB recognition and repair would also be deficient in somatic and transgenerational changes in PMF and HRF. To test this hypothesis, we analyzed the genome stability of the Arabidopsis thaliana mutants deficient in ATM (communication between DNA strand break recognition and the repair machinery), KU80 (deficient in NHEJ) and RAD51B (deficient in HR repair) genes. We found that all three mutants exhibited higher levels of DSBs. Plants impaired in ATM had a lower spontaneous PMF and HRF, whereas ku80 plants had higher frequencies. Plants impaired in RAD51B had a lower HRF. HRF in wild-type, atm and rad51b plants increased in response to several abiotic stressors, whereas it did not increase in ku80 plants. The progeny of stressed wild-type and ku80 plants exhibited an increase in HRF in response to all stresses, and the increase was higher in ku80 plants. The progeny of atm plants showed an increase in HRF only when the parental generation was exposed to cold or flood, whereas the progeny of rad51b plants completely lacked a transgenerational increase in HRF. Our experiments showed that mutants impaired in the recognition and repair of DSBs exhibited changes in the efficiency of DNA repair as reflected by changes in strand breaks, point mutation and HRF. They also showed that the HR RAD51B protein and the protein ATM that recognized damaged DNA might play an important role in transgenerational changes in HRF.

  4. Fine mapping of an Arabidopsis thaliana male sterile mutant EC2-157

    Institute of Scientific and Technical Information of China (English)

    LIU Huijuan; ZHANG Zaibao; LI Hui; GAO Jufang; YANG Zhongnan

    2006-01-01

    An Arabidopsis thaliana male sterile mutant EC2-157 has been isolated using an EMS mutagenesis strategy.Genetic analysis indicated that it was controlled by a single recessive gene called ms157.No pollen grains have been observed in mutant anthers.ms157 Has been mapped to a region of 74 kb located in BAC clone T6K22 on chromosome Ⅳ using a map-based cloning strategy.As no male sterile genes have been reported in this region.ms157 could be a novel gene related to fertility.The further molecular cloning and functional analysis on this gene should facilitate our understanding of A.thaliana anther development.

  5. Employing libraries of zinc finger artificial transcription factors to screen for homologous recombination mutants in Arabidopsis.

    Science.gov (United States)

    Lindhout, Beatrice I; Pinas, Johan E; Hooykaas, Paul J J; van der Zaal, Bert J

    2006-11-01

    A library of genes for zinc finger artificial transcription factors (ZF-ATF) was generated by fusion of DNA sequences encoding three-finger Cys(2)His(2) ZF domains to the VP16 activation domain under the control of the promoter of the ribosomal protein gene RPS5A from Arabidopsis thaliana. After introduction of this library into an Arabidopsis homologous recombination (HR) indicator line, we selected primary transformants exhibiting multiple somatic recombination events. After PCR-mediated rescue of ZF sequences, reconstituted ZF-ATFs were re-introduced in the target line. In this manner, a ZF-ATF was identified that led to a 200-1000-fold increase in somatic HR (replicated in an independent second target line). A mutant plant line expressing the HR-inducing ZF-ATF exhibited increased resistance to the DNA-damaging agent bleomycin and was more sensitive to methyl methanesulfonate (MMS), a combination of traits not described previously. Our results demonstrate that the use of ZF-ATF pools is highly rewarding when screening for novel dominant phenotypes in Arabidopsis.

  6. Large genetic screens for gynogenesis and androgenesis haploid inducers in Arabidopsis thaliana failed to identify mutants

    Directory of Open Access Journals (Sweden)

    Virginie ePortemer

    2015-03-01

    Full Text Available Gynogenesis is a process in which the embryo genome originates exclusively from female origin, following embryogenesis stimulation by a male gamete. In contrast, androgenesis is the development of embryos that contain only the male nuclear genetic background. Both phenomena are of great interest in plant breeding as haploidisation is an efficient tool to reduce the length of breeding schemes to create varieties. Although few inducer lines have been described, the genetic control of these phenomena is poorly understood. We developed genetic screens to identify mutations that would induce gynogenesis or androgenesis in Arabidopsis thaliana. The ability of mutant pollen to induce either gynogenesis or androgenesis was tested by crossing mutagenized plants as males. Seedlings from these crosses were screened with recessive phenotypic markers, one genetically controlled by the female genome and another by the male genome. Positive and negative controls confirmed the unambiguous detection of both gynogenesis and androgenesis events. This strategy was applied to 1,666 EMS-mutagenised lines and 47 distant Arabidopsis strains. While an internal control suggested that the mutagenesis reached saturation, no gynogenesis or androgenesis inducer was found. However, spontaneous gynogenesis was observed at a frequency of 1/10,800. Altogether, these results suggest that no simple EMS-induced mutation in the male genome is able to induce gynogenesis or androgenesis in Arabidopsis.

  7. The ARABIDOPSIS accession Pna-10 is a naturally occurring sng1 deletion mutant.

    Science.gov (United States)

    Li, Xu; Bergelson, Joy; Chapple, Clint

    2010-01-01

    Sinapoylmalate is the major sinapate ester found in leaves of Arabidopsis thaliana, where it plays an important role in UV-B protection. Metabolic profiling of rosette leaves from 96 Arabidopsis accessions revealed that the Pna-10 accession accumulates sinapoylglucose instead of sinapoylmalate. This unique leaf sinapate ester profile is similar to that of the previously characterized sinapoylglucose accumulator1 (sng1) mutants. SNG1 encodes sinapoylglucose:malate sinapoyltransferase (SMT), a serine carboxypeptidase-like (SCPL) enzyme that catalyzes the conversion of sinapoylglucose to sinapoylmalate. In the reference Columbia genome, the SNG1 gene is located in a cluster of five SCPL genes on Chromosome II. PCR and sequencing analysis of the same genomic region in the Pna-10 accession revealed a 13-kb deletion that eliminates the SNG1 gene (At2g22990) and the gene encoding sinapoylglucose:anthocyanin sinapoyltransferase (SAT) (At2g23000). In addition to its sinapoylmalate-deficient phenotype, and consistent with the loss of SAT, Pna-10 is unable to accumulate sinapoylated anthocyanins. Interestingly, the Pna-17 accession, collected from the same location as Pna-10, has no such deletion. Further analysis of 135 lines collected from the same location as Pna-10 and Pna-17 revealed that four more lines contain the deletion found in Pna-10 accession, suggesting that either the deletion found in Pna-10 is a recent event that has not yet been eliminated through selection or that sinapoylmalate is dispensable for the growth of Arabidopsis under field conditions.

  8. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism.

    Science.gov (United States)

    Rohde, Antje; Morreel, Kris; Ralph, John; Goeminne, Geert; Hostyn, Vanessa; De Rycke, Riet; Kushnir, Sergej; Van Doorsselaere, Jan; Joseleau, Jean-Paul; Vuylsteke, Marnik; Van Driessche, Gonzalez; Van Beeumen, Jozef; Messens, Eric; Boerjan, Wout

    2004-10-01

    The first enzyme of the phenylpropanoid pathway, Phe ammonia-lyase (PAL), is encoded by four genes in Arabidopsis thaliana. Whereas PAL function is well established in various plants, an insight into the functional significance of individual gene family members is lacking. We show that in the absence of clear phenotypic alterations in the Arabidopsis pal1 and pal2 single mutants and with limited phenotypic alterations in the pal1 pal2 double mutant, significant modifications occur in the transcriptome and metabolome of the pal mutants. The disruption of PAL led to transcriptomic adaptation of components of the phenylpropanoid biosynthesis, carbohydrate metabolism, and amino acid metabolism, revealing complex interactions at the level of gene expression between these pathways. Corresponding biochemical changes included a decrease in the three major flavonol glycosides, glycosylated vanillic acid, scopolin, and two novel feruloyl malates coupled to coniferyl alcohol. Moreover, Phe overaccumulated in the double mutant, and the levels of many other amino acids were significantly imbalanced. The lignin content was significantly reduced, and the syringyl/guaiacyl ratio of lignin monomers had increased. Together, from the molecular phenotype, common and specific functions of PAL1 and PAL2 are delineated, and PAL1 is qualified as being more important for the generation of phenylpropanoids.

  9. Transmission electron microscopy and serial reconstructions reveal novel meiotic phenotypes for the ahp2 mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Pathan, Nazia; Stronghill, Patti; Hasenkampf, Clare

    2013-03-01

    We have found novel phenotypes for the previously studied Arabidopsis thaliana (L.) Heynh. meiotic mutant ahp2. These phenotypes were revealed by analysis of reconstructions of normal and ahp2 nuclei that were imaged using transmission electron microscopy. Previous studies of the ahp2 mutant demonstrated that it has a general failure to form synaptonemal complexes, except for the nucleolus organizing regions, and it fails to complete reciprocal genetic exchange. Here, we show that even though the ahp2 chromosome axes have only 5% of the normal amount of synaptonemal complex formation, it nonetheless has slightly more than 40% of the axes involved in close alignment. We also observed two striking nuclear envelope associated abnormalities. Wild type nuclei contain two nucleoli, one nucleolus-like structure, and nuclear envelope associated structures that we refer to as nuclear envelope associated disks. The ahp2 nuclei have the two nucleoli, but they lack the third nucleolus-like structure and instead have a previously uncharacterized structure that spans the nuclear envelope. Additionally, ahp2 meiocytes have nuclear envelope associated disks that are narrower and more numerous (∼2×) than those seen in wild type, and unlike the wild type disks, they are in direct contact with the nuclear envelope.

  10. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants.

    Science.gov (United States)

    Vitha, S; Zhao, L; Sack, F D

    2000-02-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.

  11. Evidence for dynamic network regulation of Drosophila photoreceptor function from mutants lacking the neurotransmitter histamine

    Directory of Open Access Journals (Sweden)

    An eDau

    2016-03-01

    Full Text Available Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdcJK910 mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdcJK910 photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdcJK910 photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdcJK910 R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdcJK910 mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons.

  12. Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase.

    Science.gov (United States)

    García-Calderón, Margarita; Pons-Ferrer, Teresa; Mrázova, Anna; Pal'ove-Balang, Peter; Vilková, Mária; Pérez-Delgado, Carmen M; Vega, José M; Eliášová, Adriana; Repčák, Miroslav; Márquez, Antonio J; Betti, Marco

    2015-01-01

    This paper was aimed to investigate the possible implications of the lack of plastidic glutamine synthetase (GS2) in phenolic metabolism during stress responses in the model legume Lotus japonicus. Important changes in the transcriptome were detected in a GS2 mutant called Ljgln2-2, compared to the wild type, in response to two separate stress conditions, such as drought or the result of the impairment of the photorespiratory cycle. Detailed transcriptomic analysis showed that the biosynthesis of phenolic compounds was affected in the mutant plants in these two different types of stress situations. For this reason, the genes and metabolites related to this metabolic route were further investigated using a combined approach of gene expression analysis and metabolite profiling. A high induction of the expression of several genes for the biosynthesis of different branches of the phenolic biosynthetic pathway was detected by qRT-PCR. The extent of induction was always higher in Ljgln2-2, probably reflecting the higher stress levels present in this genotype. This was paralleled by accumulation of several kaempferol and quercetine glycosides, some of them described for the first time in L. japonicus, and of high levels of the isoflavonoid vestitol. The results obtained indicate that the absence of GS2 affects different aspects of phenolic metabolism in L. japonicus plants in response to stress.

  13. Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine.

    Science.gov (United States)

    Dau, An; Friederich, Uwe; Dongre, Sidhartha; Li, Xiaofeng; Bollepalli, Murali K; Hardie, Roger C; Juusola, Mikko

    2016-01-01

    Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdc (JK910) mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdc (JK910) photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdc (JK910) photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdc (JK910) R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdc (JK910) mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons.

  14. Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase

    Directory of Open Access Journals (Sweden)

    Margarita eGarcía-Calderón

    2015-09-01

    Full Text Available This paper was aimed to investigate the possible implications of the lack of plastidic glutamine synthetase (GS2 in phenolic metabolism during stress responses in the model legume Lotus japonicus. Important changes in the transcriptome were detected in a GS2 mutant called Ljgln2-2, compared to the wild type, in response to two separate stress conditions, such as drought or the result of the impairment of the photorespiratory cycle. Detailed transcriptomic analysis showed that the biosynthesis of phenolic compounds was affected in the mutant plants in these two different types of stress situations. For this reason, the genes and metabolites related to this metabolic route were further investigated using a combined approach of gene expression analysis and metabolite profiling. A high induction of the expression of several genes for the biosynthesis of different branches of the phenolic biosynthetic pathway was detected by qRT-PCR. The extent of induction was always higher in Ljgln2-2, probably reflecting the higher stress levels present in this genotype. This was paralleled by accumulation of several kaempferol and quercetine glycosides, some of them described for the first time in L. japonicus, and of high levels of the isoflavonoid vestitol. The results obtained indicate that the absence of GS2 affects different aspects of phenolic metabolism in L .japonicus plants in response to stress.

  15. Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis B sister (ABS) protein.

    Science.gov (United States)

    Kaufmann, Kerstin; Anfang, Nicole; Saedler, Heinz; Theissen, Günter

    2005-09-01

    Recently, close relatives of class B floral homeotic genes, termed B(sister) genes, have been identified in both angiosperms and gymnosperms. In contrast to the B genes themselves, B(sister) genes are exclusively expressed in female reproductive organs, especially in the envelopes or integuments surrounding the ovules. This suggests an important ancient function in ovule or seed development for B(sister) genes, which has been conserved for about 300 million years. However, investigation of the first loss-of-function mutant for a B(sister) gene (ABS/TT16 from Arabidopsis) revealed only a weak phenotype affecting endothelium formation. Here, we present an analysis of two additional mutant alleles, which corroborates this weak phenotype. Transgenic plants that ectopically express ABS show changes in the growth and identity of floral organs, suggesting that ABS can interact with floral homeotic proteins. Yeast-two-hybrid and three-hybrid analyses indicated that ABS can form dimers with SEPALLATA (SEP) floral homeotic proteins and multimeric complexes that also include the AGAMOUS-like proteins SEEDSTICK (STK) or SHATTERPROOF1/2 (SHP1, SHP2). These data suggest that the formation of multimeric transcription factor complexes might be a general phenomenon among MIKC-type MADS-domain proteins in angiosperms. Heterodimerization of ABS with SEP3 was confirmed by gel retardation assays. Fusion proteins tagged with CFP (Cyan Fluorescent Protein) and YFP (Yellow Fluorescent Protein) in Arabidopsis protoplasts showed that ABS is localized in the nucleus. Phylogenetic analysis revealed the presence of a structurally deviant, but closely related, paralogue of ABS in the Arabidopsis genome. Thus the evolutionary developmental genetics of B(sister) genes can probably only be understood as part of a complex and redundant gene network that may govern ovule formation in a conserved manner, which has yet to be fully explored.

  16. Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant

    Indian Academy of Sciences (India)

    Swadhin Swain; Nidhi Singh; Ashis Kumar Nandi

    2015-03-01

    A sustainable balance between defence and growth is essential for optimal fitness under pathogen stress. Plants activate immune response at the cost of normal metabolic requirements. Thus, plants that constitutively activate defence are deprived of growth. Arabidopsis thaliana mutant constitutive defence without defect in growth and development1 (cdd1) is an exception. The cdd1 mutant is constitutive for salicylic acid accumulation, signalling, and defence against biotrophic and hemibiotrophic pathogens, without having much impact on growth. Thus, cdd1 offers an ideal genetic background to identify novel regulators of plant defence. Here we report the differential gene expression profile between cdd1 and wild-type plants as obtained by microarray hybridization. Expression of several defence-related genes also supports constitutive activation of defence in cdd1. We screened T-DNA insertion mutant lines of selected genes, for resistance against virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Through bacterial resistance, callose deposition and pathogenesis-associated expression analyses, we identified four novel regulators of plant defence. Resistance levels in the mutants suggest that At2g19810 and [rom] At5g05790 are positive regulators, whereas At1g61370 and At3g42790 are negative regulators of plant defence against bacterial pathogens.

  17. A Lesion-Mimic Syntaxin Double Mutant in Arabidopsis Reveals Novel Complexity of Pathogen Defense Signaling

    Institute of Scientific and Technical Information of China (English)

    Ziguo Zhang; Hans Thordal-Christensen; Andrea Lenk; Mats X. Andersson; Torben Gjetting; Carsten Pedersen; Mads E. Nielsen; Marl-Anne Newman; Bi-Huei Hou; Shauna C. Somerville

    2008-01-01

    The lesion-mimicArabidopsis mutant, syp121 syp122, constitutively expresses the salicylic acid (SA) signaling pathway and has low penetration resistance to powdery mildew fungi. Genetic analyses of the lesion-mimic phenotype have expanded our understanding of programmed cell death (PCD) in plants. Inactivation of SA signaling genes in syp121 syp 122 only partially rescues the lesion-mimic phenotype, indicating that additional defenses contribute to the PCD. Whole genome transcriptome analysis confirmed that SA-induced transcripts, as well as numerous other known pathogenresponse transcripts, are up-regulated after inactivation of the syntaxin genes. A suppressor mutant analysis of syp121 syp122 revealed that FMO1, ALD1, and PAD4 are important for lesion development. Mutant alleles of EDS1, NDR1, RAR1, and SGT1b also partially rescued the lesion-mimic phenotype, suggesting that mutating syntaxin genes stimulates TIR-NB-LRR and CC-NB-LRR-type resistances. The syntaxin double knockout potentiated a powdery mildewinduced HR-like response. This required functional PAD4 but not functional SA signaling. However, SA signaling potentiated the PAD4-dependent HR-like response. Analyses of quadruple mutants suggest that EDS5 and SID2 confer separate SA-independent signaling functions, and that FMO1 and ALD1 mediate SA-independent signals that are NPRl-dependent.These studies highlight the contribution of multiple pathways to defense and point to the complexity of their interactions.

  18. A user's guide to the Arabidopsis T-DNA insertion mutant collections.

    Science.gov (United States)

    O'Malley, Ronan C; Barragan, Cesar C; Ecker, Joseph R

    2015-01-01

    The T-DNA sequence-indexed mutant collections contain insertional mutants for most Arabidopsis thaliana genes and have played an important role in plant biology research for almost two decades. By providing a large source of mutant alleles for in vivo characterization of gene function, this resource has been leveraged thousands of times to study a wide range of problems in plant biology. Our primary goal in this chapter is to provide a general guide to strategies for the effective use of the data and materials in these collections. To do this, we provide a general introduction to the T-DNA insertional sequence-indexed mutant collections with a focus on how best to use the available data sources for good line selection. As isolation of a homozygous line is a common next step once a potential disruption line has been identified, the second half of the chapter provides a step-by-step guide for the design and implementation of a T-DNA genotyping pipeline. Finally, we describe interpretation of genotyping results and include a troubleshooting section for common types of segregation distortions that we have observed. In this chapter we introduce both basic concepts and specific applications to both new and more experienced users of the collections for the design and implementation of small- to large-scale genotyping pipelines.

  19. Arabidopsis haiku mutants reveal new controls of seed size by endosperm.

    Science.gov (United States)

    Garcia, Damien; Saingery, Virginie; Chambrier, Pierre; Mayer, Ulrike; Jürgens, Gerd; Berger, Frédéric

    2003-04-01

    In flowering plants, maternal seed integument encloses the embryo and the endosperm, which are both derived from double fertilization. Although the development of these three components must be coordinated, we have limited knowledge of mechanisms involved in such coordination. The endosperm may play a central role in these mechanisms as epigenetic modifications of endosperm development, via imbalance of dosage between maternal and paternal genomes, affecting both the embryo and the integument. To identify targets of such epigenetic controls, we designed a genetic screen in Arabidopsis for mutants that phenocopy the effects of dosage imbalance in the endosperm. The two mutants haiku 1 and haiku 2 produce seed of reduced size that resemble seed with maternal excess in the maternal/paternal dosage. Homozygous haiku seed develop into plants indistinguishable from wild type. Each mutation is sporophytic recessive, and double-mutant analysis suggests that both mutations affect the same genetic pathway. The endosperm of haiku mutants shows a premature arrest of increase in size that causes precocious cellularization of the syncytial endosperm. Reduction of seed size in haiku results from coordinated reduction of endosperm size, embryo proliferation, and cell elongation of the maternally derived integument. We present further evidence for a control of integument development mediated by endosperm-derived signals.

  20. Behavioral characterization of a mutant mouse strain lacking D-amino acid oxidase activity.

    Science.gov (United States)

    Zhang, Min; Ballard, Michael E; Basso, Ana M; Bratcher, Natalie; Browman, Kaitlin E; Curzon, Pete; Konno, Ryuichi; Meyer, Axel H; Rueter, Lynne E

    2011-02-02

    D-amino acid oxidase (DAO), an enzyme that degrades d-serine, has been suggested as a susceptibility factor for schizophrenia. Here we sought to understand more about the behavioral consequence of lacking DAO and the potential therapeutic implication of DAO inhibition by characterizing a mouse strain (ddY/DAO(-)) lacking DAO activity. We found that the mutant mice showed enhanced prepulse inhibition responses (PPI). Intriguingly, DAO-/- mice had increased sensitivity to the PPI-disruptive effect induced by the competitive NMDA antagonist, SDZ 220-581. In the 24-h inhibitory avoidance test, DAO-/- mice were not different from DAO+/+ mice during the recall. In Barnes Maze, we found that DAO-/- mice had a shortened latency to enter the escape tunnel. Interestingly, although these mice were hypoactive when tested in a protected open field, they showed a profound increase of activity on the edge of the unprotected open field of the Barnes Maze even with the escape tunnel removed. This increased edge activity does not appear to be related to a reduced level of anxiety given that there were no significant genotype effects on the measures of anxiety-like behaviors in two standard animal models of anxiety, elevated plus maze and novelty suppressed feeding. Our data suggest that DAO-/- mice might have altered functioning of NMDARs. However, these results provide only modest support for manipulations of DAO activity as a potential therapeutic approach to treat schizophrenia.

  1. The phenotype of Arabidopsis thaliana det1 mutants suggest a role for cytokinins in greening. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Chory, J.; Aguilar, N.; Peto, C.A.

    1990-12-31

    When grown in the absence of light, the det1 mutants of Arabidopsis thaliana develop characteristics of light-grown plants by morphological, cellular, and molecular criteria. Further, in light-grown plants, mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and the chloroplast developmental program. Here we show that the addition of exogenously added cytokinins (either 2-isopentenyl adenine, kinetin, or benzyladenine) to the growth medium of dark-germinated wild-type seedlings results in seedlings that resemble det1 mutants, instead of having the normal etiolated morphology. Like det1 mutants, these dark-grown seedlings now contain chloroplasts and have high levels of expression of genes that are normally ``light``-regulated. These results suggest an important role for cytokinins during greening of Arabidopsis, and may implicate cytokinin levels or an increased sensitivity to cytokinins as explanations for some of the observed phenotypes of det1 mutants.

  2. An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished

    DEFF Research Database (Denmark)

    Schneider, Anja; Häusler, Rainer E; Kolukisaoglu, Uner

    2002-01-01

    The Arabidopsis thaliana tpt-1 mutant which is defective in the chloroplast triose phosphate/phosphate translocator (TPT) was isolated by reverse genetics. It contains a T-DNA insertion 24 bp upstream of the start ATG of the TPT gene. The mutant lacks TPT transcripts and triose phosphate (TP......,6-bisphosphatase. Despite its regulatory role in the feed-forward control of sucrose biosynthesis, variations in the fructose 2,6-bisphosphate content upon illumination were similar in the mutant and the wild type. Crosses of tpt-1 with mutants unable to mobilise starch (sex1) or to synthesise starch (adg1......-1) revealed that growth and photosynthesis of the double mutants was severely impaired only when starch biosynthesis, but not its mobilisation, was affected. For tpt-1/sex1 combining a lack in the TPT with a deficiency in starch mobilisation, an additional compensatory mechanism emerged, i.e. the formation...

  3. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  4. SHORT-ROOT Deficiency Alleviates the Cell Death Phenotype of the Arabidopsis catalase2 Mutant under Photorespiration-Promoting Conditions.

    Science.gov (United States)

    Waszczak, Cezary; Kerchev, Pavel I; Mühlenbock, Per; Hoeberichts, Frank A; Van Der Kelen, Katrien; Mhamdi, Amna; Willems, Patrick; Denecker, Jordi; Kumpf, Robert P; Noctor, Graham; Messens, Joris; Van Breusegem, Frank

    2016-08-01

    Hydrogen peroxide (H2O2) can act as a signaling molecule that influences various aspects of plant growth and development, including stress signaling and cell death. To analyze molecular mechanisms that regulate the response to increased H2O2 levels in plant cells, we focused on the photorespiration-dependent peroxisomal H2O2 production in Arabidopsis thaliana mutants lacking CATALASE2 (CAT2) activity (cat2-2). By screening for second-site mutations that attenuate the PSII maximum efficiency (Fv'/Fm') decrease and lesion formation linked to the cat2-2 phenotype, we discovered that a mutation in SHORT-ROOT (SHR) rescued the cell death phenotype of cat2-2 plants under photorespiration-promoting conditions. SHR deficiency attenuated H2O2-dependent gene expression, oxidation of the glutathione pool, and ascorbate depletion in a cat2-2 genetic background upon exposure to photorespiratory stress. Decreased glycolate oxidase and catalase activities together with accumulation of glycolate further implied that SHR deficiency impacts the cellular redox homeostasis by limiting peroxisomal H2O2 production. The photorespiratory phenotype of cat2-2 mutants did not depend on the SHR functional interactor SCARECROW and the sugar signaling component ABSCISIC ACID INSENSITIVE4, despite the requirement for exogenous sucrose for cell death attenuation in cat2-2 shr-6 double mutants. Our findings reveal a link between SHR and photorespiratory H2O2 production that has implications for the integration of developmental and stress responses.

  5. Reduced immunogenicity of Arabidopsis hgl1 mutant N-glycans caused by altered accessibility of xylose and core fucose epitopes.

    Science.gov (United States)

    Kaulfürst-Soboll, Heidi; Rips, Stephan; Koiwa, Hisashi; Kajiura, Hiroyuki; Fujiyama, Kazuhito; von Schaewen, Antje

    2011-07-01

    Arabidopsis N-glycosylation mutants with enhanced salt sensitivity show reduced immunoreactivity of complex N-glycans. Among them, hybrid glycosylation 1 (hgl1) alleles lacking Golgi α-mannosidase II are unique, because their glycoprotein N-glycans are hardly labeled by anti-complex glycan antibodies, even though they carry β1,2-xylose and α1,3-fucose epitopes. To dissect the contribution of xylose and core fucose residues to plant stress responses and immunogenic potential, we prepared Arabidopsis hgl1 xylT double and hgl1 fucTa fucTb triple mutants by crossing previously established T-DNA insertion lines and verified them by mass spectrometry analyses. Root growth assays revealed that hgl1 fucTa fucTb but not hgl1 xylT plants are more salt-sensitive than hgl1, hinting at the importance of core fucose modification and masking of xylose residues. Detailed immunoblot analyses with anti-β1,2-xylose and anti-α1,3-fucose rabbit immunoglobulin G antibodies as well as cross-reactive carbohydrate determinant-specific human immunoglobulin E antibodies (present in sera of allergy patients) showed that xylose-specific reactivity of hgl1 N-glycans is indeed reduced. Based on three-dimensional modeling of plant N-glycans, we propose that xylose residues are tilted by 30° because of untrimmed mannoses in hgl1 mutants. Glycosidase treatments of protein extracts restored immunoreactivity of hgl1 N-glycans supporting these models. Furthermore, among allergy patient sera, untrimmed mannoses persisting on the α1,6-arm of hgl1 N-glycans were inhibitory to immunoreaction with core fucoses to various degrees. In summary, incompletely trimmed glycoprotein N-glycans conformationally prevent xylose and, to lesser extent, core fucose accessibility. Thus, in addition to N-acetylglucosaminyltransferase I, Golgi α-mannosidase II emerges as a so far unrecognized target for lowering the immunogenic potential of plant-derived glycoproteins.

  6. The gravity persistent signal (gps) Mutants of Arabidopsis: Insights into Gravitropic Signal Transduction

    Science.gov (United States)

    Wyatt, S.

    The gravitropic response of Arabidopsis stems is rapid with a visible within 30 min and vertical reorientation within 2 h. However, horizontal gravistimulation for 3 h at 4°C does not cause curvature. When the stems are subsequently placed in the vertical position at RT, they bend in response to the previous, horizontal gravistimulation. These results indicate that the gravity perception step can occur at 4°C, but that part of the response is sensitive to cold. At 4°C, starch-containing amyloplasts in the endodermis of the inflorescence stems sedimented normally but auxin transport was abolished indicating that the cold treatment affected early events of the signal transduction pathway that occur after amyloplast sedimentation but prior to auxin transport. The gps mutants of Arabidopsis are a unique group of mutants that respond abnormally after gravistimulation at 4°C. gps1 shows no response to the cold gravistimulation, gps2 bends the wrong way as compared to wild type and gps3 over responds, bending past the anticipated curvature. The mutants were selected from a T-DNA tagged population. Cloning strategies based on the tag have been employed to identify the genes disrupted. GPS1 was cloned using TAIL PCR and is At3g20130, a cytochrome P450, CYP705A22, of unknown function. GPS1p::GFP fusions are being used to determine temporal and spatial expression of GPS1. The mutation in gps3 appears to disrupt a non-coding region downstream of At1g43950 No function has yet been determined for this region, but it appears that the mutation disrupts transcription of a transcription factor homologous to the DNA binding domain of an auxin response factor (ARF) 9-like protein. The identity of GPS2 is as yet unknown. The gps mutants represent potentially three independent aspects of signal transduction in the gravitropic response: perception or retention of the gravity signal (gps1), determination of the polarity of the response (gps2), and the tissue specificity of the

  7. Leaf biomechanical properties in Arabidopsis thaliana polysaccharide mutants affect drought survival.

    Science.gov (United States)

    Balsamo, Ronald; Boak, Merewyn; Nagle, Kayla; Peethambaran, Bela; Layton, Bradley

    2015-11-26

    Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated the individual contributions of several genes that are involved in the synthesis of monosaccharides which are important for cell wall structure. We then measured drought tolerance and mechanical integrity during simulated drought in Arabidopsis thaliana. To assess mechanical properties, we designed a small-scale tensile tester for measuring failure strain, ultimate tensile stress, work to failure, toughness, and elastic modulus of 6-week-old leaves in both hydrated and drought-simulated states. Col-0 mutants used in this study include those deficient in lignin, cellulose, components of hemicellulose such as xylose and fucose, the pectic components arabinose and rhamnose, as well as mutants with enhanced arabinose and total pectin content. We found that drought tolerance is correlated to the mechanical and architectural stability of leaves as they experience dehydration. Of the mutants, S096418 with mutations for reduced xylose and galactose was the least drought tolerant, while the arabinose-altered CS8578 mutants were the least affected by water loss. There were also notable correlations between drought tolerance and mechanical properties in the diminished rhamnose mutant, CS8575 and the dehydrogenase-disrupted S120106. Our findings suggest that components of hemicellulose and pectins affect leaf biomechanical properties and may play an important role in the ability of this model system to survive drought.

  8. Reporter-based screen for Arabidopsis mutants com-promised in nonhost resistance

    Institute of Scientific and Technical Information of China (English)

    CHEN HuaMin; PAN JunSong; ZHAO XiuXiang; ZHOU JianMin; CAI Run

    2008-01-01

    Plants are exposed to many potentially pathogenic microbes in the environment, but each species is only susceptible to a limited number of pathogens. The broad resistance is referred to as nonhost re-sistance. To date, little is known about the underlying mechanism of nonhost resistance and the sig-naling transduction process. Here we describe a simple method for isolating Arabidopsis nonhost re-sistance mutants against a nonadapted bacterial pathogen. A RAP2.6 promoter-driven LUC reporter system was developed to replace the tedious bacterial growth assay during the primary screening. The RAP2.6-LUC reporter gone is normally induced by the virulent bacterium Pseudomonas syringae pv tomato but not the nonadapted bacterium P. syringae pv phaseolicola. By using this method we iso-lated 4 mutants displaying strong reporter activity in response to P. syringae pv phaseolicola, which were characterized in some details, ebsl, ebs2, ebs3, and ebs4 (enhanced bacterial susceptibility) were compromised in resistance against P. syringae pv phaseolicola and/or P. syringae pv tomato. In addi-tion, ebs4 showed enhanced hypersensitive response to the incompatible bacterium P. syringae pv tomato (avrB). These results demonstrated that the method is suited for large scale screening for nonhost resistance mutants.

  9. Ascorbate-Deficient vtc2 Mutants in Arabidopsis Do Not Exhibit Decreased Growth.

    Science.gov (United States)

    Lim, Benson; Smirnoff, Nicholas; Cobbett, Christopher S; Golz, John F

    2016-01-01

    In higher plants the L-galactose pathway represents the major route for ascorbate biosynthesis. The first committed step of this pathway is catalyzed by the enzyme GDP-L-galactose phosphorylase and is encoded by two paralogs in Arabidopsis - VITAMIN C2 (VTC2) and VTC5. The first mutant of this enzyme, vtc2-1, isolated via an EMS mutagenesis screen, has approximately 20-30% of wildtype ascorbate levels and has been reported to have decreased growth under standard laboratory conditions. Here, we show that a T-DNA insertion into the VTC2 causes a similar reduction in ascorbate levels, but does not greatly affect plant growth. Subsequent segregation analysis revealed the growth defects of vtc2-1 mutants segregate independently of the vtc2-1 mutation. These observations suggest that it is the presence of an independent cryptic mutation that affects growth of vtc2-1 mutants, and not the 70-80% decrease in ascorbate levels that has been assumed in past studies.

  10. Analysis of vascular development in the hydra sterol biosynthetic mutants of Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Margaret Pullen

    Full Text Available The control of vascular tissue development in plants is influenced by diverse hormonal signals, but their interactions during this process are not well understood. Wild-type sterol profiles are essential for growth, tissue patterning and signalling processes in plant development, and are required for regulated vascular patterning.Here we investigate the roles of sterols in vascular tissue development, through an analysis of the Arabidopsis mutants hydra1 and fackel/hydra2, which are defective in the enzymes sterol isomerase and sterol C-14 reductase respectively. We show that defective vascular patterning in the shoot is associated with ectopic cell divisions. Expression of the auxin-regulated AtHB8 homeobox gene is disrupted in mutant embryos and seedlings, associated with variably incomplete vascular strand formation and duplication of the longitudinal axis. Misexpression of the auxin reporter proIAA2ratioGUS and mislocalization of PIN proteins occurs in the mutants. Introduction of the ethylene-insensitive ein2 mutation partially rescues defective cell division, localization of PIN proteins, and vascular strand development.The results support a model in which sterols are required for correct auxin and ethylene crosstalk to regulate PIN localization, auxin distribution and AtHB8 expression, necessary for correct vascular development.

  11. Arabidopsis AAL-toxin-resistant mutant atr1 shows enhanced tolerance to programmed cell death induced by reactive oxygen species

    NARCIS (Netherlands)

    Gechev, Tsanko S.; Ferwerda, MargFiet A.; Mehterov, Nikolay; Laloi, Christophe; Qureshi, Muhammad K.; Hille, Jacques

    2008-01-01

    The fungal AAL-toxin triggers programmed cell death (PCD) through perturbations of sphingolipid metabolism in AAL-toxin-sensitive plants. While Arabidopsis is relatively insensitive to the toxin, the loh2 mutant exhibits increased Susceptibility to AAL-toxin due to the knockout of a gene involved in

  12. The Arabidopsis defence response mutant esa1 as a tool to discover novel resistance traits against Fusarium diseases

    NARCIS (Netherlands)

    Hemelrijck, van W.; Wouters, P.F.J.; Brouwer, M.; Windelinckx, A.; Goderis, I.J.W.M.; Bolle, De M.F.C.; Thomma, B.P.H.J.; Cammue, B.P.A.; Delauré, S.L.

    2006-01-01

    The Arabidopsis thaliana mutant esa1 was previously shown to exhibit enhanced susceptibility to the necrotrophic fungal pathogens Alternaria brassicicola, Botrytis cinerea and Plectosphaerella cucumerina. In this work, we tried to elaborate on this susceptibility by investigating whether the esa1 ph

  13. Gravity-dependent differentiation and root coils in Arabidopsis thaliana wild type and phospholipase-A-I knockdown mutant grown on the International Space Station.

    Science.gov (United States)

    Scherer, G F E; Pietrzyk, P

    2014-01-01

    Arabidopsis roots on 45° tilted agar in 1-g grow in wave-like figures. In addition to waves, formation of root coils is observed in several mutants compromised in gravitropism and/or auxin transport. The knockdown mutant ppla-I-1 of patatin-related phospholipase-A-I is delayed in root gravitropism and forms increased numbers of root coils. Three known factors contribute to waving: circumnutation, gravisensing and negative thigmotropism. In microgravity, deprivation of wild type (WT) and mutant roots of gravisensing and thigmotropism and circumnutation (known to slow down in microgravity, and could potentially lead to fewer waves or increased coiling in both WT and mutant). To resolve this, mutant ppla-I-1 and WT were grown in the BIOLAB facility in the International Space Station. In 1-g, roots of both types only showed waving. In the first experiment in microgravity, the mutant after 9 days formed far more coils than in 1-g but the WT also formed several coils. After 24 days in microgravity, in both types the coils were numerous with slightly more in the mutant. In the second experiment, after 9 days in microgravity only the mutant formed coils and the WT grew arcuated roots. Cell file rotation (CFR) on the mutant root surface in microgravity decreased in comparison to WT, and thus was not important for coiling. Several additional developmental responses (hypocotyl elongation, lateral root formation, cotyledon expansion) were found to be gravity-influenced. We tentatively discuss these in the context of disturbances in auxin transport, which are known to decrease through lack of gravity. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant

    Directory of Open Access Journals (Sweden)

    Hannah Kuhn

    2017-06-01

    Full Text Available Loss of function mutations of particular plant MILDEW RESISTANCE LOCUS O (MLO genes confer durable and broad-spectrum penetration resistance against powdery mildew fungi. Here, we combined genetic, transcriptomic and metabolomic analyses to explore the defense mechanisms in the fully resistant Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant. We found that this genotype unexpectedly overcomes the requirement for indolic antimicrobials and defense-related secretion, which are critical for incomplete resistance of mlo2 single mutants. Comparative microarray-based transcriptome analysis of mlo2 mlo6 mlo12 mutants and wild type plants upon Golovinomyces orontii inoculation revealed an increased and accelerated accumulation of many defense-related transcripts. Despite the biotrophic nature of the interaction, this included the non-canonical activation of a jasmonic acid/ethylene-dependent transcriptional program. In contrast to a non-adapted powdery mildew pathogen, the adapted powdery mildew fungus is able to defeat the accumulation of defense-relevant indolic metabolites in a MLO protein-dependent manner. We suggest that a broad and fast activation of immune responses in mlo2 mlo6 mlo12 plants can compensate for the lack of single or few defense pathways. In addition, our results point to a role of Arabidopsis MLO2, MLO6, and MLO12 in enabling defense suppression during invasion by adapted powdery mildew fungi.

  15. Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic response

    Energy Technology Data Exchange (ETDEWEB)

    Khurana, J.P.; Ren, Zhangling; Steinitz, B.; Parks, B.; Best, T.R.; Poff, K.L. (Michigan State Univ., East Lansing (USA))

    1989-10-01

    Two mutants of Arabidopsis thaliana have been identified with decreased phototropism to 450-nanometer light. Fluence-response relationships for these strains (ZR8 and ZR19) to single and multiple flashes of light show thresholds, curve shapes, and fluence for maximum curvature in first positive phototropism which are the same as those of the wild type. Similarly, there is no alteration from the wild type in the kinetics of curvature or in the optimum dark period separating sequential flashes in a multiple flash regimen. In addition, in both strains, gravitropism is decreased compared to the wild type by an amount which is comparable to the decrease in phototropism. Based on reciprocal backcrosses, it appears that the alteration is due to a recessive nuclear mutation. It is suggested that ZR8 and ZR19 represent alterations in some step analogous to an amplifier, downstream of the photoreceptor pigment, and common to both phototropism and gravitropism.

  16. SaliCylic Acid-Altering Arabidopsis Mutants Response to Cd Stress

    Institute of Scientific and Technical Information of China (English)

    Lu; Tian; Liang; Wu

    2012-01-01

    To evaluate the role of endogenous SA in plant response to Cd stress,Arabidopsis wild type(Columbia)and its SA-altering mutants snc1 (suppressor of npr1-1, constitutive) with high SA level, nahG(tansgenic line)with low SA level and npr1-1(non-expressor of PR gene)with SA signaling blockage were used in this study. Results showed that a greater growth inhibition occurred in snc1,while a less inhibition was observed in nahG and npr1-1 plants. Although the anti-oxidative enzymes SOD and POD increased upon Cd exposure,they were insufficient to remove oxidative stress,especially in snc1 plants. The accumulations of soluble sugar and proline in the tested plants were positively related to their tolerance to Cd stress.

  17. Mutant mice lacking the p53 C-terminal domain model telomere syndromes.

    Science.gov (United States)

    Simeonova, Iva; Jaber, Sara; Draskovic, Irena; Bardot, Boris; Fang, Ming; Bouarich-Bourimi, Rachida; Lejour, Vincent; Charbonnier, Laure; Soudais, Claire; Bourdon, Jean-Christophe; Huerre, Michel; Londono-Vallejo, Arturo; Toledo, Franck

    2013-06-27

    Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53Δ31, a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis, hallmarks of syndromes caused by short telomeres. Indeed, p53Δ31/Δ31 mice had short telomeres and other phenotypic traits associated with the telomere disease dyskeratosis congenita and its severe variant the Hoyeraal-Hreidarsson syndrome. Heterozygous p53+/Δ31 mice were only mildly affected, but decreased levels of Mdm4, a negative regulator of p53, led to a dramatic aggravation of their symptoms. Importantly, several genes involved in telomere metabolism were downregulated in p53Δ31/Δ31 cells, including Dyskerin, Rtel1, and Tinf2, which are mutated in dyskeratosis congenita, and Terf1, which is implicated in aplastic anemia. Together, these data reveal that a truncating mutation can activate p53 and that p53 plays a major role in the regulation of telomere metabolism.

  18. Mutant huntingtin regulates EGF receptor fate in non-neuronal cells lacking wild-type protein.

    Science.gov (United States)

    Melone, Mariarosa A B; Calarco, Anna; Petillo, Orsolina; Margarucci, Sabrina; Colucci-D'Amato, Luca; Galderisi, Umberto; Koverech, Guido; Peluso, Gianfranco

    2013-01-01

    Huntingtin (htt) is a scaffold protein localized at the subcellular level and is involved in coordinating the activity of several protein for signaling and intracellular transport. The emerging properties of htt in intracellular trafficking prompted us to study the role of mutant htt (polyQ-htt) in the intracellular fate of epidermal growth factor receptor (EGFR), whose activity seems to be strictly regulated by htt. In particular, to evaluate whether protein trafficking dysfunction occurs in non-neuronal cells in the absence of functional htt, we monitored the EGFR protein in fibroblasts from homozygotic HD patients and their healthy counterpart. We found that polyQ-htt controls EGFR degradation and recycling. Lack of wild-type htt caused alteration of the ubiquitination cycle, formation of EGFR-incorporating high-molecular weight protein aggregates and abnormal EGFR distribution in endosomes of the degradation and recycling pathways after EGF stimulation. PolyQ-htt-induced alteration of EGFR trafficking affected cell migration and proliferation, at least in part, through inhibition of ERK signaling. To our knowledge the data here reported represent the first signaling and phenotypic characterization of polyQ-htt involvement in the modulation of growth factor stimulation in non-neuronal cells.

  19. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration ofa transgene.

    Directory of Open Access Journals (Sweden)

    Tomoyuki eFurukawa

    2015-05-01

    Full Text Available The DNA double-strand break (DSB is a critical type of damage, and can be induced by both endogenous sources (e.g. errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork and exogenous sources (e.g. ionizing radiation or radiomimetic chemicals. Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ, much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1 displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2, both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway.

  20. Knockout mutants as a tool to identify the subunit composition of Arabidopsis glutamine synthetase isoforms.

    Science.gov (United States)

    Dragićević, Milan; Todorović, Slađana; Bogdanović, Milica; Filipović, Biljana; Mišić, Danijela; Simonović, Ana

    2014-06-01

    Glutamine synthetase (GS) is a key enzyme in nitrogen assimilation, which catalyzes the formation of glutamine from ammonia and glutamate. Plant GS isoforms are multimeric enzymes, recently shown to be decamers. The Arabidopsis genome encodes five cytosolic (GS1) proteins labeled as GLN1;1 through GLN1;5 and one chloroplastic (GS2) isoform, GLN2;0. However, as many as 11 GS activity bands were resolved from different Arabidopsis tissues by Native PAGE and activity staining. Western analysis showed that all 11 isoforms are composed exclusively of 40 kDa GS1 subunits. Of five GS1 genes, only GLN1;1, GLN1;2 and GLN1;3 transcripts accumulated to significant levels in vegetative tissues, indicating that only subunits encoded by these three genes produce the 11-band zymogram. Even though the GS2 gene also had significant expression, the corresponding activity was not detected, probably due to inactivation. To resolve the subunit composition of 11 active GS1 isoforms, homozygous knockout mutants deficient in the expression of different GS1 genes were selected from the progeny of T-DNA insertional SALK and SAIL lines. Comparison of GS isoenzyme patterns of the selected GS1 knockout mutants indicated that all of the detected isoforms consist of varying proportions of GLN1;1, GLN1;2 and GLN1;3 subunits, and that GLN1;1 and GLN1;3, as well as GLN1;2 and GLN1;3 and possibly GLN1;1 and GLN1;2 proteins combine in all proportions to form active homo- and heterodecamers.

  1. Selection of Arabidopsis mutants overexpressing genes driven by the promoter of an auxin-inducible glutathione S-transferase gene.

    Science.gov (United States)

    van der Kop, D A; Schuyer, M; Pinas, J E; van der Zaal, B J; Hooykaas, P J

    1999-03-01

    Transgenic arabidopsis plants were isolated that contained a T-DNA construct in which the promoter of an auxin-inducible glutathione S-transferase (GST) gene from tobacco was fused to the kanamycin resistance (nptII) as well as to the beta-glucuronidase (gusA) reporter gene. Subsequently, seeds were treated with EMS to obtain mutants in which both reporter gene fusions were up-regulated. Northern analysis showed that the mRNA level of a related, endogenous auxin-inducible GST gene of Arabidopsis was increased in some of these mutants as well. Two of the gup (GST up-regulated) mutants were characterized in more detail and roughly mapped. Both had epinastic cotyledons and leaves, a phenotype that turned out to be linked to the gup mutation.

  2. Synthetic phytochelatins complement a phytochelatin-deficient Arabidopsis mutant and enhance the accumulation of heavy metal(loid)s.

    Science.gov (United States)

    Shukla, Devesh; Tiwari, Manish; Tripathi, Rudra D; Nath, Pravendra; Trivedi, Prabodh Kumar

    2013-05-10

    Phytochelatins (PCs) are naturally occurring thiol-rich peptides containing gamma (γ) peptide bonds and are well known for their metal-binding and detoxification capabilities. Whether synthetic phytochelatins (ECs) can be used as an alternative approach for enhancing the metal-binding capacity of plants has been investigated in this study. The metal-binding potential of ECs has been demonstrated in bacteria; however, no report has investigated the expression of ECs in plants. We have expressed three synthetic genes encoding ECs of different lengths in wild type (WT) Arabidopsis (Col-0 background) and a phytochelatin-deficient Arabidopsis mutant (cad1-3). After exposure to different heavy metals, the transgenic plants were examined for phenotypic changes, and metal accumulation was evaluated. The expression of EC genes rescued the sensitive phenotype of the cad1-3 mutant under heavy metal(loid) stress. Transgenic Arabidopsis plants expressing EC genes accumulated a significantly enhanced level of heavy metal(loid)s in comparison with the WT plant. The mutant complementation and enhanced heavy metal(loid) accumulation in the transgenic Arabidopsis plants suggest that ECs work in a manner similar to that of PCs in plants and that ECs could be used as an alternative for phytoremediation of heavy metal(loid) exposure.

  3. Cadmium toxicity to Microcystis aeruginosa PCC 7806 and its microcystin-lacking mutant.

    Directory of Open Access Journals (Sweden)

    Bin Huang

    Full Text Available The adverse effects of microcystin (MC produced by cyanobacteria have drawn considerable attention from the public. Yet it remains unclear whether MC confers any benefits to the cyanobacteria themselves. One suggested function of MC is complexation, which may influence the bioaccumulation and toxicity of trace metals. To test this hypothesis, we examined Cd toxicity to wild-type Microcystis aeruginosa PCC 7806 (WT and its MC-lacking mutant (MT under nutrient-enriched (+NP, phosphorus-limited (-P, and nitrogen-limited (-N conditions. The accumulation of Cd and the biochemical parameters associated with its detoxification [total phosphorus (TP, inorganic polyphosphate (Poly-P, and glutathione (GSH in the cells as well as intra- and extra-cellular carbohydrates] were quantified. Although the -P cyanobacteria accumulated less Cd than their +NP and -N counterparts, the different nutrient-conditioned cyanobacteria were similarly inhibited by similar free ion concentration of Cd in the medium ([Cd2+]F. Such good toxicity predictability of [Cd2+]F was ascribed to the synchronous decrease in the intracellular concentrations of Cd and TP. Nevertheless, Cd toxicity was still determined by the intracellular Cd to phosphorus ratio (Cd/P, in accordance with what has been reported in the literature. On the other hand, the concentrations of TP, Poly-P, and carbohydrates went up, but GSH concentration dropped down with the enhancement of [Cd2+]F, indicating their association with Cd detoxification. Although the inactivation of MC peptide synthetase gene had some nutrient and Cd concentration dependent effects on the parameters above, both cyanobacterial strains showed the same Cd accumulation ability and displayed similar Cd sensitivity. These results suggest that MC cannot affect metal toxicity either by regulating metal accumulation or by altering the detoxification ability of the cyanobacteria. Other possible functions of MC need to be further investigated.

  4. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants.

    Science.gov (United States)

    Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis

    2011-12-01

    Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes.

  5. Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation.

    Science.gov (United States)

    Yamamuro, Chizuko; Miki, Daisuke; Zheng, Zhimin; Ma, Jun; Wang, Jing; Yang, Zhenbiao; Dong, Juan; Zhu, Jian-Kang

    2014-06-05

    DNA methylation is a reversible epigenetic mark regulating genome stability and function in many eukaryotes. In Arabidopsis, active DNA demethylation depends on the function of the ROS1 subfamily of genes that encode 5-methylcytosine DNA glycosylases/lyases. ROS1-mediated DNA demethylation plays a critical role in the regulation of transgenes, transposable elements and some endogenous genes; however, there have been no reports of clear developmental phenotypes in ros1 mutant plants. Here we report that, in the ros1 mutant, the promoter region of the peptide ligand gene EPF2 is hypermethylated, which greatly reduces EPF2 expression and thereby leads to a phenotype of overproduction of stomatal lineage cells. EPF2 gene expression in ros1 is restored and the defective epidermal cell patterning is suppressed by mutations in genes in the RNA-directed DNA methylation pathway. Our results show that active DNA demethylation combats the activity of RNA-directed DNA methylation to influence the initiation of stomatal lineage cells.

  6. Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Brauner, Katrin; Hörmiller, Imke; Nägele, Thomas; Heyer, Arnd G

    2014-07-01

    The knock-out mutation of plastidial phosphoglucomutase (pgm) causes a starchless phenotype in Arabidopsis thaliana, and results in a severe growth reduction of plants cultivated under diurnal conditions. It has been speculated that high soluble sugar levels accumulating during the light phase in leaf mesophyll might cause a reduction of photosynthetic activity or that shortage of reduced carbon during the night is the reason for the slow biomass gain of pgm. Separate simultaneous measurements of leaf net photosynthesis and root respiration demonstrate that photosynthetic activity per unit fresh weight is not reduced in pgm, whereas root respiration is strongly elevated. Comparison with a mutant defective in the dominating vacuolar invertase (AtβFruct4) revealed that high sucrose concentration in the cytosol, but not in the vacuole, of leaf cells is responsible for elevated assimilate transport to the root. Increased sugar supply to the root, as observed in pgm mutants, forces substantial respiratory losses. Because root respiration accounts for 80% of total plant respiration under long-day conditions, this gives rise to retarded biomass formation. In contrast, reduced vacuolar invertase activity leads to reduced net photosynthesis in the shoot and lowered root respiration, and affords an increased root/shoot ratio. The results demonstrate that roots have very limited capacity for carbon storage but exert rigid control of supply for their maintenance metabolism. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  7. Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space.

    Science.gov (United States)

    Hoson, T; Soga, K; Wakabayashi, K; Hashimoto, T; Karahara, I; Yano, S; Tanigaki, F; Shimazu, T; Kasahara, H; Masuda, D; Kamisaka, S

    2014-01-01

    Cortical microtubules are involved in plant resistance to hypergravity, but their roles in resistance to 1 g gravity are still uncertain. To clarify this point, we cultivated an Arabidopsis α-tubulin 6 mutant (tua6) in the Cell Biology Experiment Facility on the Kibo Module of the International Space Station, and analyzed growth and cell wall mechanical properties of inflorescences. Growth of inflorescence stems was stimulated under microgravity conditions, as compared with ground and on-orbit 1 g conditions. The stems were 10-45% longer and their growth rate 15-55% higher under microgravity conditions than those under both 1 g conditions. The degree of growth stimulation tended to be higher in the tua6 mutant than the wild-type Columbia. Under microgravity conditions, the cell wall extensibility in elongating regions of inflorescences was significantly higher than the controls, suggesting that growth stimulation was caused by cell wall modifications. No clear differences were detected in any growth or cell wall property between ground and on-orbit 1 g controls. These results support the hypothesis that cortical microtubules generally play an important role in plant resistance to the gravitational force.

  8. Photocycle dynamics of the E149A mutant of cryptochrome 3 from Arabidopsis thaliana.

    Science.gov (United States)

    Zirak, P; Penzkofer, A; Moldt, J; Pokorny, R; Batschauer, A; Essen, L-O

    2009-11-09

    The E149A mutant of the cryDASH member cryptochrome 3 (cry3) from Arabidopsis thaliana was characterized in vitro by optical absorption and emission spectroscopic studies. The mutant protein non-covalently binds the chromophore flavin adenine dinucleotide (FAD). In contrast to the wild-type protein it does not bind N5,N10-methenyl-5,6,7,8-tetrahydrofolate (MTHF). Thus, the photo-dynamics caused by FAD is accessible without the intervening coupling with MTHF. In dark adapted cry3-E149A, FAD is present in the oxidized form (FAD(ox)), semiquinone form (FADH(.)), and anionic hydroquinone form (FAD(red)H(-)). Blue-light photo-excitation of previously unexposed cry3-E149A transfers FAD(ox) to the anionic semiquinone form (FAD()(-)) with a quantum efficiency of about 2% and a back recovery time of about 10s (photocycle I). Prolonged photo-excitation leads to an irreversible protein re-conformation with structure modification of the U-shaped FAD and enabling proton transfer. Thus, a change in the photocycle dynamics occurs with photo-conversion of FAD(ox) to FADH(.), FADH(.) to FAD(red)H(-), and thermal back equilibration in the dark (photocycle II). The photocycle dynamics of cry3-E149A is compared with the photocycle behaviour of wild-type cry3 and other photo-sensory cryptochromes.

  9. Mutants, Overexpressors, and Interactors of Arabidopsis Plastocyanin Isoforms: Revised Roles of Plastocyanin in Photosynthetic Electron Flow and Thylakoid Redox State

    Institute of Scientific and Technical Information of China (English)

    Paolo Pesaresi; Michael Scharfenberg; Martin Weigel; Irene Granlund; Wolfgang P. Schr(o)der; Giovanni Finazzi; Fabrice Rappaport; Simona Masiero; Antonella Furini; Peter Jahns; Dario Leister

    2009-01-01

    Two homologous plastocyanin isoforms are encoded by the genes PETE1 and PETE2 in the nuclear genome of Arabidopsis thaliana. The PETE2 transcript is expressed at considerably higher levels and the PETE2 protein is the more abundant isoform. Null mutations in the PETE genes resulted in plants, designated pete1 and pete2, with decreased plas-tocyanin contents. However, despite reducing plastocyanin levels by over~90%, a pete2 null mutation on its own affects rates of photosynthesis and growth only slightly, whereas pete1 knockout plants, with about 60-80% of the wild-type plastocyanin level, did not show any alteration. Hence, plastocyanin concentration is not limiting for photosynthetic elec-tron flow under optimal growth conditions, perhaps implying other possible physiological roles for the protein. Indeed, plastocyanin has been proposed previously to cooperate with cytochrome C6A (Cyt C6A) in thylakoid redox reactions, but we find no evidence for a physical interaction between the two proteins, using interaction assays in yeast. We observed homodimerization of Cyt C6A in yeast interaction assays, but also Cyt C6A homodimers failed to interact with plastocyanin. Moreover, phenotypic analysis of atc6-1 pete1 and atc6-1 pete2 double mutants, each lacking Cyt C6A and one of the two plastocyanin-encoding genes, failed to reveal any genetic interaction. Overexpression of either PETE1 or PETE2 in the pete1 pete2 double knockout mutant background results in essentially wild-type photosynthetic performance, excluding the possibility that the two plastocyanin isoforms could have distinct functions in thylakoid electron flow.

  10. A mutant of Pseudomonas aeruginosa that lacks c-type cytochromes has a functional cyanide-insensitive oxidase.

    Science.gov (United States)

    Ray, A; Williams, H D

    1996-01-01

    Using transposon mutagenesis and screening for the loss of the ability to oxidise the artificial electron donor N,N,N',N'-tetramethyl-p-phenylenediamine, we have isolated a mutant of Pseudomonas aeruginosa that lacks all c-type cytochromes. This mutant is unable to grow anaerobically with nitrate as a terminal electron acceptor. Analysis of its respiratory function indicates that the mutant has lost its cytochrome c oxidase-terminated respiratory pathway but the cyanide-insensitive oxidase-terminated branch remains functional. Complementation of the mutant by in vivo cloning led to recovery of the wild-type characteristics. These data are consistent with the idea that the cyanide-insensitive respiratory pathway does not contain haem c and that the pathway's terminal oxidase is a quinol oxidase.

  11. MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant

    Science.gov (United States)

    Lu, Cheng; Kulkarni, Karthik; Souret, Frédéric F.; MuthuValliappan, Ramesh; Tej, Shivakundan Singh; Poethig, R. Scott; Henderson, Ian R.; Jacobsen, Steven E.; Wang, Wenzhong; Green, Pamela J.; Meyers, Blake C.

    2006-01-01

    The Arabidopsis genome contains a highly complex and abundant population of small RNAs, and many of the endogenous siRNAs are dependent on RNA-Dependent RNA Polymerase 2 (RDR2) for their biogenesis. By analyzing an rdr2 loss-of-function mutant using two different parallel sequencing technologies, MPSS and 454, we characterized the complement of miRNAs expressed in Arabidopsis inflorescence to considerable depth. Nearly all known miRNAs were enriched in this mutant and we identified 13 new miRNAs, all of which were relatively low abundance and constitute new families. Trans-acting siRNAs (ta-siRNAs) were even more highly enriched. Computational and gel blot analyses suggested that the minimal number of miRNAs in Arabidopsis is ∼155. The size profile of small RNAs in rdr2 reflected enrichment of 21-nt miRNAs and other classes of siRNAs like ta-siRNAs, and a significant reduction in 24-nt heterochromatic siRNAs. Other classes of small RNAs were found to be RDR2-independent, particularly those derived from long inverted repeats and a subset of tandem repeats. The small RNA populations in other Arabidopsis small RNA biogenesis mutants were also examined; a dcl2/3/4 triple mutant showed a similar pattern to rdr2, whereas dcl1–7 and rdr6 showed reductions in miRNAs and ta-siRNAs consistent with their activities in the biogenesis of these types of small RNAs. Deep sequencing of mutants provides a genetic approach for the dissection and characterization of diverse small RNA populations and the identification of low abundance miRNAs. PMID:16954541

  12. A mutant of Saccharomyces cerevisiae lacking catabolic NAD-specific glutamate dehydrogenase. Growth characteristics of the mutant and regulation of enzyme synthesis in the wild-type strain.

    Science.gov (United States)

    Middelhoven, W J; van Eijk, J; van Renesse, R; Blijham, J M

    1978-01-01

    NAD-specific glutamate dehydrogenase (GDH-B) was induced in a wild-type strain derived of alpha-sigma 1278b by alpha-amino acids, the nitrogen of which according to known degradative pathways is transferred to 2-oxoglutarate. A recessive mutant (gdhB) devoid of GDH-B activity grew more slowly than the wild type if one of these amino acids was the sole source of nitrogen. Addition of ammonium chloride, glutamine, asparagine or serine to growth media with inducing alpha-amino acids as the main nitrogen source increased the growth rate of the gdhB mutant to the wild-type level and repressed GDH-B synthesis in the wild type. Arginine, urea and allantoin similarly increased the growth rate of the gdhB mutant and repressed GDH-B synthesis in the presence of glutamate, but not in the presence of aspartate, alanine or proline as the main nitrogen source. These observations are consistent with the view that GDH-B in vivo deaminates glutamate. Ammonium ions are required for the biosynthesis of glutamine, asparagine, arginine, histidine and purine and pyrimidine bases. Aspartate and alanine apparently are more potent inducers of GDH-B than glutamate. Anabolic NADP-specific glutamate dehydrogenase (GDH-A) can not fulfil the function of GDH-B in the gdhB mutant. This is concluded from the equal growth rates in glutamate, aspartate and proline media as observed with a gdhB mutant and with a gdhA, gdhB double mutant in which both glutamate dehydrogenases area lacking. The double mutant showed an anomalous growth behaviour, growth rates on several nitrogen sources being unexpectedly low.

  13. Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase.

    Science.gov (United States)

    Hebbelmann, Inga; Selinski, Jennifer; Wehmeyer, Corinna; Goss, Tatjana; Voss, Ingo; Mulo, Paula; Kangasjärvi, Saijaliisa; Aro, Eva-Mari; Oelze, Marie-Luise; Dietz, Karl-Josef; Nunes-Nesi, Adriano; Do, Phuc T; Fernie, Alisdair R; Talla, Sai K; Raghavendra, Agepati S; Linke, Vera; Scheibe, Renate

    2012-02-01

    The nuclear-encoded chloroplast NADP-dependent malate dehydrogenase (NADP-MDH) is a key enzyme controlling the malate valve, to allow the indirect export of reducing equivalents. Arabidopsis thaliana (L.) Heynh. T-DNA insertion mutants of NADP-MDH were used to assess the role of the light-activated NADP-MDH in a typical C(3) plant. Surprisingly, even when exposed to high-light conditions in short days, nadp-mdh knockout mutants were phenotypically indistinguishable from the wild type. The photosynthetic performance and typical antioxidative systems, such as the Beck-Halliwell-Asada pathway, were barely affected in the mutants in response to high-light treatment. The reactive oxygen species levels remained low, indicating the apparent absence of oxidative stress, in the mutants. Further analysis revealed a novel combination of compensatory mechanisms in order to maintain redox homeostasis in the nadp-mdh plants under high-light conditions, particularly an increase in the NTRC/2-Cys peroxiredoxin (Prx) system in chloroplasts. There were indications of adjustments in extra-chloroplastic components of photorespiration and proline levels, which all could dissipate excess reducing equivalents, sustain photosynthesis, and prevent photoinhibition in nadp-mdh knockout plants. Such metabolic flexibility suggests that the malate valve acts in concert with other NADPH-consuming reactions to maintain a balanced redox state during photosynthesis under high-light stress in wild-type plants.

  14. Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis.

    Science.gov (United States)

    Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan; Dai, Xuemei; Tian, Hainan; Zheng, Kaijie; Wang, Xiaoping; Mao, Tonglin; Chen, Jin-Gui; Wang, Shucai

    2015-07-01

    In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins. Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Taken together, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.

  15. An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin

    Science.gov (United States)

    Saucedo, Manuel; Ponce, Georgina; Campos, María Eugenia; Eapen, Delfeena; García, Edith; Luján, Rosario; Sánchez, Yoloxóchitl; Cassab, Gladys I.

    2012-01-01

    Roots are highly plastic and can acclimate to heterogeneous and stressful conditions. However, there is little knowledge of the effect of moisture gradients on the mechanisms controlling root growth orientation and branching, and how this mechanism may help plants to avoid drought responses. The aim of this study was to isolate mutants of Arabidopsis thaliana with altered hydrotropic responses. Here, altered hydrotropic response 1 (ahr1), a semi-dominant allele segregating as a single gene mutation, was characterized. ahr1 directed the growth of its primary root towards the source of higher water availability and developed an extensive root system over time. This phenotype was intensified in the presence of abscisic acid and was not observed if ahr1 seedlings were grown in a water stress medium without a water potential gradient. In normal growth conditions, primary root growth and root branching of ahr1 were indistinguishable from those of the wild type (wt). The altered hydrotropic growth of ahr1 roots was confirmed when the water-rich source was placed at an angle of 45° from the gravity vector. In this system, roots of ahr1 seedlings grew downward and did not display hydrotropism; however, in the presence of cytokinins, they exhibited hydrotropism like those of the wt, indicating that cytokinins play a critical role in root hydrotropism. The ahr1 mutant represents a valuable genetic resource for the study of the effects of cytokinins in the differential growth of hydrotropism and control of lateral root formation during the hydrotropic response. PMID:22442413

  16. ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake.

    Science.gov (United States)

    Lee, David A; Chen, Alice; Schroeder, Julian I

    2003-09-01

    Arsenic is one of the most toxic pollutants at contaminated sites, yet little is known about the mechanisms by which certain plants survive exposure to high arsenic levels. To gain insight into the mechanisms of arsenic tolerance in plants, we developed a genetic screen to isolate Arabidopsis thaliana mutants with altered tolerance to arsenic. We report here on the isolation of a mutant arsenic resisant 1 (ars1) with increased tolerance to arsenate. ars1 germinates and develops under conditions that completely inhibit growth of wild-type plants and shows a semi-dominant arsenic resistance phenotype. ars1 accumulates levels of arsenic similar to that accumulated by wild-type plants, suggesting that ars1 plants have an increased ability to detoxify arsenate. However, ars1 plants produce phytochelatin levels similar to levels produced by the wild type, and the enhanced resistance of ars1 is not abolished by the gamma-glutamylcysteine synthetase inhibitor l-buthionine sulfoxime (BSO). Furthermore, ars1 plants do not show resistance to arsenite or other toxic metals such as cadmium and chromium. However, ars1 plants do show a higher rate of phosphate uptake than that shown by wild-type plants, and wild-type plants grown with an excess of phosphate show increased tolerance to arsenate. Traditional models of arsenate tolerance in plants are based on the suppression of phosphate uptake pathways and consequently on the reduced uptake of arsenate. Our data suggest that arsenate tolerance in ars1 could be due to a new mechanism mediated by increased phosphate uptake in ars1. Models discussing how increased phosphate uptake could contribute to arsenate tolerance are discussed.

  17. Reduced activity of glutamine synthetase in Rhodospirillum rubrum mutants lacking the adenylyltransferase GlnE.

    Science.gov (United States)

    Jonsson, Anders; Nordlund, Stefan; Teixeira, Pedro Filipe

    2009-10-01

    In the nitrogen-fixing bacterium Rhodospirillum rubrum, the GlnE adenylyltransferase (encoded by glnE) catalyzes reversible adenylylation of glutamine synthetase, thereby regulating nitrogen assimilation. We have generated glnE mutant strains that are unable to adenylylate glutamine synthetase (GS). Surprisingly, the activity of GS was lower in the mutants than in the wild type, even when grown in nitrogen-fixing conditions. Our results support the proposal that R. rubrum can only cope with the absence of an adenylylation system in the presence of lowered GS expression or activity. In general terms, this report also provides further support for the central role of GS in bacterial metabolism.

  18. Characterization of yeast mutants lacking alkaline ceramidases YPC1 and YDC1

    DEFF Research Database (Denmark)

    Voynova, Natalia S; Mallela, Shamroop K; Vazquez, Hector M;

    2014-01-01

    /conditions that would alter the growth of ypc1∆ydc1∆ double mutants. These screens were essentially negative, demonstrating that ceramidase activity is not required for cell growth even under genetic stresses. A previously reported protein targeting defect of ypc1∆ could not be reproduced and reported abnormalities...

  19. Flexibility in Anaerobic Metabolism as Revealed in a Mutant of Chlamydomonas reinhardtii Lacking Hydrogenase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Dubini, A.; Mus, F.; Seibert, M.; Grossman, A. R.; Posewitz, M. C.

    2009-03-13

    The green alga Chlamydomonas reinhardtii has a network of fermentation pathways that become active when cells acclimate to anoxia. Hydrogenase activity is an important component of this metabolism, and we have compared metabolic and regulatory responses that accompany anaerobiosis in wild-type C. reinhardtii cells and a null mutant strain for the HYDEF gene (hydEF-1 mutant), which encodes an [FeFe] hydrogenase maturation protein. This mutant has no hydrogenase activity and exhibits elevated accumulation of succinate and diminished production of CO2 relative to the parental strain during dark, anaerobic metabolism. In the absence of hydrogenase activity, increased succinate accumulation suggests that the cells activate alternative pathways for pyruvate metabolism, which contribute to NAD(P)H reoxidation, and continued glycolysis and fermentation in the absence of O2. Fermentative succinate production potentially proceeds via the formation of malate, and increases in the abundance of mRNAs encoding two malateforming enzymes, pyruvate carboxylase and malic enzyme, are observed in the mutant relative to the parental strain following transfer of cells from oxic to anoxic conditions. Although C. reinhardtii has a single gene encoding pyruvate carboxylase, it has six genes encoding putative malic enzymes. Only one of the malic enzyme genes, MME4, shows a dramatic increase in expression (mRNA abundance) in the hydEF-1 mutant during anaerobiosis. Furthermore, there are marked increases in transcripts encoding fumarase and fumarate reductase, enzymes putatively required to convert malate to succinate. These results illustrate the marked metabolic flexibility of C. reinhardtii and contribute to the development of an informed model of anaerobic metabolism in this and potentially other algae.

  20. Wax and cutin mutants of Arabidopsis: Quantitative characterization of the cuticular transport barrier in relation to chemical composition.

    Science.gov (United States)

    Sadler, Christina; Schroll, Bettina; Zeisler, Viktoria; Waßmann, Friedrich; Franke, Rochus; Schreiber, Lukas

    2016-09-01

    Using (14)C-labeled epoxiconazole as a tracer, cuticular permeability of Arabidopsis thaliana leaves was quantitatively measured in order to compare different wax and cutin mutants (wax2, cut1, cer5, att1, bdg, shn3 and shn1) to the corresponding wild types (Col-0 and Ws). Mutants were characterized by decreases or increases in wax and/or cutin amounts. Permeances [ms(-1)] of Arabidopsis cuticles either increased in the mutants compared to wild type or were not affected. Thus, genetic changes in wax and cutin biosynthesis in some of the investigated Arabidopsis mutants obviously impaired the coordinated cutin and wax deposition at the outer leaf epidermal cell wall. As a consequence, barrier properties of cuticles were significantly decreased. However, increasing cutin and wax amounts by genetic modifications, did not automatically lead to improved cuticular barrier properties. As an alternative approach to the radioactive transport assay, changes in chlorophyll fluorescence were monitored after foliar application of metribuzine, an herbicide inhibiting electron transport in chloroplasts. Since both, half-times of photosynthesis inhibition as well as times of complete inhibition, in fact correlated with (14)C-epoxiconazole permeances, different rates of decline of photosynthetic yield between mutants and wild type must be a function of foliar uptake of the herbicide across the cuticle. Thus, monitoring changes in chlorophyll fluorescence, instead of conducting radioactive transport assays, represents an easy-to-handle and fast alternative evaluating cuticular barrier properties of different genotypes. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.

  1. Disrupting ER-associated protein degradation suppresses the abscission defect of a weak hae hsl2 mutant in Arabidopsis

    Science.gov (United States)

    Baer, John; Taylor, Isaiah; Walker, John C.

    2016-01-01

    In Arabidopsis thaliana, the process of abscission, or the shedding of unwanted organs, is mediated by two genes, HAESA (HAE) and HAESA-LIKE 2 (HSL2), encoding receptor-like protein kinases (RLKs). The double loss-of-function mutant hae-3 hsl2-3 is completely deficient in floral abscission, but, interestingly, the hae-3 hsl2-9 mutant displays a less severe defect. This mutant was chosen for an ethyl methanesulfonate (EMS) screen to isolate enhancer and suppressor mutants, and two such suppressors are the focus of this study. Pooled DNA from the F2 generation of a parental backcross was analyzed by genome sequencing to reveal candidate genes, two of which complement the suppressor phenotype. These genes, EMS-MUTAGENIZED BRI1 SUPPRESSOR 3 (EBS3) and EBS4, both encode mannosyltransferases involved in endoplasmic reticulum (ER)-associated degradation (ERAD) of proteins. Further analysis of these suppressor lines revealed that suppressor mutations are acting solely on the partially functional hsl2-9 mutant receptor to modify the abscission phenotype. Expressing a hsl2-9–yellow fluorescent protein (YFP) transgene in ebs3 mutants yields a higher fluorescent signal than in EBS3/ebs3, suggesting that these mutants restore abscission by disrupting ERAD to allow accumulation of the hsl2-9 receptor, which probably escapes degradation to be trafficked to the plasma membrane to regain signaling. PMID:27566817

  2. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant1[C][W

    Science.gov (United States)

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2014-01-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants. PMID:25037213

  3. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands.

    Directory of Open Access Journals (Sweden)

    Carlos Bueno

    Full Text Available Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the

  4. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands

    Science.gov (United States)

    Bueno, Carlos; Tabares-Seisdedos, Rafael; Moraleda, Jose M.; Martinez, Salvador

    2016-01-01

    Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the idea that MeCP2 may

  5. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands.

    Science.gov (United States)

    Bueno, Carlos; Tabares-Seisdedos, Rafael; Moraleda, Jose M; Martinez, Salvador

    2016-01-01

    Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the idea that MeCP2 may

  6. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism.

    Science.gov (United States)

    Fontaine, Jean-Xavier; Tercé-Laforgue, Thérèse; Armengaud, Patrick; Clément, Gilles; Renou, Jean-Pierre; Pelletier, Sandra; Catterou, Manuella; Azzopardi, Marianne; Gibon, Yves; Lea, Peter J; Hirel, Bertrand; Dubois, Frédéric

    2012-10-01

    The role of NADH-dependent glutamate dehydrogenase (GDH) was investigated by studying the physiological impact of a complete lack of enzyme activity in an Arabidopsis thaliana plant deficient in three genes encoding the enzyme. This study was conducted following the discovery that a third GDH gene is expressed in the mitochondria of the root companion cells, where all three active GDH enzyme proteins were shown to be present. A gdh1-2-3 triple mutant was constructed and exhibited major differences from the wild type in gene transcription and metabolite concentrations, and these differences appeared to originate in the roots. By placing the gdh triple mutant under continuous darkness for several days and comparing it to the wild type, the evidence strongly suggested that the main physiological function of NADH-GDH is to provide 2-oxoglutarate for the tricarboxylic acid cycle. The differences in key metabolites of the tricarboxylic acid cycle in the triple mutant versus the wild type indicated that, through metabolic processes operating mainly in roots, there was a strong impact on amino acid accumulation, in particular alanine, γ-aminobutyrate, and aspartate in both roots and leaves. These results are discussed in relation to the possible signaling and physiological functions of the enzyme at the interface of carbon and nitrogen metabolism.

  7. Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants.

    Directory of Open Access Journals (Sweden)

    Nataliya E Yelina

    Full Text Available Meiosis is a specialized eukaryotic cell division that generates haploid gametes required for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover (CO. Meiotic CO frequency varies along the physical length of chromosomes and is determined by hierarchical mechanisms, including epigenetic organization, for example methylation of the DNA and histones. Here we investigate the role of DNA methylation in determining patterns of CO frequency along Arabidopsis thaliana chromosomes. In A. thaliana the pericentromeric regions are repetitive, densely DNA methylated, and suppressed for both RNA polymerase-II transcription and CO frequency. DNA hypomethylated methyltransferase1 (met1 mutants show transcriptional reactivation of repetitive sequences in the pericentromeres, which we demonstrate is coupled to extensive remodeling of CO frequency. We observe elevated centromere-proximal COs in met1, coincident with pericentromeric decreases and distal increases. Importantly, total numbers of CO events are similar between wild type and met1, suggesting a role for interference and homeostasis in CO remodeling. To understand recombination distributions at a finer scale we generated CO frequency maps close to the telomere of chromosome 3 in wild type and demonstrate an elevated recombination topology in met1. Using a pollen-typing strategy we have identified an intergenic nucleosome-free CO hotspot 3a, and we demonstrate that it undergoes increased recombination activity in met1. We hypothesize that modulation of 3a activity is caused by CO remodeling driven by elevated centromeric COs. These data demonstrate how regional epigenetic organization can pattern recombination frequency along eukaryotic chromosomes.

  8. Genetic Analysis of Arabidopsis Mutants Impaired in Plastid Lipid Import Reveals a Role of Membrane Lipids in Chloroplast Division

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.; Xu, C.

    2011-03-01

    The biogenesis of photosynthetic membranes in plants relies largely on lipid import from the endoplasmic reticulum (ER) and this lipid transport process is mediated by TGD proteins in Arabidopsis. Such a dependency of chloroplast biogenesis on ER-to-plastid lipid transport was recently exemplified by analyzing double mutants between tgd1-1 or tgd4-3 and fad6 mutants. The fad6 mutants are defective in the desaturation of membrane lipids in chloroplasts and therefore dependent on import of polyunsaturated lipid precursors from the ER for constructing a competent thylakoid membrane system. In support of a critical role of TGD proteins in ER-to-plastid lipid trafficking, we showed that the introduction of the tgd mutations into fad6 mutant backgrounds led to drastic reductions in relative amounts of thylakoid lipids. Moreover, the tgd1-1 fad6 and tgd4-3 fad6 double mutants were deficient in polyunsaturated fatty acids in chloroplast membrane lipids, and severely compromised in the biogenesis of photosynthetic membrane systems. Here we report that these double mutants are severely impaired in chloroplast division. The possible role of membrane lipids in chloroplast division is discussed.

  9. A new anaplerotic respiratory pathway involving lysine biosynthesis in isocitrate dehydrogenase-deficient Arabidopsis mutants.

    Science.gov (United States)

    Boex-Fontvieille, Edouard R A; Gauthier, Paul P G; Gilard, Françoise; Hodges, Michael; Tcherkez, Guillaume G B

    2013-08-01

    The cornerstone of carbon (C) and nitrogen (N) metabolic interactions - respiration - is presently not well understood in plant cells: the source of the key intermediate 2-oxoglutarate (2OG), to which reduced N is combined to yield glutamate and glutamine, remains somewhat unclear. We took advantage of combined mutations of NAD- and NADP-dependent isocitrate dehydrogenase activity and investigated the associated metabolic effects in Arabidopsis leaves (the major site of N assimilation in this genus), using metabolomics and (13)C-labelling techniques. We show that a substantial reduction in leaf isocitrate dehydrogenase activity did not lead to changes in the respiration efflux rate but respiratory metabolism was reorchestrated: 2OG production was supplemented by a metabolic bypass involving both lysine synthesis and degradation. Although the recycling of lysine has long been considered important in sustaining respiration, we show here that lysine neosynthesis itself participates in an alternative respiratory pathway. Lys metabolism thus contributes to explaining the metabolic flexibility of plant leaves and the effect (or the lack thereof) of respiratory mutations.

  10. Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance

    NARCIS (Netherlands)

    Ton, J.; Vos, M. de; Robben, C.; Buchala, Anthony; Métraux, Jean-Pierre; Loon, L.C. van; Pieterse, C.M.J.

    2002-01-01

    In Arabidopsis, the rhizobacterial strain Pseudomonas fluorescens WCS417r triggers jasmonate (JA)- and ethylene (ET)-dependent induced systemic resistance (ISR) that is effective against different pathogens. Arabidopsis genotypes unable to express rhizobacteria-mediated ISR against the bacterial pat

  11. Proteomic Analysis of Different Mutant Genotypes of Arabidopsis Led to the Identification of 11 Proteins Correlating with Adventitious Root Development1[W

    Science.gov (United States)

    Sorin, Céline; Negroni, Luc; Balliau, Thierry; Corti, Hélène; Jacquemot, Marie-Pierre; Davanture, Marlène; Sandberg, Göran; Zivy, Michel; Bellini, Catherine

    2006-01-01

    A lack of competence to form adventitious roots by cuttings or explants in vitro occurs routinely and is an obstacle for the clonal propagation and rapid fixation of elite genotypes. Adventitious rooting is known to be a quantitative genetic trait. We performed a proteomic analysis of Arabidopsis (Arabidopsis thaliana) mutants affected in their ability to develop adventitious roots in order to identify associated molecular markers that could be used to select genotypes for their rooting ability and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Comparison of two-dimensional gel electrophoresis protein profiles resulted in the identification of 11 proteins whose abundance could be either positively or negatively correlated with endogenous auxin content, the number of adventitious root primordia, and/or the number of mature adventitious roots. One protein was negatively correlated only to the number of root primordia and two were negatively correlated to the number of mature adventitious roots. Two putative chaperone proteins were positively correlated only to the number of primordia, and, interestingly, three auxin-inducible GH3-like proteins were positively correlated with the number of mature adventitious roots. The others were correlated with more than one parameter. The 11 proteins are predicted to be involved in different biological processes, including the regulation of auxin homeostasis and light-associated metabolic pathways. The results identify regulatory pathways associated with adventitious root formation and represent valuable markers that might be used for the future identification of genotypes with better rooting abilities. PMID:16377752

  12. Physiological characterization and genetic modifiers of aberrant root thigmomorphogenesis in mutants of Arabidopsis thaliana MILDEW LOCUS O genes.

    Science.gov (United States)

    Bidzinski, Przemyslaw; Noir, Sandra; Shahi, Shermineh; Reinstädler, Anja; Gratkowska, Dominika Marta; Panstruga, Ralph

    2014-12-01

    Root architecture and growth patterns are plant features that are still poorly understood. When grown under in vitro conditions, seedlings with mutations in Arabidopsis thaliana genes MLO4 or MLO11 exhibit aberrant root growth patterns upon contact with hard surfaces, exemplified as tight root spirals. We used a set of physiological assays and genetic tools to characterize this thigmomorphogenic defect in detail. We observed that the mlo4/mlo11-associated root curling phenotype is not recapitulated in a set of mutants with altered root growth patterns or architecture. We further found that mlo4/mlo11-conditioned root curling is not dependent upon light and endogenous flavonoids, but is pH-sensitive and affected by exogenous calcium levels. Based upon the latter two characteristics, mlo4-associated root coiling appears to be mechanistically different from the natural strong root curvature of the Arabidopsis ecotype Landsberg erecta. Gravistimulation reversibly overrides the aberrant thigmomorphogenesis of mlo4 seedlings. Mutants with dominant negative defects in α-tubulin modulate the extent and directionality of mlo4/mlo11-conditioned root coils, whereas mutants defective in polar auxin transport (axr4, aux1) or gravitropism (pgm1) completely suppress the mlo4 root curling phenotype. Our data implicate a joint contribution of calcium signalling, pH regulation, microtubular function, polar auxin transport and gravitropism in root thigmomorphogenesis.

  13. The mysterious rescue of adg1-1/tpt-2 - an Arabidopsis thaliana double mutant impaired in acclimation to high light – by exogenously supplied sugars

    Directory of Open Access Journals (Sweden)

    Luisa eHeinrichs

    2012-11-01

    Full Text Available An Arabidopsis thaliana double mutant (adg1-1/tpt-2 defective in the day- and night-path of photoassimilate export from the chloroplast due to a knockout in the triose phosphate/phosphate translocator (TPT; tpt-2 and a lack of starch (mutation in ADPglucose pyrophosphorylase [AGPase]; adg1-1 exhibits severe growth retardation, a decrease in the photosynthetic capacity and a high chlorophyll fluorescence (HCF phenotype under high light conditions. These phenotypes could be rescued when the plants were grown on sucrose (Suc or glucose (Glc. Here we address the question whether Glc-sensing hexokinase1 (HXK1 defective in the Glc insensitiv2 (gin2-1 mutant is involved in the sugar-dependent rescue of adg1-1/tpt-2. Triple mutants defective in the TPT, AGPase and HXK1 (adg1-1/tpt-2/gin2-1 were established as homozygous lines and grown together with Col-0 and Ler wild-type plants, gin2-1, the adg1-1/tpt-2 double mutant and the adg1-1/tpt-2/gpt2-1 triple mutant (additionally defective in the glucose 6-phosphate/phosphate translocator2 [GPT2] on agar in the presence or absence of 50 mM of each Glc, Suc or fructose (Fru. The growth phenotype of the double mutant and both triple mutants could be rescued to a similar extent only by Glc and Suc, but not by Fru, All three sugars were capable of rescuing the HCF- and photosynthesis phenotype, irrespectively of the presence or absence of HXK1. Quantitative RT-PCR analyses of sugar responsive genes revealed that plastidial HXK (pHXK was up-regulated in adg1-1/tpt-2 plants grown on sugars, but showed no response in adg1-1/tpt-2/gin2-1. It appears likely that soluble sugars are directly taken up by the chloroplasts and enter further metabolism, which consumes ATP and NADPH from the photosynthetic light reaction and thereby rescues the photosynthesis phenotype of the double mutant. The implication of sugar turnover and probably signaling inside the chloroplasts for the concept of retrograde signaling is discussed.

  14. Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation.

    Science.gov (United States)

    Tokunaga, Hiroki; Kojima, Mikiko; Kuroha, Takeshi; Ishida, Takashi; Sugimoto, Keiko; Kiba, Takatoshi; Sakakibara, Hitoshi

    2012-01-01

    Cytokinins are phytohormones that play key roles in the maintenance of stem cell activity in plants. Although alternative single-step and two-step activation pathways for cytokinin have been proposed, the significance of the single-step pathway which is catalyzed by LONELY GUY (LOG), is not fully understood. We analyzed the metabolic flow of cytokinin activation in Arabidopsis log multiple mutants using stable isotope-labeled tracers and characterized the mutants' morphological and developmental phenotypes. In tracer experiments, cytokinin activation was inhibited most pronouncedly by log7, while the other log mutations had cumulative effects. Although sextuple or lower-order mutants did not show drastic phenotypes in vegetative growth, the log1log2log3log4log5log7log8 septuple T-DNA insertion mutant in which the LOG-dependent pathway is impaired, displayed severe retardation of shoot and root growth with defects in the maintenance of the apical meristems. Detailed observation of the mutants showed that LOG7 was required for the maintenance of shoot apical meristem size. LOG7 was also suggested to play a role for normal primary root growth together with LOG3 and LOG4. These results suggest a dominant role of the single-step activation pathway mediated by LOGs for cytokinin production, and overlapping but differentiated functions of the members of the LOG gene family in growth and development.

  15. Defense-Related Calcium Signaling Mutants Uncovered via a Quantitative High-Throughput Screen in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Stefanie Ranf; Julia Grimmer; Yvonne P(o)schl; Pascal Pecher; Delphine Chinchilla; Dierk Scheel; Justin Lee

    2012-01-01

    Calcium acts as a second messenger for signaling to a variety of stimuli including MAMPs (Microbe-Associated Molecular Patterns),such as flg22 and elf18 that are derived from bacterial flagellin and elongation factor Tu,respectively.Here,Arabidopsis thaliana mutants with changed calcium elevation (cce) in response to fig22 treatment were isolated and characterized.Besides novel mutant alleles of the flg22 receptor,FLS2 (Flagellin-Sensitive 2),and the receptor-associated kinase,BAK1 (Brassinosteroid receptor 1-Associated Kinase 1),the new cce mutants can be categorized into two main groups—those with a reduced or an enhanced calcium elevation.Moreover,cce mutants from both groups show differential phenotypes to different sets of MAMPs.Thus,these mutants will facilitate the discovery of novel components in early MAMP signaling and bridge the gaps in current knowledge of calcium signaling during plant-microbe interactions.Last but not least,the screening method is optimized for speed (covering 384 plants in 3 or 10 h) and can be adapted to genetically dissect any other stimuli that induce a change in calcium levels.

  16. Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing.

    Science.gov (United States)

    Sakuraba, Yasuhito; Lee, Sang-Hwa; Kim, Ye-Sol; Park, Ohkmae K; Hörtensteiner, Stefan; Paek, Nam-Chon

    2014-07-01

    Plant autophagy, one of the essential proteolysis systems, balances proteome and nutrient levels in cells of the whole plant. Autophagy has been studied by analysing Arabidopsis thaliana autophagy-defective atg mutants, but the relationship between autophagy and chlorophyll (Chl) breakdown during stress-induced leaf yellowing remains unclear. During natural senescence or under abiotic-stress conditions, extensive cell death and early yellowing occurs in the leaves of atg mutants. A new finding is revealed that atg5 and atg7 mutants exhibit a functional stay-green phenotype under mild abiotic-stress conditions, but leaf yellowing proceeds normally in wild-type leaves under these conditions. Under mild salt stress, atg5 leaves retained high levels of Chls and all photosystem proteins and maintained a normal chloroplast structure. Furthermore, a double mutant of atg5 and non-functional stay-green nonyellowing1-1 (atg5 nye1-1) showed a much stronger stay-green phenotype than either single mutant. Taking these results together, it is proposed that autophagy functions in the non-selective catabolism of Chls and photosynthetic proteins during stress-induced leaf yellowing, in addition to the selective degradation of Chl-apoprotein complexes in the chloroplasts through the senescence-induced STAY-GREEN1/NYE1 and Chl catabolic enzymes.

  17. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal

    Science.gov (United States)

    Abu-Elheiga, Lutfi; Matzuk, Martin M.; Kordari, Parichher; Oh, WonKeun; Shaikenov, Tattym; Gu, Ziwei; Wakil, Salih J.

    2005-01-01

    Acetyl-CoA carboxylases (ACC1 and ACC2) catalyze the carboxylation of acetyl-CoA to form malonyl-CoA, an intermediate metabolite that plays a pivotal role in the regulation of fatty acid metabolism. We previously reported that ACC2 null mice are viable, and that ACC2 plays an important role in the regulation of fatty acid oxidation through the inhibition of carnitine palmitoyltransferase I, a mitochondrial component of the fatty-acyl shuttle system. Herein, we used gene targeting to knock out the ACC1 gene. The heterozygous mutant mice (Acc1+/–) had normal fertility and lifespans and maintained a similar body weight to that of their wild-type cohorts. The mRNA level of ACC1 in the tissues of Acc1+/– mice was half that of the wild type; however, the protein level of ACC1 and the total malonyl-CoA level were similar. In addition, there was no difference in the acetate incorporation into fatty acids nor in the fatty acid oxidation between the hepatocytes of Acc1+/– mice and those of the wild type. In contrast to Acc2–/– mice, Acc1–/– mice were not detected after mating. Timed pregnancies of heterozygotes revealed that Acc–/– embryos are already undeveloped at embryonic day (E)7.5, they die by E8.5, and are completely resorbed at E11.5. Our previous results of the ACC2 knockout mice and current studies of ACC1 knockout mice further confirm our hypotheses that malonyl-CoA exists in two independent pools, and that ACC1 and ACC2 have distinct roles in fatty acid metabolism. PMID:16103361

  18. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects

    NARCIS (Netherlands)

    Swain, S.; Roy, S.; Shah, J.; Wees, S.C.M. van; Pieterse, C.M.J.; Nandi, A.K.

    2011-01-01

    Arabidopsis genotypes with a hyperactive salicylic acidmediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article,

  19. Carpel, a new Arabidopsis epi-mutant of the SUPERMAN gene: phenotypic analysis and DNA methylation status.

    Science.gov (United States)

    Rohde, A; Grunau, C; De Beck, L; Van Montagu, M; Rosenthal, A; Boerjan, W

    1999-09-01

    The carpel (car) mutation affects the morphology of reproductive organs in Arabidopsis thaliana. car flowers have an increased number of carpels, on average 2.7 +/- 0.8 instead of two in the wild type. Through allelism test with fon1-3 and analysis of the methylation state of the SUPERMAN (SUP) gene in car mutants, we show that car is an epi-mutation of SUP. The methylation pattern of car is clearly distinct from that of fon1-3, another epi-mutation of the SUP gene. Methylation was found predominantly in Cp(A/T)p(A/G) triplets and in CpG pairs. We suggest that the extensive SUP methylation in car has arisen from an abundant methylation of a single CpG site that was already present in abscisic acid-insensitive (abi3-4) mutants, from which car was segregating.

  20. Analysis of metabolic flux phenotypes for two Arabidopsis mutants with severe impairment in seed storage lipid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lonien, J.; Schwender, J.

    2009-11-01

    Major storage reserves of Arabidopsis (Arabidopsis thaliana) seeds are triacylglycerols (seed oils) and proteins. Seed oil content is severely reduced for the regulatory mutant wrinkled1 (wri1-1; At3g54320) and for a double mutant in two isoforms of plastidic pyruvate kinase (pkp{beta}{sub 1}pkp{alpha}; At5g52920 and At3g22960). Both already biochemically well-characterized mutants were now studied by {sup 13}C metabolic flux analysis of cultured developing embryos based on comparison with their respective genetic wild-type backgrounds. For both mutations, in seeds as well as in cultured embryos, the oil fraction was strongly reduced while the fractions of proteins and free metabolites increased. Flux analysis in cultured embryos revealed changes in nutrient uptakes and fluxes into biomass as well as an increase in tricarboxylic acid cycle activity for both mutations. While in both wild types plastidic pyruvate kinase (PK{sub p}) provides most of the pyruvate for plastidic fatty acid synthesis, the flux through PK{sub p} is reduced in pkp{beta}{sub 1}pkp{alpha} by 43% of the wild-type value. In wri1-1, PK{sub p} flux is even more reduced (by 82%), although the genes PKp{beta}{sub 1} and PKp{alpha} are still expressed. Along a common paradigm of metabolic control theory, it is hypothesized that a large reduction in PK{sub p} enzyme activity in pkp{beta}{sub 1}pkp{alpha} has less effect on PK{sub p} flux than multiple smaller reductions in glycolytic enzymes in wri1-1. In addition, only in the wri1-1 mutant is the large reduction in PK{sub p} flux compensated in part by an increased import of cytosolic pyruvate and by plastidic malic enzyme. No such limited compensatory bypass could be observed in pkp{beta}{sub 1}pkp{alpha}.

  1. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum

    Science.gov (United States)

    Thatcher, Louise F.; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D.G.; Manners, John M.; Kazan, Kemal

    2016-01-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen Pst DC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes. PMID:26896849

  2. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum.

    Science.gov (United States)

    Thatcher, Louise F; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D G; Manners, John M; Kazan, Kemal

    2016-04-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen PstDC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes.

  3. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants.

    Science.gov (United States)

    Caringella, Marissa A; Bongers, Franca J; Sack, Lawren

    2015-12-01

    Leaf venation is diverse across plant species and has practical applications from paleobotany to modern agriculture. However, the impact of vein traits on plant performance has not yet been tested in a model system such as Arabidopsis thaliana. Previous studies analysed cotyledons of A. thaliana vein mutants and identified visible differences in their vein systems from the wild type (WT). We measured leaf hydraulic conductance (Kleaf ), vein traits, and xylem and mesophyll anatomy for A. thaliana WT (Col-0) and four vein mutants (dot3-111 and dot3-134, and cvp1-3 and cvp2-1). Mutant true leaves did not possess the qualitative venation anomalies previously shown in the cotyledons, but varied quantitatively in vein traits and leaf anatomy across genotypes. The WT had significantly higher mean Kleaf . Across all genotypes, there was a strong correlation of Kleaf with traits related to hydraulic conductance across the bundle sheath, as influenced by the number and radial diameter of bundle sheath cells and vein length per area. These findings support the hypothesis that vein traits influence Kleaf , indicating the usefulness of this mutant system for testing theory that was primarily established comparatively across species, and supports a strong role for the bundle sheath in influencing Kleaf .

  4. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo

    KAUST Repository

    Fujii, Hiroaki

    2011-01-10

    Osmotic stress associated with drought or salinity is a major factor that limits plant productivity. Protein kinases in the SNF1-related protein kinase 2 (SnRK2) family are activated by osmotic stress, suggesting that the kinases are involved in osmotic stress signaling. However, due to functional redundancy, their contribution to osmotic stress responses remained unclear. In this report, we constructed an Arabidopsis line carrying mutations in all 10 members of the SnRK2 family. The decuple mutant snrk2.1/2/3/4/5/6/7/8/9/10 grew poorly under hyperosmotic stress conditions but was similar to the wild type in culture media in the absence of osmotic stress. The mutant was also defective in gene regulation and the accumulation of abscisic acid (ABA), proline, and inositol 1,4,5-trisphosphate under osmotic stress. In addition, analysis of mutants defective in the ABA-activated SnRK2s (snrk2.2/3/6) and mutants defective in the rest of the SnRK2s (snrk2.1/4/5/7/8/9/10) revealed that SnRK2s are a merging point of ABA-dependent and -independent pathways for osmotic stress responses. These results demonstrate critical functions of the SnRK2s in mediating osmotic stress signaling and tolerance.

  5. Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator.

    Directory of Open Access Journals (Sweden)

    Derry Voisin

    2009-10-01

    Full Text Available Mutations in LACERATA (LCR, FIDDLEHEAD (FDH, and BODYGUARD (BDG cause a complex developmental syndrome that is consistent with an important role for these Arabidopsis genes in cuticle biogenesis. The genesis of their pleiotropic phenotypes is, however, poorly understood. We provide evidence that neither distorted depositions of cutin, nor deficiencies in the chemical composition of cuticular lipids, account for these features, instead suggesting that the mutants alleviate the functional disorder of the cuticle by reinforcing their defenses. To better understand how plants adapt to these mutations, we performed a genome-wide gene expression analysis. We found that apparent compensatory transcriptional responses in these mutants involve the induction of wax, cutin, cell wall, and defense genes. To gain greater insight into the mechanism by which cuticular mutations trigger this response in the plants, we performed an overlap meta-analysis, which is termed MASTA (MicroArray overlap Search Tool and Analysis, of differentially expressed genes. This suggested that different cell integrity pathways are recruited in cesA cellulose synthase and cuticular mutants. Using MASTA for an in silico suppressor/enhancer screen, we identified SERRATE (SE, which encodes a protein of RNA-processing multi-protein complexes, as a likely enhancer. In confirmation of this notion, the se lcr and se bdg double mutants eradicate severe leaf deformations as well as the organ fusions that are typical of lcr and bdg and other cuticular mutants. Also, lcr does not confer resistance to Botrytis cinerea in a se mutant background. We propose that there is a role for SERRATE-mediated RNA signaling in the cuticle integrity pathway.

  6. An UPLC-ESI-MS/MS Assay Using 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate Derivatization for Targeted Amino Acid Analysis: Application to Screening of Arabidopsis thaliana Mutants

    Directory of Open Access Journals (Sweden)

    Carolina Salazar

    2012-07-01

    Full Text Available In spite of the large arsenal of methodologies developed for amino acid assessment in complex matrices, their implementation in metabolomics studies involving wide-ranging mutant screening is hampered by their lack of high-throughput, sensitivity, reproducibility, and/or wide dynamic range. In response to the challenge of developing amino acid analysis methods that satisfy the criteria required for metabolomic studies, improved reverse-phase high-performance liquid chromatography-mass spectrometry (RPHPLC-MS methods have been recently reported for large-scale screening of metabolic phenotypes. However, these methods focus on the direct analysis of underivatized amino acids and, therefore, problems associated with insufficient retention and resolution are observed due to the hydrophilic nature of amino acids. It is well known that derivatization methods render amino acids more amenable for reverse phase chromatographic analysis by introducing highly-hydrophobic tags in their carboxylic acid or amino functional group. Therefore, an analytical platform that combines the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC pre-column derivatization method with ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS is presented in this article. For numerous reasons typical amino acid derivatization methods would be inadequate for large scale metabolic projects. However, AQC derivatization is a simple, rapid and reproducible way of obtaining stable amino acid adducts amenable for UPLC-ESI-MS/MS and the applicability of the method for high-throughput metabolomic analysis in Arabidopsis thaliana is demonstrated in this study. Overall, the major advantages offered by this amino acid analysis method include high-throughput, enhanced sensitivity and selectivity; characteristics that showcase its utility for the rapid screening of the preselected plant metabolites without compromising the quality of the

  7. Fractionation of Sulfur Isotopes by Desulfovibrio vulgaris Mutants Lacking Periplasmic Hydrogenases or the Type I Tetraheme Cytochrome c3

    Science.gov (United States)

    Sim, M.; Ono, S.; Bosak, T.

    2012-12-01

    A large fraction of anaerobic mineralization of organic compounds relies on microbial sulfate reduction. Sulfur isotope fractionation by these microbes has been widely used to trace the biogeochemical cycling of sulfur and carbon, but intracellular mechanisms behind the wide range of fractionations observed in nature and cultures are not fully understood. In this study, we investigated the influence of electron transport chain components on the fractionation of sulfur isotopes by culturing Desulfovibrio vulgaris Hildenborough mutants lacking hydrogenases or type I tetraheme cytochrome c3 (Tp1-c3). The mutants were grown both in batch and continuous cultures. All tested mutants grew on lactate or pyruvate as the sole carbon and energy sources, generating sulfide. Mutants lacking cytoplasmic and periplasmic hydrogenases exhibited similar growth physiologies and sulfur isotope fractionations to their parent strains. On the other hand, a mutant lacking Tp1-c3 (ΔcycA) fractionated the 34S/32S ratio more than the wild type, evolving H2 in the headspace and exhibiting a lower specific respiration rate. In the presence of high concentrations of pyruvate, the growth of ΔcycA relied largely on fermentation rather than sulfate reduction, even when sulfate was abundant, producing the largest sulfur isotope effect observed in this study. Differences between sulfur isotope fractionation by ΔcycA and the wild type highlight the effect of electron transfer chains on the magnitude of sulfur isotope fractionation. Because Tp1-c3 is known to exclusively shuttle electrons from periplasmic hydrogenases to transmembrane complexes, electron transfers in the absence of Tp1-c3 should bypass the periplasmic hydrogen cycling, and the loss of reducing equivalents in the form of H2 can impair the flow of electrons from organic acids to sulfur, increasing isotope fractionation. Larger fractionation by ΔcycA can inform interpretations of sulfur isotope data at an environmental scale as well

  8. A fasciclin-like arabinogalactan-protein (FLA mutant of Arabidopsis thaliana, fla1, shows defects in shoot regeneration.

    Directory of Open Access Journals (Sweden)

    Kim L Johnson

    Full Text Available BACKGROUND: The fasciclin-like arabinogalactan-proteins (FLAs are an enigmatic class of 21 members within the larger family of arabinogalactan-proteins (AGPs in Arabidopsis thaliana. Located at the cell surface, in the cell wall/plasma membrane, they are implicated in many developmental roles yet their function remains largely undefined. Fasciclin (FAS domains are putative cell-adhesion domains found in extracellular matrix proteins of organisms from all kingdoms, but the juxtaposition of FAS domains with highly glycosylated AGP domains is unique to plants. Recent studies have started to elucidate the role of FLAs in Arabidopsis development. FLAs containing a single FAS domain are important for the integrity and elasticity of the plant cell wall matrix (FLA11 and FLA12 and FLA3 is involved in microspore development. FLA4/SOS5 with two FAS domains and two AGP domains has a role in maintaining proper cell expansion under salt stressed conditions. The role of other FLAs remains to be uncovered. METHOD/PRINCIPAL FINDINGS: Here we describe the characterisation of a T-DNA insertion mutant in the FLA1 gene (At5g55730. Under standard growth conditions fla1-1 mutants have no obvious phenotype. Based on gene expression studies, a putative role for FLA1 in callus induction was investigated and revealed that fla1-1 has a reduced ability to regenerate shoots in an in vitro shoot-induction assay. Analysis of FLA1p:GUS reporter lines show that FLA1 is expressed in several tissues including stomata, trichomes, the vasculature of leaves, the primary root tip and in lateral roots near the junction of the primary root. CONCLUSION: The results of the developmental expression of FLA1 and characterisation of the fla1 mutant support a role for FLA1 in the early events of lateral root development and shoot development in tissue culture, prior to cell-type specification.

  9. Reference: 25 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available tion of the free Met pool by excess Ado-Met synthesis or to regulate Ado-Met level and hence...olated insertional mmt mutants of Arabidopsis and maize (Zea mays). Both mutants lacked the capacity to produce... SMM and thus had no SMM cycle. They nevertheless grew and reproduced normally

  10. D-Amino acids in the brain and mutant rodents lacking D-amino-acid oxidase activity.

    Science.gov (United States)

    Yamanaka, Masahiro; Miyoshi, Yurika; Ohide, Hiroko; Hamase, Kenji; Konno, Ryuichi

    2012-11-01

    D-Amino acids are stereoisomers of L-amino acids. They are often called unnatural amino acids, but several D-amino acids have been found in mammalian brains. Among them, D-serine is abundant in the forebrain and functions as a co-agonist of NMDA receptors to enhance neurotransmission. D-Amino-acid oxidase (DAO), which degrades neutral and basic D-amino acids, is mainly present in the hindbrain. DAO catabolizes D-serine and, therefore, modulates neurotransmission. In the brains of mutant mice and rats lacking DAO activity, the amounts of D-serine and other D-amino acids are markedly increased. Mutant mice manifested behavioral changes characteristic of altered NMDA receptor activity, likely due to increased levels of D-serine. D-Serine and DAO have been demonstrated to play important roles in cerebellar development and synaptic plasticity. They have also implicated in amyotrophic lateral sclerosis and pain response. There have also been several lines of evidence correlating DAO with schizophrenia. Taken together, the experiments indicate that D-amino acids and DAO have pivotal functions in the central nervous system.

  11. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress

    KAUST Repository

    Van Oosten, Michael James

    2013-08-08

    The accumulation of anthocyanins in plants exposed to salt stress has been largely documented. However, the functional link and regulatory components underlying the biosynthesis of these molecules during exposure to stress are largely unknown. In a screen of second site suppressors of the salt overly sensitive3-1 (sos3-1) mutant, we isolated the anthocyanin-impaired-response-1 (air1) mutant. air1 is unable to accumulate anthocyanins under salt stress, a key phenotype of sos3-1 under high NaCl levels (120 mM). The air1 mutant showed a defect in anthocyanin production in response to salt stress but not to other stresses such as high light, low phosphorous, high temperature or drought stress. This specificity indicated that air1 mutation did not affect anthocyanin biosynthesis but rather its regulation in response to salt stress. Analysis of this mutant revealed a T-DNA insertion at the first exon of an Arabidopsis thaliana gene encoding for a basic region-leucine zipper transcription factor. air1 mutants displayed higher survival rates compared to wild-type in oxidative stress conditions, and presented an altered expression of anthocyanin biosynthetic genes such as F3H, F3′H and LDOX in salt stress conditions. The results presented here indicate that AIR1 is involved in the regulation of various steps of the flavonoid and anthocyanin accumulation pathways and is itself regulated by the salt-stress response signalling machinery. The discovery and characterization of AIR1 opens avenues to dissect the connections between abiotic stress and accumulation of antioxidants in the form of flavonoids and anthocyanins. © 2013 Springer Science+Business Media Dordrecht.

  12. Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant.

    Science.gov (United States)

    Sudre, Damien; Gutierrez-Carbonell, Elain; Lattanzio, Giuseppe; Rellán-Álvarez, Rubén; Gaymard, Frédéric; Wohlgemuth, Gert; Fiehn, Oliver; Alvarez-Fernández, Ana; Zamarreño, Angel M; Bacaicoa, Eva; Duy, Daniela; García-Mina, Jose-María; Abadía, Javier; Philippar, Katrin; López-Millán, Ana-Flor; Briat, Jean-François

    2013-07-01

    Iron homeostasis is an important process for flower development and plant fertility. The role of plastids in these processes has been shown to be essential. To document the relationships between plastid iron homeostasis and flower biology further, a global study (transcriptome, proteome, metabolome, and hormone analysis) was performed of Arabidopsis flowers from wild-type and triple atfer1-3-4 ferritin mutant plants grown under iron-sufficient or excess conditions. Some major modifications in specific functional categories were consistently observed at these three omic levels, although no significant overlaps of specific transcripts and proteins were detected. These modifications concerned redox reactions and oxidative stress, as well as amino acid and protein catabolism, this latter point being exemplified by an almost 10-fold increase in urea concentration of atfer1-3-4 flowers from plants grown under iron excess conditions. The mutant background caused alterations in Fe-haem redox proteins located in membranes and in hormone-responsive proteins. Specific effects of excess Fe in the mutant included further changes in these categories, supporting the idea that the mutant is facing a more intense Fe/redox stress than the wild type. The mutation and/or excess Fe had a strong impact at the membrane level, as denoted by the changes in the transporter and lipid metabolism categories. In spite of the large number of genes and proteins responsive to hormones found to be regulated in this study, changes in the hormonal balance were restricted to cytokinins, especially in the mutant plants grown under Fe excess conditions.

  13. Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis.

    Science.gov (United States)

    Pham, Phuong Anh; Wahl, Vanessa; Tohge, Takayuki; de Souza, Laise Rosado; Zhang, Youjun; Do, Phuc Thi; Olas, Justyna J; Stitt, Mark; Araújo, Wagner L; Fernie, Alisdair R

    2015-11-01

    The enzyme poly(ADP-ribose)polymerase (PARP) has a dual function being involved both in the poly(ADP-ribosyl)ation and being a constituent of the NAD(+) salvage pathway. To date most studies, both in plant and non-plant systems, have focused on the signaling role of PARP in poly(ADP-ribosyl)ation rather than any role that can be ascribed to its metabolic function. In order to address this question we here used a combination of expression, transcript and protein localization studies of all three PARP isoforms of Arabidopsis alongside physiological analysis of the corresponding mutants. Our analyses indicated that whilst all isoforms of PARP were localized to the nucleus they are also present in non-nuclear locations with parp1 and parp3 also localised in the cytosol, and parp2 also present in the mitochondria. We next isolated and characterized insertional knockout mutants of all three isoforms confirming a complete knockout in the full length transcript levels of the target genes as well as a reduced total leaf NAD hydrolase activity in the two isoforms (PARP1, PARP2) that are highly expressed in leaves. Physiological evaluation of the mutant lines revealed that they displayed distinctive metabolic and root growth characteristics albeit unaltered leaf morphology under optimal growth conditions. We therefore conclude that the PARP isoforms play non-redundant non-nuclear metabolic roles and that their function is highly important in rapidly growing tissues such as the shoot apical meristem, roots and seeds.

  14. Use of the "gl1" Mutant and the "CA-rop2" Transgenic Plants of "Arabidopsis thaliana" in the Biology Laboratory Course

    Science.gov (United States)

    Zheng, Zhi-Liang

    2006-01-01

    This article describes the use of the "glabrous1 (g11)" mutant and constitutively active "(CA)-rop2" transgenic plants of "Arabidopsis thaliana" in teaching genetics laboratory for both high school and undergraduate students. The experiments provide students with F[subscript 1] and F[subscript 2] generations within a semester for genetic and…

  15. Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence

    NARCIS (Netherlands)

    Jing, Hai-Chun; Sturre, Marcel J.G.; Hille, Jacques; Dijkwel, Paul P.

    2002-01-01

    The onset of leaf senescence is controlled by leaf age and ethylene can promote leaf senescence within a specific age window. We exploited the interaction between leaf age and ethylene and isolated mutants with altered leaf senescence that are named as onset of leaf death (old) mutants. Early leaf

  16. Arabidopsis thaliana T-DNA Mutants Implicate GAUT Genes in the Biosynthesis of Pectin and Xylan in Cell Walls and Seed Testa

    Institute of Scientific and Technical Information of China (English)

    Kerry H. Caffall; Sivakumar Pattathil; Sarah E. Phillips; Michael G. Hahn; Debra Mohnen

    2009-01-01

    Galacturonosyltransferase 1 (GAUT1) is an α1,4-D-galacturonosyltransferase that transfers galacturonic acid from uridine 5'-diphosphogalacturonic acid onto the pectic polysaccharide homogalacturonan (Sterling et al., 2006). The 25-member Arabidopsis thaliana GAUT1-related gene family encodes 15 GAUT and 10 GAUT-like (GATL) proteins with, respectively, 56-84 and 42-53% amino acid sequence similarity to GAUT1. Previous phylogenetic analyses of AtGAUTs indicated three clades: A through C. A comparative phylogenetic analysis of the Arabidopsis, poplar and rice GAUT families has sub-classified the GAUTs into seven clades: clade A-1 (GAUTs 1 to 3); A-2 (GAUT4); A-3 (GAUTs 5 and 6); A-4 (GAUT7); B-1(GAUTs 8 and 9); B-2 (GAUTs 10 and 11); and clade C (GAUTs 12 to 15). The Arabidopsis GAUTs have a distribution com-parable to the poplar orthologs, with the exception of GAUT2, which is absent in poplar. Rice, however, has no orthologs of GAUTs 2 and 12 and has multiple apparent orthologs of GAUTs 1, 4, and 7 compared with eitherArabidopsis or poplar. The cell wall glycosyl residue compositions of 26 homozygous T-DNA insertion mutants for 13 of 15 Arabidopsis GAUTgenes reveal significantly and reproducibly different cell walls in specific tissues of gaut mutants 6, 8, 9, 10, 11, 12, 13, and 14 from that of wild-type Arabidopsis walls. Pectin and xylan polysaccharides are affected by the loss of GAUT function, as dem-onstrated by the altered galacturonic acid, xylose, rhamnose, galactose, and arabinose composition of distinct gaut mu-tant walls. The wall glycosyl residue compositional phenotypes observed among the gaut mutants suggest that at least six different biosynthetic linkages in pectins and/or xylans are affected by the lesions in these GAUTgenes. Evidence is also presented to support a role for GAUT11 in seed mucilage expansion and in seed wall and mucilage composition.

  17. A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant.

    Science.gov (United States)

    Gao, Fei; Shu, Xiaomei; Ali, Mohammad Babar; Howard, Susanne; Li, Nan; Winterhagen, Patrick; Qiu, Wenping; Gassmann, Walter

    2010-04-01

    Vitis vinifera (grapevine) is the most economically important deciduous fruit crop, but cultivated grapevine varieties lack adequate innate immunity to a range of devastating diseases. To identify genetic resources for grapevine innate immunity and understand pathogen defense pathways in a woody perennial plant, we focus in this study on orthologs of the central Arabidopsis thaliana defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). The family of EDS1-like genes is expanded in grapevine, and members of this family were previously found to be constitutively upregulated in the resistant variety 'Norton' of the North American grapevine species Vitis aestivalis, while they were induced by Erysiphe necator, the causal agent of grapevine powdery mildew (PM), in the susceptible V. vinifera variety 'Cabernet Sauvignon'. Here, we determine the responsiveness of individual EDS1-like genes in grapevine to PM and salicylic acid, and find that EDS1-like paralogs are differentially regulated in 'Cabernet Sauvignon', while two are constitutively upregulated in 'Norton'. Sequencing of VvEDS1 and VaEDS1 cDNA and genomic clones revealed high conservation in the protein-encoding sequence and some divergence of the promoter sequence in the two grapevine varieties. Complementation of the Arabidopsis eds1-1 mutant showed that the EDS1-like gene with highest predicted amino acid sequence similarity to AtEDS1 from either grapevine varieties is a functional ortholog of AtEDS1. Together, our analyses show that differential susceptibility to PM is correlated with differences in EDS1 expression, not differences in EDS1 function, between resistant 'Norton' and susceptible 'Cabernet Sauvignon'.

  18. The impact of PEPC phosphorylation on growth and development of Arabidopsis thaliana: molecular and physiological characterization of PEPC kinase mutants.

    Science.gov (United States)

    Meimoun, Patrice; Gousset-Dupont, Aurélie; Lebouteiller, Bénédicte; Ambard-Bretteville, Françoise; Besin, Evelyne; Lelarge, Caroline; Mauve, Caroline; Hodges, Michael; Vidal, Jean

    2009-05-19

    Two phosphoenolpyruvate carboxylase (PEPC) kinase genes (PPCk1 and PPCk2) are present in the Arabidopsis genome; only PPCk1 is expressed in rosette leaves. Homozygous lines of two independent PPCk1 T-DNA-insertional mutants showed very little (dln1), or no (csi8) light-induced PEPC phosphorylation and a clear retard in growth under our greenhouse conditions. A mass-spectrometry-based analysis revealed significant changes in metabolite profiles. However, the anaplerotic pathway initiated by PEPC was only moderately altered. These data establish the PPCk1 gene product as responsible for leaf PEPC phosphorylation in planta and show that the absence of PEPC phosphorylation has pleiotropic consequences on plant metabolism.

  19. Flower stalk segments of Arabidopsis thaliana ecotype Columbia lack the capacity to grow in response to exogenously applied auxin.

    Science.gov (United States)

    Soga, K; Wakabayashi, K; Hoson, T; Kamisaka, S

    2000-12-01

    Exogenously applied IAA stimulated cell elongation of segments excised from flower stalks of Arabidopsis thaliana ecotype Landsberg erecta (Ler) by increasing the cell wall extensibility, but it did not affect that of ecotype Columbia (Col). Treatment with a low pH buffer solution (pH 4.0) or fusicoccin (FC), a reagent activating H(+)-ATPases, significantly increased the cell wall extensibility and promoted elongation growth of flower stalk segments of both ecotypes, indicating that the flower stalk segments of Col possess the capacity to grow under acidic pH conditions. IAA promoted the proton excretion in segments of Ler but not of Col. On the other hand, FC increased the proton excretion in segments of Col as much as that of Ler. These results suggest that IAA activates the plasma membrane H(+)-ATPases in the segments of Ler but not those of Col, while FC activates them in both ecotypes. Flower stalks of Col may lack the mechanisms of activation by IAA of the plasma membrane H(+)-ATPases.

  20. The Arabidopsis szl1 mutant reveals a critical role of β-carotene in photosystem I photoprotection.

    Science.gov (United States)

    Cazzaniga, Stefano; Li, Zhirong; Niyogi, Krishna K; Bassi, Roberto; Dall'Osto, Luca

    2012-08-01

    Carotenes and their oxygenated derivatives, the xanthophylls, are structural determinants in both photosystems (PS) I and II. They bind and stabilize photosynthetic complexes, increase the light-harvesting capacity of chlorophyll-binding proteins, and have a major role in chloroplast photoprotection. Localization of carotenoid species within each PS is highly conserved: Core complexes bind carotenes, whereas peripheral light-harvesting systems bind xanthophylls. The specific functional role of each xanthophyll species has been recently described by genetic dissection, however the in vivo role of carotenes has not been similarly defined. Here, we have analyzed the function of carotenes in photosynthesis and photoprotection, distinct from that of xanthophylls, by characterizing the suppressor of zeaxanthin-less (szl) mutant of Arabidopsis (Arabidopsis thaliana) which, due to the decreased activity of the lycopene-β-cyclase, shows a lower carotene content than wild-type plants. When grown at room temperature, mutant plants showed a lower content in PSI light-harvesting complex I complex than the wild type, and a reduced capacity for chlorophyll fluorescence quenching, the rapidly reversible component of nonphotochemical quenching. When exposed to high light at chilling temperature, szl1 plants showed stronger photoxidation than wild-type plants. Both PSI and PSII from szl1 were similarly depleted in carotenes and yet PSI activity was more sensitive to light stress than PSII as shown by the stronger photoinhibition of PSI and increased rate of singlet oxygen release from isolated PSI light-harvesting complex I complexes of szl1 compared with the wild type. We conclude that carotene depletion in the core complexes impairs photoprotection of both PS under high light at chilling temperature, with PSI being far more affected than PSII.

  1. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants

    Directory of Open Access Journals (Sweden)

    Hexi Shen

    2017-01-01

    Full Text Available Double-strand breaks (DSBs are one of the most harmful DNA lesions. Cells utilize two main pathways for DSB repair: homologous recombination (HR and nonhomologous end-joining (NHEJ. NHEJ can be subdivided into the KU-dependent classical NHEJ (c-NHEJ and the more error-prone KU-independent backup-NHEJ (b-NHEJ pathways, involving the poly (ADP-ribose polymerases (PARPs. However, in the absence of these factors, cells still seem able to adequately maintain genome integrity, suggesting the presence of other b-NHEJ repair factors or pathways independent from KU and PARPs. The outcome of DSB repair by NHEJ pathways can be investigated by using artificial sequence-specific nucleases such as CRISPR/Cas9 to induce DSBs at a target of interest. Here, we used CRISPR/Cas9 for DSB induction at the Arabidopsis cruciferin 3 (CRU3 and protoporphyrinogen oxidase (PPO genes. DSB repair outcomes via NHEJ were analyzed using footprint analysis in wild-type plants and plants deficient in key factors of c-NHEJ (ku80, b-NHEJ (parp1 parp2, or both (ku80 parp1 parp2. We found that larger deletions of >20 bp predominated after DSB repair in ku80 and ku80 parp1 parp2 mutants, corroborating with a role of KU in preventing DSB end resection. Deletion lengths did not significantly differ between ku80 and ku80 parp1 parp2 mutants, suggesting that a KU- and PARP-independent b-NHEJ mechanism becomes active in these mutants. Furthermore, microhomologies and templated insertions were observed at the repair junctions in the wild type and all mutants. Since these characteristics are hallmarks of polymerase θ-mediated DSB repair, we suggest a possible role for this recently discovered polymerase in DSB repair in plants.

  2. Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba.

    Directory of Open Access Journals (Sweden)

    Cynthia Gleason

    Full Text Available Herbicides that mimic the natural auxin indole-3-acetic acid are widely used in weed control. One common auxin-like herbicide is dicamba, but despite its wide use, plant gene responses to dicamba have never been extensively studied. To further understand dicamba's mode of action, we utilized Arabidopsis auxin-insensitive mutants and compared their sensitivity to dicamba and the widely-studied auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D. The mutant axr4-2, which has disrupted auxin transport into cells, was resistant to 2,4-D but susceptible to dicamba. By comparing dicamba resistance in auxin signalling F-box receptor mutants (tir1-1, afb1, afb2, afb3, and afb5, only tir1-1 and afb5 were resistant to dicamba, and this resistance was additive in the double tir1-1/afb5 mutant. Interestingly, tir1-1 but not afb5 was resistant to 2,4-D. Whole genome analysis of dicamba-induced gene expression showed that 10 hours after application, dicamba stimulated many stress-responsive and signalling genes, including those involved in biosynthesis or signalling of auxin, ethylene, and abscisic acid (ABA, with TIR1 and AFB5 required for the dicamba-responsiveness of some genes. Research into dicamba-regulated gene expression and the selectivity of auxin receptors has provided molecular insight into dicamba-regulated signalling and could help in the development of novel herbicide resistance in crop plants.

  3. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants.

    Science.gov (United States)

    Shen, Hexi; Strunks, Gary D; Klemann, Bart J P M; Hooykaas, Paul J J; de Pater, Sylvia

    2017-01-05

    Double-strand breaks (DSBs) are one of the most harmful DNA lesions. Cells utilize two main pathways for DSB repair: homologous recombination (HR) and nonhomologous end-joining (NHEJ). NHEJ can be subdivided into the KU-dependent classical NHEJ (c-NHEJ) and the more error-prone KU-independent backup-NHEJ (b-NHEJ) pathways, involving the poly (ADP-ribose) polymerases (PARPs). However, in the absence of these factors, cells still seem able to adequately maintain genome integrity, suggesting the presence of other b-NHEJ repair factors or pathways independent from KU and PARPs. The outcome of DSB repair by NHEJ pathways can be investigated by using artificial sequence-specific nucleases such as CRISPR/Cas9 to induce DSBs at a target of interest. Here, we used CRISPR/Cas9 for DSB induction at the Arabidopsis cruciferin 3 (CRU3) and protoporphyrinogen oxidase (PPO) genes. DSB repair outcomes via NHEJ were analyzed using footprint analysis in wild-type plants and plants deficient in key factors of c-NHEJ (ku80), b-NHEJ (parp1 parp2), or both (ku80 parp1 parp2). We found that larger deletions of >20 bp predominated after DSB repair in ku80 and ku80 parp1 parp2 mutants, corroborating with a role of KU in preventing DSB end resection. Deletion lengths did not significantly differ between ku80 and ku80 parp1 parp2 mutants, suggesting that a KU- and PARP-independent b-NHEJ mechanism becomes active in these mutants. Furthermore, microhomologies and templated insertions were observed at the repair junctions in the wild type and all mutants. Since these characteristics are hallmarks of polymerase θ-mediated DSB repair, we suggest a possible role for this recently discovered polymerase in DSB repair in plants. Copyright © 2017 Shen et al.

  4. Features of the primary wall CESA complex in wild type and cellulose-deficient mutants of Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Jian; Elliott, Janet E; Williamson, Richard E

    2008-01-01

    Evidence from genetics, co-precipitation and bimolecular fluorescence complementation suggest that three CESAs implicated in making primary wall cellulose in Arabidopsis thaliana form a complex. This study shows the complex has a M(r) of approximately 840 kDa in detergent extracts and that it has undergone distinctive changes when extracts are prepared from some cellulose-deficient mutants. The mobility of CESAs 1, 3, and 6 in a Triton-soluble microsomal fraction subject to blue native polyacrylamide gel electrophoresis was consistent with a M(r) of about 840 kDa. An antibody specific to any one CESA pulled down all three CESAs consistent with their occupying the same 840 kDa complex. In rsw1, a CESA1 missense mutant, extracts of seedlings grown at the permissive temperature have an apparently normal CESA complex that was missing from extracts of seedlings grown at the restrictive temperature where CESAs precipitated independently. In prc1-19, with no CESA6, CESAs 1 and 3 were part of a 420 kDa complex in extracts of light-grown seedlings that was absent from extracts of dark-grown seedlings where the CESAs precipitated independently. Two CESA3 missense mutants retained apparently normal CESA complexes as did four cellulose-deficient mutants defective in proteins other than CESAs. The 840 kDa complex could contain six CESA subunits and, since loss of plasma membrane rosettes accompanies its loss in rsw1, the complex could form one of the six particles which electron microscopy reveals in rosettes.

  5. An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing.

    Science.gov (United States)

    Gao, Xiuhua; Chen, Jilin; Dai, Xinhua; Zhang, Da; Zhao, Yunde

    2016-07-01

    Mutations generated by CRISPR/Cas9 in Arabidopsis (Arabidopsis thaliana) are often somatic and are rarely heritable. Isolation of mutations in Cas9-free Arabidopsis plants can ensure the stable transmission of the identified mutations to next generations, but the process is laborious and inefficient. Here, we present a simple visual screen for Cas9-free T2 seeds, allowing us to quickly obtain Cas9-free Arabidopsis mutants in the T2 generation. To demonstrate this in principle, we targeted two sites in the AUXIN-BINDING PROTEIN1 (ABP1) gene, whose function as a membrane-associated auxin receptor has been challenged recently. We obtained many T1 plants with detectable mutations near the target sites, but only a small fraction of T1 plants yielded Cas9-free abp1 mutations in the T2 generation. Moreover, the mutations did not segregate in Mendelian fashion in the T2 generation. However, mutations identified in the Cas9-free T2 plants were stably transmitted to the T3 generation following Mendelian genetics. To further simplify the screening procedure, we simultaneously targeted two sites in ABP1 to generate large deletions, which can be easily identified by PCR. We successfully generated two abp1 alleles that contained 1,141- and 711-bp deletions in the ABP1 gene. All of the Cas9-free abp1 alleles we generated were stable and heritable. The method described here allows for effectively isolating Cas9-free heritable CRISPR mutants in Arabidopsis.

  6. LHC II protein phosphorylation in leaves of Arabidopsis thaliana mutants deficient in non-photochemical quenching.

    Science.gov (United States)

    Breitholtz, Hanna-Leena; Srivastava, Renu; Tyystjärvi, Esa; Rintamäki, Eevi

    2005-06-01

    Phosphorylation of the light-harvesting chlorophyll a/b complex II (LHC II) proteins is induced in light via activation of the LHC II kinase by reduction of cytochrome b(6)f complex in thylakoid membranes. We have recently shown that, besides this activation, the LHC II kinase can be regulated in vitro by a thioredoxin-like component, and H2O2 that inserts an inhibitory loop in the regulation of LHC II protein phosphorylation in the chloroplast. In order to disclose the complex network for LHC II protein phosphorylation in vivo, we studied phosphorylation of LHC II proteins in the leaves of npq1-2 and npq4-1 mutants of Arabidopis thaliana. In comparison to wild-type, these mutants showed reduced non-photochemical quenching and increased excitation pressure of Photosystem II (PS II) under physiological light intensities. Peculiar regulation of LHC II protein phosphorylation was observed in mutant leaves under illumination. The npq4-1 mutant was able to maintain a high amount of phosphorylated LHC II proteins in thylakoid membranes at light intensities that induced inhibition of phosphorylation in wild-type leaves. Light intensity-dependent changes in the level of LHC II protein phosphorylation were smaller in the npq1-2 mutant compared to the wild-type. No significant differences in leaf thickness, dry weight, chlorophyll content, or the amount of LHC II proteins were observed between the two mutant and wild-type lines. We propose that the reduced capacity of the mutant lines to dissipate excess excitation energy induces changes in the production of reactive oxygen species in chloroplasts, which consequently affects the regulation of LHC II protein phosphorylation.

  7. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana

    KAUST Repository

    Belfield, E.J.

    2012-04-12

    Ionizing radiation has long been known to induce heritable mutagenic change in DNA sequence. However, the genome-wide effect of radiation is not well understood. Here we report the molecular properties and frequency of mutations in phenotypically selected mutant lines isolated following exposure of the genetic model flowering plant Arabidopsis thaliana to fast neutrons (FNs). Previous studies suggested that FNs predominantly induce deletions longer than a kilobase in A. thaliana. However, we found a higher frequency of single base substitution than deletion mutations. While the overall frequency and molecular spectrum of fast-neutron (FN)-induced single base substitutions differed substantially from those of "background" mutations arising spontaneously in laboratory-grown plants, G:C>A:T transitions were favored in both. We found that FN-induced G:C>A:T transitions were concentrated at pyrimidine dinucleotide sites, suggesting that FNs promote the formation of mutational covalent linkages between adjacent pyrimidine residues. In addition, we found that FNs induced more single base than large deletions, and that these single base deletions were possibly caused by replication slippage. Our observations provide an initial picture of the genome-wide molecular profile of mutations induced in A. thaliana by FN irradiation and are particularly informative of the nature and extent of genome-wide mutation in lines selected on the basis of mutant phenotypes from FN-mutagenized A. thaliana populations.

  8. Elemental concentrations in the seed of mutants and natural variants of Arabidopsis thaliana grown under varying soil conditions.

    Directory of Open Access Journals (Sweden)

    Stephen C McDowell

    Full Text Available The concentrations of mineral nutrients in seeds are critical to both the life cycle of plants as well as human nutrition. These concentrations are strongly influenced by soil conditions, as shown here by quantifying the concentration of 14 elements in seeds from Arabidopsis thaliana plants grown under four different soil conditions: standard, or modified with NaCl, heavy metals, or alkali. Each of the modified soils resulted in a unique change to the seed ionome (the mineral nutrient content of the seeds. To help identify the genetic networks regulating the seed ionome, changes in elemental concentrations were evaluated using mutants corresponding to 760 genes as well as 10 naturally occurring accessions. The frequency of ionomic phenotypes supports an estimate that as much as 11% of the A. thaliana genome encodes proteins of functional relevance to ion homeostasis in seeds. A subset of mutants were analyzed with two independent alleles, providing five examples of genes important for regulation of the seed ionome: SOS2, ABH1, CCC, At3g14280 and CNGC2. In a comparison of nine different accessions to a Col-0 reference, eight accessions were observed to have reproducible differences in elemental concentrations, seven of which were dependent on specific soil conditions. These results indicate that the A. thaliana seed ionome is distinct from the vegetative ionome, and that elemental analysis is a sensitive approach to identify genes controlling ion homeostasis, including those that regulate gene expression, phospho-regulation, and ion transport.

  9. The influence of matrix attachment regions on transgene expression in Arabidopsis thaliana wild type and gene silencing mutants.

    Science.gov (United States)

    De Bolle, Miguel F C; Butaye, Katleen M J; Goderis, Inge J W M; Wouters, Piet F J; Jacobs, Anni; Delauré, Stijn L; Depicker, Ann; Cammue, Bruno P A

    2007-03-01

    Many studies in both animal and plant systems have shown that matrix attachment regions (MARs) can increase the expression of flanking transgenes. However, our previous studies revealed no effect of the chicken lysozyme MARs (chiMARs) on transgene expression in the first generation transgenic Arabidopsis thaliana plants transformed with a beta-glucuronidase gene (uidA) unless gene silencing mutants were used as genetic background for transformation. In the present study, we investigated why chiMARs do not influence transgene expression in transgenic wild-type Arabidopsis plants. We first studied the effect of chiMARs on transgene expression in the progeny of primary transformants harboring chiMAR-flanked T-DNAs. Our data indicate that chiMARs do not affect transgene expression in consecutive generations of wild-type A. thaliana plants. Next, we examined whether these observed results in A. thaliana transformants are influenced by the applied transformation method. The results from in vitro transformed A. thaliana plants are in accordance with those from in planta transformed A. thaliana plants and again reveal no influence of chiMARs on transgene expression in A. thaliana wild-type transformants. The effect of chi-MARs on transgene expression is also examined in in vitro transformed Nicotiana tabacum plants, but as for A. thaliana, the transgene expression in tobacco transformants is not altered by the presence of chi-MARs. Taken together, our results show that the applied method or the plant species used for transformation does not influence whether and how chiMARs have an effect on transgene expression. Finally, we studied the effect of MARs (tabMARs) of plant origin (tobacco) on the transgene expression in A. thaliana wild-type plants and suppressed gene silencing (sgs2) mutants. Our results clearly show that similar to chiMARs, the tobacco-derived MARs do not enhance transgene expression in a wild-type background but can be used to enhance transgene expression

  10. Lack of FTSH4 Protease Affects Protein Carbonylation, Mitochondrial Morphology, and Phospholipid Content in Mitochondria of Arabidopsis: New Insights into a Complex Interplay.

    Science.gov (United States)

    Smakowska, Elwira; Skibior-Blaszczyk, Renata; Czarna, Malgorzata; Kolodziejczak, Marta; Kwasniak-Owczarek, Malgorzata; Parys, Katarzyna; Funk, Christiane; Janska, Hanna

    2016-08-01

    FTSH4 is one of the inner membrane-embedded ATP-dependent metalloproteases in mitochondria of Arabidopsis (Arabidopsis thaliana). In mutants impaired to express FTSH4, carbonylated proteins accumulated and leaf morphology was altered when grown under a short-day photoperiod, at 22°C, and a long-day photoperiod, at 30°C. To provide better insight into the function of FTSH4, we compared the mitochondrial proteomes and oxyproteomes of two ftsh4 mutants and wild-type plants grown under conditions inducing the phenotypic alterations. Numerous proteins from various submitochondrial compartments were observed to be carbonylated in the ftsh4 mutants, indicating a widespread oxidative stress. One of the reasons for the accumulation of carbonylated proteins in ftsh4 was the limited ATP-dependent proteolytic capacity of ftsh4 mitochondria, arising from insufficient ATP amount, probably as a result of an impaired oxidative phosphorylation (OXPHOS), especially complex V. In ftsh4, we further observed giant, spherical mitochondria coexisting among normal ones. Both effects, the increased number of abnormal mitochondria and the decreased stability/activity of the OXPHOS complexes, were probably caused by the lower amount of the mitochondrial membrane phospholipid cardiolipin. We postulate that the reduced cardiolipin content in ftsh4 mitochondria leads to perturbations within the OXPHOS complexes, generating more reactive oxygen species and less ATP, and to the deregulation of mitochondrial dynamics, causing in consequence the accumulation of oxidative damage.

  11. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway

    DEFF Research Database (Denmark)

    von Malek, Bernadette; van der Graaff, Eric; Schneitz, Kay

    2002-01-01

    The Arabidopsis thaliana (L.) Heynh. mutant delayed-dehiscence2-2 (dde2-2) was identified in an En1/Spm1 transposon-induced mutant population screened for plants showing defects in fertility. The dde2-2 mutant allele is defective in the anther dehiscence process and filament elongation and thus...

  12. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions.

    Science.gov (United States)

    Butaye, Katleen M J; Goderis, Inge J W M; Wouters, Piet F J; Pues, Jonathan M-T G; Delauré, Stijn L; Broekaert, Willem F; Depicker, Ann; Cammue, Bruno P A; De Bolle, Miguel F C

    2004-08-01

    Basic and applied research involving transgenic plants often requires consistent high-level expression of transgenes. However, high inter-transformant variability of transgene expression caused by various phenomena, including gene silencing, is frequently observed. Here, we show that stable, high-level transgene expression is obtained using Arabidopsis thaliana post-transcriptional gene silencing (PTGS) sgs2 and sgs3 mutants. In populations of first generation (T1) A. thaliana plants transformed with a beta-glucuronidase (GUS) gene (uidA) driven by the 35S cauliflower mosaic virus promoter (p35S), the incidence of highly expressing transformants shifted from 20% in wild type background to 100% in sgs2 and sgs3 backgrounds. Likewise, when sgs2 mutants were transformed with a cyclin-dependent kinase inhibitor 6 gene under control of p35S, all transformants showed a clear phenotype typified by serrated leaves, whereas such phenotype was only observed in about one of five wild type transformants. p35S-driven uidA expression remained high and steady in T2 sgs2 and sgs3 transformants, in marked contrast to the variable expression patterns observed in wild type T2 populations. We further show that T-DNA constructs flanked by matrix attachment regions of the chicken lysozyme gene (chiMARs) cause a boost in GUS activity by fivefold in sgs2 and 12-fold in sgs3 plants, reaching up to 10% of the total soluble proteins, whereas no such boost is observed in the wild type background. MAR-based plant transformation vectors used in a PTGS mutant background might be of high value for efficient high-throughput screening of transgene-based phenotypes as well as for obtaining extremely high transgene expression in plants.

  13. A quadruple mutant of Arabidopsis reveals a β-carotene hydroxylation activity for LUT1/CYP97C1 and a regulatory role of xanthophylls on determination of the PSI/PSII ratio

    Directory of Open Access Journals (Sweden)

    Fiore Alessia

    2012-04-01

    Full Text Available Abstract Background Xanthophylls are oxygenated carotenoids playing an essential role as structural components of the photosynthetic apparatus. Xanthophylls contribute to the assembly and stability of light-harvesting complex, to light absorbance and to photoprotection. The first step in xanthophyll biosynthesis from α- and β-carotene is the hydroxylation of ε- and β-rings, performed by both non-heme iron oxygenases (CHY1, CHY2 and P450 cytochromes (LUT1/CYP97C1, LUT5/CYP97A3. The Arabidopsis triple chy1chy2lut5 mutant is almost completely depleted in β-xanthophylls. Results Here we report on the quadruple chy1chy2lut2lut5 mutant, additionally carrying the lut2 mutation (affecting lycopene ε-cyclase. This genotype lacks lutein and yet it shows a compensatory increase in β-xanthophylls with respect to chy1chy2lut5 mutant. Mutant plants show an even stronger photosensitivity than chy1chy2lut5, a complete lack of qE, the rapidly reversible component of non-photochemical quenching, and a peculiar organization of the pigment binding complexes into thylakoids. Biochemical analysis reveals that the chy1chy2lut2lut5 mutant is depleted in Lhcb subunits and is specifically affected in Photosystem I function, showing a deficiency in PSI-LHCI supercomplexes. Moreover, by analyzing a series of single, double, triple and quadruple Arabidopsis mutants in xanthophyll biosynthesis, we show a hitherto undescribed correlation between xanthophyll levels and the PSI-PSII ratio. The decrease in the xanthophyll/carotenoid ratio causes a proportional decrease in the LHCII and PSI core levels with respect to PSII. Conclusions The physiological and biochemical phenotype of the chy1chy2lut2lut5 mutant shows that (i LUT1/CYP97C1 protein reveals a major β-carotene hydroxylase activity in vivo when depleted in its preferred substrate α-carotene; (ii xanthophylls are needed for normal level of Photosystem I and LHCII accumulation.

  14. A Temporarily Red Light-Insensitive Mutant of Tomato Lacks a Light-Stable, B-Like Phytochrome.

    Science.gov (United States)

    Van Tuinen, A.; Kerckhoffs, LHJ.; Nagatani, A.; Kendrick, R. E.; Koornneef, M.

    1995-07-01

    We have selected four recessive mutants in tomato (Lycopersicon esculentum Mill.) that, under continuous red light (R), have long hypocotyls and small cotyledons compared to wild type (WT), a phenotype typical of phytochrome B (phyB) mutants of other species. These mutants, which are allelic, are only insensitive to R during the first 2 days upon transition from darkness to R, and therefore we propose the gene symbol tri (temporarily red light insensitive). White light-grown mutant plants have a more elongated growth habit than that of the WT. An immunochemically and spectrophotometrically detectable phyB-like polypeptide detectable in the WT is absent or below detection limits in the tri1 mutant. In contrast to the absence of an elongation growth response to far-red light (FR) given at the end of the daily photoperiod (EODFR) in all phyB-deficient mutants so far characterized, the tri1 mutant responds to EODFR treatment. The tri1 mutant also shows a strong response to supplementary daytime far-red light. We propose that the phyB-like phytochrome deficient in the tri mutants plays a major role during de-etiolation and that other light-stable phytochromes can regulate the EODFR and shade-avoidance responses in tomato.

  15. Parallel analysis of Arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation

    Science.gov (United States)

    Graf, Alexander; Coman, Diana; Walsh, Sean; Flis, Anna; Stitt, Mark; Gruissem, Wilhelm

    2017-01-01

    The circadian clock regulates physiological processes central to growth and survival. To date, most plant circadian clock studies have relied on diurnal transcriptome changes to elucidate molecular connections between the circadian clock and observable phenotypes in wild-type plants. Here, we have integrated RNA-sequencing and protein mass spectrometry data to comparatively analyse the lhycca1, prr7prr9, gi and toc1 circadian clock mutant rosette at the end of day and end of night. Each mutant affects specific sets of genes and proteins, suggesting that the circadian clock regulation is modular. Furthermore, each circadian clock mutant maintains its own dynamically fluctuating transcriptome and proteome profile specific to subcellular compartments. Most of the measured protein levels do not correlate with changes in their corresponding transcripts. Transcripts and proteins that have coordinated changes in abundance are enriched for carbohydrate- and cold-responsive genes. Transcriptome changes in all four circadian clock mutants also affect genes encoding starch degradation enzymes, transcription factors and protein kinases. The comprehensive transcriptome and proteome datasets demonstrate that future system-driven research of the circadian clock requires multi-level experimental approaches. Our work also shows that further work is needed to elucidate the roles of post-translational modifications and protein degradation in the regulation of clock-related processes. PMID:28250106

  16. Parallel analysis of Arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation.

    Science.gov (United States)

    Graf, Alexander; Coman, Diana; Uhrig, R Glen; Walsh, Sean; Flis, Anna; Stitt, Mark; Gruissem, Wilhelm

    2017-03-01

    The circadian clock regulates physiological processes central to growth and survival. To date, most plant circadian clock studies have relied on diurnal transcriptome changes to elucidate molecular connections between the circadian clock and observable phenotypes in wild-type plants. Here, we have integrated RNA-sequencing and protein mass spectrometry data to comparatively analyse the lhycca1, prr7prr9, gi and toc1 circadian clock mutant rosette at the end of day and end of night. Each mutant affects specific sets of genes and proteins, suggesting that the circadian clock regulation is modular. Furthermore, each circadian clock mutant maintains its own dynamically fluctuating transcriptome and proteome profile specific to subcellular compartments. Most of the measured protein levels do not correlate with changes in their corresponding transcripts. Transcripts and proteins that have coordinated changes in abundance are enriched for carbohydrate- and cold-responsive genes. Transcriptome changes in all four circadian clock mutants also affect genes encoding starch degradation enzymes, transcription factors and protein kinases. The comprehensive transcriptome and proteome datasets demonstrate that future system-driven research of the circadian clock requires multi-level experimental approaches. Our work also shows that further work is needed to elucidate the roles of post-translational modifications and protein degradation in the regulation of clock-related processes. © 2017 The Authors.

  17. Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction

    Directory of Open Access Journals (Sweden)

    Schulz Burkhard

    2010-12-01

    Full Text Available Abstract Background Plant growth depends on both cell division and cell expansion. Plant hormones, including brassinosteroids (BRs, are central to the control of these two cellular processes. Despite clear evidence that BRs regulate cell elongation, their roles in cell division have remained elusive. Results Here, we report results emphasizing the importance of BRs in cell division. An Arabidopsis BR biosynthetic mutant, dwarf7-1, displayed various characteristics attributable to slower cell division rates. We found that the DWARF4 gene which encodes for an enzyme catalyzing a rate-determining step in the BR biosynthetic pathways, is highly expressed in the actively dividing callus, suggesting that BR biosynthesis is necessary for dividing cells. Furthermore, dwf7-1 showed noticeably slower rates of callus growth and shoot induction relative to wild-type control. Flow cytometric analyses of the nuclei derived from either calli or intact roots revealed that the cell division index, which was represented as the ratio of cells at the G2/M vs. G1 phases, was smaller in dwf7-1 plants. Finally, we found that the expression levels of the genes involved in cell division and shoot induction, such as PROLIFERATING CELL NUCLEAR ANTIGEN2 (PCNA2 and ENHANCER OF SHOOT REGENERATION2 (ESR2, were also lower in dwf7-1 as compared with wild type. Conclusions Taken together, results of callus induction, shoot regeneration, flow cytometry, and semi-quantitative RT-PCR analysis suggest that BRs play important roles in both cell division and cell differentiation in Arabidopsis.

  18. Leaves of the Arabidopsis maltose exporter1 mutant exhibit a metabolic profile with features of cold acclimation in the warm.

    Directory of Open Access Journals (Sweden)

    Sarah J Purdy

    Full Text Available BACKGROUND: Arabidopsis plants accumulate maltose from starch breakdown during cold acclimation. The Arabidopsis mutant, maltose excess1-1, accumulates large amounts of maltose in the plastid even in the warm, due to a deficient plastid envelope maltose transporter. We therefore investigated whether the elevated maltose level in mex1-1 in the warm could result in changes in metabolism and physiology typical of WT plants grown in the cold. PRINCIPAL FINDINGS: Grown at 21 °C, mex1-1 plants were much smaller, with fewer leaves, and elevated carbohydrates and amino acids compared to WT. However, after transfer to 4 °C the total soluble sugar pool and amino acid concentration was in equal abundance in both genotypes, although the most abundant sugar in mex1-1 was still maltose whereas sucrose was in greatest abundance in WT. The chlorophyll a/b ratio in WT was much lower in the cold than in the warm, but in mex1-1 it was low in both warm and cold. After prolonged growth at 4 °C, the shoot biomass, rosette diameter and number of leaves at bolting were similar in mex1-1 and WT. CONCLUSIONS: The mex1-1 mutation in warm-grown plants confers aspects of cold acclimation, including elevated levels of sugars and amino acids and low chlorophyll a/b ratio. This may in turn compromise growth of mex1-1 in the warm relative to WT. We suggest that elevated maltose in the plastid could be responsible for key aspects of cold acclimation.

  19. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Catalanotti, C.; Dubini, A.; Subramanian, V.; Yang, W. Q.; Magneschi, L.; Mus, F.; Seibert, M.; Posewitz, M. C.; Grossman, A. R.

    2012-02-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.

  20. Mutants of circadian-associated PRR genes display a novel and visible phenotype as to light responses during de-etiolation of Arabidopsis thaliana seedlings.

    Science.gov (United States)

    Kato, Takahiko; Murakami, Masaya; Nakamura, Yuko; Ito, Shogo; Nakamichi, Norihito; Yamashino, Takafumi; Mizuno, Takeshi

    2007-03-01

    In Arabidopsis thaliana, it is currently accepted that certain mutants with lesions in clock-associated genes commonly display hallmarked phenotypes with regard to three characteristic biological events: (i) altered rhythmic expression of circadian-controlled genes, (ii) changes in flowering time, and (iii) altered sensitivity to red light in elongation of hypocotyls. During the course of examination of the clock-associated mutants of PSEUDO-RESPONSE REGULATORS, PRRs, including TOC1 (PRR1), we found that they commonly show another visible phenotype of anomalous greening responses upon the onset to light exposure of etiolated seedlings. These findings are indicative of a novel link between circadian rhythms and chloroplast development.

  1. Improved Growth and Stress Tolerance in the Arabidopsis oxt1 Mutant Triggered by Altered Adenine Metabolism

    Institute of Scientific and Technical Information of China (English)

    Suchada Sukrong; Kil-Young Yun; Patrizia Stadler; Charan Kumar; Tony Facciuolo; Barbara A.Moffatt; Deane L.Falcone

    2012-01-01

    Plants perceive and respond to environmental stresses with complex mechanisms that are often associated with the activation of antioxidant defenses.A genetic screen aimed at isolating oxidative stress-tolerant lines of Arabidopsis thaliana has identified oxt1,a line that exhibits improved tolerance to oxidative stress and elevated temperature but displays no apparent deleterious growth effects under non-stress conditions.Oxt1 harbors a mutation that arises from the altered expression of a gene encoding adenine phosphoribosyltransferase (APT1),an enzyme that converts adenine to adenosine monophosphate (AMP),indicating a link between purine metabolism,whole-plant growth responses,and stress acclimation.The oxt1 mutation results in decreased APT1 expression that leads to reduced enzymatic activity.Correspondingly,oxt1 plants possess elevated levels of adenine.Decreased APT enzyme activity directly correlates with stress resistance in transgenic lines that ectopically express APT1.The metabolic alteration in oxt1 plants also alters the expression of several antioxidant defense genes and the response of these genes to oxidative challenge.Finally,it is shown that manipulation of adenine levels can induce stress tolerance to wild-type plants.Collectively,these results show that alterations in cellular adenine levels can trigger stress tolerance and improve growth,leading to increases in plant biomass.The results also suggest that adenine might play a part in the signals that modulate responses to abiotic stress and plant growth.

  2. Changes in DNA base sequences in the mutant of Arabidopsis thaliana induced by low-energy N+ implantation

    Institute of Scientific and Technical Information of China (English)

    常凤启; 刘选明; 李银心; 贾庚祥; 马晶晶; 刘公社; 朱至清

    2003-01-01

    To reveal the mutation effect of low-energy ion implantation on Arabidopsis thaliana in vivo, T80II, a stable dwarf mutant, derived from the seeds irradiated by 30 keV N+ with the dose of 80×1015 ions/cm2 was used for Random Amplified Polymorphic DNA (RAPD) and base sequence analysis. The results indicated that among total 397 RAPD bands observed, 52 bands in T80II were different from those of wild type showing a variation frequency 13.1%. In comparison with the sequences of A. thaliana in GenBank, the RAPD fragments in T80II were changed greatly in base sequences with an average rate of one base change per 16.8 bases. The types of base changes included base transition, transversion, deletion and insertion. Among the 275 base changes detected, single base substitutions (97.09%) occurred more frequently than base deletions and insertions (2.91%). And the frequency of base transitions (66.55%) was higher than that of base transversions (30.55%). Adenine, thymine, guanine or cytosine could be replaced by any of other three bases in cloned DNA fragments in T80II. It seems that thymine was more sensitive to the irradiation than other bases. The flanking sequences of the base changes in RAPD fragments in T80II were analyzed and the mutational "hotspot" induced by low-energy ion implantation was discussed.

  3. A vacuolar carboxypeptidase mutant of Arabidopsis thaliana is degraded by the ERAD pathway independently of its N-glycan

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Masaya; Kawanabe, Mitsuyoshi; Hayashi, Yoko; Endo, Toshiya [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Nishikawa, Shuh-ichi, E-mail: shuh@biochem.chem.nagoya-u.ac.jp [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan)

    2010-03-12

    Misfolded proteins produced in the endoplasmic reticulum (ER) are degraded by a mechanism, the ER-associated degradation (ERAD). Here we report establishment of the experimental system to analyze the ERAD in plant cells. Carboxypeptidase Y (CPY) is a vacuolar enzyme and its mutant CPY* is degraded by the ERAD in yeast. Since Arabidopsis thaliana has AtCPY, an ortholog of yeast CPY, we constructed and expressed fusion proteins consisting of AtCPY and GFP and of AtCPY*, which carries a mutation homologous to yeast CPY*, and GFP in A. thaliana cells. While AtCPY-GFP was efficiently transported to the vacuole, AtCPY*-GFP was retained in the ER to be degraded in proteasome- and Cdc48-dependent manners. We also found that AtCPY*-GFP was degraded by the ERAD in yeast cells, but that its single N-glycan did not function as a degradation signal in yeast or plant cells. Therefore, AtCPY*-GFP can be used as a marker protein to analyze the ERAD pathway, likely for nonglycosylated substrates, in plant cells.

  4. Stromal protein degradation is incomplete in Arabidopsis thaliana autophagy mutants undergoing natural senescence

    Directory of Open Access Journals (Sweden)

    Lee Travis A

    2013-01-01

    Full Text Available Abstract Background Degradation of highly abundant stromal proteins plays an important role in the nitrogen economy of the plant during senescence. Lines of evidence supporting proteolysis within the chloroplast and outside the chloroplast have been reported. Two extra-plastidic degradation pathways, chlorophagy and Rubisco Containing Bodies, rely on cytoplasmic autophagy. Results In this work, levels of three stromal proteins (Rubisco large subunit, chloroplast glutamine synthetase and Rubisco activase and one thylakoid protein (the major light harvesting complex protein of photosystem II were measured during natural senescence in WT and in two autophagy T-DNA insertion mutants (atg5 and atg7. Thylakoid-localized protein decreased similarly in all genotypes, but stromal protein degradation was incomplete in the two atg mutants. In addition, degradation of two stromal proteins was observed in chloroplasts isolated from mid-senescence leaves. Conclusions These data suggest that autophagy does contribute to the complete proteolysis of stromal proteins, but does not play a major degenerative role. In addition, support for in organello degradation is provided.

  5. ABA biosynthesis defective mutants reduce some free amino acids accumulation under drought stress in tomato leaves in comparison with Arabidopsis plants tissues

    Directory of Open Access Journals (Sweden)

    Adnan Ali Al.Asbahi

    2012-05-01

    Full Text Available The ability of plants to tolerate drought conditions is crucial for plant survival and crop production worldwide. The present data confirm previous findings reported existence of a strong relation between abscisic acid (ABA content and amino acid accumulation as response water stress which is one of the most important defense mechanism activated during water stress in many plant species. Therefore, free amino acids were measured to determine any changes in the metabolite pool in relation to ABA content. The ABA defective mutants of Arabidopsis plants were subjected to leaf dehydration for Arabidopsis on Whatman 3 mm filter paper at room temperature while, tomato mutant plants were subjected to drought stresses for tomato plants by withholding water. To understand the signal transduction mechanisms underlying osmotic stress-regulating gene induction and activation of osmoprotectant free amino acid synthesizing genes, we carried out a genetic screen to isolate Arabidopsis mutants defective in ABA biosynthesis under drought stress conditions. The present results revealed an accumulation of specific free amino acid in water stressed tissues in which majority of free amino acids are increased especially those playing an osmoprotectant role such as proline and glycine. Drought stress related Amino acids contents are significantly reduced in the mutants under water stress condition while they are increased significantly in the wild types plants. The exhibited higher accumulation of other amino acids under stressed condition in the mutant plants suggest that, their expressions are regulated in an ABA independent pathways. In addition, free amino acids content changes during water stress condition suggest their contribution in drought toleration as common compatible osmolytes.

  6. A new osteopetrosis mutant mouse strain (ntl) with odontoma-like proliferations and lack of tooth roots.

    Science.gov (United States)

    Lu, Xincheng; Rios, Hector F; Jiang, Baichun; Xing, Lianping; Kadlcek, Renata; Greenfield, Edward M; Luo, Guangbin; Feng, Jian Q

    2009-12-01

    A new spontaneous mouse mutant (ntl) with autosomal-recessive osteopetrosis was characterized. These mice formed tartrate-resistant acid phosphate (TRAP)-positive osteoclasts but their osteoclasts had no ruffled border and did not resorb bone. These mice displayed no tooth eruption or tooth root formation. Adult mutant mice developed odontoma-like proliferations near the proximal ends of the incisors. Intraperitoneal injection of progenitor cells from the liver of 16.5 days postcoitum wild-type embryos into newborn mutants rescued the osteopetrosis phenotype, indicating that the defects were intrinsic to the osteoclasts. Our findings not only provide further support for a critical role of osteoclasts in tooth eruption and tooth root development, but also suggest that the perturbation of the homeostasis of the odontogenic precursors of the incisors is primarily responsible for the development of the odontoma-like proliferations in this osteopetrosis mutant. Genetic mapping has narrowed down the location of the mutant allele to a genetic interval of 3.2 cM on mouse chromosome 17.

  7. Carbon dioxide fixation and photoevolution of hydrogen and oxygen in a mutant of Chlamydomonas lacking Photosystem I

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W.; Tevault, C.V. [Oak Ridge National Lab., TN (United States)] [and others

    1995-09-01

    Sustained photoassimilation of atmospheric CO{sub 2} and simultaneous photoevolution of molecular hydrogen and oxygen has been observed in a Photosystem I deficient mutant B4 of Chlamydomonas reinhardtii that contains only Photosystem II. The data indicate that Photosystem II alone is capable of spanning the potential difference between water oxidation/oxygen evolution and ferredoxin reduction. The rates of both CO{sub 2} fixation and hydrogen and oxygen evolution are similar in the mutant to that of the wild-type C. reinhardtii 137c containing both photosystems. The wild-type had stable photosynthetic activity, measured as CO{sub 2} fixation, under both air and anaerobic conditions, while the mutant was stable only under anaerobic conditions. The results are discussed in terms of the fundamental mechanisms and energetics of photosynthesis and possible implications for the evolution of oxygenic photosynthesis.

  8. Redox crisis underlies conditional light-dark lethality in cyanobacterial mutants that lack the circadian regulator, RpaA.

    Science.gov (United States)

    Diamond, Spencer; Rubin, Benjamin E; Shultzaberger, Ryan K; Chen, You; Barber, Chase D; Golden, Susan S

    2017-01-24

    Cyanobacteria evolved a robust circadian clock, which has a profound influence on fitness and metabolism under daily light-dark (LD) cycles. In the model cyanobacterium Synechococcus elongatus PCC 7942, a functional clock is not required for diurnal growth, but mutants defective for the response regulator that mediates transcriptional rhythms in the wild-type, regulator of phycobilisome association A (RpaA), cannot be cultured under LD conditions. We found that rpaA-null mutants are inviable after several hours in the dark and compared the metabolomes of wild-type and rpaA-null strains to identify the source of lethality. Here, we show that the wild-type metabolome is very stable throughout the night, and this stability is lost in the absence of RpaA. Additionally, an rpaA mutant accumulates excessive reactive oxygen species (ROS) during the day and is unable to clear it during the night. The rpaA-null metabolome indicates that these cells are reductant-starved in the dark, likely because enzymes of the primary nighttime NADPH-producing pathway are direct targets of RpaA. Because NADPH is required for processes that detoxify ROS, conditional LD lethality likely results from inability of the mutant to activate reductant-requiring pathways that detoxify ROS when photosynthesis is not active. We identified second-site mutations and growth conditions that suppress LD lethality in the mutant background that support these conclusions. These results provide a mechanistic explanation as to why rpaA-null mutants die in the dark, further connect the clock to metabolism under diurnal growth, and indicate that RpaA likely has important unidentified functions during the day.

  9. Absence of RNase H allows replication of pBR322 in Escherichia coli mutants lacking DNA polymerase I.

    Science.gov (United States)

    Kogoma, T

    1984-12-01

    rnh (formerly termed sdrA) mutants of Escherichia coli K-12, capable of continuous DNA replication in the absence of protein synthesis (stable DNA replication), are devoid of ribonuclease H (RNase H, EC 3.1.26.4) activity. Plasmid pBR322 was found to replicate in rnh mutants in the absence of DNA polymerase I, the polA gene product, which is normally required for replication of this plasmid. The plasmid copy number in polA rnh double mutants was as high as in the wild-type strains. When a chimeric construct between pBR322 and pSC101 was introduced into a polA rnh double mutant, the replication of the plasmid via the pBR322 replicon was inhibited if the plasmid also carried an rnh+ gene or if the host harbored an F' plasmid carrying an rnh+ gene. Thus, DNA polymerase I-independent replication of pBR322 requires the absence of RNase H activity. This alternative mechanism requiring neither DNA polymerase I nor RNase H appears to involve a transcriptional event in the region of the normal origin of replication.

  10. The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds.

    Science.gov (United States)

    Zuber, Hélène; Davidian, Jean-Claude; Aubert, Grégoire; Aimé, Delphine; Belghazi, Maya; Lugan, Raphaël; Heintz, Dimitri; Wirtz, Markus; Hell, Rüdiger; Thompson, Richard; Gallardo, Karine

    2010-10-01

    Sulfate is required for the synthesis of sulfur-containing amino acids and numerous other compounds essential for the plant life cycle. The delivery of sulfate to seeds and its translocation between seed tissues is likely to require specific transporters. In Arabidopsis (Arabidopsis thaliana), the group 3 plasmalemma-predicted sulfate transporters (SULTR3) comprise five genes, all expressed in developing seeds, especially in the tissues surrounding the embryo. Here, we show that sulfur supply to seeds is unaffected by T-DNA insertions in the SULTR3 genes. However, remarkably, an increased accumulation of sulfate was found in mature seeds of four mutants out of five. In these mutant seeds, the ratio of sulfur in sulfate form versus total sulfur was significantly increased, accompanied by a reduction in free cysteine content, which varied depending on the gene inactivated. These results demonstrate a reduced capacity of the mutant seeds to metabolize sulfate and suggest that these transporters may be involved in sulfate translocation between seed compartments. This was further supported by sulfate measurements of the envelopes separated from the embryo of the sultr3;2 mutant seeds, which showed differences in sulfate partitioning compared with the wild type. A dissection of the seed proteome of the sultr3 mutants revealed protein changes characteristic of a sulfur-stress response, supporting a role for these transporters in providing sulfate to the embryo. The mutants were affected in 12S globulin accumulation, demonstrating the importance of intraseed sulfate transport for the synthesis and maturation of embryo proteins. Metabolic adjustments were also revealed, some of which could release sulfur from glucosinolates.

  11. 拟南芥二氧化碳突变体生理特性的分析%Physiological Analysis of Two Arabidopsis thaliana Mutants in Response to CO2

    Institute of Scientific and Technical Information of China (English)

    宋玉伟; 陈家宝; 刘宗才

    2009-01-01

    [Objective] The purpose was to seek for the different phenotypes between wild type and Arabidopsis Mutants in response to CO2. [Method] The epidermis bioassays and seed germination test were carried out to analyze the physiological characteristics of two Arabidopsis mutants and their wild type. [Result] There existed distinct differences in stomata apertures, water loss and leaf temperature compared with wild type except for stomata density. In addition, seed germination test on the medium indicated that cdi1 was insensitive to ABA, mannitol and NaCl, but cds1 performed contrary to cdi1. [Conclusion] There are some different physiological characteristics between wild type and mutants.

  12. The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion.

    Science.gov (United States)

    Priault, P; Tcherkez, G; Cornic, G; De Paepe, R; Naik, R; Ghashghaie, J; Streb, P

    2006-01-01

    The cytoplasmic male sterile II (CMSII) mutant lacking complex I of the mitochondrial electron transport chain has a lower photosynthetic activity but exhibits higher rates of excess electron transport than the wild type (WT) when grown at high light intensity. In order to examine the cause of the lower photosynthetic activity and to determine whether excess electrons are consumed by photorespiration, light, and intercellular CO(2), molar fraction (c(i)) response curves of carbon assimilation were measured at varying oxygen molar fractions. While oxygen is the major acceptor for excess electrons in CMSII and WT leaves, electron flux to photorespiration is favoured in the mutant as compared with the WT leaves. Isotopic mass spectrometry measurements showed that leaf internal conductance to CO(2) diffusion (g(m)) in mutant leaves was half that of WT leaves, thus decreasing the c(c) and favouring photorespiration in the mutant. The specificity factor of Rubisco did not differ significantly between both types of leaves. Furthermore, carbon assimilation as a function of electrons used for carboxylation processes/electrons used for oxygenation processes (J(C)/J(O)) and as a function of the calculated chloroplastic CO(2) molar fraction (c(c)) values was similar in WT and mutant leaves. Enhanced rates of photorespiration also explain the consumption of excess electrons in CMSII plants and agreed with potential ATP consumption. Furthermore, the lower initial Rubisco activity in CMSII as compared with WT leaves resulted from the lower c(c) in ambient air, since initial Rubisco activity on the basis of equal c(c) values was similar in WT and mutant leaves. The retarded growth and the lower photosynthetic activity of the mutant were largely overcome when plants were grown in high CO(2) concentrations, showing that limiting CO(2) supply for photosynthesis was a major cause of the lower growth rate and photosynthetic activity in CMSII.

  13. Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis

    Directory of Open Access Journals (Sweden)

    Pengkai Wang

    2016-09-01

    Full Text Available The APETALA2 (AP2 genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group.

  14. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae.

    Directory of Open Access Journals (Sweden)

    Gennady V Pogorelko

    Full Text Available The immutans (im variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues and sinks (white tissues early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions.

  15. Defective chloroplast development inhibits maintenance of normal levels of abscisic acid in a mutant of the Arabidopsis RH3 DEAD-box protein during early post-germination growth.

    Science.gov (United States)

    Lee, Kwang-Hee; Park, Jiyoung; Williams, Donna S; Xiong, Yuqing; Hwang, Inhwan; Kang, Byung-Ho

    2013-03-01

    The plastid has its own translation system, and its ribosomes are assembled through a complex process in which rRNA precursors are processed and ribosomal proteins are inserted into the rRNA backbone. DEAD-box proteins have been shown to play roles in multiple steps in ribosome biogenesis. To investigate the cellular and physiological roles of an Arabidopsis DEAD-box protein, RH3, we examined its expression and localization and the phenotypes of rh3-4, a T-DNA insertion mutant allele of RH3. The promoter activity of RH3 is strongest in the greening tissues of 3-day and 1-week-old seedlings but reduced afterwards. Cotyledons were pale and seedling growth was retarded in the mutant. The most obvious abnormality in the mutant chloroplasts was their lack of normal ribosomes. Electron tomography analysis indicated that ribosome density in the 3-day-old mutant chloroplasts is only 20% that of wild-type chloroplasts, and the ribosomes in the mutant are smaller. These chloroplast defects in rh3-4 were alleviated in 2-week-old cotyledons and true leaves. Interestingly, rh3-4 seedlings have lower amounts of abscisic acid prior to recovery of their chloroplasts, and were more sensitive to abiotic stresses. Transcriptomic analysis indicated that nuclear genes for chloroplast proteins are down-regulated, and proteins mediating chloroplast-localized steps of abscisic acid biosynthesis are expressed to a lower extent in 1-week-old rh3-4 seedlings. Taken together, these results suggest that conversion of eoplasts into chloroplasts in young seedlings is critical for the seedlings to start carbon fixation as well as for maintenance of abscisic acid levels for responding to environmental challenges.

  16. Analysis of a Partial Male-Sterile Mutant of Arabidopsis thaliana Isolated from a Low-Energy Argon Ion Beam Mutagenized Pool

    Institute of Scientific and Technical Information of China (English)

    XU Min; BIAN Po; WU Yuejin; YU Zengliang

    2008-01-01

    A screen for Arabidopsis fertility mutants, mutagenized by low-energy argon ion beam, yielded two partial male-sterile mutants tc243-1 and tc243-2 which have similar phenotypes. tc243-2 was investigated in detail. The segregation ratio of the mutant phenotypes in the M2 pools suggested that mutation behaved as single Mendelian recessive mutations, tc243 showed a series of mutant phenotypes, among which partial male-sterile was its striking mutant characteristic. Phenotype analysis indicates that there are four factors leading to male sterility, a. Floral organs normally develop inside the closed bud, but the anther filaments do not elongate sufficiently to position the locules above the stigma at anthesis, b. The anther locules do not dehisce at the time of flower opening (although limited dehiscence occurs later), c. Pollens of mutant plants develop into several types of pollens at the trinucleated stage, as determined by staining with DAPI (4',6-diamidino-2-phenylindole), which shows a variable size, shape and number of nucleus. d. The viability of pollens is lower than that of the wild type on the germination test in vivo and vitro.

  17. CYP77A19 and CYP77A20 characterized from Solanum tuberosum oxidize fatty acids in vitro and partially restore the wild phenotype in an Arabidopsis thaliana cutin mutant.

    Science.gov (United States)

    Grausem, B; Widemann, E; Verdier, G; Nosbüsch, D; Aubert, Y; Beisson, F; Schreiber, L; Franke, R; Pinot, F

    2014-09-01

    Cutin and suberin represent lipophilic polymers forming plant/environment interfaces in leaves and roots. Despite recent progress in Arabidopsis, there is still a lack on information concerning cutin and suberin synthesis, especially in crops. Based on sequence homology, we isolated two cDNA clones of new cytochrome P450s, CYP77A19 and CYP77A20 from potato tubers (Solanum tuberosum). Both enzymes hydroxylated lauric acid (C12:0) on position ω-1 to ω-5. They oxidized fatty acids with chain length ranging from C12 to C18 and catalysed hydroxylation of 16-hydroxypalmitic acid leading to dihydroxypalmitic (DHP) acids, the major C16 cutin and suberin monomers. CYP77A19 also produced epoxides from linoleic acid (C18:2). Exploration of expression pattern in potato by RT-qPCR revealed the presence of transcripts in all tissues tested with the highest expression in the seed compared with leaves. Water stress enhanced their expression level in roots but not in leaves. Application of methyl jasmonate specifically induced CYP77A19 expression. Expression of either gene in the Arabidopsis null mutant cyp77a6-1 defective in flower cutin restored petal cuticular impermeability. Nanoridges were also observed in CYP77A20-expressing lines. However, only very low levels of the major flower cutin monomer 10,16-dihydroxypalmitate and no C18 epoxy monomers were found in the cutin of the complemented lines.

  18. Isolation of a Mutant of Fer1 Gene, Acting Synergistically with the ARF8 Gene to Control Development of the Anther and Filament in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Chang-En TIAN; Yu-Ping ZHOU; Shun-Zhi LIU; Kotaro YAMAMOTO

    2005-01-01

    Auxin response factors (ARFs) play a central role in plants as transcriptional factors in response to auxin. The Arabidopsis ARF8 gene is a light-inducible gene and ARF8 protein might control auxin homeostasis in a negative feed-back fashion through regulation of GH3 gene expression. In a double mutant designated infertile line including arf8-1 (a T-DNA insertion mutant of ARF8), we isolatedfertility1-1 (fer1-1), a mutant of Fer1, which acts synergistically with ARF8 to control the development of the anther and filament in Arabidopsis. Genetics analysis has demonstrated thatfer1-1 is a T-DNA insertion line,indicating that Fer1 might be cloned by inverse polymerase chain reaction (PCR) or the TAIL-PCR approach.Phenotypic identification and molecular analysis offer1-1 and the infertile line will be helpful to characterize the function of Fer1, to further study the function of ARF8, and to reveal the molecular mechanism underlying the interaction of Fer1 and ARF8 in controlling development of the anther and filament.

  19. Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants

    Energy Technology Data Exchange (ETDEWEB)

    Talon, M. Zeevaart, J.A.D. (Michigan State Univ., East Lansing (USA)); Koornneef, M. (Agricultural Univ., (Netherlands))

    1990-10-01

    Twenty gibberellins (GAs) have been identified in extracts from shoots of the Landsberg erecta line of Arabidopsis thaliana by full-scan gas chromatography-mass spectrometry and Kovats retention indices. Eight of them are members of the early-13-hydroxylation pathway (GA{sub 53}, GA{sub 44}, GA{sub 19}, GA{sub 17}, GA{sub 20}, GA{sub 1}, GA{sub 29}, and GA{sub 8}), six are members of the early-3-hydroxylation pathway (GA{sub 37}, GA{sub 27}, GA{sub 36}, GA{sub 13}, GA{sub 4}, and GA{sub 34}), and the remaining six are members of the non-3,13-hydroxylation pathway (GA{sub 12}, GA{sub 15}, GA{sub 24}, GA{sub 25}, GA{sub 9}, and GFA{sub 51}). Seven of these GAs were quantified in the Landsberg erecta line of Arabidopsis and in the semidwarf ga4 and ga5 mutants by gas chromatography-selected ion monitoring (SIM) using internal standards. The relative levels of the remaining 13 GAs were compared by the use of ion intensities only. The growth-response data, as well as the accumulation of GA{sub 9} in the ga4 mutant, indicate that GA{sub 9} is not active in Arabidopsis, but it must be 3{beta}-hydroxytlated to GA{sub 4} to become bioactive. It is concluded that the reduced levels of the 3{beta}-hydroxy-GAs, GA{sub 1} and GA{sub 4}, are the cause of the semidwarf growth habit of both mutants.

  20. Protein profiles construction and differential expressed proteins of the Arabidopsis thaliana quadruple mutant phyA phyB cry1 cry2.

    OpenAIRE

    Fox, Ana Romina; Muschietti, Jorge P.; Mazzella, Agustina; XXVIII Argentinean Reunion of Vegetal Physiology

    2010-01-01

    En Arabidopsis phyA phyB cry1 y cry2, son los cuatro fotorreceptores más importantes que controlan el crecimiento y desarrollo por la luz. La técnica de geles bidimensionales provee información sobre la abundancia de una proteína y sus modificaciones postraduccionales. Con el objetivo de identificar nuevos componentes en la fototrasnducción de señales estudiamos el perfil proteómico del cuádruple mutante phyA phyB cry1 cry2 (tet). Para esto obtuvimos y comparamos los proteomas específicos del...

  1. Action potential generation in the small intestine of W mutant mice that lack interstitial cells of Cajal

    DEFF Research Database (Denmark)

    Malysz, J; Thuneberg, L; Mikkelsen, Hanne Birte

    1996-01-01

    The small intestine of W/Wv mice lacks both the network of interstitial cells of Cajal (ICC), associated with Auerbach's plexus, and pacemaker activity, i.e., it does not generate slow-wave-type action potentials. The W/Wv muscle preparations showed a wide variety of electrical activities, rangin...

  2. 一种筛选拟南芥突变体的有效方法%A Efficient Method for Isolation of Arabidopsis Mutants

    Institute of Scientific and Technical Information of China (English)

    赵淑清

    2001-01-01

    his paper introduces a root-bending assay for isol ation of Arabidopsis mutants tolerant to nutrition stress. Seeds of wild-ty pe Arabidopsis thaliana (ecotype Landersberg erecta) were mutagenized wi th ethyl methyl sulfide (EMS),and M2 populations were screened for mutants. Fo ur-day-old seedlings with 1-to 1.5-cm-long roots were transferred from the vertical agar plates onto to a second agar medium that was supplemented with det erminate stress. The seedlings were arranged in rows, and the plates were orient ed vertically with the roots pointing upward. After another 4 days, the root be nding seedlings were selected for putative mutants and transferred to soil to gr ow to maturity.Seeds from the putative mutants were screened again to determine the true mutants.By using this root-bending assay we have isolated a low-K+ -tolerant (lkt1) mutant which is caused by single recessive nuclear mutation. F or lkt1 mutant screening,K+concentration of the medium was 100μmol/L because root growth of wild type seedlings was completely inhibited at or below this con centration.This root-bending assay is also applicable to other type of Arabid opsis mutant isolation.%经甲基磺酸乙酯(EMS)诱变处理的拟南芥种子,接种于MS培养基上,垂直放置培养4天后,将幼苗转移至胁迫培养基中,以倒置幼苗180°所形成的弯曲生长根作为指标筛选拟南芥耐营养胁迫突变体。利用这种方法,成功地筛选到一个耐低钾的隐性单基因拟南芥突变体。本方法同样适用于其他类型突变体的筛选。

  3. Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron and manganese uptake systems

    DEFF Research Database (Denmark)

    Taudte, Nadine; German, Nadezhda; Zhu, Yong-Guan

    2016-01-01

    The interplay of manganese and iron homeostasis and oxidative stress in Escherichia coli can give important insights into survival of bacteria in the phagosome and under differing iron or manganese bioavailabilities. Here, we characterized a mutant strain devoid of all know iron/manganese......-uptake systems relevant for growth in defined medium. Based on these results an exit strategy enabling the cell to cope with iron depletion and use of manganese as an alternative for iron could be shown. Such a strategy would also explain why E. coli harbors some iron- or manganese-dependent iso......-enzymes such as superoxide dismutases or ribonucleotide reductases. The benefits for gaining a means for survival would be bought with the cost of less efficient metabolism as indicated in our experiments by lower cell densities with manganese than with iron. In addition, this strain was extremely sensitive to the metalloid...

  4. A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket

    DEFF Research Database (Denmark)

    Carlsson, A.S.; LaBrie, S.T.; Kinney, A.J.;

    2002-01-01

    The fab1 mutant of Arabidopsis is partially deficient in activity of ß-ketoacyl-[acyl carrier protein] synthase II (KAS II). This defect results in increased levels of 16 : 0 fatty acid and is associated with damage and death of the mutants at low temperature. Transformation of fab1 plants with a c...... chain to bend. For functional analysis the equivalent Leu207Phe mutation was introduced into the fabB gene encoding the E. coli KAS I enzyme. Compared to wild-type, the Leu207Phe protein showed a 10-fold decrease in binding affinity for the fatty acid substrate, exhibited a modified behavior during size...

  5. Characterization of a new mutant allele of the Arabidopsis Flowering Locus D (FLD) gene that controls the flowering time by repressing FLC

    Institute of Scientific and Technical Information of China (English)

    CHEN Ruiqiang; ZHANG Suzhi; SUN Shulan; CHANG Jianhong; ZUO Jianru

    2005-01-01

    Flowering in higher plants is controlled by both the internal and environmental cues. In Arabidopsis, several major genetic loci have been defined as the key switches to control flowering. The Flowering Locus C (FLC) gene has been shown in the autonomous pathway to inhibit the vegetative-to-reproductive transition. FLC appears to be repressed by Flowering Locus D (FLD), which encodes a component of the histone deacetylase complex. Here we report the identification and characterization of a new mutant allele fld-5. Genetic analysis indicates that fld-5 (in the Wassilewskija background) is allelic to the previously characterized fld-3 and fld-4 (in the Colombia-0 background). Genetic and molecular analyses reveal that fld-5 carries a frame-shift mutation, resulting in a premature termination of the FLD open reading frame. The FLC expression is remarkably increased in fld-5, which presumably attributes to the extremely delayed flowering phenotype of the mutant.

  6. The eta7/csn3-3 auxin response mutant of Arabidopsis defines a novel function for the CSN3 subunit of the COP9 signalosome.

    Directory of Open Access Journals (Sweden)

    He Huang

    Full Text Available The COP9 signalosome (CSN is an eight subunit protein complex conserved in all higher eukaryotes. In Arabidopsis thaliana, the CSN regulates auxin response by removing the ubiquitin-like protein NEDD8/RUB1 from the CUL1 subunit of the SCF(TIR1/AFB ubiquitin-ligase (deneddylation. Previously described null mutations in any CSN subunit result in the pleiotropic cop/det/fus phenotype and cause seedling lethality, hampering the study of CSN functions in plant development. In a genetic screen to identify enhancers of the auxin response defects conferred by the tir1-1 mutation, we identified a viable csn mutant of subunit 3 (CSN3, designated eta7/csn3-3. In addition to enhancing tir1-1 mutant phenotypes, the csn3-3 mutation alone confers several phenotypes indicative of impaired auxin signaling including auxin resistant root growth and diminished auxin responsive gene expression. Unexpectedly however, csn3-3 plants are not defective in either the CSN-mediated deneddylation of CUL1 or in SCF(TIR1-mediated degradation of Aux/IAA proteins. These findings suggest that csn3-3 is an atypical csn mutant that defines a novel CSN or CSN3-specific function. Consistent with this possibility, we observe dramatic differences in double mutant interactions between csn3-3 and other auxin signaling mutants compared to another weak csn mutant, csn1-10. Lastly, unlike other csn mutants, assembly of the CSN holocomplex is unaffected in csn3-3 plants. However, we detected a small CSN3-containing protein complex that is altered in csn3-3 plants. We hypothesize that in addition to its role in the CSN as a cullin deneddylase, CSN3 functions in a distinct protein complex that is required for proper auxin signaling.

  7. Arabidopsis AtDjA3 null mutant shows increased sensitivity to abscisic acid, salt, and osmotic stress in germination and postgermination stages

    Directory of Open Access Journals (Sweden)

    Silvia eSalas-Muñoz

    2016-02-01

    Full Text Available DnaJ proteins are essential co-chaperones involved in abiotic and biotic stress responses. Arabidopsis AtDjA3 gene encodes a molecular co-chaperone of 420 amino acids, which belongs to the J-protein family. In this study, we report the functional characterization of the AtDjA3 gene using the Arabidopsis knockout line designated j3 and the 35S::AtDjA3 overexpression lines. Loss of AtDjA3 function was associated with small seed production. In fact, j3 mutant seeds showed a reduction of 24% in seed weight compared to Col-0 seeds. Expression analysis showed that the AtDjA3 gene was modulated in response to NaCl, glucose, and abscisic acid. The j3 line had increased sensitivity to NaCl and glucose treatments in the germination and cotyledon development in comparison to parental Col-0. Furthermore, the j3 mutant line exhibited higher abscisic acid sensitivity in comparison to parental Col-0 and 35S::AtDjA3 overexpression lines. In addition, we examined the expression of ABI3 gene, which is a central regulator in ABA signalling, in j3 mutant and 35S::AtDjA3 overexpression lines. Under 5 μM ABA treatment at 24 h, j3 mutant seedlings displayed higher ABI3 expression, whereas in 35S::AtDjA3 overexpression lines, ABI3 gene expression was repressed. Taken together, these results demonstrate that the AtDjA3 gene is involved in seed development and abiotic stress tolerance.

  8. Genome-wide Expression Profiling in Seedlings of the Arabidopsis Mutant uro that is Defective in the Secondary Cell Wall Formation

    Institute of Scientific and Technical Information of China (English)

    Zheng Yuan; Xuan Yao; Dabing Zhang; Yue Sun; Hai Huang

    2007-01-01

    Plant secondary growth is of tremendous importance, not only for plant growth and development but also for economic usefulness.Secondary tissues such as xylem and phloem are the conducting tissues in plant vascular systems, essentially for water and nutrient transport, respectively.On the other hand, products of plant secondary growth are important raw materials and renewable sources of energy.Although advances have been recently made towards describing molecular mechanisms that regulate secondary growth, the genetic control for this process is not yet fully understood.Secondary cell wall formation in plants shares some common mechanisms with other plant secondary growth processes.Thus, studies on the secondary cell wall formation using Arabidopsis may help to understand the regulatory mechanisms for plant secondary growth.We previously reported phenotypic characterizations of an Arabidopsis semi-dominant mutant,upright rosette (uro), which is defective in secondary cell wall growth and has an unusually soft stem.Here, we show that lignification in the secondary cell wall in uro is aberrant by analyzing hypocotyl and stem.We also show genome-wide expression profiles of uro seedlings, using the Affymetrix GeneChip that contains approximately 24 000 Arabidopsis genes.Genes identified with altered expression levels include those that function in plant hormone biosynthesis and signaling,cell division and plant secondary tissue growth.These results provide useful information for further characterizations of the regulatory network in plant secondary cell wall formation.

  9. Expression of Caenorhabditis elegans PCS in the AtPCS1-deficient Arabidopsis thaliana cad1-3 mutant separates the metal tolerance and non-host resistance functions of phytochelatin synthases.

    Science.gov (United States)

    Kühnlenz, Tanja; Westphal, Lore; Schmidt, Holger; Scheel, Dierk; Clemens, Stephan

    2015-11-01

    Phytochelatin synthases (PCS) play key roles in plant metal tolerance. They synthesize small metal-binding peptides, phytochelatins, under conditions of metal excess. Respective mutants are strongly cadmium and arsenic hypersensitive. However, their ubiquitous presence and constitutive expression had long suggested a more general function of PCS besides metal detoxification. Indeed, phytochelatin synthase1 from Arabidopsis thaliana (AtPCS1) was later implicated in non-host resistance. The two different physiological functions may be attributable to the two distinct catalytic activities demonstrated for AtPCS1, that is the dipeptidyl transfer onto an acceptor molecule in phytochelatin synthesis, and the proteolytic deglycylation of glutathione conjugates. In order to test this hypothesis and to possibly separate the two biological roles, we expressed a phylogenetically distant PCS from Caenorhabditis elegans in an AtPCS1 mutant. We confirmed the involvement of AtPCS1 in non-host resistance by showing that plants lacking the functional gene develop a strong cell death phenotype when inoculated with the potato pathogen Phytophthora infestans. Furthermore, we found that the C. elegans gene rescues phytochelatin synthesis and cadmium tolerance, but not the defect in non-host resistance. This strongly suggests that the second enzymatic function of AtPCS1, which remains to be defined in detail, is underlying the plant immunity function.

  10. Response of nitrate reductase activity and NIA genes expression in roots of Arabidopsis hxk1 mutant treated with selected carbon and nitrogen metabolites.

    Science.gov (United States)

    Reda, Małgorzata

    2015-01-01

    In plants sugar sensing and signal transduction involves pathways dependent or independent on HXK1 as a glucose sensor. Research was conducted to determine which pathway is responsible for regulation of the nitrate reduction. The effect of selected carbon and nitrogen metabolites on nitrate reductase (NR) activity in Arabidopsis thaliana wild type (WT) and hxk1 mutant roots was studied. Exogenously supplied sugar, sucrose (Suc) and organic acid, 2-oxoglutarate (2-OG) led to an increase in the total and actual activity of NR. It was due to both the increase in expression of NIA genes and NR activation state. The stimulatory effect of Suc and 2-OG on nitrate reduction was less pronounced in hxk1 mutant roots with T-DNA insertion in the AtHXK1 gene encoding hexokinase1 (HXK1) and characterized by reduced hexokinase activity and root level of G6P and F6P. On the other hand, it was shown that exogenous glucose did not mimic Suc-mediated NR activation in Arabidopsis roots. Taken together, this data suggest that the Suc signaling pathway might be independent from hexose's sensor dependent mechanism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Spatiotemporal modelling of hormonal crosstalk explains the level and patterning of hormones and gene expression in Arabidopsis thaliana wild-type and mutant roots

    Science.gov (United States)

    Moore, Simon; Zhang, Xiaoxian; Mudge, Anna; Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2015-01-01

    • Patterning in Arabidopsis root development is coordinated via a localized auxin concentration maximum in the root tip, requiring the regulated expression of specific genes. However, little is known about how hormone and gene expression patterning is generated. • Using a variety of experimental data, we develop a spatiotemporal hormonal crosstalk model that describes the integrated action of auxin, ethylene and cytokinin signalling, the POLARIS protein, and the functions of PIN and AUX1 auxin transporters. We also conduct novel experiments to confirm our modelling predictions. • The model reproduces auxin patterning and trends in wild-type and mutants; reveals that coordinated PIN and AUX1 activities are required to generate correct auxin patterning; correctly predicts shoot to root auxin flux, auxin patterning in the aux1 mutant, the amounts of cytokinin, ethylene and PIN protein, and PIN protein patterning in wild-type and mutant roots. Modelling analysis further reveals how PIN protein patterning is related to the POLARIS protein through ethylene signalling. Modelling prediction of the patterning of POLARIS expression is confirmed experimentally. • Our combined modelling and experimental analysis reveals that a hormonal crosstalk network regulates the emergence of patterns and levels of hormones and gene expression in wild-type and mutants. PMID:25906686

  12. The role of cell wall-based defences in the early restriction of non-pathogenic hrp mutant bacteria in Arabidopsis.

    Science.gov (United States)

    Mitchell, Kathy; Brown, Ian; Knox, Paul; Mansfield, John

    2015-04-01

    We have investigated the cause of the restricted multiplication of hrp mutant bacteria in leaves of Arabidopsis. Our focus was on early interactions leading to differentiation between virulent wild-type and non-pathogenic hrpA mutant strains of Pseudomonas syringae pv. tomato. An initial drop in recoverable bacteria detected 0-4 h after inoculation with either strain was dependent on a functional FLS2 receptor and H2O2 accumulation in challenged leaves. Wild-type bacteria subsequently multiplied rapidly whereas the hrpA mutant was restricted within 6 h. Despite the early restriction, the hrpA mutant was still viable several days after inoculation. Analysis of intercellular washing fluids (IWFs), showed that high levels of nutrients were readily available to bacteria in the apoplast and that no diffusible inhibitors were produced in response to bacterial challenge. Histochemical and immunocytochemical methods were used to detect changes in polysaccharides (callose, two forms of cellulose, and pectin), arabinogalactan proteins (AGPs), H2O2 and peroxidase. Quantitative analysis showed very similar changes in localisation of AGPs, cellulose epitopes and callose 2 and 4 h after inoculation with either strain. However from 6 to 12 h after inoculation papillae expanded only next to the hrp mutant. In contrast to the similar patterns of secretory activity recorded from mesophyll cells, accumulation of H2O2 and peroxidase was significantly greater around the hrpA mutant within the first 4h after inoculation. A striking differential accumulation of H2O2 was also found in chloroplasts in cells next to the mutant. Ascorbate levels were lower in the IWFs recovered from sites inoculated with the hrp mutant than with wild-type bacteria. The critical response, observed at the right time and place to explain the observed differential behaviour of wild-type and hrpA mutant bacteria was the accumulation of H2O2, probably generated through Type III peroxidase activity and in

  13. An attenuated Shigella mutant lacking the RNA-binding protein Hfq provides cross-protection against Shigella strains of broad serotype.

    Science.gov (United States)

    Mitobe, Jiro; Sinha, Ritam; Mitra, Soma; Nag, Dhrubajyoti; Saito, Noriko; Shimuta, Ken; Koizumi, Nobuo; Koley, Hemanta

    2017-07-01

    Few live attenuated vaccines protect against multiple serotypes of bacterial pathogen because host serotype-specific immune responses are limited to the serotype present in the vaccine strain. Here, immunization with a mutant of Shigella flexneri 2a protected guinea pigs against subsequent infection by S. dysenteriae type 1 and S. sonnei strains. This deletion mutant lacked the RNA-binding protein Hfq leading to increased expression of the type III secretion system via loss of regulation, resulting in attenuation of cell viability through repression of stress response sigma factors. Such increased antigen production and simultaneous attenuation were expected to elicit protective immunity against Shigella strains of heterologous serotypes. Thus, the vaccine potential of this mutant was tested in two guinea pig models of shigellosis. Animals vaccinated in the left eye showed fewer symptoms upon subsequent challenge via the right eye, and even survived subsequent intestinal challenge. In addition, oral vaccination effectively induced production of immunoglobulins without severe side effects, again protecting all animals against subsequent intestinal challenge with S. dysenteriae type 1 or S. sonnei strains. Antibodies against common virulence proteins and the O-antigen of S. flexneri 2a were detected by immunofluorescence microscopy. Reaction of antibodies with various strains, including enteroinvasive Escherichia coli, suggested that common virulence proteins induced protective immunity against a range of serotypes. Therefore, vaccination is expected to cover not only the most prevalent serotypes of S. sonnei and S. flexneri 2a, but also various Shigella strains, including S. dysenteriae type 1, which produces Shiga toxin.

  14. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality.

    Science.gov (United States)

    Albrecht, Verónica; Ingenfeld, Anke; Apel, Klaus

    2006-03-01

    During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco). One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.

  15. The genetics of some planthormones and photoreceptors in Arabidopsis thaliana (L.) Heynh

    NARCIS (Netherlands)

    Koornneef, M.

    1982-01-01

    This thesis describes the isolation and characterization in Arabidopsis thaliana (L.) Heynh. of induced mutants, deficient for gibberellins (GA's), abscisic acid (ABA) and photoreceptors.These compounds are known to regulate various facets of plant growth and differentiation, so mutants lacking one

  16. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit

    Directory of Open Access Journals (Sweden)

    Jiseok eLee

    2015-03-01

    Full Text Available Shank3 is a postsynaptic scaffolding protein implicated in synapse development and autism spectrum disorders. The Shank3 gene is known to produce diverse splice variants whose functions have not been fully explored. In the present study, we generated mice lacking Shank3 exon 9 (Shank3∆9 mice, and thus missing 5 out of 10 known Shank3 splice variants containing the N-terminal ankyrin repeat region, including the longest splice variant, Shank3a. Our X-gal staining results revealed that Shank3 proteins encoded by exon 9-containing splice variants are abundant in upper cortical layers, striatum, hippocampus, and thalamus, but not in the olfactory bulb or cerebellum, despite the significant Shank3 mRNA levels in these regions. The hippocampal CA1 region of Shank3∆9 mice exhibited reduced excitatory transmission at Schaffer collateral synapses and increased frequency of spontaneous inhibitory synaptic events in pyramidal neurons. In contrast, prelimbic layer 2/3 pyramidal neurons in the medial prefrontal cortex displayed decreased frequency of spontaneous inhibitory synaptic events, indicating alterations in the ratio of excitation/inhibition (E/I ratio in the Shank3∆9 brain. These mice displayed a mild increase in rearing in a novel environment and mildly impaired spatial memory, but showed normal social interaction and repetitive behavior. These results suggest that ankyrin repeat-containing Shank3 splice variants are important for E/I balance, rearing behavior, and spatial memory.

  17. Selection of Arabidopsis mutants overexpressing genes driven by the promoter of an auxin-inducible glutathione S-transferase gene

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Pinas, J.E.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1999-01-01

    Transgenic arabidopsis plants were isolated that contained a T-DNA construct in which the promoter of an auxin-inducible glutathione S-transferase (GST) gene from tobacco was fused to the kanamycin resistance (nptII) as well as to the β-glucuronidase (gusA) reporter gene. Subsequently, seeds were tr

  18. X-Ray- and fast neutron induced mutations in Arabidopsis thaliana, and the effect of dithiothreitol upon the mutant spectrum

    NARCIS (Netherlands)

    Dellaert, L.M.W.

    1980-01-01

    The genetic effects of X-ray and fast neutron seed-irradiation of Arabidopsis thaliana (L.) Heynh., and the influence of a pre-irradiation treatment with the radio-protector dithiothreitol (DTT), are the main subjects of this thesis.Chapters I and II deal with the effects of radiation - with or with

  19. A Novel fry1 Allele Reveals the Existence of a Mutant Phenotype Unrelated to 5′->3′ Exoribonuclease (XRN) Activities in Arabidopsis thaliana Roots

    Science.gov (United States)

    Hirsch, Judith; Estavillo, Gonzalo M.; Javot, Hélène; Chiarenza, Serge; Mallory, Allison C.; Maizel, Alexis; Declerck, Marie; Pogson, Barry J.; Vaucheret, Hervé; Crespi, Martin; Desnos, Thierry; Thibaud, Marie-Christine; Nussaume, Laurent; Marin, Elena

    2011-01-01

    Background Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3′,(2′),5′-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. Principal Findings A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3′-polyadenosine 5′-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. Conclusions/Significance Our results indicate that the 3′,(2′),5′-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi

  20. A novel fry1 allele reveals the existence of a mutant phenotype unrelated to 5'->3' exoribonuclease (XRN activities in Arabidopsis thaliana roots.

    Directory of Open Access Journals (Sweden)

    Judith Hirsch

    Full Text Available BACKGROUND: Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3',(2',5'-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. PRINCIPAL FINDINGS: A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4. Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3'-polyadenosine 5'-phosphate (PAP into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the 3',(2',5'-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of

  1. 拟南芥抗氧化突变体筛选条件的建立%Establishment of the Screening Conditions of Arabidopsis thaliana Antioxidant Mutants

    Institute of Scientific and Technical Information of China (English)

    蒋春云

    2011-01-01

    [目的]建立筛选拟南芥抗氧化突变体的条件.[方法] 将灭菌的野生型拟南芥种子播种于MS培养基上,4 ℃层化2 d,并于23 ℃培养室中垂直放置培养4 d后,将幼苗转移至含有不同浓度的甲基紫精(MV)胁迫培养基中,倒置培养,比较不同MV浓度下根的弯曲生长情况,以根停止弯曲生长的MV浓度作为抗氧化胁迫突变体的筛选条件.[结果]野生型拟南芥幼苗的根在MV浓度为0.7 μmol/L时受到明显抑制,停止生长;在MV浓度低于0.7 μmol/L时能正常生长或被轻微抑制.[结论]确定筛选抗氧化突变体的MV浓度为0.7 μmol/L.%[ Objective ] The research aimed to establish the condition for screening the Arabidopsis thaliana antioxidant mutants. [ Method ]The sterilized seeds of wild-type Arabidopsis thaliana were sown on MS medium plates. Two days after stratification at 4 ℃, the plates were vertically placed in growth room of 23 ℃. Four days after seed germination, the four-day-old seedlings were transferred to the MS agar medium supplemented with different concentrations of methyl viologen (MV) and the plates were inverted with the roots pointing upward. It identified that the concentration of MV was the condition of screening the mutants, which can inhibited the root growth. [ Result]The growth of the roots of Arabidopsis thaliana seedlings were significantly inhibited and stopped when the concentration of MV was 0.7 μmol/L, while the concentration was lower than 0.7 μmol/L, the plants can grown normally or slightly inhibited. [ Conclusion]0.7 μmol/L of MV was the concentration for screening antioxidant mutants.

  2. A role for katanin in plant cell division: microtubule organization in dividing root cells of fra2 and lue1Arabidopsis thaliana mutants.

    Science.gov (United States)

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Voulgari, Georgia; Papadopoulou, Galini

    2011-07-01

    Severing of microtubules by katanin has proven to be crucial for cortical microtubule organization in elongating and differentiating plant cells. On the contrary, katanin is currently not considered essential during cell division in plants as it is in animals. However, defects in cell patterning have been observed in katanin mutants, implying a role for it in dividing plant cells. Therefore, microtubule organization was studied in detail by immunofluorescence in dividing root cells of fra2 and lue1 katanin mutants of Arabidopsis thaliana. In both, early preprophase bands consisted of poorly aligned microtubules, prophase spindles were multipolar, and the microtubules of expanding phragmoplasts were elongated, bended toward and connected to the surface of daughter nuclei. Accordingly, severing by katanin seems to be necessary for the proper organization of these microtubule arrays. In both fra2 and lue1, metaphase/anaphase spindles and initiating phragmoplasts exhibited typical organization. However, they were obliquely oriented more frequently than in the wild type. It is proposed that this oblique orientation may be due to prophase spindle multipolarity and results in a failure of the cell plate to follow the predetermined division plane, during cytokinesis, producing oblique cell walls in the roots of both mutants. It is therefore concluded that, like in animal cells, katanin is important for plant cell division, influencing the organization of several microtubule arrays. Moreover, failure in microtubule severing indirectly affects the orientation of the division plane. Copyright © 2011 Wiley-Liss, Inc.

  3. Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity

    Science.gov (United States)

    Kuhn, Benjamin M.; Nodzyński, Tomasz; Errafi, Sanae; Bucher, Rahel; Gupta, Shibu; Aryal, Bibek; Dobrev, Petre; Bigler, Laurent; Geisler, Markus; Zažímalová, Eva; Friml, Jiří; Ringli, Christoph

    2017-01-01

    The phytohormone auxin is a major determinant and regulatory component important for plant development. Auxin transport between cells is mediated by a complex system of transporters such as AUX1/LAX, PIN, and ABCB proteins, and their localization and activity is thought to be influenced by phosphatases and kinases. Flavonols have been shown to alter auxin transport activity and changes in flavonol accumulation in the Arabidopsis thaliana rol1-2 mutant cause defects in auxin transport and seedling development. A new mutation in ROOTS CURL IN NPA 1 (RCN1), encoding a regulatory subunit of the phosphatase PP2A, was found to suppress the growth defects of rol1-2 without changing the flavonol content. rol1-2 rcn1-3 double mutants show wild type-like auxin transport activity while levels of free auxin are not affected by rcn1-3. In the rol1-2 mutant, PIN2 shows a flavonol-induced basal-to-apical shift in polar localization which is reversed in the rol1-2 rcn1-3 to basal localization. In vivo analysis of PINOID action, a kinase known to influence PIN protein localization in a PP2A-antagonistic manner, revealed a negative impact of flavonols on PINOID activity. Together, these data suggest that flavonols affect auxin transport by modifying the antagonistic kinase/phosphatase equilibrium. PMID:28165500

  4. Expression of Escherichia coli glycogen branching enzyme in an Arabidopsis mutant devoid of endogenous starch branching enzymes induces the synthesis of starch-like polyglucans.

    Science.gov (United States)

    Boyer, Laura; Roussel, Xavier; Courseaux, Adeline; Ndjindji, Ofilia M; Lancelon-Pin, Christine; Putaux, Jean-Luc; Tetlow, Ian J; Emes, Michael J; Pontoire, Bruno; D' Hulst, Christophe; Wattebled, Fabrice

    2016-07-01

    Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 → 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water-insoluble and semi-crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.e. water insolubility, crystallinity and presence of amylose) is still debated. Here, we have substituted the activity of BEs in Arabidopsis with that of the Escherichia coli glycogen BE (GlgB). The latter is the BE counterpart in the metabolism of glycogen, a highly branched water-soluble and amorphous storage polyglucan. GlgB was expressed in the be2 be3 double mutant of Arabidopsis, which is devoid of BE activity and consequently free of starch. The synthesis of a water-insoluble, partly crystalline, amylose-containing starch-like polyglucan was restored in GlgB-expressing plants, suggesting that BEs' origin only has a limited impact on establishing essential characteristics of starch. Moreover, the balance between branching and debranching is crucial for the synthesis of starch, as an excess of branching activity results in the formation of highly branched, water-soluble, poorly crystalline polyglucan.

  5. Insight into herbicide resistance of W574L mutant Arabidopsis thaliana acetohydroxyacid synthase:molecular dynamics simulations and binding free energy calculations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Acetohydroxyacid synthase(AHAS) is the target enzyme of several classes of herbicides,such as sulfonylureas and imidazolinones.Now many mutant AHASs with herbicide resistance have emerged along with extensive use of herbicides,therefore it is imperative to understand the detailed interaction mechanism and resistance mechanism so as to develop new potent inhibitors for wild-type or resistant AHAS.With the aid of available crystal structures of the Arabidopsis thaliana(At) AHAS-inhibitor complex,molecular dynamics(MD) simulations were used to investigate the interaction and resistance mechanism directly and dynamically at the atomic level.Nanosecond-level MD simulations were performed on six systems consisting of wild-type or W574L mutant AtAHAS in the complex with three sulfonylurea inhibitors,separately,and binding free energy was calculated for each system using the MM-GBSA method.Comprehensive analyses from structural and energetic aspects confirmed the importance of residue W574,and also indicated that W574L mutation might alert the structural charactersistic of the substrate access channel and decrease the binding affinity of inhibitors,which cooperatively weaken the effective channel-blocked effect and finally result in weaker inhibitory effect of inhibitor and corresponding herbicide resistance of W574L mutant.To our knowledge,it is the first report about MD simulations study on the AHAS-related system,which will pave the way to study the interactions between herbicides and wild-type or mutant AHAS dynamically,and decipher the resistance mechanism at the atomic level for better designing new potent anti-resistance herbicides.

  6. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover.

    Science.gov (United States)

    Lin, Yao-Pin; Lee, Tsung-yuan; Tanaka, Ayumi; Charng, Yee-yung

    2014-10-01

    Chlorophylls, the most abundant pigments in the photosynthetic apparatus, are constantly turned over as a result of the degradation and replacement of the damage-prone reaction center D1 protein of photosystem II. Results from isotope labeling experiments suggest that chlorophylls are recycled by reutilization of chlorophyllide and phytol, but the underlying mechanism is unclear. In this study, by characterization of a heat-sensitive Arabidopsis mutant we provide evidence of a salvage pathway for chlorophyllide a. A missense mutation in CHLOROPHYLL SYNTHASE (CHLG) was identified and confirmed to be responsible for a light-dependent, heat-induced cotyledon bleaching phenotype. Following heat treatment, mutant (chlg-1) but not wild-type seedlings accumulated a substantial level of chlorophyllide a, which resulted in a surge of phototoxic singlet oxygen. Immunoblot analysis suggested that the mutation destabilized the chlorophyll synthase proteins and caused a conditional blockage of esterification of chlorophyllide a after heat stress. Accumulation of chlorophyllide a after heat treatment occurred during recovery in the dark in the light-grown but not the etiolated seedlings, suggesting that the accumulated chlorophyllides were not derived from de novo biosynthesis but from de-esterification of the existing chlorophylls. Further analysis of the triple mutant harboring the CHLG mutant allele and null mutations of CHLOROPHYLLASE1 (CLH1) and CLH2 indicated that the known chlorophyllases are not responsible for the accumulation of chlorophyllide a in chlg-1. Taken together, our results show that chlorophyll synthase acts in a salvage pathway for chlorophyll biosynthesis by re-esterifying the chlorophyllide a produced during chlorophyll turnover.

  7. The Hypocrea jecorina (Trichoderma reesei hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding region of the wild-type genome

    Directory of Open Access Journals (Sweden)

    Hartl Lukas

    2008-07-01

    Full Text Available Abstract Background The hypercellulolytic mutant Hypocrea jecorina (anamorph Trichoderma reesei RUT C30 is the H. jecorina strain most frequently used for cellulase fermentations and has also often been employed for basic research on cellulase regulation. This strain has been reported to contain a truncated carbon catabolite repressor gene cre1 and is consequently carbon catabolite derepressed. To date this and an additional frame-shift mutation in the glycoprotein-processing β-glucosidase II encoding gene are the only known genetic differences in strain RUT C30. Results In the present paper we show that H. jecorina RUT C30 lacks an 85 kb genomic fragment, and consequently misses additional 29 genes comprising transcription factors, enzymes of the primary metabolism and transport proteins. This loss is already present in the ancestor of RUT C30 – NG 14 – and seems to have occurred in a palindromic AT-rich repeat (PATRR typically inducing chromosomal translocations, and is not linked to the cre1 locus. The mutation of the cre1 locus has specifically occurred in RUT C30. Some of the genes that are lacking in RUT C30 could be correlated with pronounced alterations in its phenotype, such as poor growth on α-linked oligo- and polyglucosides (loss of maltose permease, or disturbance of osmotic homeostasis. Conclusion Our data place a general caveat on the use of H. jecorina RUT C30 for further basic research.

  8. Global metabolic profiling of Arabidopsis Polyamine Oxidase 4 (AtPAO4 loss-of-function mutants exhibiting delayed dark-induced senescence

    Directory of Open Access Journals (Sweden)

    Miren Iranzu Sequera-Mutiozabal

    2016-02-01

    Full Text Available Early and more recent studies have suggested that some polyamines (PAs, and particularly spermine (Spm, exhibit anti-senescence properties in plants. In this work, we have investigated the role of Arabidopsis Polyamine Oxidase 4 (PAO4, encoding a PA back-conversion oxidase, during dark-induced senescence. Two independent PAO4 (pao4-1 and pao4-2 loss-of-function mutants have been found that accumulate 10-fold higher Spm, and this associated with delayed entry into senescence under dark conditions. Mechanisms underlying pao4 delayed senescence have been studied using global metabolic profiling by GC-TOF/MS. pao4 mutants exhibit constitutively higher levels of important metabolites involved in redox regulation, central metabolism and signaling that support a priming status against oxidative stress. During senescence, interactions between PAs and oxidative, sugar and nitrogen metabolism have been detected that additively contribute to delayed entry into senescence. Our results indicate the occurrence of metabolic interactions between PAs, particularly Spm, with cell oxidative balance and transport/biosynthesis of amino acids as a strategy to cope with oxidative damage produced during senescence.

  9. Characterization of temperature-sensitive mutants reveals a role for receptor-like kinase SCRAMBLED/STRUBBELIG in coordinating cell proliferation and differentiation during Arabidopsis leaf development.

    Science.gov (United States)

    Lin, Lin; Zhong, Si-Hui; Cui, Xiao-Feng; Li, Jianming; He, Zu-Hua

    2012-12-01

    The balance between cell proliferation and cell differentiation is essential for leaf patterning. However, identification of the factors coordinating leaf patterning and cell growth behavior is challenging. Here, we characterized a temperature-sensitive Arabidopsis mutant with leaf blade and venation defects. We mapped the mutation to the sub-2 allele of the SCRAMBLED/STRUBBELIG (SCM/SUB) receptor-like kinase gene whose functions in leaf development have not been demonstrated. The sub-2 mutant displayed impaired blade development, asymmetric leaf shape and altered venation patterning under high ambient temperature (30°C), but these defects were less pronounced at normal growth temperature (22°C). Loss of SCM/SUB function results in reduced cell proliferation and abnormal cell expansion, as well as altered auxin patterning. SCM/SUB is initially expressed throughout leaf primordia and becomes restricted to the vascular cells, coinciding with its roles in early leaf patterning and venation formation. Furthermore, constitutive expression of the SCM/SUB gene also restricts organ growth by inhibiting the transition from cell proliferation to expansion. We propose the existence of a SCM/SUB-mediated developmental stage-specific signal for leaf patterning, and highlight the importance of the balance between cell proliferation and differentiation for leaf morphogenesis.

  10. Mutations in ribosomal proteins, RPL4 and RACK1, suppress the phenotype of a thermospermine-deficient mutant of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kakehi

    Full Text Available Thermospermine acts in negative regulation of xylem differentiation and its deficient mutant of Arabidopsis thaliana, acaulis5 (acl5, shows excessive xylem formation and severe dwarfism. Studies of two dominant suppressors of acl5, sac51-d and sac52-d, have revealed that SAC51 and SAC52 encode a transcription factor and a ribosomal protein L10 (RPL10, respectively, and these mutations enhance translation of the SAC51 mRNA, which contains conserved upstream open reading frames in the 5' leader. Here we report identification of SAC53 and SAC56 responsible for additional suppressors of acl5. sac53-d is a semi-dominant allele of the gene encoding a receptor for activated C kinase 1 (RACK1 homolog, a component of the 40S ribosomal subunit. sac56-d represents a semi-dominant allele of the gene for RPL4. We show that the GUS reporter activity driven by the CaMV 35S promoter plus the SAC51 5' leader is reduced in acl5 and restored by sac52-d, sac53-d, and sac56-d as well as thermospermine. Furthermore, the SAC51 mRNA, which may be a target of nonsense-mediated mRNA decay, was found to be stabilized in these ribosomal mutants and by thermospermine. These ribosomal proteins are suggested to act in the control of uORF-mediated translation repression of SAC51, which is derepressed by thermospermine.

  11. Transport and arrangement of the outer-dynein-arm docking complex in the flagella of Chlamydomonas mutants that lack outer dynein arms.

    Science.gov (United States)

    Wakabayashi, K; Takada, S; Witman, G B; Kamiya, R

    2001-04-01

    The outer dynein arms of Chlamydomonas flagella are attached to a precise site on the outer doublet microtubules and repeat at a regular interval of 24 nm. This binding is mediated by the outer dynein arm docking complex (ODA-DC), which is composed of three protein subunits. In this study, antibodies against the 83- and 62-kD subunits (DC83 and DC62) of the ODA-DC were used to analyze its state of association with outer arm components within the cytoplasm, and its localization in the axonemes of oda mutants. Immunoprecipitation indicates that DC83 and DC62 are preassembled within the cytoplasm, but that they are not associated with outer arm dynein. Both proteins are lost or greatly diminished in oda1 and oda3, mutants in the structural genes of DC62 and DC83, respectively, demonstrating that their association is necessary for their stable presence in the cytoplasm. Immunoelectron microscopy indicates that DC83 repeats at 24-nm intervals along the length of the doublet microtubules of oda6, which lacks outer arms; thus, outer arm periodicity may be determined by the ODA-DC. Flagellar regeneration and temporary dikaryon experiments indicate that the ODA-DC can be rapidly transported into the flagellum and assembled on the doublet microtubules independently of the outer arms and independently of flagellar growth. Unexpectedly, the intensity of ODA-DC labeling decreased toward the distal ends of axonemes of oda6 but not wild-type cells, suggesting that the outer arms reciprocally contribute to the assembly/stability of the ODA-DC.

  12. Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants.

    Science.gov (United States)

    Deuschle, Karen; Chaudhuri, Bhavna; Okumoto, Sakiko; Lager, Ida; Lalonde, Sylvie; Frommer, Wolf B

    2006-09-01

    Genetically encoded glucose nanosensors have been used to measure steady state glucose levels in mammalian cytosol, nuclei, and endoplasmic reticulum. Unfortunately, the same nanosensors in Arabidopsis thaliana transformants manifested transgene silencing and undetectable fluorescence resonance energy transfer changes. Expressing nanosensors in sgs3 and rdr6 transgene silencing mutants eliminated silencing and resulted in high fluorescence levels. To measure glucose changes over a wide range (nanomolar to millimolar), nanosensors with higher signal-to-noise ratios were expressed in these mutants. Perfusion of leaf epidermis with glucose led to concentration-dependent ratio changes for nanosensors with in vitro K(d) values of 600 microM (FLIPglu-600 microDelta13) and 3.2 mM (FLIPglu-3.2 mDelta13), but one with 170 nM K(d) (FLIPglu-170 nDelta13) showed no response. In intact roots, FLIPglu-3.2 mDelta13 gave no response, whereas FLIPglu-600 microDelta13, FLIPglu-2 microDelta13, and FLIPglu-170 nDelta13 all responded to glucose. These results demonstrate that cytosolic steady state glucose levels depend on external supply in both leaves and roots, but under the conditions tested they are lower in root versus epidermal and guard cells. Without photosynthesis and external supply, cytosolic glucose can decrease to <90 nM in root cells. Thus, observed gradients are steeper than expected, and steady state levels do not appear subject to tight homeostatic control. Nanosensor-expressing plants can be used to assess glucose flux differences between cells, invertase-mediated sucrose hydrolysis in vivo, delivery of assimilates to roots, and glucose flux in mutants affected in sugar transport, metabolism, and signaling.

  13. Isolation of T—DNA flanking plant DNA from T—DNA insertional embryo—lethal mutants of Arabidopsis thaliana by plasmid rescue technique

    Institute of Scientific and Technical Information of China (English)

    YAOXIAOLI; JIANGESUN; 等

    1996-01-01

    Three T-DNA insertional embryonic lethal mutants from NASC(The Nottingham Arabidopsis Stock Center) were first checked with their segregation ratio of abortive and normal seeds and the copy number of T-DNA insertion.The N4081 mutant has a segregation ratio of 1:3.04 in average and one T-DNA insertion site according to our assay.It was therefore chosen for further analysis.To isolate the joint fragment of T-DNA and plant DNA,the plasmid rescue technique was used.pEL-7,one of plasmids from left border of T-DNA,which contained pBR322 was selected from ampicillin plate.The T-DNA fragment of pEL-7 was checked by restriction enzyme analysis and Southern Blot.Restriction analysis confirmed the presence of known sites of EcoRI,PstI and PvuII on it.For confirming the presence of flanking plant DNA in this plasmid,pEL-7 DNA was labeled and hybridized with wild type and mutant plant DNA.The Southern Blot indicated the hybridization band in both of them.Furthermore,the junction of T-DNA/plant DNA was subcloned into bluescript SK+ and sequenced by Applied Biosystem 373A sequencer.The results showed the 822 bp fragment contained a 274 bp sequence,which is 99.6%homolog(273bp/274bp) to Ti plasmid pTi 15955,DNA.The bp of left 25 bp border repeat were also found in the juction of T-DNA and Plant DNA. Taken together,pEL-7 should coutain a joint fragment of T-DNA and flanking plant DNA.This plasmid DNA could be used for the isolation of plant gene,which will be helpful to elucidate the relationship between gene function and plant embryo development.

  14. Live imaging of chloroplast FtsZ1 filaments, rings, spirals, and motile dot structures in the AtMinE1 mutant and overexpressor of Arabidopsis thaliana.

    Science.gov (United States)

    Fujiwara, Makoto T; Sekine, Kohsuke; Yamamoto, Yoshiharu Y; Abe, Tomoko; Sato, Naoki; Itoh, Ryuuichi D

    2009-06-01

    Chloroplast division involves the tubulin-related GTPase FtsZ that assembles into a ring structure (Z-ring) at the mid-chloroplast division site, which is where invagination and constriction of the envelope membranes occur. Z-ring assembly is usually confined to the mid-chloroplast site by a well balanced counteraction of the stromal proteins MinD and MinE. The in vivo mechanisms by which FtsZ nucleates at specific sites, polymerises into a protofilament and organizes a closed ring of filament bundles remain largely unknown. To clarify the dynamic aspects of FtsZ, we developed a living cell system for simultaneous visualisation of various FtsZ configurations, utilising the Arabidopsis thaliana overexpressor and mutant of the MinE (AtMinE1) gene, which were modified to weakly express green fluorescent protein (GFP) fused to AtFtsZ1-1. Time-lapse observation in the chloroplasts of both plants revealed disorderly movement of the dots and short filaments of FtsZ. The short filaments often appeared to emanate from the dots and to converge with a long filament, producing a thick cable. In the AtMinE1 overexpressor, we also observed spirals along the longitudinal axis of the organelle that often rolled the closed rings together. In the atminE1 mutant, we visualised the 'isolated' rings with a maximum diameter of approximately 2 mum that did not encircle the organelle periphery, but appeared to be suspended in the stroma. Our observations further demonstrated heterogeneity in chloroplast shapes and concurrently altered configurations of FtsZ in the mutant.

  15. Increased resistance to biotrophic pathogens in the Arabidopsis constitutive induced resistance 1 mutant is EDS1 and PAD4-dependent and modulated by environmental temperature.

    Science.gov (United States)

    Carstens, Maryke; McCrindle, Tyronne K; Adams, Nicolette; Diener, Anastashia; Guzha, Delroy T; Murray, Shane L; Parker, Jane E; Denby, Katherine J; Ingle, Robert A

    2014-01-01

    The Arabidopsis constitutive induced resistance 1 (cir1) mutant displays salicylic acid (SA)-dependent constitutive expression of defence genes and enhanced resistance to biotrophic pathogens. To further characterise the role of CIR1 in plant immunity we conducted epistasis analyses with two key components of the SA-signalling branch of the defence network, ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4). We demonstrate that the constitutive defence phenotypes of cir1 require both EDS1 and PAD4, indicating that CIR1 lies upstream of the EDS1-PAD4 regulatory node in the immune signalling network. In light of this finding we examined EDS1 expression in cir1 and observed increased protein, but not mRNA levels in this mutant, suggesting that CIR1 might act as a negative regulator of EDS1 via a post-transcriptional mechanism. Finally, as environmental temperature is known to influence the outcome of plant-pathogen interactions, we analysed cir1 plants grown at 18, 22 or 25°C. We found that susceptibility to Pseudomonas syringae pv. tomato (Pst) DC3000 is modulated by temperature in cir1. Greatest resistance to this pathogen (relative to PR-1:LUC control plants) was observed at 18°C, while at 25°C no difference in susceptibility between cir1 and control plants was apparent. The increase in resistance to Pst DC3000 at 18°C correlated with a stunted growth phenotype, suggesting that activation of defence responses may be enhanced at lower temperatures in the cir1 mutant.

  16. Increased resistance to biotrophic pathogens in the Arabidopsis constitutive induced resistance 1 mutant is EDS1 and PAD4-dependent and modulated by environmental temperature.

    Directory of Open Access Journals (Sweden)

    Maryke Carstens

    Full Text Available The Arabidopsis constitutive induced resistance 1 (cir1 mutant displays salicylic acid (SA-dependent constitutive expression of defence genes and enhanced resistance to biotrophic pathogens. To further characterise the role of CIR1 in plant immunity we conducted epistasis analyses with two key components of the SA-signalling branch of the defence network, ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1 and PHYTOALEXIN DEFICIENT4 (PAD4. We demonstrate that the constitutive defence phenotypes of cir1 require both EDS1 and PAD4, indicating that CIR1 lies upstream of the EDS1-PAD4 regulatory node in the immune signalling network. In light of this finding we examined EDS1 expression in cir1 and observed increased protein, but not mRNA levels in this mutant, suggesting that CIR1 might act as a negative regulator of EDS1 via a post-transcriptional mechanism. Finally, as environmental temperature is known to influence the outcome of plant-pathogen interactions, we analysed cir1 plants grown at 18, 22 or 25°C. We found that susceptibility to Pseudomonas syringae pv. tomato (Pst DC3000 is modulated by temperature in cir1. Greatest resistance to this pathogen (relative to PR-1:LUC control plants was observed at 18°C, while at 25°C no difference in susceptibility between cir1 and control plants was apparent. The increase in resistance to Pst DC3000 at 18°C correlated with a stunted growth phenotype, suggesting that activation of defence responses may be enhanced at lower temperatures in the cir1 mutant.

  17. Forward genetic screen for auxin-deficient mutants by cytokinin.

    Science.gov (United States)

    Wu, Lei; Luo, Pan; Di, Dong-Wei; Wang, Li; Wang, Ming; Lu, Cheng-Kai; Wei, Shao-Dong; Zhang, Li; Zhang, Tian-Zi; Amakorová, Petra; Strnad, Miroslav; Novák, Ondřej; Guo, Guang-Qin

    2015-07-06

    Identification of mutants with impairments in auxin biosynthesis and dynamics by forward genetic screening is hindered by the complexity, redundancy and necessity of the pathways involved. Furthermore, although a few auxin-deficient mutants have been recently identified by screening for altered responses to shade, ethylene, N-1-naphthylphthalamic acid (NPA) or cytokinin (CK), there is still a lack of robust markers for systematically isolating such mutants. We hypothesized that a potentially suitable phenotypic marker is root curling induced by CK, as observed in the auxin biosynthesis mutant CK-induced root curling 1 / tryptophan aminotransferase of Arabidopsis 1 (ckrc1/taa1). Phenotypic observations, genetic analyses and biochemical complementation tests of Arabidopsis seedlings displaying the trait in large-scale genetic screens showed that it can facilitate isolation of mutants with perturbations in auxin biosynthesis, transport and signaling. However, unlike transport/signaling mutants, the curled (or wavy) root phenotypes of auxin-deficient mutants were significantly induced by CKs and could be rescued by exogenous auxins. Mutants allelic to several known auxin biosynthesis mutants were re-isolated, but several new classes of auxin-deficient mutants were also isolated. The findings show that CK-induced root curling provides an effective marker for discovering genes involved in auxin biosynthesis or homeostasis.

  18. Characterization of a novel developmentally retarded mutant (drm1) associated with the autonomous flowering pathway in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yong ZHU; Hui Fang ZHAO; Guo Dong REN; Xiao Fei YU; Shu Qing CAO; Ben Ke KUAI

    2005-01-01

    A developmentally retarded mutant (drm1) was identified from ethyl methanesulfonate (EMS)-mutagenized M2 seeds in Columbia (Col-0) genetic background. The drm1 flowers 109 d after sowing, with a whole life cycle of about 160 d.It also shows a pleiotropic phenotype, e.g., slow germination and lower gemination rate, lower growth rate, curling leaves and abnormal floral organs. The drm1 mutation was a single recessive nuclear mutation, which was mapped to the bottom of chromosome 5 and located within a region of 20-30 kb around MXK3.1. There have been no mutants with similar phenotypes reported in the literature, suggesting that DRM1 is a novel flowering promoting locus. The findings that the drm1 flowered lately under all photoperiod conditions and its late flowering phenotype was significantly restored by vernalization treatment suggest that the drm1 is a typical late flowering mutant and most likely associated with the autonomous flowering pathway. The conclusion was further confirmed by the revelation that the transcript level of FLC was constantly upregulated in the drm1 at all the developmental phases examined, except for a very early stage. Moreover, the transcript levels of two other important repressors, EMF and TFL1, were also upregulated in the drm1, implying that the two repressors, along with FLC, seems to act in parallel pathways in the drm1 to regulate flowering as well as other aspects of floral development in a negatively additive way. This helps to explain why the drm1exhibits a much more severe late-flowering phenotype than most late-flowering mutants reported. It also implies that the DRM1 might act upstream of these repressors.

  19. A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type

    Directory of Open Access Journals (Sweden)

    Tan Chao

    2011-11-01

    Full Text Available Abstract Background Root gravitropsim has been proposed to require the coordinated, redistribution of the plant signaling molecule auxin within the root meristem, but the underlying molecular mechanisms are still unknown. PIN proteins are membrane transporters that mediate the efflux of auxin from cells. The PIN2 is important for the basipetal transport of auxin in roots and plays a critical role in the transmission of gravity signals perceived in the root cap to the root elongation zone. The loss of function pin2 mutant exhibits a gravity-insensitive root growth phenotype. By comparing the proteomes of wild type and the pin2 mutant root tips under different gravitational conditions, we hope to identify proteins involved in the gravity-related signal transduction. Results To identify novel proteins involved in the gravity signal transduction pathway we have carried out a comparative proteomic analysis of Arabidopsis pin2 mutant and wild type (WT roots subjected to different gravitational conditions. These conditions included horizontal (H and vertical (V clinorotation, hypergravity (G and the stationary control (S. Analysis of silver-stained two-dimensional SDS-PAGE gels revealed 28 protein spots that showed significant expression changes in altered gravity (H or G compared to control roots (V and S. Whereas the majority of these proteins exhibited similar expression patterns in WT and pin2 roots, a significant number displayed different patterns of response between WT and pin2 roots. The latter group included 11 protein spots in the H samples and two protein spots in the G samples that exhibited an altered expression exclusively in WT but not in pin2 roots. One of these proteins was identified as annexin2, which was induced in the root cap columella cells under altered gravitational conditions. Conclusions The most interesting observation in this study is that distinctly different patterns of protein expression were found in WT and pin2 mutant

  20. 一种拟南芥突变体对高浓度CO2反应的研究%Response of an Arabidopsis mutant to elevated CO2 concentration

    Institute of Scientific and Technical Information of China (English)

    郝林; 徐昕; 曹军

    2003-01-01

    The study on the response of a mutant and a wild-type of Arabidopsis to 660 μl·L-1 CO2 and ambient CO2 showed that under elevated CO2, the stomatal numbers of the mutant increased, while those of the wild-type de-creased. The chlorophyll content and NR (nitrate reductase) activity of the mutant increased, but those of the wild-type had no obvious response. The mutant was not reproductively mature after the continuous exposure to increased CO2 for five months. The results provided evidence of plant response to the changes of atmospheric CO2 concentration, and the clues to related studies on other plants.

  1. A model of sensitivity: 1,3-butadiene increases mutant frequencies and genomic damage in mice lacking a functional microsomal epoxide hydrolase gene.

    Science.gov (United States)

    Wickliffe, Jeffrey K; Ammenheuser, Marinel M; Salazar, James J; Abdel-Rahman, Sherif Z; Hastings-Smith, Darlene A; Postlethwait, Edward M; Lloyd, R Stephen; Ward, Jonathan B

    2003-01-01

    The specific role that polymorphisms in xenobiotic metabolizing enzymes play in modulating sensitivity to 1,3-butadiene (BD) genotoxicity has been relatively unexplored. The enzyme microsomal epoxide hydrolase (mEH) is important in detoxifying the mutagenic epoxides of BD (butadiene monoepoxide [BDO], butadiene diepoxide [BDO(2)]). Polymorphisms in the human mEH gene appear to affect the function of the enzyme. We exposed mice with normal mEH activity (WT) and knockout mice without mEH activity (KO) to 20 ppm BD (inhalation) or 30 mg/kg BDO(2) (intraperitoneal [IP] injection). We then compared Hprt mutant frequencies (MFs) among these groups. KO mice exposed to BD exhibited a significant (P damage in WT and KO mice (comet tail moment) following IP exposure to 3 mg/kg and 30 mg/kg BDO(2). KO mice exposed to 3 mg/kg exhibited significantly more DNA damage than controls (7.5-12.1-fold increase) and exposed WT mice (3 mg/kg; 4.8-fold increase). KO mice exposed to 30 mg/kg BDO(2) exhibited significantly more DNA damage than all other groups (2.3-27.9-fold increase). Correlation analysis indicated that a significant, positive relationship (r(2) = 0.92) exists between comet-measured damage and Hprt MFs. The lack of mEH activity increases the genetic sensitivity of mice exposed to BD and BDO(2). This model should facilitate a mechanistic understanding of the observed variation in human genetic sensitivity following exposure to BD.

  2. Reference: 539 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available dy, we isolated mutants defective in root amino acid uptake by screening Arabidopsis (Arabidopsis thaliana) ...urred, suggesting that LHT1 may fulfill an important function at this developmental stage. Based on the broad and unbiased screening...on of organic N from the soil. Comprehensive screening of Arabidopsis mutants suggests the lysine histidine

  3. Characterization of variation induced by low-energy N+ and cloning of differentially expressed cDNA of a mutant in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Using Arabidopsis thaliana as experimental materials, the variations induced by low-energy N+ have been investigated. Germination rate of the treated seeds is lower than that of the control, and it decreases with the intensification of the radiation. The phenotypic variations have been observed in M2 plants irradiated with higher doses, such as chlorisis, semilethality, plant morphology, and changes of blooming habit and fertility. In random amplified polymorphic DNA (RAPD) analysis on M2 seedlings, some differences including band deletions or additions are found in treated plants compared to the control and the differences are associated with the radiation doses. One of the M1 plants from the seeds irradiated with the dose of 80×1015 N+/cm2 is a dwarf variant. Its stable M6 generation, mutant T80II, is used to construct subtractive cDNA library and to clone differentially expressed cDNA. A 721 bp cDNA fragment is partly homologous with GRF7 gene.

  4. Insights into the composition and assembly of the membrane arm of plant complex I through analysis of subcomplexes in Arabidopsis mutant lines.

    Science.gov (United States)

    Meyer, Etienne H; Solheim, Cory; Tanz, Sandra K; Bonnard, Géraldine; Millar, A Harvey

    2011-07-22

    NADH-ubiquinone oxidoreductase (Complex I, EC 1.6.5.3) is the largest complex of the mitochondrial respiratory chain. In eukaryotes, it is composed of more than 40 subunits that are encoded by both the nuclear and mitochondrial genomes. Plant Complex I differs from the enzyme described in other eukaryotes, most notably due to the large number of plant-specific subunits in the membrane arm of the complex. The elucidation of the assembly pathway of Complex I has been a long-standing research aim in cellular biochemistry. We report the study of Arabidopsis mutants in Complex I subunits using a combination of Blue-Native PAGE and immunodetection to identify stable subcomplexes containing Complex I components, along with mass spectrometry analysis of Complex I components in membrane fractions and two-dimensional diagonal Tricine SDS-PAGE to study the composition of the largest subcomplex. Four subcomplexes of the membrane arm of Complex I with apparent molecular masses of 200, 400, 450, and 650 kDa were observed. We propose a working model for the assembly of the membrane arm of Complex I in plants and assign putative roles during the assembly process for two of the subunits studied.

  5. Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Nickolas A.; Tobimatsu, Yuki; Ciesielski, Peter N.; Ximenes, Eduardo; Ralph, John; Donohoe, Bryon S.; Ladisch, Michael; Chapple, Clint

    2015-08-01

    Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to change lignin composition is downregulation or overexpression of ferulate 5-hydroxylase (F5H), which results in lignins enriched in guaiacyl or syringyl units, respectively. Here, we combined these approaches to generate plants enriched in coniferaldehyde-derived lignin units or lignins derived primarily from sinapaldehyde. The cadc cadd and ferulic acid hydroxylase1 (fah1) cadc cadd plants are similar in growth to wild-type plants even though their lignin compositions are drastically altered. In contrast, disruption of CAD in the F5H-overexpressing background results in dwarfism. The dwarfed phenotype observed in these plants does not appear to be related to collapsed xylem, a hallmark of many other lignin-deficient dwarf mutants. cadc cadd, fah1 cadc cadd, and cadd F5H-overexpressing plants have increased enzyme-catalyzed cell wall digestibility. Given that these CAD-deficient plants have similar total lignin contents and only differ in the amounts of hydroxycinnamaldehyde monomer incorporation, these results suggest that hydroxycinnamaldehyde content is a more important determinant of digestibility than lignin content.

  6. Reference: 776 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available urice et al. 2008 Jun. Plant Cell 20(6):1652-64. Glycosyltransferases are involved in the biosynthesis of li... localized to the endoplasmic reticulum in yeast and in plants. A homozygous T-DNA insertion mutant, alg3-2,... was identified in Arabidopsis with residual levels of wild-type ALG3, derived fr... complex-glycan-less mutant background, which lacks N-acetylglucosaminyl-transferase I activity, reveals tha...t when ALG3 activity is strongly reduced, almost all N-glycans transferred to proteins are

  7. A relaxed (rel) mutant of Streptomyces coelicolor A3(2) with a missing ribosomal protein lacks the ability to accumulate ppGpp, A-factor and prodigiosin.

    Science.gov (United States)

    Ochi, K

    1990-12-01

    A relaxed (rel) mutant was found among 70 thiopeptin-resistant isolates of Streptomyces coelicolor A3(2) which arose spontaneously. The ability of the rel mutant to accumulate ppGpp during Casamino acid deprivation was reduced 10-fold compared to the wild-type. Analysis of the ribosomal proteins by two-dimensional PAGE revealed that the mutant lacked a ribosomal protein, tentatively designated ST-L11. It was therefore classified as a relC mutant. The mutant was defective in producing A-factor and the pigmented antibiotic prodigiosin, in both liquid and agar cultures, but produced agarase normally. Production of actinorhodin, another pigmented antibiotic, was also abnormal; it appeared suddenly in agar cultures after 10 d incubation. Although aerial mycelium still formed, its appearance was markedly delayed. Whereas liquid cultures of the parent strain accumulated ppGpp, agar cultures accumulated only trace amounts. Instead, a substance characterized only as an unidentified HPLC peak accumulated intracellularly in the late growth phase, just before aerial mycelium formation and antibiotic production. This substance did not accumulate in mutant cells. It was found in S. lividans 66 and S. parvulus, but not in seven other Streptomyces species tested. The significance of these observations, and the relationship of the mutant to earlier rel isolates of Streptomyces is discussed.

  8. Reference: 446 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available are required for pollen separation during normal floral development. In qrt mutants, the four products of mi...rk E et al. 2006 Nov. Plant Physiol. 142(3):1004-13. Arabidopsis (Arabidopsis thaliana) QUARTET (QRT) genes

  9. Reference: 398 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available plays attenuated chloroplast movements under intermediate and high light intensitie...hese movements. In this work, we describe plastid movement impaired 2 (pmi2), a mutant in Arabidopsis (Arabidopsis thaliana) that dis

  10. Constitutive disease resistance requires EDS1 in the Arabidopsis mutants cpr1 and cpr6 and is partially EDS1-dependent in cpr5.

    Science.gov (United States)

    Clarke, J D; Aarts, N; Feys, B J; Dong, X; Parker, J E

    2001-05-01

    The systemic acquired resistance (SAR) response in Arabidopsis is characterized by the accumulation of salicylic acid (SA), expression of the pathogenesis-related (PR) genes, and enhanced resistance to virulent bacterial and oomycete pathogens. The cpr (constitutive expressor of PR genes) mutants express all three SAR phenotypes. In addition, cpr5 and cpr6 induce expression of PDF1.2, a defense-related gene associated with activation of the jasmonate/ethylene-mediated resistance pathways. cpr5 also forms spontaneous lesions. In contrast, the eds1 (enhanced disease susceptibility) mutation abolishes race-specific resistance conferred by a major subclass of resistance (R) gene products in response to avirulent pathogens. eds1 plants also exhibit increased susceptibility to virulent pathogens. Epistasis experiments were designed to explore the relationship between the cpr- and EDS1-mediated resistance pathways. We found that a null eds1 mutation suppresses the disease resistance phenotypes of both cpr1 and cpr6. In contrast, eds1 only partially suppresses resistance in cpr5, leading us to conclude that cpr5 expresses both EDS1-dependent and EDS1-independent components of plant disease resistance. Although eds1 does not prevent lesion formation on cpr5 leaves, it alters their appearance and reduces their spread. This phenotypic difference is associated with increased pathogen colonization of cpr5 eds1 plants compared to cpr5. The data allow us to place EDS1 as a necessary downstream component of cpr1- and cpr6-mediated responses, but suggest a more complex relationship between EDS1 and cpr5 in plant defense.

  11. The transcriptional response of Lactobacillus sanfranciscensis DSM 20451T and its tcyB mutant lacking a functional cystine transporter to diamide stress.

    Science.gov (United States)

    Stetina, Mandy; Behr, Jürgen; Vogel, Rudi F

    2014-07-01

    As a result of its strong adaptation to wheat and rye sourdoughs, Lactobacillus sanfranciscensis has the smallest genome within the genus Lactobacillus. The concomitant absence of some important antioxidative enzymes and the inability to synthesize glutathione suggest a role of cystine transport in maintenance of an intracellular thiol balance. Diamide [synonym 1,1'-azobis(N,N-dimethylformamide)] disturbs intracellular and membrane thiol levels in oxidizing protein thiols depending on its initial concentration. In this study, RNA sequencing was used to reveal the transcriptional response of L. sanfranciscensis DSM 20451(T) (wild type [WT]) and its ΔtcyB mutant with a nonfunctional cystine transporter after thiol stress caused by diamide. Along with the different expression of genes involved in amino acid starvation, pyrimidine synthesis, and energy production, our results show that thiol stress in the wild type can be compensated through activation of diverse chaperones and proteases whereas the ΔtcyB mutant shifts its metabolism in the direction of survival. Only a small set of genes are significantly differentially expressed between the wild type and the mutant. In the WT, mainly genes which are associated with a heat shock response are upregulated whereas glutamine import and synthesis genes are downregulated. In the ΔtcyB mutant, the whole opp operon was more highly expressed, as well as a protein which probably includes enzymes for methionine transport. The two proteins encoded by spxA and nrdH, which are involved in direct or indirect oxidative stress responses, are also upregulated in the mutant. This work emphasizes that even in the absence of definitive antioxidative enzymes, bacteria with a small genome and a high frequency of gene inactivation and elimination use small molecules such as the cysteine/cystine couple to overcome potential cell damage resulting from oxidative stress.

  12. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei, E-mail: yuanmiao1892@163.com; Lin, Hong-Hui, E-mail: hhlin@scu.edu.cn

    2016-09-02

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  13. Seedling Lethal1, a Pentatricopeptide Repeat Protein Lacking an E/E+ or DYW Domain in Arabidopsis, Is Involved in Plastid Gene Expression and Early Chloroplast Development1[C][W

    Science.gov (United States)

    Pyo, Young Jae; Kwon, Kwang-Chul; Kim, Anna; Cho, Myeon Haeng

    2013-01-01

    Chloroplasts are the site of photosynthesis and the biosynthesis of essential metabolites, including amino acids, fatty acids, and secondary metabolites. It is known that many seedling-lethal mutants are impaired in chloroplast function or development, indicating the development of functional chloroplast is essential for plant growth and development. Here, we isolated a novel transfer DNA insertion mutant, dubbed sel1 (for seedling lethal1), that exhibited a pigment-defective and seedling-lethal phenotype with a disrupted pentatricopeptide repeat (PPR) gene. Sequence analysis revealed that SEL1 is a member of the PLS subgroup, which is lacking known E/E+ or DYW domains at the C terminus, in the PLS subfamily of the PPR protein family containing a putative N-terminal transit peptide and 14 putative PPR or PPR-like motifs. Confocal microscopic analysis showed that the SEL1-green fluorescent protein fusion protein is localized in chloroplasts. Transmission electron microscopic analysis revealed that the sel1 mutant is impaired in the etioplast, as well as in chloroplast development. In sel1 mutants, plastid-encoded proteins involved in photosynthesis were rarely detected due to the lack of the corresponding transcripts. Furthermore, transcript profiles of plastid genes revealed that, in sel1 mutants, the transcript levels of plastid-encoded RNA polymerase-dependent genes were greatly reduced, but those of nuclear-encoded RNA polymerase-dependent genes were increased or not changed. Additionally, the RNA editing of two editing sites of the acetyl-CoA carboxylase beta subunit gene transcripts in the sel1 mutant was compromised, though it is not directly connected with the sel1 mutant phenotype. Our results demonstrate that SEL1 is involved in the regulation of plastid gene expression required for normal chloroplast development. PMID:24144791

  14. Optic nerve compression and retinal degeneration in Tcirg1 mutant mice lacking the vacuolar-type H-ATPase a3 subunit.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Kawamura

    Full Text Available BACKGROUND: Vacuolar-type proton transporting ATPase (V-ATPase is involved in the proper development of visual function. Mutations in the Tcirg1 (also known as Atp6V0a3 locus, which encodes the a3 subunit of V-ATPase, cause severe autosomal recessive osteopetrosis (ARO in humans. ARO is often associated with impaired vision most likely because of nerve compression at the optic canal. We examined the ocular phenotype of mice deficient in Tcirg1 function. METHODOLOGY/PRINCIPAL FINDINGS: X-ray microtomography showed narrowed foramina in the skull, suggesting that optic nerve compression occurred in the a3-deficient (Tcirg1-/- mice. The retina of the mutant mice had normal architecture, but the number of apoptotic cells was increased at 2-3 wks after birth. In the ocular system, the a3 subunit accumulated in the choriocapillary meshwork in uveal tissues. Two other subunit isoforms a1 and a2 accumulated in the retinal photoreceptor layer. We found that the a4 subunit, whose expression has previously been shown to be restricted to several transporting epithelia, was enriched in pigmented epithelial cells of the retina and ciliary bodies. The expression of a4 in the uveal tissue was below the level of detection in wild-type mice, but it was increased in the mutant choriocapillary meshwork, suggesting that compensation may have occurred among the a subunit isoforms in the mutant tissues. CONCLUSIONS: Our findings suggest that a similar etiology of visual impairment is involved in both humans and mice; thus, a3-deficient mice may provide a suitable model for clinical and diagnostic purposes in cases of ARO.

  15. A mutant lacking the glutamine synthetase gene (glnA) is impaired in the regulation of the nitrate assimilation system in the cyanobacterium Synechocystis sp. strain PCC 6803.

    Science.gov (United States)

    Reyes, J C; Florencio, F J

    1994-12-01

    The existence in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 of two genes (glnA and glnN) coding for glutamine synthetase (GS) has been recently reported (J.C. Reyes and F.J. Florencio, J. Bacteriol. 176:1260-1267, 1994). In the current work, the regulation of the nitrate assimilation system was studied with a glnA-disrupted Synechocystis mutant (strain SJCR3) in which the only GS activity is that corresponding to the glnN product. This mutant was unable to grow in ammonium-containing medium because of its very low levels of GS activity. In the SJCR3 strain, nitrate and nitrite reductases were not repressed by ammonium, and short-term ammonium-promoted inhibition of nitrate uptake was impaired. In Synechocystis sp. strain PCC 6803, nitrate seems to act as a true inducer of its assimilation system, in a way similar to that proposed for the dinitrogen-fixing cyanobacteria. A spontaneous derivative strain from SJCR3 (SJCR3.1), was able to grow in ammonium-containing medium and exhibited a fourfold-higher level of GS activity than but the same amount of glnN transcript as its parental strain (SJCR3). Taken together, these finding suggest that SJCR3.1 is a mutant affected in the posttranscriptional regulation of the GS encoded by glnN. This strain recovered regulation by ammonium of nitrate assimilation. SJCR3 cells were completely depleted of intracellular glutamine shortly after addition of ammonium to cells growing with nitrate, while SJCR3.1 cells maintained glutamine levels similar to that reached in the wild-type Synechocystis sp. strain PCC 6803. Our results indicate that metabolic signals that control the nitrate assimilation system in Synechocystis sp. strain PCC 6803 require ammonium metabolism through GS.

  16. Protein Geranylgeranyltransferase I Is Involved in Specific Aspects of Abscisic Acid and Auxin Signaling in Arabidopsis1

    Science.gov (United States)

    Johnson, Cynthia D.; Chary, S. Narasimha; Chernoff, Ellen A.; Zeng, Qin; Running, Mark P.; Crowell, Dring N.

    2005-01-01

    Arabidopsis (Arabidopsis thaliana) mutants lacking a functional ERA1 gene, which encodes the β-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects that establish roles for protein prenylation in abscisic acid (ABA) signaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsis GGB gene, which encodes the β-subunit of protein geranylgeranyltransferase type I (PGGT I). Stomatal apertures of ggb plants were smaller than those of wild-type plants at all concentrations of ABA tested, suggesting that PGGT I negatively regulates ABA signaling in guard cells. However, germination of ggb seeds in response to ABA was similar to the wild type. Lateral root formation in response to exogenous auxin was increased in ggb seedlings compared to the wild type, but no change in auxin inhibition of primary root growth was observed, suggesting that PGGT I is specifically involved in negative regulation of auxin-induced lateral root initiation. Unlike era1 mutants, ggb mutants exhibited no obvious developmental phenotypes. However, era1 ggb double mutants exhibited more severe developmental phenotypes than era1 mutants and were indistinguishable from plp mutants lacking the shared α-subunit of PFT and PGGT I. Furthermore, overexpression of GGB in transgenic era1 plants partially suppressed the era1 phenotype, suggesting that the relatively weak phenotype of era1 plants is due to partial redundancy between PFT and PGGT I. These results are discussed in the context of Arabidopsis proteins that are putative substrates of PGGT I. PMID:16183844

  17. Sinorhizobium meliloti mutants lacking phosphotransferase system enzyme HPr or EIIA are altered in diverse processes, including carbon metabolism, cobalt requirements, and succinoglycan production.

    Science.gov (United States)

    Pinedo, Catalina Arango; Bringhurst, Ryan M; Gage, Daniel J

    2008-04-01

    Sinorhizobium meliloti is a member of the Alphaproteobacteria that fixes nitrogen when it is in a symbiotic relationship. Genes for an incomplete phosphotransferase system (PTS) have been found in the genome of S. meliloti. The genes present code for Hpr and ManX (an EIIA(Man)-type enzyme). HPr and EIIA regulate carbon utilization in other bacteria. hpr and manX in-frame deletion mutants exhibited altered carbon metabolism and other phenotypes. Loss of HPr resulted in partial relief of succinate-mediated catabolite repression, extreme sensitivity to cobalt limitation, rapid die-off during stationary phase, and altered succinoglycan production. Loss of ManX decreased expression of melA-agp and lac, the operons needed for utilization of alpha- and beta-galactosides, slowed growth on diverse carbon sources, and enhanced accumulation of high-molecular-weight succinoglycan. A strain with both hpr and manX deletions exhibited phenotypes similar to those of the strain with a single hpr deletion. Despite these strong phenotypes, deletion mutants exhibited wild-type nodulation and nitrogen fixation when they were inoculated onto Medicago sativa. The results show that HPr and ManX (EIIA(Man)) are involved in more than carbon regulation in S. meliloti and suggest that the phenotypes observed occur due to activity of HPr or one of its phosphorylated forms.

  18. Reference: 21 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ication of a number of mutant lines with altered Chl fluorescence characteristics. Analysis of photosynthesis...cation of mutants of Arabidopsis defective in acclimation of photosynthesis to th

  19. Reference: 405 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available as previously thought. These mutants will prove to be valuable resources for understanding laccase functions in vivo. Mutant identifi...cation and characterization of the laccase gene family in Arabidopsis. 11 2563-9 16

  20. Cleft palate defect of Dlx1/2-/- mutant mice is caused by lack of vertical outgrowth in the posterior palate

    NARCIS (Netherlands)

    Jeong, J.; Cesario, J.; Zhao, Y.; Burns, L.; Westphal, H.; Rubenstein, J.L.

    2012-01-01

    BACKGROUND: Mice lacking the activities of Dlx1 and Dlx2 (Dlx1/2-/-) exhibit cleft palate, one of the most common human congenital defects, but the etiology behind this phenotype has been unknown. Therefore, we analyzed the morphological, cellular, and molecular changes caused by inactivation of Dlx

  1. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis.

    Science.gov (United States)

    Bahaji, Abdellatif; Baroja-Fernández, Edurne; Ricarte-Bermejo, Adriana; Sánchez-López, Ángela María; Muñoz, Francisco José; Romero, Jose M; Ruiz, María Teresa; Baslam, Marouane; Almagro, Goizeder; Sesma, María Teresa; Pozueta-Romero, Javier

    2015-09-01

    We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and spsa2/spsb/spsc mutants displayed wild type (WT) vegetative and reproductive morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was reduced compared with WT plants. Furthermore, these plants displayed a high dark respiration phenotype. spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc seeds poorly germinated and produced aberrant and sterile plants. Leaves of all viable sps mutants, except spsa1/spsc and spsa1/spsa2/spsc, accumulated WT levels of nonstructural carbohydrates. spsa1/spsc leaves possessed high levels of metabolic intermediates and activities of enzymes of the glycolytic and tricarboxylic acid cycle pathways, and accumulated high levels of metabolic intermediates of the nocturnal starch-to-sucrose conversion process, even under continuous light conditions. Results presented in this work show that SPS is essential for plant viability, reveal redundant functions of the four SPS isoforms in processes that are important for plant growth and nonstructural carbohydrate metabolism, and strongly indicate that accelerated starch turnover and enhanced respiration can alleviate the blockage of sucrose biosynthesis in spsa1/spsc leaves.

  2. Coat protein mutations in an attenuated Cucumber mosaic virus encoding mutant 2b protein that lacks RNA silencing suppressor activity induces chlorosis with photosynthesis gene repression and chloroplast abnormalities in infected tobacco plants.

    Science.gov (United States)

    Mochizuki, Tomofumi; Yamazaki, Ryota; Wada, Tomoya; Ohki, Satoshi T

    2014-05-01

    In tobacco plants, the Cucumber mosaic virus (CMV) pepo strain induces mosaic symptoms, including pale green chlorosis and malformed tissues. Here, we characterized the involvement of 2b protein and coat protein (CP) in the development of mosaic symptoms. A 2b mutant (R46C) that lacks viral suppressor of RNA silencing (VSR) activity showed an asymptomatic phenotype with low levels of virus accumulation. Tomato spotted wilt virus NSs protein did not complement the virulence of the R46C, although it did restore high-level virus accumulation. However, R46C mutants expressing mutated CP in which the amino acid P129 was mutated to A, E, C, Q, or S induced chlorosis that was associated with reduced expression of chloroplast and photosynthesis related genes (CPRGs) and abnormal chloroplasts with fewer thylakoid membranes. These results suggest that the CP of the CMV pepo strain acquires virulence by amino acid mutations, which causes CPRG repression and chloroplast abnormalities.

  3. Reference: 401 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available zed T-DNA insertion mutants of the Arabidopsis thaliana UV-DDB2 subunit (atuv-ddb2 mutants) and AtUV-DDB2 RNAi silence...d plants (atuv-ddb2 silenced plants). atuv-ddb2 mutants and atuv-ddb2 silenced plants were both vi... of T-DNA insertion mutants and RNAi silenced plants of Arabidopsis thaliana UV-d

  4. Activation of a GTP-binding protein and a GTP-binding-protein-coupled receptor kinase (beta-adrenergic-receptor kinase-1) by a muscarinic receptor m2 mutant lacking phosphorylation sites.

    Science.gov (United States)

    Kameyama, K; Haga, K; Haga, T; Moro, O; Sadée, W

    1994-12-01

    A mutant of the human muscarinic acetylcholine receptor m2 subtype (m2 receptor), lacking a large part of the third intracellular loop, was expressed and purified using the baculovirus/insect cell culture system. The mutant was not phosphorylated by beta-adrenergic-receptor kinase, as expected from the previous assignment of phosphorylation sites to the central part of the third intracellular loop. However, the m2 receptor mutant was capable of stimulating beta-adrenergic-receptor-kinase-1-mediated phosphorylation of a glutathione S-transferase fusion protein containing the m2 phosphorylation sites in an agonist-dependent manner. Both mutant and wild-type m2 receptors reconstituted with the guanine-nucleotide-binding regulatory proteins (G protein), G(o) and G(i)2, displayed guanine-nucleotide-sensitive high-affinity agonist binding, as assessed by displacement of [3H]quinuclidinyl-benzilate binding with carbamoylcholine, and both stimulated guanosine 5'-3-O-[35S]thiotriphosphate ([35S]GTP[S]) binding in the presence of carbamoylcholine and GDP. The Ki values of carbamoylcholine effects on [3H]quinuclidinyl-benzilate binding were indistinguishable for the mutant and wild-type m2 receptors. Moreover, the phosphorylation of the wild-type m2 receptor by beta-adrenergic-receptor kinase-1 did not affect m2 interaction with G proteins as assessed by the binding of [3H]quinuclidinyl benzilate or [35S]GTP[S]. These results indicate that (a) the m2 receptor serves both as an activator and as a substrate of beta-adrenergic-receptor kinase, and (b) a large part of the third intracellular loop of the m2 receptor does not contribute to interaction with G proteins and its phosphorylation by beta-adrenergic-receptor kinase does not uncouple the receptor and G proteins in reconstituted lipid vesicles.

  5. Vascular development in Arabidopsis.

    Science.gov (United States)

    Ye, Zheng-Hua; Freshour, Glenn; Hahn, Michael G; Burk, David H; Zhong, Ruiqin

    2002-01-01

    Vascular tissues, xylem and phloem, form a continuous network throughout the plant body for transport of water, minerals, and food. Characterization of Arabidopsis mutants defective in various aspects of vascular formation has demonstrated that Arabidopsis is an ideal system for investigating the molecular mechanisms controlling vascular development. The processes affected in these mutants include initiation or division of procambium or vascular cambium, formation of continuous vascular cell files, differentiation of procambium or vascular cambium into vascular tissues, cell elongation, patterned secondary wall thickening, and biosynthesis of secondary walls. Identification of the genes affected by some of these mutations has revealed essential roles in vascular development for a cytokinin receptor and several factors mediating auxin transport or signaling. Mutational studies have also identified a number of Arabidopsis mutants defective in leaf venation pattern or vascular tissue organization in stems. Genetic evidence suggests that the vascular tissue organization is regulated by the same positional information that determines organ polarity.

  6. Mice lacking Ras-GRF1 show contextual fear conditioning but not spatial memory impairments: convergent evidence from two independently generated mouse mutant lines

    Directory of Open Access Journals (Sweden)

    Raffaele ed'Isa

    2011-12-01

    Full Text Available Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning the Brambilla’s mice with a third mouse line (GENA53 in which a nonsense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in the Brambilla’s mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdalar functions but possibly to some distinct hippocampal connections specific to

  7. Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis1[W

    Science.gov (United States)

    Lozano-Juste, Jorge; León, José

    2010-01-01

    Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. Despite its reported regulatory functions, it remains unclear how NO is synthesized in plants. We have generated a triple nia1nia2noa1-2 mutant that is impaired in nitrate reductase (NIA/NR)- and Nitric Oxide-Associated1 (AtNOA1)-mediated NO biosynthetic pathways. NO content in roots of nia1nia2 and noa1-2 plants was lower than in wild-type plants and below the detection limit in nia1nia2noa1-2 plants. NIA/NR- and AtNOA1-mediated biosynthesis of NO were thus active and responsible for most of the NO production in Arabidopsis (Arabidopsis thaliana). The nia1nia2noa1-2 plants displayed reduced size, fertility, and seed germination potential but increased dormancy and resistance to water deficit. The increasing deficiency in NO of nia1nia2, noa1-2, and nia1nia2noa1-2 plants correlated with increased seed dormancy, hypersensitivity to abscisic acid (ABA) in seed germination and establishment, as well as dehydration resistance. In nia1nia2noa1-2 plants, enhanced drought tolerance was due to a very efficient stomata closure and inhibition of opening by ABA, thus uncoupling NO from ABA-triggered responses in NO-deficient guard cells. The NO-deficient mutants in NIA/NR- and AtNOA1-mediated pathways in combination with the triple mutant will be useful tools to functionally characterize the role of NO and the contribution of both biosynthetic pathways in regulating plant development and defense. PMID:20007448

  8. Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis.

    Science.gov (United States)

    Lozano-Juste, Jorge; León, José

    2010-02-01

    Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. Despite its reported regulatory functions, it remains unclear how NO is synthesized in plants. We have generated a triple nia1nia2noa1-2 mutant that is impaired in nitrate reductase (NIA/NR)- and Nitric Oxide-Associated1 (AtNOA1)-mediated NO biosynthetic pathways. NO content in roots of nia1nia2 and noa1-2 plants was lower than in wild-type plants and below the detection limit in nia1nia2noa1-2 plants. NIA/NR- and AtNOA1-mediated biosynthesis of NO were thus active and responsible for most of the NO production in Arabidopsis (Arabidopsis thaliana). The nia1nia2noa1-2 plants displayed reduced size, fertility, and seed germination potential but increased dormancy and resistance to water deficit. The increasing deficiency in NO of nia1nia2, noa1-2, and nia1nia2noa1-2 plants correlated with increased seed dormancy, hypersensitivity to abscisic acid (ABA) in seed germination and establishment, as well as dehydration resistance. In nia1nia2noa1-2 plants, enhanced drought tolerance was due to a very efficient stomata closure and inhibition of opening by ABA, thus uncoupling NO from ABA-triggered responses in NO-deficient guard cells. The NO-deficient mutants in NIA/NR- and AtNOA1-mediated pathways in combination with the triple mutant will be useful tools to functionally characterize the role of NO and the contribution of both biosynthetic pathways in regulating plant development and defense.

  9. Reference: 12 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ne [Met]) into gaseous Se forms (e.g. dimethylselenide), is a potentially important means of re...moving Se from contaminated environments. Before attempting to genetically enhance the efficie...ts rate-limiting steps. The present research tested the hypothesis that S-adenosy...l-L-Met:L-Met S-methyltransferase (MMT) is the enzyme responsible for the methylation of Se-Met to Se-methyl...he lack of MMT in the Arabidopsis T-DNA mutant plant resulted in an almost comple

  10. Arabidopsis RecQsim, a plant-specific member of the RecQ helicase family, can suppress the MMS hypersensitivity of the yeast sgs1 mutant

    NARCIS (Netherlands)

    Bagherieh-Najjar, MB; de Vries, OMH; Kroon, JTM; Wright, EL; Elborough, KM; Hille, J; Dijkwel, PP

    2003-01-01

    The Arabidopsis genome contains seven genes that belong to the RecQ family of ATP-dependent DNA helicases. RecQ members in Saccharomyces cerevisiae (SGS1) and man (WRN, BLM and RecQL4) are involved in DNA recombination, repair and genome stability maintenance, but little is known about the function

  11. Hydrogen Peroxide-induced Cell Death in Arabidopsis : Transcriptional and Mutant Analysis Reveals a Role of an Oxoglutarate-dependent Dioxygenase Gene in the Cell Death Process

    NARCIS (Netherlands)

    Gechev, Tsanko S.; Minkov, Ivan N.; Hille, Jacques

    2005-01-01

    Hydrogen peroxide is a major regulator of plant programmed cell death (PCD) but little is known about the downstream genes from the H2O2-signaling network that mediate the cell death. To address this question, a novel system for studying H2O2-induced programmed cell death in Arabidopsis thaliana was

  12. Staphylococcus aureus mutants lacking cell wall-bound protein A found in isolates from bacteraemia, MRSA infection and a healthy nasal carrier.

    Science.gov (United States)

    Sørum, Marit; Sangvik, Maria; Stegger, Marc; Olsen, Renate S; Johannessen, Mona; Skov, Robert; Sollid, Johanna U E

    2013-02-01

    Staphylococcus aureus is a major human pathogen and a multitude of virulence factors enables it to cause infections, from superficial lesions to life-threatening systemic conditions. Staphylococcal protein A (SpA) is a surface protein contributing to S. aureus pathogenesis by interfering with immune responses and activating inflammation. Seven isolates with frameshift mutations in the spa repeat region were investigated to determine whether these mutations lead to truncation and secretion of SpA into the extracellular environment. Five isolates originated from blood cultures, one from an MRSA infection and one from a persistent nasal carrier. Full-length spa genes from the seven isolates were sequenced, and Western blot experiments were performed to localize SpA. Three isolates had identical deviating 25-bp spa repeats, but all isolates displayed different repeat successions. The DNA sequence revealed that the frameshift mutations created premature stop codons in all seven isolates, resulting in truncated SpA of different lengths, however, all lacking the XC region with the C-terminal sorting signal. SpA was detected by Western blot in six of the seven isolates, mainly extracellularly. Our findings demonstrate that S. aureus isolates with truncated SpA, not anchored to the cell wall, can still be found in bacteraemia, infection and among carriers.

  13. A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism.

    Science.gov (United States)

    Vriet, Cécile; Welham, Tracey; Brachmann, Andreas; Pike, Marilyn; Pike, Jodie; Perry, Jillian; Parniske, Martin; Sato, Shusei; Tabata, Satoshi; Smith, Alison M; Wang, Trevor L

    2010-10-01

    The metabolism of starch is of central importance for many aspects of plant growth and development. Information on leaf starch metabolism other than in Arabidopsis (Arabidopsis thaliana) is scarce. Furthermore, its importance in several agronomically important traits exemplified by legumes remains to be investigated. To address this issue, we have provided detailed information on the genes involved in starch metabolism in Lotus japonicus and have characterized a comprehensive collection of forward and TILLING (for Targeting Induced Local Lesions IN Genomes) reverse genetics mutants affecting five enzymes of starch synthesis and two enzymes of starch degradation. The mutants provide new insights into the structure-function relationships of ADP-glucose pyrophosphorylase and glucan, water dikinase1 in particular. Analyses of the mutant phenotypes indicate that the pathways of leaf starch metabolism in L. japonicus and Arabidopsis are largely conserved. However, the importance of these pathways for plant growth and development differs substantially between the two species. Whereas essentially starchless Arabidopsis plants lacking plastidial phosphoglucomutase grow slowly relative to wild-type plants, the equivalent mutant of L. japonicus grows normally even in a 12-h photoperiod. In contrast, the loss of GLUCAN, WATER DIKINASE1, required for starch degradation, has a far greater effect on plant growth and fertility in L. japonicus than in Arabidopsis. Moreover, we have also identified several mutants likely to be affected in new components or regulators of the pathways of starch metabolism. This suite of mutants provides a substantial new resource for further investigations of the partitioning of carbon and its importance for symbiotic nitrogen fixation, legume seed development, and perenniality and vegetative regrowth.

  14. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing

    Directory of Open Access Journals (Sweden)

    Stephan B Jekat

    2013-07-01

    Full Text Available Structural phloem proteins (P-proteins are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently evidenced to be encoded by the widespread SEO gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing. 

  15. Isolation and characterization of the Arabidopsis heat-intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance.

    Science.gov (United States)

    Wu, Shin-Jye; Wang, Lian-Chin; Yeh, Ching-Hui; Lu, Chun-An; Wu, Shaw-Jye

    2010-06-01

    *The Arabidopsis heat-intolerant 2 (hit2) mutant was isolated on the basis of its impaired ability to withstand moderate heat stress (37 degrees C). Determination of the genetic mutation that underlies the hit2 thermosensitive phenotype allowed better understanding of the mechanisms by which plants cope with heat stress. *Genetic analysis revealed that hit2 is a single recessive mutation. Map-based cloning was used to identify the hit2 locus. The response of hit2 to other types of heat stress was also investigated to characterize the protective role of HIT2. *hit2 was defective in basal but not in acquired thermotolerance. hit2 was sensitive to methyl viologen-induced oxidative stress, and the survival of hit2 seedlings in response to heat stress was affected by light conditions. The mutated locus was located at the EXPORTIN1A (XPO1A) gene, which encodes a nuclear transport receptor. Two T-DNA insertion lines, xpo1a-1 and xpo1a-3, exhibited the same phenotypes as hit2. *The results provide evidence that Arabidopsis XPO1A is dispensable for normal plant growth and development but is essential for thermotolerance, in part by mediating the protection of plants against heat-induced oxidative stress.

  16. The plastid redox insensitive 2 mutant of Arabidopsis is impaired in PEP activity and high light-dependent plastid redox signalling to the nucleus

    DEFF Research Database (Denmark)

    Kindgren, Peter; Kremnev, Dmitry; Blanco, Nicolás E

    2012-01-01

    involved in redox-mediated retrograde signalling. The allelic mutants prin2-1 and prin2-2 demonstrated a misregulation of photosynthesis-associated nuclear gene expression in response to excess light, and an inhibition of photosynthetic electron transport. As a consequence of the misregulation of LHCB1...... is required for full expression of genes transcribed by the plastid-encoded RNA polymerase (PEP). Similarly to the prin2 mutants, the ys1 mutant with impaired PEP activity also demonstrated a misregulation of LHCB1.1 and LHCB2.4 expression in response to excess light, suggesting a direct role for PEP activity...

  17. Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis.

    Science.gov (United States)

    Noshi, Masahiro; Hatanaka, Risa; Tanabe, Noriaki; Terai, Yusuke; Maruta, Takanori; Shigeoka, Shigeru

    2016-05-01

    Chloroplasts are a significant site for reactive oxygen species production under illumination and, thus, possess a well-organized antioxidant system involving ascorbate. Ascorbate recycling occurs in different manners in this system, including a dehydroascorbate reductase (DHAR) reaction. We herein investigated the physiological significance of DHAR3 in photo-oxidative stress tolerance in Arabidopsis. GFP-fused DHAR3 protein was targeted to chloroplasts in Arabidopsis leaves. A DHAR3 knockout mutant exhibited sensitivity to high light (HL). Under HL, the ascorbate redox states were similar in mutant and wild-type plants, while total ascorbate content was significantly lower in the mutant, suggesting that DHAR3 contributes, at least to some extent, to ascorbate recycling. Activation of monodehydroascorbate reductase occurred in dhar3 mutant, which might compensate for the lack of DHAR3. Interestingly, glutathione oxidation was consistently inhibited in dhar3 mutant. These findings indicate that DHAR3 regulates both ascorbate and glutathione redox states to acclimate to HL.

  18. Reference: 22 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available eath. To understand the molecular mechanism of cell death in lesion mimic mutants, we isolated a lesion init...iation 1 (len1) mutant by a T-DNA tagging method. The len1 mutant develops lesions on its leaves and express...h in Arabidopsis. Deletion of a chaperonin 60 beta gene leads to cell death in the Arabidopsis lesion initia

  19. Sequence and characterization of two Arabidopsis thaliana cDNAs isolated by functional complementation of a yeast gln3 gdh1 mutant.

    Science.gov (United States)

    Truong, H N; Caboche, M; Daniel-Vedele, F

    1997-06-30

    We have isolated two Arabidopsis thaliana cDNAs by complementation of a yeast gln3 gdh1 strain that is affected in the regulation of nitrogen metabolism. The two clones (RGA1 and RGA2) are homologous to each other and to the SCARECROW (SCR) gene that is involved in regulating an asymmetric cell division in plants. RGA1, RGA2 and SCR share several structural features and may define a new family of genes. RGA1 and RGA2 have been mapped, respectively, to chromosome II and I, and their expression in plant is constitutive.

  20. Ectopic Expression of CsCTR1, a Cucumber CTR-Like Gene, Attenuates Constitutive Ethylene Signaling in an Arabidopsis ctr1-1 Mutant and Expression Pattern Analysis of CsCTR1 in Cucumber (Cucumis sativus

    Directory of Open Access Journals (Sweden)

    Beibei Bie

    2014-09-01

    Full Text Available The gaseous plant hormone ethylene regulates many aspects of plant growth, development and responses to the environment. Constitutive triple response 1 (CTR1 is a central regulator involved in the ethylene signal transduction pathway. To obtain a better understanding of this particular pathway in cucumber, the cDNA-encoding CTR1 (designated CsCTR1 was isolated from cucumber. A sequence alignment and phylogenetic analyses revealed that CsCTR1 has a high degree of homology with other plant CTR1 proteins. The ectopic expression of CsCTR1 in the Arabidopsis ctr1-1 mutant attenuates constitutive ethylene signaling of this mutant, suggesting that CsCTR1 indeed performs its function as negative regulator of the ethylene signaling pathway. CsCTR1 is constitutively expressed in all of the examined cucumber organs, including roots, stems, leaves, shoot apices, mature male and female flowers, as well as young fruits. CsCTR1 expression gradually declined during male flower development and increased during female flower development. Additionally, our results indicate that CsCTR1 can be induced in the roots, leaves and shoot apices by external ethylene. In conclusion, this study provides a basis for further studies on the role of CTR1 in the biological processes of cucumber and on the molecular mechanism of the cucumber ethylene signaling pathway.

  1. The Chloroplast Import Receptor Toc90 Partially Restores the Accumulation of Toc159 Client Proteins in the Arabidopsis thaliana ppi2 Mutant

    Institute of Scientific and Technical Information of China (English)

    Sibylle Infanger; Sylvain Bischof; Andreas Hiltbrunner; Birgit Agne; Sacha Baginsky; Felix Kessler

    2011-01-01

    Successful import of hundreds of nucleus-encoded proteins is essential for chloroplast biogenesis. The import of cytosolic precursor proteins relies on the Toc- (translocon at the outer chloroplast membrane) and Tic- (translocon at the inner chloroplast membrane) complexes. In Arabidopsis thaliana,precursor recognition is mainly mediated by outer membrane receptors belonging to two gene families: Toc34/33 and Toc159/132/120/90. The role in import and precursor selectivity of these receptors has been intensively studied,but the function of Toc90 still remains unclear. Here,we report the ability of Toc90 to support the import of Toc159 client proteins. We show that the overexpression of Toc90 partially complements the albino knockout of Toc159 and restores photoautotrophic growth. Several lines of evidence including proteome profiling demonstrate the import and accumulation of proteins essential for chloroplast biogenesis and functionality.

  2. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid.

    Science.gov (United States)

    Chen, Jui-Hung; Jiang, Han-Wei; Hsieh, En-Jung; Chen, Hsing-Yu; Chien, Ching-Te; Hsieh, Hsu-Liang; Lin, Tsan-Piao

    2012-01-01

    Although glutathione S-transferases (GSTs) are thought to play major roles in oxidative stress metabolism, little is known about the regulatory functions of GSTs. We have reported that Arabidopsis (Arabidopsis thaliana) GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17; At1g10370) participates in light signaling and might modulate various aspects of development by affecting glutathione (GSH) pools via a coordinated regulation with phytochrome A. Here, we provide further evidence to support a negative role of AtGSTU17 in drought and salt stress tolerance. When AtGSTU17 was mutated, plants were more tolerant to drought and salt stresses compared with wild-type plants. In addition, atgstu17 accumulated higher levels of GSH and abscisic acid (ABA) and exhibited hyposensitivity to ABA during seed germination, smaller stomatal apertures, a lower transpiration rate, better development of primary and lateral root systems, and longer vegetative growth. To explore how atgstu17 accumulated higher ABA content, we grew wild-type plants in the solution containing GSH and found that they accumulated ABA to a higher extent than plants grown in the absence of GSH, and they also exhibited the atgstu17 phenotypes. Wild-type plants treated with GSH also demonstrated more tolerance to drought and salt stresses. Furthermore, the effect of GSH on root patterning and drought tolerance was confirmed by growing the atgstu17 in solution containing l-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH biosynthesis. In conclusion, the atgstu17 phenotype can be explained by the combined effect of GSH and ABA. We propose a role of AtGSTU17 in adaptive responses to drought and salt stresses by functioning as a negative component of stress-mediated signal transduction pathways.

  3. Elevated salicylic acid levels conferred by increased expression of ISOCHORISMATE SYNTHASE 1 contribute to hyperaccumulation of SUMO1 conjugates in the Arabidopsis mutant early in short days 4.

    Science.gov (United States)

    Villajuana-Bonequi, Mitzi; Elrouby, Nabil; Nordström, Karl; Griebel, Thomas; Bachmair, Andreas; Coupland, George

    2014-07-01

    Post-translational modification of proteins by attachment of small ubiquitin-like modifier (SUMO) is essential for plant growth and development. Mutations in the SUMO protease early in short days 4 (ESD4) cause hyperaccumulation of conjugates formed between SUMO and its substrates, and phenotypically are associated with extreme early flowering and impaired growth. We performed a suppressor mutagenesis screen of esd4 and identified a series of mutants called suppressor of esd4 (sed), which delay flowering, enhance growth and reduce hyperaccumulation of SUMO conjugates. Genetic mapping and genome sequencing indicated that one of these mutations (sed111) is in the gene salicylic acid induction-deficient 2 (SID2), which encodes ISOCHORISMATE SYNTHASE I, an enzyme required for biosynthesis of salicylic acid (SA). Analyses showed that compared with wild-type plants, esd4 contains higher levels of SID2 mRNA and about threefold more SA, whereas sed111 contains lower SA levels. Other sed mutants also contain lower SA levels but are not mutant for SID2, although most reduce SID2 mRNA levels. Therefore, higher SA levels contribute to the small size, early flowering and elevated SUMO conjugate levels of esd4. Our results support previous data indicating that SUMO homeostasis influences SA biosynthesis in wild-type plants, and also demonstrate that elevated levels of SA strongly increase the abundance of SUMO conjugates.

  4. Characterization of the Ubiquitin E2 Enzyme Variant Gene Family in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yu Zhang; Pei Wen; On-Sun Lau; Xing-Wang Deng

    2007-01-01

    Ubiquitin E2 enzyme variant (UEV) proteins are similar to ubiquitin-conjugating enzyme (E2) in both sequence and structure, but the lack of a catalytic cysteine residue renders them incapable of forming a thiolester linkage with ubiquitin. While the functional roles of several UEVs have been defined in yeast and animal systems, Arabidopsis COP10, a photomorphogenesis repressor, is the only UEV characterized in plants. Phylogenetic analysis revealed that the eight Arabidopsis UEV genes belong to three subfamilies.The expression of those genes is supported by either the presence of ESTs or RT-PCR analysis. We also characterized the other members of the COP10 subfamily, UEV2. Semi-quantitative RT-PCR analysis indicated that the UEV2 transcripts can be detected in most organs of Arabidopsis. Analysis of UEV2::GUS transgenic lines also showed its ubiquitous expression in nearly all the developmental stages of Arabidopsis.Transient expression analysis indicated that the sGFP-UEV2 fusion protein can localize to both the cytoplasm and nucleus. A T-DNA insertion mutant, uev2-1, which abolished the transcription of UEV2, displays no visible phenotype. Further, the cop10-4 uev2-1 double mutant exhibits the same phenotype as the cop10-4mutant in darkness. UEV2 is therefore not functionally redundant with COP10.

  5. Loss-of-function mutants and overexpression lines of the Arabidopsis cyclin CYCA1;2/Tardy Asynchronous Meiosis exhibit different defects in prophase-i meiocytes but produce the same meiotic products.

    Directory of Open Access Journals (Sweden)

    Yixing Wang

    Full Text Available In Arabidopsis, loss-of-function mutations in the A-type cyclin CYCA1;2/Tardy Asynchronous Meiosis (TAM gene lead to the production of abnormal meiotic products including triads and dyads. Here we report that overexpression of TAM by the ASK1:TAM transgene also led to the production of triads and dyads in meiosis, as well as shriveled seeds, in a dominant fashion. However, the partial loss-of-function mutant tam-1, an ASK1:TAM line, and the wild type differed in dynamic changes in chromosome thread thickness from zygotene to diplotene. We also found that the pericentromeric heterochromatin regions in male meiocytes in tam-1 and tam-2 (a null allele frequently formed a tight cluster at the pachytene and diplotene stages, in contrast to the infrequent occurrences of such clusters in the wild type and the ASK1:TAM line. Immunolocalization studies of the chromosome axial component ASY1 revealed that ASY1 was highly expressed at the appropriate male meiotic stages but not localized to the chromosomes in tam-2. The level of ASY1, however, was greatly reduced in another ASK1:TAM line with much overexpressed TAM. Our results indicate that the reduction and increase in the activity of TAM differentially affect chromosomal morphology and the action of ASY1 in prophase I. Based on these results, we propose that either the different meiotic defects or a common defect such as missing ASY1 on the chromosomal axes triggers a hitherto uncharacterized cell cycle checkpoint in the male meiocytes in the tam mutants and ASK1:TAM lines, leading to the production of the same abnormal meiotic products.

  6. Is the cost of herbicide resistance expressed in the breakdown of the relationships between characters? A case study using synthetic-auxin-resistant Arabidopsis thaliana mutants.

    Science.gov (United States)

    Roux, Fabrice; Reboud, Xavier

    2005-04-01

    A mutation endowing herbicide resistance is often found to induce a parallel morphological or fitness penalty. To test whether such 'cost' of resistance to herbicides is expressed through lower resource acquisition, changes in resource allocation, or both, is of ecological significance. Here, we analysed 12 morphological traits in 900 plants covering three herbicide resistance mutations at genes AUX1 , AXR1 and AXR2 in the model species Arabidopsis thaliana . Comparing these 2,4-D herbicide-resistant homozygous (RR) and heterozygous (RS) plants to homozygous susceptible (SS) plants, this analysis estimates the dominance level of the resistance allele on morphology. We also demonstrated that the herbicide resistance cost was primarily expressed as a change in resource acquisition (62.1-94% of the analysed traits). Although AUX1 , AXR1 and AXR2 genes act in the same metabolic pathway of auxin response, each resistance factor was found to have its own unique signature in the way the cost was expressed. Furthermore, no link was observed between the absolute fitness penalty and the respective modifications of resource acquisition and/or resource allocation in the resistant plants. These results and their implications for herbicide resistance spread and establishment are discussed.

  7. Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene.

    OpenAIRE

    2004-01-01

    Genes with unstable transcripts often encode proteins that play important regulatory roles. ATL2 is a member of a multigene family coding highly related RING-H2 zinc-finger proteins that may function as E3 ubiquitin ligases. ATL2 mRNA accumulation occurs rapidly and transiently after incubation with elicitors of pathogen response. We screened 50,000 M(2) families from a line that carries a fusion of pATL2 to the GUS reporter gene and isolated five mutants, which we named eca (expresión consti...

  8. Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis.

    Science.gov (United States)

    Goubet, Florence; Barton, Christopher J; Mortimer, Jennifer C; Yu, Xiaolan; Zhang, Zhinong; Miles, Godfrey P; Richens, Jenny; Liepman, Aaron H; Seffen, Keith; Dupree, Paul

    2009-11-01

    Mannans are hemicellulosic polysaccharides that have previously been implicated as structural constituents of cell walls and as storage reserves but which may serve other functions during plant growth and development. Several members of the Arabidopsis cellulose synthase-like A (CSLA) family have previously been shown to synthesise mannan polysaccharides in vitro when heterologously expressed. It has also been found that CSLA7 is essential for embryogenesis, suggesting a role for the CSLA7 product in development. To determine whether the CSLA proteins are responsible for glucomannan synthesis in vivo, we characterised insertion mutants in each of the nine Arabidopsis CSLA genes and several double and triple mutant combinations. csla9 mutants showed substantially reduced glucomannan, and triple csla2csla3csla9 mutants lacked detectable glucomannan in stems. Nevertheless, these mutants showed no alteration in stem development or strength. Overexpression of CSLA2, CSLA7 and CSLA9 increased the glucomannan content in stems. Increased glucomannan synthesis also caused defective embryogenesis, leading to delayed development and occasional embryo death. The embryo lethality of csla7 was complemented by overexpression of CSLA9, suggesting that the glucomannan products are similar. We conclude that CSLA2, CSLA3 and CSLA9 are responsible for the synthesis of all detectable glucomannan in Arabidopsis stems, and that CSLA7 synthesises glucomannan in embryos. These results are inconsistent with a substantial role for glucomannan in wall strength in Arabidopsis stems, but indicate that glucomannan levels affect embryogenesis. Together with earlier heterologous expression studies, the glucomannan deficiency observed in csla mutant plants demonstrates that the CSLA family encodes glucomannan synthases.

  9. Reference: 417 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available act redundantly to control cotyledon separation in Arabidopsis. In order to identify novel regulators of th...nction cuc1 and cuc3 mutants, suggesting a general requirement for this ATPase in cotyledon separation

  10. Reference: 789 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ylakoid membranes. Microarray analysis of the chl27-t mutant showed repression of numerous nuclear genes involved in photosynthesis...d CHL27 proteins. Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene exp

  11. Reference: 343 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available the characterization of a T-DNA insertion mutant of the Arabidopsis CAP-C gene. Analysis of the progeny of selfe...matin was observed between segregating mitotic chromosomes in pollen produced by selfed heterozygotes. Addit

  12. Reference: 30 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ponse to various biotic and abiotic stresses. However the physiological role of t...his pathway remains obscure. To elucidate its role in plants, we analyzed Arabidopsis T-DNA knockout mutants

  13. 台盼蓝染色鉴定拟南芥sdl1突变体的细胞死亡%Identification of Cell Death of Arabidopsis Thaliana Mutant sdl1 by Trypan Blue Staining

    Institute of Scientific and Technical Information of China (English)

    支添添; 周舟; 韩成云; 任春梅

    2013-01-01

    Phenomenon of leaves wilting and albinism of the Arabidopsis thaliana Mutant sdl1 seedlings was observed when grew for 5-8 days under 16 hours dark/8 hours light condition.The death status was studied by Trypan blue staining,and the results showed that sdl1 leaves couldn' t be stained when totally whitened,so Trypan blue staining could identify sdll cell death just in the early stage of cell death.%拟南芥突变体sdl1在光周期为16 h黑暗/8 h光照条件下生长叶片出现先萎蔫后白化现象,采用台盼蓝染色的方法研究萎蔫及白化苗的死亡情况,结果证实突变体sdl1萎蔫处发生细胞死亡,但细胞完全死亡(完全白化)后不能被染色,所以台盼蓝染色只能对突变体sdl1细胞死亡的早期进行鉴定.

  14. A Truncated Arabidopsis NUCLEOSOME ASSEMBLY PROTEIN 1,AtNAP1;3T,Alters Plant Growth Responses to Abscisic Acid and Salt in the Atnap 1;3-2 Mutant

    Institute of Scientific and Technical Information of China (English)

    Zi-Qiang Liu; Juan Gao; Ai-Wu Dong

    2009-01-01

    Chromatin remodeling is thought to have crucial roles in plant adaptive response to environmental stimulus.Here,we report that,in Arebidopsis,the evolutionarily conserved histone chaperone,NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1),is involved in plant response to abscisic acid (ABA),a phytohormone important in stress adaptation.We show that simultaneous loss-of-function of AtNAP1;1,AtNAP1;2,and AtNAP1;3 (the triple mutant m123-1) caused a slight hypersensitive response to ABA in seedling growth.Strikingly,the other triple mutant m123-2 containing a different mutant allele of AtNAP1;3,the Atnap1;3-2 allele,showed a hyposensitive response to ABA and a decreased tolerance to salt stress.This ABAhyposensitive and salt response phenotype specifically associated with the Atnap1;3-2 mutant allele.We show that this mutant allele produced a truncated protein,AtNAP1;3T,which lacks 34 amino acids at the C-terminus compared to the wild-type protein AtNAP1;3.We further show that the heterozygous plants containing the Atnap1;3-2 mutant allele as well as transgenic plants overexpressing AtNAP1;3T exhibit ABA-hyposensitive phenotype.It thus indicates that AtNAP1;3T functions as a dominant negative factor in ABA response.The expression of some ABA-responsive genes,including genes encoding protein kinases and transcription regulators,was found perturbed in the mutant and in the AtNAP1;3T transgenic plants.Taken together,our study uncovered AtNAP1 proteins as positive regulators and AtNAP1;3T as a negative regulator in ABA signaling pathways,providing a novel link of chromatin remodeling to hormonal and stress responses.

  15. Ubiquitin-related modifiers of Arabidopsis thaliana influence root development.

    Directory of Open Access Journals (Sweden)

    Florian John

    Full Text Available Ubiquitins are small peptides that allow for posttranslational modification of proteins. Ubiquitin-related modifier (URM proteins belong to the class of ubiquitin-like proteins. A primary function of URM proteins has been shown to be the sulfur transfer reaction leading to thiolation of tRNAs, a process that is important for accurate and effective protein translation. Recent analyses revealed that the Arabidopsis genome codes for two URM proteins, URM11 and URM12, which both are active in the tRNA thiolation process. Here, we show that URM11 and URM12 have overlapping expression patterns and are required for tRNA thiolation. The characterization of urm11 and urm12 mutants reveals that the lack of tRNA thiolation induces changes in general root architecture by influencing the rate of lateral root formation. In addition, they synergistically influence root hair cell growth. During the sulfur transfer reaction, URM proteins of different organisms interact with a thiouridylase, a protein-protein interaction that also takes place in Arabidopsis, since URM11 and URM12 interact with the Arabidopsis thiouridylase ROL5. Hence, the sulfur transfer reaction is conserved between distantly related species such as yeast, humans, and plants, and in Arabidopsis has an impact on root development.

  16. Degradation of Glucan Primers in the Absence of Starch Synthase 4 Disrupts Starch Granule Initiation in Arabidopsis.

    Science.gov (United States)

    Seung, David; Lu, Kuan-Jen; Stettler, Michaela; Streb, Sebastian; Zeeman, Samuel C

    2016-09-23

    Arabidopsis leaf chloroplasts typically contain five to seven semicrystalline starch granules. It is not understood how the synthesis of each granule is initiated or how starch granule number is determined within each chloroplast. An Arabidopsis mutant lacking the glucosyl-transferase, STARCH SYNTHASE 4 (SS4) is impaired in its ability to initiate starch granules; its chloroplasts rarely contain more than one large granule, and the plants have a pale appearance and reduced growth. Here we report that the chloroplastic α-amylase AMY3, a starch-degrading enzyme, interferes with granule initiation in the ss4 mutant background. The amy3 single mutant is similar in phenotype to the wild type under normal growth conditions, with comparable numbers of starch granules per chloroplast. Interestingly, the ss4 mutant displays a pleiotropic reduction in the activity of AMY3. Remarkably, complete abolition of AMY3 (in the amy3 ss4 double mutant) increases the number of starch granules produced in each chloroplast, suppresses the pale phenotype of ss4, and nearly restores normal growth. The amy3 mutation also restores starch synthesis in the ss3 ss4 double mutant, which lacks STARCH SYNTHASE 3 (SS3) in addition to SS4. The ss3 ss4 line is unable to initiate any starch granules and is thus starchless. We suggest that SS4 plays a key role in granule initiation, allowing it to proceed in a way that avoids premature degradation of primers by starch hydrolases, such as AMY3.

  17. Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway.

    Science.gov (United States)

    Guevara-García, Arturo; San Román, Carolina; Arroyo, Analilia; Cortés, María Elena; de la Luz Gutiérrez-Nava, María; León, Patricia

    2005-02-01

    The biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the two building blocks for isoprenoid biosynthesis, occurs by two independent pathways in plants. The mevalonic pathway operates in the cytoplasm, and the methyl-d-erythritol 4-phosphate (MEP) pathway operates in plastids. Plastidic isoprenoids play essential roles in plant growth and development. Plants must regulate the biosynthesis of isoprenoids to fulfill metabolic requirements in specific tissues and developmental conditions. The regulatory events that modulate the plant MEP pathway are not well understood. In this article, we demonstrate that the CHLOROPLAST BIOGENESIS6 (CLB6) gene, previously shown to be required for chloroplast development, encodes 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase, the last-acting enzyme of the MEP pathway. Comparative analysis of the expression levels of all MEP pathway gene transcripts and proteins in the clb6-1 mutant background revealed that posttranscriptional control modulates the levels of different proteins in this central pathway. Posttranscriptional regulation was also found during seedling development and during fosmidomycin inhibition of the pathway. Our results show that the first enzyme of the pathway, 1-deoxy-d-xylulose 5-phosphate synthase, is feedback regulated in response to the interruption of the flow of metabolites through the MEP pathway.

  18. Characterization of Arabidopsis 6-phosphogluconolactonase T-DNA insertion mutants reveals an essential role for the oxidative section of the plastidic pentose phosphate pathway in plant growth and development.

    Science.gov (United States)

    Xiong, Yuqing; DeFraia, Christopher; Williams, Donna; Zhang, Xudong; Mou, Zhonglin

    2009-07-01

    Arabidopsis PGL1, PGL2, PGL4 and PGL5 are predicted to encode cytosolic isoforms of 6-phosphogluconolactonase (6PGL), whereas PGL3 is predicted to encode a 6PGL that has been shown to localize in both plastids and peroxisomes. Therefore, 6PGL may exist in the cytosol, plastids and peroxisomes. However, the function of 6PGL in these three subcellular locations has not been well defined. Here we show that PGL3 is essential, whereas PGL1, PGL2 and PGL5 are individually dispensable for plant growth and development. Knockdown of PGL3 in the pgl3 mutant leads to a dramatic decrease in plant size, a significant increase in total glucose-6-phosphate dehydrogenase activity and a marked decrease in cellular redox potential. Interestingly, the pgl3 plants exhibit constitutive pathogenesis-related gene expression and enhanced resistance to Pseudomonas syringae pv. maculicola ES4326 and Hyaloperonospora arabidopsidis Noco2. We found that although pgl3 does not spontaneously accumulate elevated levels of free salicylic acid (SA), the constitutive defense responses in pgl3 plants are almost completely suppressed by the npr1 and sid2/eds16/ics1 mutations, suggesting that the pgl3 mutation activates NPR1- and SID2/EDS16/ICS1-dependent defense responses. We demonstrate that plastidic (not peroxisomal) localization and 6PGL activity of the PGL3 protein are essential for complementing all pgl3 phenotypes, indicating that the oxidative section of the plastidic pentose phosphate pathway (PPP) is required for plant normal growth and development. Thus, pgl3 provides a useful tool not only for defining the role of the PPP in different subcellular compartments, but also for dissecting the SA/NPR1-mediated signaling pathway.

  19. Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil.

    Science.gov (United States)

    Kühnlenz, Tanja; Schmidt, Holger; Uraguchi, Shimpei; Clemens, Stephan

    2014-08-01

    Phytochelatins play a key role in the detoxification of metals in plants and many other eukaryotes. Their formation is catalysed by phytochelatin synthases (PCS) in the presence of metal excess. It appears to be common among higher plants to possess two PCS genes, even though in Arabidopsis thaliana only AtPCS1 has been demonstrated to confer metal tolerance. Employing a highly sensitive quantification method based on ultraperformance electrospray ionization quadrupole time-of-flight mass spectrometry, we detected AtPCS2-dependent phytochelatin formation. Overexpression of AtPCS2 resulted in constitutive phytochelatin accumulation, i.e. in the absence of metal excess, both in planta and in a heterologous system. This indicates distinct enzymatic differences between AtPCS1 and AtPCS2. Furthermore, AtPCS2 was able to partially rescue the Cd hypersensitivity of the AtPCS1-deficient cad1-3 mutant in a liquid seedling assay, and, more importantly, when plants were grown on soil spiked with Cd to a level that is close to what can be found in agricultural soils. No rescue was found in vertical-plate assays, the most commonly used method to assess metal tolerance. Constitutive AtPCS2-dependent phytochelatin synthesis suggests a physiological role of AtPCS2 other than metal detoxification. The differences observed between wild-type plants and cad1-3 on Cd soil demonstrated: (i) the essentiality of phytochelatin synthesis for tolerating levels of Cd contamination that can naturally be encountered by plants outside of metal-rich habitats, and (ii) a contribution to Cd accumulation under these conditions.

  20. Two Arabidopsis ADP-glucose pyrophosphorylase large subunits (APL1 and APL2) are catalytic.

    Science.gov (United States)

    Ventriglia, Tiziana; Kuhn, Misty L; Ruiz, Ma Teresa; Ribeiro-Pedro, Marina; Valverde, Federico; Ballicora, Miguel A; Preiss, Jack; Romero, José M

    2008-09-01

    ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (alpha(2)beta(2)) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1-APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta.

  1. Two Arabidopsis ADP-Glucose Pyrophosphorylase Large Subunits (APL1 and APL2) Are Catalytic1

    Science.gov (United States)

    Ventriglia, Tiziana; Kuhn, Misty L.; Ruiz, Ma Teresa; Ribeiro-Pedro, Marina; Valverde, Federico; Ballicora, Miguel A.; Preiss, Jack; Romero, José M.

    2008-01-01

    ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (α2β2) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1–APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta. PMID:18614708

  2. The Early-Acting Peroxin PEX19 Is Redundantly Encoded, Farnesylated, and Essential for Viability in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Margaret M McDonnell

    Full Text Available Peroxisomes are single-membrane bound organelles that are essential for normal development in plants and animals. In mammals and yeast, the peroxin (PEX proteins PEX3 and PEX19 facilitate the early steps of peroxisome membrane protein (PMP insertion and pre-peroxisome budding from the endoplasmic reticulum. The PEX3 membrane protein acts as a docking site for PEX19, a cytosolic chaperone for PMPs that delivers PMPs to the endoplasmic reticulum or peroxisomal membrane. PEX19 is farnesylated in yeast and mammals, and we used immunoblotting with prenylation mutants to show that PEX19 also is fully farnesylated in wild-type Arabidopsis thaliana plants. We examined insertional alleles disrupting either of the two Arabidopsis PEX19 isoforms, PEX19A or PEX19B, and detected similar levels of PEX19 protein in the pex19a-1 mutant and wild type; however, PEX19 protein was nearly undetectable in the pex19b-1 mutant. Despite the reduction in PEX19 levels in pex19b-1, both pex19a-1 and pex19b-1 single mutants lacked notable peroxisomal β-oxidation defects and displayed normal levels and localization of peroxisomal matrix and membrane proteins. The pex19a-1 pex19b-1 double mutant was embryo lethal, indicating a redundantly encoded critical role for PEX19 during embryogenesis. Expressing YFP-tagged versions of either PEX19 isoform rescued this lethality, confirming that PEX19A and PEX19B act redundantly in Arabidopsis. We observed that pex19b-1 enhanced peroxisome-related defects of a subset of peroxin-defective mutants, supporting a role for PEX19 in peroxisome function. Together, our data indicate that Arabidopsis PEX19 promotes peroxisome function and is essential for viability.

  3. A distant coilin homologue is required for the formation of cajal bodies in Arabidopsis.

    Science.gov (United States)

    Collier, Sarah; Pendle, Alison; Boudonck, Kurt; van Rij, Tjeerd; Dolan, Liam; Shaw, Peter

    2006-07-01

    Cajal bodies (CBs) are subnuclear bodies that are widespread in eukaryotes, being found in mammals, many other vertebrates and in all plant species so far examined. They are mobile structures, moving, fusing, and budding within the nucleus. Here we describe a screen for Arabidopsis mutants with altered CBs and describe mutants that have smaller Cajal bodies (ncb-2, ncb-3), lack them altogether (ncb-1), have increased numbers of CBs (pcb) or have flattened CBs (ccb). We have identified the gene affected in the ncb mutants as a distant homolog of the vertebrate gene that encodes coilin (At1g13030) and have termed the resulting protein Atcoilin. A T-DNA insertional mutant in this gene (ncb-4) also lacks Cajal bodies. Overexpression of Atcoilin cDNA in ncb-1 restores Cajal bodies, which recruit U2B'' as in the wild type, but which are, however, much larger than in the wild type. Thus we have shown that At1g13030 is required for Cajal body formation in Arabidopsis, and we hypothesize that the level of its expression is correlated with Cajal body size. The Atcoilin gene is unaffected in pcb and ccb, suggesting that other genes can also affect CBs.

  4. Nif- Hup- mutants of Rhizobium japonicum.

    OpenAIRE

    Moshiri, F; Stults, L; Novak, P.; Maier, R J

    1983-01-01

    Two H2 uptake-negative (Hup-) Rhizobium japonicum mutants were obtained that also lacked symbiotic N2 fixation (acetylene reduction) activity. One of the mutants formed green nodules and was deficient in heme. Hydrogen oxidation activity in this mutant could be restored by the addition of heme plus ATP to crude extracts. Bacteroid extracts from the other mutant strain lacked hydrogenase activity and activity for both of the nitrogenase component proteins. Hup+ revertants of the mutant strains...

  5. Reference: 471 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available decays, with decreased Hsps during recovery. AT of sufficient duration is critical for sessile organisms suc... C, the mutant line was more sensitive to severe heat stress than the wild type after long but not short recovery...observed in HsfA2 knockout plants after 4 h recovery or 2 h prolonged heat stress. Immunoblot analysis showe...d that Hsa32 and class I small Hsp were less abundant in the mutant than in the wild type after long recov...ach by screening for Arabidopsis (Arabidopsis thaliana) T-DNA insertion mutants that show decreased thermotolerance after a long reco

  6. Reference: 380 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available na et al. 2006 Jul. Plant Physiol. 141(3):870-8. Pale yellow green7-1 (pyg7-1) is a photosystem I (PSI)-defi...cient Arabidopsis (Arabidopsis thaliana) mutant. PSI subunits are synthesized in the mutant, but do not asse...h photosystems accumulate in the mutant. Deletion of Pyg7 results in severely reduced growth rates, alterati...ons in leaf coloration, and plastid ultrastructure. Pyg7 was isolated by map-based cloning and encodes a tetratrico peptide re...dent pyg7 T-DNA insertion line, pyg7-2, exhibits the same phenotype. pyg7 gene expression is light regulated

  7. Reference: 759 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available at participate in these processes are still not well known. Here, we report that a new gene, RUPTURED POLLEN GRAIN1 (RPG... in Arabidopsis (Arabidopsis thaliana). The rpg1 mutant exhibits severely reduced.... In addition, microspore rupture and cytoplasmic leakage were evident in the rpg1 mutant, which indicates i...mpaired cell integrity of the mutant microspores. RPG1 encodes an MtN3/saliva fam...ily protein that is integral to the plasma membrane. In situ hybridization analysis revealed that RPG1 is st

  8. Reduction of the cytosolic phosphoglucomutase in Arabidopsis reveals impact on plant growth, seed and root development, and carbohydrate partitioning.

    Directory of Open Access Journals (Sweden)

    Irina Malinova

    Full Text Available Phosphoglucomutase (PGM catalyses the interconversion of glucose 1-phosphate (G1P and glucose 6-phosphate (G6P and exists as plastidial (pPGM and cytosolic (cPGM isoforms. The plastidial isoform is essential for transitory starch synthesis in chloroplasts of leaves, whereas the cytosolic counterpart is essential for glucose phosphate partitioning and, therefore, for syntheses of sucrose and cell wall components. In Arabidopsis two cytosolic isoforms (PGM2 and PGM3 exist. Both PGM2 and PGM3 are redundant in function as single mutants reveal only small or no alterations compared to wild type with respect to plant primary metabolism. So far, there are no reports of Arabidopsis plants lacking the entire cPGM or total PGM activity, respectively. Therefore, amiRNA transgenic plants were generated and used for analyses of various parameters such as growth, development, and starch metabolism. The lack of the entire cPGM activity resulted in a strongly reduced growth revealed by decreased rosette fresh weight, shorter roots, and reduced seed production compared to wild type. By contrast content of starch, sucrose, maltose and cell wall components were significantly increased. The lack of both cPGM and pPGM activities in Arabidopsis resulted in dwarf growth, prematurely die off, and inability to develop a functional inflorescence. The combined results are discussed in comparison to potato, the only described mutant with lack of total PGM activity.

  9. In vitro expression and determination of phosphorylation activity of point mutants of the PKS5 kinase in Arabidopsis%拟南芥 PKS5激酶点突变体外表达与磷酸化测试

    Institute of Scientific and Technical Information of China (English)

    赵菲佚; 焦成瑾; 陈荃; 马伟超; 安建平; 呼丽萍

    2015-01-01

    PKS5(protein kinase SOS2-like 5)虽为拟南芥(Arabidopsis thaliana )中介导植物响应外界高 pH的蛋白激酶,但其关键功能结构域尚未被确定.该研究用 PCR 对 PKS5不同位置点突变形式进行克隆,并在原核系统中进行表达,得到 PKS5不同的点突变蛋白;使用激酶通用底物 MBP(myelin basic protein)及 PKS5体内特异底物 AHA2(A .thaliana isoform of the PM H +-ATPase,拟南芥质膜质子泵等位形式之一)对 PKS5点突变蛋白磷酸化活性进行了测试.结果表明:点突变 PKS5-2失去了激酶活性,PKS5-4、PKS5-5、PKS5-9自磷酸化与 MBP 磷酸化活性与 PKS5相比无差异;而与 PKS5相比,点突变 PKS5-6和 PKS5-7自磷酸化及对AHA2的磷酸化活性升高,且 PKS5-7活性高于 PKS5-6.说明 PKS5特定位置点突变改变 PKS5的自磷酸化及底物磷酸化活性水平,不同位置的点突变对其磷酸化活性的影响存在差异.研究结果可为确定 PKS5功能结构域及体内作用机理提供依据.%In Arabidopsis ,PKS5 (protein kinase SOS2-like 5),a serine-threonine kinase,involves in the response to the external high pH stress based on the study of its loss-of-function mutant.Whereas,the fine functions of the do-mains resided in PKS5 are not currently well determined.We report here the dissection of domains of PKS5 in the ac-tivity of phosphorylation against MBP(myelin basic protein)and AHA2(one of the Arabidopsis thaliana isoform of PM H+-ATPases ),which is the specific substrate of PKS5 in vivo ,using the assay of phosphorlation in vitro via expressing the distinct PKS5 mutant versions in bacteria using the PKS5 cloning from plants employing PCR ap-proach.The results showed that the point mutated PKS5-2 lost its activity,PKS5-4,PKS5-5 and PKS5-9 displayed no difference in autophosphorylation and the MBP phosphorylation.Moreover,autophosphorylation and the AHA2 phosphorylation of the point mutated PKS5-6 and PKS5-7 increased compared with PKS5 and the PKS5

  10. Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean

    Directory of Open Access Journals (Sweden)

    Sumit Rishi

    2012-06-01

    Full Text Available Abstract Background Nonhost resistance (NHR provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae. Results The P.sojaesusceptible (pss 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes. Conclusions The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of

  11. Reference: 497 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available hal albino phenotype. Rescue of tha2 mutants and tha1 tha2 double mutants by overproduction of feedback-inse...-specific expression of feedback-insensitive Thr deaminase in both tha1 and tha2 Thr aldolase mutants greatl...nsitive Thr deaminase (OMR1) shows that Gly formation by THA1 and THA2 is not essential in Arabidopsis. Seed

  12. Brucella abortus mutants lacking ATP-binding cassette transporter proteins are highly attenuated in virulence and confer protective immunity against virulent B. abortus challenge in BALB/c mice.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Park, Soyeon; Park, Bo-Kyoung; Hahn, Tae-Wook

    2016-06-01

    Brucella abortus RB51 is an attenuated vaccine strain that has been most frequently used for bovine brucellosis. Although it is known to provide good protection in cattle, it still has some drawbacks including resistance to rifampicin, residual virulence and pathogenicity in humans. Thus, there has been a continuous interest on new safe and effective bovine vaccine candidates. In the present study, we have constructed unmarked mutants by deleting singly cydD and cydC genes, which encode ATP-binding cassette transporter proteins, from the chromosome of the virulent Brucella abortus isolate from Korean cow (referred to as IVK15). Both IVK15ΔcydD and ΔcydC mutants showed increased sensitivity to metal ions, hydrogen peroxide and acidic pH, which are mimic to intracellular environment during host infection. Additionally, the mutants exhibited a significant growth defect in RAW264.7 cells and greatly attenuated in mice. Vaccination of mice with either IVK15ΔcydC or IVK15ΔcydD mutant could elicit an anti-Brucella specific immunoglobulin G (IgG) and IgG subclass responses as well as enhance the secretion of interferon-gamma, and provided better protection against challenge with B. abortus strain 2308 than with the commercial B. abortus strain RB51 vaccine. Collectively, these results suggest that both IVK15ΔcydC and IVK15ΔcydD mutants could be an attenuated vaccine candidate against B. abortus.

  13. Reference: 666 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available clarified. The cyo1 mutant in Arabidopsis thaliana has albino cotyledons but normal gre...en true leaves. Chloroplasts develop abnormally in cyo1 mutant plants grown in the light, but etioplasts are... normal in mutants grown in the dark. We isolated CYO1 by T-DNA tagging and verified that the mutant allele was re... has a C(4)-type zinc finger domain similar to that of Escherichia coli DnaJ. CYO1 is expressed mainly in yo...1 mutation, but the level of photosynthetic proteins is decreased in cyo1 mutants. Recombinant CYO1 accelerates disulfide bond re

  14. Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana.

    Science.gov (United States)

    Rojas-González, José A; Soto-Súarez, Mauricio; García-Díaz, Ángel; Romero-Puertas, María C; Sandalio, Luisa M; Mérida, Ángel; Thormählen, Ina; Geigenberger, Peter; Serrato, Antonio J; Sahrawy, Mariam

    2015-05-01

    In this study, evidence is provided for the role of fructose-1,6-bisphosphatases (FBPases) in plant development and carbohydrate synthesis and distribution by analysing two Arabidopsis thaliana T-DNA knockout mutant lines, cyfbp and cfbp1, and one double mutant cyfbp cfbp1 which affect each FBPase isoform, cytosolic and chloroplastic, respectively. cyFBP is involved in sucrose synthesis, whilst cFBP1 is a key enzyme in the Calvin-Benson cycle. In addition to the smaller rosette size and lower rate of photosynthesis, the lack of cFBP1 in the mutants cfbp1 and cyfbp cfbp1 leads to a lower content of soluble sugars, less starch accumulation, and a greater superoxide dismutase (SOD) activity. The mutants also had some developmental alterations, including stomatal opening defects and increased numbers of root vascular layers. Complementation also confirmed that the mutant phenotypes were caused by disruption of the cFBP1 gene. cyfbp mutant plants without cyFBP showed a higher starch content in the chloroplasts, but this did not greatly affect the phenotype. Notably, the sucrose content in cyfbp was close to that found in the wild type. The cyfbp cfbp1 double mutant displayed features of both parental lines but had the cfbp1 phenotype. All the mutants accumulated fructose-1,6-bisphosphate and triose-phosphate during the light period. These results prove that while the lack of cFBP1 induces important changes in a wide range of metabolites such as amino acids, sugars, and organic acids, the lack of cyFBP activity in Arabidopsis essentially provokes a carbon metabolism imbalance which does not compromise the viability of the double mutant cyfbp cfbp1.

  15. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection

    Science.gov (United States)

    Willmann, Roland; Lajunen, Heini M.; Erbs, Gitte; Newman, Mari-Anne; Kolb, Dagmar; Tsuda, Kenichi; Katagiri, Fumiaki; Fliegmann, Judith; Bono, Jean-Jacques; Cullimore, Julie V.; Jehle, Anna K.; Götz, Friedrich; Kulik, Andreas; Molinaro, Antonio; Lipka, Volker; Gust, Andrea A.; Nürnberger, Thorsten

    2011-01-01

    Recognition of microbial patterns by host pattern recognition receptors is a key step in immune activation in multicellular eukaryotes. Peptidoglycans (PGNs) are major components of bacterial cell walls that possess immunity-stimulating activities in metazoans and plants. Here we show that PGN sensing and immunity to bacterial infection in Arabidopsis thaliana requires three lysin-motif (LysM) domain proteins. LYM1 and LYM3 are plasma membrane proteins that physically interact with PGNs and mediate Arabidopsis sensitivity to structurally different PGNs from Gram-negative and Gram-positive bacteria. lym1 and lym3 mutants lack PGN-induced changes in transcriptome activity patterns, but respond to fungus-derived chitin, a pattern structurally related to PGNs, in a wild-type manner. Notably, lym1, lym3, and lym3 lym1 mutant genotypes exhibit supersusceptibility to infection with virulent Pseudomonas syringae pathovar tomato DC3000. Defects in basal immunity in lym3 lym1 double mutants resemble those observed in lym1 and lym3 single mutants, suggesting that both proteins are part of the same recognition system. We further show that deletion of CERK1, a LysM receptor kinase that had previously been implicated in chitin perception and immunity to fungal infection in Arabidopsis, phenocopies defects observed in lym1 and lym3 mutants, such as peptidoglycan insensitivity and enhanced susceptibility to bacterial infection. Altogether, our findings suggest that plants share with metazoans the ability to recognize bacterial PGNs. However, as Arabidopsis LysM domain proteins LYM1, LYM3, and CERK1 form a PGN recognition system that is unrelated to metazoan PGN receptors, we propose that lineage-specific PGN perception systems have arisen through convergent evolution. PMID:22106285

  16. Pterin and folate salvage. Plants and Escherichia coli lack capacity to reduce oxidized pterins.

    Science.gov (United States)

    Noiriel, Alexandre; Naponelli, Valeria; Gregory, Jesse F; Hanson, Andrew D

    2007-03-01

    Dihydropterins are intermediates of folate synthesis and products of folate breakdown that are readily oxidized to their aromatic forms. In trypanosomatid parasites, reduction of such oxidized pterins is crucial for pterin and folate salvage. We therefore sought evidence for this reaction in plants. Three lines of evidence indicated its absence. First, when pterin-6-aldehyde or 6-hydroxymethylpterin was supplied to Arabidopsis (Arabidopsis thaliana), pea (Pisum sativum), or tomato (Lycopersicon esculentum) tissues, no reduction of the pterin ring was seen after 15 h, although reduction and oxidation of the side chain of pterin-6-aldehyde were readily detected. Second, no label was incorporated into folates when 6-[(3)H]hydroxymethylpterin was fed to cultured Arabidopsis plantlets for 7 d, whereas [(3)H]folate synthesis from p-[(3)H]aminobenzoate was extensive. Third, no NAD(P)H-dependent pterin ring reduction was found in tissue extracts. Genetic evidence showed a similar situation in Escherichia coli: a GTP cyclohydrolase I (folE) mutant, deficient in pterin synthesis, was rescued by dihydropterins but not by the corresponding oxidized forms. Expression of a trypanosomatid pterin reductase (PTR1) enabled rescue of the mutant by oxidized pterins, establishing that E. coli can take up oxidized pterins but cannot reduce them. Similarly, a GTP cyclohydrolase I (fol2) mutant of yeast (Saccharomyces cerevisiae) was rescued by dihydropterins but not by most oxidized pterins, 6-hydroxymethylpterin being an exception. These results show that the capacity to reduce oxidized pterins is not ubiquitous in folate-synthesizing organisms. If it is lacking, folate precursors or breakdown products that become oxidized will permanently exit the metabolically active pterin pool.

  17. 拟南芥突变体uro的表型分析表明URO基因参与生长素调节的植物发育过程%Characterizations of the uro Mutant Suggest that the URO Gene Is Involved in the Auxin Action in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    过莹立; 袁政; 孙越; 刘兢; 黄海

    2004-01-01

    The Arabidopsis gene UPRIGHT ROSETTE(URO) was previously identified as a leaf developmental regulator, as all rosette leaves of the semi-dominant upright rosette (uro) mutant grow uprightly at seedling stages. Here, we report more detailed phenotypic characterizations of the uro mutant and show that the URO gene has multiple functions in plant development. In addition to its aberrant leaf-growing pattern, the ufo mutant displayed pleiotropic phenotypes. Both uro/+ and uro/uro plants showed a loss of apical dominance, while such a phenotype in the uro/uro plants appeared more severe. Some secondary branches of the uro/uro plants were replaced by leaves, for which petioles were attached to the abaxial side of leaves. Flowers often exhibited varying abnormalities, with altered numbers of petals and stamens and abnormally fused organs. Stems of the uro mutant were soft, which was caused by lacking interfascicular fiber. In addition, vascular differentiation in mutant stem was delayed. The loss of apical dominance and the defects in vascular development and interfascicular fiber formation suggest that the UROfunction might be associated with auxin-mediated plant development. To provide more direct evidence whether the URO is involved in auxin action, we examined the URO function in auxin polar transportation pathway by analyzing pinforrmedi(pin1) uro double mutant. Phenotypes of the double mutant suggest that URO and PINFORMED1 (PIN1) have partial genetic interactions in plant development, which further supports the hypothesis that the URO gene may play an important role in the auxin regulatory pathway.%在筛选拟南芥(Arabidopsisthaliana L.)叶突变体的过程中获得拟南芥upright rosette(uro)突变体.uro为半显性突变体,因突变体在幼苗生长期莲座叶竖直生长而得名.对uro突变体的表型进行了详细的分析,结果表明:uro突变不仅造成叶生长模式的改变,还出现多种其他异常表型.uro杂合和纯合突变体都表

  18. Identification of a Long Rice Spikelet Mutant

    Institute of Scientific and Technical Information of China (English)

    WU Xian-jun; WANG Bin; HAN Zan-ping; XIE Zhao-hui; MOU Chun-hong; WANG Xu-dong

    2004-01-01

    A spontaneously occurring rice (Oryza sativa L. ) mutant, characterized by homeotic conversion in glumes and stamens, was found in the progeny of a cross. The mutant showed long glumes and glumaceous lodicules and morphological transformation of stamens into pistils. Mutant florets consisted of 1 to 3 completely developed pistils, some pistilloid stamens with filaments, but tipped by bulged tissue and 0 to 3 stigmas. It seens that the mutant phenotype of the homeotic conversions in glumes and stamens is similar to that of the B loss-of-function mutants in Arabidopsis and Antirrhinum. The mutant is controlled by a single recessive gene as a segregation ratio of 3:1 (wild type to mutant plants) was observed in the F2 generation.

  19. The CaaX specificities of Arabidopsis protein prenyltransferases explain era1 and ggb phenotypes

    Directory of Open Access Journals (Sweden)

    Huizinga David H

    2010-06-01

    Full Text Available Abstract Background Protein prenylation is a common post-translational modification in metazoans, protozoans, fungi, and plants. This modification, which mediates protein-membrane and protein-protein interactions, is characterized by the covalent attachment of a fifteen-carbon farnesyl or twenty-carbon geranylgeranyl group to the cysteine residue of a carboxyl terminal CaaX motif. In Arabidopsis, era1 mutants lacking protein farnesyltransferase exhibit enlarged meristems, supernumerary floral organs, an enhanced response to abscisic acid (ABA, and drought tolerance. In contrast, ggb mutants lacking protein geranylgeranyltransferase type 1 exhibit subtle changes in ABA and auxin responsiveness, but develop normally. Results We have expressed recombinant Arabidopsis protein farnesyltransferase (PFT and protein geranylgeranyltransferase type 1 (PGGT1 in E. coli and characterized purified enzymes with respect to kinetic constants and substrate specificities. Our results indicate that, whereas PFT exhibits little specificity for the terminal amino acid of the CaaX motif, PGGT1 exclusively prenylates CaaX proteins with a leucine in the terminal position. Moreover, we found that different substrates exhibit similar Km but different kcat values in the presence of PFT and PGGT1, indicating that substrate specificities are determined primarily by reactivity rather than binding affinity. Conclusions The data presented here potentially explain the relatively strong phenotype of era1 mutants and weak phenotype of ggb mutants. Specifically, the substrate specificities of PFT and PGGT1 suggest that PFT can compensate for loss of PGGT1 in ggb mutants more effectively than PGGT1 can compensate for loss of PFT in era1 mutants. Moreover, our results indicate that PFT and PGGT1 substrate specificities are primarily due to differences in catalysis, rather than differences in substrate binding.

  20. Cytokinin receptors in sporophytes are essential for male and female functions in Arabidopsis thaliana.

    Science.gov (United States)

    Kinoshita-Tsujimura, Kaori; Kakimoto, Tatsuo

    2011-01-01

    Arabidopsis has three cytokinin receptors genes: CRE1, AHK2, and AHK3. Availability of plants that are homozygous mutant for these three genes indicates that cytokinin receptors in the haploid cells are dispensable for the development of male and female gametophytes. The triple mutants form a few flowers but never set seed, indicating that reproductive growth is impaired. We investigated which reproductive processes are affected in the triple mutants. Anthers of mutant plants contained fewer pollen grains and did not dehisce. Pollen in the anthers completed the formation of the one vegetative nucleus and the two sperm nuclei, as seen in wild type. The majority of the ovules were abnormal: 78% lacked the embryo sac, 10% carried a female gametophyte that terminated its development before completing three rounds of nuclear division, and about 12% completed three rounds of nuclear division but the gametophytes were smaller than those of the wild type. Reciprocal crosses between the wild type and the triple mutants indicated that pollen from mutant plants did not germinate on wild-type stigmas, and wild-type pollen did not germinate on mutant stigmas. These results suggest that cytokinin receptors in the sporophyte are indispensable for anther dehiscence, pollen maturation, induction of pollen germination by the stigma, and female gametophyte formation and maturation.

  1. Spontaneous hyperactivity in mutant mice lacking the NMDA receptor GluRepsilon1 subunit is aggravated during exposure to 0.1 MAC sevoflurane and is preserved after emergence from sevoflurane anaesthesia.

    Science.gov (United States)

    Petrenko, A B; Kohno, T; Wu, J; Sakimura, K; Baba, H

    2008-12-01

    Patients who awake from sevoflurane anaesthesia with symptoms of agitation may have some underlying functional substrate that is sensitive to the low concentrations of anaesthetic encountered during emergence. One candidate for such a substrate could be neurocircuitry implied in the pathophysiology of both agitation and movement disorders with hyperactivity. We postulated that hyperactive animals would show a further increase in activity in the presence of low concentrations of volatile anaesthetics, such as sevoflurane. To confirm our hypothesis, we examined the effects of two subanaesthetic concentrations of sevoflurane, isoflurane and halothane (0.1 and 0.2 MAC (minimum alveolar concentration)) on spontaneous activity in N-methyl-d-aspartate receptor GluRepsilon1 subunit knockout mice exhibiting locomotor hyperactivity in a novel environment and compared these results with those for wild-type controls. We also compared the effects of anaesthetic concentrations of sevoflurane (1.2 MAC) on mice activity during postanaesthesia recovery. Out of the three anaesthetics used, only sevoflurane administered at 0.1 MAC caused a significantly different response between the two experimental groups. Exposure to this subanaesthetic concentration of sevoflurane reduced the activity of wild-type mice, whereas mutant animals showed a further increase in hyperactivity. The effects of 1.2 MAC sevoflurane anaesthesia on mice activity during postanaesthesia recovery also differed significantly between the two genotypes. Exposure to anaesthetic concentrations of sevoflurane had a sedative effect on wild-type mice, whereas mutant mice preserved their high levels of activity upon emergence from the anaesthesia. The presence of an inherent anomaly in mutant mice that becomes more manifest during exposure to 0.1 MAC sevoflurane and is still present after the emergence from sevoflurane anaesthesia suggests the presence of and necessitates a search for some putative substrate that may, by

  2. Partial functional conservation of IRX10 homologs in physcomitrella patens and Arabidopsis thaliana indicates an evolutionary step contributing to vascular formation in land plants

    Directory of Open Access Journals (Sweden)

    Hörnblad Emma

    2013-01-01

    Full Text Available Abstract Background Plant cell walls are complex multicomponent structures that have evolved to fulfil an essential function in providing strength and protection to cells. Hemicelluloses constitute a key component of the cell wall and recently a number of the genes thought to encode the enzymes required for its synthesis have been identified in Arabidopsis. The acquisition of hemicellulose synthesis capability is hypothesised to have been an important step in the evolution of higher plants. Results Analysis of the Physcomitrella patens genome has revealed the presence of homologs for all of the Arabidopsis glycosyltransferases including IRX9, IRX10 and IRX14 required for the synthesis of the glucuronoxylan backbone. The Physcomitrella IRX10 homolog is expressed in a variety of moss tissues which were newly formed or undergoing expansion. There is a high degree of sequence conservation between the Physcomitrella IRX10 and Arabidopsis IRX10 and IRX10-L. Despite this sequence similarity, the Physcomitrella IRX10 gene is only able to partially rescue the Arabidopsis irx10 irx10-L double mutant indicating that there has been a neo- or sub-functionalisation during the evolution of higher plants. Analysis of the monosaccharide composition of stems from the partially rescued Arabidopsis plants does not show any significant change in xylose content compared to the irx10 irx10-L double mutant. Likewise, knockout mutants of the Physcomitrella IRX10 gene do not result in any visible phenotype and there is no significant change in monosaccharide composition of the cell walls. Conclusions The fact that the Physcomitrella IRX10 (PpGT47A protein can partially complement an Arabidopsis irx10 irx10-L double mutant suggests that it shares some function with the Arabidopsis proteins, but the lack of a phenotype in knockout lines shows that the function is not required for growth or development under normal conditions in Physcomitrella. In contrast, the Arabidopsis

  3. Reference: 445 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available uncontrolled water loss and environmental damage coats the aerial surfaces of land plants. It is composed o...ER4, a wax biosynthetic gene from Arabidopsis (Arabidopsis thaliana). Arabidopsis cer4 mutants exhibit major...se eight genes, At4g33790, encoded the FAR required for cuticular wax production. Expression of CER4 cDNA in yeast (Saccharomyces ce...revisiae) resulted in the accumulation of C24:0 and C26:0 primary alcohols. Fully functional green fluoresce...lasmic reticulum in yeast cells by confocal microscopy. Analysis of gene expression by reverse transcription

  4. Reference: 327 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 327 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16415206i Shen Wenyun et al. 2006 Fe...peration of such a shuttle in Arabidopsis thaliana. We studied Arabidopsis mutants defective in a cytosolic ...bolites concerning intracellular redox exchange. The impairment in maintaining cellular redox homeostasis was manife... a significantly augmented hydrogen peroxide production under stress. Loss of GPDHc1 affected mitochondrial ...ttle in Arabidopsis. 2 422-41 16415206 2006 Feb The Plant cell Dauk Melanie|Selvaraj Gopalan|Shen Wenyun|Tan Yifang|Taylor David C|Wei Yangdou|Zou Jitao

  5. Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Voigt, Ginny D; Bryant, Donald A

    2002-01-01

    , a fraction containing vestigial chlorosomes, denoted "carotenosomes," was partly purified by density centrifugation; these structures contained carotenoids, isoprenoid quinones, and a 798-nm-absorbing BChl a species that is probably protein associated. Because of the absence of the strong BChl c absorption...... found in the wild type, the bchK mutant should prove valuable for future analyses of the photosynthetic reaction center and of the roles of BChl a in photosynthesis in green bacteria. An evolutionary implication of our findings is that the photosynthetic ancestor of green sulfur bacteria could have...

  6. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance

    DEFF Research Database (Denmark)

    Petersen, M.; Brodersen, P.; Naested, H.

    2000-01-01

    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) revels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...

  7. Non-host defense response in a novel Arabidopsis-Xanthomonas citri subsp. citri pathosystem.

    Directory of Open Access Journals (Sweden)

    Chuanfu An

    Full Text Available Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc, is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model plant Arabidopsis thaliana for defense mechanism dissection and resistance gene identification. Our results indicate that Xcc bacteria neither grow nor decline in Arabidopsis, but induce multiple defense responses including callose deposition, reactive oxygen species and salicylic aicd (SA production, and defense gene expression, indicating that Xcc activates non-host resistance in Arabidopsis. Moreover, Xcc-induced defense gene expression is suppressed or attenuated in several well-characterized SA signaling mutants including eds1, pad4, eds5, sid2, and npr1. Interestingly, resistance to Xcc is compromised only in eds1, pad4, and eds5, but not in sid2 and npr1. However, combining sid2 and npr1 in the sid2npr1 double mutant compromises resistance to Xcc, suggesting genetic interactions likely exist between SID2 and NPR1 in the non-host resistance against Xcc in Arabidopsis. These results demonstrate that the SA signaling pathway plays a critical role in regulating non-host defense against Xcc in Arabidopsis and suggest that the SA signaling pathway genes may hold great potential for breeding citrus canker-resistant varieties through modern gene transfer technology.

  8. Arabidopsis RAD51C gene is important for homologous recombination in meiosis and mitosis.

    Science.gov (United States)

    Abe, Kiyomi; Osakabe, Keishi; Nakayama, Shigeki; Endo, Masaki; Tagiri, Akemi; Todoriki, Setsuko; Ichikawa, Hiroaki; Toki, Seiichi

    2005-10-01

    Rad51 is a homolog of the bacterial RecA recombinase, and a key factor in homologous recombination in eukaryotes. Rad51 paralogs have been identified from yeast to vertebrates. Rad51 paralogs are thought to play an important role in the assembly or stabilization of Rad51 that promotes homologous pairing and strand exchange reactions. We previously characterized two RAD51 paralogous genes in Arabidopsis (Arabidopsis thaliana) named AtRAD51C and AtXRCC3, which are homologs of human RAD51C and XRCC3, respectively, and described the interaction of their products in a yeast two-hybrid system. Recent studies showed the involvement of AtXrcc3 in DNA repair and functional role in meiosis. To determine the role of RAD51C in meiotic and mitotic recombination in higher plants, we characterized a T-DNA insertion mutant of AtRAD51C. Although the atrad51C mutant grew normally during vegetative developmental stage, the mutant produced aborted siliques, and their anthers did not contain mature pollen grains. Crossing of the mutant with wild-type plants showed defective male and female gametogeneses as evidenced by lack of seed production. Furthermore, meiosis was severely disturbed in the mutant. The atrad51C mutant also showed increased sensitivity to gamma-irradiation and cisplatin, which are known to induce double-strand DNA breaks. The efficiency of homologous recombination in somatic cells in the mutant was markedly reduced relative to that in wild-type plants.

  9. An atlas of type I MADS box gene expression during female gametophyte and seed development in Arabidopsis.

    Science.gov (United States)

    Bemer, Marian; Heijmans, Klaas; Airoldi, Chiara; Davies, Brendan; Angenent, Gerco C

    2010-09-01

    Members of the plant type I MADS domain subfamily have been reported to be involved in reproductive development in Arabidopsis (Arabidopsis thaliana). However, from the 61 type I genes in the Arabidopsis genome, only PHERES1, AGAMOUS-LIKE80 (AGL80), DIANA, AGL62, and AGL23 have been functionally characterized, which revealed important roles for these genes during female gametophyte and early seed development. The functions of the other genes are still unknown, despite the fact that the available single T-DNA insertion mutants have been largely investigated. The lack of mutant phenotypes is likely due to a considerable number of recent intrachromosomal duplications in the type I subfamily, resulting in nonfunctional genes in addition to a high level of redundancy. To enable a breakthrough in type I MADS box gene characterization, a framework needs to be established that allows the prediction of the functionality and redundancy of the type I genes. Here, we present a complete atlas of their expression patterns during female gametophyte and seed development in Arabidopsis, deduced from reporter lines containing translational fusions of the genes to green fluorescent protein and beta-glucuronidase. All the expressed genes were revealed to be active in the female gametophyte or developing seed, indicating that the entire type I subfamily is involved in reproductive development in Arabidopsis. Interestingly, expression was predominantly observed in the central cell, antipodal cells, and chalazal endosperm. The combination of our expression results with phylogenetic and protein interaction data allows a better identification of putative redundantly acting genes and provides a useful tool for the functional characterization of the type I MADS box genes in Arabidopsis.

  10. An Atlas of Type I MADS Box Gene Expression during Female Gametophyte and Seed Development in Arabidopsis[W

    Science.gov (United States)

    Bemer, Marian; Heijmans, Klaas; Airoldi, Chiara; Davies, Brendan; Angenent, Gerco C.

    2010-01-01

    Members of the plant type I MADS domain subfamily have been reported to be involved in reproductive development in Arabidopsis (Arabidopsis thaliana). However, from the 61 type I genes in the Arabidopsis genome, only PHERES1, AGAMOUS-LIKE80 (AGL80), DIANA, AGL62, and AGL23 have been functionally characterized, which revealed important roles for these genes during female gametophyte and early seed development. The functions of the other genes are still unknown, despite the fact that the available single T-DNA insertion mutants have been largely investigated. The lack of mutant phenotypes is likely due to a considerable number of recent intrachromosomal duplications in the type I subfamily, resulting in nonfunctional genes in addition to a high level of redundancy. To enable a breakthrough in type I MADS box gene characterization, a framework needs to be established that allows the prediction of the functionality and redundancy of the type I genes. Here, we present a complete atlas of their expression patterns during female gametophyte and seed development in Arabidopsis, deduced from reporter lines containing translational fusions of the genes to green fluorescent protein and β-glucuronidase. All the expressed genes were revealed to be active in the female gametophyte or developing seed, indicating that the entire type I subfamily is involved in reproductive development in Arabidopsis. Interestingly, expression was predominantly observed in the central cell, antipodal cells, and chalazal endosperm. The combination of our expression results with phylogenetic and protein interaction data allows a better identification of putative redundantly acting genes and provides a useful tool for the functional characterization of the type I MADS box genes in Arabidopsis. PMID:20631316

  11. Genetic analysis of photoreceptor action pathways in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The specific strategies and long-term goals of this proposal remain intact relative to the original proposal. We continue to isolate and characterize photomorphogenic mutants of Arabidopsis thaliana. The molecular and biochemical characterization of one of these mutants, det1, has led to one publication of original data and to one Society for Experimental Biology Symposium paper (see below). The phenotype of a second mutant, det2, has also been studied during this funding period. In addition, we have continued work on a general strategy to isolate mutations in trans-acting regulatory factors that mediate light-regulated gene expression, and have identified several potentially interesting regulatory mutants. In the third funding period, we will concentrate on the genetical, biochemical, and molecular characterization of these new mutants. Construction of double mutants between the new mutants and the previously characterized morphological mutants should allow us to construct a pathway for light-regulated seedling development in Arabidopsis.

  12. Reference: 505 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available utant library for selenate resistance enabled us to isolate a selenate-resistant mutant line (sel1-11). Mole...gene among 13 mutated genes of the Arabidopsis sulfate transporter family whose mutation conferred selenate resistance... to Arabidopsis. The selenate resistance phenotype of the sel1-11 mutan...t was mirrored by an 8-fold increase of root growth in the presence of selenate as shown by the calculated lethal conce...ntration values. The impairment of SULTR1;2 activity in sel1-11 resulted in a reduced (35)S-sulfa

  13. Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling.

    Science.gov (United States)

    Roetschi, A; Si-Ammour, A; Belbahri, L; Mauch, F; Mauch-Mani, B

    2001-11-01

    Arabidopsis accessions were screened with isolates of Phytophthora porri originally isolated from other crucifer species. The described Arabidopsis-Phytophthora pathosystem shows the characteristics of a facultative biotrophic interaction similar to that seen in agronomically important diseases caused by Phytophthora species. In susceptible accessions, extensive colonization of the host tissue occurred and sexual and asexual spores were formed. In incompatible combinations, the plants reacted with a hypersensitive response (HR) and the formation of papillae at the sites of attempted penetration. Defence pathway mutants such as jar1 (jasmonic acid-insensitive), etr1 (ethylene receptor mutant) and ein2 (ethylene-insensitive) remained resistant towards P. porri. However, pad2, a mutant with reduced production of the phytoalexin camalexin, was hyper-susceptible. The accumulation of salicylic acid (SA) and PR1 protein was strongly reduced in pad2. Surprisingly, this lack of SA accumulation does not appear to be the cause of the hyper-susceptibility because interference with SA signalling in nahG plants or sid2 or npr1 mutants had only a minor effect on resistance. In addition, the functional SA analogue benzothiadiazol (BTH) did not induce resistance in susceptible plants including pad2. Similarly, the complete blockage of camalexin biosynthesis in pad3 did not cause susceptibility. Resistance of Arabidopsis against P. porri appears to depend on unknown defence mechanisms that are under the control of PAD2.

  14. Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth.

    Science.gov (United States)

    van der Honing, Hannie S; Kieft, Henk; Emons, Anne Mie C; Ketelaar, Tijs

    2012-03-01

    In plant cells, actin filament bundles serve as tracks for myosin-dependent organelle movement and play a role in the organization of the cytoplasm. Although virtually all plant cells contain actin filament bundles, the role of the different actin-bundling proteins remains largely unknown. In this study, we investigated the role of the actin-bundling protein villin in Arabidopsis (Arabidopsis thaliana). We used Arabidopsis T-DNA insertion lines to generate a double mutant in which VILLIN2 (VLN2) and VLN3 transcripts are truncated. Leaves, stems, siliques, and roots of vln2 vln3 double mutant plants are twisted, which is caused by local differences in cell length. Microscopy analysis of the actin cytoskeleton showed that in these double mutant plants, thin actin filament bundles are more abundant while thick actin filament bundles are virtually absent. In contrast to full-length VLN3, truncated VLN3 lacking the headpiece region does not rescue the phenotype of the vln2 vln3 double mutant. Our results show that villin is involved in the generation of thick actin filament bundles in several cell types and suggest that these bundles are involved in the regulation of coordinated cell expansion.

  15. Reference: 490 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available tration. The heterologous expression in yeast was utilized to verify that the AtP...TR3 protein transports di-and tripeptides. The T-DNA insert in the Atptr3-1 mutant in the Arabidopsis ecotype C24 re...tr3-2 mutant of the Col-0 ecotype. The AtPTR3 expression was shown to be regulated by several signalling com...d in the SA and JA signalling mutants. The Atptr3 mutant plants had increased susceptibility to virulent pat...hogenic bacteria Erwinia carotovora subsp. carotovora and Pseudomonas syringae pv. tomato, and produced more re

  16. Apoplastic polyesters in Arabidopsis surface tissues--a typical suberin and a particular cutin.

    Science.gov (United States)

    Franke, Rochus; Briesen, Isabel; Wojciechowski, Tobias; Faust, Andrea; Yephremov, Alexander; Nawrath, Christiane; Schreiber, Lukas

    2005-11-01

    Cutinized and suberized cell walls form physiological important plant-environment interfaces as they act as barriers limiting water and nutrient loss and protect from radiation and invasion by pathogens. Due to the lack of protocols for the isolation and analysis of cutin and suberin in Arabidopsis, the model plant for molecular biology, mutants and transgenic plants with a defined altered cutin or suberin composition are unavailable, causing that structure and function of these apoplastic barriers are still poorly understood. Transmission electron microscopy (TEM) revealed that Arabidopsis leaf cuticle thickness ranges from only 22 nm in leaf blades to 45 nm on petioles, causing the difficulty in cuticular membrane isolation. We report the use of polysaccharide hydrolases to isolate Arabidopsis cuticular membranes, suitable for depolymerization and subsequent compositional analysis. Although cutin characteristic omega-hydroxy acids (7%) and mid-chain hydroxylated fatty acids (8%) were detected, the discovery of alpha,omega-diacids (40%) and 2-hydroxy acids (14%) as major depolymerization products reveals a so far novel monomer composition in Arabidopsis cutin, but with chemical analogy to root suberin. Histochemical and TEM analysis revealed that suberin depositions were localized to the cell walls in the endodermis of primary roots and the periderm of mature roots of Arabidopsis. Enzyme digested and solvent extracted root cell walls when subjected to suberin depolymerization conditions released omega-hydroxy acids (43%) and alpha,omega-diacids (24%) as major components together with carboxylic acids (9%), alcohols (6%) and 2-hydroxyacids (0.1%). This similarity to suberin of other species indicates that Arabidopsis roots can serve as a model for suberized tissue in general.

  17. Plantacyanin plays a role in reproduction in Arabidopsis.

    Science.gov (United States)

    Dong, Juan; Kim, Sun Tae; Lord, Elizabeth M

    2005-06-01

    Plantacyanins belong to the phytocyanin family of blue copper proteins. In the Arabidopsis (Arabidopsis thaliana) genome, only one gene encodes plantacyanin. The T-DNA-tagged mutant is a knockdown mutant that shows no visible phenotype. We used both promoter-beta-glucuronidase transgenic plants and immunolocalization to show that Arabidopsis plantacyanin is expressed most highly in the inflorescence and, specifically, in the transmitting tract of the pistil. Protein levels show a steep gradient in expression from the stigma into the style and ovary. Overexpression plants were generated using cauliflower mosaic virus 35S, and protein levels in the pistil were examined as well as the pollination process. Seed set in these plants is highly reduced mainly due to a lack of anther dehiscence, which is caused by degeneration of the endothecium. Callose deposits occur on the pollen walls in plants that overexpress plantacyanin, and a small percentage of these pollen grains germinate in the closed anthers. When wild-type pollen was used on the overexpression stigma, seed set was still decreased compared to the control pollinations. We detected an increase in plantacyanin levels in the overexpression pistil, including the transmitting tract. Guidance of the wild-type pollen tube on the overexpression stigma is disrupted as evidenced by the growth behavior of pollen tubes after they penetrate the papillar cell. Normally, pollen tubes travel down the papilla cell and into the style. Wild-type pollen tubes on the overexpression stigma made numerous turns around the papilla cell before growing toward the style. In some rare cases, pollen tubes circled up the papilla cell away from the style and were arrested there. We propose that when plantacyanin levels in the stigma are increased, pollen tube guidance into the style is disrupted.

  18. Expression of HMA4 cDNAs of the zinc hyperaccumulator Noccaea caerulescens from endogenous NcHMA4 promoters does not complement the zinc-deficiency phenotype of the Arabidopsis thaliana hma2hma4 double mutant

    NARCIS (Netherlands)

    Iqbal, M.; Nawaz, I.; Hassan, Z.; Hakvoort, H.W.J.; Bliek, M.; Aarts, M.G.M.; Schat, H.

    2013-01-01

    Noccaea caerulescens (Nc) exhibits a very high constitutive expression of the heavy metal transporting ATPase, HMA4, as compared to the non-hyperaccumulator Arabidopsis thaliana (At), due to copy number expansion and altered cis-regulation. We screened a BAC library for HMA4 and found that HMA4 is

  19. EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora.

    Science.gov (United States)

    Moreau, Manon; Degrave, Alexandre; Vedel, Régine; Bitton, Frédérique; Patrit, Oriane; Renou, Jean-Pierre; Barny, Marie-Anne; Fagard, Mathilde

    2012-03-01

    Erwinia amylovora causes fire blight in rosaceous plants. In nonhost Arabidopsis thaliana, E. amylovora triggers necrotic symptoms associated with transient bacterial multiplication, suggesting either that A. thaliana lacks a susceptibility factor or that it actively restricts E. amylovora growth. Inhibiting plant protein synthesis at the time of infection led to an increase in necrosis and bacterial multiplication and reduced callose deposition, indicating that A. thaliana requires active protein synthesis to restrict E. amylovora growth. Analysis of the callose synthase-deficient pmr4-1 mutant indicated that lack of callose deposition alone did not lead to increased sensitivity to E. amylovora. Transcriptome analysis revealed that approximately 20% of the genes induced following E. amylovora infection are related to defense and signaling. Analysis of mutants affected in NDR1 and EDS1, two main components of the defense-gene activation observed, revealed that E. amylovora multiplied ten times more in the eds1-2 mutant than in the wild type but not in the ndr1-1 mutant. Analysis of mutants affected in three WRKY transcription factors showing EDS1-dependent activation identified WRKY46 and WRKY54 as positive regulators and WRKY70 as a negative regulator of defense against E. amylovora. Altogether, we show that EDS1 is a positive regulator of nonhost resistance against E. amylovora in A. thaliana and hypothesize that it controls the production of several effective defenses against E. amylovora through the action of WRKY46 and WRKY54, while WRKY70 acts as a negative regulator.

  20. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14.

    Directory of Open Access Journals (Sweden)

    Takayuki Shindo

    Full Text Available Secreted papain-like Cys proteases are important players in plant immunity. We previously reported that the C14 protease of tomato is targeted by cystatin-like EPIC proteins that are secreted by the oomycete pathogen Phytophthora infestans (Pinf during infection. C14 has been under diversifying selection in wild potato species coevolving with Pinf and reduced C14 levels result in enhanced susceptibility for Pinf. Here, we investigated the role C14-EPIC-like interactions in the natural pathosystem of Arabidopsis with the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa. In contrast to the Pinf-solanaceae pathosystem, the C14 orthologous protease of Arabidopsis, RD21, does not evolve under diversifying selection in Arabidopsis, and rd21 null mutants do not show phenotypes upon compatible and incompatible Hpa interactions, despite the evident lack of a major leaf protease. Hpa isolates express highly conserved EPIC-like proteins during infections, but it is unknown if these HpaEPICs can inhibit RD21 and one of these HpaEPICs even lacks the canonical cystatin motifs. The rd21 mutants are unaffected in compatible and incompatible interactions with Pseudomonas syringae pv. tomato, but are significantly more susceptible for the necrotrophic fungal pathogen Botrytis cinerea, demonstrating that RD21 provides immunity to a necrotrophic pathogen.

  1. Reciprocal interaction of the circadian clock with the iron homeostasis network in Arabidopsis.

    Science.gov (United States)

    Hong, Sunghyun; Kim, Sun A; Guerinot, Mary Lou; McClung, C Robertson

    2013-02-01

    In plants, iron (Fe) uptake and homeostasis are critical for survival, and these processes are tightly regulated at the transcriptional and posttranscriptional levels. Circadian clocks are endogenous oscillating mechanisms that allow an organism to anticipate environmental changes to coordinate biological processes both with one another and with the environmental day/night cycle. The plant circadian clock controls many physiological processes through rhythmic expression of transcripts. In this study, we examined the expression of three Fe homeostasis genes (IRON REGULATED TRANSPORTER1 [IRT1], BASIC HELIX LOOP HELIX39, and FERRITIN1) in Arabidopsis (Arabidopsis thaliana) using promoter:LUCIFERASE transgenic lines. Each of these promoters showed circadian regulation of transcription. The circadian clock monitors a number of clock outputs and uses these outputs as inputs to modulate clock function. We show that this is also true for Fe status. Fe deficiency results in a lengthened circadian period. We interrogated mutants impaired in the Fe homeostasis response, including irt1-1, which lacks the major high-affinity Fe transporter, and fit-2, which lacks Fe deficiency-induced TRANSCRIPTION FACTOR1, a basic helix-loop-helix transcription factor necessary for induction of the Fe deficiency response. Both mutants exhibit symptoms of Fe deficiency, including lengthened circadian period. To determine which components are involved in this cross talk between the circadian and Fe homeostasis networks, we tested clock- or Fe homeostasis-related mutants. Mutants defective in specific clock gene components were resistant to the change in period length under different Fe conditions observed in the wild type, suggesting that these mutants are impaired in cross talk between Fe homeostasis and the circadian clock.

  2. Structural Analysis of Free N-Glycans in α-Glucosidase Mutants of Saccharomyces cerevisiae: Lack of the Evidence for the Occurrence of Catabolic α-Glucosidase Acting on the N-Glycans.

    Science.gov (United States)

    Hossain, Tanim Jabid; Harada, Yoichiro; Hirayama, Hiroto; Tomotake, Haruna; Seko, Akira; Suzuki, Tadashi

    2016-01-01

    Saccharomyces cerevisiae produces two different α-glucosidases, Glucosidase 1 (Gls1) and Glucosidase 2 (Gls2), which are responsible for the removal of the glucose molecules from N-glycans (Glc3Man9GlcNAc2) of glycoproteins in the endoplasmic reticulum. Whether any additional α-glucosidases playing a role in catabolizing the glucosylated N-glycans are produced by this yeast, however, remains unknown. We report herein on a search for additional α-glucosidases in S. cerevisiae. To this end, the precise structures of cytosolic free N-glycans (FNGs), mainly derived from the peptide:N-glycanase (Png1) mediated deglycosylation of N-glycoproteins were analyzed in the endoplasmic reticulum α-glucosidase-deficient mutants. 12 new glucosylated FNG structures were successfully identified through 2-dimentional HPLC analysis. On the other hand, non-glucosylated FNGs were not detected at all under any culture conditions. It can therefore be safely concluded that no catabolic α-glucosidases acting on N-glycans are produced by this yeast.

  3. Glucose-1-phosphate transport into protoplasts and chloroplasts from leaves of Arabidopsis.

    Science.gov (United States)

    Fettke, Joerg; Malinova, Irina; Albrecht, Tanja; Hejazi, Mahdi; Steup, Martin

    2011-04-01

    Almost all glucosyl transfer reactions rely on glucose-1-phosphate (Glc-1-P) that either immediately acts as glucosyl donor or as substrate for the synthesis of the more widely used Glc dinucleotides, ADPglucose or UDPglucose. In this communication, we have analyzed two Glc-1-P-related processes: the carbon flux from externally supplied Glc-1-P to starch by either mesophyll protoplasts or intact chloroplasts from Arabidopsis (Arabidopsis thaliana). When intact protoplasts or chloroplasts are incubated with [U-(14)C]Glc-1-P, starch is rapidly labeled. Incorporation into starch is unaffected by the addition of unlabeled Glc-6-P or Glc, indicating a selective flux from Glc-1-P to starch. However, illuminated protoplasts incorporate less (14)C into starch when unlabeled bicarbonate is supplied in addition to the (14)C-labeled Glc-1-P. Mesophyll protoplasts incubated with [U-(14)C]Glc-1-P incorporate (14)C into the plastidial pool of adenosine diphosphoglucose. Protoplasts prepared from leaves of mutants of Arabidopsis that lack either the plastidial phosphorylase or the phosphoglucomutase isozyme incorporate (14)C derived from external Glc-1-P into starch, but incorporation into starch is insignificant when protoplasts from a mutant possessing a highly reduced ADPglucose pyrophosphorylase activity are studied. Thus, the path of assimilatory starch biosynthesis initiated by extraplastidial Glc-1-P leads to the plastidial pool of adenosine diphosphoglucose, and at this intermediate it is fused with the Calvin cycle-driven route. Mutants lacking the plastidial phosphoglucomutase contain a small yet significant amount of transitory starch.

  4. Reference: 468 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available five NPR1 paralogs in Arabidopsis. Here we report knockout analysis of two of these, NPR3 and NPR4. npr3 single mutants have elevated...t complemented by either wild-type NPR3 or NPR4, and is not associated with an elevated...with our previous finding that basal PR-1 levels are also elevated in the tga2 tga5 tga6 triple mutant, we p

  5. LEAFY controls floral meristem identity in Arabidopsis

    OpenAIRE

    Weigel, Detlef; Alvarez, John; Smyth, David R.; Yanofsky, Martin F.; Meyerowitz, Elliot M.

    1992-01-01

    The first step in flower development is the generation of a floral meristem by the inflorescence meristem. We have analyzed how this process is affected by mutant alleles of the Arabidopsis gene LEAFY. We show that LEAFY interacts with another floral control gene, APETALA1, to promote the transition from inflorescence to floral meristem. We have cloned the LEAFY gene, and, consistent with the mutant phenotype, we find that LEAFY RNA is expressed strongly in young flower primordia. LEAFY expre...

  6. Reference: 341 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available owth. Despite the physiological importance of this process, the molecular mechanism is unknown. Here..., a genetic screen has been used to identify Arabidopsis thaliana mutants that exhibit a ...postgerminative growth arrest phenotype, which can be rescued by providing sugar. Seventeen sugar-dependent (sdp) mutants were... isolated, and six represent new loci. Triacylglycerol hydrolas...e assays showed that sdp1, sdp2, and sdp3 seedlings are deficient specifically in the lipase activity that i

  7. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jules Beekwilder

    Full Text Available Aliphatic glucosinolates are compounds which occur in high concentrations in Arabidopsis thaliana and other Brassicaceae species. They are important for the resistance of the plant to pest insects. Previously, the biosynthesis of these compounds was shown to be regulated by transcription factors MYB28 and MYB29. We now show that MYB28 and MYB29 are partially redundant, but in the absence of both, the synthesis of all aliphatic glucosinolates is blocked. Untargeted and targeted biochemical analyses of leaf metabolites showed that differences between single and double knock-out mutants and wild type plants were restricted to glucosinolates. Biosynthesis of long-chain aliphatic glucosinolates was blocked by the myb28 mutation, while short-chain aliphatic glucosinolates were reduced by about 50% in both the myb28 and the myb29 single mutants. Most remarkably, all aliphatic glucosinolates were completely absent in the double mutant. Expression of glucosinolate biosynthetic genes was slightly but significantly reduced by the single myb mutations, while the double mutation resulted in a drastic decrease in expression of these genes. Since the myb28myb29 double mutant is the first Arabidopsis genotype without any aliphatic glucosinolates, we used it to establish the relevance of aliphatic glucosinolate biosynthesis to herbivory by larvae of the lepidopteran insect Mamestra brassicae. Plant damage correlated inversely to the levels of aliphatic glucosinolates observed in those plants: Larval weight gain was 2.6 fold higher on the double myb28myb29 mutant completely lacking aliphatic glucosinolates and 1.8 higher on the single mutants with intermediate levels of aliphatic glucosinolates compared to wild type plants.

  8. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis.

    Science.gov (United States)

    Beekwilder, Jules; van Leeuwen, Wessel; van Dam, Nicole M; Bertossi, Monica; Grandi, Valentina; Mizzi, Luca; Soloviev, Mikhail; Szabados, Laszlo; Molthoff, Jos W; Schipper, Bert; Verbocht, Hans; de Vos, Ric C H; Morandini, Piero; Aarts, Mark G M; Bovy, Arnaud

    2008-04-30

    Aliphatic glucosinolates are compounds which occur in high concentrations in Arabidopsis thaliana and other Brassicaceae species. They are important for the resistance of the plant to pest insects. Previously, the biosynthesis of these compounds was shown to be regulated by transcription factors MYB28 and MYB29. We now show that MYB28 and MYB29 are partially redundant, but in the absence of both, the synthesis of all aliphatic glucosinolates is blocked. Untargeted and targeted biochemical analyses of leaf metabolites showed that differences between single and double knock-out mutants and wild type plants were restricted to glucosinolates. Biosynthesis of long-chain aliphatic glucosinolates was blocked by the myb28 mutation, while short-chain aliphatic glucosinolates were reduced by about 50% in both the myb28 and the myb29 single mutants. Most remarkably, all aliphatic glucosinolates were completely absent in the double mutant. Expression of glucosinolate biosynthetic genes was slightly but significantly reduced by the single myb mutations, while the double mutation resulted in a drastic decrease in expression of these genes. Since the myb28myb29 double mutant is the first Arabidopsis genotype without any aliphatic glucosinolates, we used it to establish the relevance of aliphatic glucosinolate biosynthesis to herbivory by larvae of the lepidopteran insect Mamestra brassicae. Plant damage correlated inversely to the levels of aliphatic glucosinolates observed in those plants: Larval weight gain was 2.6 fold higher on the double myb28myb29 mutant completely lacking aliphatic glucosinolates and 1.8 higher on the single mutants with intermediate levels of aliphatic glucosinolates compared to wild type plants.

  9. Gravitropism in leaves of Arabidopsis thaliana (L.) Heynh.

    Science.gov (United States)

    Mano, Eriko; Horiguchi, Gorou; Tsukaya, Hirokazu

    2006-02-01

    In higher plants, stems and roots show negative and positive gravitropism, respectively. However, current knowledge on the graviresponse of leaves is lacking. In this study, we analyzed the positioning and movement of rosette leaves of Arabidopsis thaliana under light and dark conditions. We found that the radial positioning of rosette leaves was not affected by the direction of gravity under continuous white light. In contrast, when plants were shifted to darkness, the leaves moved upwards, suggesting negative gravitropism. Analysis of the phosphoglucomutase and shoot gravitropism 2-1 mutants revealed that the sedimenting amyloplasts in the leaf petiole are important for gravity perception, as is the case in stems and roots. In addition, our detailed physiological analyses revealed a unique feature of leaf movement after the shift to darkness, i.e. movement could be divided into negative gravitropism and nastic movement. The orientation of rosette leaves is ascribed to a combination of these movements.

  10. Analysis of essential Arabidopsis nuclear genes encoding plastid-targeted proteins.

    Directory of Open Access Journals (Sweden)

    Linda J Savage

    Full Text Available The Chloroplast 2010 Project (http://www.plastid.msu.edu/ identified and phenotypically characterized homozygous mutants in over three thousand genes, the majority of which encode plastid-targeted proteins. Despite extensive screening by the community, no homozygous mutant alleles were available for several hundred genes, suggesting that these might be enriched for genes of essential function. Attempts were made to generate homozygotes in ~1200 of these lines and 521 of the homozygous viable lines obtained were deposited in the Arabidopsis Biological Resource Center (http://abrc.osu.edu/. Lines that did not yield a homozygote in soil were tested as potentially homozygous lethal due to defects either in seed or seedling development. Mutants were characterized at four stages of development: developing seed, mature seed, at germination, and developing seedlings. To distinguish seed development or seed pigment-defective mutants from seedling development mutants, development of seeds was assayed in siliques from heterozygous plants. Segregating seeds from heterozygous parents were sown on supplemented media in an attempt to rescue homozygous seedlings that could not germinate or survive in soil. Growth of segregating seeds in air and air enriched to 0.3% carbon dioxide was compared to discover mutants potentially impaired in photorespiration or otherwise responsive to CO2 supplementation. Chlorophyll fluorescence measurements identified CO2-responsive mutants with altered photosynthetic parameters. Examples of genes with a viable mutant allele and one or more putative homozygous-lethal alleles were documented. RT-PCR of homozygotes for potentially weak alleles revealed that essential genes may remain undiscovered because of the lack of a true null mutant allele. This work revealed 33 genes with two or more lethal alleles and 73 genes whose essentiality was not confirmed with an independent lethal mutation, although in some cases second leaky alleles

  11. Reference: 691 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ants. Nine genomic sequences encode putative Bsas proteins in Arabidopsis thaliana. The physiological roles ...thione in the bsas mutants indicated that cytosolic Bsas1;1, plastidic Bsas2;1, and mitochondrial Bsas2;2 play major roles...ucial role of Bsas3;1 in beta-cyano-Ala metabolism in vivo. Physiological roles o

  12. Reference: 616 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Disruption of AtOCT1 in an Arabidopsis oct1-1 knockout mutant affected both the expression of carnitine-rela... exhibited a higher degree of root branching than the wild-type, showing that the disruption of AtOCT1 affected

  13. Reference: 749 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available former mutant had decreased electron transport rates, a lower DeltapH gradient across the grana membranes, r...the PSII particles of these plants were organized in unusual two-dimensional arrays in the grana membranes. ...d the electron transport rate in grana membranes of Arabidopsis. 4 1012-28 18381925 2008 Apr The Plant cell

  14. Reference: 234 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 234 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15980261i Stepanova ...ion of two root-specific ethylene-insensitive mutants in Arabidopsis. 8 2230-42 15980261 2005 Aug The Plant cell Alonso Jose M|Hamilton Alexandra A|Hoyt Joyce M|Stepanova Anna N

  15. Reference: 428 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available on was delayed in the psb27 mutant, suggesting that Psb27 is required for efficient...icient repair of photodamaged photosystem II. 4-5 567-75...he involvement of this lumenal protein in the recovery process of PSII. A Psb27 homologue in Arabidopsis thaliana is required for eff

  16. Reference: 223 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 223 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15923347i Dohmann Es... cause the cop/det/fus mutant phenotype in Arabidopsis. 7 1967-78 15923347 2005 Jul The Plant cell Dohmann Esther M N|Kuhnle Carola|Schwechheimer Claus

  17. Reference: 218 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available rpenes found in the Arabidopsis floral volatile blend. Two independent mutant lines with T-DNA insertions in...version of farnesyl diphosphate into over 15 sesquiterpenes in similar proportions to those found in the floral volatile blend

  18. Reference: 396 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ht to be encoded in Arabidopsis by the ATS1 locus. A number of genetic mutants deficient in this activity have been described. How...hosphatidylglycerol raised the question of whether an alternative pathway of phosphatidylglycerol assembly in the plastid exists. How

  19. Reference: 71 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ific functions among family members. Type-A Arabidopsis response regulators are partially...ary response to cytokinin is affected. Spatial patterns of ARR gene expression were consistent with partia...lly redundant function of these genes in cytokinin signaling. The arr mutants show

  20. Reference: 567 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ith findings that noxy2 and mutants with defective 9-LOX activity showed increased numbers of lateral roots,...or of lateral root formation. Histochemical and molecular analyses revealed that 9-HOT activated events comm...in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade.

  1. Nif- Hup- mutants of Rhizobium japonicum.

    Science.gov (United States)

    Moshiri, F; Stults, L; Novak, P; Maier, R J

    1983-01-01

    Two H2 uptake-negative (Hup-) Rhizobium japonicum mutants were obtained that also lacked symbiotic N2 fixation (acetylene reduction) activity. One of the mutants formed green nodules and was deficient in heme. Hydrogen oxidation activity in this mutant could be restored by the addition of heme plus ATP to crude extracts. Bacteroid extracts from the other mutant strain lacked hydrogenase activity and activity for both of the nitrogenase component proteins. Hup+ revertants of the mutant strains regained both H2 uptake ability and nitrogenase activity. Images PMID:6874648

  2. The Starch Granule-Associated Protein EARLY STARVATION1 Is Required for the Control of Starch Degradation in Arabidopsis thaliana Leaves.

    Science.gov (United States)

    Feike, Doreen; Seung, David; Graf, Alexander; Bischof, Sylvain; Ellick, Tamaryn; Coiro, Mario; Soyk, Sebastian; Eicke, Simona; Mettler-Altmann, Tabea; Lu, Kuan Jen; Trick, Martin; Zeeman, Samuel C; Smith, Alison M

    2016-06-01

    To uncover components of the mechanism that adjusts the rate of leaf starch degradation to the length of the night, we devised a screen for mutant Arabidopsis thaliana plants in which starch reserves are prematurely exhausted. The mutation in one such mutant, named early starvation1 (esv1), eliminates a previously uncharacterized protein. Starch in mutant leaves is degraded rapidly and in a nonlinear fashion, so that reserves are exhausted 2 h prior to dawn. The ESV1 protein and a similar uncharacterized Arabidopsis protein (named Like ESV1 [LESV]) are located in the chloroplast stroma and are also bound into starch granules. The region of highest similarity between the two proteins contains a series of near-repeated motifs rich in tryptophan. Both proteins are conserved throughout starch-synthesizing organisms, from angiosperms and monocots to green algae. Analysis of transgenic plants lacking or overexpressing ESV1 or LESV, and of double mutants lacking ESV1 and another protein necessary for starch degradation, leads us to propose that these proteins function in the organization of the starch granule matrix. We argue that their misexpression affects starch degradation indirectly, by altering matrix organization and, thus, accessibility of starch polymers to starch-degrading enzymes.

  3. Lack of TNF-alpha receptor type 2 protects motor neurons in a cellular model of amyotrophic lateral sclerosis and in mutant SOD1 mice but does not affect disease progression.

    Science.gov (United States)

    Tortarolo, Massimo; Vallarola, Antonio; Lidonnici, Dario; Battaglia, Elisa; Gensano, Francesco; Spaltro, Gabriella; Fiordaliso, Fabio; Corbelli, Alessandro; Garetto, Stefano; Martini, Elisa; Pasetto, Laura; Kallikourdis, Marinos; Bonetto, Valentina; Bendotti, Caterina

    2015-10-01

    Changes in the homeostasis of tumor necrosis factor α (TNFα) have been demonstrated in patients and experimental models of amyotrophic lateral sclerosis (ALS). However, the contribution of TNFα to the development of ALS is still debated. TNFα is expressed by glia and neurons and acts through the membrane receptors TNFR1 and TNFR2, which may have opposite effects in neurodegeneration. We investigated the role of TNFα and its receptors in the selective motor neuron death in ALS in vitro and in vivo. TNFR2 expressed by astrocytes and neurons, but not TNFR1, was implicated in motor neuron loss in primary SOD1-G93A co-cultures. Deleting TNFR2 from SOD1-G93A mice, there was partial but significant protection of spinal motor neurons, sciatic nerves, and tibialis muscles. However, no improvement of motor impairment or survival was observed. Since the sciatic nerves of SOD1-G93A/TNFR2-/- mice showed high phospho-TAR DNA-binding protein 43 (TDP-43) accumulation and low levels of acetyl-tubulin, two indices of axonal dysfunction, the lack of symptom improvement in these mice might be due to impaired function of rescued motor neurons. These results indicate the interaction between TNFR2 and membrane-bound TNFα as an innovative pathway involved in motor neuron death. Nevertheless, its inhibition is not sufficient to stop disease progression in ALS mice, underlining the complexity of this pathology. We show evidence of the involvement of neuronal and astroglial TNFR2 in the motor neuron degeneration in ALS. Both concur to cause motor neuron death in primary astrocyte/spinal neuron co-cultures. TNFR2 deletion partially protects motor neurons and sciatic nerves in SOD1-G93A mice but does not improve their symptoms and survival. However, TNFR2 could be a new target for multi-intervention therapies.

  4. EFFECTS OF SODIUM NITROPRUSSIDE ON SALT STRESS TOLERANCE OF TOCOPHEROL-DEFICIENT ARABIDOPSIS THALIANA PLANTS

    Directory of Open Access Journals (Sweden)

    Nadiia Mosiichuk

    2015-05-01

    Full Text Available In the present study, effects of exogenous sodium nitroprusside (SNP, a nitric oxide (•NO donor, on lipid peroxidation and antioxidant enzyme activities in wild type and tocopherol-deficient lines vte1 and vte4 of Arabidopsis thaliana subjected to 200 mM NaCl were studied. In wild type plants, pretreatment with SNP did not change level of thiobarbituric acid reactive substances (TBARS, but decreased the activities of dehydroascorbate reductase and guaiacol peroxidase under salt stress. In mutant line vte1, which lacks all forms of tocopherols, pretreatment with SNP reduced TBARS level and increases the activities of glutathione reductase and guaiacol peroxidase under salt stress. Ascorbate peroxidase activity decreased under salt stress conditions in both mutant lines, pretreated with SNP. It can be concluded, that pretreatment with SNP could attenuate salt-induced injuries in A. thaliana plants via up-regulation of activity of antioxidant enzymes and attenuate lipid peroxidation.

  5. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    David Seung

    2015-02-01

    Full Text Available The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin or linear (amylose. The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM. We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is

  6. A novel pathway of cytochrome c biogenesis is involved in the assembly of the cytochrome b6f complex in arabidopsis chloroplasts.

    Science.gov (United States)

    Lezhneva, Lina; Kuras, Richard; Ephritikhine, Geneviève; de Vitry, Catherine

    2008-09-05

    We recently characterized a novel heme biogenesis pathway required for heme c(i)' covalent binding to cytochrome b6 in Chlamydomonas named system IV or CCB (cofactor assembly, complex C (b6f), subunit B (PetB)). To find out whether this CCB pathway also operates in higher plants and extend the knowledge of the c-type cytochrome biogenesis, we studied Arabidopsis insertion mutants in the orthologs of the CCB genes. The ccb1, ccb2, and ccb4 mutants show a phenotype characterized by a deficiency in the accumulation of the subunits of the cytochrome b6f complex and lack covalent heme binding to cytochrome b6. These mutants were functionally complemented with the corresponding wild type cDNAs. Using fluorescent protein reporters, we demonstrated that the CCB1, CCB2, CCB3, and CCB4 proteins are targeted to the chloroplast compartment of Arabidopsis. We have extended our study to the YGGT family, to which CCB3 belongs, by studying insertion mutants of two additional members of this family for which no mutants were previously characterized, and we showed that they are not functionally involved in the CCB system. Thus, we demonstrate the ubiquity of the CCB proteins in chloroplast heme c(i)' binding.

  7. A Novel Pathway of Cytochrome c Biogenesis Is Involved in the Assembly of the Cytochrome b6f Complex in Arabidopsis Chloroplasts*S⃞

    Science.gov (United States)

    Lezhneva, Lina; Kuras, Richard; Ephritikhine, Geneviève; de Vitry, Catherine

    2008-01-01

    We recently characterized a novel heme biogenesis pathway required for heme ci′ covalent binding to cytochrome b6 in Chlamydomonas named system IV or CCB (cofactor assembly, complex C (b6f), subunit B (PetB)). To find out whether this CCB pathway also operates in higher plants and extend the knowledge of the c-type cytochrome biogenesis, we studied Arabidopsis insertion mutants in the orthologs of the CCB genes. The ccb1, ccb2, and ccb4 mutants show a phenotype characterized by a deficiency in the accumulation of the subunits of the cytochrome b6f complex and lack covalent heme binding to cytochrome b6. These mutants were functionally complemented with the corresponding wild type cDNAs. Using fluorescent protein reporters, we demonstrated that the CCB1, CCB2, CCB3, and CCB4 proteins are targeted to the chloroplast compartment of Arabidopsis. We have extended our study to the YGGT family, to which CCB3 belongs, by studying insertion mutants of two additional members of this family for which no mutants were previously characterized, and we showed that they are not functionally involved in the CCB system. Thus, we demonstrate the ubiquity of the CCB proteins in chloroplast heme ci′ binding. PMID:18593701

  8. WBC27, an Adenosine Tri-phosphate-binding Cassette Protein, Controls Pollen Wall Formation and Patterning in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ying Dou; Ke-Zhen Yang; Yi Zhang; Wei Wang; Xiao-Lei Liu; Li-Qun Chen; Xue-Qin Zhang; De Ye

    2011-01-01

    In flowering plants, the exine components are derived from tapetum. Despite its importance to sexual plant reproduction, little is known about the translocation of exine materials from tapetum to developing microspores. Here we report functional characterization of the arabidopsis WBC27 gene. WBC27 encodes an adenosine tri-phosphate binding cassette (ABC) transporter and is expressed preferentially in tapetum. Mutation of WBC27 disrupted the exine formation. The wbc27 mutant microspores began to degenerate once released from tetrads and most of the microspores collapsed at the uninucleate stage. Only a small number of wbc27-1 microspores could develop into tricellular pollen grains. These survival pollen grains lacked exine and germinated in the anther before anthesis. All of these results suggest that the ABC transporter, WBC27 plays important roles in the formation of arabidopsis exine, possibly by translocation of lipidic precursors of sporopollenin from tapetum to developing microspores.

  9. The Phenylpropanoid Pathway in Arabidopsis

    Science.gov (United States)

    Fraser, Christopher M.; Chapple, Clint

    2011-01-01

    The phenylpropanoid pathway serves as a rich source of metabolites in plants, being required for the biosynthesis of lignin, and serving as a starting point for the production of many other important compounds, such as the flavonoids, coumarins, and lignans. In spite of the fact that the phenylpropanoids and their derivatives are sometimes classified as secondary metabolites, their relevance to plant survival has been made clear via the study of Arabidopsis and other plant species. As a model system, Arabidopsis has helped to elucidate many details of the phenylpropanoid pathway, its enzymes and intermediates, and the interconnectedness of the pathway with plant metabolism as a whole. These advances in our understanding have been made possible in large part by the relative ease with which mutations can be generated, identified, and studied in Arabidopsis. Herein, we provide an overview of the research progress that has been made in recent years, emphasizing both the genes (and gene families) associated with the phenylpropanoid pathway in Arabidopsis, and the end products that have contributed to the identification of many mutants deficient in the phenylpropanoid metabolism: the sinapate esters. PMID:22303276

  10. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    unclear whether callose synthases can also produce cellulose and whether plant cellulose synthases may also produce beta-1,3-glucans. We describe here an Arabidopsis gene, AtGsl5, encoding a plasma membrane-localized protein homologous to yeast beta-1,3-glucan synthase whose expression partially......Beta-1,3-glucan polymers are major structural components of fungal cell walls, while cellulosic beta-1,4-glucan is the predominant polysaccharide in plant cell walls. Plant beta-1,3-glucan, called callose, is produced in pollen and in response to pathogen attack and wounding, but it has been...... in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...

  11. Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue

    DEFF Research Database (Denmark)

    Egelund, Jack; Obel, Nicolai; Ulvskov, Peter

    2007-01-01

    Two putative glycosyltransferases in Arabidopsis thaliana, designated reduced residual arabinose-1 and -2 (RRA1 and RRA2), are characterized at the molecular level. Both genes are classified in CAZy GT-family-77 and are phylogenetically related to putative glycosyltranferases of Chlamydomonas...... identified and characterized at the molecular and biochemical level. Monosaccharide compositional analyses of cell wall material isolated from the meristematic region showed a ca. 20% reduction in the arabinose content in the insoluble/undigested cell wall residue after enzymatic removal of xyloglucan...... and pectic polysaccharides. These data indicate that both RRA-1 and -2 play a role in the arabinosylation of cell wall component(s)....

  12. Reference: 333 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ron A et al. 2006 Mar. Plant J. 45(5):752-64. The WAG1 and WAG2 genes of Arabidopsis thaliana encode protein-serine/thre...onine kinases that are closely related to PINOID. In order to determine what roles WAG1 and WAG2... play in seedling development, we used a reverse genetics approach to study the w...ag1, wag2 and wag1/wag2 mutant phenotypes for clues. Although the wag mutants do not contain detectable amounts of the corre...sponding mRNA, they are wild type in most respects. However, wag1/wag2 double mutants exhibi

  13. Reference: 186 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available nce rooting during propagation. To better understand the role of IBA, we isolated Arabidopsis IBA-response (ibr) mutants that display...t, whereas acx1 acx3 and acx1 acx5 double mutants display enhanced IBA resistance...cx1 acx2 double mutants display enhanced IBA resistance and are sucrose dependent during seedling developmen...tive in ACX1, ACX3, or ACX4 have reduced fatty acyl-CoA oxidase activity on specific substrates. Moreover, a

  14. Reference: 682 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available complex is a multiheme protein. Two b-type hemes are bound non-covalently to the protein, whereas the third ...hanesulfonate-induced nuclear mutant hcf208. This Arabidopsis mutant shows a high chlorophyll fluorescence p...nscript levels and patterns of the four major polypeptides of the complex are equal to those of the wild typ...e. The mutant cytochrome b(6) polypeptide shows a faster migration behavior in SDS-PAGE compared with the wi...ne was cloned. Sequence analysis revealed that HCF208 is a homolog of the Chlamydomonas reinhardtii CCB2 pro

  15. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis.

    Science.gov (United States)

    Burow, Meike; Losansky, Anja; Müller, René; Plock, Antje; Kliebenstein, Daniel J; Wittstock, Ute

    2009-01-01

    Glucosinolates are a group of thioglucosides that are components of an activated chemical defense found in the Brassicales. Plant tissue damage results in hydrolysis of glucosinolates by endogenous thioglucosidases known as myrosinases. Spontaneous rearrangement of the aglucone yields reactive isothiocyanates that are toxic to many organisms. In the presence of specifier proteins, alternative products, namely epithionitriles, simple nitriles, and thiocyanates with different biological activities, are formed at the expense of isothiocyanates. Recently, simple nitriles were recognized to serve distinct functions in plant-insect interactions. Here, we show that simple nitrile formation in Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 rosette leaves increases in response to herbivory and that this increase is independent of the known epithiospecifier protein (ESP). We combined phylogenetic analysis, a screen of Arabidopsis mutants, recombinant protein characterization, and expression quantitative trait locus mapping to identify a gene encoding a nitrile-specifier protein (NSP) responsible for constitutive and herbivore-induced simple nitrile formation in Columbia-0 rosette leaves. AtNSP1 is one of five Arabidopsis ESP homologues that promote simple nitrile, but not epithionitrile or thiocyanate, formation. Four of these homologues possess one or two lectin-like jacalin domains, which share a common ancestry with the jacalin domains of the putative Arabidopsis myrosinase-binding proteins MBP1 and MBP2. A sixth ESP homologue lacked specifier activity and likely represents the ancestor of the gene family with a different biochemical function. By illuminating the genetic and biochemical bases of simple nitrile formation, our study provides new insights into the evolution of metabolic diversity in a complex plant defense system.

  16. Functional aspects of the photosynthetic light reactions in heat stressed Arabidopsis deficient in digalactosyl-diacylglycerol.

    Science.gov (United States)

    Essemine, Jemâa; Govindachary, Sridharan; Ammar, Saïda; Bouzid, Sadok; Carpentier, Robert

    2011-09-01

    Plants are often submitted, in their natural environment, to various abiotic stresses such as heat stress. However, elevated temperature has a detrimental impact on overall plant growth and development. We have examined the physiological response of the dgd1-2 and dgd1-3 Arabidopsis mutants lacking 30-40% of digalactosyl-diacylglycerol (DGDG) exposed to heat constraint. These mutants, which grow similarly to wild type under normal conditions, were previously reported to be defective in basal thermotolerance as measured by cotyledon development. However their functional properties were not described. Chlorophyll fluorescence measurements and absorbance changes at 820nm were used to monitor photosystem II (PSII) and PSI activity, respectively. It was observed that both mutants have similar photosystem activities with some differences. The mutants were less able to use near saturation light energy and elicited higher rates of cyclic PSI electron flow compare to wild type. Arabidopsis leaves exposed to short-term (5min) mild (40°C) or strong (44°C) heat treatment have shown a decline in the operating effective quantum yield of PSII and in the proportion of active PSI reaction centers. However, cyclic PSI electron flow was enhanced. The establishment of the energy-dependent non-photochemical quenching of chlorophyll fluorescence was accelerated but its decline under illumination was inhibited. Furthermore, heat stress affected the process implicated in the redistribution of light excitation energy between the photosystems known as the light state transitions. All the effects of heat stress mentioned above were more intense in the mutant leaves with dgd1-3 being even more susceptible. The decreased DGDG content of the thylakoid membranes together with other lipid changes are proposed to influence the thermo-sensitivity of the light reactions of photosynthesis towards heat stress. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis.

    Science.gov (United States)

    Suetsugu, Noriyuki; Kagawa, Takatoshi; Wada, Masamitsu

    2005-09-01

    The ambient-light conditions mediate chloroplast relocation in plant cells. Under the low-light conditions, chloroplasts accumulate in the light (accumulation response), while under the high-light conditions, they avoid the light (avoidance response). In Arabidopsis (Arabidopsis thaliana), the accumulation response is mediated by two blue-light receptors, termed phototropins (phot1 and phot2) that act redundantly, and the avoidance response is mediated by phot2 alone. A mutant, J-domain protein required for chloroplast accumulation response 1 (jac1), lacks the accumulation response under weak blue light but shows a normal avoidance response under strong blue light. In dark-adapted wild-type cells, chloroplasts accumulate on the bottom of cells. Both the jac1 and phot2 mutants are defective in this chloroplast movement in darkness. Positional cloning of JAC1 reveals that this gene encodes a J-domain protein, resembling clathrin-uncoating factor auxilin at its C terminus. The amounts of JAC1 transcripts and JAC1 proteins are not regulated by light and by phototropins. A green fluorescent protein-JAC1 fusion protein showed a similar localization pattern to green fluorescent protein alone in a transient expression assay using Arabidopsis mesophyll cells and onion (Allium cepa) epidermal cells, suggesting that the JAC1 protein may be a soluble cytosolic protein. Together, these results suggest that JAC1 is an essential component of phototropin-mediated chloroplast movement.

  18. Preliminary Analysis of Genes Involved in Wood Formation Using Arabidopsis thaliana Microarray and Mutants%利用拟南芥基因芯片和突变体对木材形成相关基因的初步分析

    Institute of Scientific and Technical Information of China (English)

    杨海峰; 王敏杰; 赵树堂; 唐芳; 卢孟柱

    2011-01-01

    木材形成是木本植物特有的生物学过程,拟南芥在适当的诱导条件下也能形成类似“木材”的维管组织,因而可以借助拟南芥丰富的基因资源研究木材形成的分子机制.利用前期建立的毛白杨次生维管系统再生实验体系,通过拟南芥表达谱芯片分析再生过程中的基因表达变化,获得149个差异表达基因.选择其中转录因子等调控基因及功能未知基因共89个基因的总计151个拟南芥突变体,经次生诱导培养发现,20个突变体的发芽率或成活率降低,10个突变体表型变化明显,出现维管系统次生生长发育受到抑制、生长速度减慢等,推测这些基因参与调控拟南芥的次生生长.将木本植物与草本植物的研究体系相结合,利用拟南芥次生生长诱导体系研究木材发育相关基因功能,为木材发育的基因功能研究提供一条可行、有效,快速解析基因功能的新途径.%Wood formation is unique biological process in woody plants. However, Arabidopsis thaliana can also develop certain amount of " wood tissues" under the appropriate induced conditions. Since its rich online genetic resources and information are available, A. Thaliana could serve as a model used to study wood formation. Using the previously established platform of regeneration of secondary vascular system in poplar, gene expression profiles were analyzed through the Arabidopsis cDNA microarray. One hundred and forty-nine genes showed transcript-level differences at the different regeneration stages. Eighty-nine genes, including transcriptional factors and function unknown genes, were selected as candidates for investigating Arabidopsis mutants under the induced secondary growth condition to check their morphology and structure. The results showed that 20 mutants had low germination or survival rates, while 10 mutants had various morphological and anatomical changes caused through the inhibition of the secondary vascular

  19. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    Science.gov (United States)

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect.

  20. Image of Arabidopsis phenotype - Arabidopsis Phenome Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available rabidopsis phenotype DOI 10.18908/lsdba.nbdc01509-002 Description of data contents Mutant images in Observat...ion of Arabidopsis phenotype Data file File name: piam_image.tar.gz File URL: ftp://ftp.biosciencedbc.jp/arc...hive/arabid_pheno/LATEST/piam_image.tar.gz File size: 8.4 GB Simple search URL -

  1. Reference: 443 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available hang et al. 2006 Nov. Plant Physiol. 142(3):1180-92. The Arabidopsis (Arabidopsis thaliana) WRKY7 gene is induce...molecules with the W-box (TTGAC) elements, and functions as a transcriptional repressor in plant cells. To s...dopsis. The T-DNA insertion and RNAi mutant plants displayed enhanced resistance to a virulent strain of the...mptom development as compared to those in wild-type plants. The enhanced resistance...P. syringae and developed more severe disease symptoms than wild-type plants. The enhanced susceptibility of

  2. Escherichia coli mutants with a temperature-sensitive alcohol dehydrogenase.

    OpenAIRE

    Lorowitz, W; Clark, D.

    1982-01-01

    Mutants of Escherichia coli resistant to allyl alcohol were selected. Such mutants were found to lack alcohol dehydrogenase. In addition, mutants with temperature-sensitive alcohol dehydrogenase activity were obtained. These mutations, designated adhE, are all located at the previously described adh regulatory locus. Most adhE mutants were also defective in acetaldehyde dehydrogenase activity.

  3. FUM2, a Cytosolic Fumarase, Is Essential for Acclimation to Low Temperature in Arabidopsis thaliana.

    Science.gov (United States)

    Dyson, Beth C; Miller, Matthew A E; Feil, Regina; Rattray, Nicholas; Bowsher, Caroline G; Goodacre, Royston; Lunn, John E; Johnson, Giles N

    2016-09-01

    Although cold acclimation is a key process in plants from temperate climates, the mechanisms sensing low temperature remain obscure. Here, we show that the accumulation of the organic acid fumaric acid, mediated by the cytosolic fumarase FUM2, is essential for cold acclimation of metabolism in the cold-tolerant model species Arabidopsis (Arabidopsis thaliana). A nontargeted metabolomic approach, using gas chromatography-mass spectrometry, identifies fumarate as a key component of the cold response in this species. Plants of T-DNA insertion mutants, lacking FUM2, show marked differences in their response to cold, with contrasting responses both in terms of metabolite concentrations and gene expression. The fum2 plants accumulated higher concentrations of phosphorylated sugar intermediates and of starch and malate. Transcripts for proteins involved in photosynthesis were markedly down-regulated in fum2.2 but not in wild-type Columbia-0. Plants of fum2 show a complete loss of the ability to acclimate photosynthesis to low temperature. We conclude that fumarate accumulation plays an essential role in low temperature sensing in Arabidopsis, either indirectly modulating metabolic or redox signals or possibly being itself directly involved in cold sensing.

  4. Jasmonate Signal Pathway in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yi Shan; Zhi-Long Wang; Daoxin Xie

    2007-01-01

    Jasmonates (JAs), which include jasmonic acid and its cyclopentane derivatives are synthesized from the octadecanoid pathway and widely distributed throughout the plant kingdom. JAs modulate the expression of numerous genes and mediate responses to stress, wounding, insect attack, pathogen infection, and UV damage. They also affect a variety of processes in many plant developmental processes. The JA signal pathway involves two important events: the biosynthesis of JA and the transduction of JA signal. Several important Arabidopsis mutants in jasmonate signal pathway were described in this review.

  5. AtPGL3 is an Arabidopsis BURP domain protein that is localized to the cell wall and promotes cell enlargement

    Directory of Open Access Journals (Sweden)

    Jiyoung ePark

    2015-06-01

    Full Text Available The BURP domain is a plant-specific protein domain that has been identified in secretory proteins, and some of these are involved in cell wall remodeling. Among Arabidopsis BURP domain proteins, three proteins exhibit strong amino acid similarities with the tomato polygalacturonase 1 beta (PG1β protein that interacts with a pectin-digesting enzyme. To investigate biological roles of the Arabidopsis PG1β-like proteins (AtPGLs, we generated Arabidopsis lines in which expression of AtPGLs is altered. Among the three AtPGLs, AtPGL3 exhibited highest transcriptional activity throughout all developmental stages. When tissue-specific expression pattern of AtPGL3 was examined, the gene was observed to be active in epidermal cell layers of rosette leaves and in the trichomes. AtPGL triple mutant plants were smaller than wild type plants because cells were smaller in the mutant plants. Interestingly, when we overexpressed AtPGL3 using a 35S promoter, cells in transgenic plants grew larger than those of the wild type, suggesting that AtPGL3 plays a role in cell expansion. A C-terminal GFP fusion protein of AtPGL3 complemented phenotypes of the triple mutant plants and localized to the cell wall. A truncated AtPGL3-GFP fusion protein that lacks the BURP domain failed to rescue the mutant phenotypes even though the GFP protein was targeted to the cell wall, indicating that the BURP domain is required for its effect on cell expansion. Quantitative RT-PCR and immunoblot analyses indicated that 2 α-expansin genes are down-regulated and up-regulated in the triple mutant and overexpressor lines, respectively. Taken together, AtPGL3 is a cell wall protein required for normal cell expansion and the coexpression results suggest that AtPGLs regulate cell wall loosening, in conjunction with α-expansins, to promote cell growth.

  6. 拟南芥组蛋白甲基化SDG26基因突变体抗旱生理生化研究%Physiological and biochemical studies on Arabidopsis mutant with the loss ofSDG26 gene function under drought stress

    Institute of Scientific and Technical Information of China (English)

    马惠; 刘博宇; 阮颖; 刘春林

    2012-01-01

    SOD, MDA and the content of soluble sugar and proline in Arabidopsis mutant plant sdg26 and wild-type plant Col under drought condition were investigated. The results showed that SOD, MDA, the content of soluble sugar and proline increased with increasing period of drought stress (5, 8, 11, 14, 17, 20 d), the increases were significantly greater in mutant plant sdg26 than those in wild type plant Col. In addition, water in leaves of wild-type plant Col gradually evaporated until death but mutant plant sdg26 still grew well after 20 days of drought stress. These results suggested that mutant plant sdg26 enhanced drought tolerance because of the loss of SDG26 gene function, which also indicated that histone methylation played an important role in drought stress tolerance in plants.%对拟南芥SDG26基因功能缺失突变体sdg26植株和对照野生型Col植株在干旱条件下的SOD活性和MDA、可溶性糖、脯氨酸含量进行测定.结果显示:随着干旱时间(5、8、11、14、17、20 d)持续,sdg26植株中的SOD活性和MDA、可溶性糖、脯氨酸含量都表现出明显提高的趋势,上升水平显著高于对照野生型Col植株;在持续干早20 d条件下,Col植株的叶片逐渐失水干枯及至死亡,但sdg26植株能正常生长,表现出良好的生长势,推测SDG26基因功能的丧失可以增强拟南芥的抗旱能力,说明植物的抗旱能力与组蛋白的甲基化修饰密切相关.

  7. Disruption of the CYTOCHROME C OXIDASE DEFICIENT1 gene leads to cytochrome c oxidase depletion and reorchestrated respiratory metabolism in Arabidopsis.

    Science.gov (United States)

    Dahan, Jennifer; Tcherkez, Guillaume; Macherel, David; Benamar, Abdelilah; Belcram, Katia; Quadrado, Martine; Arnal, Nadège; Mireau, Hakim

    2014-12-01

    Cytochrome c oxidase is the last respiratory complex of the electron transfer chain in mitochondria and is responsible for transferring electrons to oxygen, the final acceptor, in the classical respiratory pathway. The essentiality of this step makes it that depletion in complex IV leads to lethality, thereby impeding studies on complex IV assembly and respiration plasticity in plants. Here, we characterized Arabidopsis (Arabidopsis thaliana) embryo-lethal mutant lines impaired in the expression of the CYTOCHROME C OXIDASE DEFICIENT1 (COD1) gene, which encodes a mitochondria-localized PentatricoPeptide Repeat protein. Although unable to germinate under usual conditions, cod1 homozygous embryos could be rescued from immature seeds and developed in vitro into slow-growing bush-like plantlets devoid of a root system. cod1 mutants were defective in C-to-U editing events in cytochrome oxidase subunit2 and NADH dehydrogenase subunit4 transcripts, encoding subunits of respiratory complex IV and I, respectively, and consequently lacked cytochrome c oxidase activity. We further show that respiratory oxygen consumption by cod1 plantlets is exclusively associated with alternative oxidase activity and that alternative NADH dehydrogenases are also up-regulated in these plants. The metabolomics pattern of cod1 mutants was also deeply altered, suggesting that alternative metabolic pathways compensated for the probable resulting restriction in NADH oxidation. Being the first complex IV-deficient mutants described in higher plants, cod1 lines should be instrumental to future studies on respiration homeostasis.

  8. Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence.

    Science.gov (United States)

    Xie, Yanjie; Xu, Daokun; Cui, Weiti; Shen, Wenbiao

    2012-06-01

    Previous pharmacological results confirmed that haem oxygenase-1 (HO-1) is involved in protection of cells against ultraviolet (UV)-induced oxidative damage in soybean [Glycine max (L.) Merr.] seedlings, but there remains a lack of genetic evidence. In this study, the link between Arabidopsis thaliana HO-1 (HY1) and UV-C tolerance was investigated at the genetic and molecular levels. The maximum inducible expression of HY1 in wild-type Arabidopsis was observed following UV-C irradiation. UV-C sensitivity was not observed in ho2, ho3, and ho4 single and double mutants. However, the HY1 mutant exhibited UV-C hypersensitivity, consistent with the observed decreases in chlorophyll content, and carotenoid and flavonoid metabolism, as well as the down-regulation of antioxidant defences, thereby resulting in severe oxidative damage. The addition of the carbon monoxide donor carbon monoxide-releasing molecule-2 (CORM-2), in particular, and bilirubin (BR), two catalytic by-products of HY1, partially rescued the UV-C hypersensitivity, and other responses appeared in the hy1 mutant. Transcription factors involved in the synthesis of flavonoid or UV responses were induced by UV-C, but reduced in the hy1 mutant. Overall, the findings showed that mutation of HY1 triggered UV-C hypersensitivity, by impairing carotenoid and flavonoid synthesis and antioxidant defences.

  9. Arabidopsis TAF1 is an MRE11-interacting protein required for resistance to genotoxic stress and viability of the male gametophyte.

    Science.gov (United States)

    Waterworth, Wanda M; Drury, Georgina E; Blundell-Hunter, George; West, Christopher E

    2015-11-01

    Repair of DNA double-strand breaks (DSBs) by recombination pathways is essential for plant growth and fertility. The recombination endonuclease MRE11 plays important roles in sensing and repair of DNA DSBs. Here we demonstrate protein interaction between Arabidopsis MRE11 and the histone acetyltransferase TAF1, a TATA-binding protein Associated Factor (TAF) of the RNA polymerase II transcription initiation factor complex TFIID. Arabidopsis has two TAF1 homologues termed TAF1 and TAF1b and mutant taf1b lines are viable and fertile. In contrast, taf1 null mutations are lethal, demonstrating that TAF1 is an essential gene. Heterozygous taf1+/- plants display abnormal segregation of the mutant allele resulting from defects in pollen tube development, indicating that TAF1 is important for gamete viability. Characterization of an allelic series of taf1 lines revealed that hypomorphic mutants are viable but display developmental defects and reduced plant fertility. Hypersensitivity of taf1 mutants lacking the C-terminal bromodomain to X-rays and mitomycin C, but not to other forms of abiotic stress, established a specific role for TAF1 in plant DNA repair processes. Collectively these studies reveal a function for TAF1 in plant resistance to genotoxic stress, providing further insight into the molecular mechanisms of the DNA damage response in plants.

  10. Dynamic Acclimation to High Light in Arabidopsis thaliana Involves Widespread Reengineering of the Leaf Proteome

    Directory of Open Access Journals (Sweden)

    Matthew A. E. Miller

    2017-07-01

    Full Text Available Leaves of Arabidopsis thaliana transferred from low to high light increase their capacity for photosynthesis, a process of dynamic acclimation. A mutant, gpt2, lacking a chloroplast glucose-6-phosphate/phosphate translocator, is deficient in its ability to acclimate to increased light. Here, we have used a label-free proteomics approach, to perform relative quantitation of 1993 proteins from Arabidopsis wild type and gpt2 leaves exposed to increased light. Data are available via ProteomeXchange with identifier PXD006598. Acclimation to light is shown to involve increases in electron transport and carbon metabolism but no change in the abundance of photosynthetic reaction centers. The gpt2 mutant shows a similar increase in total protein content to wild type but differences in the extent of change of certain proteins, including in the relative abundance of the cytochrome b6f complex and plastocyanin, the thylakoid ATPase and selected Benson-Calvin cycle enzymes. Changes in leaf metabolite content as plants acclimate can be explained by changes in the abundance of enzymes involved in metabolism, which were reduced in gpt2 in some cases. Plants of gpt2 invest more in stress-related proteins, suggesting that their reduced ability to acclimate photosynthetic capacity results in increased stress.

  11. A novel chloroplast-localized protein EMB1303 is required for chloroplast development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiaozhen Huang; Xiaoyan Zhang; Shuhua Yang

    2009-01-01

    @@ The corresponding author is sorry for the following errors. 1. The first sentence of the Results section is corrected to read: The albino mutant (SALK_016097) was obtained from Arabidopsis Biological Resource Center (ABRC).

  12. ARGONAUTE1 acts in Arabidopsis root radial pattern formation independently of the SHR/SCR pathway.

    Science.gov (United States)

    Miyashima, Shunsuke; Hashimoto, Takashi; Nakajima, Keiji

    2009-03-01

    The formation of radially symmetric tissue patterns is one of the most basic processes in the development of vascular plants. In Arabidopsis thaliana, plant-specific GRAS-type transcription factors, SHORT-ROOT (SHR) and SCARECROW (SCR), are required for asymmetric cell divisions that separate two ground tissue cell layers, the endodermis and cortex, as well as for endodermal cell fate specification. While loss of SHR or SCR results in a single-layered ground tissue, radially symmetric cellular patterns are still maintained, suggesting that unknown regulatory mechanisms act independently of the SHR/SCR-dependent pathway. In this study, we identified a novel root radial pattern mutant and found that it is a new argonaute1 (ago1) allele. Multiple ago1 mutant alleles contained supernumerary ground tissue cell layers lacking a concentric organization, while expression patterns of SHR and SCR were not affected, revealing a previously unreported role for AGO1 in root ground tissue patterning. Analyses of ago1 scr double mutants demonstrated that the simultaneous loss of the two pathways caused a dramatic reduction in cellular organization and ground tissue identity as compared with the single mutants. Based on these results, we propose that highly symmetric root ground tissue patterns are maintained by the actions of two independent pathways, one using post-transcriptional regulation mediated by AGO1 and the other using the SHR/SCR transcriptional regulator.

  13. Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis.

    Science.gov (United States)

    Hillwig, Melissa S; Chiozza, Mariana; Casteel, Clare L; Lau, Siau Ting; Hohenstein, Jessica; Hernández, Enrique; Jander, Georg; MacIntosh, Gustavo C

    2016-02-01

    Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA-regulated genes are over-represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA-related gene expression could be an important component of the Arabidopsis-aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild-type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1-1 mutants, which cannot synthesize ABA, and showed a significant preference for wild-type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1-1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild-type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4-methoxyindol-3-ylmethylglucosinolate was more abundant in the aba1-1 mutant than in wild-type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  14. AtNFXL1, an Arabidopsis homologue of the human transcription factor NF-X1, functions as a negative regulator of the trichothecene phytotoxin-induced defense response.

    Science.gov (United States)

    Asano, Tomoya; Masuda, Daisuke; Yasuda, Michiko; Nakashita, Hideo; Kudo, Toshiaki; Kimura, Makoto; Yamaguchi, Kazuo; Nishiuchi, Takumi

    2008-02-01

    Trichothecenes are a closely related family of phytotoxins that are produced by phytopathogenic fungi. In Arabidopsis, expression of AtNFXL1, a homologue of the putative human transcription repressor NF-X1, was significantly induced by application of type A trichothecenes, such as T-2 toxin. An atnfxl1 mutant growing on medium lacking trichothecenes showed no phenotype, whereas a hypersensitivity phenotype was observed in T-2 toxin-treated atnfxl1 mutant plants. Microarray analysis indicated that several defense-related genes (i.e. WRKYs, NBS-LRRs, EDS5, ICS1, etc.) were upregulated in T-2 toxin-treated atnfxl1 mutants compared with wild-type plants. In addition, enhanced salicylic acid (SA) accumulation was observed in T-2 toxin-treated atnfxl1 mutants, which suggests that AtNFXL1 functions as a negative regulator of these defense-related genes via an SA-dependent signaling pathway. We also found that expression of AtNFXL1 was induced by SA and flg22 treatment. Moreover, the atnfxl1 mutant was less susceptible to a compatible phytopathogen, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000). Taken together, these results indicate that AtNFXL1 plays an important role in the trichothecene response, as well as the general defense response in Arabidopsis.

  15. Cmv2b-AGO interaction is required for the suppression of RDR-dependent antiviral silencing in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Fang

    2016-08-01

    Full Text Available Using a transient plant system, it was previously found that the suppression of Cucumber mosaic virus (CMV 2b protein relies on its double-strand (ds RNA binding capacity, but it is independent of its interaction with ARGONAUTE (AGO proteins. Thus, the biological meaning of the 2b-AGO interaction in the context of virus infection remains elusive. In this study, we created infectious clones of CMV mutants that expressed the 2b functional domains of dsRNA or AGO binding and tested the effect of these CMV mutants on viral pathogenicity. We found that the mutant CMV2b(1-76 expressing the 2b dsRNA-binding domain exhibited the same virulence as wild-type CMV in infection with either wild-type Arabidopsis or rdr1/6 plants with RDR1- and RDR6-deficient mutations. However, remarkably reduced viral RNA levels and increased virus (vsiRNAs were detected in CMV2b(1-76-infected Arabidopsis in comparison to CMV infection, which demonstrated that the 2b(1-76 deleted AGO-binding domain failed to suppress the RDR1/RDR6-dependent degradation of viral RNAs. The mutant CMV2b(8-111 expressing mutant 2b, in which the N-terminal 7 amino acid (aa was deleted, exhibited slightly reduced virulence, but not viral RNA levels, in both wild-type and rdr1/6 plants, which indicated that 2b retained the AGO-binding activity acquired the counter-RDRs degradation of viral RNAs. The deletion of the N-terminal 7 aa of 2b affected virulence due to the reduced affinity for long dsRNA. The mutant CMV2b(18-111 expressing mutant 2b lacked the N-terminal 17 aa but retained its AGO-binding activity greatly reduced virulence and viral RNA level. Together with the instability of both 2b(18-111-EGFP and RFP-AGO4 proteins when co-expressed in Nicotiana benthamiana leaves, our data demonstrates that the effect of 2b-AGO interaction on counter-RDRs antiviral defense required the presence of 2b dsRNA-binding activity. Taken together, our findings demonstrate that the dsRNA-binding activity of the

  16. Genetic analysis of photoreceptor action pathways in Arabidopsis thaliana. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The specific strategies and long-term goals of this proposal remain intact relative to the original proposal. We continue to isolate and characterize photomorphogenic mutants of Arabidopsis thaliana. The molecular and biochemical characterization of one of these mutants, det1, has led to one publication of original data and to one Society for Experimental Biology Symposium paper (see below). The phenotype of a second mutant, det2, has also been studied during this funding period. In addition, we have continued work on a general strategy to isolate mutations in trans-acting regulatory factors that mediate light-regulated gene expression, and have identified several potentially interesting regulatory mutants. In the third funding period, we will concentrate on the genetical, biochemical, and molecular characterization of these new mutants. Construction of double mutants between the new mutants and the previously characterized morphological mutants should allow us to construct a pathway for light-regulated seedling development in Arabidopsis.

  17. The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Mcarmen eMartinez-Ballesta

    2015-07-01

    Full Text Available Members of the Brassicaceae are known for their contents of nutrients and health-promoting phytochemicals, including glucosinolatesExposure to salinity increases the levels of several of these compounds, but their role in abiotic stress response is unclear. The effect of aliphatic glucosinolates on plant water balance and growth under salt stress, involving aquaporins, was investigated by means of Arabidopsis thaliana mutants impaired in aliphatic glucosinolate biosynthesis, which is controlled by two transcription factors: Myb28 and Myb29. The double mutant myb28myb29, completely lacking aliphatic glucosinolates, was compared to wild type Col-0 (WT and the single mutant myb28. A greater reduction in the hydraulic conductivity of myb28myb29 was observed under salt stress, when compared to the WT and myb28; this correlated with the abundance of both PIP1 and PIP2 aquaporin subfamilies. Also, changes in root architecture in response to salinity were genotype dependent. Treatment with NaCl altered glucosinolates biosynthesis in a similar way in WT and the single mutant and differently in the double mutant. The results indicate that short-chain aliphatic glucosinolates may contribute to water saving under salt stress

  18. The Genetic Basis of Constitutive and Herbivore-Induced ESP-Independent Nitrile Formation in Arabidopsis1[W][OA

    Science.gov (United States)

    Burow, Meike; Losansky, Anja; Müller, René; Plock, Antje; Kliebenstein, Daniel J.; Wittstock, Ute

    2009-01-01

    Glucosinolates are a group of thioglucosides that are components of an activated chemical defense found in the Brassicales. Plant tissue damage results in hydrolysis of glucosinolates by endogenous thioglucosidases known as myrosinases. Spontaneous rearrangement of the aglucone yields reactive isothiocyanates that are toxic to many organisms. In the presence of specifier proteins, alternative products, namely epithionitriles, simple nitriles, and thiocyanates with different biological activities, are formed at the expense of isothiocyanates. Recently, simple nitriles were recognized to serve distinct functions in plant-insect interactions. Here, we show that simple nitrile formation in Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 rosette leaves increases in response to herbivory and that this increase is independent of the known epithiospecifier protein (ESP). We combined phylogenetic analysis, a screen of Arabidopsis mutants, recombinant protein characterization, and expression quantitative trait locus mapping to identify a gene encoding a nitrile-specifier protein (NSP) responsible for constitutive and herbivore-induced simple nitrile formation in Columbia-0 rosette leaves. AtNSP1 is one of five Arabidopsis ESP homologues that promote simple nitrile, but not epithionitrile or thiocyanate, formation. Four of these homologues possess one or two lectin-like jacalin domains, which share a common ancestry with the jacalin domains of the putative Arabidopsis myrosinase-binding proteins MBP1 and MBP2. A sixth ESP homologue lacked specifier activity and likely represents the ancestor of the gene family with a different biochemical function. By illuminating the genetic and biochemical bases of simple nitrile formation, our study provides new insights into the evolution of metabolic diversity in a complex plant defense system. PMID:18987211

  19. Reference: 432 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available east nine mitochondrial matrix flavoprotein dehydrogenases. Electrons accepted by... ETF are further transferred to the main respiratory chain via the ETF ubiquinone oxide reductase (ETFQO). Sequence...dependent T-DNA insertional Arabidopsis mutants of the ETFbeta gene revealed accelerated senescence and earl... and phytanoyl CoA during dark-induced carbohydrate deprivation. These phenotypic characteristics of etfb mu...lorophyll degradation pathway activated during dark-induced carbohydrate deprivation. The mitochondrial elec

  20. Reference: 794 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available rt was not completely eliminated in the NRT1.5 knockout mutant, and reduction of NRT1.5 in the nrt1.1 background did not affe... step. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transpo...rt. 9 2514-28 18780802 2008 Sep The Plant cell Canivenc Geneviève|Gojon Alain|Hsu Po-Kai|Kuo Hui-Fe

  1. Reference: 551 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 551 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17329563i Liu Yongxiu et al. 2007 Fe...in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. 2 433-44 17329563 2007 Feb The Plant cell Koornneef Maarten|Liu Yongxiu|Soppe Wim J J

  2. Reference: 34 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available al gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental...e1 gene of Arabidopsis is required during anoxia but not other environmental stre...ronmental stresses. We also characterize the expression of the aldehyde dehydrogena...ed under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other envi

  3. Reference: 463 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ,in Arabidopsis. To further examine the role of the LNG genes, we characterized lng1 and lng...2-1 rot3-1 triple mutant and of a lng1-1D rot3-1 double mutant indicated that LNG1 and LNG2 p...s, we identified a dominant mutant, which we designated longifolia1-1D (lng1-1D). lng1-1D plants were charac... this phenotype was caused by overexpression of the novel gene LNG1, which was found to have a homolog, LNG2...2 loss-of-function mutant lines. In contrast to the elongated leaves of lng1-1D plants, the lng1 and lng

  4. Reference: 586 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available and to identify auxiliary factors required for this process, we characterized the mutant hcf173 of Arabidop...sis thaliana. The mutant shows a high chlorophyll fluorescence phenotype (hcf) an...ally decreased synthesis of the reaction center protein D1. Polysome association experiments suggest that th...is is primarily caused by reduced translation initiation of the corresponding psb...A mRNA. Comparison of mRNA steady state levels indicated that the psbA mRNA is significantly reduced in hcf1

  5. Reference: 706 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available et al. 2008 Jan. Plant Cell Physiol. 49(1):2-10. To understand better the plant response to ozone, we isola...ted and characterized an ozone-sensitive (ozs1) mutant strain from a set of T-DNA-tagged Arabidopsis thalian...a ecotype Columbia. The mutant plants show enhanced sensitivity to ozone, desicca...vels. The T-DNA was inserted at a single locus which is linked to ozone sensitivity. Identification of the g...h either of two different T-DNA insertions in this gene were also sensitive to ozone, and these plants faile

  6. Heavy ion induced mutation in arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tano, Shigemitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy ions, He, C, Ar and Ne were irradiated to the seeds of Arabidopsis thaliana for inducing the new mutants. In the irradiated generation (M{sub 1}), germination and survival rate were observed to estimate the relative biological effectiveness in relation to the LET including the inactivation cross section. Mutation frequencies were compared by using three kinds of genetic loci after irradiation with C ions and electrons. Several interesting new mutants were selected in the selfed progenies of heavy ion irradiated seeds. (author)

  7. Reference: 469 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available eol et al. 2006 Dec. Development 133(23):4699-707. The floral inhibitor FLOWERING LOCUS C (FLC) is a crucial re...gulator of flowering time in Arabidopsis, and is positively regulated by the FRIGIDA (FRI) gene in late-f...lowering winter-annual accessions. In rapid-cycling accessions, FLC expression is suppre...ssed by the autonomous floral-promotion pathway (AP); thus AP mutants contain high levels of FLC and are late flowering. Pre...vious work has shown that the upregulation of FLC in FRI- or AP-mutant backgrounds is correlated to an incre

  8. Reference: 625 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available he ABA-insensitive phenotype of the sdir1-1 mutant, whereas SDIR1 could not rescue the abi5-1 mutant. This suggests that SDI...ansduction. We show that the RING finger E3 ligase, Arabidopsis thaliana SALT- AND DROUGHT-INDUCED RING FINGER1 (SDI...R1), is involved in abscisic acid (ABA)-related stress signal transduction. SDI...y ABA. Plants expressing the ProSDIR1-beta-glucuronidase (GUS) reporter construct confirmed strong induction... stress. The green fluorescent protein-SDIR1 fusion protein is colocalized with intracellular membranes. We demonstrate that SDI

  9. Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Jian Chen; Dong-ping Li; Le-gong Li; Zhen-hua Liu; Yu-ju Yuan; Li-lin Guo; Dan-dan Mao; Lian-fu Tian; Liang-bi Chen; Sheng Luan

    2009-01-01

    Magnesium (Mg2+) is abundant in plant cells and plays a critical role in many physiological processes. A 10-mem-ber gene family AtMGT (also known as AtMRS2) was identified in Arabidopsis, which belongs to a eukaryote subset of the CorA superfamily, functioning as Mg2+ transporters. Some family members (AtMGTI and AtMGT10) function as high-affinity Mg2+ transporter and could complement bacterial mutant or yeast mutant lacking Mg2+ transport capa-bility. Here we report an AtMGT family member, AtMGT9, that functions as a low-affinity Mg2+ transporter, and is essential for pollen development. The functional complementation assay in Salmonella mutant strain MM281 showed that AtMGT9 is capable of mediating Mg2+ uptake in the sub-miilimolar range of Mg2+. The AtMGT9 gene was ex-pressed most strongly in mature anthers and was also detectable in vascular tissues of the leaves, and in young roots. Disruption of AtMGT9 gene expression resulted in abortion of half of the mature pollen grains in heterozygous mu-tant +/mgtg, and no homozygous mutant plant was obtained in the progeny of selfed +/mgt9 plants. Transgenic plants expressing AtMGT9 in these heterozygous plants can recover the pollen phenotype to the wild type. In addition, At-MGT9 RNAi transgenic plants also showed similar abortive pollen phenotype to mutant +/mgtg. Together, our results demonstrate that AtMGT9 functions as a low-affinity Mg2+ transporter that plays a crucial role in male gametophyte development and male fertility.

  10. FUM2, a Cytosolic Fumarase, Is Essential for Acclimation to Low Temperature in Arabidopsis thaliana1[OPEN

    Science.gov (United States)

    Dyson, Beth C.; Miller, Matthew A.E.; Feil, Regina; Rattray, Nicholas; Bowsher, Caroline G.

    2016-01-01

    Although cold acclimation is a key process in plants from temperate climates, the mechanisms sensing low temperature remain obscure. Here, we show that the accumulation of the organic acid fumaric acid, mediated by the cytosolic fumarase FUM2, is essential for cold acclimation of metabolism in the cold-tolerant model species Arabidopsis (Arabidopsis thaliana). A nontargeted metabolomic approach, using gas chromatography-mass spectrometry, identifies fumarate as a key component of the cold response in this species. Plants of T-DNA insertion mutants, lacking FUM2, show marked differences in their response to cold, with contrasting responses both in terms of metabolite concentrations and gene expression. The fum2 plants accumulated higher concentrations of phosphorylated sugar intermediates and of starch and malate. Transcripts for proteins involved in photosynthesis were markedly down-regulated in fum2.2 but not in wild-type Columbia-0. Plants of fum2 show a complete loss of the ability to acclimate photosynthesis to low temperature. We conclude that fumarate accumulation plays an essential role in low temperature sensing in Arabidopsis, either indirectly modulating metabolic or redox signals or possibly being itself directly involved in cold sensing. PMID:27440755

  11. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis.

    Science.gov (United States)

    Osakabe, Yuriko; Mizuno, Shinji; Tanaka, Hidenori; Maruyama, Kyonoshin; Osakabe, Keishi; Todaka, Daisuke; Fujita, Yasunari; Kobayashi, Masatomo; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2010-03-19

    RPK1 (receptor-like protein kinase 1) localizes to the plasma membrane and functions as a regulator of abscisic acid (ABA) signaling in Arabidopsis. In our current study, we investigated the effect of RPK1 disruption and overproduction upon plant responses to drought stress. Transgenic Arabidopsis overexpressing the RPK1 protein showed increased ABA sensitivity in their root growth and stomatal closure and also displayed less transpirational water loss. In contrast, a mutant lacking RPK1 function, rpk1-1, was found to be resistant to ABA during these processes and showed increased water loss. RPK1 overproduction in these transgenic plants thus increased their tolerance to drought stress. We performed microarray analysis of RPK1 transgenic plants and observed enhanced expression of several stress-responsive genes, such as Cor15a, Cor15b, and rd29A, in addition to H(2)O(2)-responsive genes. Consistently, the expression levels of ABA/stress-responsive genes in rpk1-1 had decreased compared with wild type. The results suggest that the overproduction of RPK1 enhances both the ABA and drought stress signaling pathways. Furthermore, the leaves of the rpk1-1 plants exhibit higher sensitivity to oxidative stress upon ABA-pretreatment, whereas transgenic plants overproducing RPK1 manifest increased tolerance to this stress. Our current data suggest therefore that RPK1 overproduction controls reactive oxygen species homeostasis and enhances both water and oxidative stress tolerance in Arabidopsis.

  12. Chiral and non-chiral nutations in Arabidopsis roots grown on the random positioning machine.

    Science.gov (United States)

    Piconese, S; Tronelli, G; Pippia, P; Migliaccio, F

    2003-08-01

    Arabidopsis thaliana roots grown on a vertically set plate do not elongate straight down the gravitational vector, but by making waves and coils, and by conspicuously slanting towards the right-hand. This behaviour, in a previous paper, was ascribed to the simultaneous effect of three processes: circumnutation, positive gravitropism and negative thigmotropism. However, when the plants are grown on the Random Positioning Machine (RPM), in conditions that are believed to simulate space microgravitational conditions closely, the roots do not show the usual pattern. In the wild type, the roots make large loops to the right-hand side, whereas in the gravitropic and auxinic mutants aux1, eir1, rha1, they just move randomly around the initial direction. Therefore, if the movements made on the RPM are those produced by the exclusion of gravitropism and negative thigmotropism, as is apparent, the conclusion is that Arabidopsis roots are animated by a form of chiral circumnutation, that is lacking in the auxinic and gravitropic mutants aux1, eir1 and rha1. In addition, the 1 g condition appears to reduce the scatter among the circumnutating tracks produced by the roots of the wild types, but not among those of the mutants. Because there is a scarcity of literature regarding circumnutation in roots, it is not known how widely root chiral circumnutation is spread, but it is known that, in some previously studied species, just random nutations are observed. Two kinds of nutating movements seem to exist in plant roots and, whereas the random process does not seem to be connected with auxin physiology and transport, the chiral process appears to be connected in the same way as gravitropism is.

  13. Analysis and Identification of Two CBF2 Gene Mutants in Arabidopsis%两种拟南芥 CBF2基因突变体的鉴定与分析

    Institute of Scientific and Technical Information of China (English)

    刘晓东; 刘超; 焦彬彬; 代培红; 苏秀娟; 李月

    2016-01-01

    Cold stress is one of the major abiotic stress,which limits the geographical distribution and yield of crops.CBF regulon plays a major role in freezing tolerance.CBF2,one of the components of the CBF regulon,has a negative role in freezing tolerance.In this study,two SALK mutants whose T-DNA insertion are both within the pro-moter of CBF2 gene,cbf2-1 and cbf2-2 were identified by qRT-PCR method.Results showed that the level of CBF2 gene expression in the two mutants reduced.CBF2 gene expression was induced by low temperature in cbf2-1 mut-nat.However,the degree of induction was lower in cbf2-1compared with the control.The effect of induction by low temperature was lost in cbf2-2.Analysis of freezing tolerance showed that the less degree of induction,the stronger freezing tolerance of plants and the higher the expression of downstream cold-responsive genes.More important thing was that although freezing resistance of the two CBF2 gene mutants were improved,their flowering time and seed yield per plant did not change significantly compared with the wild type plants.All the results indicate that CBF2 may be an ideal candidate target gene for crop breeding of freezing tolerance by genome editing technology.%低温是主要的逆境胁迫之一,限制了作物的地理分布和产量。筛选理想的抗冻靶基因用于分子育种对于稳定农业生产具有重要意义。CBF 调节子在植物抗冻反应中扮演主要的角色,CBF2是 CBF 调节子的组成成分之一,在抗冻反应中扮演负调控的作用。采用 qRT-PCR 和常规农艺性状测定法对2种 CBF2基因突变体 cbf2-1和 cbf2-2进行了多项指标的鉴定,结果发现在这2种突变体中 CBF2基因的表达存在不同程度的缺陷,cbf2-1中 CBF2基因受低温诱导表达,但表达量与对照相比,明显下降;而 cbf2-2中 CBF2基因诱导表达的效应完全丧失。抗冻性检测结果显示 CBF2基因的表达量越低,其突变体植株的抗冻性越强

  14. Cell fate and cell differentiation status in the Arabidopsis root

    NARCIS (Netherlands)

    Scheres, B.J.G.; Berg, C. van den; Weisbeek, P.

    1998-01-01

    Post-embryonic development in plants is mainly achieved by its meristems. Within the Arabidopsis root meristem, both the fate and origin of its cells can be predicted with high accuracy. Mutants defective in the determination of root cell fates show that the corresponding genes are first required

  15. Diversity of TITAN function in Arabidopsis Seed Development

    NARCIS (Netherlands)

    Tzafrir, I.; McElver, J.A.; Liu, C.M.; Yang, L.J.; Wu, J.Q.; Martinez, A.; Patton, D.A.; Meinke, D.W.

    2002-01-01

    The titan mutants of Arabidopsis exhibit striking defects in seed development. The defining feature is the presence of abnormal endosperm with giant polyploid nuclei. Several TTN genes encode structural maintenance of chromosome proteins (condensins and cohesins) required for chromosome function at

  16. Sugar signalling during germination and early seedling establishment in Arabidopsis

    NARCIS (Netherlands)

    Dekkers, S.J.W.

    2006-01-01

    Sugars have pronounced effects on many plant processes like gene expression, germination and early seedling development. Several screens for sugar insensitive mutants were performed to identify genes involved in sugar response pathways using the model plant Arabidopsis. These include sun, gin and si

  17. Reference: 130 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ate in a variety of proteolytic events essential for cell growth and viability, and in fertility in a broad ...mutant (mpa1) from a pool of T-DNA tagged lines that lacks PSA activity. This line exhibits reduced fertilit...enetic characterization of meiosis in the mutant line reveals that both male and female meiosis are defe

  18. Condensin and cohesin knockouts in Arabidopsis exhibit a titan seed phenotype

    NARCIS (Netherlands)

    Liu, C.M.; McElver, J.; Tzafrir, I.; Joosen, R.; Wittich, P.; Patton, D.; Lammeren, van A.A.M.; Meinke, D.

    2002-01-01

    The titan (ttn) mutants of Arabidopsis exhibit striking alterations in chromosome dynamics and cell division during seed development. Endosperm defects include aberrant mitoses and giant polyploid nuclei. Mutant embryos differ in cell size, morphology and viability, depending on the locus involved.

  19. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status

    Science.gov (United States)

    A unique set of allelic Arabidopsis mutants are described that exhibit either suppressed or completely inhibited expression of a gene designated ECERIFERUM9 (CER9). These mutants exhibit a dramatic elevation in the total amount of leaf cutin monomers, and a dramatic shift in the leaf cuticular wax p...

  20. Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs.

    Science.gov (United States)

    Szarzynska, Bogna; Sobkowiak, Lukasz; Pant, Bikram Datt; Balazadeh, Salma; Scheible, Wolf-Rüdiger; Mueller-Roeber, Bernd; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2009-05-01

    Arabidopsis thaliana HYL1 is a nuclear double-stranded RNA-binding protein involved in the maturation of pri-miRNAs. A quantitative real-time PCR platform for parallel quantification of 176 pri-miRNAs was used to reveal strong accumulation of 57 miRNA precursors in the hyl1 mutant that completely lacks HYL1 protein. This approach enabled us for the first time to pinpoint particular members of MIRNA family genes that require HYL1 activity for efficient maturation of their precursors. Moreover, the accumulation of miRNA precursors in the hyl1 mutant gave us the opportunity to carry out 3' and 5' RACE experiments which revealed that some of these precursors are of unexpected length. The alignment of HYL1-dependent miRNA precursors to A. thaliana genomic sequences indicated the presence of introns in 12 out of 20 genes studied. Some of the characterized intron-containing pri-miRNAs undergo alternative splicing such as exon skipping or usage of alternative 5' splice sites suggesting that this process plays a role in the regulation of miRNA biogenesis. In the hyl1 mutant intron-containing pri-miRNAs accumulate alongside spliced pri-miRNAs suggesting the recruitment of HYL1 into the miRNA precursor maturation pathway before their splicing occurs.

  1. Regulation of length and density of Arabidopsis root hairs by ammonium and nitrate.

    Science.gov (United States)

    Vatter, Thomas; Neuhäuser, Benjamin; Stetter, Markus; Ludewig, Uwe

    2015-09-01

    Root hairs expand the effective root surface to increase the uptake of nutrients and water from the soil. Here the local effects of the two major nitrogen sources, ammonium and nitrate, on root hairs were investigated using split plates. In three contrasting accessions of A. thaliana, namely Col-0, Tsu-0 and Sha, root hairs were differentially affected by the nitrogen forms and their concentration. Root hairs in Sha were short in the absence of nitrate. In Col-0, hair length was moderately decreased with increasing nitrate or ammonium. In all accessions, the root hair density was insensitive to 1,000-fold changes in the ammonium concentrations, when supplied locally as the exclusive nitrogen form. In contrast, the root hair density generally increased with nitrate as the exclusive local nitrogen source. The nitrate sensitivity was reduced at mM concentrations in a loss-of-function mutant of the nitrate transporter and sensor gene NRT1;1 (NPF6.3). Little differences with respect to ammonium were found in a mutant lacking four high affinity AMT-type ammonium transporters, but interestingly, the response to high nitrate was reduced and may indicate a general defect in nitrogen signaling in that mutant. Genetic diversity and the presence of the nitrogen transceptor NRT1;1 explain heterogeneity in the responses of root hairs to different nitrogen forms in Arabidopsis accessions.

  2. NBS1 plays a synergistic role with telomerase in the maintenance of telomeres in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Najdekrova Lucie

    2012-09-01

    Full Text Available Abstract Background Telomeres, as elaborate nucleo-protein complexes, ensure chromosomal stability. When impaired, the ends of linear chromosomes can be recognised by cellular repair mechanisms as double-strand DNA breaks and can be healed by non-homologous-end-joining activities to produce dicentric chromosomes. During cell divisions, particularly during anaphase, dicentrics can break, thus producing naked chromosome tips susceptible to additional unwanted chromosome fusion. Many telomere-building protein complexes are associated with telomeres to ensure their proper capping function. It has been found however, that a number of repair complexes also contribute to telomere stability. Results We used Arabidopsis thaliana to study the possible functions of the DNA repair subunit, NBS1, in telomere homeostasis using knockout nbs1 mutants. The results showed that although NBS1-deficient plants were viable, lacked any sign of developmental aberration and produced fertile seeds through many generations upon self-fertilisation, plants also missing the functional telomerase (double mutants, rapidly, within three generations, displayed severe developmental defects. Cytogenetic inspection of cycling somatic cells revealed a very early onset of massive genome instability. Molecular methods used for examining the length of telomeres in double homozygous mutants detected much faster telomere shortening than in plants deficient in telomerase gene alone. Conclusions Our findings suggest that NBS1 acts in concert with telomerase and plays a profound role in plant telomere renewal.

  3. Ferulic acid 5-hydroxylase 1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis.

    Science.gov (United States)

    Maruta, Takanori; Noshi, Masahiro; Nakamura, Maki; Matsuda, Shun; Tamoi, Masahiro; Ishikawa, Takahiro; Shigeoka, Shigeru

    2014-04-01

    Anthocyanins are important for preventing photoinhibition and photodamage. By comprehensive reverse genetic analysis of chloroplast-produced H2O2-responsive genes, we isolated here an anthocyanin-deficient mutant under photooxidative stress, which lacked ferulate 5-hydroxylase 1 (FAH1) involved in the phenylpropanoid pathway. Interestingly, the expression of anthocyanin biosynthesis-associated genes was also inhibited in this mutant. These findings suggest that FAH1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis. Furthermore, we found that estrogen-inducible silencing of thylakoid membrane-bound ascorbate peroxidase, which is a major H2O2-scavenging enzyme in chloroplasts, enhances the expression of FAH1 and anthocyanin biosynthesis-associated genes and accumulation of anthocyanin without any application of stress. Thus, it is likely that chloroplastic H2O2 activates FAH1 expression to induce anthocyanin accumulation for protecting cells from photooxidative stress.

  4. Diurnal Dependence of Growth Responses to Shade in Arabidopsis: Role of Hormone, Clock,and Light Signaling

    Institute of Scientific and Technical Information of China (English)

    Romina Sellaro; Manuel Pacín; Jorge J. Casal

    2012-01-01

    We investigated the diurnal dependence of the hypocotyl-growth responses to shade under sunlight-night cycles in Arabidopsis thaliana.Afternoon shade events promoted hypocotyl growth,while morning shade was ineffective.The Ihy-D,elf3,lux,pif4 pif5,toc1,and quadruple della mutants retained the response to afternoon shade and the lack of response to morning shade while the Ihy cca 1 mutant responded to both morning and afternoon shade.The phyB mutant,plants overexpressing the multidrug resistance-like membrane protein ABCB19,and the iaa17/axr3 loss-of-function mutant failed to respond to shade.Transient exposure of sunlight-grown seedlings to synthetic auxin in the afternoon caused a stronger promotion of hypocotyl growth than morning treatments.The promotion of hypocotyl growth by afternoon shade or afternoon auxin required light perceived by phytochrome A or cryptochromes during the previous hours of the photoperiod.Although the ELF4-ELF3-LUX complex,PIF4,PIF5,and DELLA are key players in the generation of diurnal hypocotyl-growth patterns,they exert a minor role in the control of the diurnal pattern of growth responses to shade.We conclude that the strong diurnal dependency of hypocotyl-growth responses to shade relates to the balance between the antagonistic actions of LHY-CCA1 and a light-derived signal.

  5. Arabidopsis thaliana gonidialess A/Zuotin related factors (GlsA/ZRF) are essential for maintenance of meristem integrity.

    Science.gov (United States)

    Guzmán-López, José Alfredo; Abraham-Juárez, María Jazmín; Lozano-Sotomayor, Paulina; de Folter, Stefan; Simpson, June

    2016-05-01

    Observation of a differential expression pattern, including strong expression in meristematic tissue of an Agave tequilana GlsA/ZRF ortholog suggested an important role for this gene during bulbil formation and developmental changes in this species. In order to better understand this role, the two GlsA/ZFR orthologs present in the genome of Arabidopsis thaliana were functionally characterized by analyzing expression patterns, double mutant phenotypes, promoter-GUS fusions and expression of hormone related or meristem marker genes. Patterns of expression for A. thaliana show that GlsA/ZFR genes are strongly expressed in SAMs and RAMs in mature plants and developing embryos and double mutants showed multiple changes in morphology related to both SAM and RAM tissues. Typical double mutants showed stunted growth of aerial and root tissue, formation of multiple ectopic meristems and effects on cotyledons, leaves and flowers. The KNOX genes STM and BP were overexpressed in double mutants whereas CLV3, WUSCHEL and AS1 were repressed and lack of AtGlsA expression was also associated with changes in localization of auxin and cytokinin. These results suggest that GlsA/ZFR is an essential component of the machinery that maintains the integrity of SAM and RAM tissue and underline the potential to identify new genes or gene functions based on observations in non-model plants.

  6. The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana.

    Science.gov (United States)

    Stefanato, Francesca L; Abou-Mansour, Eliane; Buchala, Antony; Kretschmer, Matthias; Mosbach, Andreas; Hahn, Matthias; Bochet, Christian G; Métraux, Jean-Pierre; Schoonbeek, Henk-jan

    2009-05-01

    Arabidopsis thaliana is known to produce the phytoalexin camalexin in response to abiotic and biotic stress. Here we studied the mechanisms of tolerance to camalexin in the fungus Botrytis cinerea, a necrotrophic pathogen of A. thaliana. Exposure of B. cinerea to camalexin induces expression of BcatrB, an ABC transporter that functions in the efflux of fungitoxic compounds. B. cinerea inoculated on wild-type A. thaliana plants yields smaller lesions than on camalexin-deficient A. thaliana mutants. A B. cinerea strain lacking functional BcatrB is more sensitive to camalexin in vitro and less virulent on wild-type plants, but is still fully virulent on camalexin-deficient mutants. Pre-treatment of A. thaliana with UV-C leads to increased camalexin accumulation and substantial resistance to B. cinerea. UV-C-induced resistance was not seen in the camalexin-deficient mutants cyp79B2/B3, cyp71A13, pad3 or pad2, and was strongly reduced in ups1. Here we demonstrate that an ABC transporter is a virulence factor that increases tolerance of the pathogen towards a phytoalexin, and the complete restoration of virulence on host plants lacking this phytoalexin.

  7. Multiple impacts of loss of plastidic phosphatidylglycerol biosynthesis on photosynthesis during seedling growth of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Koichi eKobayashi

    2016-03-01

    Full Text Available Phosphatidylglycerol (PG is the only major phospholipid in the thylakoid membrane in cyanobacteria and plant chloroplasts. Although PG accounts only for ~10% of total thylakoid lipids, it plays indispensable roles in oxygenic photosynthesis. In contrast to the comprehensive analyses of PG-deprived mutants in cyanobacteria, in vivo roles of PG in photosynthesis during plant growth remain elusive. In this study, we characterized the photosynthesis of an Arabidopsis thaliana T-DNA insertional mutant (pgp1-2, which lacks plastidic PG biosynthesis. In the pgp1-2 mutant, energy transfer from antenna pigments to the photosystem II (PSII reaction center was severely impaired, which resulted in low photochemical efficiency of PSII. Unlike in the wild type, in pgp1-2, the PSII complexes were susceptible to photodamage by red light irradiation. Manganese ions were mostly dissociated from protein systems in pgp1-2, with oxygen-evolving activity of PSII absent in the mutant thylakoids. The oxygen-evolving complex may be disrupted in pgp1-2, which may accelerate the photodamage to PSII by red light. On the acceptor side of the mutant PSII, decreased electron-accepting capacity was observed along with impaired electron transfer. Although the reaction center of PSI was relatively active in pgp1-2 compared to the severe impairment in PSII, the cyclic electron transport was dysfunctional. Chlorophyll fluorescence analysis at 77K revealed that PG may not be needed for the self-organization of the macromolecular protein network in grana thylakoids but is essential for the assembly of antenna-reaction center complexes. Our data clearly show that thylakoid glycolipids cannot substitute for the role of PG in photosynthesis during plant growth.

  8. Arabidopsis hybrid speciation processes.

    Science.gov (United States)

    Schmickl, Roswitha; Koch, Marcus A

    2011-08-23

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation.

  9. Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release.

    Science.gov (United States)

    Cousins, Asaph B; Pracharoenwattana, Itsara; Zhou, Wenxu; Smith, Steven M; Badger, Murray R

    2008-10-01

    Peroxisomes are important for recycling carbon and nitrogen that would otherwise be lost during photorespiration. The reduction of hydroxypyruvate to glycerate catalyzed by hydroxypyruvate reductase (HPR) in the peroxisomes is thought to be facilitated by the production of NADH by peroxisomal malate dehydrogenase (PMDH). PMDH, which is encoded by two genes in Arabidopsis (Arabidopsis thaliana), reduces NAD(+) to NADH via the oxidation of malate supplied from the cytoplasm to oxaloacetate. A double mutant lacking the expression of both PMDH genes was viable in air and had rates of photosynthesis only slightly lower than in the wild type. This is in contrast to other photorespiratory mutants, which have severely reduced rates of photosynthesis and require high CO(2) to grow. The pmdh mutant had a higher O(2)-dependent CO(2) compensation point than the wild type, implying that either Rubisco specificity had changed or that the rate of CO(2) released per Rubisco oxygenation was increased in the pmdh plants. Rates of gross O(2) evolution and uptake were similar in the pmdh and wild-type plants, indicating that chloroplast linear electron transport and photorespiratory O(2) uptake were similar between genotypes. The CO(2) postillumination burst and the rate of CO(2) released during photorespiration were both greater in the pmdh mutant compared with the wild type, suggesting that the ratio of photorespiratory CO(2) release to Rubisco oxygenation was altered in the pmdh mutant. Without PMDH in the peroxisome, the CO(2) released per Rubisco oxygenation reaction can be increased by over 50%. In summary, PMDH is essential for maintaining optimal rates of photorespiration in air; however, in its absence, significant rates of photorespiration are still possible, indicating that there are additional mechanisms for supplying reductant to the peroxisomal HPR reaction or that the HPR reaction is altogether circumvented.

  10. Isolation of new gravitropic mutants under hypergravity conditions

    Directory of Open Access Journals (Sweden)

    Akiko Mori

    2016-09-01

    Full Text Available Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upwards. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes. In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using Next-Generation Sequencing (NGS and Single Nucleotide Polymorphism (SNP-based markers. Using the endodermal-amyloplast less 1 (eal1 mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene (enhancer of eal1 mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis.

  11. Isolation of New Gravitropic Mutants under Hypergravity Conditions

    Science.gov (United States)

    Mori, Akiko; Toyota, Masatsugu; Shimada, Masayoshi; Mekata, Mika; Kurata, Tetsuya; Tasaka, Masao; Morita, Miyo T.

    2016-01-01

    Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using next-generation sequencing (NGS) and single nucleotide polymorphism (SNP)-based markers. Using the endodermal-amyloplast less 1 (eal1) mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g) restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene (enhancer of eal1) mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis.

  12. A novel AtKEA gene family, homolog of bacterial K+/H+ antiporters, plays potential roles in K+ homeostasis and osmotic adjustment in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Sheng Zheng

    Full Text Available AtKEAs, homologs of bacterial KefB/KefC, are predicted to encode K(+/H(+ antiporters in Arabidopsis. The AtKEA family contains six genes forming two subgroups in the cladogram: AtKEA1-3 and AtKEA4-6. AtKEA1 and AtKEA2 have a long N-terminal domain; the full-length AtKEA1 was inactive in yeast. The transport activity was analyzed by expressing the AtKEA genes in yeast mutants lacking multiple ion carriers. AtKEAs conferred resistance to high K(+ and hygromycin B but not to salt and Li(+ stress. AtKEAs expressed in both the shoot and root of Arabidopsis. The expression of AtKEA1, -3 and -4 was enhanced under low K(+ stress, whereas AtKEA2 and AtKEA5 were induced by sorbitol and ABA treatments. However, osmotic induction of AtKEA2 and AtKEA5 was not observed in aba2-3 mutants, suggesting an ABA regulated mechanism for their osmotic response. AtKEAs' expression may not be regulated by the SOS pathway since their expression was not affected in sos mutants. The GFP tagging analysis showed that AtKEAs distributed diversely in yeast. The Golgi localization of AtKEA3 was demonstrated by both the stably transformed seedlings and the transient expression in protoplasts. Overall, AtKEAs expressed and localized diversely, and may play roles in K(+ homeostasis and osmotic adjustment in Arabidopsis.

  13. UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation.

    Science.gov (United States)

    Biever, Jessica J; Brinkman, Doug; Gardner, Gary

    2014-06-01

    Ultraviolet (UV) radiation is an important constituent of sunlight that determines plant morphology and growth. It induces photomorphogenic responses but also causes damage to DNA. Arabidopsis mutants of the endonucleases that function in nucleotide excision repair, xpf-3 and uvr1-1, showed hypersensitivity to UV-B (280-320nm) in terms of inhibition of hypocotyl growth. SOG1 is a transcription factor that functions in the DNA damage signalling response after γ-irradiation. xpf mutants that carry the sog1-1 mutation showed hypocotyl growth inhibition after UV-B irradiation similar to the wild type. A DNA replication inhibitor, hydroxyurea (HU), also inhibited hypocotyl growth in etiolated seedlings, but xpf-3 was not hypersensitive to HU. UV-B irradiation induced accumulation of the G2/M-specific cell cycle reporter construct CYCB1;1-GUS in wild-type Arabidopsis seedlings that was consistent with the expected accumulation of photodimers and coincided with the time course of hypocotyl growth inhibition after UV-B treatment. Etiolated mutants of UVR8, a recently described UV-B photoreceptor gene, irradiated with UV-B showed inhibition of hypocotyl growth that was not different from that of the wild type, but they lacked UV-B-specific expression of chalcone synthase (CHS), as expected from previous reports. CHS expression after UV-B irradiation was not different in xpf-3 compared with the wild type, nor was it altered after HU treatment. These results suggest that hypocotyl growth inhibition by UV-B light in etiolated Arabidopsis seedlings, a photomorphogenic response, is dictated by signals originating from UV-B absorption by DNA that lead to cell cycle arrest. This process occurs distinct from UVR8 and its signalling pathway responsible for CHS induction.

  14. Curvature in Arabidopsis inflorescence stems is limited to the region of amyloplast displacement

    Science.gov (United States)

    Weise, S. E.; Kuznetsov, O. A.; Hasenstein, K. H.; Kiss, J. Z.

    2000-01-01

    Gravitropic sensing in stems and stem-like organs is hypothesized to occur in the endodermis. However, since the endodermis runs the entire length of the stem, the precise site of gravisensing has been difficult to define. In this investigation of gravisensitivity in inflorescence stems of Arabidopsis, we positioned stems in a high gradient magnetic field (HGMF) on a rotating clinostat. Approximately 40% of the young, wild-type (WT) inflorescences, for all positions tested, curved toward the HGMF in the vicinity of the stem exposed to the field. In contrast, when the wedge was placed in the basal region of older inflorescence stems, no curvature was observed. As a control, the HGMF was applied to a starchless mutant, and 5% of the stems curved toward the field. Microscopy of the endodermis in the WT showed amyloplast displacement in the vicinity of the HGMF. Additional structural studies demonstrated that the basal region of WT stems experienced amyloplast displacement and, therefore, suggest this region is capable of gravity perception. However, increased lignification likely prevented curvature in the basal region. The lack of apical curvature after basal amyloplast displacement indicates that gravity perception in the base is not transmitted to the apex. Thus, these results provide evidence that the signal (and thus, response) resulting from perception in Arabidopsis inflorescence stems is spatially restricted.

  15. Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ana Rus

    2006-12-01

    Full Text Available Plants are sessile and therefore have developed mechanisms to adapt to their environment, including the soil mineral nutrient composition. Ionomics is a developing functional genomic strategy designed to rapidly identify the genes and gene networks involved in regulating how plants acquire and accumulate these mineral nutrients from the soil. Here, we report on the coupling of high-throughput elemental profiling of shoot tissue from various Arabidopsis accessions with DNA microarray-based bulk segregant analysis and reverse genetics, for the rapid identification of genes from wild populations of Arabidopsis that are involved in regulating how plants acquire and accumulate Na(+ from the soil. Elemental profiling of shoot tissue from 12 different Arabidopsis accessions revealed that two coastal populations of Arabidopsis collected from Tossa del Mar, Spain, and Tsu, Japan (Ts-1 and Tsu-1, respectively, accumulate higher shoot levels of Na(+ than do Col-0 and other accessions. We identify AtHKT1, known to encode a Na(+ transporter, as being the causal locus driving elevated shoot Na(+ in both Ts-1 and Tsu-1. Furthermore, we establish that a deletion in a tandem repeat sequence approximately 5 kb upstream of AtHKT1 is responsible for the reduced root expression of AtHKT1 observed in these accessions. Reciprocal grafting experiments establish that this loss of AtHKT1 expression in roots is responsible for elevated shoot Na(+. Interestingly, and in contrast to the hkt1-1 null mutant, under NaCl stress conditions, this novel AtHKT1 allele not only does not confer NaCl sensitivity but also cosegregates with elevated NaCl tolerance. We also present all our elemental profiling data in a new open access ionomics database, the Purdue Ionomics Information Management System (PiiMS; http://www.purdue.edu/dp/ionomics. Using DNA microarray-based genotyping has allowed us to rapidly identify AtHKT1 as the casual locus driving the natural variation in shoot Na

  16. The Arabidopsis thaliana-Alternaria brassicicola pathosystem: A model interaction for investigating seed transmission of necrotrophic fungi.

    Science.gov (United States)

    Pochon, Stephanie; Terrasson, Emmanuel; Guillemette, Thomas; Iacomi-Vasilescu, Beatrice; Georgeault, Sonia; Juchaux, Marjorie; Berruyer, Romain; Debeaujon, Isabelle; Simoneau, Philippe; Campion, Claire

    2012-05-09

    Seed transmission constitutes a major component of the parasitic cycle for several fungal pathogens. However, very little is known concerning fungal or plant genetic factors that impact seed transmission and mechanisms underlying this key biological trait have yet to be clarified. Such lack of available data could be probably explained by the absence of suitable model pathosystem to study plant-fungus interactions during the plant reproductive phase. Here we report on setting up a new pathosystem that could facilitate the study of fungal seed transmission. Reproductive organs of Arabidopsis thaliana were inoculated with Alternaria brassicicola conidia. Parameters (floral vs fruit route, seed collection date, plant and silique developmental stages) that could influence the seed transmission efficiency were tested to define optimal seed infection conditions. Microscopic observations revealed that the fungus penetrates siliques through cellular junctions, replum and stomata, and into seed coats either directly or through cracks. The ability of the osmosensitive fungal mutant nik1Δ3 to transmit to A. thaliana seeds was analyzed. A significant decrease in seed transmission rate was observed compared to the wild-type parental strain, confirming that a functional osmoregulation pathway is required for efficient seed transmission of the fungus. Similarly, to test the role of flavonoids in seed coat protection against pathogens, a transparent testa Arabidopsis mutant (tt4-1) not producing any flavonoid was used as host plant. Unexpectedly, tt4-1 seeds were infected to a significantly lower extent than wild-type seeds, possibly due to over-accumulation of other antimicrobial metabolites. The Arabidopsis thaliana-Alternaria brassicicola pathosystem, that have been widely used to study plant-pathogen interactions during the vegetative phase, also proved to constitute a suitable model pathosystem for detailed analysis of plant-pathogen interactions during the reproductive

  17. The Arabidopsis thaliana-Alternaria brassicicola pathosystem: A model interaction for investigating seed transmission of necrotrophic fungi

    Directory of Open Access Journals (Sweden)

    Pochon Stephanie

    2012-05-01

    Full Text Available Abstract Background Seed transmission constitutes a major component of the parasitic cycle for several fungal pathogens. However, very little is known concerning fungal or plant genetic factors that impact seed transmission and mechanisms underlying this key biological trait have yet to be clarified. Such lack of available data could be probably explained by the absence of suitable model pathosystem to study plant-fungus interactions during the plant reproductive phase. Results Here we report on setting up a new pathosystem that could facilitate the study of fungal seed transmission. Reproductive organs of Arabidopsis thaliana were inoculated with Alternaria brassicicola conidia. Parameters (floral vs fruit route, seed collection date, plant and silique developmental stages that could influence the seed transmission efficiency were tested to define optimal seed infection conditions. Microscopic observations revealed that the fungus penetrates siliques through cellular junctions, replum and stomata, and into seed coats either directly or through cracks. The ability of the osmosensitive fungal mutant nik1Δ3 to transmit to A. thaliana seeds was analyzed. A significant decrease in seed transmission rate was observed compared to the wild-type parental strain, confirming that a functional osmoregulation pathway is required for efficient seed transmission of the fungus. Similarly, to test the role of flavonoids in seed coat protection against pathogens, a transparent testa Arabidopsis mutant (tt4-1 not producing any flavonoid was used as host plant. Unexpectedly, tt4-1 seeds were infected to a significantly lower extent than wild-type seeds, possibly due to over-accumulation of other antimicrobial metabolites. Conclusions The Arabidopsis thaliana-Alternaria brassicicola pathosystem, that have been widely used to study plant-pathogen interactions during the vegetative phase, also proved to constitute a suitable model pathosystem for detailed analysis

  18. A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis.

    Directory of Open Access Journals (Sweden)

    Natasha Saint Savage

    2008-09-01

    Full Text Available The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.

  19. Using Arabidopsis to study shoot branching in biomass willow.

    Science.gov (United States)

    Ward, Sally P; Salmon, Jemma; Hanley, Steven J; Karp, Angela; Leyser, Ottoline

    2013-06-01

    The success of the short-rotation coppice system in biomass willow (Salix spp.) relies on the activity of the shoot-producing meristems found on the coppice stool. However, the regulation of the activity of these meristems is poorly understood. In contrast, our knowledge of the mechanisms behind axillary meristem regulation in Arabidopsis (Arabidopsis thaliana) has grown rapidly in the past few years through the exploitation of integrated physiological, genetic, and molecular assays. Here, we demonstrate that these assays can be directly transferred to study the control of bud activation in biomass willow and to assess similarities with the known hormone regulatory system in Arabidopsis. Bud hormone response was found to be qualitatively remarkably similar in Salix spp. and Arabidopsis. These similarities led us to test whether Arabidopsis hormone mutants could be used to assess allelic variation in the cognate Salix spp. hormone genes. Allelic differences in Salix spp. strigolactone genes were observed using this approach. These results demonstrate that both knowledge and assays from Arabidopsis axillary meristem biology can be successfully applied to Salix spp. and can increase our understanding of a fundamental aspect of short-rotation coppice biomass production, allowing more targeted breeding.

  20. Reference: 204 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ified in Arabidopsis based on a growth defect of the dark-grown hypocotyl and an abnormal composition of the non-cellulosic ce...s, the dgl1-1 mutation led to a reduced N-linked glycosylation of the ER-resident protein disulfide isomeras...ntal defects including reduced cell elongation and the collapse and differentiation defects of ce...lls in the central cylinder. These defects were accompanied by changes in the non-cellulosic...her dwarf mutants that are altered in early steps of the N-glycan processing, dgl1-1 did not exhibit a cellu

  1. Reference: 503 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available hingolipid biosynthesis. In yeast and mammalian cells, SPT is a heterodimer that consists of LCB1 and LCB2 s...g-chain base auxotrophy of Saccharomyces cerevisiae SPT mutants when coexpressed with Arabidopsis LCB2. In a... viability was restored by complementation with the wild-type At LCB1 gene. Furthermore, partial RNA interference... (RNAi) suppression of At LCB1 expression was accompanied by a marked reduction in plant size that resu...lted primarily from reduced cell expansion. Sphingolipid content on a weight basi

  2. Reference: 662 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available chelle L et al. 2007. Nucleic Acids Res. 35(19):6490-500. In the absence of the telomerase, telomeres underg...that fusion of critically shortened telomeres in Arabidopsis proceeds with approximately the same efficiency in the presence... or absence of KU70, a key component of NHEJ. Here we report that DNA ligase IV (LIG4) is al...) in the frequency of chromosome fusions in triple tert ku70 lig4 mutants versus tert ku70 or tert. Sequence

  3. Reference: 56 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ollen mother cell wall during microspore development. Microspore separation in the quartet 3 mutants of Arab...Y et al. 2003 Nov. Plant Physiol. 133(3):1170-80. Mutations in the QUARTET loci in Arabidopsis result in failure of microspore separa...cell wall during late stages of pollen development. Mutations in a new locus required for microspore separ...ation, QRT3, were isolated, and the corresponding gene was cloned by T-DNA tagging....tion during pollen development due to a defect in degradation of the pollen mother

  4. Reference: 502 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available t al. 2006 Dec. Plant Cell 18(12):3535-47. Seed storage proteins are synthesized on the endoplasmic reticulum (ER) as pre...cursors and then transported to protein storage vacuoles, where they are processed into mature forms. Here..., we isolated an Arabidopsis thaliana mutant, maigo2 (mag2), that accumulated the pre...ells contained many novel structures, with an electron-dense core that was composed of the precursor forms o...f 2S albumin. 12S globulins were segregated from 2S albumin and were localized in the matrix re

  5. Reference: 391 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available -ha et al. 2006 Jul. Plant Cell 18(7):1736-49. In plants, many gene transcripts are very unstable, which is ...important for the tight control of their temporal and spatial expression patterns. To identify cellular fact...ging in Arabidopsis thaliana to isolate a recessive mutant, stabilized1-1 (sta1-1), with enhanced stability ...dogenous gene transcripts and has a range of developmental and stress response ph...rotein and to the yeast pre-mRNA splicing factors Prp1p and Prp6p. STA1 expression is upregulated by cold stre

  6. Reference: 78 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available astids. The Arabidopsis genome encodes two homologues of Toc34, designated atToc3...utants, plastid protein import 3-1 (ppi3-1) and ppi3-2. Aerial tissues of the ppi3 mutants appeared similar ...to the wild type throughout development, and contained structurally normal chloroplasts that were... able to efficiently import the Rubisco small subunit precursor (prSS) in vitro. The absence... of an obvious ppi3 phenotype in green tissues presumably reflects the ability of atToc33 to substitute for

  7. Reference: 9 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available female gametophyte (FG) development and function, and few FG-expressed genes have been identified. We report...These mutants have defects throughout development, indicating that FG-expressed genes govern essentially eve.... Of the J-domain-containing proteins in Saccharomyces cerevisiae (budding yeast)...Arabidopsis ortholog of yeast Mdj1p. These data suggest a role for mitochondria in cell death in plants. Mitochondrial GFA2 is re...15516 2002 Sep The Plant cell Brown Jessica|Brown Ryan H|Christensen Cory A|Drews Gary N|Gorsich Steven W|Jones Linda G|Shaw Janet M

  8. Reference: 148 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available nori et al. 2004 Jul. Plant Mol. Biol. 55(4):567-77. 4-Hydroxybenzoate polyprenyl diphosphate transferase (4...HPT) is the key enzyme that transfers the prenyl side chain to the benzoquione frame in ubiquinone (UQ) bios...ynthesis. The Arabidopsis AtPPT1 cDNA encoding 4HPT was cloned by reverse transcr...the function of the gene was determined. Heterologous expression of the AtPPT1 gene enabled restoration of the re...HPT activity. The mitochondrial fraction that was prepared from the yeast mutant, which expressed the AtPPT1

  9. Reference: 101 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 101 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15295074i Sorensen A...nna-Marie et al. 2004 Jul. Plant Cell Physiol. 45(7):905-13. Screening a T-DNA mutagenized population of Arabidopsis thaliana for re...duced seed set and segregation distortion led to the isolation of the ABNORMAL GAMET...OPHYTES (AGM) mutant. Homozygous plants were never recovered, but heterozygous pl...ants showed mitotic defects during gametogenesis resulting in approximately 50% abortion of both the male an

  10. Reference: 288 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ly of integral membrane transporters function in cellular detoxification, cell-to-cell signaling, and channel regulation. More re...cently, members of the multidrug resistance P-glycoprotein (...n in both monocots and dicots. Here, we report that the Arabidopsis thaliana MDR/PGP PGP4 functions in the basipetal redire...ction of auxin from the root tip. Reporter gene studies showed tha...l as lateral root formation were reduced in pgp4 mutants compared with the wild type. pgp4 exhibited re

  11. Reference: 183 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available athan et al. 2005 Mar. Dev. Cell 8(3):443-9. The plant shoot body plan is highly variable, depending on the degre...e of branching. Characterization of the max1-max4 mutants of Arabidopsis demonstrates that branching is re...gulated by at least one carotenoid-derived hormone. Here we show that all four...n perception. We propose that MAX1 acts on a mobile substrate, downstream of MAX3 and MAX4, which have immob...ile substrates. These roles for MAX3, MAX4, and MAX2 are consistent with their kn

  12. Reference: 651 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available naud et al. 2007 Sep. EMBO J. 26(18):4126-37. The initiation of meiotic recombination by the formation of DNA double-strand bre...aks (DSBs) catalysed by the Spo11 protein is strongly evolutionary conserved. In Saccharomyces cere...visiae, Spo11 requires nine other proteins for meiotic DSB formation, b...ut, unlike Spo11, few of these proteins seem to be conserved across kingdoms. In order to investigate this re...in Arabidopsis thaliana. In Atprd1 mutants, meiotic recombination rates fall dramatically, early re

  13. Reference: 3 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available t al. 2001 Jul. Plant J. 27(2):89-99. We isolated an Arabidopsis lesion initiation 2 (lin2) mutant, which develops lesion...droxylase (nahG) gene. This suggests that the lesion formation triggered in lin2 plants is determined prior ...to or independently of the accumulation of SA but that the accumulation is required to limit the spread of lesion...s in lin2 plants. A deficiency of coproporphyrinogen III oxidase causes lesion...s, usually activated by pathogen infection. These results demonstrate that a porphyrin pathway impairment is responsible for the lesi

  14. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots.

    Science.gov (United States)

    Aubry-Hivet, D; Nziengui, H; Rapp, K; Oliveira, O; Paponov, I A; Li, Y; Hauslage, J; Vagt, N; Braun, M; Ditengou, F A; Dovzhenko, A; Palme, K

    2014-01-01

    Plant roots are among most intensively studied biological systems in gravity research. Altered gravity induces asymmetric cell growth leading to root bending. Differential distribution of the phytohormone auxin underlies root responses to gravity, being coordinated by auxin efflux transporters from the PIN family. The objective of this study was to compare early transcriptomic changes in roots of Arabidopsis thaliana wild type, and pin2 and pin3 mutants under parabolic flight conditions and to correlate these changes to auxin distribution. Parabolic flights allow comparison of transient 1-g, hypergravity and microgravity effects in living organisms in parallel. We found common and mutation-related genes differentially expressed in response to transient microgravity phases. Gene ontology analysis of common genes revealed lipid metabolism, response to stress factors and light categories as primarily involved in response to transient microgravity phases, suggesting that fundamental reorganisation of metabolic pathways functions upstream of a further signal mediating hormonal network. Gene expression changes in roots lacking the columella-located PIN3 were stronger than in those deprived of the epidermis and cortex cell-specific PIN2. Moreover, repetitive exposure to microgravity/hypergravity and gravity/hypergravity flight phases induced an up-regulation of auxin responsive genes in wild type and pin2 roots, but not in pin3 roots, suggesting a critical function of PIN3 in mediating auxin fluxes in response to transient microgravity phases. Our study provides important insights towards understanding signal transduction processes in transient microgravity conditions by combining for the first time the parabolic flight platform with the transcriptome analysis of different genetic mutants in the model plant, Arabidopsis. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yuan [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); Wu, Keqiang [Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (China); Dhaubhadel, Sangeeta [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); An, Lizhe, E-mail: lizhean@lzu.edu.cn [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Tian, Lining, E-mail: tianl@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada)

    2010-05-28

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.

  16. Blue light-dependent nuclear positioning in Arabidopsis thaliana leaf cells.

    Science.gov (United States)

    Iwabuchi, Kosei; Sakai, Tatsuya; Takagi, Shingo

    2007-09-01

    The plant nucleus changes its intracellular position not only upon cell division and cell growth but also in response to environmental stimuli such as light. We found that the nucleus takes different intracellular positions depending on blue light in Arabidopsis thaliana leaf cells. Under dark conditions, nuclei in mesophyll cells were positioned at the center of the bottom of cells (dark position). Under blue light at 100 mumol m(-2) s(-1), in contrast, nuclei were located along the anticlinal walls (light position). The nuclear positioning from the dark position to the light position was fully induced within a few hours of blue light illumination, and it was a reversible response. The response was also observed in epidermal cells, which have no chloroplasts, suggesting that the nucleus has the potential actively to change its position without chloroplasts. Light-dependent nuclear positioning was induced specifically by blue light at >50 mumol m(-2) s(-1). Furthermore, the response to blue light was induced in phot1 but not in phot2 and phot1phot2 mutants. Unexpectedly, we also found that nuclei as well as chloroplasts in phot2 and phot1phot2 mutants took unusual intracellular positions under both dark and light conditions. The lack of the response and the unusual positioning of nuclei and chloroplasts in the phot2 mutant were recovered by externally introducing the PHOT2 gene into the mutant. These results indicate that phot2 mediates the blue light-dependent nuclear positioning and the proper positioning of nuclei and chloroplasts. This is the first characterization of light-dependent nuclear positioning in spermatophytes.

  17. Transcriptome Sequencing Identifies SPL7-Regulated Copper Acquisition Genes FRO4/FRO5 and the Copper Dependence of Iron Homeostasis in Arabidopsis[C][W

    Science.gov (United States)

    Bernal, María; Casero, David; Singh, Vasantika; Wilson, Grandon T.; Grande, Arne; Yang, Huijun; Dodani, Sheel C.; Pellegrini, Matteo; Huijser, Peter; Connolly, Erin L.; Merchant, Sabeeha S.; Krämer, Ute

    2012-01-01

    The transition metal copper (Cu) is essential for all living organisms but is toxic when present in excess. To identify Cu deficiency responses comprehensively, we conducted genome-wide sequencing-based transcript profiling of Arabidopsis thaliana wild-type plants and of a mutant defective in the gene encoding SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), which acts as a transcriptional regulator of Cu deficiency responses. In response to Cu deficiency, FERRIC REDUCTASE OXIDASE5 (FRO5) and FRO4 transcript levels increased strongly, in an SPL7-dependent manner. Biochemical assays and confocal imaging of a Cu-specific fluorophore showed that high-affinity root Cu uptake requires prior FRO5/FRO4-dependent Cu(II)-specific reduction to Cu(I) and SPL7 function. Plant iron (Fe) deficiency markers were activated in Cu-deficient media, in which reduced growth of the spl7 mutant was partially rescued by Fe supplementation. Cultivation in Cu-deficient media caused a defect in root-to-shoot Fe translocation, which was exacerbated in spl7 and associated with a lack of ferroxidase activity. This is consistent with a possible role for a multicopper oxidase in Arabidopsis Fe homeostasis, as previously described in yeast, humans, and green algae. These insights into root Cu uptake and the interaction between Cu and Fe homeostasis will advance plant nutrition, crop breeding, and biogeochemical research. PMID:22374396

  18. Reference: 509 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available oproteins, occur throughout the plant kingdom. The lysine-rich classical AGP subfamily in Arabidopsis consists of thre...e members, AtAGP17, 18 and 19. In this study, AtAGP19 was examined in terms of its gene expre...n flowers and roots and low levels in leaves. AtAGP19 promoter-controlled GUS activity was high in the vasculature...l T-DNA knockout mutant of AtAGP19 was obtained and compared to wild-type (WT) plants. The atagp19 mutant ha...d: (i) smaller, rounder and flatter rosette leaves, (ii) lighter-green leaves containing less chlorophyll, (

  19. Self-consuming innate immunity in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Mundy, John; Petersen, Morten

    2009-01-01

    Programmed cell death (PCD) associated with the pathogen-induced hypersensitive response (HR) is a hallmark of plant innate immunity. HR PCD is triggered upon recognition of pathogen effector molecules by host immune receptors either directly or indirectly via effector modulation of host targets....... However, it has been unclear by which molecular mechanisms plants execute PCD during innate immune responses. We recently examined HR PCD in autophagy-deficient Arabidopsis knockout mutants (atg) and find that PCD conditioned by one class of plant innate immune receptors is suppressed in atg mutants....... Intriguingly, HR triggered by another class of immune receptors with different genetic requirements is not compromised, indicating that only a specific subset of immune receptors engage the autophagy pathway for HR execution. Thus, our work provides a primary example of autophagic cell death associated...

  20. Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens.

    Directory of Open Access Journals (Sweden)

    Seonghee Lee

    Full Text Available Heterotrimeric G-proteins have been proposed to be involved in many aspects of plant disease resistance but their precise role in mediating nonhost disease resistance is not well understood. We evaluated the roles of specific subunits of heterotrimeric G-proteins using knock-out mutants of Arabidopsis Gα, Gβ and Gγ subunits in response to host and nonhost Pseudomonas pathogens. Plants lacking functional Gα, Gβ and Gγ1Gγ2 proteins displayed enhanced bacterial growth and disease susceptibility in response to host and nonhost pathogens. Mutations of single Gγ subunits Gγ1, Gγ2 and Gγ3 did not alter bacterial disease resistance. Some specificity of subunit usage was observed when comparing host pathogen versus nonhost pathogen. Overexpression of both Gα and Gβ led to reduced bacterial multiplication of nonhost pathogen P. syringae pv. tabaci whereas overexpression of Gβ, but not of Gα, resulted in reduced bacterial growth of host pathogen P. syringae pv. maculicola, compared to wild-type Col-0. Moreover, the regulation of stomatal aperture by bacterial pathogens was altered in Gα and Gβ mutants but not in any of the single or double Gγ mutants. Taken together, these data substantiate the critical role of heterotrimeric G-proteins in plant innate immunity and stomatal modulation in response to P. syringae.

  1. The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells.

    Directory of Open Access Journals (Sweden)

    Radhika Desikan

    Full Text Available BACKGROUND: Stomatal guard cells monitor and respond to environmental and endogenous signals such that the stomatal aperture is continually optimised for water use efficiency. A key signalling molecule produced in guard cells in response to plant hormones, light, carbon dioxide and pathogen-derived signals is hydrogen peroxide (H(2O(2. The mechanisms by which H(2O(2 integrates multiple signals via specific signalling pathways leading to stomatal closure is not known. PRINCIPAL FINDINGS: Here, we identify a pathway by which H(2O(2, derived from endogenous and environmental stimuli, is sensed and transduced to effect stomatal closure. Histidine kinases (HK are part of two-component signal transduction systems that act to integrate environmental stimuli into a cellular response via a phosphotransfer relay mechanism. There is little known about the function of the HK AHK5 in Arabidopsis thaliana. Here we report that in addition to the predicted cytoplasmic localisation of this protein, AHK5 also appears to co-localise to the plasma membrane. Although AHK5 is expressed at low levels in guard cells, we identify a unique role for AHK5 in stomatal signalling. Arabidopsis mutants lacking AHK5 show reduced stomatal closure in response to H(2O(2, which is reversed by complementation with the wild type gene. Over-expression of AHK5 results in constitutively less stomatal closure. Abiotic stimuli that generate endogenous H(2O(2, such as darkness, nitric oxide and the phytohormone ethylene, also show reduced stomatal closure in the ahk5 mutants. However, ABA caused closure, dark adaptation induced H(2O(2 production and H(2O(2 induced NO synthesis in mutants. Treatment with the bacterial pathogen associated molecular pattern (PAMP fl