WorldWideScience

Sample records for arabidopsis chromatin-associated hmga

  1. Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus

    DEFF Research Database (Denmark)

    Launholt, Dorte; Merkle, Thomas; Houben, Andreas;

    2006-01-01

    HMGproteins appear to be involved in the regulation of transcription and other DNA-dependent processes. We have examined the subcellular localization of Arabidopsis thaliana HMGA, HMGB1, and HMGB5, revealing that they localize to the cell nucleus. They display a speckled distribution pattern throughout the chromatin...... of interphase nuclei, whereas none of the proteins associate with condensed mitotic chromosomes. HMGA is targeted to the nucleus by a monopartite nuclear localization signal, while efficient nuclear accumulation of HMGB1/5 requires large portions of the basic N-terminal part of the proteins. The acidic C......-terminal domain interferes with nucleolar targeting of HMGB1. Fluorescence recovery after photobleaching experiments revealed that HMGA and HMGB proteins are extremely dynamic in the nucleus, indicating that they bind chromatin only transiently before moving on to the next site, thereby continuously scanning...

  2. Chromatin associations in Arabidopsis interphase nuclei

    Directory of Open Access Journals (Sweden)

    Veit eSchubert

    2014-11-01

    Full Text Available The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analysed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fibre movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns.Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its ten centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei.

  3. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.

  4. Interaction of maize chromatin-associated HMG proteins with mononucleosomes

    DEFF Research Database (Denmark)

    Lichota, J.; Grasser, Klaus D.

    2003-01-01

    maize HMGA and five different HMGB proteins with mononucleosomes (containing approx. 165 bp of DNA) purified from micrococcal nuclease-digested maize chromatin. The HMGB proteins interacted with the nucleosomes independent of the presence of the linker histone H1, while the binding of HMGA...

  5. HMGA1-pseudogenes and cancer

    Science.gov (United States)

    De Martino, Marco; Forzati, Floriana; Arra, Claudio; Fusco, Alfredo; Esposito, Francesco

    2016-01-01

    Pseudogenes are DNA sequences with high homology to the corresponding functional gene, but, because of the accumulation of various mutations, they have lost their initial functions to code for proteins. Consequently, pseudogenes have been considered until few years ago dysfunctional relatives of the corresponding ancestral genes, and then useless in the course of genome evolution. However, several studies have recently established that pseudogenes are owners of key biological functions. Indeed, some pseudogenes control the expression of functional genes by competitively binding to the miRNAs, some of them generate small interference RNAs to negatively modulate the expression of functional genes, and some of them even encode functional mutated proteins. Here, we concentrate our attention on the pseudogenes of the HMGA1 gene, that codes for the HMGA1a and HMGA1b proteins having a critical role in development and cancer progression. In this review, we analyze the family of HMGA1 pseudogenes through three aspects: classification, characterization, and their possible function and involvement in cancer. PMID:26895108

  6. Hmga1/Hmga2 double knock-out mice display a “superpygmy” phenotype

    Directory of Open Access Journals (Sweden)

    Antonella Federico

    2014-04-01

    Full Text Available The HMGA1 and HMGA2 genes code for proteins belonging to the High Mobility Group A family. Several genes are negatively or positively regulated by both these proteins, but a number of genes are specifically regulated by only one of them. Indeed, knock-out of the Hmga1 and Hmga2 genes leads to different phenotypes: cardiac hypertrophy and type 2 diabetes in the former case, and a large reduction in body size and amount of fat tissue in the latter case. Therefore, to better elucidate the functions of the Hmga genes, we crossed Hmga1-null mice with mice null for Hmga2. The Hmga1−/−/Hmga2−/− mice showed reduced vitality and a very small size (75% smaller than the wild-type mice; they were even smaller than pygmy Hmga2-null mice. The drastic reduction in E2F1 activity, and consequently in the expression of the E2F-dependent genes involved in cell cycle regulation, likely accounts for some phenotypic features of the Hmga1−/−/Hmga2−/− mice.

  7. HMGA1-pseudogene expression is induced in human pituitary tumors

    Science.gov (United States)

    Esposito, Francesco; De Martino, Marco; D'Angelo, Daniela; Mussnich, Paula; Raverot, Gerald; Jaffrain-Rea, Marie-Lise; Fraggetta, Filippo; Trouillas, Jacqueline; Fusco, Alfredo

    2015-01-01

    Numerous studies have established that High Mobility Group A (HMGA) proteins play a pivotal role on the onset of human pituitary tumors. They are overexpressed in pituitary tumors, and, consistently, transgenic mice overexpressing either the Hmga1 or the Hmga2 gene develop pituitary tumors. In contrast with HMGA2, HMGA1 overexpression is not related to any rearrangement or amplification of the HMGA1 locus in these tumors. We have recently identified 2 HMGA1 pseudogenes, HMGA1P6 and HMGA1P7, acting as competitive endogenous RNA decoys for HMGA1 and other cancer related genes. Here, we show that HMGA1 pseudogene expression significantly correlates with HMGA1 mRNA levels in growth hormone and nonfunctioning pituitary adenomas likely inhibiting the repression of HMGA1 through microRNAs action. According to our functional studies, these HMGA1 pseudogenes enhance the proliferation and migration of the mouse pituitary tumor cell line, at least in part, through their upregulation. Our results point out that the overexpression of HMGA1P6 and HMGA1P7 could contribute to increase HMGA1 levels in human pituitary tumors, and then to pituitary tumorigenesis. PMID:25894544

  8. Cellular Fractionation and Isolation of Chromatin-Associated RNA.

    Science.gov (United States)

    Conrad, Thomas; Ørom, Ulf Andersson

    2017-01-01

    In eukaryotic cells, the synthesis, processing, and functions of RNA molecules are confined to distinct subcellular compartments. Biochemical fractionation of cells prior to RNA isolation thus enables the analysis of distinct steps in the lifetime of individual RNA molecules that would be masked in bulk RNA preparations from whole cells. Here, we describe a simple two-step differential centrifugation protocol for the isolation of cytoplasmic, nucleoplasmic, and chromatin-associated RNA that can be used in downstream applications such as qPCR or deep sequencing. We discuss various aspects of this fractionation protocol, which can be readily applied to many mammalian cell types. For the study of long noncoding RNAs and enhancer RNAs in regulation of transcription especially the preparation of chromatin-associated RNA can contribute significantly to further developments.

  9. Analysis list: Hmga2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Hmga2 Embryonic fibroblast + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Hmg...a2.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Hmga2.5.tsv http://dbarchive.bioscienc...edbc.jp/kyushu-u/mm9/target/Hmga2.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Hmga2.Embryonic

  10. RNA-Mediated Regulation of HMGA1 Function

    Directory of Open Access Journals (Sweden)

    Arndt G. Benecke

    2015-05-01

    Full Text Available The high mobility group protein A1 (HMGA1 is a master regulator of chromatin structure mediating its major gene regulatory activity by direct interactions with A/T-rich DNA sequences located in the promoter and enhancer regions of a large variety of genes. HMGA1 DNA-binding through three AT-hook motifs results in an open chromatin structure and subsequently leads to changes in gene expression. Apart from its significant expression during development, HMGA1 is over-expressed in virtually every cancer, where HMGA1 expression levels correlate with tumor malignancy. The exogenous overexpression of HMGA1 can lead to malignant cell transformation, assigning the protein a key role during cancerogenesis. Recent studies have unveiled highly specific competitive interactions of HMGA1 with cellular and viral RNAs also through an AT-hook domain of the protein, significantly impacting the HMGA1-dependent gene expression. In this review, we discuss the structure and function of HMGA1-RNA complexes during transcription and epigenomic regulation and their implications in HMGA1-related diseases.

  11. HMGA1a recognition candidate DNA sequences in humans.

    Directory of Open Access Journals (Sweden)

    Takayuki Manabe

    Full Text Available High mobility group protein A1a (HMGA1a acts as an architectural transcription factor and influences a diverse array of normal biological processes. It binds AT-rich sequences, and previous reports have demonstrated HMGA1a binding to the authentic promoters of various genes. However, the precise sequences that HMGA1a binds to remain to be clarified. Therefore, in this study, we searched for the sequences with the highest affinity for human HMGA1a using an existing SELEX method, and then compared the identified sequences with known human promoter sequences. Based on our results, we propose the sequences "-(G/A-G-(A/T-(A/T-A-T-T-T-" as HMGA1a-binding candidate sequences. Furthermore, these candidate sequences bound native human HMGA1a from SK-N-SH cells. When candidate sequences were analyzed by performing FASTAs against all known human promoter sequences, 500-900 sequences were hit by each one. Some of the extracted genes have already been proven or suggested as HMGA1a-binding promoters. The candidate sequences presented here represent important information for research into the various roles of HMGA1a, including cell differentiation, death, growth, proliferation, and the pathogenesis of cancer.

  12. HMGA2 overexpression plays a critical role in the progression of esophageal squamous carcinoma

    Science.gov (United States)

    Palumbo, Antonio; Meireles Da Costa, Nathalia; Esposito, Francesco; De Martino, Marco; D'Angelo, Daniela; de Sousa, Vanessa Paiva Leite; Martins, Ivanir; Nasciutti, Luiz Eurico; Fusco, Alfredo; Pinto, Luis Felipe Ribeiro

    2016-01-01

    Esophageal Squamous Cell Carcinoma (ESCC) is the most common esophageal tumor worldwide. However, there is still a lack of deeper knowledge about biological alterations involved in ESCC development. High Mobility Group A (HMGA) protein family has been related with poor outcome and malignant cell transformation in several tumor types. In this way, the aim of this study was to analyze the expression of HMGA1 and HMGA2 expression in ESCC and their role in crucial cellular features. We evaluated HMGA1 and HMGA2 mRNA expression in 52 paired ESCC and normal surrounding tissue samples by qRT-PCR. Here, we show that HMGA2, but not HMGA1, is overexpressed in ESCC samples. This result was further confirmed by the immunohistochemical analysis. Indeed, accordingly to mRNA expression data, HMGA2, but not HMGA1, was overexpressed in approximately 90% of ESCC samples, while it was barely expressed in the respective control. Conversely, HMGA1, but not HMGA2, was overexpressed in esophageal adenocarcinoma samples. Interestingly, HMGA2 abrogation attenuated the malignant phenotype of two ESCC cell lines, suggesting that HMGA2 overexpression is involved in ESCC progression. PMID:27027341

  13. Changes in chromatin-associated proteins of virus-infected tobacco leaves

    NARCIS (Netherlands)

    Telgen, van H.J.

    1985-01-01

    Symptoms of viral infections in plants often resemble disturbances in growth and development. Therefore, symptoms appear to result from an interference of the virus with the regulation of growth and development of the host plant. Particularly the non-histone chromatin- associated proteins are consid

  14. HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity

    DEFF Research Database (Denmark)

    Fedele, Monica; Visone, Rosa; De Martino, Ivana

    2006-01-01

    HMGA2 gene amplification and overexpression in human prolactinomas and the development of pituitary adenomas in HMGA2 transgenic mice showed that HMGA2 plays a crucial role in pituitary tumorigenesis. We have explored the pRB/E2F1 pathway to investigate the mechanism by which HMGA2 acts. Here we......2 mice. Thus, HMGA2-mediated E2F1 activation is a crucial event in the onset of these tumors in transgenic mice and probably also in human prolactinomas....

  15. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  16. Expression of a truncated Hmga1b gene induces gigantism, lipomatosis and B-cell lymphomas in mice.

    Science.gov (United States)

    Fedele, Monica; Visone, Rosa; De Martino, Ivana; Palmieri, Dario; Valentino, Teresa; Esposito, Francesco; Klein-Szanto, Andres; Arra, Claudio; Ciarmiello, Andrea; Croce, Carlo M; Fusco, Alfredo

    2011-02-01

    HMGA1 gene rearrangements have been frequently described in human lipomas. In vitro studies suggest that HMGA1 proteins have a negative role in the control of adipocyte cell growth, and that HMGA1 gene truncation acts in a dominant-negative fashion. Therefore, to define better the role of the HMGA1 alterations in the generation of human lipomas, we generated mice carrying an Hmga1b truncated (Hmga1b/T) gene. These mice develop a giant phenotype together with a drastic expansion of the retroperitoneal and subcutaneous white adipose tissue. We show that the activation of the E2F pathway likely accounts, at least in part, for this phenotype. Interestingly, the Hmga1b/T mice also develop B-cell lymphomas similar to that occurring in Hmga1-knockout mice, supporting a dominant-negative role of the Hmga1b/T mutant also in vivo.

  17. Silencing of HMGA2 promotes apoptosis and inhibits migration and invasion of prostate cancer cells

    Indian Academy of Sciences (India)

    Zhan Shi; Ding Wu; Run Tang; Xiang Li; Renfu Chen; Song Xue; Chengjing Zhang; Xiaoqing Sun

    2016-06-01

    The high mobility group protein A2 (HMGA2) has been demonstrated as an architectural transcription factor that is associated with pathogenesis of many malignant cancers, however, its role in prostate cancer cells remains largely unknown. To explore whether HMGA2 participates in the development and progression of prostate cancer, small interfering RNA (siRNA) targeted on human HMGA2 was transfected to suppress the HMGA2 expression in prostate cancer PC3 and DU145 cells, and then we examined the cellular biology changes after decreased the expression of HMGA2. Our results showed that knockdown of HMGA2 markedly inhibited cell proliferation, this reduced cell proliferation was due to the promotion of cell apoptosis as the Bcl-xl was decreased, whereas Bax was up-regulated. In addition, we found that HMGA2 knockdown resulted in reduction of cell migration and invasion, as well as repressed the expression of matrix metalloproteinases (MMPs) and affected the occurrence of epithelial-mesenchymal transition (EMT) in both cell types. We further found that decreased HMGA2 expression inhibited the transforming growth factor-β (TGF-β)/Smad signaling pathway in cancer cells. In conclusion, our data indicated that HMGA2 was associated with apoptosis, migration and invasion of prostate cancer, which might be a promising therapeutic target for prostate cancer.

  18. Correlated expression of HMGA2 and PLAG1 in thyroid tumors, uterine leiomyomas and experimental models.

    Directory of Open Access Journals (Sweden)

    Markus Klemke

    Full Text Available In pleomorphic adenomas of the salivary glands (PASG recurrent chromosomal rearrangements affecting either 8q12 or 12q14∼15 lead to an overexpression of the genes of the genuine transcription factor PLAG1 or the architectural transcription factor HMGA2, respectively. Both genes are also affected by recurrent chromosomal rearrangements in benign adipocytic tumors as e. g. lipomas and lipoblastomas. Herein, we observed a strong correlation between the expression of HMGA2 and PLAG1 in 14 benign and 23 malignant thyroid tumors. To address the question if PLAG1 can be activated by HMGA2, the expression of both genes was quantified in 32 uterine leiomyomas 17 of which exhibited an overexpression of HMGA2. All leiomyomas with HMGA2 overexpression also revealed an activation of PLAG1 in the absence of detectable chromosome 8 abnormalities affecting the PLAG1 locus. To further investigate if the overexpression of PLAG1 is inducible by HMGA2 alone, HMGA2 was transiently overexpressed in MCF-7 cells. An increased PLAG1 expression was observed 24 and 48 h after transfection. Likewise, stimulation of HMGA2 by FGF1 in adipose tissue-derived stem cells led to a simultaneous increase of PLAG1 mRNA. Altogether, these data suggest that HMGA2 is an upstream activator of PLAG1. Accordingly, this may explain the formation of tumors as similar as lipomas and lipoblastomas resulting from an activation of either of both genes by chromosomal rearrangements.

  19. HMGA1: a master regulator of tumor progression in triple-negative breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Sandeep N Shah

    Full Text Available Emerging evidence suggests that tumor cells metastasize by co-opting stem cell transcriptional networks, although the molecular underpinnings of this process are poorly understood. Here, we show for the first time that the high mobility group A1 (HMGA1 gene drives metastatic progression in triple negative breast cancer cells (MDA-MB-231, Hs578T by reprogramming cancer cells to a stem-like state. Silencing HMGA1 expression in invasive, aggressive breast cancer cells dramatically halts cell growth and results in striking morphologic changes from mesenchymal-like, spindle-shaped cells to cuboidal, epithelial-like cells. Mesenchymal genes (Vimentin, Snail are repressed, while E-cadherin is induced in the knock-down cells. Silencing HMGA1 also blocks oncogenic properties, including proliferation, migration, invasion, and orthotopic tumorigenesis. Metastatic progression following mammary implantation is almost completely abrogated in the HMGA1 knock-down cells. Moreover, silencing HMGA1 inhibits the stem cell property of three-dimensional mammosphere formation, including primary, secondary, and tertiary spheres. In addition, knock-down of HMGA1 depletes cancer initiator/cancer stem cells and prevents tumorigenesis at limiting dilutions. We also discovered an HMGA1 signature in triple negative breast cancer cells that is highly enriched in embryonic stem cells. Together, these findings indicate that HMGA1 is a master regulator of tumor progression in breast cancer by reprogramming cancer cells through stem cell transcriptional networks. Future studies are needed to determine how to target HMGA1 in therapy.

  20. IMP3 RNP safe houses prevent miRNA-directed HMGA2 mRNA decay in cancer and development

    DEFF Research Database (Denmark)

    Jønson, Lars; Christiansen, Jan; Hansen, Thomas van Overeem;

    2014-01-01

    The IMP3 RNA-binding protein is associated with metastasis and poor outcome in human cancer. Using solid cancer transcriptome data, we found that IMP3 correlates with HMGA2 mRNA expression. Cytoplasmic IMP3 granules contain HMGA2, and IMP3 dose-dependently increases HMGA2 mRNA. HMGA2 is regulated...... that IMP3 RNPs may function as cytoplasmic safe houses and prevent miRNA-directed mRNA decay of oncogenes during tumor progression....

  1. Low-Frequency Variants in HMGA1 Are Not Associated With Type 2 Diabetes Risk

    NARCIS (Netherlands)

    Marquez, Marcel; Huyvaert, Marlene; Perry, John R. B.; Pearson, Richard D.; Falchi, Mario; Morris, Andrew P.; Vivequin, Sidonie; Lobbens, Stephane; Yengo, Loic; Gaget, Stefan; Pattou, Francois; Poulain-Godefroy, Odile; Charpentier, Guillaume; Carlsson, Lena M. S.; Jacobson, Peter; Sjostrom, Lars; Lantieri, Olivier; Heude, Barbara; Walley, Andrew; Balkau, Beverley; Marre, Michel; Froguel, Philippe; Cauchi, Stephane

    2012-01-01

    It has recently been suggested that the low-frequency c.136-14_136-13insC variant in high-mobility group Al (HMGA1) may strongly contribute to insulin resistance and type 2 diabetes risk. In our study, we attempted to confirm that HMGA1 is a novel type 2 diabetes locus in French Caucasians. The gene

  2. HMGA1 drives metabolic reprogramming of intestinal epithelium during hyperproliferation, polyposis, and colorectal carcinogenesis.

    Science.gov (United States)

    Williams, Michael D; Zhang, Xing; Belton, Amy S; Xian, Lingling; Huso, Tait; Park, Jeong-Jin; Siems, William F; Gang, David R; Resar, Linda M S; Reeves, Raymond; Hill, Herbert H

    2015-03-01

    Although significant progress has been made in the diagnosis and treatment of colorectal cancer (CRC), it remains a leading cause of cancer death worldwide. Early identification and removal of polyps that may progress to overt CRC is the cornerstone of CRC prevention. Expression of the High Mobility Group A1 (HMGA1) gene is significantly elevated in CRCs as compared with adjacent, nonmalignant tissues. We investigated metabolic aberrations induced by HMGA1 overexpression in small intestinal and colonic epithelium using traveling wave ion mobility mass spectrometry (TWIMMS) in a transgenic model in which murine Hmga1 was misexpressed in colonic epithelium. To determine if these Hmga1-induced metabolic alterations in mice were relevant to human colorectal carcinogenesis, we also investigated tumors from patients with CRC and matched, adjacent, nonmalignant tissues. Multivariate statistical methods and manual comparisons were used to identify metabolites specific to Hmga1 and CRC. Statistical modeling of data revealed distinct metabolic patterns in Hmga1 transgenics and human CRC samples as compared with the control tissues. We discovered that 13 metabolites were specific for Hmga1 in murine intestinal epithelium and also found in human CRC. Several of these metabolites function in fatty acid metabolism and membrane composition. Although further validation is needed, our results suggest that high levels of HMGA1 protein drive metabolic alterations that contribute to CRC pathogenesis through fatty acid synthesis. These metabolites could serve as potential biomarkers or therapeutic targets.

  3. IMP3 RNP safe houses prevent miRNA-directed HMGA2 mRNA decay in cancer and development

    DEFF Research Database (Denmark)

    Jønson, Lars; Christiansen, Jan; Hansen, Thomas van Overeem

    2014-01-01

    The IMP3 RNA-binding protein is associated with metastasis and poor outcome in human cancer. Using solid cancer transcriptome data, we found that IMP3 correlates with HMGA2 mRNA expression. Cytoplasmic IMP3 granules contain HMGA2, and IMP3 dose-dependently increases HMGA2 mRNA. HMGA2 is regulated...... embryos show dose-dependent Hmga2 mRNA downregulation. Finally, IMP3 ribonucleoproteins (RNPs) contain other let-7 target mRNAs, including LIN28B, and a global gene set enrichment analysis demonstrates that miRNA-regulated transcripts in general are upregulated following IMP3 induction. We conclude...

  4. Hmga2 functions as a competing endogenous RNA to promote lung cancer progression

    Science.gov (United States)

    Kumar, Madhu S.; Armenteros-Monterroso, Elena; East, Philip; Chakravorty, Probir; Matthews, Nik; Winslow, Monte M.; Downward, Julian

    2013-01-01

    Non-small cell lung cancer (NSCLC) is the most prevalent histological cancer subtype worldwide1. As the majority of patients present with invasive, metastatic disease2, it is vital to understand the basis for lung cancer progression. Hmga2 is highly expressed in metastatic lung adenocarcinoma where it contributes to cancer progression and metastasis3-6. Here we show that Hmga2 promotes lung cancer progression by operating as a competing endogenous RNA (ceRNA)7-11 for the let-7 microRNA (miRNA) family. Hmga2 can promote the transformation of lung cancer cells independent of protein-coding function but dependent upon the presence of let-7 sites; this occurs without changes in the levels of let-7 isoforms, suggesting that Hmga2 affects let-7 activity by altering miRNA targeting. These effects are further observed in vivo, where Hmga2 ceRNA activity drives lung cancer growth, invasion and dissemination. Integrated analysis of miRNA target prediction algorithms and metastatic lung cancer gene expression data reveals the TGF-β co-receptor Tgfbr312 as a putative target of Hmga2 ceRNA function. Tgfbr3 expression is regulated by the Hmga2 ceRNA via differential recruitment to Argonaute-2 (Ago2), and TGF-β signalling driven by Tgfbr3 is largely necessary for Hmga2 to promote lung cancer progression. Finally, analysis of NSCLC patient gene expression data reveals that HMGA2 and TGFBR3 are co-ordinately regulated in NSCLC patient material, a vital corollary to ceRNA function. Taken together, these results suggest that Hmga2 promotes lung carcinogenesis as both a protein-coding gene and a non-coding RNA; such dual-function regulation of gene expression networks reflects a novel means by which oncogenes promote disease progression. PMID:24305048

  5. Homeodomain-interacting Protein Kinase-2 (HIPK2) Phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77 and Modulates Its DNA Binding Affinity

    OpenAIRE

    Zhang, Qingchun; Wang, Yinsheng

    2007-01-01

    The chromosomal high-mobility group A (HMGA) proteins, comprising of HMGA1a, HMGA1b and HMGA2, play important roles in the regulation of numerous processes in eukaryotic cells, such as transcriptional regulation, DNA repair, RNA processing, and chromatin remodeling. The biological activities of HMGA1 proteins are highly regulated by their post-translational modifications (PTMs), including acetylation, methylation and phosphorylation. Recently, it was found that the homeodomain-interacting pro...

  6. HMGA1与肿瘤的研究进展

    Institute of Scientific and Technical Information of China (English)

    杨霞; 李国华

    2009-01-01

    高迁移率族蛋白(high mobility group protein,HMG)由Goodwin等于1973年首次在牛胸腺细胞中发现,它是细胞核内一类水溶性强、在聚丙烯酰胺凝胶电泳中呈现高迁移率的小分子蛋白质。通常分为三大超家族HMG1/HMG2家族、HMG14/HMG17家族及HMGA1家族。2000年国际HMG学术机构根据其分子量大小、序列相识性和DNA结合特性予以重新命名为HMGA家族、HMGB家族和HMGN家族闭。HMGA可分为HMGA1和HMGA2,HMGA1分子又由HMGA1a.HMGA1b和HMGA1c 3种蛋白质组成.这三种蛋白质由同一个基因编码.

  7. Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes.

    Science.gov (United States)

    Li, Xu; Wang, Wenqi; Wang, Jiadong; Malovannaya, Anna; Xi, Yuanxin; Li, Wei; Guerra, Rudy; Hawke, David H; Qin, Jun; Chen, Junjie

    2015-01-21

    The current knowledge on how transcription factors (TFs), the ultimate targets and executors of cellular signalling pathways, are regulated by protein-protein interactions remains limited. Here, we performed proteomics analyses of soluble and chromatin-associated complexes of 56 TFs, including the targets of many signalling pathways involved in development and cancer, and 37 members of the Forkhead box (FOX) TF family. Using tandem affinity purification followed by mass spectrometry (TAP/MS), we performed 214 purifications and identified 2,156 high-confident protein-protein interactions. We found that most TFs form very distinct protein complexes on and off chromatin. Using this data set, we categorized the transcription-related or unrelated regulators for general or specific TFs. Our study offers a valuable resource of protein-protein interaction networks for a large number of TFs and underscores the general principle that TFs form distinct location-specific protein complexes that are associated with the different regulation and diverse functions of these TFs.

  8. ROS-dependent HMGA2 upregulation mediates Cd-induced proliferation in MRC-5 cells.

    Science.gov (United States)

    Xie, Huaying; Wang, Jiayue; Jiang, Liping; Geng, Chengyan; Li, Qiujuan; Mei, Dan; Zhao, Lian; Cao, Jun

    2016-08-01

    Cadmium (Cd) is a heavy metal widely found in a number of environmental matrices, and the exposure to Cd is increasing nowadays. In this study, the role of high mobility group A2 (HMGA2) in Cd-induced proliferation was investigated in MRC-5 cells. Exposure to Cd (2μM) for 48h significantly enhanced the growth of MRC-5 cells, increased reactive oxygen species (ROS) production, and induced both mRNA and protein expression of HMGA2. Evidence for Cd-induced reduction of the number of G0/G1 phase cells and an increase in the number of cells in S phase and G2/M phase was sought by flow cytometric analysis. Western blot analysis showed that cyclin D1, cyclin B1, and cyclin E were upregulated in Cd-treated cells. Further study revealed that N-acetyl cysteine (NAC) markedly prevented Cd-induced proliferation of MRC-5 cells, ROS generation, and the increasing protein level of HMGA2. Silencing of HMGA2 gene by siRNA blocked Cd-induced cyclin D1, cyclin B1, and cyclin E expression and reduction of the number of G0/G1 phase cells. Combining, our data showed that Cd-induced ROS formation provoked HMGA2 upregulation, caused cell cycle changes, and led to cell proliferation. This suggests that HMGA2 might be an important biomarker in Cd-induced cell proliferation.

  9. A novel HMGA1-CCNE2-YAP axis regulates breast cancer aggressiveness

    Science.gov (United States)

    Ciani, Yari; Sgarra, Riccardo; Piazza, Silvano; Manfioletti, Guidalberto

    2015-01-01

    High Mobility Group A1 (HMGA1) is an architectural chromatin factor that promotes neoplastic transformation and progression. However, the mechanism by which HMGA1 exerts its oncogenic function is not fully understood. Here, we show that cyclin E2 (CCNE2) acts downstream of HMGA1 to regulate the motility and invasiveness of basal-like breast cancer cells by promoting the nuclear localization and activity of YAP, the downstream mediator of the Hippo pathway. Mechanistically, the activity of MST1/2 and LATS1/2, the core kinases of the Hippo pathway, are required for the HMGA1- and CCNE2-mediated regulation of YAP localization. In breast cancer patients, high levels of HMGA1 and CCNE2 expression are associated with the YAP/TAZ signature, supporting this connection. Moreover, we provide evidence that CDK inhibitors induce the translocation of YAP from the nucleus to the cytoplasm, resulting in a decrease in its activity. These findings reveal an association between HMGA1 and the Hippo pathway that is relevant to stem cell biology, tissue homeostasis, and cancer. PMID:26265440

  10. E2F1 activation is responsible for pituitary adenomas induced by HMGA2 gene overexpression

    Directory of Open Access Journals (Sweden)

    Fusco Alfredo

    2006-08-01

    Full Text Available Abstract The High Mobility Group protein HMGA2 is a nuclear architectural factor that plays a critical role in a wide range of biological processes including regulation of gene expression, embryogenesis and neoplastic transformation. Several studies are trying to identify the mechanisms by which HMGA2 protein is involved in each of these activities, and only recently some new significant insights are emerging from the study of transgenic and knock-out mice. Overexpression of HMGA2 gene leads to the onset of prolactin and GH-hormone induced pituitary adenomas in mice, suggesting a critical role of this protein in pituitary tumorigenesis. This was also confirmed in the human pathology by the finding that HMGA2 amplification and/or overexpression is present in human prolactinomas. This review focuses on recent data that explain the mechanism by which HMGA2 induces the development of pituitary adenomas in mice. This mechanism entails the activation of the E2F1 protein by the HMGA2-mediated displacement of HDAC1 from pRB protein.

  11. HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance.

    Science.gov (United States)

    Arce-Cerezo, Altamira; García, Miquel; Rodríguez-Nuevo, Aida; Crosa-Bonell, Mireia; Enguix, Natalia; Peró, Albert; Muñoz, Sergio; Roca, Carles; Ramos, David; Franckhauser, Sylvie; Elias, Ivet; Ferre, Tura; Pujol, Anna; Ruberte, Jesús; Villena, Josep A; Bosch, Fàtima; Riu, Efrén

    2015-09-28

    High-Mobility-Group-A1 (HMGA1) proteins are non-histone proteins that regulate chromatin structure and gene expression during embryogenesis, tumourigenesis and immune responses. In vitro studies suggest that HMGA1 proteins may be required to regulate adipogenesis. To examine the role of HMGA1 in vivo, we generated transgenic mice overexpressing HMGA1 in adipose tissues. HMGA1 transgenic mice showed a marked reduction in white and brown adipose tissue mass that was associated with downregulation of genes involved in adipogenesis and concomitant upregulation of preadipocyte markers. Reduced adipogenesis and decreased fat mass were not associated with altered glucose homeostasis since HMGA1 transgenic mice fed a regular-chow diet exhibited normal glucose tolerance and insulin sensitivity. However, when fed a high-fat diet, overexpression of HMGA1 resulted in decreased body-weight gain, reduced fat mass, but improved insulin sensitivity and glucose tolerance. Although HMGA1 transgenic mice exhibited impaired glucose uptake in adipose tissue due to impaired adipogenesis, the increased glucose uptake observed in skeletal muscle may account for the improved glucose homeostasis. Our results indicate that HMGA1 plays an important function in the regulation of white and brown adipogenesis in vivo and suggests that impaired adipocyte differentiation and decreased fat mass is not always associated with impaired whole-body glucose homeostasis.

  12. PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae.

    Science.gov (United States)

    Baccarini, Leticia; Martínez-Montañés, Fernando; Rossi, Silvia; Proft, Markus; Portela, Paula

    2015-11-01

    Gene expression regulation by intracellular stimulus-activated protein kinases is essential for cell adaptation to environmental changes. There are three PKA catalytic subunits in Saccharomyces cerevisiae: Tpk1, Tpk2, and Tpk3 and one regulatory subunit: Bcy1. Previously, it has been demonstrated that Tpk1 and Tpk2 are associated with coding regions and promoters of target genes in a carbon source and oxidative stress dependent manner. Here we studied five genes, ALD6, SED1, HSP42, RPS29B, and RPL1B whose expression is regulated by saline stress. We found that PKA catalytic and regulatory subunits are associated with both coding regions and promoters of the analyzed genes in a stress dependent manner. Tpk1 and Tpk2 recruitment was completely abolished in catalytic inactive mutants. BCY1 deletion changed the binding kinetic to chromatin of each Tpk isoform and this strain displayed a deregulated gene expression in response to osmotic stress. In addition, yeast mutants with high PKA activity exhibit sustained association to target genes of chromatin-remodeling complexes such as Snf2-catalytic subunit of the SWI/SNF complex and Arp8-component of INO80 complex, leading to upregulation of gene expression during osmotic stress. Tpk1 accumulation in the nucleus was stimulated upon osmotic stress, while the nuclear localization of Tpk2 and Bcy1 showed no change. We found that each PKA subunit is transported into the nucleus by a different β-karyopherin pathway. Moreover, β-karyopherin mutant strains abolished the chromatin association of Tpk1 or Tpk2, suggesting that nuclear localization of PKA catalytic subunits is required for its association to target genes and properly gene expression.

  13. Genomic characterisation, chromosomal assignment and in vivo localisation of the canine High Mobility Group A1 (HMGA1 gene

    Directory of Open Access Journals (Sweden)

    Reimann-Berg Nicola

    2008-07-01

    Full Text Available Abstract Background The high mobility group A1 proteins (HMGA1a/HMGA1b are highly conserved between mammalian species and widely described as participating in various cellular processes. By inducing DNA conformation changes the HMGA1 proteins indirectly influence the binding of various transcription factors and therefore effect the transcription regulation. In humans chromosomal aberrations affecting the HMGA1 gene locus on HSA 6p21 were described to be the cause for various benign mesenchymal tumours while high titres of HMGA1 proteins were shown to be associated with the neoplastic potential of various types of cancer. Interestingly, the absence of HMGA1 proteins was shown to cause insulin resistance and diabetes in humans and mice. Due to the various similarities in biology and presentation of human and canine cancers the dog has joined the common rodent animal model for therapeutic and preclinical studies. Accordingly, the canine genome was sequenced completely twice but unfortunately this could not solve the structure of canine HMGA1 gene. Results Herein we report the characterisation of the genomic structure of the canine HMGA1 gene consisting of 7 exons and 6 introns spanning in total 9524 bp, the in vivo localisation of the HMGA1 protein to the nucleus, and a chromosomal assignment of the gene by FISH to CFA12q11. Additionally, we evaluated a described canine HMGA1 exon 6 SNP in 55 Dachshunds. Conclusion The performed characterisations will make comparative analyses of aberrations affecting the human and canine gene and proteins possible, thereby providing a basis for revealing mechanisms involved in HMGA1 related pathogenesis in both species.

  14. Effects of HMGA2 on malignant degree, invasion, metastasis, proliferation and cellular morphology of ovarian cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Ni Xi; Xiao-Yan Xin; Hong-Mei Ye

    2014-01-01

    Objective: To analyze effects of high mobility group AT-hook 2 (HMGA2) on malignant degree, invasion, metastasis, proliferation and cellular morphology of ovarian cancer cells. Methods:Three methods were applied to observe the effect on HMGA2 expression in ovarian cancer cells and ovarian epithelial cells. Results: After the application of siRNA-HMGA2, number of T29A2-cell clones was decreased, there was significant difference compared with the negative control Block-iT. After application of let-7c, number of T29A2+ cell clones was decreased significantly, however, after the application of Anti-let-7, the number of clones restored, and there was no significant difference compared with the negative control group. After interference, the number of T29A2- cells which passed through Matrigel polycarbonate membrane were significantly lower than the negative control group. After the treatment of siRNA-HMGA2, let-7c and sh-HMGA2 respectively, growth and proliferation of T29A2-, T29A2+ and SKOV3 were slower, and the phenomenon was most obvious in SKOV3. Stable interference of HMGA2 induced mesenchymal-epithelial changes in the morphology of SKOV3-sh-HMGA2. Conclusions: HMGA2 can promote malignant transformation of ovarian cancer cells, enhance cell invasion and metastasis, and promote cell growth and proliferation of ovarian cancer cells, which can cause ovarian cancer to progress rapidly and affect the quality of life.

  15. Shortening of the 3' untranslated region: an important mechanism leading to overexpression of HMGA2 in serous ovarian cancer

    Institute of Scientific and Technical Information of China (English)

    He Xiangjun; Yang Jing; Zhang Qi; Cui Heng; Zhang Yujun

    2014-01-01

    Background Oncofetal protein high-mobility-group AT-hook protein 2 (HMGA2) is reactivated in serous ovarian cancer (SOC) and its overexpression correlates with poor prognosis.To explore the mechanism,we investigated whether HMGA2 could avoid microRNA regulation due to gene truncation or 3' UTR shortening by alternative polyadenylation.Methods Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to evaluate the abundance of different regions of HMGA2 mRNA in 46 SOC samples.Rapid amplification of cDNA 3' ends (3' RACE) and Southern blotting were used to confirm the shortening of 3' untranslated region (UTR).5' RACE and Southern blotting were used to prove the mRNA decay.Results No significant difference in the ratio of the stable coding region to the fragile region was observed between SOC and control normal fallopian tubes,indicating that the HMGA2 gene is not truncated in SOC.Varying degrees of 3' UTR shortening in SOC samples were observed by comparing the abundance of the proximal region and distal region of the HMGA2 3' UTR.The ratio of the proximal to the distal region of the 3' UTR correlated significantly with expression of the HMGA2 coding region in SOC (r=0.579,P <0.01).Moreover,although the abundance of the HMGA2 coding region varied,all samples,including the very low expressed samples,exhibit relatively high levels of the proximal 3' UTR region,suggesting a dynamic decay of HMGA2 mRNA from the 5' end.The shortening of 3' UTR and the decay from the 5' end were confirmed by 3' RACE,5' RACE and subsequent Southern blotting.Conclusion Heterogeneous 3' UTR lengths render HMGA2 susceptible to different levels of negative regulation by microRNAs,which represents an important mechanism of HMGA2 reactivation in SOC.

  16. Fusion of HMGA1 to the LPP/TPRG1 intergenic region in a lipoma identified by mapping paraffin-embedded tissues.

    Science.gov (United States)

    Wang, Xiaoke; Zamolyi, Renata Q; Zhang, Hongying; Pannain, Vera L; Medeiros, Fabiola; Erickson-Johnson, Michele; Jenkins, Robert B; Oliveira, Andre M

    2010-01-01

    Ordinary lipoma frequently harbors rearrangement of HMGA2. LPP is the most common partner gene to HMGA2, but has not been seen fused to HMGA1. We report the fusion of HMGA1 to the intergenic region between LPP and TPRG1 in a lipoma. Conventional cytogenetic analysis of an abdominal-wall lipoma diagnosed in a 60-year-old woman showed a t(3;6)(q27;p21). Molecular cytogenetic mapping of available paraffin-embedded tissues revealed the fusion of HMGA1 to a 139-kb genomic region between the LPP and TPRG1 loci. No rearrangement of HMGA2 was found. The biological function of this novel fusion could be similar to the role of HMGA2-LPP in tumorigenesis.

  17. HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Amy Belton

    Full Text Available BACKGROUND: Although metastatic colon cancer is a leading cause of cancer death worldwide, the molecular mechanisms that enable colon cancer cells to metastasize remain unclear. Emerging evidence suggests that metastatic cells develop by usurping transcriptional networks from embryonic stem (ES cells to facilitate an epithelial-mesenchymal transition (EMT, invasion, and metastatic progression. Previous studies identified HMGA1 as a key transcription factor enriched in ES cells, colon cancer, and other aggressive tumors, although its role in these settings is poorly understood. METHODS/PRINCIPAL FINDINGS: To determine how HMGA1 functions in metastatic colon cancer, we manipulated HMGA1 expression in transgenic mice and colon cancer cells. We discovered that HMGA1 drives proliferative changes, aberrant crypt formation, and intestinal polyposis in transgenic mice. In colon cancer cell lines from poorly differentiated, metastatic tumors, knock-down of HMGA1 blocks anchorage-independent cell growth, migration, invasion, xenograft tumorigenesis and three-dimensional colonosphere formation. Inhibiting HMGA1 expression blocks tumorigenesis at limiting dilutions, consistent with depletion of tumor-initiator cells in the knock-down cells. Knock-down of HMGA1 also inhibits metastatic progression to the liver in vivo. In metastatic colon cancer cells, HMGA1 induces expression of Twist1, a gene involved in embryogenesis, EMT, and tumor progression, while HMGA1 represses E-cadherin, a gene that is down-regulated during EMT and metastatic progression. In addition, HMGA1 is among the most enriched genes in colon cancer compared to normal mucosa. CONCLUSIONS: Our findings demonstrate for the first time that HMGA1 drives proliferative changes and polyp formation in the intestines of transgenic mice and induces metastatic progression and stem-like properties in colon cancer cells. These findings indicate that HMGA1 is a key regulator, both in metastatic

  18. Prognostic value of HMGA2, P16, and HPV in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Loeschke, Siegfried; Ohlmann, Anne Katharina; Bräsen, Jan Hinrich;

    2016-01-01

    -time quantitative polymerase chain reaction (qRT-PCR). Overexpression of HMGA2 was found to vary between 32-fold and 32,000-fold compared to nondysplastic tissue. RESULTS: Cox regression analysis showed that age, sex, smoking status, use of alcohol, human papillomavirus (HPV), and tumor size had no significant...

  19. From bending DNA to diabetes: the curious case of HMGA1

    Directory of Open Access Journals (Sweden)

    Semple Robert K

    2009-07-01

    Full Text Available Abstract Although mice lacking the architectural DNA binding factor HMGA1 are diabetic and express very low levels of the insulin receptor, they have increased insulin sensitivity. A study in BMC Biology now suggests that changes in circulating retinol binding protein partly account for this paradox.

  20. A Non-Synonymous HMGA2 Variant Decreases Height in Shetland Ponies and Other Small Horses

    Science.gov (United States)

    Frischknecht, Mirjam; Jagannathan, Vidhya; Plattet, Philippe; Neuditschko, Markus; Signer-Hasler, Heidi; Bachmann, Iris; Pacholewska, Alicja; Drögemüller, Cord; Dietschi, Elisabeth

    2015-01-01

    The identification of quantitative trait loci (QTL) such as height and their underlying causative variants is still challenging and often requires large sample sizes. In humans hundreds of loci with small effects control the heritable portion of height variability. In domestic animals, typically only a few loci with comparatively large effects explain a major fraction of the heritability. We investigated height at withers in Shetland ponies and mapped a QTL to ECA 6 by genome-wide association (GWAS) using a small cohort of only 48 animals and the Illumina equine SNP70 BeadChip. Fine-mapping revealed a shared haplotype block of 793 kb in small Shetland ponies. The HMGA2 gene, known to be associated with height in horses and many other species, was located in the associated haplotype. After closing a gap in the equine reference genome we identified a non-synonymous variant in the first exon of HMGA2 in small Shetland ponies. The variant was predicted to affect the functionally important first AT-hook DNA binding domain of the HMGA2 protein (c.83G>A; p.G28E). We assessed the functional impact and found impaired DNA binding of a peptide with the mutant sequence in an electrophoretic mobility shift assay. This suggests that the HMGA2 variant also affects DNA binding in vivo and thus leads to reduced growth and a smaller stature in Shetland ponies. The identified HMGA2 variant also segregates in several other pony breeds but was not found in regular-sized horse breeds. We therefore conclude that we identified a quantitative trait nucleotide for height in horses. PMID:26474182

  1. Identification of PPAP2B as a novel recurrent translocation partner gene of HMGA2 in lipomas.

    Science.gov (United States)

    Bianchini, Laurence; Birtwisle, Loïc; Saâda, Esma; Bazin, Audrey; Long, Elodie; Roussel, Jean-François; Michiels, Jean-François; Forest, Fabien; Dani, Christian; Myklebost, Ola; Birtwisle-Peyrottes, Isabelle; Pedeutour, Florence

    2013-06-01

    Most lipomas are characterized by translocations involving the HMGA2 gene in 12q14.3. These rearrangements lead to the fusion of HMGA2 with an ectopic sequence from the translocation chromosome partner. Only five fusion partners of HMGA2 have been identified in lipomas so far. The identification of novel fusion partners of HMGA2 is important not only for diagnosis in soft tissue tumors but also because these genes might have an oncogenic role in other tumors. We observed that t(1;12)(p32;q14) was the second most frequent translocation in our series of lipomas after t(3;12)(q28;q14.3). We detected overexpression of HMGA2 mRNA and protein in all t(1;12)(p32;q14) lipomas. We used a fluorescence in situ hybridization-based positional cloning strategy to characterize the 1p32 breakpoint. In 11 cases, we identified PPAP2B, a member of the lipid phosphate phosphatases family as the 1p32 target gene. Reverse transcription-polymerase chain reaction analysis followed by nucleotide sequencing of the fusion transcript indicated that HMGA2 3' untranslated region (3'UTR) fused with exon 6 of PPAP2B in one case. In other t(1;12) cases, the breakpoint was extragenic, located in the 3'region flanking PPAP2B 3'UTR. Moreover, in one case showing a t(1;6)(p32;p21) we observed a rearrangement of PPAP2B and HMGA1, which suggests that HMGA1 might also be a fusion partner for PPAP2B. Our results also revealed that adipocytic differentiation of human mesenchymal stem cells derived from adipose tissue was associated with a significant decrease in PPAP2B mRNA expression suggesting that PPAP2B might play a role in adipogenesis.

  2. Heat shock protein 90 is involved in the regulation of HMGA2-driven growth and epithelial-to-mesenchymal transition of colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Chun-Yu Kao

    2016-02-01

    Full Text Available High Mobility Group AT-hook 2 (HMGA2 is a nonhistone chromatin-binding protein which acts as a transcriptional regulating factor involved in gene transcription. In particular, overexpression of HMGA2 has been demonstrated to associate with neoplastic transformation and tumor progression in Colorectal Cancer (CRC. Thus, HMGA2 is a potential therapeutic target in cancer therapy. Heat Shock Protein 90 (Hsp90 is a chaperone protein required for the stability and function for a number of proteins that promote the growth, mobility, and survival of cancer cells. Moreover, it has shown strong positive connections were observed between Hsp90 inhibitors and CRC, which indicated their potential for use in CRC treatment by using combination of data mining and experimental designs. However, little is known about the effect of Hsp90 inhibition on HMGA2 protein expression in CRC. In this study, we tested the hypothesis that Hsp90 may regulate HMGA2 expression and investigated the relationship between Hsp90 and HMGA2 signaling. The use of the second-generation Hsp90 inhibitor, NVP-AUY922, considerably knocked down HMGA2 expression, and the effects of Hsp90 and HMGA2 knockdown were similar. In addition, Hsp90 knockdown abrogates colocalization of Hsp90 and HMGA2 in CRC cells. Moreover, the suppression of HMGA2 protein expression in response to NVP-AUY922 treatment resulted in ubiquitination and subsequent proteasome-dependant degradation of HMGA2. Furthermore, RNAi-mediated silencing of HMGA2 reduced the survival of CRC cells and increased the sensitivity of these cells to chemotherapy. Finally, we found that the NVP-AUY922-dependent mitigation of HMGA2 signaling occurred also through indirect reactivation of the tumor suppressor microRNA (miRNA, let-7a, or the inhibition of ERK-regulated HMGA2 involved in regulating the growth of CRC cells. Collectively, our studies identify the crucial role for the Hsp90-HMGA2 interaction in maintaining CRC cell survival and

  3. The cAMP-HMGA1-RBP4 system: a novel biochemical pathway for modulating glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Foti Daniela

    2009-05-01

    Full Text Available Abstract Background We previously showed that mice lacking the high mobility group A1 gene (Hmga1-knockout mice developed a type 2-like diabetic phenotype, in which cell-surface insulin receptors were dramatically reduced (below 10% of those in the controls in the major targets of insulin action, and glucose intolerance was associated with increased peripheral insulin sensitivity. This particular phenotype supports the existence of compensatory mechanisms of insulin resistance that promote glucose uptake and disposal in peripheral tissues by either insulin-dependent or insulin-independent mechanisms. We explored the role of these mechanisms in the regulation of glucose homeostasis by studying the Hmga1-knockout mouse model. Also, the hypothesis that increased insulin sensitivity in Hmga1-deficient mice could be related to the deficit of an insulin resistance factor is discussed. Results We first show that HMGA1 is needed for basal and cAMP-induced retinol-binding protein 4 (RBP4 gene and protein expression in living cells of both human and mouse origin. Then, by employing the Hmga1-knockout mouse model, we provide evidence for the identification of a novel biochemical pathway involving HMGA1 and the RBP4, whose activation by the cAMP-signaling pathway may play an essential role for maintaining glucose metabolism homeostasis in vivo, in certain adverse metabolic conditions in which insulin action is precluded. In comparative studies of normal and mutant mice, glucagon administration caused a considerable upregulation of HMGA1 and RBP4 expression both at the mRNA and protein level in wild-type animals. Conversely, in Hmga1-knockout mice, basal and glucagon-mediated expression of RBP4 was severely attenuated and correlated inversely with increased Glut4 mRNA and protein abundance in skeletal muscle and fat, in which the activation state of the protein kinase Akt, an important downstream mediator of the metabolic effects of insulin on Glut4

  4. Cooperation between HMGA1, PDX-1, and MafA is Essential for Glucose-Induced Insulin Transcription in Pancreatic Beta Cells.

    Science.gov (United States)

    Arcidiacono, Biagio; Iiritano, Stefania; Chiefari, Eusebio; Brunetti, Francesco S; Gu, Guoqiang; Foti, Daniela Patrizia; Brunetti, Antonio

    2014-01-01

    The high-mobility group AT-hook 1 (HMGA1) protein is a nuclear architectural factor that can organize chromatin structures. It regulates gene expression by controlling the formation of stereospecific multiprotein complexes called "enhanceosomes" on the AT-rich regions of target gene promoters. Previously, we reported that defects in HMGA1 caused decreased insulin receptor expression and increased susceptibility to type 2 diabetes mellitus in humans and mice. Interestingly, mice with disrupted HMGA1 gene had significantly smaller islets and decreased insulin content in their pancreata, suggesting that HMGA1 may have a direct role in insulin transcription and secretion. Herein, we investigate the regulatory roles of HMGA1 in insulin transcription. We provide evidence that HMGA1 physically interacts with PDX-1 and MafA, two critical transcription factors for insulin gene expression and beta-cell function, both in vitro and in vivo. We then show that the overexpression of HMGA1 significantly improves the transactivating activity of PDX-1 and MafA on human and mouse insulin promoters, while HMGA1 knockdown considerably decreased this transactivating activity. Lastly, we demonstrate that high glucose stimulus significantly increases the binding of HMGA1 to the insulin (INS) gene promoter, suggesting that HMGA1 may act as a glucose-sensitive element controlling the transcription of the INS gene. Together, our findings provide evidence that HMGA1, by regulating PDX-1- and MafA-induced transactivation of the INS gene promoter, plays a critical role in pancreatic beta-cell function and insulin production.

  5. Cooperation between HMGA1, PDX-1 and MafA is essential for glucose-induced insulin transcription in pancreatic beta cells

    Directory of Open Access Journals (Sweden)

    Biagio eArcidiacono

    2015-01-01

    Full Text Available The high-mobility group AT-hook 1 (HMGA1 protein is a nuclear architectural factor that can organize chromatin structures. It regulates gene expression by controlling the formation of stereospecific multiprotein complexes called enhanceosomes on the AT-rich regions of target gene promoters. Previously, we reported that defects in HMGA1 caused decreased insulin receptor expression and increased susceptibility to type 2 diabetes mellitus in humans and mice. Interestingly, mice with disrupted HMGA1 gene had significantly smaller islets and decreased insulin content in their pancreata, suggesting that HMGA1 may have a direct role in insulin transcription and secretion. Herein, we investigate the regulatory roles of HMGA1 in insulin transcription. We provide evidence that HMGA1 physically interacts with PDX-1 and MafA, two critical transcription factors for insulin gene expression and beta-cell function, both in vitro and in vivo. We then show that the overexpression of HMGA1 significantly improves the transactivating activity of PDX-1 and MafA on human and mouse insulin promoters, while HMGA1 knockdown considerably decreased this transactivating activity. Lastly, we demonstrate that high glucose stimulus significantly increases the binding of HMGA1 to the insulin (INS gene promoter, suggesting that HMGA1 may act as a glucose-sensitive element controlling the transcription of the INS gene. Together, our findings provide evidence that HMGA1, by regulating PDX-1- and MafA-induced transactivation of the INS gene promoter, plays a critical role in pancreatic beta-cell function and insulin production.

  6. Antisense RNA Controls LRP1 Sense Transcript Expression through Interaction with a Chromatin-Associated Protein, HMGB2

    Directory of Open Access Journals (Sweden)

    Yasunari Yamanaka

    2015-05-01

    Full Text Available Long non-coding RNAs (lncRNAs, including natural antisense transcripts (NATs, are expressed more extensively than previously anticipated and have widespread roles in regulating gene expression. Nevertheless, the molecular mechanisms of action of the majority of NATs remain largely unknown. Here, we identify a NAT of low-density lipoprotein receptor-related protein 1 (Lrp1, referred to as Lrp1-AS, that negatively regulates Lrp1 expression. We show that Lrp1-AS directly binds to high-mobility group box 2 (Hmgb2 and inhibits the activity of Hmgb2 to enhance Srebp1a-dependent transcription of Lrp1. Short oligonucleotides targeting Lrp1-AS inhibit the interaction of antisense transcript and Hmgb2 protein and increase Lrp1 expression by enhancing Hmgb2 activity. Quantitative RT-PCR analysis of brain tissue samples from Alzheimer’s disease patients and aged-matched controls revealed upregulation of LRP1-AS and downregulation of LRP1. Our data suggest a regulatory mechanism whereby a NAT interacts with a ubiquitous chromatin-associated protein to modulate its activity in a locus-specific fashion.

  7. Antisense RNA controls LRP1 Sense transcript expression through interaction with a chromatin-associated protein, HMGB2.

    Science.gov (United States)

    Yamanaka, Yasunari; Faghihi, Mohammad Ali; Magistri, Marco; Alvarez-Garcia, Oscar; Lotz, Martin; Wahlestedt, Claes

    2015-05-12

    Long non-coding RNAs (lncRNAs), including natural antisense transcripts (NATs), are expressed more extensively than previously anticipated and have widespread roles in regulating gene expression. Nevertheless, the molecular mechanisms of action of the majority of NATs remain largely unknown. Here, we identify a NAT of low-density lipoprotein receptor-related protein 1 (Lrp1), referred to as Lrp1-AS, that negatively regulates Lrp1 expression. We show that Lrp1-AS directly binds to high-mobility group box 2 (Hmgb2) and inhibits the activity of Hmgb2 to enhance Srebp1a-dependent transcription of Lrp1. Short oligonucleotides targeting Lrp1-AS inhibit the interaction of antisense transcript and Hmgb2 protein and increase Lrp1 expression by enhancing Hmgb2 activity. Quantitative RT-PCR analysis of brain tissue samples from Alzheimer's disease patients and aged-matched controls revealed upregulation of LRP1-AS and downregulation of LRP1. Our data suggest a regulatory mechanism whereby a NAT interacts with a ubiquitous chromatin-associated protein to modulate its activity in a locus-specific fashion.

  8. Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics.

    Science.gov (United States)

    Smits, Arne H; Jansen, Pascal W T C; Poser, Ina; Hyman, Anthony A; Vermeulen, Michiel

    2013-01-07

    Many cellular proteins assemble into macromolecular protein complexes. The identification of protein-protein interactions and quantification of their stoichiometry is therefore crucial to understand the molecular function of protein complexes. Determining the stoichiometry of protein complexes is usually achieved by mass spectrometry-based methods that rely on introducing stable isotope-labeled reference peptides into the sample of interest. However, these approaches are laborious and not suitable for high-throughput screenings. Here, we describe a robust and easy to implement label-free relative quantification approach that combines the detection of high-confidence protein-protein interactions with an accurate determination of the stoichiometry of the identified protein-protein interactions in a single experiment. We applied this method to two chromatin-associated protein complexes for which the stoichiometry thus far remained elusive: the MBD3/NuRD and PRC2 complex. For each of these complexes, we accurately determined the stoichiometry of the core subunits while at the same time identifying novel interactors and their stoichiometry.

  9. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2).

    Science.gov (United States)

    Berent-Maoz, Beata; Montecino-Rodriguez, Encarnacion; Fice, Michael; Casero, David; Seet, Christopher S; Crooks, Gay M; Lowry, William; Dorshkind, Kenneth

    2015-01-01

    Cell number in the mouse thymus increases steadily during the first two weeks after birth. It then plateaus and begins to decline by seven weeks after birth. The factors governing these dramatic changes in cell production are not well understood. The data herein correlate levels of High mobility group A 2 protein (Hmga2) expression with these temporal changes in thymopoiesis. Hmga2 is expressed at high levels in murine fetal and neonatal early T cell progenitors (ETP), which are the most immature intrathymic precursors, and becomes almost undetectable in these progenitors after 5 weeks of age. Hmga2 expression is critical for the initial, exponential expansion of thymopoiesis, as Hmga2 deficient mice have a deficit of ETPs within days after birth, and total thymocyte number is repressed compared to wild type littermates. Finally, our data raise the possibility that similar events occur in humans, because Hmga2 expression is high in human fetal thymic progenitors and falls in these cells during early infancy.

  10. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2.

    Directory of Open Access Journals (Sweden)

    Beata Berent-Maoz

    Full Text Available Cell number in the mouse thymus increases steadily during the first two weeks after birth. It then plateaus and begins to decline by seven weeks after birth. The factors governing these dramatic changes in cell production are not well understood. The data herein correlate levels of High mobility group A 2 protein (Hmga2 expression with these temporal changes in thymopoiesis. Hmga2 is expressed at high levels in murine fetal and neonatal early T cell progenitors (ETP, which are the most immature intrathymic precursors, and becomes almost undetectable in these progenitors after 5 weeks of age. Hmga2 expression is critical for the initial, exponential expansion of thymopoiesis, as Hmga2 deficient mice have a deficit of ETPs within days after birth, and total thymocyte number is repressed compared to wild type littermates. Finally, our data raise the possibility that similar events occur in humans, because Hmga2 expression is high in human fetal thymic progenitors and falls in these cells during early infancy.

  11. Cross-linking immunoprecipitation-MS (xIP-MS): Topological Analysis of Chromatin-associated Protein Complexes Using Single Affinity Purification.

    Science.gov (United States)

    Makowski, Matthew M; Willems, Esther; Jansen, Pascal W T C; Vermeulen, Michiel

    2016-03-01

    In recent years, cross-linking mass spectrometry has proven to be a robust and effective method of interrogating macromolecular protein complex topologies at peptide resolution. Traditionally, cross-linking mass spectrometry workflows have utilized homogenous complexes obtained through time-limiting reconstitution, tandem affinity purification, and conventional chromatography workflows. Here, we present cross-linking immunoprecipitation-MS (xIP-MS), a simple, rapid, and efficient method for structurally probing chromatin-associated protein complexes using small volumes of mammalian whole cell lysates, single affinity purification, and on-bead cross-linking followed by LC-MS/MS analysis. We first benchmarked xIP-MS using the structurally well-characterized phosphoribosyl pyrophosphate synthetase complex. We then applied xIP-MS to the chromatin-associated cohesin (SMC1A/3), XRCC5/6 (Ku70/86), and MCM complexes, and we provide novel structural and biological insights into their architectures and molecular function. Of note, we use xIP-MS to perform topological studies under cell cycle perturbations, showing that the xIP-MS protocol is sufficiently straightforward and efficient to allow comparative cross-linking experiments. This work, therefore, demonstrates that xIP-MS is a robust, flexible, and widely applicable methodology for interrogating chromatin-associated protein complex architectures.

  12. Chromatin association of XRCC5/6 in the absence of DNA damage depends on the XPE gene product DDB2

    Science.gov (United States)

    Fantini, Damiano; Huang, Shuo; Asara, John M.; Bagchi, Srilata; Raychaudhuri, Pradip

    2017-01-01

    Damaged DNA-binding protein 2 (DDB2), a nuclear protein, participates in both nucleotide excision repair and mRNA transcription. The transcriptional regulatory function of DDB2 is significant in colon cancer, as it regulates metastasis. To characterize the mechanism by which DDB2 participates in transcription, we investigated the protein partners in colon cancer cells. Here we show that DDB2 abundantly associates with XRCC5/6, not involving CUL4 and DNA-PKcs. A DNA-damaging agent that induces DNA double-stranded breaks (DSBs) does not affect the interaction between DDB2 and XRCC5. In addition, DSB-induced nuclear enrichment or chromatin association of XRCC5 does not involve DDB2, suggesting that the DDB2/XRCC5/6 complex represents a distinct pool of XRCC5/6 that is not directly involved in DNA break repair (NHEJ). In the absence of DNA damage, on the other hand, chromatin association of XRCC5 requires DDB2. We show that DDB2 recruits XRCC5 onto the promoter of SEMA3A, a DDB2-stimulated gene. Moreover, depletion of XRCC5 inhibits SEMA3A expression without affecting expression of VEGFA, a repression target of DDB2. Together our results show that DDB2 is critical for chromatin association of XRCC5/6 in the absence of DNA damage and provide evidence that XRCC5/6 are functional partners of DDB2 in its transcriptional stimulatory activity. PMID:28035050

  13. The Epc-N domain: a predicted protein-protein interaction domain found in select chromatin associated proteins

    Directory of Open Access Journals (Sweden)

    Perry Jason

    2006-01-01

    -protein interaction module found in chromatin associated proteins. It is possible that the Epc-N domain serves as a direct link between histone acetylation and methylation statuses. The unusual phyletic distribution of Epc-N-containing proteins may provide a conduit for future insight into how different organisms form, perceive and respond to epigenetic information.

  14. Isolation and characterization of portal branch ligation-stimulated Hmga2-positive bipotent hepatic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Hiroshi [Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Tagawa, Yoh-ichi, E-mail: ytagawa@bio.titech.ac.jp [Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Tamai, Miho [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Motoyama, Hiroaki [Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Ogawa, Shinichiro [Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); McEwen Center for Regenerative Medicine, University Health Network, 190 Elizabeth Street, Toronto, Ont., Canada M5G 2C4 (Canada); Soeda, Junpei; Nakata, Takenari; Miyagawa, Shinichi [Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2010-12-17

    Research highlights: {yields} Hepatic progenitor cells were isolated from the portal branch-ligated liver of mice. {yields} Portal branch ligation-stimulated hepatic progenitor cells (PBLHCs) express Hmga2. {yields} PBLHCs have bidirectional differentiation capability in vitro. -- Abstract: Hepatic stem/progenitor cells are one of several cell sources that show promise for restoration of liver mass and function. Although hepatic progenitor cells (HPCs), including oval cells, are induced by administration of certain hepatotoxins in experimental animals, such a strategy would be inappropriate in a clinical setting. Here, we investigated the possibility of isolating HPCs in a portal branch-ligated liver model without administration of any chemical agents. A non-parenchymal cell fraction was prepared from the portal branch-ligated or non-ligated lobe, and seeded onto plates coated with laminin. Most of the cells died, but a small number were able to proliferate. These proliferating cells were cloned as portal branch ligation-stimulated hepatic cells (PBLHCs) by the limiting dilution method. The PBLHCs expressed cytokeratin19, albumin, and Hmga2. The PBLHCs exhibited metabolic functions such as detoxification of ammonium ions and synthesis of urea on Matrigel-coated plates in the presence of oncostatin M. In Matrigel mixed with type I collagen, the PBLHCs became rearranged into cystic and tubular structures. Immunohistochemical staining demonstrated the presence of Hmga2-positive cells around the interlobular bile ducts in the portal branch-ligated liver lobes. In conclusion, successful isolation of bipotent hepatic progenitor cell clones, PBLHCs, from the portal branch-ligated liver lobes of mice provides the possibility of future clinical application of portal vein ligation to induce hepatic progenitor cells.

  15. Downregulation of HMGA2 by the pan-deacetylase inhibitor panobinostat is dependent on hsa-let-7b expression in liver cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Di Fazio, Pietro, E-mail: difazio@med.uni-marburg.de [Institute for Surgical Research, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg (Germany); Montalbano, Roberta [Institute for Surgical Research, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg (Germany); Neureiter, Daniel; Alinger, Beate [Institute of Pathology, Paracelsus Private Medical University of Salzburg, Salzburg (Austria); Schmidt, Ansgar [Institute for Pathology, Philipps University of Marburg, Marburg (Germany); Merkel, Anna Lena; Quint, Karl; Ocker, Matthias [Institute for Surgical Research, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg (Germany)

    2012-09-10

    Inhibitors of protein deacetylases represent a novel therapeutic option for cancer diseases due to their effects on transcriptional regulation by interfering with histones acetylation and on several other cellular pathways. Recently, their ability to modulate several transcription factors and, interestingly, also co-factors, which actively participate in formation and modulation of transcription complexes was shown. We here investigate whether HMGA2 (High Mobility Group AT-2 hook), a nuclear non-histone transcriptional co-factor with known oncogenic properties, can be influenced by the novel pan-deacetylase inhibitor panobinostat (LBH589) in human hepatocellular carcinoma models. Panobinostat strongly downregulated HMGA2 in HepG2 and Hep3B cells; this effect was mediated by transcriptional upregulation and promotion of the maturation of the tumorsuppressor miRNA hsa-let-7b, which could inhibit HMGA2 expression via RNA interference pathways. siRNA knockdown of HMGA2 or transfection of hsa-let-7b mimicking oligonucleotides confirmed the role of HMGA2 in regulating cell proliferation and apoptosis in liver cancer cell lines. Co-incubation with panobinostat showed an additive effect on inhibition of cell proliferation using an impedance-based real-time cell analyzer. Treatment of HepG2 xenografts with panobinostat also led to a downregulation of HMGA2 in vivo. These findings show that pan-deacetylase inhibitors also modulate other signaling pathways and networks than histone modifications to influence cell fate. -- Highlights: Black-Right-Pointing-Pointer Panobinostat for the treatment of liver cancer. Black-Right-Pointing-Pointer Panobinostat meddles with miRNAs-dependent transcriptional and translational control. Black-Right-Pointing-Pointer Tumorsuppressor miRNA hsa-let-7b upregulation. Black-Right-Pointing-Pointer HMGA2 is downregulated via RNA interference pathways mediated by hsa-let-7b. Black-Right-Pointing-Pointer Panobinostat determines inhibition of

  16. The role of chromatin-associated protein Hbsu in beta-mediated DNA recombination is to facilitate the joining of distant recombination sites.

    Science.gov (United States)

    Alonso, J C; Gutierrez, C; Rojo, F

    1995-11-01

    The beta recombinase is unable to mediate in vitro DNA recombination between two directly oriented recombination sites unless a bacterial chromatin-associated protein (Bacillus subtilis Hbsu or Escherichia [correction of Eschrichia] coli HU] is provided. By electron microscopy, we show that the role of Hbsu is to help in joining the recombination sites to form a stable synaptic complex. Some evidence supports the fact that Hbsu works by recognizing and stabilizing a DNA structure at the recombination site, rather than by serving as a bridge between beta recombinase dimers through a protein-protein interaction. We show that the mammalian HMG1 protein, which shares neither sequence nor structural homology with Hbsu, can also stimulate beta-mediated recombination. These chromatin-associated proteins share the property of binding to DNA in a relatively non-specific fashion, bending it, and having a marked preference for altered DNA structures. Hbsu, HU or HMG1 proteins probably bind specifically at the crossing-over region, since at limiting protein-DNA molar ratios they could not be outcompeted by an excess of a DNA lacking the crossing over site. Distamycin, a minor groove binder that induces local distortions in DNA, did not affect the binding of beta protein to DNA, but inhibited the formation of the synaptic complex.

  17. Fusion of the TBL1XR1 and HMGA1 genes in splenic hemangioma with t(3;6)(q26;p21).

    Science.gov (United States)

    Panagopoulos, Ioannis; Gorunova, Ludmila; Bjerkehagen, Bodil; Lobmaier, Ingvild; Heim, Sverre

    2016-03-01

    RNA-sequencing of a splenic hemangioma with the karyotype 45~47,XX,t(3;6)(q26;p21) showed that this translocation generated a chimeric TBL1XR1-HMGA1 gene. This is the first time that this tumor has been subjected to genetic analysis, but the finding of an acquired clonal chromosome abnormality in cells cultured from the lesion and the presence of the TBL1XR1-HMGA1 fusion in them strongly favor the conclusion that splenic hemangiomas are of a neoplastic nature. Genomic PCR confirmed the presence of the TBL1XR1-HMGA1 fusion gene, and RT-PCR together with Sanger sequencing verified the presence of the fusion transcripts. The molecular consequences of the t(3;6) would be substantial. The cells carrying the translocation would retain only one functional copy of the wild-type TBL1XR1 gene while the other, rearranged allele could produce a putative truncated form of TBL1XR1 protein containing the LiSH and F-box-like domains. In the TBL1XR1-HMGA1 fusion transcript, furthermore, untranslated exons of HMGA1 are replaced by the first 5 exons of the TBL1XR1 gene. The result is that the entire coding region of HMGA1 comes under the control of the TBL1XR1 promoter, bringing about dysregulation of HMGA1. This is reminiscent of similar pathogenetic mechanisms involving high mobility genes in benign connective tissue tumors such as lipomas and leiomyomas.

  18. Expression levels of HMGA2 and CD9 and its clinicopathological significances in the benign and malignant lesions of the gallbladder

    Directory of Open Access Journals (Sweden)

    Zou Qiong

    2012-05-01

    Full Text Available Abstract Background The objective of this study was to investigate CD9 and HMGA2 expression and its clinicopathological significance in benign and malignant lesion tissues of the gallbladder. Methods The resected specimens of 108 cases of gallbladder adenocarcinoma, 46 cases of adjacent tissue, 15 cases of polyps and 35 cases of chronic cholecystitis were made into conventional paraffin-embedded sections, using the method of EnVision immunohistochemistry to stain HMGA2 and CD9. Results HMGA2 expression of gallbladder adenocarcinoma was significantly higher than that of adenocarcinoma adjacent tissues (= 16.13, P P P P P P P P P P = 0.020, but the survival period of CD9 expression-positive cases was significantly higher than that of cases with CD9 expression-negative (P = 0.019. Cox multivariate regression analysis showed that the HMGA2 positive expression and/or CD9 negative expression was an important indicator reflecting the poor prognosis of gallbladder cancer. Conclusion The expression of HMGA2 and/or CD9 might be closely related to the carcinogenesis, clinical biological behaviors and prognosis of gallbladder adenocarcinoma.

  19. The CHROMEVALOA Database: A Resource for the Evaluation of Okadaic Acid Contamination in the Marine Environment Based on the Chromatin-Associated Transcriptome of the Mussel Mytilus galloprovincialis

    Directory of Open Access Journals (Sweden)

    José M. Eirín-López

    2013-03-01

    Full Text Available Okadaic Acid (OA constitutes the main active principle in Diarrhetic Shellfish Poisoning (DSP toxins produced during Harmful Algal Blooms (HABs, representing a serious threat for human consumers of edible shellfish. Furthermore, OA conveys critical deleterious effects for marine organisms due to its genotoxic potential. Many efforts have been dedicated to OA biomonitoring during the last three decades. However, it is only now with the current availability of detailed molecular information on DNA organization and the mechanisms involved in the maintenance of genome integrity, that a new arena starts opening up for the study of OA contamination. In the present work we address the links between OA genotoxicity and chromatin by combining Next Generation Sequencing (NGS technologies and bioinformatics. To this end, we introduce CHROMEVALOAdb, a public database containing the chromatin-associated transcriptome of the mussel Mytilus galloprovincialis (a sentinel model organism in response to OA exposure. This resource constitutes a leap forward for the development of chromatin-based biomarkers, paving the road towards the generation of powerful and sensitive tests for the detection and evaluation of the genotoxic effects of OA in coastal areas.

  20. Insights into dynamic mitotic chromatin organization through the NIMA kinase suppressor SonC, a chromatin-associated protein involved in the DNA damage response.

    Science.gov (United States)

    Larson, Jennifer R; Facemyer, Eric M; Shen, Kuo-Fang; Ukil, Leena; Osmani, Stephen A

    2014-01-01

    The nuclear pore complex proteins SonA and SonB, the orthologs of mammalian RAE1 and NUP98, respectively, were identified in Aspergillus nidulans as cold-sensitive suppressors of a temperature-sensitive allele of the essential mitotic NIMA kinase (nimA1). Subsequent analyses found that sonB1 mutants exhibit temperature-dependent DNA damage sensitivity. To understand this pathway further, we performed a genetic screen to isolate additional conditional DNA damage-sensitive suppressors of nimA1. We identified two new alleles of SonA and four intragenic nimA mutations that suppress the temperature sensitivity of the nimA1 mutant. In addition, we identified SonC, a previously unstudied binuclear zinc cluster protein involved with NIMA and the DNA damage response. Like sonA and sonB, sonC is an essential gene. SonC localizes to nuclei and partially disperses during mitosis. When the nucleolar organizer region (NOR) undergoes mitotic condensation and removal from the nucleolus, nuclear SonC and histone H1 localize in a mutually exclusive manner with H1 being removed from the NOR region and SonC being absent from the end of the chromosome beyond the NOR. This region of chromatin is adjacent to a cluster of nuclear pore complexes to which NIMA localizes last during its progression around the nuclear envelope during initiation of mitosis. The results genetically extend the NIMA regulatory system to include a protein with selective large-scale chromatin location observed during mitosis. The data suggest a model in which NIMA and SonC, its new chromatin-associated suppressor, might help to orchestrate global chromatin states during mitosis and the DNA damage response.

  1. The Lin28b-let-7-Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells.

    Science.gov (United States)

    Copley, Michael R; Babovic, Sonja; Benz, Claudia; Knapp, David J H F; Beer, Philip A; Kent, David G; Wohrer, Stefan; Treloar, David Q; Day, Christopher; Rowe, Keegan; Mader, Heidi; Kuchenbauer, Florian; Humphries, R Keith; Eaves, Connie J

    2013-08-01

    Mouse haematopoietic stem cells (HSCs) undergo a postnatal transition in several properties, including a marked reduction in their self-renewal activity. We now show that the developmentally timed change in this key function of HSCs is associated with their decreased expression of Lin28b and an accompanying increase in their let-7 microRNA levels. Lentivirus-mediated overexpression of Lin28 in adult HSCs elevates their self-renewal activity in transplanted irradiated hosts, as does overexpression of Hmga2, a well-established let-7 target that is upregulated in fetal HSCs. Conversely, HSCs from fetal Hmga2(-/-) mice do not exhibit the heightened self-renewal activity that is characteristic of wild-type fetal HSCs. Interestingly, overexpression of Hmga2 in adult HSCs does not mimic the ability of elevated Lin28 to activate a fetal lymphoid differentiation program. Thus, Lin28b may act as a master regulator of developmentally timed changes in HSC programs with Hmga2 serving as its specific downstream modulator of HSC self-renewal potential.

  2. MicroRNA-495 Inhibits Gastric Cancer Cell Migration and Invasion Possibly via Targeting High Mobility Group AT-Hook 2 (HMGA2)

    Science.gov (United States)

    Wang, Huashe; Jiang, Zhipeng; Chen, Honglei; Wu, Xiaobin; Xiang, Jun; Peng, Junsheng

    2017-01-01

    Background Gastric cancer is one of the most common malignancies, and has a high mortality rate. miR-495 acts as a suppressor in some cancers and HMGA2 (high mobility group AT-hook 2) is a facilitator for cell growth and epithelial-mesenchymal transition (EMT), but little is known about their effect in gastric cancer. This study aimed to investigate the role and mechanism of miR-495 in gastric cancer. Material/Methods miR-495 levels were quantitatively analyzed in gastric cancer tissue and GES-1, SGC-7901, BGC-823, and HGC-27 cell lines by qRT-PCR. Levels of miR-495 and HMGA2 were altered by cell transfection, after which cell migration and invasion were examined by Transwell and E-cadherin (CDH1); vimentin (VIM), and alpha smooth muscle actin (ACTA2) were detected by qRT-PCR and Western blotting. The interaction between miR-495 and HMGA2 was verified by dual-luciferase reporter assay. Results miR-495 was significantly downregulated in cancer tissue and cell lines (pgastric cancer tissue, and promoted cell migration and invasion, inhibited CDH1, and elevated VIM and ACTA2. Conclusions miR-495 acts as a tumor suppressor in gastric cancer by inhibiting cell migration and invasion, which may be associated with its direct inhibition on HMGA2. These results suggest a promising therapeutic strategy for gastric cancer treatment. PMID:28159956

  3. The 12q14 microdeletion syndrome: six new cases confirming the role of HMGA2 in growth.

    LENUS (Irish Health Repository)

    Lynch, Sally Ann

    2011-05-01

    We report six patients with array deletions encompassing 12q14. Out of a total of 2538 array investigations carried out on children with developmental delay and dysmorphism in three diagnostic testing centres, six positive cases yielded a frequency of 1 in 423 for this deletion syndrome. The deleted region in each of the six cases overlaps significantly with previously reported cases with microdeletions of this region. The chromosomal range of the deletions extends from 12q13.3q15. In the current study, we report overlapping deletions of variable extent and size but primarily comprising chromosomal bands 12q13.3q14.1. Four of the six deletions were confirmed as de novo events. Two cases had deletions that included HMGA2, and both children had significant short stature. Neither case had osteopoikilosis despite both being deleted for LEMD3. Four cases had deletions that ended proximal to HMGA2 and all of these had much better growth. Five cases had congenital heart defects, including two with atrial septal defects, one each with pulmonary stenosis, sub-aortic stenosis and a patent ductus. Four cases had moderate delay, two had severe developmental delay and a further two had a diagnosis of autism. All six cases had significant speech delay with subtle facial dysmorphism.

  4. A novel Toxoplasma gondii nuclear factor TgNF3 is a dynamic chromatin-associated component, modulator of nucleolar architecture and parasite virulence.

    Directory of Open Access Journals (Sweden)

    Alejandro Olguin-Lamas

    2011-03-01

    Full Text Available In Toxoplasma gondii, cis-acting elements present in promoter sequences of genes that are stage-specifically regulated have been described. However, the nuclear factors that bind to these cis-acting elements and regulate promoter activities have not been identified. In the present study, we performed affinity purification, followed by proteomic analysis, to identify nuclear factors that bind to a stage-specific promoter in T. gondii. This led to the identification of several nuclear factors in T. gondii including a novel factor, designated herein as TgNF3. The N-terminal domain of TgNF3 shares similarities with the N-terminus of yeast nuclear FK506-binding protein (FKBP, known as a histone chaperone regulating gene silencing. Using anti-TgNF3 antibodies, HA-FLAG and YFP-tagged TgNF3, we show that TgNF3 is predominantly a parasite nucleolar, chromatin-associated protein that binds specifically to T. gondii gene promoters in vivo. Genome-wide analysis using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified promoter occupancies by TgNF3. In addition, TgNF3 has a direct role in transcriptional control of genes involved in parasite metabolism, transcription and translation. The ectopic expression of TgNF3 in the tachyzoites revealed dynamic changes in the size of the nucleolus, leading to a severe attenuation of virulence in vivo. We demonstrate that TgNF3 physically interacts with H3, H4 and H2A/H2B assembled into bona fide core and nucleosome-associated histones. Furthermore, TgNF3 interacts specifically to histones in the context of stage-specific gene silencing of a promoter that lacks active epigenetic acetylated histone marks. In contrast to virulent tachyzoites, which express the majority of TgNF3 in the nucleolus, the protein is exclusively located in the cytoplasm of the avirulent bradyzoites. We propose a model where TgNF3 acts essentially to coordinate nucleolus and nuclear functions by modulating

  5. Real-time fluorescence quntitative PCR in analysis of HMGA2 expression in CML patients and its clinical significance%实时荧光定量PCR分析CML患者HMGA2基因的表达及其临床意义

    Institute of Scientific and Technical Information of China (English)

    王霜; 刘晓力; 欧阳凌云; 许娜; 杜庆锋; 刘志; 欧阳昭

    2010-01-01

    目的:分析慢性髓系白血病(chronic myeloid leukemia, CML)患者外周血中高迁移率蛋白A2基因(high mobility group A2,HMGA2)mRNA的表达及其相关临床特征,探讨它们在CML演进中的作用及临床意义.方法:采集2006年1月至2008年2月在南方医科大学南方医院血液科就诊的24例CML和5例健康对照的骨髓和外周血标本(所有参与试验及贡献骨髓和外周血标本的患者均知情同意,并经伦理委员会批准),以荧光原位杂交(fluorescence in situ hybridization, FISH)技术检测CML骨髓标本间期细胞BCR/ABL融合基因的表达,实时荧光定量(real-time fluorescence quntitative)PCR(RTQ-PCR)技术对HMGA2 mRNA的表达进行相对定量分析,采用秩和检验比较CML患者不同阶段HMGA2转录水平,以Spaearman方法分别对HMGA2转录水平与BCR/ABL融合基因水平、外周血液学参数进行相关性分析.结果:12例CML-CP患者BCR/ABL阳性细胞率为(58.08±39.21)%,HMGA2相对定量为2.39±1.86;12例CML-AP/BP患者BCR/ABL阳性细胞率为(87.50±16.21)%,HMGA2相对定量为91.78±14.07.CML-AP/BP患者HMGA2转录水平与CML-CP患者之间的差异有统计学意义(Z=-4.157,P<0.01), CML-AP/BP患者HMGA2转录水平与外周血原幼细胞数呈正相关关系(r=0.636,P=0.017).结论:CML患者HMGA2转录水平在AP/BP期显著高于CP期,HMGA2有可能成为预测CML疾病演变、判断预后和指导临床治疗的可靠指标.

  6. Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression.

    Directory of Open Access Journals (Sweden)

    Surabhi Dangi-Garimella

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is associated with a pronounced collagen-rich stromal reaction that has been shown to contribute to chemo-resistance. We have previously shown that PDAC cells are resistant to gemcitabine chemotherapy in the collagen microenvironment because of increased expression of the chromatin remodeling protein high mobility group A2 (HMGA2. We have now found that human PDAC tumors display higher levels of histone H3K9 and H3K27 acetylation in fibrotic regions. We show that relative to cells grown on tissue culture plastic, PDAC cells grown in three-dimensional collagen gels demonstrate increased histone H3K9 and H3K27 acetylation, along with increased expression of p300, PCAF and GCN5 histone acetyltransferases (HATs. Knocking down HMGA2 attenuates the effect of collagen on histone H3K9 and H3K27 acetylation and on collagen-induced p300, PCAF and GCN5 expression. We also show that human PDAC tumors with HMGA2 demonstrate increased histone H3K9 and H3K27 acetylation. Additionally, we show that cells in three-dimensional collagen gels demonstrate increased protection against gemcitabine. Significantly, down-regulation of HMGA2 or p300, PCAF and GCN5 HATs sensitizes the cells to gemcitabine in three-dimensional collagen. Overall, our results increase our understanding of how the collagen microenvironment contributes to chemo-resistance in vitro and identify HATs as potential therapeutic targets against this deadly cancer.

  7. Phosphoproteomics Reveals HMGA1, a CK2 Substrate, as a Drug-Resistant Target in Non-Small Cell Lung Cancer

    Science.gov (United States)

    Wang, Yi-Ting; Pan, Szu-Hua; Tsai, Chia-Feng; Kuo, Ting-Chun; Hsu, Yuan-Ling; Yen, Hsin-Yung; Choong, Wai-Kok; Wu, Hsin-Yi; Liao, Yen-Chen; Hong, Tse-Ming; Sung, Ting-Yi; Yang, Pan-Chyr; Chen, Yu-Ju

    2017-01-01

    Although EGFR tyrosine kinase inhibitors (TKIs) have demonstrated good efficacy in non-small-cell lung cancer (NSCLC) patients harboring EGFR mutations, most patients develop intrinsic and acquired resistance. We quantitatively profiled the phosphoproteome and proteome of drug-sensitive and drug-resistant NSCLC cells under gefitinib treatment. The construction of a dose-dependent responsive kinase-substrate network of 1548 phosphoproteins and 3834 proteins revealed CK2-centric modules as the dominant core network for the potential gefitinib resistance-associated proteins. CK2 knockdown decreased cell survival in gefitinib-resistant NSCLCs. Using motif analysis to identify the CK2 core sub-network, we verified that elevated phosphorylation level of a CK2 substrate, HMGA1 was a critical node contributing to EGFR-TKI resistance in NSCLC cell. Both HMGA1 knockdown or mutation of the CK2 phosphorylation site, S102, of HMGA1 reinforced the efficacy of gefitinib in resistant NSCLC cells through reactivation of the downstream signaling of EGFR. Our results delineate the TKI resistance-associated kinase-substrate network, suggesting a potential therapeutic strategy for overcoming TKI-induced resistance in NSCLC. PMID:28290473

  8. Complex translocation t(1;12;14)(q42;q14;q32) and HMGA2 deletion in a fetus presenting growth delay and bilateral cataracts.

    Science.gov (United States)

    Raymond, Laure; Francou, Bruno; Petit, François; Tosca, Lucie; Briand-Suleau, Audrey; Metay, Corinne; Martinovic, Jelena; Cordier, Anne-Gaël; Benachi, Alexandra; Pineau, Dominique; Guiochon-Mantel, Anne; Goossens, Michel; Tachdjian, Gérard; Brisset, Sophie

    2015-11-01

    We report the prenatal detection of a de novo unbalanced complex chromosomal rearrangement (CCR), in a fetus with growth delay and bilateral cataracts. Standard karyotype and FISH analyses on amniotic fluid revealed a complex de novo translocation, resulting in a 46,XY,t(1;12;14)(q42;q14;q32) karyotype. CGH-array showed a significant deletion of 387  kb at 12q14.3, at a distance of only 200-700 kb from the breakpoint at 12q14, which encompassed the HMGA2 gene and occurred de novo. Although 12q14 microdeletions are associated with growth delay in several reports in the literature, we present here the smallest deletion prenatally detected, and we detail the clinical description of the fetus. The correlation between cataracts and this complex genotype is puzzling. Among the genes disrupted by the breakpoint in 12q14, GRIP1 has been associated with abnormal eye development in mice, including lens degeneration. Interestingly, HMGA2 is expressed in the mouse's developing lens, and its expression is decreased in lens of elderly humans, correlated with the severity of lens opacity. In this report, we refine the link between HMGA2 loss of function and growth delay during prenatal development. We also discuss the correlation between cataracts and genotype in this unbalanced CCR case of unexpected complexity.

  9. High-mobility group protein HMGA2-derived fragments stimulate the proliferation of chondrocytes and adipose tissue-derived stem cells.

    Science.gov (United States)

    Richter, A; Lübbing, M; Frank, H G; Nolte, I; Bullerdiek, J C; von Ahsen, I

    2011-04-11

    In previous research, it was shown that recombinant HMGA2 protein enhances the proliferation of porcine chondrocytes grown in vitro, opening up promising applications of this embryonic architectural transcription factor for tissue engineering, such as in cartilage repair. In this paper, we describe the development and analyses of two synthetic fragments comprising the functional AT-hook motifs of the HMGA2 protein, as well as the nuclear transport domain. They can be synthesised up to large scales, while eliminating some of the problems of recombinant protein production, including unwanted modification or contamination by the expression hosts, or of gene therapy approaches such as uncontrolled viral integration and transgene expression even after therapy. Application of one of these peptides onto porcine hyaline cartilage chondrocytes, grown in in vitro monolayer cell culture, showed a growth-promoting effect similar to that of the wild type HMGA2 protein. Furthermore, it also promoted cell growth of adult adipose tissue derived stem cells. Due to its proliferation inducing function and vast availability, this peptide is thus suitable for further application and investigation in various fields such as tissue engineering and stem cell research.

  10. MiR-26 down-regulates TNF-α/NF-κB signalling and IL-6 expression by silencing HMGA1 and MALT1.

    Science.gov (United States)

    Chen, Chyi-Ying A; Chang, Jeffrey T; Ho, Yi-Fang; Shyu, Ann-Bin

    2016-05-05

    MiR-26 has emerged as a key tumour suppressor in various cancers. Accumulating evidence supports that miR-26 regulates inflammation and tumourigenicity largely through down-regulating IL-6 production, but the underlying mechanism remains obscure. Here, combining a transcriptome-wide approach with manipulation of cellular miR-26 levels, we showed that instead of directly targeting IL-6 mRNA for gene silencing, miR-26 diminishes IL-6 transcription activated by TNF-α through silencing NF-κB signalling related factors HMGA1 and MALT1. We demonstrated that miR-26 extensively dampens the induction of many inflammation-related cytokine, chemokine and tissue-remodelling genes that are activated via NF-κB signalling pathway. Knocking down both HMGA1 and MALT1 by RNAi had a silencing effect on NF-κB-responsive genes similar to that caused by miR-26. Moreover, we discovered that poor patient prognosis in human lung adenocarcinoma is associated with low miR-26 and high HMGA1 or MALT1 levels and not with levels of any of them individually. These new findings not only unravel a novel mechanism by which miR-26 dampens IL-6 production transcriptionally but also demonstrate a direct role of miR-26 in down-regulating NF-κB signalling pathway, thereby revealing a more critical and broader role of miR-26 in inflammation and cancer than previously realized.

  11. Lack of association of the HMGA1 IVS5-13insC variant with type 2 diabetes in an ethnically diverse hypertensive case control cohort

    Directory of Open Access Journals (Sweden)

    Karnes Jason H

    2013-01-01

    Full Text Available Abstract Background Recently, the high-mobility group A1 gene (HMGA1 variant IVS5-13insC has been associated with type 2 diabetes, but reported associations are inconsistent and data are lacking in Hispanic and African American populations. We sought to investigate the HMGA1-diabetes association and to characterize IVS5-13insC allele frequencies and linkage disequilibrium (LD in 3,070 Caucasian, Hispanic, and African American patients from the INternational VErapamil SR-Trandolapril STudy (INVEST. Methods INVEST was a randomized, multicenter trial comparing two antihypertensive treatment strategies in an ethnically diverse cohort of hypertensive, coronary artery disease patients. Controls, who were diabetes-free throughout the study, and type 2 diabetes cases, either prevalent or incident, were genotyped for IVS5-13insC using Taqman®, confirmed with Pyrosequencing and Sanger sequencing. For LD analysis, genotyping for eight additional HMGA1 single nucleotide polymorphisms (SNPs was performed using the Illumina® HumanCVD BeadChip. We used logistic regression to test association of the HMGA1 IVS5-13insC and diabetes, adjusted for age, gender, body mass index, and percentage European, African, and Native American ancestry. Results We observed IVS5-13insC minor allele frequencies consistent with previous literature in Caucasians and African Americans (0.03 in cases and 0.04 in controls for both race/ethnic groups, and higher frequencies in Hispanics (0.07 in cases and 0.07 in controls. The IVS5-13insC was not associated with type 2 diabetes overall (odds ratio 0.98 [0.76-1.26], p=0.88 or in any race/ethnic group. Pairwise LD (r2 of IVS5-13insC and rs9394200, a SNP previously used as a tag SNP for IVS5-13insC, was low (r2=0.47 in Caucasians, r2=0.25 in Hispanics, and r2=0.06 in African Americans. Furthermore, in silico analysis suggested a lack of functional consequences for the IVS5-13insC variant. Conclusions Our results suggest that IVS5-13ins

  12. Arabidopsis hybrid speciation processes.

    Science.gov (United States)

    Schmickl, Roswitha; Koch, Marcus A

    2011-08-23

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation.

  13. Expressió, purificació i cristal·lització de la proteïna HMGA1a humana amb oligonucleòtids rics en ATs

    OpenAIRE

    Sánchez Giraldo, Raquel

    2009-01-01

    En tota mena de càncers es troben altes concentracions de proteïnes HMGA. Per comprendre el mecanisme d’acció d'aquestes proteïnes cal determinar l’estructura tridimensional dels complexos d’aquestes amb el DNA. Amb aquesta finalitat en aquest projecte es persegueix l’obtenció de co-cristalls de la proteïna HMGA1a i els seus fragments amb oligonucleòtids sintètics rics en seqüències ATs i també provar la cristal·lització d’un pèptid sintètic amb una seqüència similar a la prote...

  14. Defining the Functional Network of Epigenetic Regulators in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Chongyuan Luo; Brittany G.Durgin; Naohide Watanabe; Eric Lam

    2009-01-01

    Development of ChiP-chip and ChlP-seq technologies has allowed genome-wide high-resolution profiling of chromatin-associated marks and binding sites for epigenetic regulators.However,signals for directing epigenetic modi fiers to their target sites are not understood.In this paper,we tested the hypothesis that genome location can affect the involvement of epigenetic regulators using Chromatin Charting (CC) Lines,which have an identical transgene construct inserted at different locations in the Arabidopsis genome.Four CC lines that showed evidence for epigenetic silencing of the luciferase reporter gene were transformed with RNAi vectors individually targeting epigenetic regulators LHP1,MOM1,CMT3,DRD1,DRM2,SUVH2,CLF,and HD1.Involvement of a particular epigenetic regulator in silencing the transgene locus in a CC line was determined by significant alterations in luciferase expression after suppression of the regulator's expression.Our results suggest that the targeting of epigenetic regulators can be influenced by genome location as well as sequence context.In addition,the relative importance of an epigenetic regulator can be influenced by tissue identity.We also report a novel approach to predict interactions between epigenetic regulators through clustering analysis of the regulators using alterations in gene expression of putative downstream targets,including endogenous loci and transgenes,in epigenetic mutants or RNAi lines.Our data support the existence of a complex and dynamic network of epigenetic regulators that serves to coordinate and control global gene expression in higher plants.

  15. Reference: 517 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available d isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to iden...tify components of the Arabidopsis seed that contribute to seed dormancy and to lea

  16. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  17. Reference: 774 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available an essential gene, the disruption of which causes embryonic lethality. Plants carrying a hypomorphic smg7 mu...e progression from anaphase to telophase in the second meiotic division in Arabidopsis. Arabidopsis SMG7 is

  18. Reference: 398 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available plays attenuated chloroplast movements under intermediate and high light intensitie...hese movements. In this work, we describe plastid movement impaired 2 (pmi2), a mutant in Arabidopsis (Arabidopsis thaliana) that dis

  19. Reference: 173 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available mical approaches to elucidate the action mechanisms of sirtinol in Arabidopsis. A...tic and chemical analyses of the action mechanisms of sirtinol in Arabidopsis. 8 3129-34 15710899 2005 Feb P

  20. Reference: 718 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available displayed a moderate but significant decrease in germination in the presence of D...NA damage. This report links Ubc13-Uev with functions in DNA damage response in Arabidopsis. Arabidopsis UEV

  1. Arabidopsis CDS blastp result: AK068856 [KOME

    Lifescience Database Archive (English)

    Full Text Available eme oxygenase (HY1) [Arabidopsis thaliana] GI:4877362, heme oxygenase 1 [Arabidopsis thaliana] GI:4530591 GB:AF132475; annotation upd...ated per Seth J. Davis at University of Wisconsin-Madison 3e-90 ...

  2. Arabidopsis CDS blastp result: AK104955 [KOME

    Lifescience Database Archive (English)

    Full Text Available B:AF132475; annotation updated per Seth J. Davis at University of Wisconsin-Madison 3e-90 ... ...heme oxygenase (HY1) [Arabidopsis thaliana] GI:4877362, heme oxygenase 1 [Arabidopsis thaliana] GI:4530591 G

  3. Reference: 110 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available on process. Our study shows that an Arabidopsis SNM protein, although structurally closer to the SNM1/PSO2 members, shares some prope...rties with ARTEMIS but also has novel characteristics. Arabidopsis plants defective

  4. Down-Regulation of miR-129-5p and the let-7 Family in Neuroendocrine Tumors and Metastases Leads to Up-Regulation of Their Targets Egr1, G3bp1, Hmga2 and Bach1

    DEFF Research Database (Denmark)

    Dossing, Kristina B. V.; Binderup, Tina; Kaczkowski, Bogumil

    2014-01-01

    by miR-129-5p. let-7 overexpression inhibited growth of carcinoid cell lines, and let-7 inhibition increased protein content of the transcription factor BACH1 and its targets MMP1 and HMGA2, all known to promote bone metastases. Immunohistochemistry analysis revealed that let-7 targets are highly......Expression of miRNAs in Neuroendocrine Neoplasms (NEN) is poorly characterized. We therefore wanted to examine the miRNA expression in Neuroendocrine Tumors (NETs), and identify their targets and importance in NET carcinogenesis. miRNA expression in six NEN primary tumors, six NEN metastases...... expressed in NETs and metastases. We found down-regulation of miR-129-5p and the let-7 family, and identified new neuroendocrine specific targets for these miRNAs, which contributes to the growth and metastatic potential of these tumors....

  5. Mesonephric adenocarcinomas of the uterine cervix and corpus: HPV-negative neoplasms that are commonly PAX8, CA125, and HMGA2 positive and that may be immunoreactive with TTF1 and hepatocyte nuclear factor 1-β.

    Science.gov (United States)

    Kenny, Sarah L; McBride, Hilary A; Jamison, Jackie; McCluggage, W Glenn

    2012-06-01

    Mesonephric adenocarcinomas are rare neoplasms that most commonly arise in the uterine cervix and exceptionally rarely in the uterine corpus. Although the morphologic features of these neoplasms are well described, there has been relatively limited investigation of the immunoprofile. We report a series of 8 mesonephric adenocarcinomas arising in the uterine cervix (7 cases) and corpus (1 case) and undertake a comprehensive immunohistochemical analysis. This includes markers that have not been investigated previously in mesonephric adenocarcinomas but that are commonly used in gynecologic pathology and may be undertaken when other, mainly Mullerian, adenocarcinomas are considered in the differential diagnosis. Linear array human papillomavirus (HPV) genotyping was also performed. Our results broadly confirm the immunohistochemical profile demonstrated in previous studies with the majority of mesonephric adenocarcinomas staining positively with CD10 (6 of 8), epithelial membrane antigen (8 of 8), vimentin (8 of 8), and calretinin (7 of 8). Estrogen receptor was positive in 2, carcinoembryonic antigen in 3, and inhibin in 4 cases. p16 was positive in 5 cases (1 diffuse and strong), despite all being HPV negative (in 1 case, there was insufficient DNA for HPV analysis). Novel findings in our study were the demonstration of nuclear positivity with PAX8 and HMGA2 in 7 cases, CA125 immunoreactivity in all 8 cases, and TTF1 and hepatocyte nuclear factor 1-β staining in 3 cases. As PAX8, CA125, HMGA2, and hepatocyte nuclear factor 1-β are commonly positive in a variety of Mullerian adenocarcinomas arising in the female genital tract, this may result in diagnostic confusion. All cases were WT1 negative.

  6. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...... (HRP C). HRP C is 54% identical to ATP N in sequence. When the structures of four class III plant peroxidases are superimposed, the regions with structural differences are non-randomly distributed; all are located in one half of the molecule. The architecture of the haem pocket of ATP N is very similar...... to that of HRP C, in agreement with the low small-molecule substrate specificity of all class III peroxidases. The structure of ATP N suggests that the pH dependence of the substrate turnover will differ from that of HRP C owing to differences in polarity of the residues in the substrate-access channel. Since...

  7. Chromosomal proteins of Arabidopsis thaliana.

    Science.gov (United States)

    Moehs, C P; McElwain, E F; Spiker, S

    1988-07-01

    In plants with large genomes, each of the classes of the histones (H1, H2A, H2B, H3 and H4) are not unique polypeptides, but rather families of closely related proteins that are called histone variants. The small genome and preponderance of single-copy DNA in Arabidopsis thaliana has led us to ask if this plant has such families of histone variants. We have thus isolated histones from Arabidopsis and analyzed them on four polyacrylamide gel electrophoretic systems: an SDS system; an acetic acid-urea system; a Triton transverse gradient system; and a two-dimensional system combining SDS and Triton-acetic acid-urea systems. This approach has allowed us to identify all four of the nucleosomal core histones in Arabidopsis and to establish the existence of a set of H2A and H2B variants. Arabidopsis has at least four H2A variants and three H2B variants of distinct molecular weights as assessed by electrophoretic mobility on SDS-polyacrylamide gels. Thus, Arabidopsis displays a diversity in these histones similar to the diversity displayed by plants with larger genomes such as wheat.The high mobility group (HMG) non-histone chromatin proteins have attracted considerable attention because of the evidence implicating them as structural proteins of transcriptionally active chromatin. We have isolated a group of non-histone chromatin proteins from Arabidopsis that meet the operational criteria to be classed as HMG proteins and that cross-react with antisera to HMG proteins of wheat.

  8. Exploiting Natural Variation in Arabidopsis

    NARCIS (Netherlands)

    Molenaar, J.A.; Keurentjes, J.J.B.

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana . This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of

  9. Exploiting natural variation in Arabidopsis

    NARCIS (Netherlands)

    J.A. Molenaar; J.J.B. Keurentjes

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of g

  10. The salty tale of Arabidopsis.

    Science.gov (United States)

    Sanders, D

    2000-06-29

    High concentrations of sodium chloride are toxic to most plant species. New insights into the mechanisms by which plants tolerate salt have emerged from the identification of genes in Arabidopsis thaliana that play a critical part in physiological resistance to salt.

  11. Reference: 710 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available n factor family in Arabidopsis (Arabidopsis thaliana). Treatment with abscisic acid (ABA) induced AtMYB44 tr...anscript accumulation within 30 min. The gene was also activated under various abiotic stre...sses, such as dehydration, low temperature, and salinity. In transgenic Arabidopsis carrying an At...MYB44 promoter-driven beta-glucuronidase (GUS) construct, strong GUS activity was observed in the vasculature... and leaf epidermal guard cells. Transgenic Arabidopsis overexpressing AtMYB44 is more

  12. Defining the budding yeast chromatin-associated interactome

    OpenAIRE

    Lambert, Jean-Philippe; Fillingham, Jeffrey; Siahbazi, Mojgan; Greenblatt, Jack; Baetz, Kristin; Figeys, Daniel

    2010-01-01

    The maintenance of cellular fitness requires living organisms to integrate multiple signals into coordinated outputs. Central to this process is the regulation of the expression of the genetic information encoded into DNA. As a result, there are numerous constraints imposed on gene expression. The access to DNA is restricted by the formation of nucleosomes, in which DNA is wrapped around histone octamers to form chromatin wherein the volume of DNA is considerably reduced. As such, nucleosome ...

  13. An International Bioinformatics Infrastructure to Underpin the Arabidopsis Community

    Science.gov (United States)

    The future bioinformatics needs of the Arabidopsis community as well as those of other scientific communities that depend on Arabidopsis resources were discussed at a pair of recent meetings held by the Multinational Arabidopsis Steering Committee (MASC) and the North American Arabidopsis Steering C...

  14. Arabidopsis CDS blastp result: AK240652 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240652 J023098G11 At5g63090.2 68418.m07919 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 1e-13 ...

  15. Arabidopsis CDS blastp result: AK241761 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241761 J065205C18 At5g63090.1 68418.m07918 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 5e-32 ...

  16. Arabidopsis CDS blastp result: AK240652 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240652 J023098G11 At5g63090.1 68418.m07918 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 1e-13 ...

  17. Arabidopsis CDS blastp result: AK240652 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240652 J023098G11 At5g63090.4 68418.m07921 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 1e-13 ...

  18. Arabidopsis CDS blastp result: AK241761 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241761 J065205C18 At5g63090.3 68418.m07920 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 5e-32 ...

  19. Arabidopsis CDS blastp result: AK241761 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241761 J065205C18 At5g63090.2 68418.m07919 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 5e-32 ...

  20. Arabidopsis CDS blastp result: AK241761 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241761 J065205C18 At5g63090.4 68418.m07921 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 5e-32 ...

  1. Arabidopsis CDS blastp result: AK240652 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240652 J023098G11 At5g63090.3 68418.m07920 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 1e-13 ...

  2. Arabidopsis CDS blastp result: AK105527 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105527 001-127-G05 At5g63090.4 LOB domain protein / lateral organ boundaries prot...ein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 3e-52 ...

  3. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    Science.gov (United States)

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  4. Arabidopsis CDS blastp result: AK240730 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240730 J043030K09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 2e-11 ...

  5. Arabidopsis CDS blastp result: AK288052 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288052 J075151I09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 6e-14 ...

  6. Arabidopsis CDS blastp result: AK240911 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240911 J065037E05 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 4e-22 ...

  7. Arabidopsis CDS blastp result: AK241119 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241119 J065094C22 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 2e-13 ...

  8. Arabidopsis CDS blastp result: AK243149 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243149 J100032I21 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 7e-12 ...

  9. Arabidopsis CDS blastp result: AK241581 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241581 J065181K09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 4e-15 ...

  10. Arabidopsis CDS blastp result: AK287479 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287479 J043023O14 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 1e-17 ...

  11. Reference: 631 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ggest that atRZ-1a has a negative impact on seed germination and seedling growth of Arabidopsis under salt o...binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thali

  12. Jasmonate Signal Pathway in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yi Shan; Zhi-Long Wang; Daoxin Xie

    2007-01-01

    Jasmonates (JAs), which include jasmonic acid and its cyclopentane derivatives are synthesized from the octadecanoid pathway and widely distributed throughout the plant kingdom. JAs modulate the expression of numerous genes and mediate responses to stress, wounding, insect attack, pathogen infection, and UV damage. They also affect a variety of processes in many plant developmental processes. The JA signal pathway involves two important events: the biosynthesis of JA and the transduction of JA signal. Several important Arabidopsis mutants in jasmonate signal pathway were described in this review.

  13. Reference: 572 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available et al. 2007 May. Plant J. 50(3):439-51. Although glycine-rich RNA-binding protein 2 (GRP2) has been implicated in plant re...sponses to environmental stresses, the function and importance of GRP2 in stress responses are largely unknown. Here...haliana under high-salinity, cold or osmotic stress. GRP2 affects seed germination of Arabidopsis plants under salt stre...ss, but does not influence seed germination and seedling growth of Arabidopsis plants under osmotic stre...ss. GRP2 accelerates seed germination and seedling growth in Arabidopsis plants under cold stre

  14. Reference: 446 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available rk E et al. 2006 Nov. Plant Physiol. 142(3):1004-13. Arabidopsis (Arabidopsis thaliana) QUARTET (QRT) genes are require...d for pollen separation during normal floral development. In qrt mutants, the four products of microsporogenesis re...main fused and pollen grains are released as tetrads. In Arabid...opsis, tetrad analysis in qrt mutants has been used to map all five centromeres, easily distinguish sporophy...tic from gametophytic mutations, and accurately assess crossover interference. Using a combination of forward and re

  15. Down-Regulation of miR-129-5p and the let-7 Family in Neuroendocrine Tumors and Metastases Leads to Up-Regulation of Their Targets Egr1, G3bp1, Hmga2 and Bach1

    Directory of Open Access Journals (Sweden)

    Kristina B. V. Døssing

    2014-12-01

    Full Text Available Expression of miRNAs in Neuroendocrine Neoplasms (NEN is poorly characterized. We therefore wanted to examine the miRNA expression in Neuroendocrine Tumors (NETs, and identify their targets and importance in NET carcinogenesis. miRNA expression in six NEN primary tumors, six NEN metastases and four normal intestinal tissues was characterized using miRNA arrays, and validated by in-situ hybridization and qPCR. Among the down-regulated miRNAs miR-129-5p and the let-7f/let-7 family, were selected for further characterization. Transfection of miR-129-5p inhibited growth of a pulmonary and an intestinal carcinoid cell line. Analysis of mRNA expression changes identified EGR1 and G3BP1 as miR-129-5p targets. They were validated by luciferase assay and western blotting, and found robustly expressed in NETs by immunohistochemistry. Knockdown of EGR1 and G3BP1 mimicked the growth inhibition induced by miR-129-5p. let-7 overexpression inhibited growth of carcinoid cell lines, and let-7 inhibition increased protein content of the transcription factor BACH1 and its targets MMP1 and HMGA2, all known to promote bone metastases. Immunohistochemistry analysis revealed that let-7 targets are highly expressed in NETs and metastases. We found down-regulation of miR-129-5p and the let-7 family, and identified new neuroendocrine specific targets for these miRNAs, which contributes to the growth and metastatic potential of these tumors.

  16. Arabidopsis CDS blastp result: AK065259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065259 J013002J18 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  17. Arabidopsis CDS blastp result: AK102134 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102134 J033085F12 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  18. Arabidopsis CDS blastp result: AK066835 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066835 J013087I16 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-171 ...

  19. Arabidopsis CDS blastp result: AK100523 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100523 J023100P04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  20. Arabidopsis CDS blastp result: AK102695 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102695 J033103F21 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  1. Reference: 488 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Inactivation of ATAB2 strongly affects Arabidopsis development and thylakoid mem...n center subunits is decreased and the association of their mRNAs with polysomes is affected. ATAB2 is a chl

  2. Reference: 212 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available identified in pea (Pisum sativum) using biochemical approaches. The Arabidopsis (...C75-IV, which we studied using a range of molecular, genetic, and biochemical techniques. Expression of atTO

  3. Reference: 480 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available activity was analyzed. Compared to all other Suc transporters, AtSUC9 had an ult...abidopsis (Arabidopsis thaliana) L. Heynh., was expressed in Xenopus (Xenopus laevis) oocytes, and transport

  4. Reference: 507 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available een them. However, little is known about the mechanisms that regulate the two pathways and the metabolic cro...ss-talk. To identify such regulatory mechanisms, we isolated and characterized the Arabidopsis T-DNA inserti

  5. Reference: 278 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available functional ERA1 gene, which encodes the beta-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects...gnaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsi

  6. Reference: 185 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available organisms, we suggest that AtARP4 is likely to exert its effects on plant develop...nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including ear

  7. Arabidopsis CDS blastp result: AK069960 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-60 ...

  8. Arabidopsis CDS blastp result: AK064768 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-112 ...

  9. Arabidopsis CDS blastp result: AK061551 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  10. Arabidopsis CDS blastp result: AK104764 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  11. Arabidopsis CDS blastp result: AK098998 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 8e-57 ...

  12. Arabidopsis CDS blastp result: AK061859 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-100 ...

  13. Arabidopsis CDS blastp result: AK103387 [KOME

    Lifescience Database Archive (English)

    Full Text Available ntical to SC35-like splicing factor SCL28, 28 kD [Arabidopsis thaliana] GI:9843655; contains Pfam profile PF00076: RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain) 2e-34 ...

  14. Reference: 564 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 39-44 17360695 2007 Feb Proceedings of the National Academy of Sciences of the Un...tion in plants. Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. 9 36

  15. Reference: 796 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ceedings of the National Academy of Sciences of the United States of America DeBolt...required for normal microtubule dynamics and organization in Arabidopsis. 46 18064-9 19004800 2008 Nov Pro

  16. Reference: 67 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available A complete knockout of AGD2 renders embryos inviable. We suggest that AGD2 synthesizes an important amino a...no acid-derived molecule important for activating defense signaling. Divergent roles in Arabidopsis thaliana

  17. Reference: 420 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available are found in various compartments in plant cells. The cytosolic and chloroplast APXs appear to play important...d development, suggesting that APX3 may not be an important antioxidant enzyme in Arabidopsis, at least unde

  18. Reference: 771 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available RCADIAN TIMEKEEPER (XCT), an Arabidopsis thaliana gene important for light regula...l elongation in xct is hyposensitive to red light but hypersensitive to blue light. Finally, XCT is important

  19. Reference: 797 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available that the level of GMPase activity regulates Arabidopsis sensitivity to NH(4)(+). Further analysis showed that defective N-glycosylati...on of proteins, unfolded protein response, and cell death in the roots are likely i

  20. Arabidopsis CDS blastp result: AK241712 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241712 J065197H24 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 6e-27 ...

  1. Arabidopsis CDS blastp result: AK242957 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242957 J090089I15 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-28 ...

  2. Arabidopsis CDS blastp result: AK287726 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287726 J065138E17 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-88 ...

  3. Arabidopsis CDS blastp result: AK242387 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242387 J080051E14 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 2e-45 ...

  4. Arabidopsis CDS blastp result: AK106306 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106306 002-101-C10 At4g37750.1 ovule development protein aintegumenta (ANT) ident...ical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 3e-89 ...

  5. Arabidopsis CDS blastp result: AK241272 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241272 J065132I19 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-88 ...

  6. Arabidopsis CDS blastp result: AK240892 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240892 J065030K10 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-88 ...

  7. Arabidopsis CDS blastp result: AK109848 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109848 002-148-F05 At4g37750.1 ovule development protein aintegumenta (ANT) ident...ical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-73 ...

  8. Arabidopsis CDS blastp result: AK287673 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287673 J065121E18 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 6e-17 ...

  9. Arabidopsis CDS blastp result: AK287621 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287621 J065066I09 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-85 ...

  10. Reference: 142 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available te S-glucosyltransferase, UGT74B1, to determine its role in the Arabidopsis glucosinolate pathway. Biochem...ical analyses demonstrate that recombinant UGT74B1 specifically glucosylates the th

  11. Reference: 522 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available tol phosphate (InsP) and phosphoinositide phosphate (PtdInsP) substrates. Arabidopsis thaliana has 15 genes encoding 5PTases. Biochem...ical analyses of a subgroup of 5PTase enzymes suggest th

  12. Reference: 459 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available plants. These results suggest an additive contribution of AMT1;1 and AMT1;3 to the overall ammonium uptake ...capacity in Arabidopsis roots under nitrogen-deficiency conditions. Additive contribution

  13. Arabidopsis CDS blastp result: AK288065 [KOME

    Lifescience Database Archive (English)

    Full Text Available al to sulfate tansporter Sultr1;3 [Arabidopsis thaliana] GI:10716805; contains Pfam profile PF00916: Sulfate... transporter family; contains Pfam profile PF01740: STAS domain; contains TIGRfam profile TIGR00815: sulfate permease 1e-145 ...

  14. Reference: 645 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available rter AtDUR3 in nitrogen nutrition in Arabidopsis. In transgenic lines expressing ... impaired growth on urea as a sole nitrogen source were used to investigate a role of the H+/urea co-transpo

  15. The fifth international conference on Arabidopsis research

    Energy Technology Data Exchange (ETDEWEB)

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  16. Reference: 711 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available of the RLK signaling pathway, which also mediates adaptation to Na(+) stress. RLK pathway components, known... The Arabidopsis kinase-associated protein phosphatase regulates adaptation to Na+ stress. 2 612-22 18162596

  17. Reference: 734 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available umi et al. 2008 Apr. Development 135(7):1335-45. CAPRICE (CPC) encodes a small protein with an R3 MYB motif ...doreduplication. Arabidopsis CAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development

  18. Arabidopsis CDS blastp result: AK101526 [KOME

    Lifescience Database Archive (English)

    Full Text Available ucosaminyltransferase, putative similar to N-acetylglucosaminyltransferase I from Arabidopsis thaliana [gi:5139335]; contains AT-AC non-consensus splice sites at intron 13 1e-179 ...

  19. Reference: 733 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available role in this transition. Specifically, two autonomous factors in the Arabidopsis...tes FCA alternative polyadenylation and promotes flowering as a novel factor in the autonomous pathway. Firs

  20. Reference: 343 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available the characterization of a T-DNA insertion mutant of the Arabidopsis CAP-C gene. Analysis of the progeny of selfe...matin was observed between segregating mitotic chromosomes in pollen produced by selfed heterozygotes. Addit

  1. Arabidopsis CDS blastp result: AK241281 [KOME

    Lifescience Database Archive (English)

    Full Text Available 2 protein) [Arabidopsis thaliana]; a false single bp exon was added to circumvent a single basepair insertion in the genomic sequence, supported by cDNA/genome alignment. 3e-19 ...

  2. Arabidopsis CDS blastp result: AK241243 [KOME

    Lifescience Database Archive (English)

    Full Text Available 2 protein) [Arabidopsis thaliana]; a false single bp exon was added to circumvent a single basepair insertion in the genomic sequence, supported by cDNA/genome alignment. 6e-11 ...

  3. Arabidopsis CDS blastp result: AK243188 [KOME

    Lifescience Database Archive (English)

    Full Text Available 2 protein) [Arabidopsis thaliana]; a false single bp exon was added to circumvent a single basepair insertion in the genomic sequence, supported by cDNA/genome alignment. 8e-23 ...

  4. Arabidopsis CDS blastp result: AK242986 [KOME

    Lifescience Database Archive (English)

    Full Text Available 2 protein) [Arabidopsis thaliana]; a false single bp exon was added to circumvent a single basepair insertion in the genomic sequence, supported by cDNA/genome alignment. 1e-17 ...

  5. Reference: 30 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ponse to various biotic and abiotic stresses. However the physiological role of t...his pathway remains obscure. To elucidate its role in plants, we analyzed Arabidopsis T-DNA knockout mutants

  6. Arabidopsis CDS blastp result: AK062082 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062082 001-044-F11 At3g59970.3 methylenetetrahydrofolate reductase 1 (MTHFR1) ide...ntical to methylenetetrahydrofolate reductase MTHFR1 [Arabidopsis thaliana] GI:5911425 4e-81 ...

  7. Reference: 783 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available sis ACBP6 was confirmed by analyses of transgenic Arabidopsis expressing autofluorescence-tagged ACBP6 and w... mRNA encoding phospholipase Ddelta. Lipid profiling analyses of rosettes from co

  8. Reference: 789 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ylakoid membranes. Microarray analysis of the chl27-t mutant showed repression of numerous nuclear genes involved in photosynthesis...d CHL27 proteins. Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene exp

  9. Reference: 352 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available em II and has a specific function distinct from 2-Cys peroxiredoxin in protecting photosynthesis. Its absenc...f Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis

  10. Reference: 21 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ication of a number of mutant lines with altered Chl fluorescence characteristics. Analysis of photosynthesis...cation of mutants of Arabidopsis defective in acclimation of photosynthesis to th

  11. Reference: 413 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ollination and fertilization, and, in the absence of fertilization, flowers senesce. In the Arabidopsis thal...ARF8 acts as an inhibitor to stop further carpel development in the absence of fertilization and the generat

  12. Reference: 405 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available as previously thought. These mutants will prove to be valuable resources for understanding laccase functions in vivo. Mutant identifi...cation and characterization of the laccase gene family in Arabidopsis. 11 2563-9 16

  13. Reference: 263 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available idopsis leaves GLB1 expression and PII protein levels were not significantly affected by either the day/nigh...bolism. Physiological characterisation of Arabidopsis mutants affected in the expression of the putative reg

  14. Reference: 160 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available excessive accumulation of these toxic compounds impairs cell death containment and counteracts the effect...iveness of the plant defenses to restrict pathogen infection. Arabidopsis SHMT1, a

  15. Arabidopsis CDS blastp result: AK242550 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242550 J080319D10 At2g35630.1 68415.m04369 microtubule organization 1 protein (MO...R1) identical to microtubule organization 1 protein GI:14317953 from [Arabidopsis thaliana] 5e-44 ...

  16. Reference: 301 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available n phosphatidylinositol metabolism and is encoded by an At5PTase gene family in Arabidopsis thaliana. A previous study...ntracellular calcium levels. In this study, we provide evidence that At5PTase13 m

  17. Reference: 724 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available is required in the roots during early signaling steps of rhizobacteria-mediated ...ISR. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis.

  18. Reference: 289 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available f flavonoids in Arabidopsis seed coat. 11 2966-80 16243908 2005 Nov The Plant cell Caboche Michel|Debeaujon Isabelle|Kerhoas Lucien|Lepiniec Loïc|Pourcel Lucille|Routaboul Jean-Marc

  19. Reference: 684 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available cellular proliferation and expansion at nanomolar concentrations. PSY1 is widely expressed in various Arabi...ulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. 46 18333-8 17989228 20

  20. Reference: 147 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available the region-specific control of trichome development of Arabidopsis. 3 389-98 15604688 2004 May Plant molecular biology Hulskamp Mart...in|Kirik Victor|Schiefelbein John|Simon Marissa|Wester Katja

  1. Arabidopsis CDS blastp result: AK241043 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 2e-41 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  2. Arabidopsis CDS blastp result: AK243135 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 7e-43 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  3. Reference: 798 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available iption factors, control the delicately tuned reorientation and timing of cell div...EZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells. 6 913-22 1908

  4. Arabidopsis CDS blastp result: AK071710 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071710 J023110L07 At4g14030.1 selenium-binding protein, putative contains Pfam profile PF05694: 56kDa sele...nium binding protein (SBP56); identical to Putative selenium-binding protein (Swiss...-Prot:O23264) [Arabidopsis thaliana]; similar to selenium binding protein (GI:15485232) [Arabidopsis thalian...a]; identical to cDNA from partial mRNA for selenium binding protein (sbp gene) GI:15485231 1e-162 ...

  5. Reference: 221 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ell cycle. In addition, RAD51 is required for meiosis and its Arabidopsis (Arabidopsis thaliana) ortholog is important... cell cultures, the RAD51 paralog RAD51C is also important for mitotic homologous...ortant for recombination and DNA repair in the mitotic c...chromosome (homolog) pairing, synapsis, and recombination. The budding yeast (Saccharomyces cerevisiae) RAD51 gene is known to be imp

  6. Reference: 598 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available omoter is markedly reduced in the cdkc;2 and cyct1;5 mutants, indicating that the kinase complexes are important... flowering. These results establish Arabidopsis CDKC kinase complexes as important...T1;4 and CYCT1;5, play important roles in infection with Cauliflower mosaic virus...hat Arabidopsis thaliana CDK9-like proteins, CDKC;1 and CDKC;2, and their interacting cyclin T partners, CYC

  7. Advances in Arabidopsis research in China from 2006 to 2007

    Institute of Scientific and Technical Information of China (English)

    LIANG Yan; ZUO JianRu; YANG WeiCai

    2007-01-01

    @@ Arabidopsis thaliana, a model plant species, has a number of advantages over other plant species as an experimental organism due to many of its genetic and genomic features. The Chinese Arabidopsis community has made significant contributions to plant biology research in recent years[1,2]. In 2006, studies of plant biology in China received more attention than ever before, especially those pertaining to Arabidopsis research. Here we briefly summarize recent advances in Arabidopsis research in China.

  8. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  9. Recent Progress in Arabidopsis Research in China: A Preface

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Xu

    2006-01-01

    @@ In 2002, a workshop on Arabidopsis research in China was held in Shanghai, when a small group of Chinese plant scientists was working on this model species. Since then, we have witnessed the rapid growth of Arabidopsis research in China. This special issue of Journal of Integrative Plant Biology is dedicated exclusively to the Fourth Workshop on Arabidopsis Research in China, scheduled on November 30, 2005, in Beijing. In addition to reports collected in this special issue, the Chinese Arabidopsis community has been able to make significant contributions to many research fields. Here, I briefly summarize recent advances in Arabidopsis research in China.

  10. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  11. Reference: 510 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ch stabilizes the water-oxidizing complex, is represented in Arabidopsis thaliana (Arabidopsis) by two isofo...rms. Two T-DNA insertion mutant lines deficient in either the PsbO1 or the PsbO2 protein were re...ally. Both PsbO proteins were able to support the oxygen evolution activity of PSII, although PsbO2 was less... efficient than PsbO1 under photoinhibitory conditions. Prolonged high light stress led to re...duced growth and fitness of the mutant lacking PsbO2 as compared with the wild type and the muta

  12. Reference: 600 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available n M et al. 2007 Jun. Plant J. 50(5):810-24. A novel abscisic acid (ABA)-deficient mutant, aba4, was identified in a scre...en for paclobutrazol-resistant germination. Compared with wild-type, the mutant showed reduced e...by map-based cloning, and found to be a unique gene in the Arabidopsis genome. The predicted protein has fou...r putative helical transmembrane domains and shows significant similarity to pred...icted proteins from tomato, rice and cyanobacteria. Constitutive expression of the ABA4 gene in Arabidopsis

  13. Reference: 59 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 59 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u14563930i Kaczorowski Kare...naling network in Arabidopsis, we used a sensitized genetic screen for deetiolation-defective seedlings. Two allelic mutants were... isolated that exhibited reduced sensitivity to both continuous red and far-re...d light, suggesting involvement in both phyA and phyB signaling. The molecular lesions res...ponsible for the phenotype were shown to be mutations in the Arabidopsis PSEUDO-RESPONSE REGULATOR7 (PRR7) g

  14. Reference: 640 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available er Alois et al. 2007 Jul. Plant Cell 19(7):2213-24. Wound signaling pathways in plants are mediated by mitog...en-activated protein kinases (MAPKs) and stress hormones, such as ethylene and jasmonates. In Arabidopsis th...ed investigations; however, the involvement of specific phosphatases in wound signaling is not known. Here, ...we show that AP2C1, an Arabidopsis Ser/Thr phosphatase of type 2C, is a novel stress signal regulator that inactivates the stress-re... significantly higher amounts of jasmonate upon wounding and are more resistant to phytophagous mites (Tetra

  15. Reference: 756 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available elle et al. 2008 Jun. Plant Physiol. 147(2):595-610. Treatment of Arabidopsis (Arabidopsis thaliana) alterna...tive oxidase1a (aox1a) mutant plants with moderate light under drought conditions resulted in a phenotypic difference compare...d with ecotype Columbia (Col-0), as evidenced by a 10-fold incre...ase in the accumulation of anthocyanins in leaves, alterations in photosynthetic efficiency, and increased superoxide radical and re...duced root growth at the early stages of seedling growth. Analysis of metabolite profiles re

  16. Reference: 457 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available n et al. 2006 Oct. Plant J. 48(2):238-48. The Arabidopsis BAP1 gene encodes a small protein with a C2-like domain. Here...er and is associated with membranes in vivo. We identify multiple roles of BAP1 in negatively re...gulating defense responses and cell death in Arabidopsis thaliana. The loss of BAP1 function ...confers an enhanced disease resistance to virulent bacterial and oomycete pathogens. The enhanced resistance... is mediated by salicylic acid, PAD4 and a disease resistance gene SNC1. BAP1 is

  17. Gibberellins control fruit patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-10-01

    The Arabidopsis basic helix-loop-helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning.

  18. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-47 ...

  19. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-28 ...

  20. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-26 ...

  1. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-45 ...

  2. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  3. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-24 ...

  4. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 2e-65 ...

  5. Arabidopsis CDS blastp result: AK110534 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110534 002-168-A07 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-114 ...

  6. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-50 ...

  7. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 0.0 ...

  8. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-25 ...

  9. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-98 ...

  10. Arabidopsis CDS blastp result: AK061162 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061162 006-209-A01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-35 ...

  11. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 0.0 ...

  12. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 3e-66 ...

  13. Arabidopsis CDS blastp result: AK069071 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069071 J023010H01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  14. Arabidopsis CDS blastp result: AK121003 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121003 J023045B21 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  15. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-45 ...

  16. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-98 ...

  17. Arabidopsis CDS blastp result: AK060286 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060286 001-006-C08 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 6e-78 ...

  18. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 1e-125 ...

  19. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-25 ...

  20. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-31 ...

  1. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-130 ...

  2. Arabidopsis CDS blastp result: AK105393 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105393 001-123-B04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  3. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-48 ...

  4. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-29 ...

  5. Arabidopsis CDS blastp result: AK109812 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109812 002-147-H02 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 5e-90 ...

  6. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 8e-63 ...

  7. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-126 ...

  8. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-124 ...

  9. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 4e-27 ...

  10. Reference: 415 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available study focuses on the seven other Arabidopsis CAD for which functions are not yet elucidated. Their expression patterns were determine...ession of CAD 1, B1, and G genes was determined using their promoters fused to the GUS reporter gene. CAD 1

  11. Arabidopsis CDS blastp result: AK243408 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 1e-151 ...

  12. Arabidopsis CDS blastp result: AK242797 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 2e-23 ...

  13. Arabidopsis CDS blastp result: AK243408 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 2e-12 ...

  14. Reference: 767 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Arabidopsis thaliana genome. Mutation analysis of 25 of the 27 member genes representing 13 of the 14 sub-families... of the UBP gene family revealed that single-gene mutants of three genes in two sub-families exhibit v

  15. Reference: 158 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available onika et al. 2005 Feb. Plant J. 41(3):386-99. Cullin proteins, which belong to multigenic families in all eu...ic search revealed the existence of at least 76 BTB-domain proteins in Arabidopsis belonging to 11 major families.... Yeast two-hybrid experiments indicate that representative members of certain families are able to phy

  16. Reference: 456 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available h other Spo11/topo VIA proteins, but their functional relationship during meiosis or other processes is not ...s. Thus, the three Arabidopsis Spo11 homologues appear to function in two discrete processes, i.e. AtSPO11-1

  17. Reference: 412 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available the tobacco arcA gene, mediates hormone responses and plays a regulatory role in multiple developmental processes...in RACK1A confer defects in multiple developmental processes including seed germination, leaf production, an...ltiple hormone responsiveness and developmental processes in Arabidopsis. 11 2697-708 16829549 2006 Journal

  18. Reference: 51 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available urce of acetyl-CoA formation in the plastids of plants and is composed of multiple copies of four different ...astidic E2 (dihydrolipoyl acetyltransferase) subunit, plE2, of the complex in Arabidopsis destroys the expre

  19. Reference: 567 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ith findings that noxy2 and mutants with defective 9-LOX activity showed increased numbers of lateral roots,...or of lateral root formation. Histochemical and molecular analyses revealed that 9-HOT activated events comm...in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade.

  20. Arabidopsis CDS blastp result: AK287911 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287911 J065213B08 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 3e-85 ...

  1. Arabidopsis CDS blastp result: AK318551 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK318551 J075138M12 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 4e-27 ...

  2. Arabidopsis CDS blastp result: AK241823 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241823 J065212G21 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 1e-150 ...

  3. Arabidopsis CDS blastp result: AK243378 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243378 J100063A13 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 5e-18 ...

  4. Arabidopsis CDS blastp result: AK288351 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288351 J090024C17 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 2e-24 ...

  5. Arabidopsis CDS blastp result: AK242252 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242252 J075182G16 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 6e-88 ...

  6. Arabidopsis CDS blastp result: AK073411 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073411 J033041P20 At4g02060.1 prolifera protein (PRL) / DNA replication licensing... factor Mcm7 (MCM7) identical to DNA replication licensing factor Mcm7 SP|P43299 PROLIFERA protein {Arabidopsis thaliana}; contains Pfam profile PF00493: MCM2/3/5 family 0.0 ...

  7. Arabidopsis CDS blastp result: AK100867 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100867 J023124E13 At2g29640.1 josephin family protein contains Pfam domain PF02099: Jose...phin; similar to Josephin-like protein (Swiss-Prot:O82391) [Arabidopsis thaliana] 7e-59 ...

  8. Arabidopsis CDS blastp result: AK241402 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241402 J065159A02 At4g19070.1 68417.m02810 cadmium-responsive protein / cadmium i...nduced protein (AS8) identical to cadmium induced protein AS8 SP:P42735 from [Arabidopsis thaliana] 3e-11 ...

  9. Proteomics of Arabidopsis seed germination and priming

    NARCIS (Netherlands)

    Gallardo, K.; Job, C.; Groot, S.P.C.; Puype, M.; Demol, H.; Vandekerckhove, J.; Job, D.

    2003-01-01

    To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and down-

  10. Arabidopsis CDS blastp result: AK241096 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241096 J065076O13 At3g10520.1 68416.m01262 non-symbiotic hemoglobin 2 (HB2) (GLB2...) identical to SP|O24521 Non-symbiotic hemoglobin 2 (Hb2) (ARAth GLB2) {Arabidopsis thaliana} 1e-40 ...

  11. Arabidopsis CDS blastp result: AK240885 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240885 J065029A17 At3g10520.1 68416.m01262 non-symbiotic hemoglobin 2 (HB2) (GLB2...) identical to SP|O24521 Non-symbiotic hemoglobin 2 (Hb2) (ARAth GLB2) {Arabidopsis thaliana} 6e-34 ...

  12. Arabidopsis CDS blastp result: AK241096 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241096 J065076O13 At2g16060.1 68415.m01841 non-symbiotic hemoglobin 1 (HB1) (GLB1...) identical to SP|O24520 Non-symbiotic hemoglobin 1 (Hb1) (ARAth GLB1) {Arabidopsis thaliana} 1e-59 ...

  13. Arabidopsis CDS blastp result: AK240885 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240885 J065029A17 At2g16060.1 68415.m01841 non-symbiotic hemoglobin 1 (HB1) (GLB1...) identical to SP|O24520 Non-symbiotic hemoglobin 1 (Hb1) (ARAth GLB1) {Arabidopsis thaliana} 3e-49 ...

  14. Protease gene families in Populus and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jansson Stefan

    2006-12-01

    Full Text Available Abstract Background Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Results We have performed a comparative analysis of protease genes in the two sequenced dicot genomes, Arabidopsis thaliana and Populus trichocarpa by using genes coding for proteases in the MEROPS database 1 for Arabidopsis to identify homologous sequences in Populus. A multigene-based phylogenetic analysis was performed. Most protease families were found to be larger in Populus than in Arabidopsis, reflecting recent genome duplication. Detailed studies on e.g. the DegP, Clp, FtsH, Lon, rhomboid and papain-Like protease families showed the pattern of gene family expansion and gene loss was complex. We finally show that different Populus tissues express unique suites of protease genes and that the mRNA levels of different classes of proteases change along a developmental gradient. Conclusion Recent gene family expansion and contractions have made the Arabidopsis and Populus complements of proteases different and this, together with expression patterns, gives indications about the roles of the individual gene products or groups of proteases.

  15. Arabidopsis CDS blastp result: AK241728 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241728 J065199H08 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 3e-36 ...

  16. Arabidopsis CDS blastp result: AK240645 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240645 J023003B03 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 1e-17 ...

  17. Arabidopsis CDS blastp result: AK243302 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243302 J100054J17 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 4e-82 ...

  18. Arabidopsis CDS blastp result: AK241015 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241015 J065054A13 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 8e-37 ...

  19. Arabidopsis CDS blastp result: AK288091 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288091 J075184D14 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 4e-29 ...

  20. Arabidopsis CDS blastp result: AK318617 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK318617 J100090H20 At1g19850.1 68414.m02490 transcription factor MONOPTEROS (MP) /... auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 2e-63 ...

  1. Arabidopsis CDS blastp result: AK103452 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103452 J033129I11 At1g19850.1 transcription factor MONOPTEROS (MP) / auxin-respon...sive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 1e-166 ...

  2. Arabidopsis CDS blastp result: AK243230 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243230 J100044L04 At1g19850.1 68414.m02490 transcription factor MONOPTEROS (MP) /... auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 2e-65 ...

  3. Reference: 346 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 346 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16496096i Todd Christopher...midohydrolase activity from Arabidopsis thaliana. 5 1108-13 16496096 2006 Apr Planta Polacco Joe C|Todd Christopher D

  4. Arabidopsis CDS blastp result: AK242980 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242980 J090094F15 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 2e-19 ...

  5. Arabidopsis CDS blastp result: AK241644 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241644 J065189M04 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 3e-37 ...

  6. Arabidopsis CDS blastp result: AK241055 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241055 J065063N18 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 1e-26 ...

  7. Arabidopsis CDS blastp result: AK242211 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242211 J075171C16 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 5e-21 ...

  8. Arabidopsis CDS blastp result: AK243669 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243669 J100089N11 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 6e-14 ...

  9. Arabidopsis CDS blastp result: AK100613 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100613 J023107M18 At4g10180.1 light-mediated development protein 1 / deetiolated1... (DET1) identical to Light-mediated development protein DET1 (Deetiolated1) (Swiss-Prot:P48732) [Arabidopsis thaliana] 0.0 ...

  10. Arabidopsis CDS blastp result: AK058683 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058683 001-019-A06 At4g10180.1 light-mediated development protein 1 / deetiolated...1 (DET1) identical to Light-mediated development protein DET1 (Deetiolated1) (Swiss-Prot:P48732) [Arabidopsis thaliana] 0.0 ...

  11. Arabidopsis CDS blastp result: AK241645 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241645 J065189N07 At5g20000.1 68418.m02380 26S proteasome AAA-ATPase subunit, putative almost... identical to 26S proteasome AAA-ATPase subunit RPT6a GI:6652888 from [Arabidopsis thaliana]; almost

  12. Arabidopsis CDS blastp result: AK243043 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243043 J100008P08 At5g20000.1 68418.m02380 26S proteasome AAA-ATPase subunit, putative almost... identical to 26S proteasome AAA-ATPase subunit RPT6a GI:6652888 from [Arabidopsis thaliana]; almost

  13. Arabidopsis CDS blastp result: AK241277 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241277 J065134P20 At5g20000.1 68418.m02380 26S proteasome AAA-ATPase subunit, putative almost... identical to 26S proteasome AAA-ATPase subunit RPT6a GI:6652888 from [Arabidopsis thaliana]; almost

  14. Arabidopsis CDS blastp result: AK241074 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241074 J065068E03 At5g20000.1 68418.m02380 26S proteasome AAA-ATPase subunit, putative almost... identical to 26S proteasome AAA-ATPase subunit RPT6a GI:6652888 from [Arabidopsis thaliana]; almost

  15. Reference: 386 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 386 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16698900i Hricová Andrea...d mesophyll cell proliferation in Arabidopsis. 3 942-56 16698900 2006 Jul Plant physiology Hricová Andrea|Micol José Luis|Quesada Victor

  16. Reference: 394 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 394 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16766689i Rudella Andrea...and defects in chloroplast biogenesis in Arabidopsis. 7 1704-21 16766689 2006 Jul The Plant cell Alonso Jose M|Ecker Joseph R|Friso Giulia|Rudella Andrea|van Wijk Klaas J

  17. Arabidopsis CDS blastp result: AK243428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243428 J100067L15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-36 ...

  18. Arabidopsis CDS blastp result: AK288699 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288699 J090061C22 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-36 ...

  19. Arabidopsis CDS blastp result: AK243271 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243271 J100049K04 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 4e-35 ...

  20. Arabidopsis CDS blastp result: AK241812 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241812 J065210K15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 1e-22 ...

  1. Arabidopsis CDS blastp result: AK241549 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241549 J065176M15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 3e-32 ...

  2. Arabidopsis CDS blastp result: AK241615 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241615 J065186D02 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-35 ...

  3. Arabidopsis CDS blastp result: AK288487 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288487 J090040H24 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 5e-37 ...

  4. Arabidopsis CDS blastp result: AK287469 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287469 J043021L20 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 2e-36 ...

  5. Arabidopsis CDS blastp result: AK241370 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241370 J065154C10 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 2e-31 ...

  6. Arabidopsis CDS blastp result: AK288415 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288415 J090031E07 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 3e-37 ...

  7. Arabidopsis CDS blastp result: AK287447 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287447 J043016O04 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 2e-30 ...

  8. Arabidopsis CDS blastp result: AK241364 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241364 J065152E11 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 2e-20 ...

  9. Arabidopsis CDS blastp result: AK242393 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 3e-13 ...

  10. Arabidopsis CDS blastp result: AK241281 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-12 ...

  11. Arabidopsis CDS blastp result: AK241762 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 9e-17 ...

  12. Arabidopsis CDS blastp result: AK242986 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-13 ...

  13. Arabidopsis CDS blastp result: AK287689 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-23 ...

  14. Arabidopsis CDS blastp result: AK240736 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-22 ...

  15. Arabidopsis CDS blastp result: AK241705 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-11 ...

  16. Arabidopsis CDS blastp result: AK287483 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-37 ...

  17. Arabidopsis CDS blastp result: AK107208 [KOME

    Lifescience Database Archive (English)

    Full Text Available Ala hydrolase, putative virtually identical to gr1-protein from [Arabidopsis thaliana] GI:3559811; similar t...AK107208 002-125-B11 At1g44350.1 IAA-amino acid hydrolase 6, putative (ILL6) / IAA-

  18. Arabidopsis CDS blastp result: AK062144 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062144 001-045-G08 At5g54080.2 homogentisate 1,2-dioxygenase / homogentisicase/ho... (EC 1.13.11.5) (Homogentisicase) (Homogentisate oxygenase) (Homogentisic acid oxidase) {Arabidopsis thaliana}; contains Pfam profile PF04209: homogentisate 1,2-dioxygenase 1e-155 ...

  19. Arabidopsis CDS blastp result: AK061294 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061294 006-301-D01 At3g08900.1 reversibly glycosylated polypeptide-3 (RGP3) nearl...y identical to reversibly glycosylated polypeptide-3 [Arabidopsis thaliana] GI:11863238; contains non-consensus GA-donor splice site at intron 2 0.0 ...

  20. Reference: 119 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available of the Arabidopsis homolog of MSH4 (AtMSH4). We demonstrate that AtMSH4 expression can only be detected in floral tissues, consisten...chromosomes. A T-DNA insertional mutant (Atmsh4) exhibited normal vegetative growth but a severe reduction in fertility, consistent

  1. Reference: 428 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available on was delayed in the psb27 mutant, suggesting that Psb27 is required for efficient...icient repair of photodamaged photosystem II. 4-5 567-75...he involvement of this lumenal protein in the recovery process of PSII. A Psb27 homologue in Arabidopsis thaliana is required for eff

  2. Arabidopsis CDS blastp result: AK105724 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105724 001-201-G07 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bisph...osphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  3. Arabidopsis CDS blastp result: AK072243 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072243 J023003N10 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bispho...sphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  4. Arabidopsis CDS blastp result: AK243221 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243221 J100043L21 At5g15410.2 68418.m01803 cyclic nucleotide-regulated ion channel / cyclic... nucleotide-gated channel (CNGC2) identical to cyclic nucleotide-gated cation channel GI:3894399 from [Arabidopsis thaliana] 5e-40 ...

  5. Arabidopsis CDS blastp result: AK067626 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067626 J013112I06 At5g15410.1 cyclic nucleotide-regulated ion channel / cyclic nu...cleotide-gated channel (CNGC2) identical to cyclic nucleotide-gated cation channel GI:3894399 from [Arabidopsis thaliana] 0.0 ...

  6. Arabidopsis CDS blastp result: AK243602 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243602 J100084P18 At5g15410.2 68418.m01803 cyclic nucleotide-regulated ion channel / cyclic... nucleotide-gated channel (CNGC2) identical to cyclic nucleotide-gated cation channel GI:3894399 from [Arabidopsis thaliana] 2e-98 ...

  7. Arabidopsis CDS blastp result: AK288592 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288592 J090051B06 At5g15410.2 68418.m01803 cyclic nucleotide-regulated ion channel / cyclic... nucleotide-gated channel (CNGC2) identical to cyclic nucleotide-gated cation channel GI:3894399 from [Arabidopsis thaliana] 1e-145 ...

  8. Arabidopsis CDS blastp result: AK060339 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060339 001-008-C12 At5g15410.2 cyclic nucleotide-regulated ion channel / cyclic n...ucleotide-gated channel (CNGC2) identical to cyclic nucleotide-gated cation channel GI:3894399 from [Arabidopsis thaliana] 1e-175 ...

  9. Arabidopsis CDS blastp result: AK069395 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069395 J023011N07 At1g71440.1 tubulin folding cofactor E / Pfifferling (PFI) almo...st identical to tubulin folding cofactor E (Pfifferling; PFI) GI:20514267 from [Arabidopsis thaliana]; identical to cDNA tubulin folding cofactor E, GI:20514266 7e-41 ...

  10. Arabidopsis CDS blastp result: AK102150 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102150 J033086D17 At3g10220.1 tubulin folding cofactor B identical to tubulin folding... cofactor B GI:20514259 from [Arabidopsis thaliana]; identical to cDNA tubulin folding cofactor B GI:20514258 6e-91 ...

  11. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions

    OpenAIRE

    Miklós Pogány; Tamás Dankó; Evelin Kámán-Tóth; Ildikó Schwarczinger; Zoltán Bozsó

    2015-01-01

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is s...

  12. Reference: 566 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available utations in the MKK3-MPK6 cascade, which indicates important roles in JA signaling. We provide a model expla...tress - into three different sets of responses in Arabidopsis. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important

  13. Reference: 392 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available pment. The Arabidopsis SUPPRESSOR OF AUXIN RESISTANCE proteins are nucleoporins with an important role in ho...olyadenylated RNA within the nucleus, indicating that SAR1 and SAR3 are required for mRNA export. Our results demonstrate the importa...nt role of the plant NPC in hormone signaling and develo

  14. Reference: 438 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ity and drought tolerance in Arabidopsis thaliana. 18 6902-12 16943431 2006 Sep Molecular and cellular bio...logy Chen Zhizhong|Gong Zhizhong|Hong Xuhui|Jablonowski Daniel|Ren Xiaozhi|Schaffrath Raffael|Zhang Hairong|Zhou Xiaofeng|Zhu Jian-Kang

  15. Reference: 356 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 006 Mar Plant molecular biology Deng Xingwang|Dong Li|Wang Lei|Xue Yongbiao|Zhang Yansheng|Zhang Yu'e ...ein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. 4 599-615 16525894 2

  16. Arabidopsis CDS blastp result: AK059353 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059353 001-026-D01 At1g01170.1 ozone-responsive stress-related protein, putative ...similar to stress-related ozone-induced protein AtOZI1 (GI:790583) [Arabidopsis thaliana]; contains 1 predicted transmembrane domain; 2e-29 ...

  17. Arabidopsis CDS blastp result: AK066771 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066771 J013083K07 At1g01170.1 ozone-responsive stress-related protein, putative s...imilar to stress-related ozone-induced protein AtOZI1 (GI:790583) [Arabidopsis thaliana]; contains 1 predicted transmembrane domain; 2e-29 ...

  18. Arabidopsis CDS blastp result: AK059160 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059160 001-023-D05 At1g01170.1 ozone-responsive stress-related protein, putative ...similar to stress-related ozone-induced protein AtOZI1 (GI:790583) [Arabidopsis thaliana]; contains 1 predicted transmembrane domain; 3e-28 ...

  19. Reference: 234 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 234 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15980261i Stepanova ...ion of two root-specific ethylene-insensitive mutants in Arabidopsis. 8 2230-42 15980261 2005 Aug The Plant cell Alonso Jose M|Hamilton Alexandra A|Hoyt Joyce M|Stepanova Anna N

  20. Arabidopsis CDS blastp result: AK101721 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101721 J033061A20 At3g57040.1 two-component responsive regulator / response reactor... 4 (RR4) identical to responce reactor4 GI:3273202 from [Arabidopsis thaliana]; contains Pfam profile: PF00072 response regulator receiver domain 9e-49 ...

  1. Arabidopsis CDS blastp result: AK058585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058585 001-017-G01 At3g57040.1 two-component responsive regulator / response reactor... 4 (RR4) identical to responce reactor4 GI:3273202 from [Arabidopsis thaliana]; contains Pfam profile: PF00072 response regulator receiver domain 6e-55 ...

  2. Arabidopsis CDS blastp result: AK066153 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  3. Arabidopsis CDS blastp result: AK287906 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit / ClpC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF028...61: Clp amino terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  4. Arabidopsis CDS blastp result: AK100126 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  5. Arabidopsis CDS blastp result: AK058510 [KOME

    Lifescience Database Archive (English)

    Full Text Available lpC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amin...o terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  6. Arabidopsis CDS blastp result: AK069552 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  7. Arabidopsis CDS blastp result: AK288349 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288349 J090023P19 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affect...ing germination 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 1e-23 ...

  8. Reference: 396 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ht to be encoded in Arabidopsis by the ATS1 locus. A number of genetic mutants deficient in this activity have been described. How...hosphatidylglycerol raised the question of whether an alternative pathway of phosphatidylglycerol assembly in the plastid exists. How

  9. Arabidopsis CDS blastp result: AK103126 [KOME

    Lifescience Database Archive (English)

    Full Text Available 0S proteasome beta subunit PBB1 (PBB1) GB:AAC32066 [Arabidopsis thaliana] (Genetics 149 (2), 677-692 (1998)); contains Pfam profile: PF00227 proteasome A-type and B-type; 1e-129 ...

  10. Reference: 750 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 750 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u18390594i Fulton Daniel...in Arabidopsis chloroplasts. 4 1040-58 18390594 2008 Apr The Plant cell Dorken Gary|Eicke Simona|Francisco Perigio|Fulton Daniel

  11. Reference: 161 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available sis have not been identified. We tested whether several Arabidopsis thaliana enzy...ith the fact that GH3.6 was active on each of these auxins. By contrast, GH3.6 and the other five enzymes tested

  12. Reference: 267 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available tien et al. 2005 Sep. Plant J. 43(6):824-36. The sucrose transporter gene AtSUC5 was studied as part of a programme aimed at identify...ing and studying the genes involved in seed maturation in Arabidopsis. Expression p

  13. Arabidopsis CDS blastp result: AK242807 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242807 J090060H17 At5g37500.1 68418.m04516 guard cell outward rectifying K+ chann...el (GORK) identical to guard cell outward rectifying K+ channel [Arabidopsis thaliana] gi|11414742|emb|CAC17

  14. Arabidopsis gene expression patterns during spaceflight

    Science.gov (United States)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  15. Arabidopsis CDS blastp result: AK110694 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110694 002-170-A08 At5g59560.2 sensitivity to red light reduced protein (SRR1) id...entical to sensitivity to red light reduced protein [Arabidopsis thaliana] GI:25527089; supporting cDNA gi|25527088|gb|AY127047.1| 1e-18 ...

  16. Arabidopsis CDS blastp result: AK243061 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243061 J100014C18 At5g24520.2 68418.m02892 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 1e-102 ...

  17. Arabidopsis CDS blastp result: AK288081 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288081 J075172F18 At5g24520.3 68418.m02893 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 4e-13 ...

  18. Arabidopsis CDS blastp result: AK287566 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287566 J065027L04 At1g34790.1 68414.m04337 transparent testa 1 protein (TT1) / zi...nc finger (C2H2 type) protein TT1 identical to transparent testa 1 GI:18253279 from [Arabidopsis thaliana]; contains Pfam profile PF00096: Zinc finger, C2H2 type 2e-77 ...

  19. Arabidopsis CDS blastp result: AK288081 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288081 J075172F18 At5g24520.1 68418.m02891 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 4e-13 ...

  20. Arabidopsis CDS blastp result: AK289209 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK289209 J100058I16 At1g34790.1 68414.m04337 transparent testa 1 protein (TT1) / zi...nc finger (C2H2 type) protein TT1 identical to transparent testa 1 GI:18253279 from [Arabidopsis thaliana]; contains Pfam profile PF00096: Zinc finger, C2H2 type 1e-12 ...

  1. Arabidopsis CDS blastp result: AK243061 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243061 J100014C18 At5g24520.1 68418.m02891 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 1e-102 ...

  2. Arabidopsis CDS blastp result: AK243061 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243061 J100014C18 At5g24520.3 68418.m02893 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 1e-102 ...

  3. Arabidopsis CDS blastp result: AK243285 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243285 J100051N01 At1g34790.1 68414.m04337 transparent testa 1 protein (TT1) / zi...nc finger (C2H2 type) protein TT1 identical to transparent testa 1 GI:18253279 from [Arabidopsis thaliana]; contains Pfam profile PF00096: Zinc finger, C2H2 type 1e-24 ...

  4. Arabidopsis CDS blastp result: AK288081 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288081 J075172F18 At5g24520.2 68418.m02892 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 4e-13 ...

  5. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-44 ...

  6. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 5e-20 ...

  7. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 4e-41 ...

  8. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  9. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-11 ...

  10. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-16 ...

  11. Arabidopsis CDS blastp result: AK062711 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062711 001-106-C02 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-34 ...

  12. Arabidopsis CDS blastp result: AK108506 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108506 002-143-H11 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 7e-14 ...

  13. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-17 ...

  14. Arabidopsis CDS blastp result: AK071661 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071661 J023105D07 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 3e-33 ...

  15. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-18 ...

  16. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-25 ...

  17. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  18. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-15 ...

  19. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-14 ...

  20. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 1e-19 ...

  1. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-19 ...

  2. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-16 ...

  3. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-44 ...

  4. Arabidopsis CDS blastp result: AK241786 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241786 J065207F05 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 1e-19 ...

  5. Reference: 204 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ified in Arabidopsis based on a growth defect of the dark-grown hypocotyl and an abnormal composition of the...on defects of cells in the central cylinder. These defects were accompanied by changes in the non-cellulosic polysaccharide compositi...on, including the accumulation of ectopic callose. Interestingly, in contrast to ot

  6. Reference: 207 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available generated Arabidopsis transgenic lines showing various albino patterns caused by IspH transgene-induced gen...he late dark period (4-6 h). The expression patterns of DXS and IspG are similar to that of IspH, indicating

  7. Reference: 747 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 747 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u18364466i Hong Yueyu...dance. Phospholipase Dalpha3 is involved in the hyperosmotic response in Arabidopsis. 3 803-16 18364466 2008 Mar The Plant cell Hong Yueyun|Pan Xiangqing|Wang Xuemin|Welti Ruth

  8. Arabidopsis CDS blastp result: AK240809 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240809 J065006K12 At4g17030.1 68417.m02569 expansin-related identical to SWISS-PROT:O23547 expansi...n-related protein 1 precursor (At-EXPR1)[Arabidopsis thaliana]; related to expansins, http://www.bio.psu.edu/expansins/ 2e-21 ...

  9. Reference: 504 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 504 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17202180i Iwama Ayako et al. 2007 Fe...ion through an ETR1-dependent abscisic acid and ethylene signaling pathway in Arabidopsis thaliana. 2 375-80 17202180 2007 Fe

  10. Reference: 143 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available of AtMYB32 and AtMYB4 expression may influence pollen development by changing the flux along the phenylpropanoid pathways, affe...for normal pollen development in Arabidopsis thaliana. 6 979-95 15584962 2004 Dec The Plant journal Heazlewood Joshua|Li Song Feng|Parish Roger W|Preston Jeremy|Wheeler Janet

  11. Reference: 727 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available s established in tobacco BY-2 cells. In Arabidopsis, sdg4 knockout showed reproductive defects. Tissue-specific expression analyse...sed in the pollen. Immunological analyses demonstrated that SDG4 was involved in the methylation of histone

  12. Reference: 88 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 88 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15155874i Field Ben e...biosynthesis in Arabidopsis. 2 828-39 15155874 2004 Jun Plant physiology Botterman Johan|Cardon Guillermo|Field Ben|Mithen Richard|Traka Maria|Vancanneyt Guy

  13. Reference: 389 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 389 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16716192i Jolivet Sy...of the Ski8/Rec103 homolog in Arabidopsis. 6 615-22 16716192 2006 Jun Genes to cells Froger Nicole|Jolivet Sylvie|Mercier Raphaël|Vezon Daniel

  14. Arabidopsis CDS blastp result: AK108796 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108796 002-151-C01 At2g25320.1 meprin and TRAF homology domain-containing protein / MATH... domain-containing protein weak similarity to ubiquitin-specific protease 12 [Arabidopsis thaliana] GI:11993471; contains Pfam profile PF00917: MATH domain 3e-97 ...

  15. Arabidopsis CDS blastp result: AK105718 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105718 001-201-F09 At5g43560.2 meprin and TRAF homology domain-containing protein / MATH... domain-containing protein weak similarity to ubiquitin-specific protease 12 [Arabidopsis thaliana] GI:11993471; contains Pfam profile PF00917: MATH domain 5e-22 ...

  16. Arabidopsis CDS blastp result: AK102133 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102133 J033085E13 At5g43560.2 meprin and TRAF homology domain-containing protein / MATH... domain-containing protein weak similarity to ubiquitin-specific protease 12 [Arabidopsis thaliana] GI:11993471; contains Pfam profile PF00917: MATH domain 1e-146 ...

  17. Reference: 239 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 239 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16015335i Bundock Paul et al. 2005 Jul. Natur...functions. An Arabidopsis hAT-like transposase is essential for plant development. 7048 282-4 16015335 2005 Jul Nature Bundock Paul|Hooykaas Paul

  18. Reference: 71 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ific functions among family members. Type-A Arabidopsis response regulators are partially...ary response to cytokinin is affected. Spatial patterns of ARR gene expression were consistent with partia...lly redundant function of these genes in cytokinin signaling. The arr mutants show

  19. Arabidopsis CDS blastp result: AK240892 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240892 J065030K10 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 2e-41 ...

  20. Arabidopsis CDS blastp result: AK287726 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287726 J065138E17 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 1e-41 ...

  1. Arabidopsis CDS blastp result: AK242980 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242980 J090094F15 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 2e-18 ...

  2. Arabidopsis CDS blastp result: AK242211 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242211 J075171C16 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 8e-22 ...

  3. Arabidopsis CDS blastp result: AK242957 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242957 J090089I15 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 3e-56 ...

  4. Arabidopsis CDS blastp result: AK287621 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287621 J065066I09 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 6e-43 ...

  5. Arabidopsis CDS blastp result: AK241055 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241055 J065063N18 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-28 ...

  6. Arabidopsis CDS blastp result: AK241272 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241272 J065132I19 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 2e-41 ...

  7. Arabidopsis CDS blastp result: AK243669 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243669 J100089N11 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-15 ...

  8. Arabidopsis CDS blastp result: AK241644 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241644 J065189M04 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-32 ...

  9. Arabidopsis CDS blastp result: AK242387 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242387 J080051E14 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 3e-27 ...

  10. Arabidopsis CDS blastp result: AK069331 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069331 J023019N01 At1g69120.1 floral homeotic protein APETALA1 (AP1) / agamous-li...ke MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 2e-58 ...

  11. Arabidopsis CDS blastp result: AK121171 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121171 J023081C04 At1g69120.1 floral homeotic protein APETALA1 (AP1) / agamous-li...ke MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-37 ...

  12. Reference: 218 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available rpenes found in the Arabidopsis floral volatile blend. Two independent mutant lines with T-DNA insertions in...version of farnesyl diphosphate into over 15 sesquiterpenes in similar proportions to those found in the floral volatile blend

  13. Reference: 616 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Disruption of AtOCT1 in an Arabidopsis oct1-1 knockout mutant affected both the expression of carnitine-rela... exhibited a higher degree of root branching than the wild-type, showing that the disruption of AtOCT1 affected

  14. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857 2e-15 ... ...AK241942 J075088H12 At4g31370.1 68417.m04448 fasciclin-like arabinogalactan family

  15. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857 9e-20 ... ...AK241942 J075088H12 At2g24450.1 68415.m02922 fasciclin-like arabinogalactan family

  16. Arabidopsis CDS blastp result: AK108772 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108772 002-150-H07 At3g12660.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like ara...binogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857; 1e-35 ...

  17. Arabidopsis CDS blastp result: AK119375 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119375 001-132-A06 At3g46550.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like ara...binogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 2e-85 ...

  18. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 1e-21 ... ...AK241942 J075088H12 At3g46550.1 68416.m05053 fasciclin-like arabinogalactan family

  19. Arabidopsis CDS blastp result: AK121828 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121828 J033099G20 At3g46550.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like arab...inogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 4e-87 ...

  20. Arabidopsis CDS blastp result: AK289211 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 4e-90 ... ...AK289211 J100060N06 At3g46550.1 68416.m05053 fasciclin-like arabinogalactan family

  1. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857; 3e-21 ... ...AK241942 J075088H12 At3g12660.1 68416.m01578 fasciclin-like arabinogalactan family

  2. Arabidopsis CDS blastp result: AK109762 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109762 002-146-G11 At3g12660.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like ara...binogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857; 3e-24 ...

  3. Arabidopsis CDS blastp result: AK071407 [KOME

    Lifescience Database Archive (English)

    Full Text Available ain protein 6 (LBD6) / asymmetric leaves2 (AS2) identical to SP|O04479 LOB domain protein 6 (ASYMMETRIC LEAVES2) {Arabidopsis thaliana} 3e-43 ... ...AK071407 J023089G14 At1g65620.1 LOB domain protein 6 / lateral organ boundaries dom

  4. Arabidopsis CDS blastp result: AK119575 [KOME

    Lifescience Database Archive (English)

    Full Text Available main protein 6 (LBD6) / asymmetric leaves2 (AS2) identical to SP|O04479 LOB domain protein 6 (ASYMMETRIC LEAVES2) {Arabidopsis thaliana} 3e-43 ... ...AK119575 002-117-B04 At1g65620.1 LOB domain protein 6 / lateral organ boundaries do

  5. Arabidopsis CDS blastp result: AK064839 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064839 J013000F24 At2g18600.1 RUB1-conjugating enzyme, putative strong similarity... to gi:6635457 RUB1 conjugating enzyme [Arabidopsis thaliana]; contains Pfam profile PF00179: Ubiquitin-conjugating enzyme 6e-69 ...

  6. Arabidopsis CDS blastp result: AK104158 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104158 006-210-H05 At2g18600.1 RUB1-conjugating enzyme, putative strong similarit...y to gi:6635457 RUB1 conjugating enzyme [Arabidopsis thaliana]; contains Pfam profile PF00179: Ubiquitin-conjugating enzyme 3e-58 ...

  7. Arabidopsis CDS blastp result: AK070541 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070541 J023056A05 At2g18600.1 RUB1-conjugating enzyme, putative strong similarity... to gi:6635457 RUB1 conjugating enzyme [Arabidopsis thaliana]; contains Pfam profile PF00179: Ubiquitin-conjugating enzyme 5e-75 ...

  8. Arabidopsis CDS blastp result: AK111080 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111080 002-175-F03 At3g13550.1 ubiquitin-conjugating enzyme (COP10) identical to ubiquitin-conjugating... enzyme COP10 [Arabidopsis thaliana] GI:20065779; contains Pfam profile PF00179: Ubiquitin-conjugating enzyme 3e-59 ...

  9. Arabidopsis CDS blastp result: AK288520 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288520 J090043N16 At2g18600.1 68415.m02166 RUB1-conjugating enzyme, putative stro...ng similarity to gi:6635457 RUB1 conjugating enzyme [Arabidopsis thaliana]; contains Pfam profile PF00179: Ubiquitin-conjugating enzyme 1e-11 ...

  10. Reference: 604 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 604 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17478634i Schwarte Sandra...phoglycolate phosphatase, PGLP1, in Arabidopsis. 3 1580-6 17478634 2007 Jul Plant physiology Bauwe Hermann|Schwarte Sandra

  11. Reference: 713 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available between the galactosyl side-chain structure of pectin and its physical properties...with correct hydration properties. 12 4007-21 18165329 2007 Dec The Plant cell Carpita Nicholas C|Dean Gilli.... The Arabidopsis MUM2 gene encodes a beta-galactosidase required for the production of seed coat mucilage

  12. Reference: 620 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 620 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17543866i Nodine Michael...or-like kinases redundantly required for arabidopsis embryonic pattern formation. 6 943-56 17543866 2007 Jun Developmental cell Nodine Michael D|Tax Frans E|Yadegari Ramin

  13. Reference: 25 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available le role for SMM as a methyl donor or in sulfur transport. The Arabidopsis mutant had significantly higher Ad...o-Met and lower S-adenosylhomo-Cys levels than the wild type and consequently had a higher methylation ratio

  14. Arabidopsis CDS blastp result: AK107645 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107645 002-131-F06 At4g35800.1 DNA-directed RNA polymerase II largest subunit (RP...B205) (RPII) (RPB1) nearly identical to P|P18616 DNA-directed RNA polymerase II largest subunit (EC 2.7.7.6) {Arabidopsis thaliana} 2e-16 ...

  15. Arabidopsis CDS blastp result: AK243065 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243065 J100015N03 At1g64480.1 68414.m07310 calcineurin B-like protein 8 (CBL8) identical to calcine...urin B-like protein 8 (GI:15866276) [Arabidopsis thaliana]; similar to CALCINEURIN B SUBUNIT GB:P25296 from [Saccharomyces cerevisiae] 3e-66 ...

  16. Reference: 135 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 135 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15546354i Wubben Martin...Arabidopsis roots. 5 712-24 15546354 2004 Dec The Plant journal Baum Thomas J|Rodermel Steven R|Wubben Martin J E 2nd

  17. Arabidopsis CDS blastp result: AK241679 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241679 J065193F24 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-65 ...

  18. Arabidopsis CDS blastp result: AK242212 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242212 J075171E13 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 1e-21 ...

  19. Arabidopsis CDS blastp result: AK241330 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241330 J065144B19 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-64 ...

  20. Reference: 632 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Ludmila et al. 2007 Sep. Plant J. 51(5):874-85. One of the earliest responses of plants to environmental str...elopment in reaction to adverse environmental conditions. We show that the AtCHR12 chromatin-remodeling gene...R12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental

  1. Arabidopsis CDS blastp result: AK241519 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241519 J065170E12 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 3e-23 ...

  2. Arabidopsis CDS blastp result: AK242651 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242651 J090026B08 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-16 ...

  3. Arabidopsis CDS blastp result: AK243050 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243050 J100011E04 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-24 ...

  4. Arabidopsis CDS blastp result: AK242271 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242271 J075187A19 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 4e-17 ...

  5. Arabidopsis CDS blastp result: AK240655 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240655 J023135E11 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-40 ...

  6. Arabidopsis CDS blastp result: AK242638 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242638 J090023J02 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-29 ...

  7. Arabidopsis CDS blastp result: AK242681 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242681 J090032N04 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 8e-38 ...

  8. Arabidopsis CDS blastp result: AK288923 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288923 J090081P06 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-59 ...

  9. Arabidopsis CDS blastp result: AK243187 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243187 J100039E11 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 4e-24 ...

  10. Arabidopsis CDS blastp result: AK111785 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111785 J023089N11 At5g62310.1 incomplete root hair elongation (IRE) / protein kin...ase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 0.0 ...

  11. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 9e-31 ...

  12. Arabidopsis CDS blastp result: AK242859 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242859 J090073L24 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-21 ...

  13. Arabidopsis CDS blastp result: AK242717 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242717 J090043H19 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-23 ...

  14. Arabidopsis CDS blastp result: AK287631 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287631 J065073J24 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-35 ...

  15. Arabidopsis CDS blastp result: AK242733 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242733 J090047O22 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-24 ...

  16. Arabidopsis CDS blastp result: AK242758 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242758 J090051H03 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-59 ...

  17. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 6e-29 ...

  18. Arabidopsis CDS blastp result: AK242290 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242290 J075191E07 At4g13870.2 68417.m02149 Werner Syndrome-like exonuclease (WEX)... contains Pfam profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 1e-20 ...

  19. Arabidopsis CDS blastp result: AK242290 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242290 J075191E07 At4g13870.1 68417.m02148 Werner Syndrome-like exonuclease (WEX)... contains Pfam profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 1e-20 ...

  20. Arabidopsis CDS blastp result: AK063585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063585 001-118-A04 At4g13870.2 Werner Syndrome-like exonuclease (WEX) contains Pf...am profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 6e-16 ...

  1. Reference: 603 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 603 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17476526i Schmidt Robert...opment in Arabidopsis thaliana. 4 805-13 17476526 2007 Sep Planta Koch Wolfgang|Schmidt Roberto|Stransky Harald

  2. Reference: 259 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available velopment in Arabidopsis. 1 163-73 16113228 2005 Sep Plant physiology Braybrook Siobhan A|Fischer Robert L|Fujioka Shozo|Goldberg Rob...ert B|Harada John J|Nagata Noriko|Pelletier Julie|Yamagishi Kazutoshi|Yee Kelly Matsudaira|Yoshida Shigeo

  3. Arabidopsis: an adequate model for dicot root systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to 8 different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of th...

  4. Arabidopsis: An Adequate Model for Dicot Root Systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of t...

  5. Hypermethylated SUPERMAN epigenetic alleles in arabidopsis.

    Science.gov (United States)

    Jacobsen, S E; Meyerowitz, E M

    1997-08-22

    Mutations in the SUPERMAN gene affect flower development in Arabidopsis. Seven heritable but unstable sup epi-alleles (the clark kent alleles) are associated with nearly identical patterns of excess cytosine methylation within the SUP gene and a decreased level of SUP RNA. Revertants of these alleles are largely demethylated at the SUP locus and have restored levels of SUP RNA. A transgenic Arabidopsis line carrying an antisense methyltransferase gene, which shows an overall decrease in genomic cytosine methylation, also contains a hypermethylated sup allele. Thus, disruption of methylation systems may yield more complex outcomes than expected and can result in methylation defects at known genes. The clark kent alleles differ from the antisense line because they do not show a general decrease in genomic methylation.

  6. Reference: 125 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available et al. 2004 Nov. Plant Physiol. 136(3):3616-27. The actin cytoskeleton mediates cellular processes through t...AP and AtPIR participate in a variety of growth and developmental processes. Mutations in AtNAP and AtPIR ca...ting trichome cell growth. Arabidopsis NAP and PIR regulate actin-based cell morphogenesis and multiple developmental processes

  7. Reference: 2 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available at share 60 to 80% protein sequence identity. Gene disruptions of the yeast (Saccharomyces cerevisiae) ortho... that these syntaxins are not essential for growth in yeast. However, we have isolated and characterized gene disruption...s in two genes from each family, finding that disruption of individual syntaxins from these fami...lies is lethal in the male gametophyte of Arabidopsis. Complementation of the syp21-1 gene disruption

  8. Reference: 594 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available that serve as antiherbivore compounds in plant defence. A previously identified Arabidopsis thaliana activa...tion-tagged line, displaying altered levels of secondary metabolites, was shown here to be affe... by activation of the R2R3-MYB transcription factor gene HIG1 (HIGH INDOLIC GLUCOSINOLATE 1, also referred t...n of HIG1/MYB51 resulted in the specific accumulation of indolic glucosinolates without affecting auxin meta

  9. Reference: 20 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available erial pathogens to host cells. Plants express disease resistance (R) proteins that respond specifically to a... particular type III effector by activating immune responses. We demonstrated previously that two unre...lated type III effectors from Pseudomonas syringae target and modify the Arabidopsis RIN4 protein. Here..., we show that AvrRpt2, a third, unrelated type III effector, also targets RIN4 and induces ...its posttranscriptional disappearance. This effect is independent of the presence

  10. Reference: 341 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available owth. Despite the physiological importance of this process, the molecular mechanism is unknown. Here..., a genetic screen has been used to identify Arabidopsis thaliana mutants that exhibit a ...postgerminative growth arrest phenotype, which can be rescued by providing sugar. Seventeen sugar-dependent (sdp) mutants were... isolated, and six represent new loci. Triacylglycerol hydrolas...e assays showed that sdp1, sdp2, and sdp3 seedlings are deficient specifically in the lipase activity that i

  11. Arabidopsis CDS blastp result: AK101133 [KOME

    Lifescience Database Archive (English)

    Full Text Available F|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-10 ... ...eneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum and contains P...AK101133 J033026F23 At1g12980.1 AP2 domain-containing transcription factor, putative / enhancer of shoot reg

  12. Arabidopsis CDS blastp result: AK119645 [KOME

    Lifescience Database Archive (English)

    Full Text Available PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-10 ... ...ve / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum and contains ...AK119645 002-130-G05 At1g12980.1 AP2 domain-containing transcription factor, putati

  13. Arabidopsis CDS blastp result: AK065189 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065189 J013002E07 At5g54080.2 homogentisate 1,2-dioxygenase / homogentisicase/hom...(EC 1.13.11.5) (Homogentisicase) (Homogentisate oxygenase) (Homogentisic acid oxidase) {Arabidopsis thaliana}; contains Pfam profile PF04209: homogentisate 1,2-dioxygenase 0.0 ... ...ogentisate oxygenase / homogentisic acid oxidase (HGO) identical to SP|Q9ZRA2 Homogentisate 1,2-dioxygenase

  14. Arabidopsis CDS blastp result: AK241580 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241580 J065181H03 At4g23640.1 68417.m03404 potassium transporter / tiny root hair... 1 protein (TRH1) identical to tiny root hair 1 protein [Arabidopsis thaliana] gi|11181958|emb|CAC16137; KUP.../HAK/KT Transporter family member, PMID:11500563; identical to cDNA mRNA for tiny root hair 1 protein (trh1) GI:11181957 1e-139 ...

  15. Reference: 357 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ricia|Flores-Pérez Ursula|León Patricia|Martínez-García Jaime F|Rodríguez-Concepción Manuel|San Román Carolina|Sauret-Güeto Susanna ...of the methylerythritol phosphate pathway in Arabidopsis. 1 75-84 16531478 2006 May Plant physiology Boronat Albert|Botella-Pavía Pat

  16. Reference: 720 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ang et al. 2008 Mar. Plant Physiol. 146(3):1231-41. The 70-kD heat shock proteins (Hsp70s) have been shown to be important...from Deltacphsc70-1 seeds was further impaired, indicating that cpHsc70-1 is important for thermotolerance o...s. Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for therm

  17. Reference: 765 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 765 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u18467451i Owens Daniel...ne family in Arabidopsis. 3 1046-61 18467451 2008 Jul Plant physiology Alerding Anne B|Bandara Aloka B|Crosby Kevin C|Owens Daniel K|Westwood James H|Winkel Brenda S J

  18. Arabidopsis CDS blastp result: AK110331 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110331 002-164-D12 At2g31510.1 IBR domain-containing protein / ARIADNE-like prote...in ARI7 (ARI7) identical to ARIADNE-like protein ARI7 [Arabidopsis thaliana] GI:29125028; contains similarit...y to Swiss-Prot:Q94981 ariadne-1 protein (Ari-1) [Drosophila melanogaster]; contains Pfam profile PF01485: IBR domain 3e-59 ...

  19. Arabidopsis CDS blastp result: AK242789 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242789 J090057B20 At2g31510.1 68415.m03850 IBR domain-containing protein / ARIADN...E-like protein ARI7 (ARI7) identical to ARIADNE-like protein ARI7 [Arabidopsis thaliana] GI:29125028; contai...ns similarity to Swiss-Prot:Q94981 ariadne-1 protein (Ari-1) [Drosophila melanogaster]; contains Pfam profile PF01485: IBR domain 8e-12 ...

  20. Reference: 551 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 551 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17329563i Liu Yongxiu et al. 2007 Fe...in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. 2 433-44 17329563 2007 Feb The Plant cell Koornneef Maarten|Liu Yongxiu|Soppe Wim J J

  1. Reference: 715 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 715 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u18178585i Ito Shogo et al. 2008 Fe... role by forming a transcriptional feedback core loop together with the morning-e...rcuitry in Arabidopsis thaliana. 2 201-13 18178585 2008 Feb Plant & cell physiology Ito Shogo|Kawamura Hideaki|Mizuno Takeshi|Nakamichi Norihito|Niwa Yusuke|Yamashino Takafumi

  2. Reference: 17 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 17 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u12566580i Ullah Hemayet et al. 2003 Fe.... The beta-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects... multiple developmental processes. 2 393-409 12566580 2003 Feb The Plant cell Alonso Jos辿 M|Boyes Douglas C|

  3. Reference: 18 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 18 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u12566581i Kim Kyung-Nam et al. 2003 Fe...t regulates abscisic acid and cold signal transduction in Arabidopsis. 2 411-23 12566581 2003 Feb The Plant cell Cheong Yong Hwa|Grant John J|Kim Kyung-Nam|Luan Sheng|Pandey Girdhar K

  4. Reference: 319 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 319 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16377756i Dai Ya et al. 2006 Fe...th the wild type, the bud1 plants develop significantly fewer lateral roots, simpler venation patterns, and ...yls at high temperature (29 degrees C) under light, which is a characteristic feature of defe...itectural abnormality in Arabidopsis. 2 308-20 16377756 2006 Feb The Plant cell D

  5. Reference: 662 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available chelle L et al. 2007. Nucleic Acids Res. 35(19):6490-500. In the absence of the telomerase, telomeres underg...that fusion of critically shortened telomeres in Arabidopsis proceeds with approximately the same efficiency in the presence or absen...ce of KU70, a key component of NHEJ. Here we report that DNA ligase IV (LIG4) is al

  6. Reference: 584 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ing in Arabidopsis thaliana shoot and root stem cell organizers. 7137 811-4 17429400 2007 Apr Nature Hashimo...nda K et al. 2007 Apr. Nature 446(7137):811-4. Throughout the lifespan of a plant, which in some cases can l... 584 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17429400i Sarkar Ana

  7. Reference: 435 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Arabidopsis. 7107 106-9 16936718 2006 Sep Nature Fobis-Loisy Isabelle|Gaude Thierry|Jaillais Yvon|Miège Christine|Rollin Claire ... 435 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16936718i Jaillais Yvon et al. 2006 Sep. Natu...re 443(7107):106-9. Polarized cellular distribution of the phytohormone auxin and i

  8. Arabidopsis CDS blastp result: AK065950 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065950 J013049M07 At3g11820.1 syntaxin 121 (SYP121) / syntaxin-related protein (S...YR1) contains Pfam profiles: PF00804 syntaxin and PF05739: SNARE domain; identical to cDNA syntaxin-related ...protein At-SYR1 (At-Syr1) GI:4206788, SP|Q9ZSD4 Syntaxin 121 (AtSYP121) (Syntaxin-related protein At-Syr1) {Arabidopsis thaliana} 5e-88 ...

  9. Reference: 494 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available hn C et al. 2007 Jan. Plant J. 49(2):194-207. Green-leaf volatiles are commonly emitted from mechanically an...ngi, and induce several important plant defense pathways. In Arabidopsis thaliana, the major volatile released upon mechanical...ighest expression of CHAT occurs in the leaves and stems. Upon mechanical damage, the (Z)-3-hexen-1-yl aceta

  10. Reference: 497 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available hal albino phenotype. Rescue of tha2 mutants and tha1 tha2 double mutants by overproduction of feedback-inse...-specific expression of feedback-insensitive Thr deaminase in both tha1 and tha2 Thr aldolase mutants greatl...nsitive Thr deaminase (OMR1) shows that Gly formation by THA1 and THA2 is not essential in Arabidopsis. Seed

  11. Reference: 34 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available al gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental...e1 gene of Arabidopsis is required during anoxia but not other environmental stre...ronmental stresses. We also characterize the expression of the aldehyde dehydrogena...ed under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other envi

  12. Arabidopsis thaliana glucuronosyltransferase in family GT14

    DEFF Research Database (Denmark)

    Dilokpimol, Adiphol; Geshi, Naomi

    2014-01-01

    of glucuronic acid residues to β-1,3- and β-1,6-linked galactans of arabinogalactan (Knoch et al. 2013). The knockout mutant of this gene resulted in the enhanced growth rate of hypocotyls and roots of seedlings, suggesting an involvement of AtGlcAT 14A in cell elongation. AtGlcAt14A belongs to the family GT14...... in the Carbohydrate Active Enzyme database (CAZy; www.cazy.org), in which a total of 11 proteins, including AtGLCAT 14A, are classified from Arabidopsis thaliana. In this paper, we report the enzyme activities for the rest of the Arabidopsis GT14 isoforms, analyzed in the same way as for AtGlcAT 14A. Evidently, two...... other Arabidopsis GT14 isoforms, At5g15050 and At2g37585, also possess the glucuronosyltransferase activity adding glucuronic acid residues to β-1,3- and β-1,6-linked galactans. Therefore, we named At5g15050 and At2g37585 as AtGlcAT 14B and AtGlcAT 14C, respectively. © 2014 Landes Bioscience....

  13. TBP-associated factors in Arabidopsis.

    Science.gov (United States)

    Lago, Clara; Clerici, Elena; Mizzi, Luca; Colombo, Lucia; Kater, Martin M

    2004-11-24

    Initiation of transcription mediated by RNA polymerase II requires a number of transcription factors among which TFIID is the major core promoter recognition factor. TFIID is composed of highly conserved factors which include the TATA-binding protein (TBP) and about 14 TBP-associated factors (TAFs). Since TAFs play important roles in transcription they have been extensively studied in organisms like yeast, Drosophila and human. Surprisingly, TAFs have been poorly characterized in plants. With the completion of the Arabidopsis genome sequence, it is possible to search for TAFs, since many of them have conserved amino acid sequences. Mining the genome of Arabidopsis for TAFs resulted in the identification of 18 putative Arabidopsis TAFs (AtTAFs). We have analyzed their protein structure and their genomic localisation. Expression profiling by RT-PCR showed that these TAFs are expressed in all parts of the plant which is in agreement with their general role in transcription. These analyses in combination with their evolutionary conservation with TAFs of other organisms are discussed.

  14. [Imprinting genes and it's expression in Arabidopsis].

    Science.gov (United States)

    Zhang, Hong-Yu; Xu, Pei-Zhou; Yang, Hua; Wu, Xian-Jun

    2010-07-01

    Genomic imprinting refers to the phenomenon that the expression of a gene copy depends on its parent of origin. The Arabidopsis imprinted FIS (Fertilisation-independent seed) genes, mea, fis2, and fie, play essential roles in the repression of central cell and the regulation of early endosperm development. fis mutants display two phenotypes: autonomous diploid endosperm development when fertilization is absent and un-cellularised endosperm formation when fertilization occurs. The FIS Polycomb protein complex including the above three FIS proteins catalyzes histone H3 K27 tri-methylation on target loci. DME (DEMETER), a DNA glycosylase, and AtMET1 (Methyltransferase1), a DNA methyltransferase, are involved in the regulation of imprinted expression of both mea and fis2. This review summarizes the studies on the Arabidopsis imprinted FIS genes and other related genes. Recent works have shown that the insertion of transposons may affect nearby gene expression, which may be the main driving force behind the evolution of genomic imprinting. This summary covers the achievements on Arabidopsis imprinted genes will provide important information for studies on genomic imprinting in the important crops such as rice and maize.

  15. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    NARCIS (Netherlands)

    Vos, de M.; Zaanen, van W.; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, van L.C.; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the spectrum of effectiveness of P. rapae-induced resis

  16. Comparative analysis of drought resistance genes in Arabidopsis and rice

    NARCIS (Netherlands)

    Trijatmiko, K.R.

    2005-01-01

    Keywords: rice, Arabidopsis, drought, genetic mapping,microarray, transcription factor, AP2/ERF, SHINE, wax, stomata, comparative genetics, activation tagging, Ac/Ds, En/IThis thesis describes the use of genomics information and tools from Arabidopsis and

  17. Arabidopsis thaliana: uma pequena planta um grande papel Arabidopsis thaliana: a small plant a big role

    Directory of Open Access Journals (Sweden)

    Carla Andréa Delatorre

    2008-12-01

    Full Text Available Arabidopsis thaliana é uma das espécies mais utilizadas na pesquisa científica atualmente. Apesar de não apresentar importância econômica direta, esta espécie é o foco de pesquisas na área da genética, bioquímica e fisiologia. O número de trabalhos publicados sobre a mesma aumentou significativamente após o seqüenciamento de seu genoma. Apesar do grande número de estudos existe ainda muita desinformação sobre qual o seu verdadeiro papel na pesquisa científica de espécies cultivadas e de que maneira o avanço no conhecimento adquirido com A. thaliana pode auxiliar o desenvolvimento de cultivares cada vez mais resistentes, adaptados e produtivos. Os objetivos deste trabalho são discutir as razões do uso da A. thaliana como espécie modelo e a aplicabilidade deste modelo no estudo de espécies cultivadas.Arabidopsis thaliana has been the species of choice for scientific research. Despite its lack of economic importance, it has been the focus of genetic, biochemical and physiological research worldwide. The number of published articles about arabidopsis has increased substantially after its genome was sequenced, and outgrew the number of articles related to economically important species. Despite the great number of studies involving arabidopsis, there is much disinformation about the actual role of this species in crop scientific research, as well as how the breakthroughs in arabidopsis research may help to develop more adapted and productive crops. This work aims to discuss reasons for using A. thaliana as a model species and the feasibility of this model for crop studies.

  18. Reference: 101 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 101 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15295074i Sorensen A...nna-Marie et al. 2004 Jul. Plant Cell Physiol. 45(7):905-13. Screening a T-DNA mutagenized population of Arabidopsis thaliana for re...duced seed set and segregation distortion led to the isolation of the ABNORMAL GAMET...OPHYTES (AGM) mutant. Homozygous plants were never recovered, but heterozygous pl...ants showed mitotic defects during gametogenesis resulting in approximately 50% abortion of both the male an

  19. Reference: 635 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available egan E et al. 2007 Jul. Plant Cell 19(7):2246-63. Embryogenesis in Arabidopsis thaliana is marked by a predi...ctable sequence of oriented cell divisions, which precede cell fate determination. We show that mutation of ...the TORMOZ (TOZ) gene yields embryos with aberrant cell division planes and arres...ted embryos that appear not to have established normal patterning. The defects in toz mutants differ from pre...viously described mutations that affect embryonic cell division patterns. Longitudinal division planes of the proembryo are fre

  20. Reference: 172 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available toru et al. 2005 Mar. Plant Cell 17(3):876-87. Vacuolar processing enzyme (VPE) is a Cys proteinase responsi...ble for the maturation of vacuolar proteins. Arabidopsis thaliana deltaVPE, which was recently found in the ...database, was specifically and transiently expressed in two cell layers of the se...s localized deltaVPE to electron-dense structures inside and outside the walls of seed coat cells that undergo cell death. Intere...stingly, deltaVPE in the precipitate fraction from young siliques exhibits caspase-1-li

  1. Reference: 288 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ly of integral membrane transporters function in cellular detoxification, cell-to-cell signaling, and channel regulation. More re...cently, members of the multidrug resistance P-glycoprotein (...n in both monocots and dicots. Here, we report that the Arabidopsis thaliana MDR/PGP PGP4 functions in the basipetal redire...ction of auxin from the root tip. Reporter gene studies showed tha...l as lateral root formation were reduced in pgp4 mutants compared with the wild type. pgp4 exhibited re

  2. Reference: 682 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available complex is a multiheme protein. Two b-type hemes are bound non-covalently to the protein, whereas the third ...hanesulfonate-induced nuclear mutant hcf208. This Arabidopsis mutant shows a high chlorophyll fluorescence p...nscript levels and patterns of the four major polypeptides of the complex are equal to those of the wild typ...e. The mutant cytochrome b(6) polypeptide shows a faster migration behavior in SDS-PAGE compared with the wi...ne was cloned. Sequence analysis revealed that HCF208 is a homolog of the Chlamydomonas reinhardtii CCB2 pro

  3. Reference: 705 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available an ample magnitude of epigenetic information for transcription regulation. In fungi, SET2 is the sole methyltransferase re...sponsible for mono-, di-, and trimethylation of H3K36. Here we sho...w that in Arabidopsis thaliana, the degree of H3K36 methylation is regulated by distinct methyltransferases.... The SET2 homologs SDG8 and SDG26 each can methylate oligonucleosomes in vitro, and both proteins are locali...zed in the nucleus. While the previously reported loss-of-function sdg8 mutants h

  4. Reference: 163 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ike et al. 2005 May. Planta 221(2):243-54. The nucleotide sugar UDP-glucuronic acid (UDP-GlcA) is the principal pre...cursor for galacturonic acid, xylose, apiose and arabinose residues of the plant cell-wall polymers. ...UDP-GlcA can be synthesized by two different functional pathways in Arabidopsis i...nvolving either UDP-glucose dehydrogenase or inositol oxygenase as the initial enzyme reaction to channel ca...rbohydrates into a pool of UDP sugars used for cell-wall biosynthesis. The genes for the enzyme myo-inositol oxygenase (MIOX) were

  5. Reference: 776 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available urice et al. 2008 Jun. Plant Cell 20(6):1652-64. Glycosyltransferases are involved in the biosynthesis of li... localized to the endoplasmic reticulum in yeast and in plants. A homozygous T-DNA insertion mutant, alg3-2,... was identified in Arabidopsis with residual levels of wild-type ALG3, derived fr... complex-glycan-less mutant background, which lacks N-acetylglucosaminyl-transferase I activity, reveals tha...t when ALG3 activity is strongly reduced, almost all N-glycans transferred to proteins are

  6. Reference: 183 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available athan et al. 2005 Mar. Dev. Cell 8(3):443-9. The plant shoot body plan is highly variable, depending on the degre...e of branching. Characterization of the max1-max4 mutants of Arabidopsis demonstrates that branching is re...gulated by at least one carotenoid-derived hormone. Here we show that all four...n perception. We propose that MAX1 acts on a mobile substrate, downstream of MAX3 and MAX4, which have immob...ile substrates. These roles for MAX3, MAX4, and MAX2 are consistent with their kn

  7. Reference: 666 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available clarified. The cyo1 mutant in Arabidopsis thaliana has albino cotyledons but normal gre...en true leaves. Chloroplasts develop abnormally in cyo1 mutant plants grown in the light, but etioplasts are... normal in mutants grown in the dark. We isolated CYO1 by T-DNA tagging and verified that the mutant allele was re... has a C(4)-type zinc finger domain similar to that of Escherichia coli DnaJ. CYO1 is expressed mainly in yo...1 mutation, but the level of photosynthetic proteins is decreased in cyo1 mutants. Recombinant CYO1 accelerates disulfide bond re

  8. Reference: 235 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ers in Arabidopsis thaliana (L.) Heynh that encode multicopper oxidase-like proteins that are related to fer...roxidases, ascorbate oxidases and laccases. Only one member of the family has been pre...ke SKU5 appears to lack a functional copper-binding site and is most closely related to Bp10 from Brassica n...apus and Ntp303 from Nicotiana tobacum. The SKS6 promoter contains many putative re...gulatory sites and differential expression of an SKS6::GUS reporter gene revealed selective induction in s

  9. Reference: 714 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 714 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u18165330i Macquet Audre...y et al. 2007 Dec. Plant Cell 19(12):3990-4006. The Arabidopsis thaliana accession Shahdara was identified as a rare...rated that one of four major beta-D-galactosidase activities present in developing siliques is absent in mum2 mutants. No differe...nce was observed in seed coat epidermal cell structure betwe...en wild-type and mutant seed; however, weakening of the outer tangential cell wall by chemical treatment resulted in the re

  10. Reference: 6 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 6 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u11756663i Torres Migue...l Angel et al. 2002 Jan. Proc. Natl. Acad. Sci. U.S.A. 99(1):517-22. Reactive oxygen intermediates (ROI) are... strongly associated with plant defense responses. The origin of these ROI has been controversial. Arabidopsis re... role in ROI generation. We analyzed lines carrying dSpm insertions in the highly expressed AtrbohD and AtrbohF genes. Both are re...quired for full ROI production observed during incompatible interactions with the bact

  11. Reference: 651 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available naud et al. 2007 Sep. EMBO J. 26(18):4126-37. The initiation of meiotic recombination by the formation of DNA double-strand bre...aks (DSBs) catalysed by the Spo11 protein is strongly evolutionary conserved. In Saccharomyces cere...visiae, Spo11 requires nine other proteins for meiotic DSB formation, b...ut, unlike Spo11, few of these proteins seem to be conserved across kingdoms. In order to investigate this re...in Arabidopsis thaliana. In Atprd1 mutants, meiotic recombination rates fall dramatically, early re

  12. Reference: 677 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ae et al. 2007 Dec. Plant Cell Physiol. 48(12):1713-23. Methionine residues of proteins are a major target for oxidation by re...active oxygen species (ROS), which are generated in response to a variety of stress condit...ions. Methionine sulfoxide (MetO) reductases are present in most organisms and pl...ay protective roles in the cellular response to oxidative stress, reducing oxidized MetO back to Met. Previo...usly, an Arabidopsis MetO reductase, MsrB3, was identified as a cold-responsive protein. Here we report that

  13. Reference: 624 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available lexin produced by Arabidopsis thaliana that is thought to be important for resistance to necrotrophic fungal... pathogens, such as Alternaria brassicicola and Botrytis cinerea. It is produced ...from Trp, which is converted to indole acetaldoxime (IAOx) by the action of cytochrome P450 monooxygenases C...YP79B2 and CYP79B3. The remaining biosynthetic steps are unknown except for the last step, which is conversi...on of dihydrocamalexic acid to camalexin by CYP71B15 (PAD3). This article reports

  14. Reference: 462 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available et al. 2007 Jan. Plant Mol. Biol. 63(2):289-305. NAC proteins are plant-specific transcriptional regulators.... ATAF1 was one of the first identified NAC proteins in Arabidopsis. In present study, we characterized the ATAF1 expre...ssion and biological function in response to water deficit stress. ATAF1 mRNA expre...ssion was strongly induced by dehydration and abscisic acid (ABA) treatment, but inhibited by water tre...atment, suggesting a general role in drought stress responses. Transient expression analysis in onio

  15. Reference: 105 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Hee et al. 2004 Sep. Plant Cell 16(9):2406-17. BRASSINOSTEROID-INSENSITIVE 1 (BRI1) is a Leu-rich-repeat (LRR) re...ceptor kinase that functions as a critical component of a transmembrane brassinosteroid (BR) receptor.... It is believed that BRI1 becomes activated through heterodimerization with BAK1, a similar LRR re...ceptor kinase, in response to BR signal. A yeast two-hybrid screen using the kinase domain ...of BRI1 identified an Arabidopsis thaliana Transthyretin-Like protein (TTL) as a potential BRI1 substrate. T

  16. Heavy ion induced mutation in arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tano, Shigemitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy ions, He, C, Ar and Ne were irradiated to the seeds of Arabidopsis thaliana for inducing the new mutants. In the irradiated generation (M{sub 1}), germination and survival rate were observed to estimate the relative biological effectiveness in relation to the LET including the inactivation cross section. Mutation frequencies were compared by using three kinds of genetic loci after irradiation with C ions and electrons. Several interesting new mutants were selected in the selfed progenies of heavy ion irradiated seeds. (author)

  17. Reference: 3 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available t al. 2001 Jul. Plant J. 27(2):89-99. We isolated an Arabidopsis lesion initiation 2 (lin2) mutant, which develops lesion...droxylase (nahG) gene. This suggests that the lesion formation triggered in lin2 plants is determined prior ...to or independently of the accumulation of SA but that the accumulation is required to limit the spread of lesion...s in lin2 plants. A deficiency of coproporphyrinogen III oxidase causes lesion...s, usually activated by pathogen infection. These results demonstrate that a porphyrin pathway impairment is responsible for the lesi

  18. Reference: 706 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available et al. 2008 Jan. Plant Cell Physiol. 49(1):2-10. To understand better the plant response to ozone, we isola...ted and characterized an ozone-sensitive (ozs1) mutant strain from a set of T-DNA-tagged Arabidopsis thalian...a ecotype Columbia. The mutant plants show enhanced sensitivity to ozone, desicca...vels. The T-DNA was inserted at a single locus which is linked to ozone sensitivity. Identification of the g...h either of two different T-DNA insertions in this gene were also sensitive to ozone, and these plants faile

  19. Reference: 186 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available nce rooting during propagation. To better understand the role of IBA, we isolated Arabidopsis IBA-response (ibr) mutants that display...t, whereas acx1 acx3 and acx1 acx5 double mutants display enhanced IBA resistance...cx1 acx2 double mutants display enhanced IBA resistance and are sucrose dependent during seedling developmen...tive in ACX1, ACX3, or ACX4 have reduced fatty acyl-CoA oxidase activity on specific substrates. Moreover, a

  20. Reference: 387 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Michael F et al. 2006 Jul. Plant Physiol. 141(3):957-65. Karyogamy, or nuclear fusion, is essential for sex...ual reproduction. In angiosperms, karyogamy occurs three times: twice during double fertilization of the egg...e two polar nuclei fuse to form the diploid central cell nucleus. The molecular mechanisms controlling karyoga...etected during megagametogenesis. nfd1 is also affected in karyogamy during double fertilization. Using tran...odes the Arabidopsis RPL21M protein and is required for karyogamy during female g