WorldWideScience

Sample records for arabidopsis bzip1 transcription

  1. Reprogramming of metabolism by the Arabidopsis thaliana bZIP11 transcription factor

    NARCIS (Netherlands)

    Ma, J.

    2012-01-01

    The Arabidopsis bZIP11 transcription factor is known to regulate amino acid metabolism, and transcriptomic analysis suggests that bZIP11 has a broader regulatory effects in metabolism. Moreover, sucrose controls its translation via its uORF and all the available evidences point to the fact that

  2. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    KAUST Repository

    Nagashima, Yukihiro

    2011-07-01

    IRE1 plays an essential role in the endoplasmic reticulum (ER) stress response in yeast and mammals. We found that a double mutant of Arabidopsis IRE1A and IRE1B (ire1a/ire1b) is more sensitive to the ER stress inducer tunicamycin than the wild-type. Transcriptome analysis revealed that genes whose induction was reduced in ire1a/ire1b largely overlapped those in the bzip60 mutant. We observed that the active form of bZIP60 protein detected in the wild-type was missing in ire1a/ire1b. We further demonstrated that bZIP60 mRNA is spliced by ER stress, removing 23 ribonucleotides and therefore causing a frameshift that replaces the C-terminal region of bZIP60 including the transmembrane domain (TMD) with a shorter region without a TMD. This splicing was detected in ire1a and ire1b single mutants, but not in the ire1a/ire1b double mutant. We conclude that IRE1A and IRE1B catalyse unconventional splicing of bZIP60 mRNA to produce the active transcription factor.

  3. Activation of the Arabidopsis membrane-bound transcription factor bZIP28 is mediated by site-2 protease, but not site-1 protease.

    Science.gov (United States)

    Iwata, Yuji; Ashida, Makoto; Hasegawa, Chisa; Tabara, Kazuki; Mishiba, Kei-Ichiro; Koizumi, Nozomu

    2017-08-01

    The unfolded protein response (UPR) is a homeostatic cellular response conserved in eukaryotic cells to alleviate the accumulation of unfolded proteins in the endoplasmic reticulum (ER). Arabidopsis bZIP28 is a membrane-bound transcription factor activated by proteolytic cleavage in response to ER stress, thereby releasing its cytosolic portion containing the bZIP domain from the membrane to translocate into the nucleus where it induces the transcription of genes encoding ER-resident molecular chaperones and folding enzymes. It has been widely recognized that the proteolytic activation of bZIP28 is mediated by the sequential cleavage of site-1 protease (S1P) and site-2 protease (S2P). In the present study we provide evidence that bZIP28 protein is cleaved by S2P, but not by S1P. We demonstrated that wild-type and s1p mutant plants produce the active, nuclear form of bZIP28 in response to the ER stress inducer tunicamycin. In contrast, tunicamycin-treated s2p mutants do not accumulate the active, nuclear form of bZIP28. Consistent with these observations, s2p mutants, but not s1p mutants, exhibited a defective transcriptional response of ER stress-responsive genes and significantly higher sensitivity to tunicamycin. Interestingly, s2p mutants accumulate two membrane-bound bZIP28 fragments with a shorter ER lumen-facing C-terminal domain. Importantly, the predicted cleavage sites are located far from the canonical S1P recognition motif previously described. We propose that ER stress-induced proteolytic activation of bZIP28 is mediated by the sequential actions of as-yet-unidentified protease(s) and S2P, and does not require S1P. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Capsella rubella TGA4, a bZIP transcription factor, causes delayed flowering in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Li Maofu

    2016-01-01

    Full Text Available Flowering time is usually regulated by many environmental factors and endogenous signals. TGA family members are bZIP transcription factors that bind to the octopine synthase element, which has been closely linked to defense/stress responses. Most TGA factors interact with non-expressor of PR1 (NPR1 and plant defense responses are strengthened by this interaction. TGA1and TGA4factors bind to NPR1 only in salicylic acid (SA-induced leaves, suggesting that TGA4 has another function during plant development. Here, we isolated a bZIP transcription factor gene, TGA4, from Capsella rubella. TGA4transcripts were detected in most tissues, with high expression in leaves, low expression in stems and flowering buds, and undetectable in siliques. CruTGA4was over expressed in Arabidopsis thaliana wild typeCol-0 plants. Flowering time and total leaf number in the transgenic plants showed that overexpression of CruTGA4could delay flowering in A. thaliana. Our findings suggest that TGA4 may act as flowering regulator that controls plant flowering.

  5. Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs.

    Science.gov (United States)

    Cai, Wangting; Yang, Yaling; Wang, Weiwei; Guo, Guangyan; Liu, Wei; Bi, Caili

    2018-03-01

    The basic leucine zipper (bZIP) proteins play important roles against abiotic stress in plants, including cold stress. However, most bZIPs involved in plant freezing tolerance are positive regulators. Only a few bZIPs function negatively in cold stress response. In this study, TabZIP6, a Group C bZIP transcription factor gene from common wheat (Triticum aestivum L.), was cloned and characterized. The transcript of TabZIP6 was strongly induced by cold treatment (4 °C). TabZIP6 is a nuclear-localized protein with transcriptional activation activity. Arabidopsis plants overexpressing TabZIP6 showed decreased tolerance to freezing stress. Microarray as well as quantitative real-time PCR (qRT-PCR) analysis showed that CBFs and some key COR genes, including COR47 and COR15B, were down-regulated by cold treatment in TabZIP6-overexpressing Arabidopsis lines. TabZIP6 was capable of binding to the G-box motif and the CBF1 and CBF3 promoters in yeast cells. A yeast two-hybrid assay revealed that TabZIP6, as well as the other two Group S bZIP proteins involved in cold stress tolerance in wheat, Wlip19 and TaOBF1, can form homodimers by themselves and heterodimers with each other. These results suggest that TabZIP6 may function negatively in the cold stress response by binding to the promoters of CBFs, and thereby decreasing the expression of downstream COR genes in TabZIP6-overexpressing Arabidopsis seedlings. Copyright © 2018. Published by Elsevier Masson SAS.

  6. Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response

    International Nuclear Information System (INIS)

    Tajima, Hiromi; Iwata, Yuji; Iwano, Megumi; Takayama, Seiji; Koizumi, Nozomu

    2008-01-01

    Among 75 bZIP transcription factors identified in Arabidopsis, 3 (AtbZIP17, AtbZIP28, and AtbZIP49) possess a putative transmembrane domain (TMD) in addition to AtbZIP60, which was characterized previously. In the present study, cDNAs of AtbZIP17 and AtbZIP28 were isolated. Truncated forms of AtbZIP17 and AtbZIP28 lacking the C-terminal domain including TMD were examined as putative active forms. One of them, AtbZIP28ΔC, activated BiP1 and BiP3 promoters through the cis-elements P-UPRE and ERSE responsible for the ER stress response. Subsequently, a fusion protein of green fluorescent protein (GFP) and AtbZIP28 was expressed in Arabidopsis cultured cells. Under non-stress conditions, GFP fluorescence localization almost overlapped with an ER marker; however, tunicamycin and dithiothreitol treatment clearly increased GFP fluorescence in the nucleus suggesting that the N-terminal fragment of AtbZIP28 translocates to the nucleus in response to ER stress

  7. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus.

    Science.gov (United States)

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Lu, Kun; Xu, Xinfu; Wang, Rui; Li, Jiana; Qu, Cunmin

    2017-10-24

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed ( Brassica napus ). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B . napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B . napus and its parental lines and for molecular breeding studies of bZIP genes in B . napus .

  8. Genomic survey of bZIP transcription factor genes related to tanshinone biosynthesis in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2018-03-01

    Full Text Available Tanshinones are a class of bioactive components in the traditional Chinese medicine Salvia miltiorrhiza, and their biosynthesis and regulation have been widely studied. Current studies show that basic leucine zipper (bZIP proteins regulate plant secondary metabolism, growth and developmental processes. However, the bZIP transcription factors involved in tanshinone biosynthesis are unknown. Here, we conducted the first genome-wide survey of the bZIP gene family and analyzed the phylogeny, gene structure, additional conserved motifs and alternative splicing events in S. miltiorrhiza. A total of 70 SmbZIP transcription factors were identified and categorized into 11 subgroups based on their phylogenetic relationships with those in Arabidopsis. Moreover, seventeen SmbZIP genes underwent alternative splicing events. According to the transcriptomic data, the SmbZIP genes that were highly expressed in the Danshen root and periderm were selected. Based on the prediction of bZIP binding sites in the promoters and the co-expression analysis and co-induction patterns in response to Ag+ treatment via quantitative real-time polymerase chain reaction (qRT-PCR, we concluded that SmbZIP7 and SmbZIP20 potentially participate in the regulation of tanshinone biosynthesis. These results provide a foundation for further functional characterization of the candidate SmbZIP genes, which have the potential to increase tanshinone production. KEY WORDS: bZIP genes, Salvia miltiorrhiza, Phylogenetic analysis, Expression pattern analysis, Tanshinone biosynthesis

  9. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    KAUST Repository

    Nagashima, Yukihiro; Mishiba, Kei-ichiro; Suzuki, Eiji; Shimada, Yukihisa; Iwata, Yuji; Koizumi, Nozomu

    2011-01-01

    -type. Transcriptome analysis revealed that genes whose induction was reduced in ire1a/ire1b largely overlapped those in the bzip60 mutant. We observed that the active form of bZIP60 protein detected in the wild-type was missing in ire1a/ire1b. We further demonstrated

  10. bZIPs and WRKYs: two large transcription factor families executing two different functional strategies

    Directory of Open Access Journals (Sweden)

    Carles eMarco Llorca

    2014-04-01

    Full Text Available bZIPs and WRKYs are two important plant transcription factor families regulating diverse developmental and stress-related processes. Since a partial overlap in these biological processes is obvious, it can be speculated that they fulfill non-redundant functions in a complex regulatory network. Here, we focus on the regulatory mechanisms that are so far described for bZIPs and WRKYs. bZIP factors need to heterodimerize for DNA-binding and regulation of transcription, and based on a bioinformatics approach, bZIPs can build up more than the double of protein interactions than WRKYs. In contrast, an enrichment of the WRKY DNA-binding motifs can be found in WRKY promoters, a phenomenon which is not observed for the bZIP family. Thus, the two transcription factor families follow two different functional strategies in which WRKYs regulate each other’s transcription in a transcriptional network whereas bZIP action relies on intensive heterodimerization.

  11. Cis-regulatory signatures of orthologous stress-associated bZIP transcription factors from rice, sorghum and Arabidopsis based on phylogenetic footprints

    Directory of Open Access Journals (Sweden)

    Xu Fuyu

    2012-09-01

    Full Text Available Abstract Background The potential contribution of upstream sequence variation to the unique features of orthologous genes is just beginning to be unraveled. A core subset of stress-associated bZIP transcription factors from rice (Oryza sativa formed ten clusters of orthologous groups (COG with genes from the monocot sorghum (Sorghum bicolor and dicot Arabidopsis (Arabidopsis thaliana. The total cis-regulatory information content of each stress-associated COG was examined by phylogenetic footprinting to reveal ortholog-specific, lineage-specific and species-specific conservation patterns. Results The most apparent pattern observed was the occurrence of spatially conserved ‘core modules’ among the COGs but not among paralogs. These core modules are comprised of various combinations of two to four putative transcription factor binding site (TFBS classes associated with either developmental or stress-related functions. Outside the core modules are specific stress (ABA, oxidative, abiotic, biotic or organ-associated signals, which may be functioning as ‘regulatory fine-tuners’ and further define lineage-specific and species-specific cis-regulatory signatures. Orthologous monocot and dicot promoters have distinct TFBS classes involved in disease and oxidative-regulated expression, while the orthologous rice and sorghum promoters have distinct combinations of root-specific signals, a pattern that is not particularly conserved in Arabidopsis. Conclusions Patterns of cis-regulatory conservation imply that each ortholog has distinct signatures, further suggesting that they are potentially unique in a regulatory context despite the presumed conservation of broad biological function during speciation. Based on the observed patterns of conservation, we postulate that core modules are likely primary determinants of basal developmental programming, which may be integrated with and further elaborated by additional intrinsic or extrinsic signals in

  12. Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis.

    Science.gov (United States)

    Wang, Jingyi; Li, Qian; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2016-01-01

    AREB (ABA response element binding) proteins in plants play direct regulatory roles in response to multiple stresses, but their functions in wheat (Triticum aestivum L.) are not clear. In the present study, TaAREB3, a new member of the AREB transcription factor family, was isolated from wheat. Sequence analysis showed that the TaAREB3 protein is composed of three parts, a conserved N-terminal, a variable M region, and a conserved C-terminal with a bZIP domain. It belongs to the group A subfamily of bZIP transcription factors. TaAREB3 was constitutively expressed in stems, leaves, florets, anthers, pistils, seeds, and most highly, in roots. TaAREB3 gene expression was induced with abscisic acid (ABA) and low temperature stress, and its protein was localized in the nucleus when transiently expressed in tobacco epidermal cells and stably expressed in transgenic Arabidopsis. TaAREB3 protein has transcriptional activation activity, and can bind to the ABRE cis-element in vitro. Overexpression of TaAREB3 in Arabidopsis not only enhanced ABA sensitivity, but also strengthened drought and freezing tolerances. TaAREB3 also activated RD29A, RD29B, COR15A, and COR47 by binding to their promoter regions in transgenic Arabidopsis. These results demonstrated that TaAREB3 plays an important role in drought and freezing tolerances in Arabidopsis.

  13. The role of ZIP transporters and group F bZIP transcription factors in the Zn-deficiency response of wheat (Triticum aestivum).

    Science.gov (United States)

    Evens, Nicholas P; Buchner, Peter; Williams, Lorraine E; Hawkesford, Malcolm J

    2017-10-01

    Understanding the molecular basis of zinc (Zn) uptake and transport in staple cereal crops is critical for improving both Zn content and tolerance to low-Zn soils. This study demonstrates the importance of group F bZIP transcription factors and ZIP transporters in responses to Zn deficiency in wheat (Triticum aestivum). Seven group F TabZIP genes and 14 ZIPs with homeologs were identified in hexaploid wheat. Promoter analysis revealed the presence of Zn-deficiency-response elements (ZDREs) in a number of the ZIPs. Functional complementation of the zrt1/zrt2 yeast mutant by TaZIP3, -6, -7, -9 and -13 supported an ability to transport Zn. Group F TabZIPs contain the group-defining cysteine-histidine-rich motifs, which are the predicted binding site of Zn 2+ in the Zn-deficiency response. Conservation of these motifs varied between the TabZIPs suggesting that individual TabZIPs may have specific roles in the wheat Zn-homeostatic network. Increased expression in response to low Zn levels was observed for several of the wheat ZIPs and bZIPs; this varied temporally and spatially suggesting specific functions in the response mechanism. The ability of the group F TabZIPs to bind to specific ZDREs in the promoters of TaZIPs indicates a conserved mechanism in monocots and dicots in responding to Zn deficiency. In support of this, TabZIPF1-7DL and TabZIPF4-7AL afforded a strong level of rescue to the Arabidopsis hypersensitive bzip19 bzip23 double mutant under Zn deficiency. These results provide a greater understanding of Zn-homeostatic mechanisms in wheat, demonstrating an expanded repertoire of group F bZIP transcription factors, adding to the complexity of Zn homeostasis. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  14. Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response

    Directory of Open Access Journals (Sweden)

    Xueyin Li

    2016-11-01

    Full Text Available Extensive studies in Arabidopsis and rice have demonstrated that Subgroup-A members of the bZIP transcription factor family play important roles in plant responses to multiple abiotic stresses. Although common wheat (Triticum aestivum is one of the most widely cultivated and consumed food crops in the world, there are limited investigations into Subgroup A of the bZIP family in wheat. In this study, we performed bioinformatic analyses of the 41 Subgroup-A members of the wheat bZIP family. Phylogenetic and conserved motif analyses showed that most of the Subgroup-A bZIP proteins involved in abiotic stress responses of wheat, Arabidopsis and rice clustered in Clade A1 of the phylogenetic tree, and shared a majority of conserved motifs, suggesting the potential importance of Clade-A1 members in abiotic stress responses. Gene structure analysis showed that TabZIP genes with close phylogenetic relationships tended to possess similar exon-intron compositions, and the positions of introns in the hinge regions of the bZIP domains were highly conserved, whereas introns in the leucine zipper regions were at variable positions. Additionally, eleven groups of homologs and two groups of tandem paralogs were also identified in Subgroup A of the wheat bZIP family. Expression profiling analysis indicated that most Subgroup-A TabZIP genes were responsive to abscisic acid and various abiotic stress treatments. TabZIP27, TabZIP74, TabZIP138 and TabZIP174 proteins were localized in the nucleus of wheat protoplasts, whereas TabZIP9-GFP fusion protein was simultaneously present in the nucleus, cytoplasm and cell membrane. Transgenic Arabidopsis overexpressing TabZIP174 displayed increased seed germination rates and primary root lengths under drought treatments. Overexpression of TabZIP174 in transgenic Arabidopsis conferred enhanced drought tolerance, and transgenic plants exhibited lower water loss rates, higher survival rates, higher proline, soluble sugar and leaf

  15. Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response

    Science.gov (United States)

    Li, Xueyin; Feng, Biane; Zhang, Fengjie; Tang, Yimiao; Zhang, Liping; Ma, Lingjian; Zhao, Changping; Gao, Shiqing

    2016-01-01

    Extensive studies in Arabidopsis and rice have demonstrated that Subgroup-A members of the bZIP transcription factor family play important roles in plant responses to multiple abiotic stresses. Although common wheat (Triticum aestivum) is one of the most widely cultivated and consumed food crops in the world, there are limited investigations into Subgroup A of the bZIP family in wheat. In this study, we performed bioinformatic analyses of the 41 Subgroup-A members of the wheat bZIP family. Phylogenetic and conserved motif analyses showed that most of the Subgroup-A bZIP proteins involved in abiotic stress responses of wheat, Arabidopsis, and rice clustered in Clade A1 of the phylogenetic tree, and shared a majority of conserved motifs, suggesting the potential importance of Clade-A1 members in abiotic stress responses. Gene structure analysis showed that TabZIP genes with close phylogenetic relationships tended to possess similar exon–intron compositions, and the positions of introns in the hinge regions of the bZIP domains were highly conserved, whereas introns in the leucine zipper regions were at variable positions. Additionally, eleven groups of homologs and two groups of tandem paralogs were also identified in Subgroup A of the wheat bZIP family. Expression profiling analysis indicated that most Subgroup-A TabZIP genes were responsive to abscisic acid and various abiotic stress treatments. TabZIP27, TabZIP74, TabZIP138, and TabZIP174 proteins were localized in the nucleus of wheat protoplasts, whereas TabZIP9-GFP fusion protein was simultaneously present in the nucleus, cytoplasm, and cell membrane. Transgenic Arabidopsis overexpressing TabZIP174 displayed increased seed germination rates and primary root lengths under drought treatments. Overexpression of TabZIP174 in transgenic Arabidopsis conferred enhanced drought tolerance, and transgenic plants exhibited lower water loss rates, higher survival rates, higher proline, soluble sugar, and leaf chlorophyll

  16. Exploring the bZIP transcription factor regulatory network in Neurospora crassa.

    Science.gov (United States)

    Tian, Chaoguang; Li, Jingyi; Glass, N Louise

    2011-03-01

    Transcription factors (TFs) are key nodes of regulatory networks in eukaryotic organisms, including filamentous fungi such as Neurospora crassa. The 178 predicted DNA-binding TFs in N. crassa are distributed primarily among six gene families, which represent an ancient expansion in filamentous ascomycete genomes; 98 TF genes show detectable expression levels during vegetative growth of N. crassa, including 35 that show a significant difference in expression level between hyphae at the periphery versus hyphae in the interior of a colony. Regulatory networks within a species genome include paralogous TFs and their respective target genes (TF regulon). To investigate TF network evolution in N. crassa, we focused on the basic leucine zipper (bZIP) TF family, which contains nine members. We performed baseline transcriptional profiling during vegetative growth of the wild-type and seven isogenic, viable bZIP deletion mutants. We further characterized the regulatory network of one member of the bZIP family, NCU03905. NCU03905 encodes an Ap1-like protein (NcAp-1), which is involved in resistance to multiple stress responses, including oxidative and heavy metal stress. Relocalization of NcAp-1 from the cytoplasm to the nucleus was associated with exposure to stress. A comparison of the NcAp-1 regulon with Ap1-like regulons in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Aspergillus fumigatus showed both conservation and divergence. These data indicate how N. crassa responds to stress and provide information on pathway evolution.

  17. Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc supply

    Directory of Open Access Journals (Sweden)

    Herlânder Azevedo

    2016-03-01

    Full Text Available Deficiency of the micronutrient zinc is a widespread condition in agricultural soils, causing a negative impact on crop quality and yield. Nevertheless, there is an insufficient knowledge on the regulatory and molecular mechanisms underlying the plant response to inadequate zinc nutrition [1]. This information should contribute to the development of plant-based solutions with improved nutrient-use-efficiency traits in crops. Previously, the transcription factors bZIP19 and bZIP23 were identified as essential regulators of the response to zinc deficiency in Arabidopsis thaliana [2]. A microarray experiment comparing gene expression between roots of wild-type and the mutant bzip19 bzip23, exposed to zinc deficiency, led to the identification of differentially expressed genes related with zinc homeostasis, namely its transport and plant internal translocation [2]. Here, we provide the detailed methodology, bioinformatics analysis and quality controls related to the microarray gene expression profiling published by Assunção and co-workers [2]. Most significantly, the present dataset comprises new experimental variables, including analysis of shoot tissue, and zinc sufficiency and excess supply. Thus, it expands from 8 to 42 microarrays hybridizations, which have been deposited at the Gene Expression Omnibus (GEO under the accession number GSE77286. Overall, it provides a resource for research on the molecular basis and regulatory events of the plant response to zinc supply, emphasizing the importance of Arabidopsis bZIP19 and bZIP23 transcription factors. Keywords: Microarray, Micronutrient, Zinc deficiency, Arabidopsis, bZIP

  18. Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte

    Czech Academy of Sciences Publication Activity Database

    Gibalová, Antónia; Steinbachová, Lenka; Hafidh, Said; Bláhová, Veronika; Gadiou, Zuzana; Michailidis, Christos; Müller, Karel; Pleskot, Roman; Dupľáková, Nikoleta; Honys, David

    2017-01-01

    Roč. 30, č. 1 (2017), s. 1-17 ISSN 2194-7953 R&D Projects: GA ČR GA15-22720S; GA ČR(CZ) GA14-32292S; GA ČR GP13-41444P; GA MŠk(CZ) LD14109 Institutional support: RVO:61389030 Keywords : reticulum stress-response * transcription factor * arabidopsis-thaliana * molecular-interactions * plant transformation * gene-expression * heterodimerization * dimerization * evolution * specificity * bZIP * Transcription factors * Regulatory network * Male gametophyte * y2h * Pollen development Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 2.629, year: 2016

  19. The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Matthijs, Michiel; Fabris, Michele; Obata, Toshihiro; Foubert, Imogen; Franco-Zorrilla, José Manuel; Solano, Roberto; Fernie, Alisdair R; Vyverman, Wim; Goossens, Alain

    2017-06-01

    Diatoms are amongst the most important marine microalgae in terms of biomass, but little is known concerning the molecular mechanisms that regulate their versatile metabolism. Here, the pennate diatom Phaeodactylum tricornutum was studied at the metabolite and transcriptome level during nitrogen starvation and following imposition of three other stresses that impede growth. The coordinated upregulation of the tricarboxylic acid (TCA) cycle during the nitrogen stress response was the most striking observation. Through co-expression analysis and DNA binding assays, the transcription factor bZIP14 was identified as a regulator of the TCA cycle, also beyond the nitrogen starvation response, namely in diurnal regulation. Accordingly, metabolic and transcriptional shifts were observed upon overexpression of bZIP14 in transformed P. tricornutum cells. Our data indicate that the TCA cycle is a tightly regulated and important hub for carbon reallocation in the diatom cell during nutrient starvation and that bZIP14 is a conserved regulator of this cycle. © 2017 The Authors.

  20. Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc supply

    DEFF Research Database (Denmark)

    Azevedo, Herlânder; Azinheiro, Sarah Gaspar; Muñoz-Mérida, Antonio

    2016-01-01

    Deficiency of the micronutrient zinc is a widespread condition in agricultural soils, causing a negative impact on crop quality and yield. Nevertheless, there is an insufficient knowledge on the regulatory and molecular mechanisms underlying the plant response to inadequate zinc nutrition [1......]. This information should contribute to the development of plant-based solutions with improved nutrient-use-efficiency traits in crops. Previously, the transcription factors bZIP19 and bZIP23 were identified as essential regulators of the response to zinc deficiency in Arabidopsis thaliana [2]. A microarray...... experiment comparing gene expression between roots of wild-type and the mutant bzip19 bzip23, exposed to zinc deficiency, led to the identification of differentially expressed genes related with zinc homeostasis, namely its transport and plant internal translocation [2]. Here, we provide the detailed...

  1. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok; Hyun, Wooyoung; Nguyen, Hoai Nguyen; Jeong, Chanyoung; Xiong, Liming; Hong, Sukwhan; Lee, Hojoung

    2014-01-01

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  2. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok

    2014-08-27

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  3. bZIP transcription factor SmJLB1 regulates autophagy-related genes Smatg8 and Smatg4 and is required for fruiting-body development and vegetative growth in Sordaria macrospora.

    Science.gov (United States)

    Voigt, Oliver; Herzog, Britta; Jakobshagen, Antonia; Pöggeler, Stefanie

    2013-12-01

    Autophagy is a precisely controlled degradation process in eukaryotic cells, during which the bulk of the cytoplasm is engulfed by a double membrane vesicle, the autophagosome. Fusion of the autophagosome with the vacuole leads to breakdown of its contents, such as proteins and organelles, and the recycling of nutrients. Earlier studies of autophagic genes of the core autophagic machinery in the filamentous ascomycete Sordaria macrospora elucidated the impact of autophagy on fungal viability, vegetative growth and fruiting-body development. To gain further knowledge about the regulation of autophagy in S. macrospora, we analyzed the function of the bZIP transcription factor SmJLB1, a homolog of the Podospora anserina basic zipper-type transcription factor induced during incompatibility 4 (IDI-4) and the Aspergillus nidulans transcription factor jun-like bZIP A (JlbA). Generation of the homokaryotic deletion mutant demonstrated S. macrospora Smjlb1 is associated with autophagy-dependent processes. Deletion of Smjlb1 abolished fruiting-body formation and impaired vegetative growth. SmJLB1 is localized to the cytoplasm and to nuclei. Quantitative real-time PCR experiments revealed an upregulated expression of autophagy-related genes Smatg8 and Smatg4 in the Smjlb1 deletion mutant, suggesting a transcriptional repression function of SmJLB1. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress.

    Science.gov (United States)

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2017-01-01

    One of the major causes of significant crop loss throughout the world is the myriad of environmental stresses including drought, salinity, cold, heavy metal toxicity, and ultraviolet-B (UV-B) rays. Plants as sessile organisms have evolved various effective mechanism which enable them to withstand this plethora of stresses. Most of such regulatory mechanisms usually follow the abscisic-acid (ABA)-dependent pathway. In this review, we have primarily focussed on the basic leucine zipper (bZIP) transcription factors (TFs) activated by the ABA-mediated signalosome. Upon perception of ABA by specialized receptors, the signal is transduced via various groups of Ser/Thr kinases, which phosphorylate the bZIP TFs. Following such post-translational modification of TFs, they are activated so that they bind to specific cis-acting sequences called abscisic-acid-responsive elements (ABREs) or GC-rich coupling elements (CE), thereby influencing the expression of their target downstream genes. Several in silico techniques have been adopted so far to predict the structural features, recognize the regulatory modification sites, undergo phylogenetic analyses, and facilitate genome-wide survey of TF under multiple stresses. Current investigations on the epigenetic regulation that controls greater accessibility of the inducible regions of DNA of the target gene to the bZIP TFs exclusively under stress situations, along with the evolved stress memory responses via genomic imprinting mechanism, have been highlighted. The potentiality of overexpression of bZIP TFs, either in a homologous or in a heterologous background, in generating transgenic plants tolerant to various abiotic stressors have also been addressed by various groups. The present review will provide a coherent documentation on the functional characterization and regulation of bZIP TFs under multiple environmental stresses, with the major goal of generating multiple-stress-tolerant plant cultivars in near future.

  5. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression.

    Science.gov (United States)

    Zhou, Fei; Sun, Tian-Hu; Zhao, Lei; Pan, Xi-Wu; Lu, Shan

    2015-01-01

    The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site) which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA), we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS) transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD) and constant dark (DD) conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC) driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  6. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.).

    Science.gov (United States)

    Li, Dayong; Fu, Fuyou; Zhang, Huijuan; Song, Fengming

    2015-10-12

    Transcription factors of the basic leucine zipper (bZIP) family represent exclusively in eukaryotes and have been shown to regulate diverse biological processes in plant growth and development as well as in abiotic and biotic stress responses. However, little is known about the bZIP family in tomato (Solanum lycopersicum L.). The SlbZIP genes were identified using local BLAST and hidden Markov model profile searches. The phylogenetic trees, conserved motifs and gene structures were generated by MEGA6.06, MEME tool and gene Structure Display Server, respectively. The syntenic block diagrams were generated by the Circos software. The transcriptional gene expression profiles were obtained using Genevestigator tool and quantitative RT-PCR. In the present study, we carried out a genome-wide identification and systematic analyses of 69 SlbZIP genes that distributes unevenly on the tomato chromosomes. This family can be divided into 9 groups according to the phylogenetic relationship among the SlbZIP proteins. Six kinds of intron patterns (a-f) within the basic and hinge regions are defined. The additional conserved motifs and their presence of the group specificity were also identified. Further, we predicted the DNA-binding patterns and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 24 distinct subfamilies. Within the SlbZIP family, a total of 40 SlbZIP genes are located in the segmental duplicate regions in the tomato genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the tomato SlbZIP family. Expression profiling analyses of 59 SlbZIP genes using quantitative RT-PCR and publicly available microarray data indicate that the tomato SlbZIP genes have distinct and diverse expression patterns in different tissues and developmental stages and many of the tomato bZIP genes

  7. Stress sensing in plants by the ER stress sensor/transducer, bZIP28

    Directory of Open Access Journals (Sweden)

    Renu eSrivastava

    2014-02-01

    Full Text Available Two classes of ER stress sensors are known in plants, membrane associated bZIP transcription factors and RNA splicing factors. ER stress occurs under adverse environmental conditions and results from the accumulation of misfolded or unfolded proteins in the ER lumen. One of the membrane-associated transcription factors activated by heat and ER stress agents is bZIP28. In its inactive form, bZIP28 is a type II protein with a single pass transmembrane domain, residing in the ER. bZIP28’s N-terminus, containing a transcriptional activation domain, is oriented towards the cytoplasm and its C-terminal tail is inserted into the ER lumen. In response to stress, bZIP28 exits the ER and moves to the Golgi where it is proteolytically processed, liberating its cytosolic component which relocates to the nucleus to upregulate stress-response genes. bZIP28 is thought to sense stress through its interaction with the major ER chaperone, BIP. BiP binds to bZIP28’s lumenal domain under unstressed conditions and retains it in the ER. BIP binds to the intrinsically disordered regions on bZIP28’s lumen-facing tail. A truncated form of bZIP28, without its C-terminal tail is not retained in the ER but migrates constitutively to the nucleus. Upon stress, BiP releases bZIP28 allowing it to exit the ER. One model to account for the release of bZIP28 by BiP is that BiP is competed away from bZIP28 by the accumulation of misfolded proteins in the ER. However, other forces such as changes in energy charge levels, redox conditions or interaction with DNAJ proteins may also promote release of bZIP28 from BiP. Movement of bZIP28 from the ER to the Golgi is assisted by the interaction of elements of the COPII machinery with the cytoplasmic domain of bZIP28. Thus, the mobilization of bZIP28 in response to stress involves the dissociation of factors that retain it in the ER and the association of factors that mediate its further organelle-to-organelle movement.

  8. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression

    Directory of Open Access Journals (Sweden)

    Fei eZhou

    2015-04-01

    Full Text Available The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA, we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD and constant dark (DD conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  9. The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis.

    Science.gov (United States)

    Ji, Xiaoyu; Liu, Guifeng; Liu, Yujia; Zheng, Lei; Nie, Xianguang; Wang, Yucheng

    2013-10-04

    Tamarix spp. are woody halophyte, which are very tolerant to abiotic stresses such as salinity and drought, but little is known about their specific stress response systems. Basic leucine zipper proteins (bZIPs) play important roles in the ability of plants to withstand adverse environmental conditions. However, their exact roles in abiotic stress tolerance are still not fully known. In the current study, we functionally characterized a bZIP gene (ThbZIP1) from Tamarix hispida in response to abiotic stresses. We addressed the regulatory network of ThbZIP1 in three levels, i.e. its upstream regulators, the cis-acting elements recognized by ThbZIP1, and its downstream target genes. Two MYCs were found to bind to E-box, in the promoter of ThbZIP1 to activate its expression. Expression of ThbZIP1 is induced by ABA, salt, drought, methyl viologen and cold. ThbZIP1 can specifically bind to ACGT elements, with the highest binding affinity to the C-box, followed by the G-box and lastly the A-box. Compared with wild-type (Col-0) Arabidopsis, transgenic plants expressing ThbZIP1 had an increased tolerance to drought and salt, but had an increased sensitivity to ABA during seed germination and root growth; meanwhile, ROS level, cell death and water loss rate in transgenic plants were significantly reduced. Microarray analyses showed that many ROS scavenging genes were up-regulated by ThbZIP1 under salt stress conditions. Based on these data, we suggest that ThbZIP1 confers abiotic stress tolerance through activating stress tolerance genes to modulate ROS scavenging ability and other physiological changes involved in stress tolerance, and plays an important role in the ABA-mediated stress response of T. hispida.

  10. Arabidopsis Pol II-Dependent in Vitro Transcription System Reveals Role of Chromatin for Light-Inducible rbcS Gene Transcription1

    Science.gov (United States)

    Ido, Ayaka; Iwata, Shinya; Iwata, Yuka; Igarashi, Hisako; Hamada, Takahiro; Sonobe, Seiji; Sugiura, Masahiro; Yukawa, Yasushi

    2016-01-01

    In vitro transcription is an essential tool to study the molecular mechanisms of transcription. For over a decade, we have developed an in vitro transcription system from tobacco (Nicotiana tabacum)-cultured cells (BY-2), and this system supported the basic activities of the three RNA polymerases (Pol I, Pol II, and Pol III). However, it was not suitable to study photosynthetic genes, because BY-2 cells have lost their photosynthetic activity. Therefore, Arabidopsis (Arabidopsis thaliana) in vitro transcription systems were developed from green and etiolated suspension cells. Sufficient in vitro Pol II activity was detected after the minor modification of the nuclear soluble extracts preparation method; removal of vacuoles from protoplasts and L-ascorbic acid supplementation in the extraction buffer were particularly effective. Surprisingly, all four Arabidopsis Rubisco small subunit (rbcS-1A, rbcS-1B, rbcS-2B, and rbcS-3B) gene members were in vitro transcribed from the naked DNA templates without any light-dependent manner. However, clear light-inducible transcriptions were observed using chromatin template of rbcS-1A gene, which was prepared with a human nucleosome assembly protein 1 (hNAP1) and HeLa histones. This suggested that a key determinant of light-dependency through the rbcS gene transcription was a higher order of DNA structure (i.e. chromatin). PMID:26662274

  11. Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor.

    Science.gov (United States)

    Park, Sunchung; Ek-Ramos, Maria Julissa; Oh, Sookyung; van Nocker, Steven

    2011-08-01

    Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function.

  12. Natural antioxidants exhibit chemopreventive characteristics through the regulation of CNC b-Zip transcription factors in estrogen-induced breast carcinogenesis.

    Science.gov (United States)

    Chatterjee, Anwesha; Ronghe, Amruta; Singh, Bhupendra; Bhat, Nimee K; Chen, Jie; Bhat, Hari K

    2014-12-01

    The objective of the present study was to characterize the role of resveratrol (Res) and vitamin C (VC) in prevention of estrogen-induced breast cancer through regulation of cap "n"collar (CNC) b-zip transcription factors. Human breast epithelial cell line MCF-10A was treated with 17β-estradiol (E2) and VC or Res with or without E2. mRNA and protein expression levels of CNC b-zip transcription factors nuclear factor erythroid 2-related factor 1 (Nrf1), nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor erythroid 2 related factor 3 (Nrf3), and Nrf2-regulated antioxidant enzymes superoxide dismutase 3 (SOD3) and quinone oxidoreductase 1 (NQO1) were quantified. The treatment with E2 suppressed, whereas VC and Res prevented E2-mediated decrease in the expression levels of SOD3, NQO1, Nrf2 mRNA, and protein in MCF-10A cells. The treatment with E2, Res, or VC significantly increased mRNA and protein expression levels of Nrf1. 17β-Estradiol treatment significantly increased but VC or Res decreased Nrf3 mRNA and protein expression levels. Our studies demonstrate that estrogen-induced breast cancer might be prevented through upregulation of antioxidant enzymes via Nrf-dependent pathways. © 2014 Wiley Periodicals, Inc.

  13. Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves.

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Thalor

    Full Text Available Sucrose is known to repress the translation of Arabidopsis thaliana AtbZIP11 transcript which encodes a protein belonging to the group of S (S--stands for small basic region-leucine zipper (bZIP-type transcription factor. This repression is called sucrose-induced repression of translation (SIRT. It is mediated through the sucrose-controlled upstream open reading frame (SC-uORF found in the AtbZIP11 transcript. The SIRT is reported for 4 other genes belonging to the group of S bZIP in Arabidopsis. Tobacco tbz17 is phylogenetically closely related to AtbZIP11 and carries a putative SC-uORF in its 5'-leader region. Here we demonstrate that tbz17 exhibits SIRT mediated by its SC-uORF in a manner similar to genes belonging to the S bZIP group of the Arabidopsis genus. Furthermore, constitutive transgenic expression of tbz17 lacking its 5'-leader region containing the SC-uORF leads to production of tobacco plants with thicker leaves composed of enlarged cells with 3-4 times higher sucrose content compared to wild type plants. Our finding provides a novel strategy to generate plants with high sucrose content.

  14. Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves.

    Science.gov (United States)

    Thalor, Sunil Kumar; Berberich, Thomas; Lee, Sung Shin; Yang, Seung Hwan; Zhu, Xujun; Imai, Ryozo; Takahashi, Yoshihiro; Kusano, Tomonobu

    2012-01-01

    Sucrose is known to repress the translation of Arabidopsis thaliana AtbZIP11 transcript which encodes a protein belonging to the group of S (S--stands for small) basic region-leucine zipper (bZIP)-type transcription factor. This repression is called sucrose-induced repression of translation (SIRT). It is mediated through the sucrose-controlled upstream open reading frame (SC-uORF) found in the AtbZIP11 transcript. The SIRT is reported for 4 other genes belonging to the group of S bZIP in Arabidopsis. Tobacco tbz17 is phylogenetically closely related to AtbZIP11 and carries a putative SC-uORF in its 5'-leader region. Here we demonstrate that tbz17 exhibits SIRT mediated by its SC-uORF in a manner similar to genes belonging to the S bZIP group of the Arabidopsis genus. Furthermore, constitutive transgenic expression of tbz17 lacking its 5'-leader region containing the SC-uORF leads to production of tobacco plants with thicker leaves composed of enlarged cells with 3-4 times higher sucrose content compared to wild type plants. Our finding provides a novel strategy to generate plants with high sucrose content.

  15. Plant transducers of the endoplasmic reticulum unfolded protein response

    KAUST Repository

    Iwata, Yuji; Koizumi, Nozomu

    2012-01-01

    The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response. © 2012 Elsevier Ltd.

  16. Plant transducers of the endoplasmic reticulum unfolded protein response

    KAUST Repository

    Iwata, Yuji

    2012-12-01

    The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response. © 2012 Elsevier Ltd.

  17. Isolation of three B-box zinc finger proteins that interact with STF1 and COP1 defines a HY5/COP1 interaction network involved in light control of development in soybean

    International Nuclear Information System (INIS)

    Shin, Su Young; Kim, Seong Hee; Kim, Hye Jin; Jeon, Su Jeong; Sim, Soon Ae; Ryu, Gyeong Ryul; Yoo, Cheol Min; Cheong, Yong Hwa; Hong, Jong Chan

    2016-01-01

    LONG HYPOCOTYL5 (HY5) and STF1 (Soybean TGACG-motif binding Factor 1) are two related bZIP transcription factors that play a positive role in photomorphogenesis and hormonal signaling. In this study, we compared full length STF1 and truncated STF1 overexpression lines and found that the C-terminal 133 amino acids (194–306) possess all the HY5-like function in Arabidopsis. The STF1-DC1 mutant (1–306), with a 20 amino acid deletion at the carboxy terminus, failed to complement the hy5 mutant phenotype, which suggests an intact C-terminus is required for STF1 function. To understand the role of the C-terminal domain in photomorphogenesis we used a yeast two-hybrid screen to isolate proteins that bind to the STF1 C-terminus. We isolated three soybean cDNAs encoding the zinc-finger proteins GmSTO, GmSTH, and GmSTH2, which interact with STF1. These proteins belong to a family of B-box zinc finger proteins that include Arabidopsis SALT TOLERANCE (STO) and STO HOMOLOG (STH) and STH2, which play a role in light-dependent development and gene expression. The C-terminal 63 amino acids of STF1, containing a leucine zipper and the two N-terminal B-boxes, contains the domain involved in interactions between STF1 and GmSTO. In addition, we identified an interaction between soybean COP1 (GmCOP1) and GmSTO and GmSTH, as well as STF1, which strongly suggests the presence of a similar regulatory circuit for light signaling in soybean as in Arabidopsis. This study shows that photomorphogenic control requires complex molecular interactions among several different classes of transcription factors such as bZIP, B-box factors, and COP1, a ubiquitin ligase. - Highlights: • STF1 interact with GmSTO, GmSTH and GmSTH2. • The bZIP transcription factor STF1 requires an intact C-terminal domain for STF1 function. • STF1 and GmSTO are nuclear proteins.

  18. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  19. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis.

    Science.gov (United States)

    Kim, June-Sik; Mizoi, Junya; Yoshida, Takuya; Fujita, Yasunari; Nakajima, Jun; Ohori, Teppei; Todaka, Daisuke; Nakashima, Kazuo; Hirayama, Takashi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-01

    In plants, osmotic stress-responsive transcriptional regulation depends mainly on two major classes of cis-acting elements found in the promoter regions of stress-inducible genes: ABA-responsive elements (ABREs) and dehydration-responsive elements (DREs). ABRE has been shown to perceive ABA-mediated osmotic stress signals, whereas DRE is known to be involved in an ABA-independent pathway. Previously, we reported that the transcription factor DRE-BINDING PROTEIN 2A (DREB2A) regulates DRE-mediated transcription of target genes under osmotic stress conditions in Arabidopsis (Arabidopsis thaliana). However, the transcriptional regulation of DREB2A itself remains largely uncharacterized. To elucidate the transcriptional mechanism associated with the DREB2A gene under osmotic stress conditions, we generated a series of truncated and base-substituted variants of the DREB2A promoter and evaluated their transcriptional activities individually. We found that both ABRE and coupling element 3 (CE3)-like sequences located approximately -100 bp from the transcriptional initiation site are necessary for the dehydration-responsive expression of DREB2A. Coupling our transient expression analyses with yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays indicated that the ABRE-BINDING PROTEIN 1 (AREB1), AREB2 and ABRE-BINDING FACTOR 3 (ABF3) bZIP transcription factors can bind to and activate the DREB2A promoter in an ABRE-dependent manner. Exogenous ABA application induced only a modest accumulation of the DREB2A transcript when compared with the osmotic stress treatment. However, the osmotic stress-induced DREB2A expression was found to be markedly impaired in several ABA-deficient and ABA-insensitive mutants. These results suggest that in addition to an ABA-independent pathway, the ABA-dependent pathway plays a positive role in the osmotic stress-responsive expression of DREB2A.

  20. JUNGBRUNNEN1, a Reactive Oxygen Species–Responsive NAC Transcription Factor, Regulates Longevity in Arabidopsis

    NARCIS (Netherlands)

    Wu, A.; Devi Allu, A.; Garapati, P.; Siddiqui, H.; Dortay, H.; Zanor, M.I.; Amparo Asensi-Fabado, M.; Munne´ -Bosch, S.; Antonio, C.; Tohge, T.; Fernie, A.R.; Kaufmann, K.; Xue, G.P.; Mueller-Roeber, B.; Balazadeh, S.

    2012-01-01

    The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H2O2)-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1

  1. Divergence of the bZIP Gene Family in Strawberry, Peach, and Apple Suggests Multiple Modes of Gene Evolution after Duplication

    Directory of Open Access Journals (Sweden)

    Xiao-Long Wang

    2015-01-01

    Full Text Available The basic leucine zipper (bZIP transcription factors are the most diverse members of dimerizing transcription factors. In the present study, 50, 116, and 47 bZIP genes were identified in Malus domestica (apple, Prunus persica (peach, and Fragaria vesca (strawberry, respectively. Species-specific duplication was the main contributor to the large number of bZIPs observed in apple. After WGD in apple genome, orthologous bZIP genes corresponding to strawberry on duplicated regions in apple genome were retained. However, in peach ancestor, these syntenic regions were quickly lost or deleted. Maybe the positive selection contributed to the expansion of clade S to adapt to the development and environment stresses. In addition, purifying selection was mainly responsible for bZIP sequence-specific DNA binding. The analysis of orthologous pairs between chromosomes indicates that these orthologs derived from one gene duplication located on one of the nine ancient chromosomes in the Rosaceae. The comparative analysis of bZIP genes in three species provides information on the evolutionary fate of bZIP genes in apple and peach after they diverged from strawberry.

  2. Purification, crystallization and preliminary X-ray analysis of OsAREB8 from rice, a member of the AREB/ABF family of bZIP transcription factors, in complex with its cognate DNA

    International Nuclear Information System (INIS)

    Miyazono, Ken-ichi; Koura, Tsubasa; Kubota, Keiko; Yoshida, Takuya; Fujita, Yasunari; Yamaguchi-Shinozaki, Kazuko; Tanokura, Masaru

    2012-01-01

    OsAREB8 from rice (O. sativa), a member of the AREB/ABF family of bZIP transcription factors, was expressed, purified and crystallized using the sitting-drop vapour-diffusion method. A crystal of OsAREB8 in complex with its cognate DNA diffracted X-rays to 3.65 Å resolution. The AREB/ABF family of bZIP transcription factors play a key role in drought stress response and tolerance during the vegetative stage in plants. To reveal the DNA-recognition mechanism of the AREB/ABF family of proteins, the bZIP domain of OsAREB8, an AREB/ABF-family protein from Oryza sativa, was expressed in Escherichia coli, purified and crystallized with its cognate DNA. Crystals of the OsAREB8–DNA complex were obtained by the sitting-drop vapour-diffusion method at 277 K with a reservoir solution consisting of 50 mM MES pH 6.4, 29% MPD, 2 mM spermidine, 20 mM magnesium acetate and 100 mM sodium chloride. A crystal diffracted X-rays to 3.65 Å resolution and belonged to space group C222, with unit-cell parameters a = 155.1, b = 206.7, c = 38.5 Å. The crystal contained one OsAREB8–DNA complex in the asymmetric unit

  3. Tribbles ortholog NIPI-3 and bZIP transcription factor CEBP-1 regulate a Caenorhabditis elegans intestinal immune surveillance pathway.

    Science.gov (United States)

    McEwan, Deborah L; Feinbaum, Rhonda L; Stroustrup, Nicholas; Haas, Wilhelm; Conery, Annie L; Anselmo, Anthony; Sadreyev, Ruslan; Ausubel, Frederick M

    2016-12-07

    Many pathogens secrete toxins that target key host processes resulting in the activation of immune pathways. The secreted Pseudomonas aeruginosa toxin Exotoxin A (ToxA) disrupts intestinal protein synthesis, which triggers the induction of a subset of P. aeruginosa-response genes in the nematode Caenorhabditis elegans. We show here that one ToxA-induced C. elegans gene, the Tribbles pseudokinase ortholog nipi-3, is essential for host survival following exposure to P. aeruginosa or ToxA. We find that NIPI-3 mediates the post-developmental expression of intestinal immune genes and proteins and primarily functions in parallel to known immune pathways, including p38 MAPK signaling. Through mutagenesis screening, we identify mutants of the bZIP C/EBP transcription factor cebp-1 that suppress the hypersusceptibility defects of nipi-3 mutants. NIPI-3 is a negative regulator of CEBP-1, which in turn negatively regulates protective immune mechanisms. This pathway represents a previously unknown innate immune signaling pathway in intestinal epithelial cells that is involved in the surveillance of cellular homeostasis. Because NIPI-3 and CEBP-1 are also essential for C. elegans development, NIPI-3 is analogous to other key innate immune signaling molecules such as the Toll receptors in Drosophila that have an independent role during development.

  4. An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron-Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment.

    Science.gov (United States)

    Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier

    2017-01-01

    Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana , its iron-sulfur subunit (SDH2) is encoded by three genes, one of them ( SDH2.3 ) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis -elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5' untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron-sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy.

  5. Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro.

    Science.gov (United States)

    Muñiz García, María Noelia; Giammaria, Verónica; Grandellis, Carolina; Téllez-Iñón, María Teresa; Ulloa, Rita María; Capiati, Daniela Andrea

    2012-04-01

    ABF/AREB bZIP transcription factors mediate plant abiotic stress responses by regulating the expression of stress-related genes. These proteins bind to the abscisic acid (ABA)-responsive element (ABRE), which is the major cis-acting regulatory sequence in ABA-dependent gene expression. In an effort to understand the molecular mechanisms of abiotic stress resistance in cultivated potato (Solanum tuberosum L.), we have cloned and characterized an ABF/AREB-like transcription factor from potato, named StABF1. The predicted protein shares 45-57% identity with A. thaliana ABFs proteins and 96% identity with the S. lycopersicum SlAREB1 and presents all of the distinctive features of ABF/AREB transcription factors. Furthermore, StABF1 is able to bind to the ABRE in vitro. StABF1 gene is induced in response to ABA, drought, salt stress and cold, suggesting that it might be a key regulator of ABA-dependent stress signaling pathways in cultivated potato. StABF1 is phosphorylated in response to ABA and salt stress in a calcium-dependent manner, and we have identified a potato CDPK isoform (StCDPK2) that phosphorylates StABF1 in vitro. Interestingly, StABF1 expression is increased during tuber development and by tuber-inducing conditions (high sucrose/nitrogen ratio) in leaves. We also found that StABF1 calcium-dependent phosphorylation is stimulated by tuber-inducing conditions and inhibited by gibberellic acid, which inhibits tuberization.

  6. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding.

    Directory of Open Access Journals (Sweden)

    Nora Gutsche

    Full Text Available The Arabidopsis TGA transcription factor (TF PERIANTHIA (PAN regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG, which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly

  7. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family

    Science.gov (United States)

    Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua

    2016-01-01

    Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones. PMID:27066030

  8. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family

    Directory of Open Access Journals (Sweden)

    Jiao eZhao

    2016-03-01

    Full Text Available Transcription factors (TFs play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu zipper (bZIP TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes. Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in ten different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones.

  9. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1 → S transition

    International Nuclear Information System (INIS)

    Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay; Sarvepalli, Kavitha; Sadhale, Parag P.; Nath, Utpal

    2011-01-01

    Highlights: → TCP4 is a class II TCP transcription factor, that represses cell division in Arabidopsis. → TCP4 expression in yeast retards cell division by blocking G1 → S transition. → Genome-wide expression studies and Western analysis reveals stabilization of cell cycle inhibitor Sic1, as possible mechanism. -- Abstract: The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 → S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 → S arrest is discussed.

  10. Transcriptional Regulation of Arabidopsis MIR168a and ARGONAUTE1 Homeostasis in Abscisic Acid and Abiotic Stress Responses1[W

    Science.gov (United States)

    Li, Wei; Cui, Xiao; Meng, Zhaolu; Huang, Xiahe; Xie, Qi; Wu, Heng; Jin, Hailing; Zhang, Dabing; Liang, Wanqi

    2012-01-01

    The accumulation of a number of small RNAs in plants is affected by abscisic acid (ABA) and abiotic stresses, but the underlying mechanisms are poorly understood. The miR168-mediated feedback regulatory loop regulates ARGONAUTE1 (AGO1) homeostasis, which is crucial for gene expression modulation and plant development. Here, we reveal a transcriptional regulatory mechanism by which MIR168 controls AGO1 homeostasis during ABA treatment and abiotic stress responses in Arabidopsis (Arabidopsis thaliana). Plants overexpressing MIR168a and the AGO1 loss-of-function mutant ago1-27 display ABA hypersensitivity and drought tolerance, while the mir168a-2 mutant shows ABA hyposensitivity and drought hypersensitivity. Both the precursor and mature miR168 were induced under ABA and several abiotic stress treatments, but no obvious decrease for the target of miR168, AGO1, was shown under the same conditions. However, promoter activity analysis indicated that AGO1 transcription activity was increased under ABA and drought treatments, suggesting that transcriptional elevation of MIR168a is required for maintaining a stable AGO1 transcript level during the stress response. Furthermore, we showed both in vitro and in vivo that the transcription of MIR168a is directly regulated by four abscisic acid-responsive element (ABRE) binding factors, which bind to the ABRE cis-element within the MIR168a promoter. This ABRE motif is also found in the promoter of MIR168a homologs in diverse plant species. Our findings suggest that transcriptional regulation of miR168 and posttranscriptional control of AGO1 homeostasis may play an important and conserved role in stress response and signal transduction in plants. PMID:22247272

  11. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis

    International Nuclear Information System (INIS)

    Zhai, Hong; Bai, Xi; Zhu, Yanming; Li, Yong; Cai, Hua; Ji, Wei; Ji, Zuojun; Liu, Xiaofei; Liu, Xin; Li, Jing

    2010-01-01

    We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not altered in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven β-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.

  12. Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28.

    Science.gov (United States)

    Nieva, Claudia; Busk, Peter K; Domínguez-Puigjaner, Eva; Lumbreras, Victoria; Testillano, Pilar S; Risueño, Maria-Carmen; Pagès, Montserrat

    2005-08-01

    The plant hormone abscisic acid regulates gene expression in response to growth stimuli and abiotic stress. Previous studies have implicated members of the bZIP family of transcription factors as mediators of abscisic acid dependent gene expression through the ABRE cis-element. Here, we identify two new maize bZIP transcription factors, EmBP-2 and ZmBZ-1 related to EmBP-1 and OsBZ-8 families. They are differentially expressed during embryo development; EmBP-2 is constitutive, whereas ZmBZ-1 is abscisic acid-inducible and accumulates during late embryogenesis. Both factors are nuclear proteins that bind to ABREs and activate transcription of the abscisic acid-inducible gene rab28 from maize. EmBP-2 and ZmBZ-1 are phosphorylated by protein kinase CK2 and phosphorylation alters their DNA binding properties. Our data suggest that EmBP-2 and ZmBZ-1 are involved in the expression of abscisic acid inducible genes such as rab28 and their activity is modulated by ABA and by phosphorylation.

  13. Arabidopsis transcriptional responses differentiate between O3 and herbicides

    Science.gov (United States)

    Using published data based on Affymetrix ATH1 Gene-Chips we characterized the transcriptional response of Arabidopsis thaliana Columbia to O3 and a few other major environmental stresses including oxidative stress . A set of 101 markers could be extracted which provided a compo...

  14. Nuclear Import of the Parsley bZIP Transcription Factor CPRF2 Is Regulated by Phytochrome Photoreceptors

    Science.gov (United States)

    Kircher, Stefan; Wellmer, Frank; Nick, Peter; Rügner, Alexander; Schäfer, Eberhard; Harter, Klaus

    1999-01-01

    In plants, light perception by photoreceptors leads to differential expression of an enormous number of genes. An important step for differential gene expression is the regulation of transcription factor activities. To understand these processes in light signal transduction we analyzed the three well-known members of the common plant regulatory factor (CPRF) family from parsley (Petroselinum crispum). Here, we demonstrate that these CPRFs, which belong to the basic- region leucine-zipper (bZIP) domain-containing transcription factors, are differentially distributed within parsley cells, indicating different regulatory functions within the regulatory networks of the plant cell. In particular, we show by cell fractionation and immunolocalization approaches that CPRF2 is transported from the cytosol into the nucleus upon irradiation due to action of phytochrome photoreceptors. Two NH2-terminal domains responsible for cytoplasmic localization of CPRF2 in the dark were characterized by deletion analysis using a set of CPRF2-green fluorescent protein (GFP) gene fusion constructs transiently expressed in parsley protoplasts. We suggest that light-induced nuclear import of CPRF2 is an essential step in phytochrome signal transduction. PMID:9922448

  15. Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana.

    NARCIS (Netherlands)

    Smet, De I.; Lau, S.; Ehrismann, J.S.; Axiotis, I.; Kolb, M.; Kientz, M.; Weijers, D.; Jürgens, G.

    2013-01-01

    In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF)

  16. Characterization and functional analysis of four HYH splicing variants in Arabidopsis hypocotyl elongation.

    Science.gov (United States)

    Li, Chen; Zheng, Lanlan; Zhang, Jingxuan; Lv, Yanxia; Liu, Jianping; Wang, Xuanbin; Palfalvi, Gergo; Wang, Guodong; Zhang, Yonghong

    2017-07-01

    Arabidopsis thaliana LONG HYPOCOTYL5 (HY5) is a positive regulator of the light signaling pathway. The hy5 mutant has an elongated hypocotyl in all light conditions, whereas the hy5 homolog (hyh) mutant has a very weak phenotype, but only in blue light. However, overexpression of HYH rescues the elongated hypocotyl phenotype in the hy5 null mutant. Here, we report the identification of four HYH splicing variants in Arabidopsis. Alternative splicing in the 5' region of the HYH gene occurred such that the proteins encoded by all four HYH variants retained their bZIP domain. In hypocotyl tissue, transcript levels of HYH.2, HYH.3, and HYH.4 were higher than those of HYH.1. Like HY5, all HYH variants were induced by light. Functional analysis of the four HYH variants, based on their abilities to complement the hy5 mutant, indicated that they have similar roles in hypocotyl development, and may function redundantly with HY5. Our results indicate that the bZIP domain in HYH is critical for the function of four variants in the compensation of hy5 mutant in hypocotyl development. Additionally, while HY5/HYH is found in plant species ranging from green algae to flowering plants, the potential alternative splicing events are distinct in different species, with certain HYH variants found with greater frequency in some species than others. Copyright © 2017. Published by Elsevier B.V.

  17. The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis.

    Science.gov (United States)

    Du, Chao; Zhao, Pingping; Zhang, Huirong; Li, Ningning; Zheng, Linlin; Wang, Yingchun

    2017-08-01

    Reaumuria trigyna (R. trigyna) is an endangered small shrub endemic to the Eastern Alxa-Western Ordos area in Inner Mongolia, China. Based on R. trigyna transcriptome data, the Group I WRKY transcription factor gene RtWRKY1 was cloned from R. trigyna. The full-length RtWRKY1 gene was 2100bp, including a 1261-bp open reading frame (ORF) encoding 573 amino acids. RtWRKY1 was mainly expressed in the stem and was induced by salt, cold stress, and ABA treatment. Overexpression of RtWRKY1 in Arabidopsis significantly enhanced the chlorophyll content, root length, and fresh weight of the transgenic lines under salt stress. RtWRKY1 transgenic Arabidopsis exhibited higher proline content, GSH-PX, POD, SOD, and CAT activities, and lower MDA content, Na + content, and Na + /K + ratio than wild-type Arabidopsis under salt stress conditions. Salt stress affected the expression of ion transport, proline biosynthesis, and antioxidant related genes, including AtAPX1, AtCAT1, AtSOD1, AtP5CS1, AtP5CS2, AtPRODH1, AtPRODH2, and AtSOS1 in transgenic lines. RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis by regulating plant growth, osmotic balance, Na + /K + homeostasis, and the antioxidant system. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. HYPER RECOMBINATION1 of the THO/TREX complex plays a role in controlling transcription of the REVERSION-TO-ETHYLENE SENSITIVITY1 gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Congyao Xu

    2015-02-01

    Full Text Available Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1 represses ethylene hormone responses by promoting ethylene receptor ETHYLENE RESPONSE1 (ETR1 signaling, which negatively regulates ethylene responses. To investigate the regulation of RTE1, we performed a genetic screening for mutations that suppress ethylene insensitivity conferred by RTE1 overexpression in Arabidopsis. We isolated HYPER RECOMBINATION1 (HPR1, which is required for RTE1 overexpressor (RTE1ox ethylene insensitivity at the seedling but not adult stage. HPR1 is a component of the THO complex, which, with other proteins, forms the TRanscription EXport (TREX complex. In yeast, Drosophila, and humans, the THO/TREX complex is involved in transcription elongation and nucleocytoplasmic RNA export, but its role in plants is to be fully determined. We investigated how HPR1 is involved in RTE1ox ethylene insensitivity in Arabidopsis. The hpr1-5 mutation may affect nucleocytoplasmic mRNA export, as revealed by in vivo hybridization of fluorescein-labeled oligo(dT45 with unidentified mRNA in the nucleus. The hpr1-5 mutation reduced the total and nuclear RTE1 transcript levels to a similar extent, and RTE1 transcript reduction rate was not affected by hpr1-5 with cordycepin treatment, which prematurely terminates transcription. The defect in the THO-interacting TEX1 protein of TREX but not the mRNA export factor SAC3B also reduced the total and nuclear RTE1 levels. SERINE-ARGININE-RICH (SR proteins are involved mRNA splicing, and we found that SR protein SR33 co-localized with HPR1 in nuclear speckles, which agreed with the association of human TREX with the splicing machinery. We reveal a role for HPR1 in RTE1 expression during transcription elongation and less likely during export. Gene expression involved in ethylene signaling suppression was not reduced by the hpr1-5 mutation, which indicates selectivity of HPR1 for RTE1 expression affecting the consequent ethylene response. Thus

  19. Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses.

    Science.gov (United States)

    Li, Wei; Cui, Xiao; Meng, Zhaolu; Huang, Xiahe; Xie, Qi; Wu, Heng; Jin, Hailing; Zhang, Dabing; Liang, Wanqi

    2012-03-01

    The accumulation of a number of small RNAs in plants is affected by abscisic acid (ABA) and abiotic stresses, but the underlying mechanisms are poorly understood. The miR168-mediated feedback regulatory loop regulates ARGONAUTE1 (AGO1) homeostasis, which is crucial for gene expression modulation and plant development. Here, we reveal a transcriptional regulatory mechanism by which MIR168 controls AGO1 homeostasis during ABA treatment and abiotic stress responses in Arabidopsis (Arabidopsis thaliana). Plants overexpressing MIR168a and the AGO1 loss-of-function mutant ago1-27 display ABA hypersensitivity and drought tolerance, while the mir168a-2 mutant shows ABA hyposensitivity and drought hypersensitivity. Both the precursor and mature miR168 were induced under ABA and several abiotic stress treatments, but no obvious decrease for the target of miR168, AGO1, was shown under the same conditions. However, promoter activity analysis indicated that AGO1 transcription activity was increased under ABA and drought treatments, suggesting that transcriptional elevation of MIR168a is required for maintaining a stable AGO1 transcript level during the stress response. Furthermore, we showed both in vitro and in vivo that the transcription of MIR168a is directly regulated by four abscisic acid-responsive element (ABRE) binding factors, which bind to the ABRE cis-element within the MIR168a promoter. This ABRE motif is also found in the promoter of MIR168a homologs in diverse plant species. Our findings suggest that transcriptional regulation of miR168 and posttranscriptional control of AGO1 homeostasis may play an important and conserved role in stress response and signal transduction in plants.

  20. Salt and drought stress and ABA responses related to bZIP genes from V. radiata and V. angularis.

    Science.gov (United States)

    Wang, Lanfen; Zhu, Jifeng; Li, Xiaoming; Wang, Shumin; Wu, Jing

    2018-04-20

    Mung bean and adzuki bean are warm-season legumes widely cultivated in China. However, bean production in major producing regions is limited by biotic and abiotic stress, such as drought and salt stress. Basic leucine zipper (bZIP) genes play key roles in responses to various biotic and abiotic stresses. However, only several bZIP genes involved in drought and salt stress in legumes, especially Vigna radiata and Vigna angularis, have been identified. In this study, we identified 54 and 50 bZIP proteins from whole-genome sequences of V. radiata and V. angularis, respectively. First, we comprehensively surveyed the characteristics of all bZIP genes, including their gene structure, chromosome distribution and motif composition. Phylogenetic trees showed that VrbZIP and VabZIP proteins were divided into ten clades comprising nine known and one unknown subgroup. The results of the nucleotide substitution rate of the orthologous gene pairs showed that bZIP proteins have undergone strong purifying selection: V. radiata and V. angularis diverged 1.25 million years ago (mya) to 9.20 mya (average of 4.95 mya). We also found that many cis-acting regulatory elements (CAREs) involved in abiotic stress and plant hormone responses were detected in the putative promoter regions of the bZIP genes. Finally, using the quantitative real-time PCR (qRT-PCR) method, we performed expression profiling of the bZIP genes in response to drought, salt and abscisic acid (ABA). We identified several bZIP genes that may be involved in drought and salt responses. Generally, our results provided useful and rich resources of VrbZIP and VabZIP genes for the functional characterization and understanding of bZIP transcription factors (TFs) in warm-season legumes. In addition, our results revealed important and interesting data - a subset of VrbZIP and VabZIP gene expression profiles in response to drought, salt and ABA stress. These results provide gene expression evidence for the selection of

  1. Ectopic Expression of Pumpkin NAC Transcription Factor CmNAC1 Improves Multiple Abiotic Stress Tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Haishun Cao

    2017-11-01

    Full Text Available Drought, cold and salinity are the major environmental stresses that limit agricultural productivity. NAC transcription factors regulate the stress response in plants. Pumpkin (Cucurbita moschata is an important cucurbit vegetable crop and it has strong resistance to abiotic stress; however, the biological functions of stress-related NAC genes in this crop are largely unknown. This study reports the function of CmNAC1, a stress-responsive pumpkin NAC domain protein. The CmNAC1-GFP fusion protein was transiently expressed in tobacco leaves for subcellular localization analysis, and we found that CmNAC1 is localized in the nucleus. Transactivation assay in yeast cells revealed that CmNAC1 functions as a transcription activator, and its transactivation domain is located in the C-terminus. CmNAC1 was ubiquitously expressed in different organs, and its transcript was induced by salinity, cold, dehydration, H2O2, and abscisic acid (ABA treatment. Furthermore, the ectopic expression (EE of CmNAC1 in Arabidopsis led to ABA hypersensitivity and enhanced tolerance to salinity, drought and cold stress. In addition, five ABA-responsive elements were enriched in CmNAC1 promoter. The CmNAC1-EE plants exhibited different root architecture, leaf morphology, and significantly high concentration of ABA compared with WT Arabidopsis under normal conditions. Our results indicated that CmNAC1 is a critical factor in ABA signaling pathways and it can be utilized in transgenic breeding to improve the abiotic stress tolerance of crops.

  2. HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo.

    Directory of Open Access Journals (Sweden)

    Yorifumi Satou

    2011-02-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 is the causal agent of a neoplastic disease of CD4+ T cells, adult T-cell leukemia (ATL, and inflammatory diseases including HTLV-1 associated myelopathy/tropical spastic paraparesis, dermatitis, and inflammatory lung diseases. ATL cells, which constitutively express CD25, resemble CD25+CD4+ regulatory T cells (T(reg. Approximately 60% of ATL cases indeed harbor leukemic cells that express FoxP3, a key transcription factor for T(reg cells. HTLV-1 encodes an antisense transcript, HTLV-1 bZIP factor (HBZ, which is expressed in all ATL cases. In this study, we show that transgenic expression of HBZ in CD4+ T cells induced T-cell lymphomas and systemic inflammation in mice, resembling diseases observed in HTLV-1 infected individuals. In HBZ-transgenic mice, CD4+Foxp3+ T(reg cells and effector/memory CD4+ T cells increased in vivo. As a mechanism of increased T(reg cells, HBZ expression directly induced Foxp3 gene transcription in T cells. The increased CD4+Foxp3+ T(reg cells in HBZ transgenic mice were functionally impaired while their proliferation was enhanced. HBZ could physically interact with Foxp3 and NFAT, thereby impairing the suppressive function of T(reg cells. Thus, the expression of HBZ in CD4+ T cells is a key mechanism of HTLV-1-induced neoplastic and inflammatory diseases.

  3. Direct transcriptional activation of BT genes by NLP transcription factors is a key component of the nitrate response in Arabidopsis.

    Science.gov (United States)

    Sato, Takeo; Maekawa, Shugo; Konishi, Mineko; Yoshioka, Nozomi; Sasaki, Yuki; Maeda, Haruna; Ishida, Tetsuya; Kato, Yuki; Yamaguchi, Junji; Yanagisawa, Shuichi

    2017-01-29

    Nitrate modulates growth and development, functioning as a nutrient signal in plants. Although many changes in physiological processes in response to nitrate have been well characterized as nitrate responses, the molecular mechanisms underlying the nitrate response are not yet fully understood. Here, we show that NLP transcription factors, which are key regulators of the nitrate response, directly activate the nitrate-inducible expression of BT1 and BT2 encoding putative scaffold proteins with a plant-specific domain structure in Arabidopsis. Interestingly, the 35S promoter-driven expression of BT2 partially rescued growth inhibition caused by reductions in NLP activity in Arabidopsis. Furthermore, simultaneous disruption of BT1 and BT2 affected nitrate-dependent lateral root development. These results suggest that direct activation of BT1 and BT2 by NLP transcriptional activators is a key component of the molecular mechanism underlying the nitrate response in Arabidopsis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT[A,C,G...... abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  5. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    International Nuclear Information System (INIS)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei; Lin, Hong-Hui

    2016-01-01

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  6. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei, E-mail: yuanmiao1892@163.com; Lin, Hong-Hui, E-mail: hhlin@scu.edu.cn

    2016-09-02

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  7. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hua eCassan-Wang

    2013-06-01

    Full Text Available The presence of lignin in secondary cell walls (SCW is a major factor preventing hydrolytic enzymes from gaining access to cellulose, thereby limiting the saccharification potential of plant biomass. To understand how lignification is regulated is a prerequisite for selecting plant biomass better adapted to bioethanol production. Because transcriptional regulation is a major mechanism controlling the expression of genes involved in lignin biosynthesis, our aim was to identify novel transcription factors dictating lignin profiles in the model plant Arabidopsis. To this end, we have developed a post-genomic approach by combining four independent in-house SCW-related transcriptome datasets obtained from (i the fiber cell wall-deficient wat1 Arabidopsis mutant, (ii Arabidopsis lines over-expressing either the master regulatory activator EgMYB2 or (iii the repressor EgMYB1 and finally (iv Arabidopsis orthologs of Eucalyptus xylem-expressed genes. This allowed us to identify 502 up- or down-regulated transcription factors. We preferentially selected those present in more than one dataset and further analyzed their in silico expression patterns as an additional selection criteria. This selection process led to 80 candidates. Notably, 16 of them were already proven to regulate SCW formation, thereby validating the overall strategy. Then, we phenotyped 43 corresponding mutant lines focusing on histological observations of xylem and interfascicular fibers. This phenotypic screen revealed six mutant lines exhibiting altered lignification patterns. Two of them (blh6 and a zinc finger transcription factor presented hypolignified SCW. Three others (myb52, myb-like TF, hb5 showed hyperlignified SCW whereas the last one (hb15 showed ectopic lignification. In addition, our meta-analyses highlighted a reservoir of new potential regulators adding to the gene network regulating SCW but also opening new avenues to ultimately improve SCW composition for biofuel

  8. Global Transcription Profiling Reveals Comprehensive Insights into Hypoxic Response in Arabidopsis1[w

    Science.gov (United States)

    Liu, Fenglong; VanToai, Tara; Moy, Linda P.; Bock, Geoffrey; Linford, Lara D.; Quackenbush, John

    2005-01-01

    Plants have evolved adaptation mechanisms to sense oxygen deficiency in their environments and make coordinated physiological and structural adjustments to enhance their hypoxic tolerance. To gain insight into how plants respond to low-oxygen stress, gene expression profiling using whole-genome DNA amplicon microarrays was carried out at seven time points over 24 h, in wild-type and transgenic PSAG12:ipt Arabidopsis (Arabidopsis thaliana) plants under normoxic and hypoxic conditions. Transcript levels of genes involved in glycolysis and fermentation pathways, ethylene synthesis and perception, calcium signaling, nitrogen utilization, trehalose metabolism, and alkaloid synthesis were significantly altered in response to oxygen limitation. Analysis based on gene ontology assignments suggested a significant down-regulation of genes whose functions are associated with cell walls, nucleosome structures, water channels, and ion transporters and a significant up-regulation of genes involved in transcriptional regulation, protein kinase activity, and auxin responses under conditions of oxygen shortage. Promoter analysis on a cluster of up-regulated genes revealed a significant overrepresentation of the AtMYB2-binding motif (GT motif), a sugar response element-like motif, and a G-box-related sequence, and also identified several putative anaerobic response elements. Finally, quantitative real-time polymerase chain reactions using 29 selected genes independently verified the microarray results. This study represents one of the most comprehensive analyses conducted to date investigating hypoxia-responsive transcriptional networks in plants. PMID:15734912

  9. Functional analysis of jasmonate-responsive transcription factors in Arabidopsis thaliana

    NARCIS (Netherlands)

    Zarei, Adel

    2007-01-01

    The aim of the studies described in this thesis was the functional analysis of JA-responsive transcription factors in Arabidopsis with an emphasis on the interaction with the promoters of their target genes. In short, the following new results were obtained. The promoter of the PDF1.2 gene contains

  10. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  11. Specificity determinants for the abscisic acid response element ?

    OpenAIRE

    Sarkar, Aditya Kumar; Lahiri, Ansuman

    2013-01-01

    Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interac...

  12. Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte

    Czech Academy of Sciences Publication Activity Database

    Gibalová, A.; Steinbachová, L.; Hafidh, S.; Bláhová, Veronika; Gadiou, Z.; Michailidis, Ch.; Müller, K.; Pleskot, Roman; Dupľáková, N.; Honys, D.

    2017-01-01

    Roč. 30, č. 1 (2017), s. 1-17 ISSN 2194-7953 Institutional support: RVO:67985823 ; RVO:61388963 Keywords : bZIP * transcription factors * regulatory network * male gametophyte * Y2H * pollen development Subject RIV: ED - Physiology; CE - Biochemistry (UOCHB-X) OBOR OECD: Physiology (including cytology); Biochemistry and molecular biology (UOCHB-X) Impact factor: 2.629, year: 2016

  13. Transcription factors AS1 and AS2 interact with LHP1 to repress KNOX genes in Arabidopsis.

    Science.gov (United States)

    Li, Zhongfei; Li, Bin; Liu, Jian; Guo, Zhihao; Liu, Yuhao; Li, Yan; Shen, Wen-Hui; Huang, Ying; Huang, Hai; Zhang, Yijing; Dong, Aiwu

    2016-12-01

    Polycomb group proteins are important repressors of numerous genes in higher eukaryotes. However, the mechanism by which Polycomb group proteins are recruited to specific genes is poorly understood. In Arabidopsis, LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), also known as TERMINAL FLOWER 2, was originally proposed as a subunit of polycomb repressive complex 1 (PRC1) that could bind the tri-methylated lysine 27 of histone H3 (H3K27me3) established by the PRC2. In this work, we show that LHP1 mainly functions with PRC2 to establish H3K27me3, but not with PRC1 to catalyze monoubiquitination at lysine 119 of histone H2A. Our results show that complexes of the transcription factors ASYMMETRIC LEAVES 1 (AS1) and AS2 could help to establish the H3K27me3 modification at the chromatin regions of Class-I KNOTTED1-like homeobox (KNOX) genes BREVIPEDICELLUS and KNAT2 via direct interactions with LHP1. Additionally, our transcriptome analysis indicated that there are probably more common target genes of AS1 and LHP1 besides Class-I KNOX genes during leaf development in Arabidopsis. © 2016 Institute of Botany, Chinese Academy of Sciences.

  14. Protein intrinsic disorder in Arabidopsis NAC transcription factors

    DEFF Research Database (Denmark)

    O'Shea, Charlotte; Jensen, Mikael Kryger; Stender, Emil G.P.

    2015-01-01

    of differences in binding mechanisms. Although substitution of both hydrophobic and acidic residues of the ANAC046 MoRF region abolished binding, substitution of other residues, even with α-helix-breaking proline, was less disruptive. Together, the biophysical analyses suggest that RCD1-ANAC046 complex formation......Protein ID (intrinsic disorder) plays a significant, yet relatively unexplored role in transcription factors (TFs). In the present paper, analysis of the transcription regulatory domains (TRDs) of six phylogenetically representative, plant-specific NAC [no apical meristem, ATAF (Arabidopsis...

  15. Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.

    Science.gov (United States)

    Chen, Yi-Shih; Chao, Yi-Chi; Tseng, Tzu-Wei; Huang, Chun-Kai; Lo, Pei-Ching; Lu, Chung-An

    2017-02-01

    Sugar regulation of gene expression has profound effects at all stages of the plant life cycle. Although regulation at the transcriptional level is one of the most prominent mechanisms by which gene expression is regulated, only a few transcription factors have been identified and demonstrated to be involved in the regulation of sugar-regulated gene expression. OsMYBS1, an R1/2-type MYB transcription factor, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase gene expression in rice. Arabidopsis contains two OsMYBS1 homologs. In the present study, we investigate MYBS1 and MYBS2 in sugar signaling in Arabidopsis. Our results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development. MYB proteins have been classified into four subfamilies: R2R3-MYB, R1/2-MYB, 3R-MYB, and 4R-MYB. An R1/2-type MYB transcription factor, OsMYBS1, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase genes expression in rice. In this study, two genes homologous to OsMYBS1, MYBS1 and MYBS2, were investigated in Arabidopsis. Subcellular localization analysis showed that MYBS1 and MYBS2 were localized in the nucleus. Rice embryo transient expression assays indicated that both MYBS1 and MYBS2 could recognize the sugar response element, TA-box, in the promoter and induced promoter activity. mybs1 mutant exhibited hypersensitivity to glucose, whereas mybs2 seedlings were hyposensitive to it. MYBS1 and MYBS2 are involved in the control of glucose-responsive gene expression, as the mybs1 mutant displayed increased expression of a hexokinase gene (HXK1), chlorophyll a/b-binding protein gene (CAB1), ADP-glucose pyrophosphorylase gene (APL3), and chalcone synthase gene (CHS), whereas the mybs2 mutant exhibited decreased expression of these genes. mybs1 also showed an enhanced response to abscisic acid (ABA) in the seed germination and seedling

  16. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Science.gov (United States)

    Barah, Pankaj; Winge, Per; Kusnierczyk, Anna; Tran, Diem Hong; Bones, Atle M

    2013-01-01

    Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth) during insect Brevicoryne brassicae (B. brassicae henceforth) and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth) attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between biotic stress and microRNAs in Arabidopsis and

  17. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Directory of Open Access Journals (Sweden)

    Pankaj Barah

    Full Text Available BACKGROUND: Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth during insect Brevicoryne brassicae (B. brassicae henceforth and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. RESULTS: The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA, jasmonic acid (JA, ethylene (ET and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. CONCLUSIONS: Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between

  18. A central integrator of transcription networks in plant stress and energy signalling.

    Science.gov (United States)

    Baena-González, Elena; Rolland, Filip; Thevelein, Johan M; Sheen, Jen

    2007-08-23

    Photosynthetic plants are the principal solar energy converter sustaining life on Earth. Despite its fundamental importance, little is known about how plants sense and adapt to darkness in the daily light-dark cycle, or how they adapt to unpredictable environmental stresses that compromise photosynthesis and respiration and deplete energy supplies. Current models emphasize diverse stress perception and signalling mechanisms. Using a combination of cellular and systems screens, we show here that the evolutionarily conserved Arabidopsis thaliana protein kinases, KIN10 and KIN11 (also known as AKIN10/At3g01090 and AKIN11/At3g29160, respectively), control convergent reprogramming of transcription in response to seemingly unrelated darkness, sugar and stress conditions. Sensing and signalling deprivation of sugar and energy, KIN10 targets a remarkably broad array of genes that orchestrate transcription networks, promote catabolism and suppress anabolism. Specific bZIP transcription factors partially mediate primary KIN10 signalling. Transgenic KIN10 overexpression confers enhanced starvation tolerance and lifespan extension, and alters architecture and developmental transitions. Significantly, double kin10 kin11 deficiency abrogates the transcriptional switch in darkness and stress signalling, and impairs starch mobilization at night and growth. These studies uncover surprisingly pivotal roles of KIN10/11 in linking stress, sugar and developmental signals to globally regulate plant metabolism, energy balance, growth and survival. In contrast to the prevailing view that sucrose activates plant SnRK1s (Snf1-related protein kinases), our functional analyses of Arabidopsis KIN10/11 provide compelling evidence that SnRK1s are inactivated by sugars and share central roles with the orthologous yeast Snf1 and mammalian AMPK in energy signalling.

  19. Differential Regulation of Strand-Specific Transcripts from Arabidopsis Centromeric Satellite Repeats.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available Centromeres interact with the spindle apparatus to enable chromosome disjunction and typically contain thousands of tandemly arranged satellite repeats interspersed with retrotransposons. While their role has been obscure, centromeric repeats are epigenetically modified and centromere specification has a strong epigenetic component. In the yeast Schizosaccharomyces pombe, long heterochromatic repeats are transcribed and contribute to centromere function via RNA interference (RNAi. In the higher plant Arabidopsis thaliana, as in mammalian cells, centromeric satellite repeats are short (180 base pairs, are found in thousands of tandem copies, and are methylated. We have found transcripts from both strands of canonical, bulk Arabidopsis repeats. At least one subfamily of 180-base pair repeats is transcribed from only one strand and regulated by RNAi and histone modification. A second subfamily of repeats is also silenced, but silencing is lost on both strands in mutants in the CpG DNA methyltransferase MET1, the histone deacetylase HDA6/SIL1, or the chromatin remodeling ATPase DDM1. This regulation is due to transcription from Athila2 retrotransposons, which integrate in both orientations relative to the repeats, and differs between strains of Arabidopsis. Silencing lost in met1 or hda6 is reestablished in backcrosses to wild-type, but silencing lost in RNAi mutants and ddm1 is not. Twenty-four-nucleotide small interfering RNAs from centromeric repeats are retained in met1 and hda6, but not in ddm1, and may have a role in this epigenetic inheritance. Histone H3 lysine-9 dimethylation is associated with both classes of repeats. We propose roles for transcribed repeats in the epigenetic inheritance and evolution of centromeres.

  20. Arabidopsis transcriptional responses differentiating closely related chemicals (herbicides) and cross-species extrapolation to Brassica

    Science.gov (United States)

    Using whole genome Affymetrix ATH1 GeneChips we characterized the transcriptional response of Arabidopsis thaliana Columbia 24 hours after treatment with five different herbicides. Four of them (chloransulam, imazapyr, primisulfuron, sulfometuron) inhibit acetolactate synthase (A...

  1. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Directory of Open Access Journals (Sweden)

    Kang Il-Ho

    2010-06-01

    Full Text Available Abstract Background In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this

  2. Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Lonardi Stefano

    2008-01-01

    Full Text Available Abstract Background In spite of large intergenic spaces in plant and animal genomes, 7% to 30% of genes in the genomes encode overlapping cis-natural antisense transcripts (cis-NATs. The widespread occurrence of cis-NATs suggests an evolutionary advantage for this type of genomic arrangement. Experimental evidence for the regulation of two cis-NAT gene pairs by natural antisense transcripts-generated small interfering RNAs (nat-siRNAs via the RNA interference (RNAi pathway has been reported in Arabidopsis. However, the extent of siRNA-mediated regulation of cis-NAT genes is still unclear in any genome. Results The hallmarks of RNAi regulation of NATs are 1 inverse regulation of two genes in a cis-NAT pair by environmental and developmental cues and 2 generation of siRNAs by cis-NAT genes. We examined Arabidopsis transcript profiling data from public microarray databases to identify cis-NAT pairs whose sense and antisense transcripts show opposite expression changes. A subset of the cis-NAT genes displayed negatively correlated expression profiles as well as inverse differential expression changes under at least one of the examined developmental stages or treatment conditions. By searching the Arabidopsis Small RNA Project (ASRP and Massively Parallel Signature Sequencing (MPSS small RNA databases as well as our stress-treated small RNA dataset, we found small RNAs that matched at least one gene in 646 pairs out of 1008 (64% protein-coding cis-NAT pairs, which suggests that siRNAs may regulate the expression of many cis-NAT genes. 209 putative siRNAs have the potential to target more than one gene and half of these small RNAs could target multiple members of a gene family. Furthermore, the majority of the putative siRNAs within the overlapping regions tend to target only one transcript of a given NAT pair, which is consistent with our previous finding on salt- and bacteria-induced nat-siRNAs. In addition, we found that genes encoding plastid- or

  3. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian; Wang, Junguo; Miki, Daisuke; Xia, Ran; Yu, Wenxiang; He, Junna; Zheng, Zhimin; Zhu, Jian-Kang; Gonga, Zhizhong

    2010-01-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  4. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian

    2010-07-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  5. Nucleotide variation in ATHK1 region of Arabidopsis thaliana and its ...

    African Journals Online (AJOL)

    The ATHK1 gene in Arabidopsis encodes a putative histidine kinase that is transcriptionally upregulated in response to changes in external osmolarity. In this work, we investigated the nucleotide variability of the ATHK1 gene in a sample of 32 core Arabidopsis accessions originating from different ecoclimatic regions and ...

  6. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2006-10-01

    Full Text Available Abstract Background Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks. Results We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like; signalling molecules (e.g. PERK kinases, MLO-like receptors, carbohydrate active enzymes (e.g. XTH18, transcription factors (e.g. members of ZIM, WRKY, NAC, and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1. We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR. Conclusion Micorarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent

  7. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing

    KAUST Repository

    Zhang, Runxuan

    2017-04-05

    Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.

  8. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing

    KAUST Repository

    Zhang, Runxuan; Calixto, Cristiane  P.  G.; Marquez, Yamile; Venhuizen, Peter; Tzioutziou, Nikoleta A.; Guo, Wenbin; Spensley, Mark; Entizne, Juan Carlos; Lewandowska, Dominika; ten  Have, Sara; Frei  dit  Frey, Nicolas; Hirt, Heribert; James, Allan B.; Nimmo, Hugh G.; Barta, Andrea; Kalyna, Maria; Brown, John  W.  S.

    2017-01-01

    Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.

  9. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Murilo S. Alves

    2014-03-01

    Full Text Available Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP, amino-acid sequence WRKYGQK (WRKY, myelocytomatosis related proteins (MYC, myeloblastosis related proteins (MYB, APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP and no apical meristem (NAM, Arabidopsis transcription activation factor (ATAF, and cup-shaped cotyledon (CUC (NAC. We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses.

  10. Aureochrome 1 illuminated: structural changes of a transcription factor probed by molecular spectroscopy.

    Directory of Open Access Journals (Sweden)

    Silke Kerruth

    Full Text Available Aureochrome 1 from Vaucheria frigida is a recently identified blue-light receptor that acts as a transcription factor. The protein comprises a photosensitive light-, oxygen- and voltage-sensitive (LOV domain and a basic zipper (bZIP domain that binds DNA rendering aureochrome 1 a prospective optogenetic tool. Here, we studied the photoreaction of full-length aureochrome 1 by molecular spectroscopy. The kinetics of the decay of the red-shifted triplet state and the blue-shifted signaling state were determined by time-resolved UV/Vis spectroscopy. It is shown that the presence of the bZIP domain further prolongs the lifetime of the LOV390 signaling state in comparison to the isolated LOV domain whereas bound DNA does not influence the photocycle kinetics. The light-dark Fourier transform infrared (FTIR difference spectrum shows the characteristic features of the flavin mononucleotide chromophore except that the S-H stretching vibration of cysteine 254, which is involved in the formation of the thio-adduct state, is significantly shifted to lower frequencies compared to other LOV domains. The presence of the target DNA influences the light-induced FTIR difference spectrum of aureochrome 1. Vibrational bands that can be assigned to arginine and lysine side chains as well to the phosphate backbone, indicate crucial changes in interactions between transcription factor and DNA.

  11. Gibberellic acid and cGMP-dependent transcriptional regulation in arabidopsis thaliana

    KAUST Repository

    Bastian, René

    2010-03-01

    An ever increasing amount of transcriptomic data and analysis tools provide novel insight into complex responses of biological systems. Given these resources we have undertaken to review aspects of transcriptional regulation in response to the plant hormone gibberellic acid (GA) and its second messenger guanosine 3\\',5\\'-cyclic monophosphate (cGMP) in Arabidopsis thaliana, both wild type and selected mutants. Evidence suggests enrichment of GA-responsive (GARE) elements in promoters of genes that are transcriptionally upregulated in response to cGMP but downregulated in a GA insensitive mutant (ga1-3). In contrast, in the genes upregulated in the mutant, no enrichment in the GARE is observed suggesting that GARE motifs are diagnostic for GA-induced and cGMP-dependent transcriptional upregulation. Further, we review how expression studies of GA-dependent transcription factors and transcriptional networks based on common promoter signatures derived from ab initio analyses can contribute to our understanding of plant responses at the systems level. © 2010 Landes Bioscience.

  12. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.

    Science.gov (United States)

    Gonzalez, Antonio; Zhao, Mingzhe; Leavitt, John M; Lloyd, Alan M

    2008-03-01

    In all higher plants studied to date, the anthocyanin pigment pathway is regulated by a suite of transcription factors that include Myb, bHLH and WD-repeat proteins. However, in Arabidopsis thaliana, the Myb regulators remain to be conclusively identified, and little is known about anthocyanin pathway regulation by TTG1-dependent transcriptional complexes. Previous overexpression of the PAP1 Myb suggested that genes from the entire phenylpropanoid pathway are targets of regulation by Myb/bHLH/WD-repeat complexes in Arabidopsis, in contrast to other plants. Here we demonstrate that overexpression of Myb113 or Myb114 results in substantial increases in pigment production similar to those previously seen as a result of over-expression of PAP1, and pigment production in these overexpressors remains TTG1- and bHLH-dependent. Also, plants harboring an RNAi construct targeting PAP1 and three Myb candidates (PAP2, Myb113 and Myb114) showed downregulated Myb gene expression and obvious anthocyanin deficiencies. Correlated with these anthocyanin deficiencies is downregulation of the same late anthocyanin structural genes that are downregulated in ttg1 and bHLH anthocyanin mutants. Expression studies using GL3:GR and TTG1:GR fusions revealed direct regulation of the late biosynthetic genes only. Functional diversification between GL3 and EGL3 with regard to activation of gene targets was revealed by GL3:GR studies in single and double bHLH mutant seedlings. Expression profiles for Myb and bHLH regulators are also presented in the context of pigment production in young seedlings.

  13. Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis1[W

    Science.gov (United States)

    Park, Jungmin; Kim, Youn-Sung; Kim, Sang-Gyu; Jung, Jae-Hoon; Woo, Je-Chang; Park, Chung-Mo

    2011-01-01

    Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, how auxin influences germination is largely unknown. Here, we demonstrate that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 (for NAC with Transmembrane Motif1) during seed germination. Germination of the NTM2-deficient ntm2-1 mutant seeds exhibited enhanced resistance to high salinity. However, the salt resistance disappeared in the ntm2-1 mutant overexpressing the IAA30 gene, which was induced by salt in a NTM2-dependent manner. Auxin exhibited no discernible effects on germination under normal growth conditions. Under high salinity, however, whereas exogenous application of auxin further suppressed the germination of control seeds, the auxin effects were reduced in the ntm2-1 mutant. Consistent with the inhibitory effects of auxin on germination, germination of YUCCA 3-overexpressing plants containing elevated levels of active auxin was more severely influenced by salt. These observations indicate that auxin delays seed germination under high salinity through cross talk with the NTM2-mediated salt signaling in Arabidopsis. PMID:21450938

  14. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  15. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis

    Science.gov (United States)

    2012-01-01

    Background The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats. MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction, disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis will help reveal the evolution and function of MYB genes in plants. Results A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively. Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region (5′ to translation initiation codon) of MYB gene ORFs led to the identification of conserved and over-represented cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis. Conclusion A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication. Genome-wide comparative analysis of MYB genes and their expression analysis

  16. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    Science.gov (United States)

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding.

  17. Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum.

    Science.gov (United States)

    Qiu, Jian; Sun, Shuquan; Luo, Shiqiao; Zhang, Jichuan; Xiao, Xianzhou; Zhang, Liqun; Wang, Feng; Liu, Shizhong

    2014-04-01

    This study developed a new purple coloured Taraxacum brevicorniculatum plant through genetic transformation using the Arabidopsis AtPAP1 gene, which overproduced anthocyanins in its vegetative tissues. Rubber-producing Taraxacum plants synthesise high-quality natural rubber (NR) in their roots and so are a promising alternative global source of this raw material. A major factor in its commercialization is the need for multipurpose exploitation of the whole plant. To add value to the aerial tissues, red/purple plants of the rubber-producing Taraxacum brevicorniculatum species were developed through heterologous expression of the production of anthocyanin pigment 1 (AtPAP1) transcription factor from Arabidopsis thaliana. The vegetative tissue of the transgenic plants showed an average of a 48-fold increase in total anthocyanin content over control levels, but with the exception of pigmentation, the transgenic plants were phenotypically comparable to controls and displayed similar growth vigor. Southern blot analysis confirmed that the AtPAP1 gene had been integrated into the genome of the high anthocyanin Taraxacum plants. The AtPAP1 expression levels were estimated by quantitative real-time PCR and were highly correlated with the levels of total anthocyanins in five independent transgenic lines. High levels of three cyanidin glycosides found in the purple plants were characterized by high performance liquid chromatography-mass spectrum analysis. The presence of NR was verified by NMR and infrared spectroscopy, and confirmed that NR biosynthesis had not been affected in the transgenic Taraxacum lines. In addition, other major phenylpropanoid products such as chlorogenic acid and quercetin glycosides were also enhanced in the transgenic Taraxacum. The red/purple transgenic Taraxacum lines described in this study would increase the future application of the species as a rubber-producing crop due to its additional health benefits.

  18. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    Science.gov (United States)

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  19. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots.

    Science.gov (United States)

    Kong, Que; Ma, Wei; Yang, Haibing; Ma, Guojie; Mantyla, Jenny J; Benning, Christoph

    2017-07-20

    WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in the wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors

    Directory of Open Access Journals (Sweden)

    Jose L. Pruneda-Paz

    2014-07-01

    Full Text Available Extensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive collection of Arabidopsis TFs clones created to provide a versatile resource for uncovering TF biological functions. We leveraged this collection by implementing a high-throughput DNA binding assay and identified direct regulators of a key clock gene (CCA1 that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes.

  1. BACH transcription factors in innate and adaptive immunity.

    Science.gov (United States)

    Igarashi, Kazuhiko; Kurosaki, Tomohiro; Roychoudhuri, Rahul

    2017-07-01

    BTB and CNC homology (BACH) proteins are transcriptional repressors of the basic region leucine zipper (bZIP) transcription factor family. Recent studies indicate widespread roles of BACH proteins in controlling the development and function of the innate and adaptive immune systems, including the differentiation of effector and memory cells of the B and T cell lineages, CD4 + regulatory T cells and macrophages. Here, we emphasize similarities at a molecular level in the cell-type-specific activities of BACH factors, proposing that competitive interactions of BACH proteins with transcriptional activators of the bZIP family form a common mechanistic theme underlying their diverse actions. The findings contribute to a general understanding of how transcriptional repressors shape lineage commitment and cell-type-specific functions through repression of alternative lineage programmes.

  2. Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24.

    Science.gov (United States)

    Xu, Mingli; Hu, Tieqiang; McKim, Sarah M; Murmu, Jhadeswar; Haughn, George W; Hepworth, Shelley R

    2010-09-01

    The transition to flowering is a tightly controlled developmental decision in plants. In Arabidopsis, LEAFY (LFY) and APETALA1 (AP1) are key regulators of this transition and expression of these genes in primordia produced by the inflorescence meristem confers floral fate. Here, we examine the role of architectural regulators BLADE-ON-PETIOLE1 (BOP1) and BOP2 in promotion of floral meristem identity. Loss-of-function bop1 bop2 mutants show subtle defects in inflorescence and floral architecture but in combination with lfy or ap1, synergistic defects in floral meristem fate and determinacy are revealed. The most dramatic changes occur in bop1 bop2 ap1-1 triple mutants where flowers are converted into highly branched inflorescence-like shoots. Our data show that BOP1/2 function distinctly from LFY to upregulate AP1 in floral primordia and that all three activities converge to down-regulate flowering-time regulators including AGAMOUS-LIKE24 in stage 2 floral meristems. Subsequently, BOP1/2 promote A-class floral-organ patterning in parallel with LFY and AP1. Genetic and biochemical evidence support the model that BOP1/2 are recruited to the promoter of AP1 through direct interactions with TGA bZIP transcription factors, including PERIANTHIA. These data reveal an important supporting role for BOP1/2 in remodeling shoot architecture during the floral transition. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  3. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants.

    Science.gov (United States)

    Wang, Yucheng; Gao, Caiqiu; Liang, Yenan; Wang, Chao; Yang, Chuanping; Liu, Guifeng

    2010-02-15

    Basic leucine zipper proteins (bZIPs) are transcription factors that bind abscisic acid (ABA)-responsive elements (ABREs) and enable plants to withstand adverse environmental conditions. In the present study, a novel bZIP gene, ThbZIP1 was cloned from Tamarix hispida. Expression studies in T. hispida showed differential regulation of ThbZIP1 in response to treatment with NaCl, polyethylene glycol (PEG) 6000, NaHCO(3), and CdCl(2), suggesting that ThbZIP1 is involved in abiotic stress responses. To identify the physiological responses mediated by ThbZIP1, transgenic tobacco plants overexpressing exogenous ThbZIP1 were generated. Various physiological parameters related to salt stress were measured and compared between transgenic and wild type (WT) plants. Our results indicate that overexpression of ThbZIP1 can enhance the activity of both peroxidase (POD) and superoxide dismutase (SOD), and increase the content of soluble sugars and soluble proteins under salt stress conditions. These results suggest that ThbZIP1 contributes to salt tolerance by mediating signaling through multiple physiological pathways. Furthermore, ThbZIP1 confers stress tolerance to plants by enhancing reactive oxygen species (ROS) scavenging, facilitating the accumulation of compatible osmolytes, and inducing and/or enhancing the biosynthesis of soluble proteins. Copyright 2009 Elsevier GmbH. All rights reserved.

  4. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-06-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors.

  5. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    Directory of Open Access Journals (Sweden)

    Wijaya Edward

    2010-01-01

    Full Text Available Abstract Background The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10°C, an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach. Results Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10°C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters. Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2 spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters. Conclusion Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries.

  6. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young

    2010-01-25

    Background: The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10C), an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach.Results: Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters.Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters.Conclusion: Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries. 2010 Yun et al; licensee BioMed Central Ltd.

  7. RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jong-Jin Park

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPR and the CRISPR associated protein 9 (Cas9 system allows effective gene modification through RNA-guided DNA targeting. The Cas9 has undergone a series of functional alterations from the original active endonuclease to partially or completely deactivated Cas9. The catalytically deactivated Cas9 (dCas9 offers a platform to regulate transcriptional expression with the addition of activator or repressor domains. We redesigned a CRISPR/Cas9 activation system by adding the p65 transactivating subunit of NF-kappa B and a heat-shock factor 1 (HSF activation domain to dCas9 bound with the VP64 (tetramer of VP16 activation domain for application in plants. The redesigned CRISPR/Cas9 activation system was tested in Arabidopsis to increase endogenous transcriptional levels of production of anthocyanin pigment 1 (PAP1 and Arabidopsis thaliana vacuolar H+-pyrophosphatase (AVP1. The expression of PAP1 was increased two- to three-fold and the activated plants exhibited purple leaves similar to that of PAP1 overexpressors. The AVP1 gene expression was increased two- to five-fold in transgenic plants. In comparison to the wild type, AVP1 activated plants had increased leaf numbers, larger single-leaf areas and improved tolerance to drought stress. The AVP1 activated plants showed similar phenotypes to AVP1 overexpressors. Therefore, the redesigned CRISPR/Cas9 activation system containing modified p65-HSF provides a simple approach for producing activated plants by upregulating endogenous transcriptional levels.

  8. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis.

    Science.gov (United States)

    He, Guan-Hua; Xu, Ji-Yuan; Wang, Yan-Xia; Liu, Jia-Ming; Li, Pan-Song; Chen, Ming; Ma, You-Zhi; Xu, Zhao-Shi

    2016-05-23

    Drought stress is one of the major causes of crop loss. WRKY transcription factors, as one of the largest transcription factor families, play important roles in regulation of many plant processes, including drought stress response. However, far less information is available on drought-responsive WRKY genes in wheat (Triticum aestivum L.), one of the three staple food crops. Forty eight putative drought-induced WRKY genes were identified from a comparison between de novo transcriptome sequencing data of wheat without or with drought treatment. TaWRKY1 and TaWRKY33 from WRKY Groups III and II, respectively, were selected for further investigation. Subcellular localization assays revealed that TaWRKY1 and TaWRKY33 were localized in the nuclei in wheat mesophyll protoplasts. Various abiotic stress-related cis-acting elements were observed in the promoters of TaWRKY1 and TaWRKY33. Quantitative real-time PCR (qRT-PCR) analysis showed that TaWRKY1 was slightly up-regulated by high-temperature and abscisic acid (ABA), and down-regulated by low-temperature. TaWRKY33 was involved in high responses to high-temperature, low-temperature, ABA and jasmonic acid methylester (MeJA). Overexpression of TaWRKY1 and TaWRKY33 activated several stress-related downstream genes, increased germination rates, and promoted root growth in Arabidopsis under various stresses. TaWRKY33 transgenic Arabidopsis lines showed lower rates of water loss than TaWRKY1 transgenic Arabidopsis lines and wild type plants during dehydration. Most importantly, TaWRKY33 transgenic lines exhibited enhanced tolerance to heat stress. The functional roles highlight the importance of WRKYs in stress response.

  9. GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana.

    Science.gov (United States)

    Giri, Mrunmay K; Singh, Nidhi; Banday, Zeeshan Z; Singh, Vijayata; Ram, Hathi; Singh, Deepjyoti; Chattopadhyay, Sudip; Nandi, Ashis K

    2017-09-01

    G-BOX BINDING FACTOR 1 (GBF1) influences light-regulated seedling development in Arabidopsis, and inhibits CATALASE 2 (CAT2) expression during senescence. CAT2 functions as a scavenger of hydrogen peroxide. The role of GBF1 in the defense response is not known. We report here that GBF1 positively influences the defense against virulent and avirulent strains of Pseudomonas syringae. The gbf1 mutants are susceptible, whereas GBF1 over-expresser transgenic plants are resistant to bacterial pathogens. GBF1 negatively regulates pathogen-induced CAT2 expression and thereby positively regulates the hypersensitive response. In addition to CAT2 promoter, GBF1 binds to the G-box-like element present in the intron of PHYTOALEXIN DEFICIENT 4 (PAD4). This association of GBF1 with PAD4 intron is enhanced upon pathogenesis. GBF1 positively regulates PAD4 transcription in an intron-dependent manner. GBF1-mediated positive regulation of PAD4 expression is also evident in gbf1 mutant and GBF1 over-expression lines. Similar to pad4 mutants, pathogen-induced camalexin and salicylic acid (SA) accumulation, and expression of SA-inducible PATHOGENESIS RELATED1 (PR1) gene are compromised in the gbf1 mutant. Exogenous application of SA rescues the loss-of-defense phenotypes of gbf1 mutant. Thus, altogether, our results demonstrate that GBF1 is an important component of the plant defense response that functions upstream of SA accumulation and, by oppositely regulating CAT2 and PAD4, promotes disease resistance in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Model of how plants sense zinc deficiency

    DEFF Research Database (Denmark)

    Assuncao, Ana G.L.; Persson, Daniel Olof; Husted, Søren

    2013-01-01

    to develop plant-based solutions addressing nutrient-use-efficiency and adaptation to nutrient-limited or -toxic soils. Recently two transcription factors of the bZIP family (basic-region leucine zipper) have been identified in Arabidopsis and shown to be pivotal in the adaptation response to zinc deficiency...

  11. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis.

    Science.gov (United States)

    Suzuki, Masashi; Yamazaki, Chiaki; Mitsui, Marie; Kakei, Yusuke; Mitani, Yuka; Nakamura, Ayako; Ishii, Takahiro; Soeno, Kazuo; Shimada, Yukihisa

    2015-08-01

    The IPyA pathway, the major auxin biosynthesis pathway, is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels. The phytohormone auxin plays an important role in plant growth and development, and levels of active free auxin are determined by biosynthesis, conjugation, and polar transport. Unlike conjugation and polar transport, little is known regarding the regulatory mechanism of auxin biosynthesis. We discovered that expression of genes encoding indole-3-pyruvic acid (IPyA) pathway enzymes is regulated by elevated or reduced active auxin levels. Expression levels of TAR2, YUC1, YUC2, YUC4, and YUC6 were downregulated in response to synthetic auxins [1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D)] exogenously applied to Arabidopsis thaliana L. seedlings. Concomitantly, reduced levels of endogenous indole-3-acetic acid (IAA) were observed. Alternatively, expression of these YUCCA genes was upregulated by the auxin biosynthetic inhibitor kynurenine in Arabidopsis seedlings, accompanied by reduced IAA levels. These results indicate that expression of YUCCA genes is regulated by active auxin levels. Similar results were also observed in auxin-overproduction and auxin-deficient mutants. Exogenous application of IPyA to Arabidopsis seedlings preincubated with kynurenine increased endogenous IAA levels, while preincubation with 2,4-D reduced endogenous IAA levels compared to seedlings exposed only to IPyA. These results suggest that in vivo conversion of IPyA to IAA was enhanced under reduced auxin levels, while IPyA to IAA conversion was depressed in the presence of excess auxin. Based on these results, we propose that the IPyA pathway is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels.

  12. Cross activity of orthologous WRKY transcription factors in wheat and Arabidopsis

    NARCIS (Netherlands)

    Poietti, S.; Bertini, L.; Ent, S. van der; Leon Reyes, H.A.; Pieterse, C.M.J.; Tucci, M.; Caporale, C.; Caruso, C.

    2011-01-01

    WRKY proteins are transcription factors involved in many plant processes including plant responses to pathogens. Here, the cross activity of TaWRKY78 from the monocot wheat and AtWRKY20 from the dicot Arabidopsis on the cognate promoters of the orthologous PR4-type genes wPR4e and AtHEL of wheat and

  13. Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants

    DEFF Research Database (Denmark)

    Castro, Pedro Humberto Araújo R F; Lilay, Grmay Hailu; Muñoz-Mérida, Antonio

    2017-01-01

    Basic leucine zipper (bZIP) transcription factors control important developmental and physiological processes in plants. In Arabidopsis thaliana, the three gene F-bZIP subfamily has been associated with zinc deficiency and salt stress response. Benefiting from the present abundance of plant genomic...... data, we performed an evolutionary and structural characterization of plant F-bZIPs. We observed divergence during seed plant evolution, into two groups and inferred different selective pressures for each. Group 1 contains AtbZIP19 and AtbZIP23 and appears more conserved, whereas Group 2, containing...... of AtZIP4. A survey of AtZIP4 orthologs promoters across different plant taxa revealed an enrichment of the Zinc Deficiency Response Element (ZDRE) to which both AtbZIP19/23 bind. Overall, our results indicate that while the AtbZIP24 function in the regulation of the salt stress response may...

  14. Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis.

    Science.gov (United States)

    Liu, Fenglong; Vantoai, Tara; Moy, Linda P; Bock, Geoffrey; Linford, Lara D; Quackenbush, John

    2005-03-01

    Plants have evolved adaptation mechanisms to sense oxygen deficiency in their environments and make coordinated physiological and structural adjustments to enhance their hypoxic tolerance. To gain insight into how plants respond to low-oxygen stress, gene expression profiling using whole-genome DNA amplicon microarrays was carried out at seven time points over 24 h, in wild-type and transgenic P(SAG12):ipt Arabidopsis (Arabidopsis thaliana) plants under normoxic and hypoxic conditions. Transcript levels of genes involved in glycolysis and fermentation pathways, ethylene synthesis and perception, calcium signaling, nitrogen utilization, trehalose metabolism, and alkaloid synthesis were significantly altered in response to oxygen limitation. Analysis based on gene ontology assignments suggested a significant down-regulation of genes whose functions are associated with cell walls, nucleosome structures, water channels, and ion transporters and a significant up-regulation of genes involved in transcriptional regulation, protein kinase activity, and auxin responses under conditions of oxygen shortage. Promoter analysis on a cluster of up-regulated genes revealed a significant overrepresentation of the AtMYB2-binding motif (GT motif), a sugar response element-like motif, and a G-box-related sequence, and also identified several putative anaerobic response elements. Finally, quantitative real-time polymerase chain reactions using 29 selected genes independently verified the microarray results. This study represents one of the most comprehensive analyses conducted to date investigating hypoxia-responsive transcriptional networks in plants.

  15. Quantitative expression analysis of selected transcription factors in pavement, basal and trichome cells of mature leaves from Arabidopsis thaliana.

    Science.gov (United States)

    Schliep, Martin; Ebert, Berit; Simon-Rosin, Ulrike; Zoeller, Daniela; Fisahn, Joachim

    2010-05-01

    Gene expression levels of several transcription factors from Arabidopsis thaliana that were described previously to be involved in leaf development and trichome formation were analysed in trichome, basal and pavement cells of mature leaves. Single cell samples of these three cells types were collected by glass micro-capillaries. Real-time reverse transcription (RT)-PCR was used to analyse expression patterns of the following transcription factors: MYB23, MYB55, AtHB1, FILAMENTOUS FLOWER (FIL)/YABBY1 (YAB1), TRIPTYCHON (TRY) and CAPRICE (CPC). A difference in the expression patterns of TRY and CPC was revealed. Contrary to the CPC expression pattern, no transcripts of TRY could be detected in pavement cells. FIL/YAB1 was exclusively expressed in trichome cells. AtHB1 was highly expressed throughout all three cell types. MYB55 was higher expressed in basal cells than in trichome and pavement cells. MYB23 showed a pattern of low expression in pavement cells, medium in basal cells and high expression in trichomes. Expression patterns obtained by single cell sampling and real-time RT-PCR were compared to promoter GUS fusions of the selected transcription factors. Therefore, we regenerated two transgenic Arabidopsis lines that expressed the GUS reporter gene under control of the promoters of MYB55 and YAB1. In conclusion, despite their function in leaf morphogenesis, all six transcription factors were detected in mature leaves. Furthermore, single cell sampling and promoter GUS staining patterns demonstrated the predominant presence of MYB55 in basal cells as compared to pavement cells and trichomes.

  16. ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    Ohshima Koichi

    2011-03-01

    Full Text Available Abstract Background Adult T-cell leukemia (ATL is an aggressive malignancy of CD4+ T-cells caused by human T-cell leukemia virus type 1 (HTLV-1. The HTLV-1 bZIP factor (HBZ gene, which is encoded by the minus strand of the viral genome, is expressed as an antisense transcript in all ATL cases. By using yeast two-hybrid screening, we identified activating transcription factor 3 (ATF3 as an HBZ-interacting protein. ATF3 has been reported to be expressed in ATL cells, but its biological significance is not known. Results Immunoprecipitation analysis confirmed that ATF3 interacts with HBZ. Expression of ATF3 was upregulated in ATL cell lines and fresh ATL cases. Reporter assay revealed that ATF3 could interfere with the HTLV-1 Tax's transactivation of the 5' proviral long terminal repeat (LTR, doing so by affecting the ATF/CRE site, as well as HBZ. Suppressing ATF3 expression inhibited proliferation and strongly reduced the viability of ATL cells. As mechanisms of growth-promoting activity of ATF3, comparative expression profiling of ATF3 knockdown cells identified candidate genes that are critical for the cell cycle and cell death, including cell division cycle 2 (CDC2 and cyclin E2. ATF3 also enhanced p53 transcriptional activity, but this activity was suppressed by HBZ. Conclusions Thus, ATF3 expression has positive and negative effects on the proliferation and survival of ATL cells. HBZ impedes its negative effects, leaving ATF3 to promote proliferation of ATL cells via mechanisms including upregulation of CDC2 and cyclin E2. Both HBZ and ATF3 suppress Tax expression, which enables infected cells to escape the host immune system.

  17. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions.

    Science.gov (United States)

    Uno, Y; Furihata, T; Abe, H; Yoshida, R; Shinozaki, K; Yamaguchi-Shinozaki, K

    2000-10-10

    The induction of the dehydration-responsive Arabidopsis gene, rd29B, is mediated mainly by abscisic acid (ABA). Promoter analysis of rd29B indicated that two ABA-responsive elements (ABREs) are required for the dehydration-responsive expression of rd29B as cis-acting elements. Three cDNAs encoding basic leucine zipper (bZIP)-type ABRE-binding proteins were isolated by using the yeast one-hybrid system and were designated AREB1, AREB2, and AREB3 (ABA-responsive element binding protein). Transcription of the AREB1 and AREB2 genes is up-regulated by drought, NaCl, and ABA treatment in vegetative tissues. In a transient transactivation experiment using Arabidopsis leaf protoplasts, both the AREB1 and AREB2 proteins activated transcription of a reporter gene driven by ABRE. AREB1 and AREB2 required ABA for their activation, because their transactivation activities were repressed in aba2 and abi1 mutants and enhanced in an era1 mutant. Activation of AREBs by ABA was suppressed by protein kinase inhibitors. These results suggest that both AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of rd29B, and further that ABA-dependent posttranscriptional activation of AREB1 and AREB2, probably by phosphorylation, is necessary for their maximum activation by ABA. Using cultured Arabidopsis cells, we demonstrated that a specific ABA-activated protein kinase of 42-kDa phosphorylated conserved N-terminal regions in the AREB proteins.

  18. An oilseed rape WRKY-type transcription factor regulates ROS accumulation and leaf senescence in Nicotiana benthamiana and Arabidopsis through modulating transcription of RbohD and RbohF.

    Science.gov (United States)

    Yang, Liu; Ye, Chaofei; Zhao, Yuting; Cheng, Xiaolin; Wang, Yiqiao; Jiang, Yuan-Qing; Yang, Bo

    2018-06-01

    Overexpression of BnaWGR1 causes ROS accumulation and promotes leaf senescence. BnaWGR1 binds to promoters of RbohD and RbohF and regulates their expression. Manipulation of leaf senescence process affects agricultural traits of crop plants, including biomass, seed yield and stress resistance. Since delayed leaf senescence usually enhances tolerance to multiple stresses, we analyzed the function of specific MAPK-WRKY cascades in abiotic and biotic stress tolerance as well as leaf senescence in oilseed rape (Brassica napus L.), one of the important oil crops. In the present study, we showed that expression of one WRKY gene from oilseed rape, BnaWGR1, induced an accumulation of reactive oxygen species (ROS), cell death and precocious leaf senescence both in Nicotiana benthamiana and transgenic Arabidopsis (Arabidopsis thaliana). BnaWGR1 regulates the transcription of two genes encoding key enzymes implicated in production of ROS, that is, respiratory burst oxidase homolog (Rboh) D and RbohF. A dual-luciferase reporter assay confirmed the transcriptional regulation of RbohD and RbohF by BnaWGR1. In vitro electrophoresis mobility shift assay (EMSA) showed that BnaWGR1 could bind to W-box cis-elements within promoters of RbohD and RbohF. Moreover, RbohD and RbohF were significantly upregulated in transgenic Arabidopsis overexpressing BnaWGR1. In summary, these results suggest that BnaWGR1 could positively regulate leaf senescence through regulating the expression of RbohD and RbohF genes.

  19. CFLAP1 and CFLAP2 Are Two bHLH Transcription Factors Participating in Synergistic Regulation of AtCFL1-Mediated Cuticle Development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shibai Li

    2016-01-01

    Full Text Available The cuticle is a hydrophobic lipid layer covering the epidermal cells of terrestrial plants. Although many genes involved in Arabidopsis cuticle development have been identified, the transcriptional regulation of these genes is largely unknown. Previously, we demonstrated that AtCFL1 negatively regulates cuticle development by interacting with the HD-ZIP IV transcription factor HDG1. Here, we report that two bHLH transcription factors, AtCFL1 associated protein 1 (CFLAP1 and CFLAP2, are also involved in AtCFL1-mediated regulation of cuticle development. CFLAP1 and CFLAP2 interact with AtCFL1 both in vitro and in vivo. Overexpression of either CFLAP1 or CFLAP2 led to expressional changes of genes involved in fatty acids, cutin and wax biosynthesis pathways and caused multiple cuticle defective phenotypes such as organ fusion, breakage of the cuticle layer and decreased epicuticular wax crystal loading. Functional inactivation of CFLAP1 and CFLAP2 by chimeric repression technology caused opposite phenotypes to the CFLAP1 overexpressor plants. Interestingly, we find that, similar to the transcription factor HDG1, the function of CFLAP1 in cuticle development is dependent on the presence of AtCFL1. Furthermore, both HDG1 and CFLAP1/2 interact with the same C-terminal C4 zinc finger domain of AtCFL1, a domain that is essential for AtCFL1 function. These results suggest that AtCFL1 may serve as a master regulator in the transcriptional regulation of cuticle development, and that CFLAP1 and CFLAP2 are involved in the AtCFL1-mediated regulation pathway, probably through competing with HDG1 to bind to AtCFL1.

  20. SlbZIP38, a Tomato bZIP Family Gene Downregulated by Abscisic Acid, Is a Negative Regulator of Drought and Salt Stress Tolerance

    Science.gov (United States)

    Pan, Yanglu; Hu, Xin; Li, Chunyan; Xu, Xing; Su, Chenggang; Li, Jinhua; Song, Hongyuan; Zhang, Xingguo; Pan, Yu

    2017-01-01

    The basic leucine zipper (bZIP) transcription factors have crucial roles in plant stress responses. In this study, the bZIP family gene SlbZIP38 (GenBank accession No: XM004239373) was isolated from a tomato (Solanum lycopersicum cv. Ailsa Craig) mature leaf cDNA library. The DNA sequence of SlbZIP38 encodes a protein of 484 amino acids, including a highly conserved bZIP DNA-binding domain in the C-terminal region. We found that SlbZIP38 was differentially expressed in various organs of the tomato plant and was downregulated by drought, salt stress, and abscisic acid (ABA). However, overexpression of SlbZIP38 significantly decreased drought and salt stress tolerance in tomatoes (Ailsa Craig). The findings that SlbZIP38 overexpression reduced the chlorophyll and free proline content in leaves but increased the malondialdehyde content may explain the reduced drought and salt tolerance observed in these lines. These results suggest that SlbZIP38 is a negative regulator of drought and salt resistance that acts by modulating ABA signaling. PMID:29261143

  1. [MYB-like transcription factor SiMYB42 from foxtail millet (Setaria italica L.) enhances Arabidopsis tolerance to low-nitrogen stress].

    Science.gov (United States)

    Ding, Qing Qian; Wang, Xiao Ting; Hu, Li Qin; Qi, Xin; Ge, Lin Hao; Xu, Wei Ya; Xu, Zhao Shi; Zhou, Yong Bin; Jia, Guan Qing; Diao, Xian Min; Min, Dong Hong; Ma, You Zhi; Chen, Ming

    2018-04-20

    Myeloblastosis (MYB) transcription factors are one of the largest families of transcription factors in higher plants. They play an important role in plant development, defense response processes, and non-biological stresses, i.e., drought stress. Foxtail millet (Setaria italica L.), originated in China, is resistant to drought and low nutrition stresses and has been regarded as an ideal material for studying abiotic stress resistance in monocotyledon. In this study, we ran a transcription profile analysis of zheng 204 under low-nitrogen conditions and identified a MYB-like transcription factor SiMYB42, which was up-regulated under low-nitrogen stress. Phylogenetic tree analysis showed that SiMYB42 belongs to R2R3-MYB subfamily and has two MYB conserved domains. Expression pattern analysis showed that SiMYB42 was significantly up-regulated under various stress conditions, including low-nitrogen stress, high salt, drought and ABA conditions. The results of subcellular localization, quantitative real-time PCR and transcriptional activation analysis indicated that SiMYB42 protein localizes to the nucleus and cell membrane of plant cells, mainly expressed in the leaf or root of foxtail millet, and has transcription activation activity. Functional analysis showed that there was no significant difference between transgenic SiMYB42 Arabidopsis and wild-type (WT) Arabidopsis under normal conditions; however, under low-nitrogen condition, the root length, surface area and seedling fresh weight in transgenic SiMYB42 Arabidopsis, were significantly higher than their counterparts in WT. These results suggest that SiMYB42 transgenic plants exhibit higher tolerance to low-nitrogen stress. Expression levels of nitrate transporters genes NRT2.1, NRT2.4 and NRT2.5, which are the transcriptional targets of SiMYB42, were higher in transgenic SiMYB42 Arabidopsis plants than those in WT; the promoter regions of NRT2.1, NRT2.4 and NRT2.5 all have MYB binding sites. These results indicate

  2. Regulating expressin of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N. [Donald Danforth Plant Science Center, St. Louis, MO (United States); Dai, Shunhong [Donald Danforth Plant Science Center, St. Louis, MO (United States)

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  3. Tomato whole genome transcriptional response to Tetranychus urticae identifies divergence of spider mite-induced responses between tomato and Arabidopsis

    NARCIS (Netherlands)

    Martel, C.; Zhurov, V.; Navarro, M.; Martinez, M.; Cazaux, M.; Auger, P.; Migeon, A.; Santamaria, M.E.; Wybouw, N.; Diaz, I.; Van Leeuwen, T.; Navajas, M.; Grbic, M.; Grbic, V.

    2015-01-01

    The two-spotted spider mite Tetranychus urticae is one of the most significant mite pests in agriculture, feeding on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we describe timecourse tomato transcriptional responses to spider mite

  4. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis.

    Science.gov (United States)

    Maier, Alexander; Schrader, Andrea; Kokkelink, Leonie; Falke, Christian; Welter, Bastian; Iniesto, Elisa; Rubio, Vicente; Uhrig, Joachim F; Hülskamp, Martin; Hoecker, Ute

    2013-05-01

    Anthocyanins are natural pigments that accumulate only in light-grown and not in dark-grown Arabidopsis plants. Repression of anthocyanin accumulation in darkness requires the CONSTITUTIVELY PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) ubiquitin ligase, as cop1 and spa mutants produce anthocyanins also in the dark. Here, we show that COP1 and SPA proteins interact with the myeloblastosis (MYB) transcription factors PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP)1 and PAP2, two members of a small protein family that is required for anthocyanin accumulation and for the expression of structural genes in the anthocyanin biosynthesis pathway. The increased anthocyanin levels in cop1 mutants requires the PAP1 gene family, indicating that COP1 functions upstream of the PAP1 gene family. PAP1 and PAP2 proteins are degraded in the dark and this degradation is dependent on the proteasome and on COP1. Hence, the light requirement for anthocyanin biosynthesis results, at least in part, from the light-mediated stabilization of PAP1 and PAP2. Consistent with this conclusion, moderate overexpression of PAP1 leads to an increase in anthocyanin levels only in the light and not in darkness. Here we show that SPA genes are also required for reducing PAP1 and PAP2 transcript levels in dark-grown seedlings. Taken together, these results indicate that the COP1/SPA complex affects PAP1 and PAP2 both transcriptionally and post-translationally. Thus, our findings have identified mechanisms via which the COP1/SPA complex controls anthocyanin levels in Arabidopsis that may be useful for applications in biotechnology directed towards increasing anthocyanin content in plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  5. Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal

    Science.gov (United States)

    Meyer, Heather M; Teles, José; Formosa-Jordan, Pau; Refahi, Yassin; San-Bento, Rita; Ingram, Gwyneth; Jönsson, Henrik; Locke, James C W; Roeder, Adrienne H K

    2017-01-01

    Multicellular development produces patterns of specialized cell types. Yet, it is often unclear how individual cells within a field of identical cells initiate the patterning process. Using live imaging, quantitative image analyses and modeling, we show that during Arabidopsis thaliana sepal development, fluctuations in the concentration of the transcription factor ATML1 pattern a field of identical epidermal cells to differentiate into giant cells interspersed between smaller cells. We find that ATML1 is expressed in all epidermal cells. However, its level fluctuates in each of these cells. If ATML1 levels surpass a threshold during the G2 phase of the cell cycle, the cell will likely enter a state of endoreduplication and become giant. Otherwise, the cell divides. Our results demonstrate a fluctuation-driven patterning mechanism for how cell fate decisions can be initiated through a random yet tightly regulated process. DOI: http://dx.doi.org/10.7554/eLife.19131.001 PMID:28145865

  6. Identification of Cis-Acting Promoter Elements in Cold- and Dehydration-Induced Transcriptional Pathways in Arabidopsis, Rice, and Soybean

    Science.gov (United States)

    Maruyama, Kyonoshin; Todaka, Daisuke; Mizoi, Junya; Yoshida, Takuya; Kidokoro, Satoshi; Matsukura, Satoko; Takasaki, Hironori; Sakurai, Tetsuya; Yamamoto, Yoshiharu Y.; Yoshiwara, Kyouko; Kojima, Mikiko; Sakakibara, Hitoshi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2012-01-01

    The genomes of three plants, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max), have been sequenced, and their many genes and promoters have been predicted. In Arabidopsis, cis-acting promoter elements involved in cold- and dehydration-responsive gene expression have been extensively analysed; however, the characteristics of such cis-acting promoter sequences in cold- and dehydration-inducible genes of rice and soybean remain to be clarified. In this study, we performed microarray analyses using the three species, and compared characteristics of identified cold- and dehydration-inducible genes. Transcription profiles of the cold- and dehydration-responsive genes were similar among these three species, showing representative upregulated (dehydrin/LEA) and downregulated (photosynthesis-related) genes. All (46 = 4096) hexamer sequences in the promoters of the three species were investigated, revealing the frequency of conserved sequences in cold- and dehydration-inducible promoters. A core sequence of the abscisic acid-responsive element (ABRE) was the most conserved in dehydration-inducible promoters of all three species, suggesting that transcriptional regulation for dehydration-inducible genes is similar among these three species, with the ABRE-dependent transcriptional pathway. In contrast, for cold-inducible promoters, the conserved hexamer sequences were diversified among these three species, suggesting the existence of diverse transcriptional regulatory pathways for cold-inducible genes among the species. PMID:22184637

  7. Enhancement of Chlorogenic Acid Production in Hairy Roots of Platycodon grandiflorum by Over-Expression of An Arabidopsis thaliana Transcription Factor AtPAP1

    Directory of Open Access Journals (Sweden)

    Pham Anh Tuan

    2014-08-01

    Full Text Available To improve the production of chlorogenic acid (CGA in hairy roots of Platycodon grandiflorum, we induced over-expression of Arabidopsis thaliana transcription factor production of anthocyanin pigment (AtPAP1 using an Agrobacterium rhizogenes-mediated transformation system. Twelve hairy root lines showing over-expression of AtPAP1 were generated. In order to investigate the regulation of AtPAP1 on the activities of CGA biosynthetic genes, the expression levels of seven P. grandiflorum CGA biosynthetic genes were analyzed in the hairy root line that had the greatest accumulation of AtPAP1 transcript, OxPAP1-1. The introduction of AtPAP1 increased the mRNA levels of all examined CGA biosynthetic genes and resulted in a 900% up-regulation of CGA accumulation in OxPAP1-1 hairy roots relative to controls. This suggests that P. grandiflorum hairy roots that over-express the AtPAP1 gene are a potential alternative source of roots for the production of CGA.

  8. Functional Analysis of Maize Silk-Specific ZmbZIP25 Promoter

    Directory of Open Access Journals (Sweden)

    Wanying Li

    2018-03-01

    Full Text Available ZmbZIP25 (Zea mays bZIP (basic leucine zipper transcription factor 25 is a function-unknown protein that belongs to the D group of the bZIP transcription factor family. RNA-seq data showed that the expression of ZmbZIP25 was tissue-specific in maize silks, and this specificity was confirmed by RT-PCR (reverse transcription-polymerase chain reaction. In situ RNA hybridization showed that ZmbZIP25 was expressed exclusively in the xylem of maize silks. A 5′ RACE (rapid amplification of cDNA ends assay identified an adenine residue as the transcription start site of the ZmbZIP25 gene. To characterize this silk-specific promoter, we isolated and analyzed a 2450 bp (from −2083 to +367 and a 2600 bp sequence of ZmbZIP25 (from −2083 to +517, the transcription start site was denoted +1. Stable expression assays in Arabidopsis showed that the expression of the reporter gene GUS driven by the 2450 bp ZmbZIP25 5′-flanking fragment occurred exclusively in the papillae of Arabidopsis stigmas. Furthermore, transient expression assays in maize indicated that GUS and GFP expression driven by the 2450 bp ZmbZIP25 5′-flanking sequences occurred only in maize silks and not in other tissues. However, no GUS or GFP expression was driven by the 2600 bp ZmbZIP25 5′-flanking sequences in either stable or transient expression assays. A series of deletion analyses of the 2450 bp ZmbZIP25 5′-flanking sequence was performed in transgenic Arabidopsis plants, and probable elements prediction analysis revealed the possible presence of negative regulatory elements within the 161 bp region from −1117 to −957 that were responsible for the specificity of the ZmbZIP25 5′-flanking sequence.

  9. Assessing the transcriptional regulation of L-CYSTEINE DESULFHYDRASE 1 in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Ana M. Laureano-Marín

    2014-12-01

    Full Text Available Hydrogen sulfide is an important signaling molecule that functions as a physiological gasotransmitter of comparable importance to NO and CO in mammalian systems. In plants, numerous studies have shown that sulfide increases tolerance/resistance to stress conditions and regulates essential processes. The endogenous production of hydrogen sulfide in the cytosol of Arabidopsis thaliana occurs by the enzymatic desulfuration of L-cysteine, which is catalyzed by the L-cysteine desulfhydrase enzyme DES1. To define the functional role of DES1 and the role that the sulfide molecule may play in the regulation of physiological processes in plants, we studied the localization of the expression of this gene at the tissue level. Transcriptional data reveal that DES1 is expressed at all developmental stages and is more abundant at the seedling stage and in mature plants. At the tissue level, we analyzed the expression of a GFP reporter gene fused to promoter of DES1. The GFP fluorescent signal was detected in the cytosol of both epidermal and mesophyll cells, including the guard cells. GFP fluorescence was highly abundant around the hydathode pores and inside the trichomes. In mature plants, fluorescence was detected in floral tissues; a strong GFP signal was detected in sepals, petals and pistils. When siliques were examined, the highest GFP fluorescence was observed at the bases of the siliques and the seeds. The location of GFP expression, together with the identification of regulatory elements within the DES1 promoter, suggests that DES1 is hormonally regulated. An increase in DES1 expression in response to ABA was recently demonstrated; in the present work, we observe that in vitro auxin treatment significantly repressed the expression of DES1.

  10. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    Science.gov (United States)

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  11. Improvement of enzymatic saccharification yield in Arabidopsis thaliana by ectopic expression of the rice SUB1A-1 transcription factor

    Directory of Open Access Journals (Sweden)

    Lizeth Núñez-López

    2015-03-01

    Full Text Available Saccharification of polysaccharides releases monosaccharides that can be used by ethanol-producing microorganisms in biofuel production. To improve plant biomass as a raw material for saccharification, factors controlling the accumulation and structure of carbohydrates must be identified. Rice SUB1A-1 is a transcription factor that represses the turnover of starch and postpones energy-consuming growth processes under submergence stress. Arabidopsis was employed to test if heterologous expression of SUB1A-1 or SUB1C-1 (a related gene can be used to improve saccharification. Cellulolytic and amylolytic enzymatic treatments confirmed that SUB1A-1 transgenics had better saccharification yield than wild-type (Col-0, mainly from accumulated starch. This improved saccharification yield was developmentally controlled; when compared to Col-0, young transgenic vegetative plants yielded 200–300% more glucose, adult vegetative plants yielded 40–90% more glucose and plants in reproductive stage had no difference in yield. We measured photosynthetic parameters, starch granule microstructure, and transcript abundance of genes involved in starch degradation (SEX4, GWD1, juvenile transition (SPL3-5 and meristematic identity (FUL, SOC1 but found no differences to Col-0, indicating that starch accumulation may be controlled by down-regulation of CONSTANS and FLOWERING LOCUS T by SUB1A-1 as previously reported. SUB1A-1 transgenics also offered less resistance to deformation than wild-type concomitant to up-regulation of AtEXP2 expansin and BGL2 glucan-1,3,-beta-glucosidase. We conclude that heterologous SUB1A-1 expression can improve saccharification yield and softness, two traits needed in bioethanol production.

  12. Role of WRKY Transcription Factors in Arabidopsis Development and Stress Responses

    OpenAIRE

    Li, Jing

    2014-01-01

    It has been well established that environmentally induced alterations in gene expression are mediated by transcription factors (TFs). One of the important plant-specific TF groups is the WRKY (TFs containing a highly conserved WRKY domain) family, which is involved in regulation of various physiological programs including biotic and abiotic defenses, senescence and trichome development. Two members of WRKY group III in Arabidopsis thaliana, WRKY54 and WRKY70, are demonstrated in this study to...

  13. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana

    Science.gov (United States)

    Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia

    2015-01-01

    Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700

  14. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Changho Eun

    Full Text Available RNA-directed DNA methylation (RdDM is a small interfering RNA (siRNA-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points.

  15. AtRTD2: A Reference Transcript Dataset for accurate quantification of alternative splicing and expression changes in Arabidopsis thaliana RNA-seq data

    KAUST Repository

    Zhang, Runxuan; Calixto, Cristiane P G; Marquez, Yamile; Venhuizen, Peter; Tzioutziou, Nikoleta A; Guo, Wenbin; Spensley, Mark; Frei dit Frey, Nicolas; Hirt, Heribert; James, Allan B; Nimmo, Hugh G; Barta, Andrea; Kalyna, Maria; Brown, John W S

    2016-01-01

    transcript assemblies. AtRTD2 increases the diversity of transcripts and through application of stringent filters represents the most extensive and accurate transcript collection for Arabidopsis to date. We have demonstrated a generally good correlation

  16. DEWAX Transcription Factor Is Involved in Resistance to Botrytis cinerea in Arabidopsis thaliana and Camelina sativa

    Directory of Open Access Journals (Sweden)

    Seulgi Ju

    2017-07-01

    Full Text Available The cuticle of land plants is the first physical barrier to protect their aerial parts from biotic and abiotic stresses. DEWAX, an AP2/ERF-type transcription factor, negatively regulates cuticular wax biosynthesis. In this study, we investigated the resistance to Botrytis cinerea in Arabidopsis thaliana and Camelina sativa overexpressing DEWAX and in Arabidopsis dewax mutant. Compared to wild type (WT leaves, Arabidopsis DEWAX OX and dewax leaves were more and less permeable to toluidine blue dye, respectively. The ROS levels increased in DEWAX OX leaves, but decreased in dewax relative to WT leaves. Compared to WT, DEWAX OX was more resistant, while dewax was more sensitive to B. cinerea; however, defense responses to Pseudomonas syringae pv. tomato DC3000:GFP were inversely modulated. Microarray and RT-PCR analyses indicated that the expression of defense-related genes was upregulated in DEWAX OX, but downregulated in dewax relative to WT. Transactivation assay showed that DEWAX upregulated the expression of PDF1.2a, IGMT1, and PRX37. Chromatin immunoprecipitation assay revealed that DEWAX directly interacts with the GCC-box motifs of PDF1.2a promoter. In addition, ectopic expression of DEWAX increased the tolerance to B. cinerea in C. sativa. Taken together, we suggest that increased ROS accumulation and DEWAX-mediated upregulation of defense-related genes are closely associated with enhanced resistance to B. cinerea in Arabidopsis and C. sativa.

  17. Subcellular location of Arabidopsis thaliana subfamily a1 β-galactosidases and developmental regulation of transcript levels of their coding genes.

    Science.gov (United States)

    Moneo-Sánchez, María; Izquierdo, Lucía; Martín, Ignacio; Labrador, Emilia; Dopico, Berta

    2016-12-01

    The aim of this work is to gain insight into the six members of the a1 subfamily of the β-galactosidases (BGAL) from Arabidopsis thaliana. First, the subcellular location of all these six BGAL proteins from a1 subfamily has been established in the cell wall by the construction of transgenic plants producing the enhanced green fluorescent protein (eGFP) fused to the BGAL proteins. BGAL12 is also located in the endoplasmic reticulum. Our study of the AtBGAL transcript accumulation along plant development indicated that all AtBGAL transcript appeared in initial stages of development, both dark- and light-grown seedlings, being AtBGAL1, AtBGAL2 and AtBGAL3 transcripts the predominant ones in the latter condition, mainly in the aerial part and with levels decreasing with age. The high accumulation of transcript of AtBGAL4 in basal internodes and in leaves at the end of development, and their strong increase after treatment both with BL and H 3 BO 3 point to an involvement of BGAL4 in cell wall changes leading to the cease of elongation and increased rigidity. The changes of AtBGAL transcript accumulation in relation to different stages and conditions of plant development, suggest that each of the different gene products have a plant-specific function and provides support for the proposed function of the subfamily a1 BGAL in plant cell wall remodelling for cell expansion or for cell response to stress conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana

    Science.gov (United States)

    Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal

    2015-01-01

    Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296

  19. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rebecca Lyons

    Full Text Available Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.

  20. Structural basis of transcriptional gene silencing mediated by Arabidopsis MOM1.

    Science.gov (United States)

    Nishimura, Taisuke; Molinard, Guillaume; Petty, Tom J; Broger, Larissa; Gabus, Caroline; Halazonetis, Thanos D; Thore, Stéphane; Paszkowski, Jerzy

    2012-02-01

    Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2) as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA-independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.

  1. A Protein Complex Required for Polymerase V Transcripts and RNA- Directed DNA Methylation in Arabidopsis

    KAUST Repository

    Law, Julie A.; Ausí n, Israel; Johnson, Lianna M.; Vashisht, Ajay  A Amar; Zhu, Jian-Kang; Wohlschlegel, James  A A.; Jacobsen, Steven E.

    2010-01-01

    DNA methylation is an epigenetic modification associated with gene silencing. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which is targeted by small interfering RNAs through a pathway termed RNA-directed DNA methylation (RdDM) [1, 2]. Recently, RdDM was shown to require intergenic noncoding (IGN) transcripts that are dependent on the Pol V polymerase. These transcripts are proposed to function as scaffolds for the recruitment of downstream RdDM proteins, including DRM2, to loci that produce both siRNAs and IGN transcripts [3]. However, the mechanism(s) through which Pol V is targeted to specific genomic loci remains largely unknown. Through affinity purification of two known RdDM components, DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1) [4] and DEFECTIVE IN MERISTEM SILENCING 3 (DMS3) [5, 6], we found that they copurify with each other and with a novel protein, RNA-DIRECTED DNA METHYLATION 1 (RDM1), forming a complex we term DDR. We also found that DRD1 copurified with Pol V subunits and that RDM1, like DRD1 [3] and DMS3 [7], is required for the production of Pol V-dependent transcripts. These results suggest that the DDR complex acts in RdDM at a step upstream of the recruitment or activation of Pol V. © 2010 Elsevier Ltd. All rights reserved.

  2. A Protein Complex Required for Polymerase V Transcripts and RNA- Directed DNA Methylation in Arabidopsis

    KAUST Repository

    Law, Julie A.

    2010-05-01

    DNA methylation is an epigenetic modification associated with gene silencing. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which is targeted by small interfering RNAs through a pathway termed RNA-directed DNA methylation (RdDM) [1, 2]. Recently, RdDM was shown to require intergenic noncoding (IGN) transcripts that are dependent on the Pol V polymerase. These transcripts are proposed to function as scaffolds for the recruitment of downstream RdDM proteins, including DRM2, to loci that produce both siRNAs and IGN transcripts [3]. However, the mechanism(s) through which Pol V is targeted to specific genomic loci remains largely unknown. Through affinity purification of two known RdDM components, DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1) [4] and DEFECTIVE IN MERISTEM SILENCING 3 (DMS3) [5, 6], we found that they copurify with each other and with a novel protein, RNA-DIRECTED DNA METHYLATION 1 (RDM1), forming a complex we term DDR. We also found that DRD1 copurified with Pol V subunits and that RDM1, like DRD1 [3] and DMS3 [7], is required for the production of Pol V-dependent transcripts. These results suggest that the DDR complex acts in RdDM at a step upstream of the recruitment or activation of Pol V. © 2010 Elsevier Ltd. All rights reserved.

  3. Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and serrate-1 globular stage embryos of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Daniel Lepe-Soltero

    2017-12-01

    Full Text Available The genome annotation for the model plant Arabidopsis thaliana does not include the primary transcripts from which MIRNAs are processed. Here we present and analyze the raw mRNA sequencing data from wild type and serrate-1 globular stage embryos of A. thaliana, ecotype Columbia. Because SERRATE is required for pri-miRNA processing, these precursors accumulate in serrate-1 mutants, facilitating their detection using standard RNA-Seq protocols. We first use the mapping of the RNA-Seq reads to the reference genome to annotate the potential primary transcripts of MIRNAs expressed in the embryo. We then quantify these pri-miRNAs in wild type and serrate-1 mutants. Finally, we use differential expression analysis to determine which are up-regulated in serrate-1 compared to wild type, to select the best candidates for bona fide pri-miRNAs expressed in the globular stage embryos. In addition, we analyze a previously published RNA-Seq dataset of wild type and dicer-like 1 mutant embryos at the globular stage [1]. Our data are interpreted and discussed in a separate article [2].

  4. Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and serrate-1 globular stage embryos of Arabidopsis thaliana.

    Science.gov (United States)

    Lepe-Soltero, Daniel; Armenta-Medina, Alma; Xiang, Daoquan; Datla, Raju; Gillmor, C Stewart; Abreu-Goodger, Cei

    2017-12-01

    The genome annotation for the model plant Arabidopsis thaliana does not include the primary transcripts from which MIRNAs are processed. Here we present and analyze the raw mRNA sequencing data from wild type and serrate-1 globular stage embryos of A. thaliana , ecotype Columbia. Because SERRATE is required for pri-miRNA processing, these precursors accumulate in serrate-1 mutants, facilitating their detection using standard RNA-Seq protocols. We first use the mapping of the RNA-Seq reads to the reference genome to annotate the potential primary transcripts of MIRNAs expressed in the embryo. We then quantify these pri-miRNAs in wild type and serrate-1 mutants. Finally, we use differential expression analysis to determine which are up-regulated in serrate-1 compared to wild type, to select the best candidates for bona fide pri-miRNAs expressed in the globular stage embryos. In addition, we analyze a previously published RNA-Seq dataset of wild type and dicer-like 1 mutant embryos at the globular stage [1]. Our data are interpreted and discussed in a separate article [2].

  5. Tc-MYBPA an Arabidopsis TT2-like transcription factor and functions in the regulation of proanthocyanidin synthesis in Theobroma cacao.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela N; Payne, Mark J; Guiltinan, Mark J

    2015-06-25

    The flavan-3-ols catechin and epicatechin, and their polymerized oligomers, the proanthocyanidins (PAs, also called condensed tannins), accumulate to levels of up to 15 % of the total weight of dry seeds of Theobroma cacao L. These compounds have been associated with several health benefits in humans. They also play important roles in pest and disease defense throughout the plant. In Arabidopsis, the R2R3 type MYB transcription factor TT2 regulates the major genes leading to the synthesis of PA. To explore the transcriptional regulation of the PA synthesis pathway in cacao, we isolated and characterized an R2R3 type MYB transcription factor MYBPA from cacao. We examined the spatial and temporal gene expression patterns of the Tc-MYBPA gene and found it to be developmentally expressed in a manner consistent with its involvement in PAs and anthocyanin synthesis. Functional complementation of an Arabidopsis tt2 mutant with Tc-MYBPA suggested that it can functionally substitute the Arabidopsis TT2 gene. Interestingly, in addition to PA accumulation in seeds of the Tc-MYBPA expressing plants, we also observed an obvious increase of anthocyanidin accumulation in hypocotyls. We observed that overexpression of the Tc-MYBPA gene resulted in increased expression of several key genes encoding the major structural enzymes of the PA and anthocyanidin pathway, including DFR (dihydroflavanol reductase), LDOX (leucoanthocyanidin dioxygenase) and BAN (ANR, anthocyanidin reductase). We conclude that the Tc-MYBPA gene that encodes an R2R3 type MYB transcription factor is an Arabidopsis TT2 like transcription factor, and may be involved in the regulation of both anthocyanin and PA synthesis in cacao. This research may provide molecular tools for breeding of cacao varieties with improved disease resistance and enhanced flavonoid profiles for nutritional and pharmaceutical applications.

  6. Expression of the sweetpotato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis.

    Science.gov (United States)

    Chu, Hyosub; Jeong, Jae Cheol; Kim, Wook-Jin; Chung, Dong Min; Jeon, Hyo Kon; Ahn, Young Ock; Kim, Sun Ha; Lee, Haeng-Soon; Kwak, Sang-Soo; Kim, Cha Young

    2013-06-01

    R2R3-type MYB transcription factors (TFs) play important roles in transcriptional regulation of anthocyanins. The R2R3-type IbMYB1 is known to be a key regulator of anthocyanin biosynthesis in the storage roots of sweetpotato. We previously showed that transient expression of IbMYB1a led to anthocyanin pigmentation in tobacco leaves. In this article, we generated transgenic Arabidopsis plants expressing the IbMYB1a gene under the control of CaMV 35S promoter, and the sweetpotato SPO and SWPA2 promoters. Overexpression of IbMYBa in transgenic Arabidopsis produced strong anthocyanin pigmentation in seedlings and generated a deep purple color in leaves, stems and seeds. Reverse transcription-polymerase chain reaction analysis showed that IbMYB1a expression induced upregulation of several structural genes in the anthocyanin biosynthetic pathway, including 4CL, CHI, F3'H, DFR, AGT, AAT and GST. Furthermore, overexpression of IbMYB1a led to enhanced expression of the AtTT8 (bHLH) and PAP1/AtMYB75 genes. high-performance liquid chromatography analysis revealed that IbMYB1a expression led to the production of cyanidin as a major core molecule of anthocyanidins in Arabidopsis, as occurs in the purple leaves of sweetpotato (cv. Sinzami). This result shows that the IbMYB1a TF is sufficient to induce anthocyanin accumulation in seedlings, leaves, stems and seeds of Arabidopsis plants. Copyright © Physiologia Plantarum 2012.

  7. The C-terminal region (640-967) of Arabidopsis CPL1 interacts with the abiotic stress- and ABA-responsive transcription factors

    International Nuclear Information System (INIS)

    Bang, Woo Young; Kim, Se Won; Jeong, In Sil; Koiwa, Hisashi; Bahk, Jeong Dong

    2008-01-01

    Proteins in CPL1 family are unique to plants and contain a phosphatase catalytic domain and double-stranded RNA (dsRNA)-binding motifs (DRMs) in a single peptide. Though DRMs are important for the function of Arabidopsis CPL1 in vivo, the role of CPL1 DRM has been obscure. We have isolated two transcription factors, ANAC019 (At1g52890) and AtMYB3 (At1g22640), which specifically interact with the C-terminal region (640-967) of AtCPL1 containing two DRMs. Detailed interaction analysis indicated that AtMYB3 specifically interacted with the first DRM but not with the second DRM in CPL1 C-terminal fragment. GFP-fusion analysis indicated that AtMYB3 localized in nuclei-like CPL1, and its expression is induced by abiotic stress and ABA treatment. These results suggest that AtMYB3 function in abiotic stress signaling in concert with CPL1

  8. Transcriptional responses of Arabidopsis thaliana plants to As (V stress

    Directory of Open Access Journals (Sweden)

    Yuan Joshua S

    2008-08-01

    Full Text Available Abstract Background Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V] and phosphate (Pi. Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V stress. Results Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD (at2g28190, Cu/Zn SOD (at1g08830, as well as an SOD copper chaperone (at1g12520. On the other hand, Fe SODs were strongly repressed in response to As (V stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays. Conclusion Microarray data suggest that As (V induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research.

  9. Structural basis of transcriptional gene silencing mediated by Arabidopsis MOM1.

    Directory of Open Access Journals (Sweden)

    Taisuke Nishimura

    2012-02-01

    Full Text Available Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2 as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA-independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.

  10. AtRTD2: A Reference Transcript Dataset for accurate quantification of alternative splicing and expression changes in Arabidopsis thaliana RNA-seq data

    KAUST Repository

    Zhang, Runxuan

    2016-05-06

    Background Alternative splicing is the major post-transcriptional mechanism by which gene expression is regulated and affects a wide range of processes and responses in most eukaryotic organisms. RNA-sequencing (RNA-seq) can generate genome-wide quantification of individual transcript isoforms to identify changes in expression and alternative splicing. RNA-seq is an essential modern tool but its ability to accurately quantify transcript isoforms depends on the diversity, completeness and quality of the transcript information. Results We have developed a new Reference Transcript Dataset for Arabidopsis (AtRTD2) for RNA-seq analysis containing over 82k non-redundant transcripts, whereby 74,194 transcripts originate from 27,667 protein-coding genes. A total of 13,524 protein-coding genes have at least one alternatively spliced transcript in AtRTD2 such that about 60% of the 22,453 protein-coding, intron-containing genes in Arabidopsis undergo alternative splicing. More than 600 putative U12 introns were identified in more than 2,000 transcripts. AtRTD2 was generated from transcript assemblies of ca. 8.5 billion pairs of reads from 285 RNA-seq data sets obtained from 129 RNA-seq libraries and merged along with the previous version, AtRTD, and Araport11 transcript assemblies. AtRTD2 increases the diversity of transcripts and through application of stringent filters represents the most extensive and accurate transcript collection for Arabidopsis to date. We have demonstrated a generally good correlation of alternative splicing ratios from RNA-seq data analysed by Salmon and experimental data from high resolution RT-PCR. However, we have observed inaccurate quantification of transcript isoforms for genes with multiple transcripts which have variation in the lengths of their UTRs. This variation is not effectively corrected in RNA-seq analysis programmes and will therefore impact RNA-seq analyses generally. To address this, we have tested different genome

  11. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress1[OPEN

    Science.gov (United States)

    Lotkowska, Magda E.; Tohge, Takayuki; Fernie, Alisdair R.; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. PMID:26378103

  12. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana.

    Science.gov (United States)

    Duan, Yanjiao; Jiang, Yuanzhong; Ye, Shenglong; Karim, Abdul; Ling, Zhengyi; He, Yunqiu; Yang, Siqi; Luo, Keming

    2015-05-01

    A salicylic acid-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa , was isolated and characterized. Overexpression of PtrWRKY73 in Arabidopsis thaliana increased resistance to biotrophic pathogens but reduced resistance against necrotrophic pathogens. WRKY transcription factors are commonly involved in plant defense responses. However, limited information is available about the roles of the WRKY genes in poplar defense. In this study, we isolated a salicylic acid (SA)-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa, belonging to group I family and containing two WRKY domains, a D domain and an SP cluster. PtrWRKY73 was expressed predominantly in roots, old leaves, sprouts and stems, especially in phloem and its expression was induced in response to treatment with exogenous SA. PtrWRKY73 was localized to the nucleus of plant cells and exhibited transcriptional activation. Overexpression of PtrWRKY73 in Arabidopsis thaliana resulted in increased resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae (PstDC3000), but more sensitivity to the necrotrophic fungal pathogen Botrytis cinerea. The SA-mediated defense-associated genes, such as PR1, PR2 and PAD4, were markedly up-regulated in transgenic plants overexpressing PtrWRKY73. Arabidopsis non-expressor of PR1 (NPR1) was not affected, whereas a defense-related gene PAL4 had reduced in PtrWRKY73 overexpressor plants. Together, these results indicated that PtrWRKY73 plays a positive role in plant resistance to biotrophic pathogens but a negative effect on resistance against necrotrophic pathogens.

  13. Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis.

    Science.gov (United States)

    Bi, Chao; Ma, Yu; Wang, Xiao-Fang; Zhang, Da-Peng

    2017-11-01

    Nuclear factor Y (NF-Y) family proteins are involved in many developmental processes and responses to environmental cues in plants, but whether and how they regulate phytohormone abscisic acid (ABA) signaling need further studies. In the present study, we showed that over-expression of the NF-YC9 gene confers ABA hypersensitivity in both the early seedling growth and stomatal response, while down-regulation of NF-YC9 does not affect ABA response in these processes. We also showed that over-expression of the NF-YC9 gene confers salt and osmotic hypersensitivity in early seedling growth, which is likely to be directly associated with the ABA hypersensitivity. Further, we observed that NF-YC9 physically interacts with the ABA-responsive bZIP transcription factor ABA-INSENSITIVE5 (ABI5), and facilitates the function of ABI5 to bind and activate the promoter of a target gene EM6. Additionally, NF-YC9 up-regulates expression of the ABI5 gene in response to ABA. These findings show that NF-YC9 may be involved in ABA signaling as a positive regulator and likely functions redundantly together with other NF-YC members, and support the model that the NF-YC9 mediates ABA signaling via targeting to and aiding the ABA-responsive transcription factors such as ABI5.

  14. The KNOXI Transcription Factor SHOOT MERISTEMLESS Regulates Floral Fate in Arabidopsis.

    Science.gov (United States)

    Roth, Ohad; Alvarez, John; Levy, Matan; Bowman, John L; Ori, Naomi; Shani, Eilon

    2018-05-09

    Plants have evolved a unique and conserved developmental program that enables the conversion of leaves into floral organs. Elegant genetic and molecular work has identified key regulators of flower meristem identity. However, further understanding of flower meristem specification has been hampered by redundancy and by pleiotropic effects. The KNOXI transcription factor SHOOT MERISTEMLESS (STM) is a well-characterized regulator of shoot apical meristem maintenance. Arabidopsis thaliana stm loss-of-function mutants arrest shortly after germination, and therefore the knowledge on later roles of STM in later processes, including flower development, is limited. Here, we uncover a role for STM in the specification of flower meristem identity. Silencing STM in the APETALA1 (AP1) expression domain in the ap1-4 mutant background resulted in a leafy-flower phenotype, and an intermediate stm-2 allele enhanced the flower meristem identity phenotype of ap1-4. Transcriptional profiling of STM perturbation suggested that STM activity affects multiple floral fate genes, among them the F-Box protein-encoding gene UNUSUAL FLORAL ORGANS (UFO). In agreement with this notion, stm-2 enhanced the ufo-2 floral fate phenotype, and ectopic UFO expression rescued the leafy flowers in genetic backgrounds with compromised AP1 and STM activities. This work suggests a genetic mechanism that underlies the activity of STM in the specification of flower meristem identity. © 2018 American Society of Plant Biologists. All rights reserved.

  15. DELLA-induced early transcriptional changes during etiolated development in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Javier Gallego-Bartolomé

    Full Text Available The hormones gibberellins (GAs control a wide variety of processes in plants, including stress and developmental responses. This task largely relies on the activity of the DELLA proteins, nuclear-localized transcriptional regulators that do not seem to have DNA binding capacity. The identification of early target genes of DELLA action is key not only to understand how GAs regulate physiological responses, but also to get clues about the molecular mechanisms by which DELLAs regulate gene expression. Here, we have investigated the global, early transcriptional response triggered by the Arabidopsis DELLA protein GAI during skotomorphogenesis, a developmental program tightly regulated by GAs. Our results show that the induction of GAI activity has an almost immediate effect on gene expression. Although this transcriptional regulation is largely mediated by the PIFs and HY5 transcription factors based on target meta-analysis, additional evidence points to other transcription factors that would be directly involved in DELLA regulation of gene expression. First, we have identified cis elements recognized by Dofs and type-B ARRs among the sequences enriched in the promoters of GAI targets; and second, an enrichment in additional cis elements appeared when this analysis was extended to a dataset of early targets of the DELLA protein RGA: CArG boxes, bound by MADS-box proteins, and the E-box CACATG that links the activity of DELLAs to circadian transcriptional regulation. Finally, Gene Ontology analysis highlights the impact of DELLA regulation upon the homeostasis of the GA, auxin, and ethylene pathways, as well as upon pre-existing transcriptional networks.

  16. GENE EXPRESSION CHANGES IN ARABIDOPSIS THALIANA SEEDLING ROOTS EXPOSED TO THE MUNITION HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE

    Science.gov (United States)

    Arabidopsis thaliana root transcriptome responses to the munition, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), were assessed using serial analysis of gene expression (SAGE). Comparison of the transcriptional profile for the RDX response to a profile previously described for Ar...

  17. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract1[OPEN

    Science.gov (United States)

    Schmiesing, André; Gouhier-Darimont, Caroline

    2016-01-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. PMID:26884488

  18. NTL8 Regulates Trichome Formation in Arabidopsis by Directly Activating R3 MYB Genes TRY and TCL1.

    Science.gov (United States)

    Tian, Hainan; Wang, Xianling; Guo, Hongyan; Cheng, Yuxin; Hou, Chunjiang; Chen, Jin-Gui; Wang, Shucai

    2017-08-01

    The NAM, ATAF1/2, and CUC (NAC) are plant-specific transcription factors that regulate multiple aspects of plant growth and development and plant response to environmental stimuli. We report here the identification of NTM1-LIKE8 (NTL8), a membrane-associated NAC transcription factor, as a novel regulator of trichome formation in Arabidopsis ( Arabidopsis thaliana ). From an activation-tagged Arabidopsis population, we identified a dominant, gain-of-function mutant with glabrous inflorescence stem. By using plasmid rescue and RT-PCR analyses, we found that NTL8 was tagged; thus, the mutant was named ntl8-1 Dominant ( ntl8-1D ). Recapitulation experiment further confirmed that the phenotype observed in the ntl8-1D mutant was caused by elevated expression of NTL8 Quantitative RT-PCR results showed that the expression level of the single-repeat R3 MYB genes TRIPTYCHON ( TRY ) and TRICHOMELESS1 ( TCL1 ) was elevated in the ntl8-1D mutant. Genetic analyses demonstrated that NTL8 acts upstream of TRY and TCL1 in the regulation of trichome formation. When recruited to the promoter region of the reporter gene Gal4:GUS by a fused GAL4 DNA-binding domain, NTL8 activated the expression of the reporter gene. Chromatin immunoprecipitation results indicated that TRY and TCL1 are direct targets of NTL8. However, NTL8 did not interact with SQUAMOSA PROMOTER BINDING PROTEIN LIKE9, another transcription factor that regulates the expression of TRY and TCL1 , in yeast and plant cells. Taken together, our results suggest that NTL8 negatively regulates trichome formation in Arabidopsis by directly activating the expression of TRY and TCL1 . © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Specificity versus redundancy in the RAP2.4 transcription factor family of Arabidopsis thaliana: transcriptional regulation of genes for chloroplast peroxidases.

    Science.gov (United States)

    Rudnik, Radoslaw; Bulcha, Jote Tafese; Reifschneider, Elena; Ellersiek, Ulrike; Baier, Margarete

    2017-08-23

    The Arabidopsis ERFIb / RAP2.4 transcription factor family consists of eight members with highly conserved DNA binding domains. Selected members have been characterized individually, but a systematic comparison is pending. The redox-sensitive transcription factor RAP2.4a mediates chloroplast-to-nucleus redox signaling and controls induction of the three most prominent chloroplast peroxidases, namely 2-Cys peroxiredoxin A (2CPA) and thylakoid- and stromal ascorbate peroxidase (tAPx and sAPx). To test the specificity and redundancy of RAP2.4 transcription factors in the regulation of genes for chloroplast peroxidases, we compared the DNA-binding sites of the transcription factors in tertiary structure models, analyzed transcription factor and target gene regulation by qRT-PCR in RAP2.4, 2-Cys peroxiredoxin and ascorbate peroxidase T-DNA insertion lines and RAP2.4 overexpressing lines of Arabidopsis thaliana and performed promoter binding studies. All RAP2.4 proteins bound the tAPx promoter, but only the four RAP2.4 proteins with identical DNA contact sites, namely RAP2.4a, RAP2.4b, RAP2.4d and RAP2.4h, interacted stably with the redox-sensitive part of the 2CPA promoter. Gene expression analysis in RAP2.4 knockout lines revealed that RAP2.4a is the only one supporting 2CPA and chloroplast APx expression. Rap2.4h binds to the same promoter region as Rap2.4a and antagonizes 2CPA expression. Like the other six RAP2.4 proteins, Rap2.4 h promotes APx mRNA accumulation. Chloroplast ROS signals induced RAP2.4b and RAP2.4d expression, but these two transcription factor genes are (in contrast to RAP2.4a) insensitive to low 2CP availability, and their expression decreased in APx knockout lines. RAP2.4e and RAP2.4f gradually responded to chloroplast APx availability and activated specifically APx expression. These transcription factors bound, like RAP2.4c and RAP2.4g, the tAPx promoter, but hardly the 2CPA promoter. The RAP2.4 transcription factors form an environmentally and

  20. The Arabidopsis Transcription Factor AtTCP15 Regulates Endoreduplication by Modulating Expression of Key Cell-cycle Genes

    Institute of Scientific and Technical Information of China (English)

    Zi-Yu Li; Bin Li; Ai-Wu Dong

    2012-01-01

    Plant cells frequently undergo endoreduplication,a modified cell cycle in which genome is repeatedly replicated without cytokinesis.As the key step to achieve final size and function for cells,endoreduplication is prevalent during plant development.However,mechanisms to control the balance between endoreduplication and mitotic cell division are still poorly understood.Here,we show that the Arabidopsis TCP (CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF)-family transcription factor gene AtTCP15 is expressed in trichomes,as well as in rapidly dividing and vascular tissues.Expression of AtTCP15SRDX,AtTCP15 fused with a SRDX repressor domain,induces extra endoreduplication in trichomes and cotyledon cells in transgenic Arabidopsis.On the contrary,overexpression of AtTCP15 suppresses endoreduplication in trichomes and other examined cells.Misregulation of AtTCP15 affects the expression of several important genes involved in cell-cycle regulation.AtTCP15 protein binds directly to the promoter regions of CYCA2;3 and RETINOBLASTOMA-RELATED (RBR) genes,which play key roles in endoreduplication.Taken together,AtTCP15 plays an important role in regulating endoreduplication during Arabidopsis development.

  1. The Enzyme-Like Domain of Arabidopsis Nuclear β-Amylases Is Critical for DNA Sequence Recognition and Transcriptional Activation.

    Science.gov (United States)

    Soyk, Sebastian; Simková, Klára; Zürcher, Evelyne; Luginbühl, Leonie; Brand, Luise H; Vaughan, Cara K; Wanke, Dierk; Zeeman, Samuel C

    2014-04-01

    Plant BZR1-BAM transcription factors contain a β-amylase (BAM)-like domain, characteristic of proteins involved in starch breakdown. The enzyme-derived domains appear to be noncatalytic, but they determine the function of the two Arabidopsis thaliana BZR1-BAM isoforms (BAM7 and BAM8) during transcriptional initiation. Removal or swapping of the BAM domains demonstrates that the BAM7 BAM domain restricts DNA binding and transcriptional activation, while the BAM8 BAM domain allows both activities. Furthermore, we demonstrate that BAM7 and BAM8 interact on the protein level and cooperate during transcriptional regulation. Site-directed mutagenesis of residues in the BAM domain of BAM8 shows that its function as a transcriptional activator is independent of catalysis but requires an intact substrate binding site, suggesting it may bind a ligand. Microarray experiments with plants overexpressing truncated versions lacking the BAM domain indicate that the pseudo-enzymatic domain increases selectivity for the preferred cis-regulatory element BBRE (BZR1-BAM Responsive Element). Side specificity toward the G-box may allow crosstalk to other signaling networks. This work highlights the importance of the enzyme-derived domain of BZR1-BAMs, supporting their potential role as metabolic sensors. © 2014 American Society of Plant Biologists. All rights reserved.

  2. Polycomb Group Proteins RING1A and RING1B Regulate the Vegetative Phase Transition in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jian Li

    2017-05-01

    Full Text Available Polycomb group (PcG protein-mediated gene silencing is a major regulatory mechanism in higher eukaryotes that affects gene expression at the transcriptional level. Here, we report that two conserved homologous PcG proteins, RING1A and RING1B (RING1A/B, are required for global H2A monoubiquitination (H2Aub in Arabidopsis. The mutation of RING1A/B increased the expression of members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL gene family and caused an early vegetative phase transition. The early vegetative phase transition observed in ring1a ring1b double mutant plants was dependent on an SPL family gene, and the H2Aub status of the chromatin at SPL locus was dependent on RING1A/B. Moreover, mutation in RING1A/B affected the miRNA156a-mediated vegetative phase transition, and RING1A/B and the AGO7-miR390-TAS3 pathway were found to additively regulate this transition in Arabidopsis. Together, our results demonstrate that RING1A/B regulates the vegetative phase transition in Arabidopsis through the repression of SPL family genes.

  3. Specificity determinants for the abscisic acid response element.

    Science.gov (United States)

    Sarkar, Aditya Kumar; Lahiri, Ansuman

    2013-01-01

    Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interaction with ACGT core motif-containing ABRE sequences. We have also examined the variation in the stability of the protein-DNA complex upon mutating ABRE sequences using the protein design algorithm FoldX. The high throughput free energy calculations successfully predicted the ability of ABF1 to bind to alternative core motifs like GCGT or AAGT and also rationalized the role of the flanking sequences in determining the specificity of the protein-DNA interaction.

  4. Short-term exposure of Arabidopsis cell culures to hyper-G: Short-term changes in transcription regulation expression

    Science.gov (United States)

    Babbick, Maren; Hampp, Rudiger

    2005-08-01

    Callus cultures of Arabidopsis thaliana (cv. Columbia) were used to screen for early changes in gene expression in response to altered gravitational fields. In a recent microarray study we found hyper- g dependent changes in gene expression which indicated the involvement of WRKY genes [Martzivanou M. and Hampp R., Physiol. Plant., 118, 221-231,2003]. WRKY genes code for a family of plant-specific regulators of gene expression. In this study we report on the exposure of Arabidopsis callus cultures to 8g for up to 30 min. Quantitative analysis by real time RT-PCR of the amount of transcripts of WRKYs 3, 6, 22, 46, 65 and 70 showed individual changes in expression. As far as their function is known, these WRKY proteins are mainly involved in stress responses. As most alterations in transcript amount occurred within 10 min of treatment, such genes can be used for the investigation of microgravity-related effects on gene expression under sounding rocket conditions (TEXUS, MAXUS).

  5. GmGBP1, a homolog of human ski interacting protein in soybean, regulates flowering and stress tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhang Yanwei

    2013-02-01

    Full Text Available Abstract Background SKIP is a transcription cofactor in many eukaryotes. It can regulate plant stress tolerance in rice and Arabidopsis. But the homolog of SKIP protein in soybean has been not reported up to now. Results In this study, the expression patterns of soybean GAMYB binding protein gene (GmGBP1 encoding a homolog of SKIP protein were analyzed in soybean under abiotic stresses and different day lengths. The expression of GmGBP1 was induced by polyethyleneglycol 6000, NaCl, gibberellin, abscisic acid and heat stress. GmGBP1 had transcriptional activity in C-terminal. GmGBP1 could interact with R2R3 domain of GmGAMYB1 in SKIP domain to take part in gibberellin flowering pathway. In long-day (16 h-light condition, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 exhibited earlier flowering and less number of rosette leaves; Suppression of AtSKIP in Arabidopsis resulted in growth arrest, flowering delay and down-regulation of many flowering-related genes (CONSTANS, FLOWERING LOCUS T, LEAFY; Arabidopsis myb33 mutant plants with ectopic overexpression of GmGBP1 showed the same flowering phenotype with wild type. In short-day (8 h-light condition, transgenic Arabidopsis plants with GmGBP1 flowered later and showed a higher level of FLOWERING LOCUS C compared with wild type. When treated with abiotic stresses, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 enhanced the tolerances to heat and drought stresses but reduced the tolerance to high salinity, and affected the expressions of several stress-related genes. Conclusions In Arabidopsis, GmGBP1 might positively regulate the flowering time by affecting CONSTANS, FLOWERING LOCUS T, LEAFY and GAMYB directly or indirectly in photoperiodic and gibberellin pathways in LDs, but GmGBP1 might represse flowering by affecting FLOWERING LOCUS C and SHORT VEGETATIVE PHASE in autonomous pathway in SDs. GmGBP1 might regulate the activity of ROS-eliminating to improve the

  6. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    Cai, Ronghao; Dai, Wei; Zhang, Congsheng; Wang, Yan; Wu, Min; Zhao, Yang; Ma, Qing; Xiang, Yan; Cheng, Beijiu

    2017-12-01

    We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.

  7. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Regla Bustos

    2010-09-01

    Full Text Available Plants respond to different stresses by inducing or repressing transcription of partially overlapping sets of genes. In Arabidopsis, the PHR1 transcription factor (TF has an important role in the control of phosphate (Pi starvation stress responses. Using transcriptomic analysis of Pi starvation in phr1, and phr1 phr1-like (phl1 mutants and in wild type plants, we show that PHR1 in conjunction with PHL1 controls most transcriptional activation and repression responses to phosphate starvation, regardless of the Pi starvation specificity of these responses. Induced genes are enriched in PHR1 binding sequences (P1BS in their promoters, whereas repressed genes do not show such enrichment, suggesting that PHR1(-like control of transcriptional repression responses is indirect. In agreement with this, transcriptomic analysis of a transgenic plant expressing PHR1 fused to the hormone ligand domain of the glucocorticoid receptor showed that PHR1 direct targets (i.e., displaying altered expression after GR:PHR1 activation by dexamethasone in the presence of cycloheximide corresponded largely to Pi starvation-induced genes that are highly enriched in P1BS. A minimal promoter containing a multimerised P1BS recapitulates Pi starvation-specific responsiveness. Likewise, mutation of P1BS in the promoter of two Pi starvation-responsive genes impaired their responsiveness to Pi starvation, but not to other stress types. Phylogenetic footprinting confirmed the importance of P1BS and PHR1 in Pi starvation responsiveness and indicated that P1BS acts in concert with other cis motifs. All together, our data show that PHR1 and PHL1 are partially redundant TF acting as central integrators of Pi starvation responses, both specific and generic. In addition, they indicate that transcriptional repression responses are an integral part of adaptive responses to stress.

  8. DNA topoisomerase 1α promotes transcriptional silencing of transposable elements through DNA methylation and histone lysine 9 dimethylation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Thanh Theresa Dinh

    2014-07-01

    Full Text Available RNA-directed DNA methylation (RdDM and histone H3 lysine 9 dimethylation (H3K9me2 are related transcriptional silencing mechanisms that target transposable elements (TEs and repeats to maintain genome stability in plants. RdDM is mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti-cancer properties that targets DNA topoisomerase 1α (TOP1α was able to de-repress LUCL by reducing its DNA methylation and H3K9me2 levels. Further studies with Arabidopsis top1α mutants showed that TOP1α silences endogenous RdDM loci by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at TEs and repeats. This study assigned a new role in epigenetic silencing to an enzyme that affects DNA topology.

  9. TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica).

    Science.gov (United States)

    Liu, Kaige; Qi, Shuanghui; Li, Dong; Jin, Changyu; Gao, Chenhao; Duan, Shaowei; Feng, Baili; Chen, Mingxun

    2017-01-01

    TRANSPARENT TESTA GLABRA 1 of Arabidopsis thaliana (AtTTG1) is a WD40 repeat transcription factor that plays multiple roles in plant growth and development, particularly in seed metabolite production. In the present study, to determine whether SiTTG1 of the phylogenetically distant monocot foxtail millet (Setaria italica) has similar functions, we used transgenic Arabidopsis and Nicotiana systems to explore its activities. We found that SiTTG1 functions as a transcription factor. Overexpression of the SiTTG1 gene rescued many of the mutant phenotypes in Arabidopsis ttg1-13 plants. Additionally, SiTTG1 overexpression fully corrected the reduced expression of mucilage biosynthetic genes, and the induced expression of genes involved in accumulation of seed fatty acids and storage proteins in developing seeds of ttg1-13 plants. Ectopic expression of SiTTG1 restored the sensitivity of the ttg1-13 mutant to salinity and high glucose stresses during germination and seedling establishment, and restored altered expression levels of some stress-responsive genes in ttg1-13 seedlings to the wild type level under salinity and glucose stresses. Our results provide information that will be valuable for understanding the function of TTG1 from monocot to dicot species and identifying a promising target for genetic manipulation of foxtail millet to improve the amount of seed metabolites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Developmental transitions in Arabidopsis are regulated by antisense RNAs resulting from bidirectionally transcribed genes.

    Science.gov (United States)

    Krzyczmonik, Katarzyna; Wroblewska-Swiniarska, Agata; Swiezewski, Szymon

    2017-07-03

    Transcription terminators are DNA elements located at the 3' end of genes that ensure efficient cleavage of nascent RNA generating the 3' end of mRNA, as well as facilitating disengagement of elongating DNA-dependent RNA polymerase II. Surprisingly, terminators are also a potent source of antisense transcription. We have recently described an Arabidopsis antisense transcript originating from the 3' end of a master regulator of Arabidopsis thaliana seed dormancy DOG1. In this review, we discuss the broader implications of our discovery in light of recent developments in yeast and Arabidopsis. We show that, surprisingly, the key features of terminators that give rise to antisense transcription are preserved between Arabidopsis and yeast, suggesting a conserved mechanism. We also compare our discovery to known antisense-based regulatory mechanisms, highlighting the link between antisense-based gene expression regulation and major developmental transitions in plants.

  11. Ectopic expression of soybean gmsbh1 confers aba sensitivity during seed germination and early seedling establishment in transgenic arabidopsis

    International Nuclear Information System (INIS)

    Shu, Y.; Zhou, Y.; Huang, S.; Chen, M.; Huang, L.; Ma, H.

    2017-01-01

    The class I KNOX homeobox transcription factors are known to play an important role in maintenance of plant phenotype, especially leaves and flowers. In this study, a soybean KNOX I homeobox transcription factor, GmSBH1, was analyzed and confirmed to play important roles in the process of seed germination and developing. Real time quantitative PCR assay showed that the transcript level of GmSBH1 in soybean seedlings was modulated by plant hormones, such as IAA, GA, MeJA and ABA.Yeast one-hybrid assay showed that GmSBH1 could bind to the ABRE cis-element. Overexpression of GmSBH1 in Arabidopsis resulted in the abnormal phenotype of flowers and siliques. In GmSBH1 transgenic lines, both seed germination and seedlings growth showed hypersensitive to ABA. Moreover, the expression of ABA-responsive genes, such as ABI3 and ABI5, were increased in the transgenic line seedlings. Taken together, ectopic expression of GmSBH1 could alter the morphology and confer ABA sensitivity during seed germination and early seedling growth in transgenic Arabidopsis. (author)

  12. Can AtTZF1 act as a transcriptional activator or repressor in plants?

    OpenAIRE

    Pomeranz, Marcelo; Zhang, Li; Finer, John; Jang, Jyan-Chyun

    2011-01-01

    In animals, Tandem CCCH Zinc Finger (TZF) proteins can affect gene expression at both transcriptional and post-transcriptional levels. In Arabidopsis thaliana, AtTZF1 is a member of the TZF family characterized by a plant-unique tandem zinc finger motif. AtTZF1 can bind both DNA and RNA in vitro, and it can traffic between the nucleus and cytoplasmic foci. However, no in vivo DNA/RNA targets have been identified so far, and little is known about the molecular mechanisms underlying AtTZF1's pr...

  13. Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence.

    Science.gov (United States)

    Danilova, Maria N; Kudryakova, Natalia V; Doroshenko, Anastasia S; Zabrodin, Dmitry A; Rakhmankulova, Zulfira F; Oelmüller, Ralf; Kusnetsov, Victor V

    2017-03-01

    Cytokinin membrane receptors of the Arabidopsis thaliana AHK2 and AHK3 play opposite roles in the expression of plastid genes and genes for the plastid transcriptional machinery during leaf senescence Loss-of-function mutants of Arabidopsis thaliana were used to study the role of cytokinin receptors in the expression of chloroplast genes during leaf senescence. Accumulation of transcripts of several plastid-encoded genes is dependent on the АНК2/АНК3 receptor combination. АНК2 is particularly important at the final stage of plant development and, unlike АНК3, a positive regulator of leaf senescence. Cytokinin-dependent up-regulation of the nuclear encoded genes for chloroplast RNA polymerases RPOTp and RPOTmp suggests that the hormone controls plastid gene expression, at least in part, via the expression of nuclear genes for the plastid transcription machinery. This is further supported by cytokinin dependent regulation of genes for the nuclear encoded plastid σ-factors, SIG1-6, which code for components of the transcriptional apparatus in chloroplasts.

  14. Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis.

    Science.gov (United States)

    Shi, Haitao; Wei, Yunxie; He, Chaozu

    2016-03-01

    Melatonin (N-acetyl-5-methoxytryptamine) is an important regulator of circadian rhythms and immunity in animals. However, the diurnal changes of endogenous melatonin and melatonin-mediated diurnal change of downstream responses remain unclear in Arabidopsis. Using the publicly available microarray data, we found that the transcript levels of two melatonin synthesis genes (serotonin N-acetyltransferase (SNAT) and caffeate O-methyltransferase (COMT)) and endogenous melatonin level were regulated by diurnal cycles, with different magnitudes of change. Moreover, the transcripts of C-repeat-binding factors (CBFs)/Drought response element Binding 1 factors (DREB1s) were co-regulated by exogenous melatonin and diurnal changes, indicating the possible correlation among clock, endogenous melatonin level and AtCBFs expressions. Interestingly, diurnal change of plant immunity against Pst DC3000 and CIRCADIANCLOCK ASSOCIATED 1 (CCA1) expression were largely lost in AtCBFs knockdown line-amiR-1. Taken together, this study identifies the molecular pathway underlying the diurnal changes of immunity in Arabidopsis. Notably, the diurnal changes of endogenous melatonin may regulate corresponding changes of AtCBF/DREB1s expression and their underlying diurnal cycle of plant immunity and AtCCA1. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Arsheed Hussain Sheikh

    2016-02-01

    Full Text Available AbstractMitogen-activated protein kinase (MAPK cascades are central signalling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs, such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defence as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defence.

  16. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato

    KAUST Repository

    Thirumalaikumar, Venkatesh P.

    2017-06-22

    Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species, and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2 O2 ) levels, and a decrease of the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2 O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2, and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato. This article is protected by copyright. All rights reserved.

  17. Application of HB17, an Arabidopsis class II homeodomain-leucine zipper transcription factor, to regulate chloroplast number and photosynthetic capacity.

    Science.gov (United States)

    Hymus, Graham J; Cai, Suqin; Kohl, Elizabeth A; Holtan, Hans E; Marion, Colleen M; Tiwari, Shiv; Maszle, Don R; Lundgren, Marjorie R; Hong, Melissa C; Channa, Namitha; Loida, Paul; Thompson, Rebecca; Taylor, J Philip; Rice, Elena; Repetti, Peter P; Ratcliffe, Oliver J; Reuber, T Lynne; Creelman, Robert A

    2013-11-01

    Transcription factors are proposed as suitable targets for the control of traits such as yield or food quality in plants. This study reports the results of a functional genomics research effort that identified ATHB17, a transcription factor from the homeodomain-leucine zipper class II family, as a novel target for the enhancement of photosynthetic capacity. It was shown that ATHB17 is expressed natively in the root quiescent centre (QC) from Arabidopsis embryos and seedlings. Analysis of the functional composition of genes differentially expressed in the QC from a knockout mutant (athb17-1) compared with its wild-type sibling revealed the over-representation of genes involved in auxin stimulus, embryo development, axis polarity specification, and plastid-related processes. While no other phenotypes were observed in athb17-1 plants, overexpression of ATHB17 produced a number of phenotypes in Arabidopsis including enhanced chlorophyll content. Image analysis of isolated mesophyll cells of 35S::ATHB17 lines revealed an increase in the number of chloroplasts per unit cell size, which is probably due to an increase in the number of proplastids per meristematic cell. Leaf physiological measurements provided evidence of improved photosynthetic capacity in 35S::ATHB17 lines on a per unit leaf area basis. Estimates of the capacity for ribulose-1,5-bisphosphate-saturated and -limited photosynthesis were significantly higher in 35S::ATHB17 lines.

  18. The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis.

    Science.gov (United States)

    Guo, Weiwei; Zhang, Jinxia; Zhang, Ning; Xin, Mingming; Peng, Huiru; Hu, Zhaorong; Ni, Zhongfu; Du, Jinkun

    2015-01-01

    Heat stress poses a serious threat to global crop production. In efforts that aim to mitigate the adverse effects of heat stress on crops, a variety of genetic tools are being used to develop plants with improved thermotolerance. The characterization of important regulators of heat stress tolerance provides essential information for this aim. In this study, we examine the wheat (Triticum aestivum) NAC transcription factor gene TaNAC2L. High temperature induced TaNAC2L expression in wheat and overexpression of TaNAC2L in Arabidopsis thaliana enhanced acquired heat tolerance without causing obvious alterations in phenotype compared with wild type under normal conditions. TaNAC2L overexpression also activated the expression of heat-related genes in the transgenic Arabidopsis plants, suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-responsive genes. Notably, TaNAC2L is also regulated at the post-translational level and might be degraded via a proteasome-mediated pathway. Thus, this wheat transcription factor may have potential uses in enhancing thermotolerance in crops.

  19. The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Weiwei Guo

    Full Text Available Heat stress poses a serious threat to global crop production. In efforts that aim to mitigate the adverse effects of heat stress on crops, a variety of genetic tools are being used to develop plants with improved thermotolerance. The characterization of important regulators of heat stress tolerance provides essential information for this aim. In this study, we examine the wheat (Triticum aestivum NAC transcription factor gene TaNAC2L. High temperature induced TaNAC2L expression in wheat and overexpression of TaNAC2L in Arabidopsis thaliana enhanced acquired heat tolerance without causing obvious alterations in phenotype compared with wild type under normal conditions. TaNAC2L overexpression also activated the expression of heat-related genes in the transgenic Arabidopsis plants, suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-responsive genes. Notably, TaNAC2L is also regulated at the post-translational level and might be degraded via a proteasome-mediated pathway. Thus, this wheat transcription factor may have potential uses in enhancing thermotolerance in crops.

  20. Unraveling the WRKY transcription factors network in Arabidopsis Thaliana by integrative approach

    Directory of Open Access Journals (Sweden)

    Mouna Choura

    2015-06-01

    Full Text Available The WRKY transcription factors superfamily are involved in diverse biological processes in plants including response to biotic and abiotic stresses and plant immunity. Protein-protein interaction network is a useful approach for understanding these complex processes. The availability of Arabidopsis Thaliana interactome offers a good opportunity to do get a global view of protein network. In this work, we have constructed the WRKY transcription factor network by combining different sources of evidence and we characterized its topological features using computational tools. We found that WRKY network is a hub-based network involving multifunctional proteins denoted as hubs such as WRKY 70, WRKY40, WRKY 53, WRKY 60, WRKY 33 and WRKY 51. Functional annotation showed seven functional modules particularly involved in biotic stress and defense responses. Furthermore, the gene ontology and pathway enrichment analysis revealed that WRKY proteins are mainly involved in plant-pathogen interaction pathways and their functions are directly related to the stress response and immune system process.

  1. The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants.

    Science.gov (United States)

    Cabello, Julieta V; Giacomelli, Jorge I; Piattoni, Claudia V; Iglesias, Alberto A; Chan, Raquel L

    2016-03-20

    HaHB11 is a member of the sunflower homeodomain-leucine zipper I subfamily of transcription factors. The analysis of a sunflower microarray hybridized with RNA from HaHB11-transformed leaf-disks indicated the regulation of many genes encoding enzymes from glycolisis and fermentative pathways. A 1300bp promoter sequence, fused to the GUS reporter gene, was used to transform Arabidopsis plants showing an induction of expression after flooding treatments, concurrently with HaHB11 regulation by submergence in sunflower. Arabidopsis transgenic plants expressing HaHB11 under the control of the CaMV 35S promoter and its own promoter were obtained and these plants exhibited significant increases in rosette and stem biomass. All the lines produced more seeds than controls and particularly, those of high expression level doubled seeds yield. Transgenic plants also showed tolerance to flooding stress, both to submergence and waterlogging. Carbohydrates contents were higher in the transgenics compared to wild type and decreased less after submergence treatments. Finally, transcript levels of selected genes involved in glycolisis and fermentative pathways as well as the corresponding enzymatic activities were assessed both, in sunflower and transgenic Arabidopsis plants, before and after submergence. Altogether, the present work leads us to propose HaHB11 as a biotechnological tool to improve crops yield, biomass and flooding tolerance. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Arabidopsis CDS blastp result: AK242412 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242412 J080076J05 At1g21450.1 68414.m02682 scarecrow-like transcription factor 1 ...(SCL1) identical to scarecrow-like 1 GB:AAF21043 GI:6644390 from [Arabidopsis thaliana] 1e-36 ...

  3. Arabidopsis CDS blastp result: AK243131 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243131 J100030A12 At1g21450.1 68414.m02682 scarecrow-like transcription factor 1 ...(SCL1) identical to scarecrow-like 1 GB:AAF21043 GI:6644390 from [Arabidopsis thaliana] 4e-46 ...

  4. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    Science.gov (United States)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  5. Changes in transcript expression patterns as a result of cryoprotectant treatment and liquid nitrogen exposure in Arabidopsis shoot tips.

    Science.gov (United States)

    Gross, Briana L; Henk, Adam D; Bonnart, Remi; Volk, Gayle M

    2017-03-01

    Transcripts related to abiotic stress, oxidation, and wounding were differentially expressed in Arabidopsis shoot tips in response to cryoprotectant and liquid nitrogen treatment. Cryopreservation methods have been implemented in genebanks as a strategy to back-up plant genetic resource collections that are vegetatively propagated. Cryopreservation is frequently performed using vitrification methods, whereby shoot tips are treated with cryoprotectant solutions, such as Plant Vitrification Solution 2 (PVS2) or Plant Vitrification Solution 3 (PVS3); these solutions remove and/or replace freezable water within the meristem cells. We used the model system Arabidopsis thaliana to identify suites of transcripts that are up- or downregulated in response to PVS2 and PVS3 treatment and liquid nitrogen (LN) exposure. Our results suggest that there are many changes in transcript expression in shoot tips as a result of cryoprotection and that these changes exceed the number detected as a result of LN exposure. In total, 180 transcripts showed significant changes in expression level unique to treatment with either the cryoprotectant or cryopreservation followed by recovery. Of these 180 transcripts, 67 were related to stress, defense, wounding, lipid, carbohydrate, abscisic acid, oxidation, temperature (cold/heat), or osmoregulation. The responses of five transcripts were confirmed using qPCR methods. The transcripts responding to PVS2 + LN suggest an oxidative response to this treatment, whereas the PVS3 + LN treatment invoked a more general metabolic response. This work shows that the choice of cryoprotectant can have a major influence on the patterns of transcript expression, presumably due to the level and extent of stress experienced by the shoot tip. As a result, there may be divergent responses of study systems to PVS2 and PVS3 treatments.

  6. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model

    Directory of Open Access Journals (Sweden)

    Ingkasuwan Papapit

    2012-08-01

    Full Text Available Abstract Background Starch serves as a temporal storage of carbohydrates in plant leaves during day/night cycles. To study transcriptional regulatory modules of this dynamic metabolic process, we conducted gene regulation network analysis based on small-sample inference of graphical Gaussian model (GGM. Results Time-series significant analysis was applied for Arabidopsis leaf transcriptome data to obtain a set of genes that are highly regulated under a diurnal cycle. A total of 1,480 diurnally regulated genes included 21 starch metabolic enzymes, 6 clock-associated genes, and 106 transcription factors (TF. A starch-clock-TF gene regulation network comprising 117 nodes and 266 edges was constructed by GGM from these 133 significant genes that are potentially related to the diurnal control of starch metabolism. From this network, we found that β-amylase 3 (b-amy3: At4g17090, which participates in starch degradation in chloroplast, is the most frequently connected gene (a hub gene. The robustness of gene-to-gene regulatory network was further analyzed by TF binding site prediction and by evaluating global co-expression of TFs and target starch metabolic enzymes. As a result, two TFs, indeterminate domain 5 (AtIDD5: At2g02070 and constans-like (COL: At2g21320, were identified as positive regulators of starch synthase 4 (SS4: At4g18240. The inference model of AtIDD5-dependent positive regulation of SS4 gene expression was experimentally supported by decreased SS4 mRNA accumulation in Atidd5 mutant plants during the light period of both short and long day conditions. COL was also shown to positively control SS4 mRNA accumulation. Furthermore, the knockout of AtIDD5 and COL led to deformation of chloroplast and its contained starch granules. This deformity also affected the number of starch granules per chloroplast, which increased significantly in both knockout mutant lines. Conclusions In this study, we utilized a systematic approach of microarray

  7. Functional characterization of TRICHOMELESS2, a new single-repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Gan Lijun

    2011-12-01

    Full Text Available Abstract Background Single-repeat R3 MYB transcription factors (single-repeat MYBs play important roles in controlling trichome patterning in Arabidopsis. It was proposed that single-repeat MYBs negatively regulate trichome formation by competing with GLABRA1 (GL1 for binding GLABRA3/ENHANCER OF GLABRA3 (GL3/EGL3, thus inhibiting the formation of activator complex TTG1(TRANSPARENT TESTA GLABRA1-GL3/EGL3-GL1 that is required for the activation of GLABRA2 (GL2, whose product is a positive regulator of trichome formation. Previously we identified a novel single-repeat MYB transcription factor, TRICHOMELESS1 (TCL1, which negatively regulates trichome formation on the inflorescence stems and pedicels by directly suppressing the expression of GL1. Results We analyzed here the role of TRICHOMELESS2 (TCL2, a previously-uncharacterized single-repeat MYB transcription factor in trichome patterning in Arabidopsis. We showed that TCL2 is closely related to TCL1, and like TCL1 and other single-repeat MYBs, TCL2 interacts with GL3. Overexpression of TCL2 conferred glabrous phenotype while knockdown of TCL2 via RNAi induced ectopic trichome formation on the inflorescence stems and pedicels, a phenotype that was previously observed in tcl1 mutants. These results suggested that TCL2 may have overlapping function with TCL1 in controlling trichome formation on inflorescences. On the other hand, although the transcription of TCL2, like TCL1, is not controlled by the activator complex formed by GL1 and GL3, and TCL2 and TCL1 proteins are more than 80% identical at the amino acid level, the expression of TCL2 under the control of TCL1 promoter only partially recovered the mutant phenotype of tcl1, implying that TCL2 and TCL1 are not fully functional equivalent. Conclusions TCL2 function redundantly with TCL1 in controlling trichome formation on inflorescences, but they are not fully functional equivalent. Transcription of TCL2 is not controlled by activator complex

  8. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lilian Ricaud

    Full Text Available ATM (Ataxia Telangiectasia Mutated is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT. To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT and homozygous ATM-deficient mutants challenged with a dose of gamma-rays (IR that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of

  9. Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes.

    Science.gov (United States)

    Yan, Qingqing; Xia, Xi; Sun, Zhenfei; Fang, Yuda

    2017-03-01

    Serine/arginine-rich (SR) proteins are important splicing factors which play significant roles in spliceosome assembly and splicing regulation. However, little is known regarding their biological functions in plants. Here, we analyzed the phenotypes of mutants upon depleting different subfamilies of Arabidopsis SR proteins. We found that loss of the functions of SC35 and SC35-like (SCL) proteins cause pleiotropic changes in plant morphology and development, including serrated leaves, late flowering, shorter roots and abnormal silique phyllotaxy. Using RNA-seq, we found that SC35 and SCL proteins play roles in the pre-mRNA splicing. Motif analysis revealed that SC35 and SCL proteins preferentially bind to a specific RNA sequence containing the AGAAGA motif. In addition, the transcriptions of a subset of genes are affected by the deletion of SC35 and SCL proteins which interact with NRPB4, a specific subunit of RNA polymerase II. The splicing of FLOWERING LOCUS C (FLC) intron1 and transcription of FLC were significantly regulated by SC35 and SCL proteins to control Arabidopsis flowering. Therefore, our findings provide mechanistic insight into the functions of plant SC35 and SCL proteins in the regulation of splicing and transcription in a direct or indirect manner to maintain the proper expression of genes and development.

  10. A non-canonical transferred DNA insertion at the BRI1 locus in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Zhong; Zhu, Yan; Erhardt, Mathieu; Ruan, Ying; Shen, Wen-Hui

    2009-04-01

    Agrobacterium-mediated transformation is widely used in transgenic plant engineering and has been proven to be a powerful tool for insertional mutagenesis of the plant genome. The transferred DNA (T-DNA) from Agrobacterium is integrated into the plant genome through illegitimate recombination between the T-DNA and the plant DNA. Contrasting to the canonical insertion, here we report on a locus showing a complex mutation associated with T-DNA insertion at the BRI1 gene in Arabidopsis thaliana. We obtained a mutant line, named salade for its phenotype of dwarf stature and proliferating rosette. Molecular characterization of this mutant revealed that in addition to T-DNA a non-T-DNA-localized transposon from bacteria was inserted in the Arabidopsis genome and that a region of more than 11.5 kb of the Arabidopsis genome was deleted at the insertion site. The deleted region contains the brassinosteroid receptor gene BRI1 and the transcription factor gene WRKY13. Our finding reveals non-canonical T-DNA insertion, implicating horizontal gene transfer and cautioning the use of T-DNA as mutagen in transgenic research.

  11. Integrated Analysis of the Effects of Cold and Dehydration on Rice Metabolites, Phytohormones, and Gene Transcripts1[W][OPEN

    Science.gov (United States)

    Maruyama, Kyonoshin; Urano, Kaoru; Yoshiwara, Kyouko; Morishita, Yoshihiko; Sakurai, Nozomu; Suzuki, Hideyuki; Kojima, Mikiko; Sakakibara, Hitoshi; Shibata, Daisuke; Saito, Kazuki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2014-01-01

    Correlations between gene expression and metabolite/phytohormone levels under abiotic stress conditions have been reported for Arabidopsis (Arabidopsis thaliana). However, little is known about these correlations in rice (Oryza sativa ‘Nipponbare’), despite its importance as a model monocot. We performed an integrated analysis to clarify the relationships among cold- and dehydration-responsive metabolites, phytohormones, and gene transcription in rice. An integrated analysis of metabolites and gene expression indicated that several genes encoding enzymes involved in starch degradation, sucrose metabolism, and the glyoxylate cycle are up-regulated in rice plants exposed to cold or dehydration and that these changes are correlated with the accumulation of glucose (Glc), fructose, and sucrose. In particular, high expression levels of genes encoding isocitrate lyase and malate synthase in the glyoxylate cycle correlate with increased Glc levels in rice, but not in Arabidopsis, under dehydration conditions, indicating that the regulation of the glyoxylate cycle may be involved in Glc accumulation under dehydration conditions in rice but not Arabidopsis. An integrated analysis of phytohormones and gene transcripts revealed an inverse relationship between abscisic acid (ABA) signaling and cytokinin (CK) signaling under cold and dehydration stresses; these stresses increase ABA signaling and decrease CK signaling. High levels of Oryza sativa 9-cis-epoxycarotenoid dioxygenase transcripts correlate with ABA accumulation, and low levels of Cytochrome P450 (CYP) 735A transcripts correlate with decreased levels of a CK precursor in rice. This reduced expression of CYP735As occurs in rice but not Arabidopsis. Therefore, transcriptional regulation of CYP735As might be involved in regulating CK levels under cold and dehydration conditions in rice but not Arabidopsis. PMID:24515831

  12. The Arabidopsis Phytocystatin AtCYS5 Enhances Seed Germination and Seedling Growth under Heat Stress Conditions.

    Science.gov (United States)

    Song, Chieun; Kim, Taeyoon; Chung, Woo Sik; Lim, Chae Oh

    2017-08-01

    Phytocystatins (PhyCYSs) are plant-specific proteinaceous inhibitors that are implicated in protein turnover and stress responses. Here, we characterized a PhyCYS from Arabidopsis thaliana , which was designated AtCYS5. RT-qPCR analysis showed that the expression of AtCYS5 in germinating seeds was induced by heat stress (HS) and exogenous abscisic acid (ABA) treatment. Analysis of the expression of the β -glucuronidase reporter gene under the control of the AtCYS5 promoter showed that AtCYS5 expression during seed germination was induced by HS and ABA. Constitutive overexpression of AtCYS5 driven by the cauliflower mosaic virus 35S promoter led to enhanced HS tolerance in transgenic Arabidopsis , which was characterized by higher fresh weight and root length compared to wild-type (WT) and knockout ( cys5 ) plants grown under HS conditions. The HS tolerance of At-CYS5 -overexpressing transgenic plants was associated with increased insensitivity to exogenous ABA during both seed germination and post-germination compared to WT and cys5 . Although no HS elements were identified in the 5'-flanking region of AtCYS5 , canonical ABA-responsive elements (ABREs) were detected. AtCYS5 was upregulated in ABA-treated protoplasts transiently co-expressing this gene and genes encoding bZIP ABRE-binding factors (ABFs and AREB3). In the absence of ABA, ABF1 and ABF3 directly bound to the ABREs in the AtCYS5 promoter, which activated the transcription of this gene in the presence of ABA. These results suggest that an ABA-dependent pathway plays a positive role in the HS-responsive expression of AtCYS5 during seed germination and post-germination growth.

  13. Regulation of Arabidopsis Early Anther Development by Putative Cell-Cell Signaling Molecules and Transcriptional Regulators

    Institute of Scientific and Technical Information of China (English)

    Yu-Jin Sun; Carey LH Hord; Chang-Bin Chen; Hong Ma

    2007-01-01

    Anther development in flowering plants involves the formation of several cell types, including the tapetal and pollen mother cells. The use of genetic and molecular tools has led to the identification and characterization of genes that are critical for normal cell division and differentiation in Arabidopsis early anther development. We review here several recent studies on these genes, including the demonstration that the putative receptor protein kinases BAM1 and BAM2 together play essential roles in the control of early cell division and differentiation. In addition, we discuss the hypothesis that BAM1/2 may form a positive-negative feedback regulatory loop with a previously identified key regulator, SPOROCYTELESS (also called NOZZLE),to control the balance between sporogenous and somatic cell types in the anther. Furthermore, we summarize the isolation and functional analysis of the DYSFUNCTIONAL TAPETUM1 (DYT1) gene in promoting proper tapetal cell differentiation. Our finding that DYT1 encodes a putative transcription factor of the bHLH family, as well as relevant expression analyses, strongly supports a model that DYT1 serves as a critical link between upstream factors and downstream target genes that are critical for normal tapetum development and function. These studies, together with other recently published works, indicate that cell-cell communication and transcriptional control are key processes essential for cell fate specification in anther development.

  14. Activator Protein-1: redox switch controlling structure and DNA-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.; Rudenko, Gabby (Texas-MED); (Icahn)

    2017-09-07

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.

  15. Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana.

    Science.gov (United States)

    Crété, P; Caboche, M; Meyer, C

    1997-04-01

    Higher plant nitrite reductase (NiR) is a monomeric chloroplastic protein catalysing the reduction of nitrite, the product of nitrate reduction, to ammonium. The expression of this enzyme is controlled at the transcriptional level by light and by the nitrogen source. In order to study the post-transcriptional regulation of NiR, Nicotiana plumbaginifolia and Arabidopsis thaliana were transformed with a chimaeric NiR construct containing the tobacco leaf NiR1 coding sequence driven by the CaMV 35S RNA promoter. Transformed plants did not show any phenotypic difference when compared with the wild-type, although they overexpressed NiR activity in the leaves. When these plants were grown in vitro on media containing either nitrate or ammonium as sole nitrogen source, NiR mRNA derived from transgene expression was constitutively expressed, whereas NiR activity and protein level were strongly reduced on ammonium-containing medium. These results suggest that, together with transcriptional control, post-transcriptional regulation by the nitrogen source is operating on NiR expression. This post-transcriptional regulation of tobacco leaf NiR1 expression was observed not only in the closely related species N. plumbaginifolia but also in the more distant species A. thaliana.

  16. Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress

    OpenAIRE

    Chen Zhixiang; Xiao Yong; Shi Junwei; Lai Zhibing; Chen Han; Xu Xinping

    2010-01-01

    Abstract Background WRKY transcription factors are involved in plant responses to both biotic and abiotic stresses. Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors interact both physically and functionally in plant defense responses. However, their role in plant abiotic stress response has not been directly analyzed. Results We report that the three WRKYs are involved in plant responses to abscisic acid (ABA) and abiotic stress. Through analysis of single, double, and triple muta...

  17. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae

    NARCIS (Netherlands)

    Onkokesung, N.; Reichelt, M.; Doorn, van A.; Schuurink, R.C.; Loon, van J.J.A.; Dicke, M.

    2014-01-01

    Anthocyanins and flavonols are secondary metabolites that can function in plant defence against herbivores. In Arabidopsis thaliana, anthocyanin and flavonol biosynthesis are regulated by MYB transcription factors. Overexpression of MYB75 (oxMYB75) in Arabidopsis results in increasing anthocyanin

  18. The WRKY57 Transcription Factor Affects the Expression of Jasmonate ZIM-Domain Genes Transcriptionally to Compromise Botrytis cinerea Resistance.

    Science.gov (United States)

    Jiang, Yanjuan; Yu, Diqiu

    2016-08-01

    Although necrotrophic pathogens cause many devastating plant diseases, our understanding of the plant defense response to them is limited. Here, we found that loss of function of WRKY57 enhanced the resistance of Arabidopsis (Arabidopsis thaliana) against Botrytis cinerea infection. Further investigation suggested that the negative regulation of WRKY57 against B cinerea depends on the jasmonic acid (JA) signaling pathway. Chromatin immunoprecipitation experiments revealed that WRKY57 directly binds to the promoters of JASMONATE ZIM-DOMAIN1 (JAZ1) and JAZ5, encoding two important repressors of the JA signaling pathway, and activates their transcription. In vivo and in vitro experiments demonstrated that WRKY57 interacts with nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2. Further experiments display that the same domain, the VQ motif, of SIB1 and SIB2 interact with WRKY33 and WRKY57. Moreover, transient transcriptional activity assays confirmed that WRKY57 and WRKY33 competitively regulate JAZ1 and JAZ5, SIB1 and SIB2 further enhance these competitions of WRKY57 to WRKY33. Therefore, coordinated regulation of Arabidopsis against B cinerea by transcription activators and repressors would benefit plants by allowing fine regulation of defense. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Arabidopsis TCP Transcription Factors Interact with the SUMO Conjugating Machinery in Nuclear Foci

    Directory of Open Access Journals (Sweden)

    Magdalena J. Mazur

    2017-11-01

    Full Text Available In Arabidopsis more than 400 proteins have been identified as SUMO targets, both in vivo and in vitro. Among others, transcription factors (TFs are common targets for SUMO conjugation. Here we aimed to exhaustively screen for TFs that interact with the SUMO machinery using an arrayed yeast two-hybrid library containing more than 1,100 TFs. We identified 76 interactors that foremost interact with the SUMO conjugation enzyme SCE1 and/or the SUMO E3 ligase SIZ1. These interactors belong to various TF families, which control a wide range of processes in plant development and stress signaling. Amongst these interactors, the TCP family was overrepresented with several TCPs interacting with different proteins of the SUMO conjugation cycle. For a subset of these TCPs we confirmed that the catalytic site of SCE1 is essential for this interaction. In agreement, TCP1, TCP3, TCP8, TCP14, and TCP15 were readily SUMO modified in an E. coli sumoylation assay. Strikingly, these TCP-SCE1 interactions were found to redistribute these TCPs into nuclear foci/speckles, suggesting that these TCP foci represent sites for SUMO (conjugation activity.

  20. The FOUR LIPS and MYB88 transcription factor genes are widely expressed in Arabidopsis thaliana during development.

    Science.gov (United States)

    Lei, Qin; Lee, EunKyoung; Keerthisinghe, Sandra; Lai, Lien; Li, Meng; Lucas, Jessica R; Wen, Xiaohong; Ren, Xiaolin; Sack, Fred D

    2015-09-01

    The FOUR LIPS (FLP) and MYB88 transcription factors, which are closely related in structure and function, control the development of stomata, as well as entry into megasporogenesis in Arabidopsis thaliana. However, other locations where these transcription factors are expressed are poorly described. Documenting additional locations where these genes are expressed might define new functions for these genes. Expression patterns were examined throughout vegetative and reproductive development. The expression from two transcriptional-reporter fusions were visualized with either β-glucuronidase (GUS) or green fluorescence protein (GFP). Both flp and myb88 genes were expressed in many, previously unreported locations, consistent with the possibility of additional functions for FLP and MYB88. Moreover, expression domains especially of FLP display sharp cutoffs or boundaries. In addition to stomatal and reproductive development, FLP and MYB88, which are R2R3 MYB transcription factor genes, are expressed in many locations in cells, tissues, and organs. © 2015 Botanical Society of America.

  1. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.

    Science.gov (United States)

    Grimberg, Åsa; Carlsson, Anders S; Marttila, Salla; Bhalerao, Rishikesh; Hofvander, Per

    2015-08-08

    Carbon accumulation and remobilization are essential mechanisms in plants to ensure energy transfer between plant tissues with different functions or metabolic needs and to support new generations. Knowledge about the regulation of carbon allocation into oil (triacylglycerol) in plant storage tissue can be of great economic and environmental importance for developing new high-yielding oil crops. Here, the effect on global gene expression as well as on physiological changes in leaves transiently expressing five homologs of the transcription factor WRINKLED1 (WRI1) originating from diverse species and tissues; Arabidopsis thaliana and potato (Solanum tuberosum) seed embryo, poplar (Populus trichocarpa) stem cambium, oat (Avena sativa) grain endosperm, and nutsedge (Cyperus esculentus) tuber parenchyma, were studied by agroinfiltration in Nicotiana benthamiana. All WRI1 homologs induced oil accumulation when expressed in leaf tissue. Transcriptome sequencing revealed that all homologs induced the same general patterns with a drastic shift in gene expression profiles of leaves from that of a typical source tissue to a source-limited sink-like tissue: Transcripts encoding enzymes for plastid uptake and metabolism of phosphoenolpyruvate, fatty acid and oil biosynthesis were up-regulated, as were also transcripts encoding starch degradation. Transcripts encoding enzymes in photosynthesis and starch synthesis were instead down-regulated. Moreover, transcripts representing fatty acid degradation were up-regulated indicating that fatty acids might be degraded to feed the increased need to channel carbons into fatty acid synthesis creating a futile cycle. RT-qPCR analysis of leaves expressing Arabidopsis WRI1 showed the temporal trends of transcripts selected as 'markers' for key metabolic pathways one to five days after agroinfiltration. Chlorophyll fluorescence measurements of leaves expressing Arabidopsis WRI1 showed a significant decrease in photosynthesis, even though

  2. Infection and RNA recombination of Brome mosaic virus in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Dzianott, Aleksandra; Bujarski, Jozef J.

    2004-01-01

    Ecotypes of Arabidopsis thaliana supported the replication and systemic spread of Brome mosaic virus (BMV) RNAs. Infection was induced either by manual inoculation with viral RNA or by BMV virions, demonstrating that virus disassembly did not prevent infection. When in vitro-transcribed BMV RNAs 1-3 were used, production of subgenomic RNA4 was observed, showing that BMV RNA replication and transcription had occurred. Furthermore, inoculations of the transgenic Arabidopsis line that expressed a suppressor of RNA interference (RNAi) pathway markedly increased the BMV RNA concentrations. Inoculations with designed BMV RNA3 recombination vectors generated both homologous and nonhomologous BMV RNA-RNA recombinants. Thus, all cellular factors essential for BMV RNA replication, transcription, and RNA recombination were shown to be present in Arabidopsis. The current scope of understanding of the model Arabidopsis plant system should facilitate the identification of these factors governing the BMV life cycle

  3. WRKY transcription factors involved in PR-1 gene expression in Arabidopsis

    NARCIS (Netherlands)

    Hussain, Rana Muhammad Fraz

    2012-01-01

    Salicylic acid (SA) is involved in mediating defense against biotrophic pathogens. The current knowledge of the SA-mediated signaling pathway and its effect on the transcriptional regulation of defense responses are reviewed in this thesis. PR-1 is a marker gene for systemic acquired resistance

  4. Gravity-regulated gene expression in Arabidopsis thaliana

    Science.gov (United States)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  5. N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins.

    Science.gov (United States)

    Das, Rahul K; Crick, Scott L; Pappu, Rohit V

    2012-02-17

    Basic region leucine zippers (bZIPs) are modular transcription factors that play key roles in eukaryotic gene regulation. The basic regions of bZIPs (bZIP-bRs) are necessary and sufficient for DNA binding and specificity. Bioinformatic predictions and spectroscopic studies suggest that unbound monomeric bZIP-bRs are uniformly disordered as isolated domains. Here, we test this assumption through a comparative characterization of conformational ensembles for 15 different bZIP-bRs using a combination of atomistic simulations and circular dichroism measurements. We find that bZIP-bRs have quantifiable preferences for α-helical conformations in their unbound monomeric forms. This helicity varies from one bZIP-bR to another despite a significant sequence similarity of the DNA binding motifs (DBMs). Our analysis reveals that intramolecular interactions between DBMs and eight-residue segments directly N-terminal to DBMs are the primary modulators of bZIP-bR helicities. We test the accuracy of this inference by designing chimeras of bZIP-bRs to have either increased or decreased overall helicities. Our results yield quantitative insights regarding the relationship between sequence and the degree of intrinsic disorder within bZIP-bRs, and might have general implications for other intrinsically disordered proteins. Understanding how natural sequence variations lead to modulation of disorder is likely to be important for understanding the evolution of specificity in molecular recognition through intrinsically disordered regions (IDRs). Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Age-dependent regulation of ERF-VII transcription factor activity in Arabidopsis thaliana.

    Science.gov (United States)

    Giuntoli, Beatrice; Shukla, Vinay; Maggiorelli, Federica; Giorgi, Federico M; Lombardi, Lara; Perata, Pierdomenico; Licausi, Francesco

    2017-10-01

    The Group VII Ethylene Responsive Factors (ERFs-VII) RAP2.2 and RAP2.12 have been mainly characterized with regard to their contribution as activators of fermentation in plants. However, transcriptional changes measured in conditions that stabilize these transcription factors exceed the mere activation of this biochemical pathway, implying additional roles performed by the ERF-VIIs in other processes. We evaluated gene expression in transgenic Arabidopsis lines expressing a stabilized form of RAP2.12, or hampered in ERF-VII activity, and identified genes affected by this transcriptional regulator and its homologs, including some involved in oxidative stress response, which are not universally induced under anaerobic conditions. The contribution of the ERF-VIIs in regulating this set of genes in response to chemically induced or submergence-stimulated mitochondria malfunctioning was found to depend on the plant developmental stage. A similar age-dependent mechanism also restrained ERF-VII activity upon the core-hypoxic genes, independently of the N-end rule pathway, which is accounted for the control of the anaerobic response. To conclude, this study shed new light on a dual role of ERF-VII proteins under submergence: as positive regulators of the hypoxic response and as repressors of oxidative-stress related genes, depending on the developmental stage at which plants are challenged by stress conditions. © 2017 John Wiley & Sons Ltd.

  7. Methylation of Gibberellins by Arabidopsis GAMT1 and GAMT2

    Energy Technology Data Exchange (ETDEWEB)

    Varbanova,M.; Yamaguchi, S.; Yang, Y.; McKelvey, K.; Hanada, A.; Borochov, R.; Yu, F.; Jikumaru, Y.; Ross, J.; et al

    2007-01-01

    Arabidopsis thaliana GAMT1 and GAMT2 encode enzymes that catalyze formation of the methyl esters of gibberellins (GAs). Ectopic expression of GAMT1 or GAMT2 in Arabidopsis, tobacco (Nicotiana tabacum), and petunia (Petunia hybrida) resulted in plants with GA deficiency and typical GA deficiency phenotypes, such as dwarfism and reduced fertility. GAMT1 and GAMT2 are both expressed mainly in whole siliques (including seeds), with peak transcript levels from the middle until the end of silique development. Within whole siliques, GAMT2 was previously shown to be expressed mostly in developing seeds, and we show here that GAMT1 expression is also localized mostly to seed, suggesting a role in seed development. Siliques of null single GAMT1 and GAMT2 mutants accumulated high levels of various GAs, with particularly high levels of GA1 in the double mutant. Methylated GAs were not detected in wild-type siliques, suggesting that methylation of GAs by GAMT1 and GAMT2 serves to deactivate GAs and initiate their degradation as the seeds mature. Seeds of homozygous GAMT1 and GAMT2 null mutants showed reduced inhibition of germination, compared with the wild type, when placed on plates containing the GA biosynthesis inhibitor ancymidol, with the double mutant showing the least inhibition. These results suggest that the mature mutant seeds contained higher levels of active GAs than wild-type seeds.

  8. The better growth phenotype of DvGS1-transgenic arabidopsis thaliana is attributed to the improved efficiency of nitrogen assimilation

    Directory of Open Access Journals (Sweden)

    Zhu Chenguang

    2015-01-01

    Full Text Available The overexpression of the algal glutamine synthetase (GS gene DvGS1 in Arabidopsis thaliana resulted in higher plant biomass and better growth phenotype. The purpose of this study was to recognize the biological mechanism for the growth improvement of DvGS1-transgenic Arabidopsis. A series of molecular and biochemical investigations related to nitrogen and carbon metabolism in the DvGS1-transgenic line was conducted. Analysis of nitrogen use efficiency (NUE-related gene transcription and enzymatic activity revealed that the transcriptional level and enzymatic activity of the genes encoding GS, glutamate synthase, glutamate dehydrogenase, alanine aminotransferase and aspartate aminotransferase, were significantly upregulated, especially from leaf tissues of the DvGS1-transgenic line under two nitrate conditions. The DvGS1-transgenic line showed increased total nitrogen content and decreased carbon: nitrogen ratio compared to wild-type plants. Significant reduced concentrations of free nitrate, ammonium, sucrose, glucose and starch, together with higher concentrations of total amino acids, individual amino acids (glutamate, aspartate, asparagine, methionine, soluble proteins and fructose in leaf tissues confirmed that the DvGS1-transgenic line demonstrated a higher efficiency of nitrogen assimilation, which subsequently affected carbon metabolism. These improved metabolisms of nitrogen and carbon conferred the DvGS1-transgenic Arabidopsis higher NUE, more biomass and better growth phenotype compared with the wild-type plants.

  9. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa).

    Science.gov (United States)

    Park, Jong-Sug; Kim, Jung-Bong; Cho, Kang-Jin; Cheon, Choong-Ill; Sung, Mi-Kyung; Choung, Myoung-Gun; Roh, Kyung-Hee

    2008-06-01

    The MYB transcription factors play important roles in the regulation of many secondary metabolites at the transcriptional level. We evaluated the possible roles of the Arabidopsis R2R3-MYB transcription factors in flavonoid biosynthesis because they are induced by UV-B irradiation but their associated phenotypes are largely unexplored. We isolated their genes by RACE-PCR, and performed transgenic approach and metabolite analyses in lettuce (Lactuca sativa). We found that one member of this protein family, AtMYB60, inhibits anthocyanin biosynthesis in the lettuce plant. Wild-type lettuce normally accumulates anthocyanin, predominantly cyanidin and traces of delphinidin, and develops a red pigmentation. However, the production and accumulation of anthocyanin pigments in AtMYB60-overexpressing lettuce was inhibited. Using RT-PCR analysis, we also identified the complete absence or reduction of dihydroflavonol 4-reductase (DFR) transcripts in AtMYB60- overexpressing lettuce (AtMYB60-117 and AtMYB60-112 lines). The correlation between the overexpression of AtMYB60 and the inhibition of anthocyanin accumulation suggests that the transcription factorAtMYB60 controls anthocyanin biosynthesis in the lettuce leaf. Clarification of the roles of the AtMYB60 transcription factor will facilitate further studies and provide genetic tools to better understand the regulation in plants of the genes controlled by the MYB-type transcription factors. Furthermore, the characterization of AtMYB60 has implications for the development of new varieties of lettuce and other commercially important plants with metabolic engineering approaches.

  10. Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling.

    Science.gov (United States)

    Schluttenhofer, Craig; Pattanaik, Sitakanta; Patra, Barunava; Yuan, Ling

    2014-06-20

    To combat infection to biotic stress plants elicit the biosynthesis of numerous natural products, many of which are valuable pharmaceutical compounds. Jasmonate is a central regulator of defense response to pathogens and accumulation of specialized metabolites. Catharanthus roseus produces a large number of terpenoid indole alkaloids (TIAs) and is an excellent model for understanding the regulation of this class of valuable compounds. Recent work illustrates a possible role for the Catharanthus WRKY transcription factors (TFs) in regulating TIA biosynthesis. In Arabidopsis and other plants, the WRKY TF family is also shown to play important role in controlling tolerance to biotic and abiotic stresses, as well as secondary metabolism. Here, we describe the WRKY TF families in response to jasmonate in Arabidopsis and Catharanthus. Publically available Arabidopsis microarrays revealed at least 30% (22 of 72) of WRKY TFs respond to jasmonate treatments. Microarray analysis identified at least six jasmonate responsive Arabidopsis WRKY genes (AtWRKY7, AtWRKY20, AtWRKY26, AtWRKY45, AtWRKY48, and AtWRKY72) that have not been previously reported. The Catharanthus WRKY TF family is comprised of at least 48 members. Phylogenetic clustering reveals 11 group I, 32 group II, and 5 group III WRKY TFs. Furthermore, we found that at least 25% (12 of 48) were jasmonate responsive, and 75% (9 of 12) of the jasmonate responsive CrWRKYs are orthologs of AtWRKYs known to be regulated by jasmonate. Overall, the CrWRKY family, ascertained from transcriptome sequences, contains approximately 75% of the number of WRKYs found in other sequenced asterid species (pepper, tomato, potato, and bladderwort). Microarray and transcriptomic data indicate that expression of WRKY TFs in Arabidopsis and Catharanthus are under tight spatio-temporal and developmental control, and potentially have a significant role in jasmonate signaling. Profiling of CrWRKY expression in response to jasmonate treatment

  11. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response.

    Science.gov (United States)

    Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K

    2001-04-01

    Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta.

  12. Isolation and expression analysis of EcbZIP17 from different finger millet genotypes shows conserved nature of the gene.

    Science.gov (United States)

    Chopperla, Ramakrishna; Singh, Sonam; Mohanty, Sasmita; Reddy, Nanja; Padaria, Jasdeep C; Solanke, Amolkumar U

    2017-10-01

    Basic leucine zipper (bZIP) transcription factors comprise one of the largest gene families in plants. They play a key role in almost every aspect of plant growth and development and also in biotic and abiotic stress tolerance. In this study, we report isolation and characterization of EcbZIP17 , a group B bZIP transcription factor from a climate smart cereal, finger millet ( Eleusine coracana L.). The genomic sequence of EcbZIP17 is 2662 bp long encompassing two exons and one intron with ORF of 1722 bp and peptide length of 573 aa. This gene is homologous to AtbZIP17 ( Arabidopsis ), ZmbZIP17 (maize) and OsbZIP60 (rice) which play a key role in endoplasmic reticulum (ER) stress pathway. In silico analysis confirmed the presence of basic leucine zipper (bZIP) and transmembrane (TM) domains in the EcbZIP17 protein. Allele mining of this gene in 16 different genotypes by Sanger sequencing revealed no variation in nucleotide sequence, including the 618 bp long intron. Expression analysis of EcbZIP17 under heat stress exhibited similar pattern of expression in all the genotypes across time intervals with highest upregulation after 4 h. The present study established the conserved nature of EcbZIP17 at nucleotide and expression level.

  13. Seed Dormancy in Arabidopsis Requires Self-Binding Ability of DOG1 Protein and the Presence of Multiple Isoforms Generated by Alternative Splicing.

    Directory of Open Access Journals (Sweden)

    Kazumi Nakabayashi

    2015-12-01

    Full Text Available The Arabidopsis protein DELAY OF GERMINATION 1 (DOG1 is a key regulator of seed dormancy, which is a life history trait that determines the timing of seedling emergence. The amount of DOG1 protein in freshly harvested seeds determines their dormancy level. DOG1 has been identified as a major dormancy QTL and variation in DOG1 transcript levels between accessions contributes to natural variation for seed dormancy. The DOG1 gene is alternatively spliced. Alternative splicing increases the transcriptome and proteome diversity in higher eukaryotes by producing transcripts that encode for proteins with altered or lost function. It can also generate tissue specific transcripts or affect mRNA stability. Here we suggest a different role for alternative splicing of the DOG1 gene. DOG1 produces five transcript variants encoding three protein isoforms. Transgenic dog1 mutant seeds expressing single DOG1 transcript variants from the endogenous DOG1 promoter did not complement because they were non-dormant and lacked DOG1 protein. However, transgenic plants overexpressing single DOG1 variants from the 35S promoter could accumulate protein and showed complementation. Simultaneous expression of two or more DOG1 transcript variants from the endogenous DOG1 promoter also led to increased dormancy levels and accumulation of DOG1 protein. This suggests that single isoforms are functional, but require the presence of additional isoforms to prevent protein degradation. Subsequently, we found that the DOG1 protein can bind to itself and that this binding is required for DOG1 function but not for protein accumulation. Natural variation for DOG1 binding efficiency was observed among Arabidopsis accessions and contributes to variation in seed dormancy.

  14. Arabidopsis MADS-Box Transcription Factor AGL21 Acts as Environmental Surveillance of Seed Germination by Regulating ABI5 Expression.

    Science.gov (United States)

    Yu, Lin-Hui; Wu, Jie; Zhang, Zi-Sheng; Miao, Zi-Qing; Zhao, Ping-Xia; Wang, Zhen; Xiang, Cheng-Bin

    2017-06-05

    Seed germination is a crucial checkpoint for plant survival under unfavorable environmental conditions. Abscisic acid (ABA) signaling plays a vital role in integrating environmental information to regulate seed germination. It has been well known that MCM1/AGAMOUS/DEFICIENS/SRF (MADS)-box transcription factors are key regulators of seed and flower development in Arabidopsis. However, little is known about their functions in seed germination. Here we report that MADS-box transcription factor AGL21 is a negative regulator of seed germination and post-germination growth by controlling the expression of ABA-INSENSITIVE 5 (ABI5) in Arabidopsis. The AGL21-overexpressing plants were hypersensitive to ABA, salt, and osmotic stresses during seed germination and early post-germination growth, whereas agl21 mutants were less sensitive. We found that AGL21 positively regulated ABI5 expression in seeds. Consistently, genetic analyses showed that AGL21 is epistatic to ABI5 in controlling seed germination. Chromatin immunoprecipitation assays further demonstrated that AGL21 could directly bind to the ABI5 promoter in plant cells. Moreover, we found that AGL21 responded to multiple environmental stresses and plant hormones during seed germination. Taken together, our results suggest that AGL21 acts as a surveillance integrator that incorporates environmental cues and endogenous hormonal signals into ABA signaling to regulate seed germination and early post-germination growth. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  15. Transcript Profiling Identifies NAC-Domain Genes Involved in Regulating Wall Ingrowth Deposition in Phloem Parenchyma Transfer Cells of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuzhou Wu

    2018-03-01

    Full Text Available Transfer cells (TCs play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP cells of Arabidopsis leaf veins trans-differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018, as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC-domain family in Arabidopsis play important roles in

  16. LWD–TCP complex activates the morning gene CCA1 in Arabidopsis

    Science.gov (United States)

    Wu, Jing-Fen; Tsai, Huang-Lung; Joanito, Ignasius; Wu, Yi-Chen; Chang, Chin-Wen; Li, Yi-Hang; Wang, Ying; Hong, Jong Chan; Chu, Jhih-Wei; Hsu, Chao-Ping; Wu, Shu-Hsing

    2016-01-01

    A double-negative feedback loop formed by the morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and the evening gene TIMING OF CAB EXPRESSION1 (TOC1) contributes to regulation of the circadian clock in Arabidopsis. A 24-h circadian cycle starts with the peak expression of CCA1 at dawn. Although CCA1 is targeted by multiple transcriptional repressors, including PSEUDO-RESPONSE REGULATOR9 (PRR9), PRR7, PRR5 and CCA1 HIKING EXPEDITION (CHE), activators of CCA1 remain elusive. Here we use mathematical modelling to infer a co-activator role for LIGHT-REGULATED WD1 (LWD1) in CCA1 expression. We show that the TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 proteins act as LWD-interacting transcriptional activators. The concomitant binding of LWD1 and TCP20/TCP22 to the TCP-binding site in the CCA1 promoter activates CCA1. Our study reveals activators of the morning gene CCA1 and provides an action mechanism that ensures elevated expression of CCA1 at dawn to sustain a robust clock. PMID:27734958

  17. LWD-TCP complex activates the morning gene CCA1 in Arabidopsis.

    Science.gov (United States)

    Wu, Jing-Fen; Tsai, Huang-Lung; Joanito, Ignasius; Wu, Yi-Chen; Chang, Chin-Wen; Li, Yi-Hang; Wang, Ying; Hong, Jong Chan; Chu, Jhih-Wei; Hsu, Chao-Ping; Wu, Shu-Hsing

    2016-10-13

    A double-negative feedback loop formed by the morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and the evening gene TIMING OF CAB EXPRESSION1 (TOC1) contributes to regulation of the circadian clock in Arabidopsis. A 24-h circadian cycle starts with the peak expression of CCA1 at dawn. Although CCA1 is targeted by multiple transcriptional repressors, including PSEUDO-RESPONSE REGULATOR9 (PRR9), PRR7, PRR5 and CCA1 HIKING EXPEDITION (CHE), activators of CCA1 remain elusive. Here we use mathematical modelling to infer a co-activator role for LIGHT-REGULATED WD1 (LWD1) in CCA1 expression. We show that the TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 proteins act as LWD-interacting transcriptional activators. The concomitant binding of LWD1 and TCP20/TCP22 to the TCP-binding site in the CCA1 promoter activates CCA1. Our study reveals activators of the morning gene CCA1 and provides an action mechanism that ensures elevated expression of CCA1 at dawn to sustain a robust clock.

  18. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.

    Science.gov (United States)

    Kim, Mi Jung; Jang, In-Cheol; Chua, Nam-Hai

    2016-07-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15 However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression.

    Science.gov (United States)

    Kidokoro, Satoshi; Watanabe, Keitaro; Ohori, Teppei; Moriwaki, Takashi; Maruyama, Kyonoshin; Mizoi, Junya; Myint Phyu Sin Htwe, Nang; Fujita, Yasunari; Sekita, Sachiko; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-02-01

    Soybean (Glycine max) is a globally important crop, and its growth and yield are severely reduced by abiotic stresses, such as drought, heat, and cold. The cis-acting element DRE (dehydration-responsive element)/CRT plays an important role in activating gene expression in response to these stresses. The Arabidopsis DREB1/CBF genes that encode DRE-binding proteins function as transcriptional activators in the cold stress responsive gene expression. In this study, we identified 14 DREB1-type transcription factors (GmDREB1s) from a soybean genome database. The expression of most GmDREB1 genes in soybean was strongly induced by a variety of abiotic stresses, such as cold, drought, high salt, and heat. The GmDREB1 proteins activated transcription via DREs (dehydration-responsive element) in Arabidopsis and soybean protoplasts. Transcriptome analyses using transgenic Arabidopsis plants overexpressing GmDREB1s indicated that many of the downstream genes are cold-inducible and overlap with those of Arabidopsis DREB1A. We then comprehensively analyzed the downstream genes of GmDREB1B;1, which is closely related to DREB1A, using a transient expression system in soybean protoplasts. The expression of numerous genes induced by various abiotic stresses were increased by overexpressing GmDREB1B;1 in soybean, and DREs were the most conserved element in the promoters of these genes. The downstream genes of GmDREB1B;1 included numerous soybean-specific stress-inducible genes that encode an ABA receptor family protein, GmPYL21, and translation-related genes, such as ribosomal proteins. We confirmed that GmDREB1B;1 directly activates GmPYL21 expression and enhances ABRE-mediated gene expression in an ABA-independent manner. These results suggest that GmDREB1 proteins activate the expression of numerous soybean-specific stress-responsive genes under diverse abiotic stress conditions. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  20. A systemic identification approach for primary transcription start site of Arabidopsis miRNAs from multidimensional omics data.

    Science.gov (United States)

    You, Qi; Yan, Hengyu; Liu, Yue; Yi, Xin; Zhang, Kang; Xu, Wenying; Su, Zhen

    2017-05-01

    The 22-nucleotide non-coding microRNAs (miRNAs) are mostly transcribed by RNA polymerase II and are similar to protein-coding genes. Unlike the clear process from stem-loop precursors to mature miRNAs, the primary transcriptional regulation of miRNA, especially in plants, still needs to be further clarified, including the original transcription start site, functional cis-elements and primary transcript structures. Due to several well-characterized transcription signals in the promoter region, we proposed a systemic approach integrating multidimensional "omics" (including genomics, transcriptomics, and epigenomics) data to improve the genome-wide identification of primary miRNA transcripts. Here, we used the model plant Arabidopsis thaliana to improve the ability to identify candidate promoter locations in intergenic miRNAs and to determine rules for identifying primary transcription start sites of miRNAs by integrating high-throughput omics data, such as the DNase I hypersensitive sites, chromatin immunoprecipitation-sequencing of polymerase II and H3K4me3, as well as high throughput transcriptomic data. As a result, 93% of refined primary transcripts could be confirmed by the primer pairs from a previous study. Cis-element and secondary structure analyses also supported the feasibility of our results. This work will contribute to the primary transcriptional regulatory analysis of miRNAs, and the conserved regulatory pattern may be a suitable miRNA characteristic in other plant species.

  1. TOR-inhibitor insensitive-1 (TRIN1) regulates cotyledons greening in Arabidopsis.

    Science.gov (United States)

    Li, Linxuan; Song, Yun; Wang, Kai; Dong, Pan; Zhang, Xueyan; Li, Fuguang; Li, Zhengguo; Ren, Maozhi

    2015-01-01

    Target of Rapamycin (TOR) is an eukaryotic protein kinase and evolutionally conserved from the last eukaryotic common ancestor (LECA) to humans. The growing evidences have shown that TOR signaling acts as a central controller of cell growth and development. The downstream effectors of TOR have been well-identified in yeast and animals by using the immunosuppression agent rapamycin. However, less is known about TOR in plants. This is largely due to the fact that plants are insensitive to rapamycin. In this study, AZD8055 (AZD), the novel ATP-competitive inhibitor of TOR, was employed to decipher the downstream effectors of TOR in Arabidopsis. One AZD insensitive mutant, T O R - i nhibitor i n sensitive- 1 (trin1), was screened from 10,000 EMS-induced mutation seeds. The cotyledons of trin1 can turn green when its seeds were germinated on ½ MS medium supplemented with 2 μM AZD, whereas the cotyledons greening of wild-type (WT) can be completely blocked at this concentration. Through genetic mapping, TRIN1 was mapped onto the long arm of chromosome 2, between markers SGCSNP26 and MI277. Positional cloning revealed that TRIN1 was an allele of ABI4, which encoded an ABA-regulated AP2 domain transcription factor. Plants containing P35S::TRIN1 or P35S::TRIN1-GUS were hypersensitive to AZD treatment and displayed the opposite phenotype observed in trin1. Importantly, GUS signaling was significantly enhanced in P35S::TRIN1-GUS transgenic plants in response to AZD treatment, indicating that suppression of TOR resulted in the accumulation of TRIN1. These observations revealed that TOR controlled seed-to-seedling transition by negatively regulating the stability of TRIN1 in Arabidopsis. For the first time, TRIN1, the downstream effector of TOR signaling, was identified through a chemical genetics approach.

  2. ABA signaling is necessary but not sufficient for RD29B transcriptional memory during successive dehydration stresses in Arabidopsis thaliana.

    Science.gov (United States)

    Virlouvet, Laetitia; Ding, Yong; Fujii, Hiroaki; Avramova, Zoya; Fromm, Michael

    2014-07-01

    Plants subjected to a prior dehydration stress were seen to have altered transcriptional responses during a subsequent dehydration stress for up to 5 days after the initial stress. The abscisic acid (ABA) inducible RD29B gene of Arabidopsis thaliana was strongly induced after the first stress and displayed transcriptional memory with transcript levels nine-fold higher during the second dehydration stress. These increased transcript levels were due to an increased rate of transcription and are associated with an altered chromatin template during the recovery interval between the dehydration stresses. Here we use a combination of promoter deletion/substitutions, mutants in the trans-acting transcription factors and their upstream protein kinases, and treatments with exogenous ABA or dehydration stress to advance our understanding of the features required for transcriptional memory of RD29B. ABA Response Elements (ABREs) are sufficient to confer transcriptional memory on a minimal promoter, although there is a context effect from flanking sequences. Different mutations in Snf1 Related Protein Kinase 2 (SnRK2) genes positively and negatively affected the response, suggesting that this effect is important for transcriptional memory. Although exogenous ABA treatments could prime transcriptional memory, a second ABA treatment was not sufficient to activate transcriptional memory. Therefore, we concluded that transcriptional memory requires ABA and an ABA-independent factor that is induced or activated by a subsequent dehydration stress and directly or indirectly results in a more active RD29B chromatin template. These results advance our knowledge of the cis- and trans-acting factors that are required for transcriptional memory of RD29B. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  3. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1.

    Science.gov (United States)

    Lim, Sun-Hyung; Song, Ji-Hye; Kim, Da-Hye; Kim, Jae Kwang; Lee, Jong-Yeol; Kim, Young-Mi; Ha, Sun-Hwa

    2016-03-01

    RsMYB1, a MYB TF of red radish origin, was characterized as a positive regulator to transcriptionally activate the anthocyanin biosynthetic machinery by itself in Arabidopsis and tobacco plants. Anthocyanins, providing the bright red-orange to blue-violet colors, are flavonoid-derived pigments with strong antioxidant activity that have benefits for human health. We isolated RsMYB1, which encodes an R2R3-MYB transcription factor (TF), from red radish plants (Raphanus sativus L.) that accumulate high levels of anthocyanins. RsMYB1 shows higher expression in red radish than in common white radish, in both leaves and roots, at different growth stages. Consistent with RsMYB1 function as an anthocyanin-promoting TF, red radishes showed higher expression of all six anthocyanin biosynthetic and two anthocyanin regulatory genes. Transient expression of RsMYB1 in tobacco showed that RsMYB1 is a positive regulator of anthocyanin production with better efficiency than the basic helix-loop-helix (bHLH) TF gene B-Peru. Also, the synergistic effect of RsMYB1 with B-Peru was larger than the effect of the MYB TF gene mPAP1D with B-peru. Arabidopsis plants stably expressing RsMYB1 produced red pigmentation throughout the plant, accompanied by up-regulation of the six structural and two regulatory genes for anthocyanin production. This broad transcriptional activation of anthocyanin biosynthetic machinery in Arabidopsis included up-regulation of TRANSPARENT TESTA8, which encodes a bHLH TF. These results suggest that overexpression of RsMYB1 promotes anthocyanin production by triggering the expression of endogenous bHLH genes as potential binding partners for RsMYB1. In addition, RsMYB1-overexpressing Arabidopsis plants had a higher antioxidant capacity than did non-transgenic control plants. Taken together, RsMYB1 is an actively positive regulator for anthocyanins biosynthesis in radish plants and it might be one of the best targets for anthocyanin production by single gene

  4. Cytokinins induce transcriptional reprograming and improve Arabidopsis plant performance under drought and salt stress conditions.

    Directory of Open Access Journals (Sweden)

    Natali Shirron

    2016-10-01

    Full Text Available In nature, annual plants respond to abiotic stresses by activating a specific genetic program leading to early flowering and accelerated senescence. Although, in nature, this phenomenon supports survival under unfavorable environmental conditions, it may have negative agro-economic impacts on crop productivity. Overcoming this genetic programing by cytokinins (CK has recently been shown in transgenic plants that overproduce CK. These transgenic plants displayed a significant increase in plant productivity under drought stress conditions. We investigated the role of CK in reverting the transcriptional program that is activated under abiotic stress conditions and allowing sustainable plant growth. We employed 2 complementary approaches: Ectopic overexpression of CK, and applying exogenous CK to detached Arabidopsis leaves. Transgenic Arabidopsis plants transformed with the isopentyltransferase (IPT gene under the regulation of the senescence associated receptor kinase (SARK promoter displayed a significant drought resistance. A transcriptomic analysis using RNA sequencing was performed to explore the response mechanisms under elevated CK levels during salinity stress. This analysis showed that under such stress, CK triggered transcriptional reprograming that resulted in attenuated stress-dependent inhibition of vegetative growth and delayed premature plant senescence. Our data suggest that elevated CK levels led to stress tolerance by retaining the expression of genes associated with plant growth and metabolism whose expression typically decreases under stress conditions. In conclusion, we hypothesize that CK allows sustainable plant growth under unfavorable environmental conditions by activating gene expression related to growth processes and by preventing the expression of genes related to the activation of premature senescence.

  5. Is VIP1 important for Agrobacterium-mediated transformation?

    Science.gov (United States)

    Shi, Yong; Lee, Lan-Ying; Gelvin, Stanton B

    2014-09-01

    Agrobacterium genetically transforms plants by transferring and integrating T-(transferred) DNA into the host genome. This process requires both Agrobacterium and host proteins. VirE2 interacting protein 1 (VIP1), an Arabidopsis bZIP protein, has been suggested to mediate transformation through interaction with and targeting of VirE2 to nuclei. We examined the susceptibility of Arabidopsis vip1 mutant and VIP1 overexpressing plants to transformation by numerous Agrobacterium strains. In no instance could we detect altered transformation susceptibility. We also used confocal microscopy to examine the subcellular localization of Venus-tagged VirE2 or Venus-tagged VIP1, in the presence or absence of the other untagged protein, in different plant cell systems. We found that VIP1-Venus localized in both the cytoplasm and the nucleus of Arabidopsis roots, agroinfiltrated Nicotiana benthamiana leaves, Arabidopsis mesophyll protoplasts and tobacco BY-2 protoplasts, regardless of whether VirE2 was co-expressed. VirE2 localized exclusively to the cytoplasm of tobacco and Arabidopsis protoplasts, whether in the absence or presence of VIP1 overexpression. In transgenic Arabidopsis plants and agroinfiltrated N. benthamina leaves we could occasionally detect small aggregates of the Venus signal in nuclei, but these were likely to be imagining artifacts. The vast majority of VirE2 remained in the cytoplasm. We conclude that VIP1 is not important for Agrobacterium-mediated transformation or VirE2 subcellular localization. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  6. Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: AtCRK1 Regulates Responses to Continuous Light

    Directory of Open Access Journals (Sweden)

    Abu Imran Baba

    2018-04-01

    Full Text Available The Calcium-Dependent Protein Kinase (CDPK-Related Kinase family (CRKs consists of eight members in Arabidopsis. Recently, AtCRK5 was shown to play a direct role in the regulation of root gravitropic response involving polar auxin transport (PAT. However, limited information is available about the function of the other AtCRK genes. Here, we report a comparative analysis of the Arabidopsis CRK genes, including transcription regulation, intracellular localization, and biological function. AtCRK transcripts were detectable in all organs tested and a considerable variation in transcript levels was detected among them. Most AtCRK proteins localized at the plasma membrane as revealed by microscopic analysis of 35S::cCRK-GFP (Green Fluorescence Protein expressing plants or protoplasts. Interestingly, 35S::cCRK1-GFP and 35S::cCRK7-GFP had a dual localization pattern which was associated with plasma membrane and endomembrane structures, as well. Analysis of T-DNA insertion mutants revealed that AtCRK genes are important for root growth and control of gravitropic responses in roots and hypocotyls. While Atcrk mutants were indistinguishable from wild type plants in short days, Atcrk1-1 mutant had serious growth defects under continuous illumination. Semi-dwarf phenotype of Atcrk1-1 was accompanied with chlorophyll depletion, disturbed photosynthesis, accumulation of singlet oxygen, and enhanced cell death in photosynthetic tissues. AtCRK1 is therefore important to maintain cellular homeostasis during continuous illumination.

  7. Activator Protein-1: redox switch controlling structure and DNA-binding.

    Science.gov (United States)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis.

    Science.gov (United States)

    Nakashima, Kazuo; Fujita, Yasunari; Katsura, Koji; Maruyama, Kyonoshin; Narusaka, Yoshihiro; Seki, Motoaki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-01-01

    ABA-responsive elements (ABREs) are cis-acting elements and basic leucine zipper (bZIP)-type ABRE-binding proteins (AREBs) are transcriptional activators that function in the expression of RD29B in vegetative tissue of Arabidopsis in response to abscisic acid (ABA) treatment. Dehydration-responsive elements (DREs) function as coupling elements of ABRE in the expression of RD29A in response to ABA. Expression analysis using abi3 and abi5 mutants showed that ABI3 and ABI5 play important roles in the expression of RD29B in seeds. Base-substitution analysis showed that two ABREs function strongly and one ABRE coupled with DRE functions weakly in the expression of RD29A in embryos. In a transient transactivation experiment, ABI3, ABI5 and AREB1 activated transcription of a GUS reporter gene driven by the RD29B promoter strongly but these proteins activated the transcription driven by the RD29A promoter weakly. In 35S::ABI3 Arabidopsis plants, the expression of RD29B was up-regulated strongly, but that of RD29A was up-regulated weakly. These results indicate that the expression of RD29B having ABREs in the promoter is up-regulated strongly by ABI3, whereas that of RD29A having one ABRE coupled with DREs in the promoter is up-regulated weakly by ABI3. We compared the expression of 7000 Arabidopsis genes in response to ABA treatment during germination and in the vegetative growth stage, and that in 35S::ABI3 plants using a full-length cDNA microarray. The expression of ABI3- and/or ABA-responsive genes and cis-elements in the promoters are discussed.

  9. A wheat calreticulin gene (TaCRT1) contributes to drought tolerance in transgenic arabidopsis

    International Nuclear Information System (INIS)

    Xiang, V.; Du, C.; Jia, H.; Song, M.; Wang, Y.; Ma, Z.

    2018-01-01

    The TaCRT1 gene is a member of calreticulin (CRT) family in wheat. In our previous study, we showed that transgenic tobacco lines over expressing wheat TaCRT1 showed enhanced tolerance to salt stress. This study aimed to determine whether TaCRT1 over expression would increase drought tolerance in transgenic Arabidopsis. Over expression of TaCRT1 in Arabidopsis plants enhances tolerance to drought stress. However, the transgenic line was found to retard the growth. Moreover, the transgenic line showed decreased water loss but higher sensitivity to exogenous abscisic acid (ABA) compared with the wild type (Col-0). Meanwhile, the transgenic line had the elevated endogenous ABA level. The semi-quantitative RT-PCR (sqRT-PCR) analysis showed that transcription levels of ABA-biosynthesizing gene (NCED3) and ABA-responsive gene (ABF3) were higher in the transgenic line than that in the Col-0 under normal condition. The above results implied that the TaCRT1 might be able to used as a potential target to improve the drought tolerance in crops. (author)

  10. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Carla P. Coelho

    2014-05-01

    Full Text Available Agriculturally important grasses such as rice, maize and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members.

  11. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis.

    Science.gov (United States)

    Coelho, Carla P; Minow, Mark A A; Chalfun-Júnior, Antonio; Colasanti, Joseph

    2014-01-01

    Agriculturally important grasses such as rice, maize, and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP) gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members.

  12. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1

    OpenAIRE

    Furihata, Takashi; Maruyama, Kyonoshin; Fujita, Yasunari; Umezawa, Taishi; Yoshida, Riichiro; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-01-01

    bZIP-type transcription factors AREBs/ABFs bind an abscisic acid (ABA)-responsive cis-acting element named ABRE and transactivate downstream gene expression in Arabidopsis. Because AREB1 overexpression could not induce downstream gene expression, activation of AREB1 requires ABA-dependent posttranscriptional modification. We confirmed that ABA activated 42-kDa kinase activity, which, in turn, phosphorylated Ser/Thr residues of R-X-X-S/T sites in the conserved regions of AREB1. Amino acid subs...

  13. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-Liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  14. Comparative Transcriptome Analyses Reveal Potential Mechanisms of Enhanced Drought Tolerance in Transgenic Salvia Miltiorrhiza Plants Expressing AtDREB1A from Arabidopsis.

    Science.gov (United States)

    Wei, Tao; Deng, Kejun; Wang, Hongbin; Zhang, Lipeng; Wang, Chunguo; Song, Wenqin; Zhang, Yong; Chen, Chengbin

    2018-03-12

    In our previous study, drought-resistant transgenic plants of Salvia miltiorrhiza were produced via overexpression of the transcription factor AtDREB1A. To unravel the molecular mechanisms underpinning elevated drought tolerance in transgenic plants, in the present study we compared the global transcriptional profiles of wild-type (WT) and AtDREB1A -expressing transgenic plants using RNA-sequencing (RNA-seq). Using cluster analysis, we identified 3904 differentially expressed genes (DEGs). Compared with WT plants, 423 unigenes were up-regulated in pRD29A::AtDREB1A-31 before drought treatment, while 936 were down-regulated and 1580 and 1313 unigenes were up- and down-regulated after six days of drought. COG analysis revealed that the 'signal transduction mechanisms' category was highly enriched among these DEGs both before and after drought stress. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation, DEGs associated with "ribosome", "plant hormone signal transduction", photosynthesis", "plant-pathogen interaction", "glycolysis/gluconeogenesis" and "carbon fixation" are hypothesized to perform major functions in drought resistance in AtDREB1A -expressing transgenic plants. Furthermore, the number of DEGs associated with different transcription factors increased significantly after drought stress, especially the AP2/ERF, bZIP and MYB protein families. Taken together, this study substantially expands the transcriptomic information for S. miltiorrhiza and provides valuable clues for elucidating the mechanism of AtDREB1A-mediated drought tolerance in transgenic plants.

  15. Comparative Transcriptome Analyses Reveal Potential Mechanisms of Enhanced Drought Tolerance in Transgenic Salvia Miltiorrhiza Plants Expressing AtDREB1A from Arabidopsis

    Directory of Open Access Journals (Sweden)

    Tao Wei

    2018-03-01

    Full Text Available In our previous study, drought-resistant transgenic plants of Salvia miltiorrhiza were produced via overexpression of the transcription factor AtDREB1A. To unravel the molecular mechanisms underpinning elevated drought tolerance in transgenic plants, in the present study we compared the global transcriptional profiles of wild-type (WT and AtDREB1A-expressing transgenic plants using RNA-sequencing (RNA-seq. Using cluster analysis, we identified 3904 differentially expressed genes (DEGs. Compared with WT plants, 423 unigenes were up-regulated in pRD29A::AtDREB1A-31 before drought treatment, while 936 were down-regulated and 1580 and 1313 unigenes were up- and down-regulated after six days of drought. COG analysis revealed that the ‘signal transduction mechanisms’ category was highly enriched among these DEGs both before and after drought stress. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG annotation, DEGs associated with “ribosome”, “plant hormone signal transduction”, photosynthesis”, “plant-pathogen interaction”, “glycolysis/gluconeogenesis” and “carbon fixation” are hypothesized to perform major functions in drought resistance in AtDREB1A-expressing transgenic plants. Furthermore, the number of DEGs associated with different transcription factors increased significantly after drought stress, especially the AP2/ERF, bZIP and MYB protein families. Taken together, this study substantially expands the transcriptomic information for S. miltiorrhiza and provides valuable clues for elucidating the mechanism of AtDREB1A-mediated drought tolerance in transgenic plants.

  16. Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis

    OpenAIRE

    Rubin, G.; Tohge, T.; Matsuda, F.; Saito, K.; Scheible, W.

    2009-01-01

    Nitrogen (N) and nitrate (NO3-) per se regulate many aspects of plant metabolism, growth, and development. N/NO3- also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO3--induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of e...

  17. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis

    KAUST Repository

    Kim, Hyungsae

    2010-10-05

    Dof proteins are transcription factors that have a conserved single zinc finger DNA-binding domain. In this study, we isolated an activation tagging mutant Dof5.1-D exhibiting an upward-curling leaf phenotype due to enhanced expression of the REV gene that is required for establishing adaxialabaxial polarity. Dof5.1-D plants also had reduced transcript levels for IAA6 and IAA19 genes, indicating an altered auxin biosynthesis in Dof5.1-D. An electrophoretic mobility shift assay using the Dof5.1 DNA-binding motif and the REV promoter region indicated that the DNA-binding domain of Dof5.1 binds to a TAAAGT motif located in the 5′-distal promoter region of the REV promoter. Further, transient and chromatin immunoprecipitation assays verified binding activity of the Dof5.1 DNA-binding motif with the REV promoter. Consistent with binding assays, constitutive over-expression of the Dof5.1 DNA-binding domain in wild-type plants caused a downward-curling phenotype, whereas crossing Dof5.1-D to a rev mutant reverted the upward-curling phenotype of the Dof5.1-D mutant leaf to the wild-type. These results suggest that the Dof5.1 protein directly binds to the REV promoter and thereby regulates adaxialabaxial polarity. © 2010 Blackwell Publishing Ltd.

  18. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis

    KAUST Repository

    Kim, Hyungsae; Kim, Sungjin; Abbasi, Nazia; Bressan, Ray Anthony; Yun, Daejin; Yoo, Sangdong; Kwon, SukYun; Choi, Sangbong

    2010-01-01

    Dof proteins are transcription factors that have a conserved single zinc finger DNA-binding domain. In this study, we isolated an activation tagging mutant Dof5.1-D exhibiting an upward-curling leaf phenotype due to enhanced expression of the REV gene that is required for establishing adaxialabaxial polarity. Dof5.1-D plants also had reduced transcript levels for IAA6 and IAA19 genes, indicating an altered auxin biosynthesis in Dof5.1-D. An electrophoretic mobility shift assay using the Dof5.1 DNA-binding motif and the REV promoter region indicated that the DNA-binding domain of Dof5.1 binds to a TAAAGT motif located in the 5′-distal promoter region of the REV promoter. Further, transient and chromatin immunoprecipitation assays verified binding activity of the Dof5.1 DNA-binding motif with the REV promoter. Consistent with binding assays, constitutive over-expression of the Dof5.1 DNA-binding domain in wild-type plants caused a downward-curling phenotype, whereas crossing Dof5.1-D to a rev mutant reverted the upward-curling phenotype of the Dof5.1-D mutant leaf to the wild-type. These results suggest that the Dof5.1 protein directly binds to the REV promoter and thereby regulates adaxialabaxial polarity. © 2010 Blackwell Publishing Ltd.

  19. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana*

    Science.gov (United States)

    Shakeel, Samina N.; Gao, Zhiyong; Amir, Madiha; Chen, Yi-Feng; Rai, Muneeza Iqbal; Haq, Noor Ul; Schaller, G. Eric

    2015-01-01

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analyses support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Implications of this model for ethylene signaling are discussed. PMID:25814663

  20. The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid

    Directory of Open Access Journals (Sweden)

    Yue Wu

    2012-06-01

    Full Text Available Salicylic acid (SA is an essential hormone in plant immunity, but its receptor has remained elusive for decades. The transcriptional coregulator NPR1 is central to the activation of SA-dependent defense genes, and we previously found that Cys521 and Cys529 of Arabidopsis NPR1's transactivation domain are critical for coactivator function. Here, we demonstrate that NPR1 directly binds SA, but not inactive structural analogs, with an affinity similar to that of other hormone-receptor interactions and consistent with in vivo Arabidopsis SA concentrations. Binding of SA occurs through Cys521/529 via the transition metal copper. Mechanistically, our results suggest that binding of SA causes a conformational change in NPR1 that is accompanied by the release of the C-terminal transactivation domain from the N-terminal autoinhibitory BTB/POZ domain. While NPR1 is already known as a link between the SA signaling molecule and defense-gene activation, we now show that NPR1 is the receptor for SA.

  1. Effect of copy number and spacing of the ACGT and GT cis elements ...

    Indian Academy of Sciences (India)

    Unknown

    cognized by transcription factors of the bZIP family. The core ACGT element occurs at different relative positions in one or more copies upstream of the minimal promoter region. Protein-DNA interaction studies have shown that sequences flanking the ACGT core affect bZIP protein binding specificity. The bZIP transcription ...

  2. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence.

    Science.gov (United States)

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-10-04

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.

  3. Roles of Arabidopsis WRKY3 and WRKY4 Transcription Factors in Plant Responses to Pathogens

    Directory of Open Access Journals (Sweden)

    Fan Baofang

    2008-06-01

    Full Text Available Abstract Background Plant WRKY DNA-binding transcription factors are involved in plant responses to biotic and abiotic responses. It has been previously shown that Arabidopsis WRKY3 and WRKY4, which encode two structurally similar WRKY transcription factors, are induced by pathogen infection and salicylic acid (SA. However, the role of the two WRKY transcription factors in plant disease resistance has not been directly analyzed. Results Both WRKY3 and WRKY4 are nuclear-localized and specifically recognize the TTGACC W-box sequences in vitro. Expression of WRKY3 and WRKY4 was induced rapidly by stress conditions generated by liquid infiltration or spraying. Stress-induced expression of WRKY4 was further elevated by pathogen infection and SA treatment. To determine directly their role in plant disease resistance, we have isolated T-DNA insertion mutants and generated transgenic overexpression lines for WRKY3 and WRKY4. Both the loss-of-function mutants and transgenic overexpression lines were examined for responses to the biotrophic bacterial pathogen Pseudomonas syringae and the necrotrophic fungal pathogen Botrytis cinerea. The wrky3 and wrky4 single and double mutants exhibited more severe disease symptoms and support higher fungal growth than wild-type plants after Botrytis infection. Although disruption of WRKY3 and WRKY4 did not have a major effect on plant response to P. syringae, overexpression of WRKY4 greatly enhanced plant susceptibility to the bacterial pathogen and suppressed pathogen-induced PR1 gene expression. Conclusion The nuclear localization and sequence-specific DNA-binding activity support that WRKY3 and WRKY4 function as transcription factors. Functional analysis based on T-DNA insertion mutants and transgenic overexpression lines indicates that WRKY3 and WRKY4 have a positive role in plant resistance to necrotrophic pathogens and WRKY4 has a negative effect on plant resistance to biotrophic pathogens.

  4. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.

    Science.gov (United States)

    Shi, Yihao; Huang, Jiaying; Sun, Tianshu; Wang, Xuefei; Zhu, Chenqi; Ai, Yuxi; Gu, Hongya

    2017-02-01

    The transcription factors CBF1/2/3 are reported to play a dominant role in the cold responsive network of Arabidopsis by directly regulating the expression levels of cold responsive (COR) genes. In this study, we obtained CRISPR/Cas9-mediated loss-of-function mutants of cbf1∼3. Over 3,000 COR genes identified by RNA-seq analysis showed a slight but significant change in their expression levels in the mutants compared to the wild-type plants after being treated at 4 °C for 12 h. The C-repeat (CRT) motif (5'-CCGAC-3') was enriched in promoters of genes that were up-regulated by CBF2 and CBF3 but not in promoters of genes up-regulated by CBF1. These data suggest that CBF2 and CBF3 play a more important role in directing the cold response by regulating different sets of downstream COR genes. More than 2/3 of COR genes were co-regulated by two or three CBFs and were involved mainly in cellular signal transduction and metabolic processes; less than 1/3 of the genes were regulated by one CBF, and those genes up-regulated were enriched in cold-related abiotic stress responses. Our results indicate that CBFs play an important role in the trade-off between cold tolerance and plant growth through the precise regulation of COR genes in the complicated transcriptional network. © 2016 The Authors. Journal of Integrative Plant Biology Published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  5. Meta-analysis of Arabidopsis KANADI1 direct target genes identifies basic growth-promoting module acting upstream of hormonal signaling pathways

    DEFF Research Database (Denmark)

    Xie, Yakun; Straub, Daniel; Eguen, Teinai Ebimienere

    2015-01-01

    An intricate network of antagonistically acting transcription factors mediates formation of a flat leaf lamina of Arabidopsis thaliana plants. In this context, members of the class III homeodomain leucine zipper (HD-ZIPIII) transcription factor family specify the adaxial domain (future upper side......) of the leaf, while antagonistically acting KANADI transcription factors determine the abaxial domain (future lower side). Here we used an mRNA-seq approach to identify genes regulated by KANADI1 (KAN1) and subsequently performed a meta-analysis approach combining our datasets with published genome......-wide datasets. Our analysis revealed that KAN1 acts upstream of several genes encoding auxin biosynthetic enzymes. When exposed to shade, we find three YUCCA genes, YUC2, YUC5 and YUC8 to be transcriptionally upregulated, which correlates with an increase in the levels of free auxin. When ectopically expressed...

  6. The Voltage-Dependent Anion Channel 1 (AtVDAC1 Negatively Regulates Plant Cold Responses during Germination and Seedling Development in Arabidopsis and Interacts with Calcium Sensor CBL1

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Li

    2013-01-01

    Full Text Available The voltage-dependent anion channel (VDAC, a highly conserved major mitochondrial outer membrane protein, plays crucial roles in energy metabolism and metabolite transport. However, knowledge about the roles of the VDAC family in plants is limited. In this study, we investigated the expression pattern of VDAC1 in Arabidopsis and found that cold stress promoted the accumulation of VDAC1 transcripts in imbibed seeds and mature plants. Overexpression of VDAC1 reduced tolerance to cold stress in Arabidopsis. Phenotype analysis of VDAC1 T-DNA insertion mutant plants indicated that a vdac1 mutant line had faster germination kinetics under cold treatment and showed enhanced tolerance to freezing. The yeast two-hybrid system revealed that VDAC1 interacts with CBL1, a calcium sensor in plants. Like the vdac1, a cbl1 mutant also exhibited a higher seed germination rate. We conclude that both VDAC1 and CBL1 regulate cold stress responses during seed germination and plant development.

  7. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination.

    Science.gov (United States)

    Bi, Chao; Ma, Yu; Wu, Zhen; Yu, Yong-Tao; Liang, Shan; Lu, Kai; Wang, Xiao-Fang

    2017-05-01

    It has been known that ABA INSENSITIVE 5 (ABI5) plays a vital role in regulating seed germination. In the present study, we showed that inhibition of the catalase activity with 3-amino-1,2,4-triazole (3-AT) inhibits seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines. Compared with Col-0, the seeds of abi5 mutants showed more sensitive to 3-AT during seed germination, while the seeds of ABI5-overexpression transgenic lines showed more insensitive. H 2 O 2 showed the same effect on seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines as 3-AT. These results suggest that ROS is involved in the seed germination mediated by ABI5. Further, we observed that T-DNA insertion mutants of the three catalase members in Arabidopsis displayed 3-AT-insensitive or -hypersensitive phenotypes during seed germination, suggesting that these catalase members regulate ROS homeostasis in a highly complex way. ABI5 affects reactive oxygen species (ROS) homeostasis by affecting CATALASE expression and catalase activity. Furthermore, we showed that ABI5 directly binds to the CAT1 promoter and activates CAT1 expression. Genetic evidence supports the idea that CAT1 functions downstream of ABI5 in ROS signaling during seed germination. RNA-sequencing analysis indicates that the transcription of the genes involved in ROS metabolic process or genes responsive to ROS stress is impaired in abi5-1 seeds. Additionally, expression changes in some genes correlative to seed germination were showed due to the change in ABI5 expression under 3-AT treatment. Together, all the findings suggest that ABI5 regulates seed germination at least partly by affecting ROS homeostasis.

  8. Transmission of epi-alleles with MET1-dependent dense methylation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Michael Watson

    Full Text Available DNA methylation in plants targets cytosines in three sequence contexts, CG, CHG and CHH (H representing A, C or T. Each of these patterns has traditionally been associated with distinct DNA methylation pathways with CHH methylation being controlled by the RNA dependent DNA methylation (RdDM pathway employing small RNAs as a guide for the de novo DOMAINS REARRANGED METHYLTRANSFERASE (DRM2, and maintenance DNA METHYLTRANSFERASE1 (MET1 being responsible for faithful propagation of CG methylation. Here we report an unusual 'dense methylation' pattern under the control of MET1, with methylation in all three sequence contexts. We identified epi-alleles of dense methylation at a non coding RNA locus (At4g15242 in Arabidopsis ecotypes, with distinct dense methylation and expression characteristics, which are stably maintained and transmitted in genetic crosses and which can be heritably altered by depletion of MET1. This suggests that, in addition to its classical CG maintenance function, at certain loci MET1 plays a role in creating transcriptional diversity based on the generation of independent epi-alleles. Database inspection identified several other loci with MET1-dependent dense methylation patterns. Arabidopsis ecotypes contain distinct epi-alleles of these loci with expression patterns that inversely correlate with methylation density, predominantly within the transcribed region. In Arabidopsis, dense methylation appears to be an exception as it is only found at a small number of loci. Its presence does, however, highlight the potential for MET1 as a contributor to epigenetic diversity, and it will be interesting to investigate the representation of dense methylation in other plant species.

  9. Arabidopsis CDS blastp result: AK119645 [KOME

    Lifescience Database Archive (English)

    Full Text Available PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-10 ... ...ve / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum and contains ...AK119645 002-130-G05 At1g12980.1 AP2 domain-containing transcription factor, putati

  10. Arabidopsis CDS blastp result: AK101133 [KOME

    Lifescience Database Archive (English)

    Full Text Available F|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-10 ... ...eneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum and contains P...AK101133 J033026F23 At1g12980.1 AP2 domain-containing transcription factor, putative / enhancer of shoot reg

  11. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling

    DEFF Research Database (Denmark)

    Jensen, Michael K; Kjaersgaard, Trine; Nielsen, Michael M.

    2010-01-01

    -termini. Nine of the ten NAC domains analysed bind a previously identified conserved DNA target sequence with a CGT[GA] core, although with different affinities. Likewise, all but one of the NAC proteins analysed is dependent on the C-terminal region for transactivational activity. In silico analyses show......TFs (transcription factors) are modular proteins minimally containing a DBD (DNA-binding domain) and a TRD (transcription regulatory domain). NAC [for NAM (no apical meristem), ATAF, CUC (cup-shaped cotyledon)] proteins comprise one of the largest plant TF families. They are key regulators...... of stress perception and developmental programmes, and most share an N-terminal NAC domain. On the basis of analyses of gene expression data and the phylogeny of Arabidopsis thaliana NAC TFs we systematically decipher structural and functional specificities of the conserved NAC domains and the divergent C...

  12. RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes

    KAUST Repository

    Lee, Keh Chien

    2017-04-11

    The RNA recognition motif of Arabidopsis splicing factor SF1 affects the alternative splicing of FLOWERING LOCUS M pre-mRNA and a heat shock transcription factor HsfA2 pre-mRNA. Splicing factor 1 (SF1) plays a crucial role in 3\\' splice site recognition by binding directly to the intron branch point. Although plant SF1 proteins possess an RNA recognition motif (RRM) domain that is absent in its fungal and metazoan counterparts, the role of the RRM domain in SF1 function has not been characterized. Here, we show that the RRM domain differentially affects the full function of the Arabidopsis thaliana AtSF1 protein under different experimental conditions. For example, the deletion of RRM domain influences AtSF1-mediated control of flowering time, but not the abscisic acid sensitivity response during seed germination. The alternative splicing of FLOWERING LOCUS M (FLM) pre-mRNA is involved in flowering time control. We found that the RRM domain of AtSF1 protein alters the production of alternatively spliced FLM-β transcripts. We also found that the RRM domain affects the alternative splicing of a heat shock transcription factor HsfA2 pre-mRNA, thereby mediating the heat stress response. Taken together, our results suggest the importance of RRM domain for AtSF1-mediated alternative splicing of a subset of genes involved in the regulation of flowering and adaptation to heat stress.

  13. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress.

    Science.gov (United States)

    Lotkowska, Magda E; Tohge, Takayuki; Fernie, Alisdair R; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-11-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  14. The Chromatin Protein DUET/MMD1 Controls Expression of the Meiotic Gene TDM1 during Male Meiosis in Arabidopsis.

    Science.gov (United States)

    Andreuzza, Sébastien; Nishal, Bindu; Singh, Aparna; Siddiqi, Imran

    2015-09-01

    Meiosis produces haploid cells essential for sexual reproduction. In yeast, entry into meiosis activates transcription factors which trigger a transcriptional cascade that results in sequential co-expression of early, middle and late meiotic genes. However, these factors are not conserved, and the factors and regulatory mechanisms that ensure proper meiotic gene expression in multicellular eukaryotes are poorly understood. Here, we report that DUET/MMD1, a PHD finger protein essential for Arabidopsis male meiosis, functions as a transcriptional regulator in plant meiosis. We find that DUET-PHD binds H3K4me2 in vitro, and show that this interaction is critical for function during meiosis. We also show that DUET is required for proper microtubule organization during meiosis II, independently of its function in meiosis I. Remarkably, DUET protein shows stage-specific expression, confined to diplotene. We identify two genes TDM1 and JAS with critical functions in cell cycle transitions and spindle organization in male meiosis, as DUET targets, with TDM1 being a direct target. Thus, DUET is required to regulate microtubule organization and cell cycle transitions during male meiosis, and functions as a direct transcription activator of the meiotic gene TDM1. Expression profiling showed reduced expression of a subset comprising about 12% of a known set of meiosis preferred genes in the duet mutant. Our results reveal the action of DUET as a transcriptional regulator during male meiosis in plants, and suggest that transcription of meiotic genes is under stagewise control in plants as in yeast.

  15. The Function of the Early Trichomes Gene in Arabidopsis and Maize.

    Energy Technology Data Exchange (ETDEWEB)

    Scott Poethig

    2011-12-05

    Lateral organ polarity in Arabidopsis is regulated by antagonistic interactions between genes that promote either adaxial or abaxial identity, but the molecular basis of this interaction is largely unknown. We show that the adaxial regulator ASYMMETRIC LEAVES2 (AS2) is a direct target of the abaxial regulator KANADI1 (KAN1), and that KAN1 represses the transcription of AS2 in abaxial cells. Mutation of a single nucleotide in a KAN1 binding site in the AS2 promoter causes AS2 to be ectopically expressed in abaxial cells, resulting in a dominant, adaxialized phenotype. We also show that the abaxial expression of KAN1 is mediated directly or indirectly by AS2. These results demonstrate that KAN1 acts as a transcriptional repressor and that mutually repressive interactions between KAN1 and AS2 contribute to the establishment of adaxial-abaxial polarity in plants. A screen for mutations that affect the expression of a GFP reporter for KANADI2 produced mutations in two genes, CENTER CITY (CCT) and GRAND CENTRAL (GCT). Mutations in GCT and CCT delay the specification of central and peripheral identity and the globular-to-heart transition, but have little or no effect on the initial growth rate of the embryo. Mutant embryos eventually recover and undergo relatively normal patterning, albeit at an inappropriate size. GCT and CCT were identified as the Arabidopsis orthologs of MED12 and MED13--evolutionarily conserved proteins that act in association with the Mediator complex to negatively regulate transcription. The predicted function of these proteins combined with the effect of gct and cct on embryo development suggests that MED12 and MED13 regulate pattern formation during Arabidopsis embryogenesis by transiently repressing a transcriptional program that interferes with this process. Their mutant phenotype reveals the existence of a previously unknown temporal regulatory mechanism in plant embryogenesis.

  16. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Huang, Quanjun; Wang, Yan; Li, Bin; Chang, Junli; Chen, Mingjie; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2015-11-04

    NAC (NAM, ATAF, and CUC) transcription factors play important roles in plant biological processes, including phytohormone homeostasis, plant development, and in responses to various environmental stresses. TaNAC29 was introduced into Arabidopsis using the Agrobacterium tumefaciens-mediated floral dipping method. TaNAC29-overexpression plants were subjected to salt and drought stresses for examining gene functions. To investigate tolerant mechanisms involved in the salt and drought responses, expression of related marker genes analyses were conducted, and related physiological indices were also measured. Expressions of genes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). A novel NAC transcription factor gene, designated TaNAC29, was isolated from bread wheat (Triticum aestivum). Sequence alignment suggested that TaNAC29 might be located on chromosome 2BS. TaNAC29 was localized to the nucleus in wheat protoplasts, and proved to have transcriptional activation activities in yeast. TaNAC29 was expressed at a higher level in the leaves, and expression levels were much higher in senescent leaves, indicating that TaNAC29 might be involved in the senescence process. TaNAC29 transcripts were increased following treatments with salt, PEG6000, H2O2, and abscisic acid (ABA). To examine TaNAC29 function, transgenic Arabidopsis plants overexpressing TaNAC29 were generated. Germination and root length assays of transgenic plants demonstrated that TaNAC29 overexpression plants had enhanced tolerances to high salinity and dehydration, and exhibited an ABA-hypersensitive response. When grown in the greenhouse, TaNAC29-overexpression plants showed the same tolerance response to salt and drought stresses at both the vegetative and reproductive period, and had delayed bolting and flowering in the reproductive period. Moreover, TaNAC29 overexpression plants accumulated lesser malondialdehyde (MDA), H2O2, while had higher superoxide dismutase (SOD) and

  17. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Kee Hoon Sohn

    2014-10-01

    Full Text Available Plant nucleotide-binding leucine-rich repeat (NB-LRR disease resistance (R proteins recognize specific "avirulent" pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs. How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4 and RRS1 (resistance to Ralstonia solanacearum 1, function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1 mutant encodes an RRS1 allele (RRS1SLH1 with a single amino acid (leucine insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed

  18. Genome-wide identification and comparative analysis of squamosa-promoter binding proteins (sbp) transcription factor family in gossypium raimondii and arabidopsis thaliana

    International Nuclear Information System (INIS)

    Ali, M.A.; Alia, K.B.; Atif, R.M.; Rasulj, I.; Nadeem, H.U.; Shahid, A.; Azeem, F

    2017-01-01

    SQUAMOSA-Promoter Binding Proteins (SBP) are class of transcription factors that play vital role in regulation of plant tissue growth and development. The genes encoding these proteins have not yet been identified in diploid cotton. Thus here, a comprehensive genome wide analysis of SBP genes/proteins was carried out to identify the genes encoding SBP proteins in Gossypium raimondii and Arabidopsis thaliana. We identified 17 SBP genes from Arabidopsis thaliana genome and 30 SBP genes from Gossypium raimondii. Chromosome localization studies revealed the uneven distribution of SBP encoding genes both in the genomes of A. thaliana and G. raimondii. In cotton, five SBP genes were located on chromosome no. 2, while no gene was found on chromosome 9. In A. thaliana, maximum seven SBP genes were identified on chromosome 9, while chromosome 4 did not have any SBP gene. Thus, the SBP gene family might have expanded as a result of segmental as well as tandem duplications in these species. The comparative phylogenetic analysis of Arabidopsis and cotton SBPs revealed the presence of eight groups. The gene structure analysis of SBP encoding genes revealed the presence of one to eleven inrons in both Arabidopsis and G. raimondii. The proteins sharing the same phyletic group mostly demonstrated the similar intron-exon occurrence pattern; and share the common conserved domains. The SBP DNA-binding domain shared 24 absolutely conserved residues in Arabidopsis. The present study can serve as a base for the functional characterization of SBP gene family in Gossypium raimondii. (author)

  19. A plant small polypeptide is a novel component of DNA-binding protein phosphatase 1-mediated resistance to plum pox virus in Arabidopsis.

    Science.gov (United States)

    Castelló, María José; Carrasco, Jose Luis; Navarrete-Gómez, Marisa; Daniel, Jacques; Granot, David; Vera, Pablo

    2011-12-01

    DNA-binding protein phosphatases (DBPs) have been identified as a novel class of plant-specific regulatory factors playing a role in plant-virus interactions. NtDBP1 from tobacco (Nicotiana tabacum) was shown to participate in transcriptional regulation of gene expression in response to virus infection in compatible interactions, and AtDBP1, its closest relative in the model plant Arabidopsis (Arabidopsis thaliana), has recently been found to mediate susceptibility to potyvirus, one of the most speciose taxa of plant viruses. Here, we report on the identification of a novel family of highly conserved small polypeptides that interact with DBP1 proteins both in tobacco and Arabidopsis, which we have designated DBP-interacting protein 2 (DIP2). The interaction of AtDIP2 with AtDBP1 was demonstrated in vivo by bimolecular fluorescence complementation, and AtDIP2 was shown to functionally interfere with AtDBP1 in yeast. Furthermore, reducing AtDIP2 gene expression leads to increased susceptibility to the potyvirus Plum pox virus and to a lesser extent also to Turnip mosaic virus, whereas overexpression results in enhanced resistance. Therefore, we describe a novel family of conserved small polypeptides in plants and identify AtDIP2 as a novel host factor contributing to resistance to potyvirus in Arabidopsis.

  20. Localization of the CAPRICE-ENHANCER OF TRY AND CPC1 chimera protein in Arabidopsis root epidermis.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Kurata, Tetsuya; Wada, Takuji

    2017-09-01

    The CAPRICE (CPC) encodes an R3-type MYB transcription factor, which promotes root-hair differentiation. Previously, we showed that the CPC protein moves from the non-hair cell to the neighboring cell and induces root-hair differentiation in Arabidopsis. In addition, we proposed two cell-to-cell movement signal sequences, S1 and S2, in CPC. However, an S1:2xGFP:S2 chimera protein did not move between root epidermal cells. Here, we show that the S1 and S2 sequences do not confer cell-to-cell movement or nuclear localization ability to a GFP protein. The ENHANCER OF TRY AND CPC1 (ETC1) gene encodes the CPC homolog R3 MYB; this protein does not possess cell-to-cell movement ability or the S1 sequence. To elucidate whether the S1 sequence can induce cell-to-cell movement ability in ETC1, CPCp:S1:ETC1:2xGFP was constructed and introduced into Arabidopsis. Our results indicate that the addition of the S1 sequence was not sufficient for ETC1 to acquire cell-to-cell movement ability.

  1. HBZ and its roles in HTLV-1 oncogenesis

    Directory of Open Access Journals (Sweden)

    Tiejun eZhao

    2012-07-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 causes adult T-cell leukemia (ATL. The minus strand of HTLV-1 provirus encodes a bZIP protein donated as HTLV-1 bZIP factor (HBZ. Among the HTLV-1 regulatory and accessory genes, the tax and HBZ genes were thought to play critical roles in oncogenesis. However, HBZ is the only gene that remains intact and is consistently expressed in all ATL cases, while the tax gene is frequently inactivated by epigenetic modifications or deletion of the 5’LTR. HBZ gene promotes the proliferation of ATL cells through its mRNA form. Moreover, HBZ induces T-cell lymphoma and systemic inflammation in vivo. HBZ fulfills its functions mainly through regulating HTLV-1 5’LTR transcription and modulating a variety of cellular signaling pathways which are related with cell growth, immune response and T-cell differentiation. Taken together, the multiple functions of HBZ render its predominant function in leukemogenesis of ATL.

  2. VvVHP1; 2 Is Transcriptionally Activated by VvMYBA1 and Promotes Anthocyanin Accumulation of Grape Berry Skins via Glucose Signal

    OpenAIRE

    Sun, Tianyu; Xu, Lili; Sun, Hong; Yue, Qianyu; Zhai, Heng; Yao, Yuxin

    2017-01-01

    In this work, four vacuolar H+-PPase (VHP) genes were identified in the grape genome. Among them, VvVHP1; 2 was strongly expressed in berry skin and its expression exhibited high correlations to anthocyanin content of berry skin during berry ripening and under ABA and UVB treatments. VvVHP1; 2 was transcriptionally activated directly by VvMYBA1, and VvVHP1; 2 overexpression promoted anthocyanin accumulation in berry skins and Arabidopsis leaves; therefore, VvVHP1; 2 mediated VvMYBA1-regulated...

  3. Speeding cis-trans regulation discovery by phylogenomic analyses coupled with screenings of an arrayed library of Arabidopsis transcription factors.

    Directory of Open Access Journals (Sweden)

    Gabriel Castrillo

    Full Text Available Transcriptional regulation is an important mechanism underlying gene expression and has played a crucial role in evolution. The number, position and interactions between cis-elements and transcription factors (TFs determine the expression pattern of a gene. To identify functionally relevant cis-elements in gene promoters, a phylogenetic shadowing approach with a lipase gene (LIP1 was used. As a proof of concept, in silico analyses of several Brassicaceae LIP1 promoters identified a highly conserved sequence (LIP1 element that is sufficient to drive strong expression of a reporter gene in planta. A collection of ca. 1,200 Arabidopsis thaliana TF open reading frames (ORFs was arrayed in a 96-well format (RR library and a convenient mating based yeast one hybrid (Y1H screening procedure was established. We constructed an episomal plasmid (pTUY1H to clone the LIP1 element and used it as bait for Y1H screenings. A novel interaction with an HD-ZIP (AtML1 TF was identified and abolished by a 2 bp mutation in the LIP1 element. A role of this interaction in transcriptional regulation was confirmed in planta. In addition, we validated our strategy by reproducing the previously reported interaction between a MYB-CC (PHR1 TF, a central regulator of phosphate starvation responses, with a conserved promoter fragment (IPS1 element containing its cognate binding sequence. Finally, we established that the LIP1 and IPS1 elements were differentially bound by HD-ZIP and MYB-CC family members in agreement with their genetic redundancy in planta. In conclusion, combining in silico analyses of orthologous gene promoters with Y1H screening of the RR library represents a powerful approach to decipher cis- and trans-regulatory codes.

  4. PNL1 and PNL2 : Arabidopsis homologs of maize PAN1

    OpenAIRE

    Clark, Lauren Gail

    2010-01-01

    PNL1 and PNL2 are the closest Arabidopsis relatives of maize pan1. pan1 and the PNL family of 11 genes encode leucine-rich repeat, receptor-like kinases, however none of these putative kinases is predicted to have actual kinase function, due to one or more amino acid substitutions in residues necessary for kinase function. Because PAN1 plays a role in subsidiary cell formation in maize, it is hypothesized that PNL1 and PNL2 are involved in stomatal formation in Arabidopsis. YFP fusions of the...

  5. Arabidopsis SUMO protease ASP1 positively regulates flowering time partially through regulating FLC stability 

    KAUST Repository

    Kong, Xiangxiong; Luo, Xi; Qu, Gao Ping; Liu, Peng; Jin, Jing Bo

    2016-01-01

    The initiation of flowering is tightly regulated by the endogenous and environment signals, which is crucial for the reproductive success of flowering plants. It is well known that autonomous and vernalization pathways repress transcription of FLOWERING LOCUS C (FLC), a focal floral repressor, but how its protein stability is regulated remains largely unknown. Here, we found that mutations in a novel Arabidopsis SUMO protease 1 (ASP1) resulted in a strong late-flowering phenotype under long-days, but to a lesser extent under short-days. ASP1 localizes in the nucleus and exhibited a SUMO protease activity in vitro and in vivo. The conserved Cys-577 in ASP1 is critical for its enzymatic activity, as well as its physiological function in the regulation of flowering time. Genetic and gene expression analyses demonstrated that ASP1 promotes transcription of positive regulators of flowering, such as FT, SOC1 and FD, and may function in both CO-dependent photoperiod pathway and FLC-dependent pathways. Although the transcription level of FLC was not affected in the loss-of-function asp1 mutant, the protein stability of FLC was increased in the asp1 mutant. Taken together, this study identified a novel bona fide SUMO protease, ASP1, which positively regulates transition to flowering at least partly by repressing FLC protein stability.

  6. Arabidopsis SUMO protease ASP1 positively regulates flowering time partially through regulating FLC stability 

    KAUST Repository

    Kong, Xiangxiong

    2016-12-07

    The initiation of flowering is tightly regulated by the endogenous and environment signals, which is crucial for the reproductive success of flowering plants. It is well known that autonomous and vernalization pathways repress transcription of FLOWERING LOCUS C (FLC), a focal floral repressor, but how its protein stability is regulated remains largely unknown. Here, we found that mutations in a novel Arabidopsis SUMO protease 1 (ASP1) resulted in a strong late-flowering phenotype under long-days, but to a lesser extent under short-days. ASP1 localizes in the nucleus and exhibited a SUMO protease activity in vitro and in vivo. The conserved Cys-577 in ASP1 is critical for its enzymatic activity, as well as its physiological function in the regulation of flowering time. Genetic and gene expression analyses demonstrated that ASP1 promotes transcription of positive regulators of flowering, such as FT, SOC1 and FD, and may function in both CO-dependent photoperiod pathway and FLC-dependent pathways. Although the transcription level of FLC was not affected in the loss-of-function asp1 mutant, the protein stability of FLC was increased in the asp1 mutant. Taken together, this study identified a novel bona fide SUMO protease, ASP1, which positively regulates transition to flowering at least partly by repressing FLC protein stability.

  7. Comparative analysis of drought resistance genes in Arabidopsis and rice

    NARCIS (Netherlands)

    Trijatmiko, K.R.

    2005-01-01

    Keywords: rice, Arabidopsis, drought, genetic mapping,microarray, transcription factor, AP2/ERF, SHINE, wax, stomata, comparative genetics, activation tagging, Ac/Ds, En/IThis thesis describes the use of genomics information and tools from Arabidopsis and

  8. Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity

    Directory of Open Access Journals (Sweden)

    Katharina eHeidrich

    2013-10-01

    Full Text Available In plant effector-triggered immunity (ETI, intracellular nucleotide binding-leucine rich repeat (NLR receptors are activated by specific pathogen effectors. The Arabidopsis TIR (Toll Interleukin1 receptor domain-NLR (denoted TNL gene pair, RPS4 and RRS1, confers resistance to Pseudomonas syringae pv tomato (Pst strain DC3000 expressing the Type III-secreted effector, AvrRps4. Nuclear accumulation of AvrRps4, RPS4 and the TNL resistance regulator EDS1 is necessary for ETI. RRS1 possesses a C-terminal ‘WRKY’ transcription factor DNA binding domain suggesting that important RPS4/RRS1 recognition and/or resistance signaling events occur at the nuclear chromatin. In Arabidopsis accession Ws-0, the RPS4Ws/RRS1Ws allelic pair governs resistance to Pst/AvrRps4 accompanied by host programmed cell death (pcd. In accession Col-0, RPS4Col/RRS1Col effectively limits Pst/AvrRps4 growth without pcd. Constitutive expression of HA-StrepII tagged RPS4Col (in a 35S:RPS4-HS line confers temperature conditioned EDS1-dependent auto-immunity. Here we show that a high (28oC, non-permissive to moderate (19oC, permissive temperature shift of 35S:RPS4-HS plants can be used to follow defense-related transcriptional dynamics without a pathogen effector trigger. By comparing responses of 35S:RPS4-HS with 35S:RPS4-HS rrs1-11 and 35S:RPS4-HS eds1-2 mutants, we establish that RPS4Col auto-immunity depends entirely on EDS1 and partially on RRS1Col. Examination of gene expression microarray data over 24h after temperature shift reveals a mainly quantitative RRS1Col contribution to up- or down-regulation of a small subset of RPS4Col-reprogrammed, EDS1-dependent genes. We find significant over-representation of WRKY transcription factor binding W-box cis-elements within the promoters of these genes. Our data show that RRS1Col contributes to temperature-conditioned RPS4Col auto-immunity and are consistent with activated RPS4Col engaging RRS1Col for resistance signaling.

  9. AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen

    Czech Academy of Sciences Publication Activity Database

    Gibalová, Antónia; Reňák, David; Matczuk, Katarzyna; Dupľáková, Nikoleta; Cháb, David; Twell, D.; Honys, David

    2009-01-01

    Roč. 70, č. 5 (2009), s. 581-601 ISSN 0167-4412 R&D Projects: GA ČR GA522/06/0896; GA ČR GA522/09/0858; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : bZIP transcription factor * AtbZIP34 * Male gametophyte development Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.978, year: 2009

  10. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.

    Science.gov (United States)

    Schmiesing, André; Emonet, Aurélia; Gouhier-Darimont, Caroline; Reymond, Philippe

    2016-04-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    Science.gov (United States)

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  12. Arabidopsis thaliana BTB/ POZ-MATH proteins interact with members of the ERF/AP2 transcription factor family.

    Science.gov (United States)

    Weber, Henriette; Hellmann, Hanjo

    2009-11-01

    In Arabidopsis thaliana, the BTB/POZ-MATH (BPM) proteins comprise a small family of six members. They have been described previously to use their broad complex, tram track, bric-a-brac/POX virus and zinc finger (BTB/POZ) domain to assemble with CUL3a and CUL3b and potentially to serve as substrate adaptors to cullin-based E3-ligases in plants. In this article, we show that BPMs can also assemble with members of the ethylene response factor/Apetala2 transcription factor family, and that this is mediated by their meprin and TRAF (tumor necrosis factor receptor-associated factor) homology (MATH) domain. In addition, we provide a detailed description of BPM gene expression patterns in different tissues and on abiotic stress treatments, as well as their subcellular localization. This work connects, for the first time, BPM proteins with ethylene response factor/Apetala2 family members, which is likely to represent a novel regulatory mechanism of transcriptional control.

  13. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2 in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues

    Directory of Open Access Journals (Sweden)

    Hyun Uk Kim

    2014-01-01

    Full Text Available The LEAFY COTYLEDON2 (LEC2 gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis, and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1, LEAFY COTYLEDON1-LIKE (L1L, FUSCA3 (FUS3, and ABSCISIC ACID INSENSITIVE 3 (ABI3 transcripts for seed maturation, and WRINKELED1 (WRI1 transcripts for fatty acid biosynthesis, as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1 and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1Δ11, in vegetative tissues.

  14. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues.

    Science.gov (United States)

    Kim, Hyun Uk; Jung, Su-Jin; Lee, Kyeong-Ryeol; Kim, Eun Ha; Lee, Sang-Min; Roh, Kyung Hee; Kim, Jong-Bum

    2013-01-01

    The LEAFY COTYLEDON2 (LEC2) gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis), and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON1-LIKE (L1L), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) transcripts for seed maturation, and WRINKELED1 (WRI1) transcripts for fatty acid biosynthesis), as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1) and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1(Δ11)), in vegetative tissues.

  15. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues☆

    Science.gov (United States)

    Kim, Hyun Uk; Jung, Su-Jin; Lee, Kyeong-Ryeol; Kim, Eun Ha; Lee, Sang-Min; Roh, Kyung Hee; Kim, Jong-Bum

    2013-01-01

    The LEAFY COTYLEDON2 (LEC2) gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis), and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON1-LIKE (L1L), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) transcripts for seed maturation, and WRINKELED1 (WRI1) transcripts for fatty acid biosynthesis), as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1) and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1Δ11), in vegetative tissues. PMID:24363987

  16. Characterization and Ectopic Expression of CoWRI1, an AP2/EREBP Domain-Containing Transcription Factor from Coconut (Cocos nucifera L.) Endosperm, Changes the Seeds Oil Content in Transgenic Arabidopsis thaliana and Rice (Oryza sativa L.).

    Science.gov (United States)

    Sun, RuHao; Ye, Rongjian; Gao, Lingchao; Zhang, Lin; Wang, Rui; Mao, Ting; Zheng, Yusheng; Li, Dongdong; Lin, Yongjun

    2017-01-01

    Coconut ( Cocos nucifera L.) is a key tropical crop and a member of the monocotyledonous family Arecaceae ( Palmaceae ). Few genes and related metabolic processes involved in coconut endosperm development have been investigated. In this study, a new member of the WRI1 gene family was isolated from coconut endosperm and was named CoWRI1 . Its transcriptional activities and interactions with the acetyl-CoA carboxylase ( BCCP2 ) promoter of CoWRI1 were confirmed by the yeast two-hybrid and yeast one-hybrid approaches, respectively. Functional characterization was carried out through seed-specific expression in Arabidopsis and endosperm-specific expression in rice. In transgenic Arabidopsis , high over-expressions of CoWRI1 in seven independent T2 lines were detected by quantitative real-time PCR. The relative mRNA accumulation of genes encoding enzymes involved in either fatty acid biosynthesis or triacylglycerols assembly (BCCP2, KASI, MAT, ENR, FATA, and GPDH) were also assayed in mature seeds. Furthermore, lipid and fatty acids C16:0 and C18:0 significantly increased. In two homozygous T2 transgenic rice lines (G5 and G2), different CoWRI1 expression levels were detected, but no CoWRI1 transcripts were detected in the wild type. Analyses of the seed oil content, starch content, and total protein content indicated that the two T2 transgenic lines showed a significant increase ( P oil content. The transgenic lines also showed a significant increase in starch content, whereas total protein content decreased significantly. Further analysis of the fatty acid composition revealed that palmitic acid (C16:0) and linolenic acid (C18:3) increased significantly in the seeds of the transgenic rice lines, but oleic acid (C18:1) levels significantly declined.

  17. The plastid-localized pfkB-type carbohydrate kinases FRUCTOKINASE-LIKE 1 and 2 are essential for growth and development of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gilkerson Jonathan

    2012-07-01

    Full Text Available Abstract Background Transcription of plastid-encoded genes requires two different DNA-dependent RNA polymerases, a nuclear-encoded polymerase (NEP and plastid-encoded polymerase (PEP. Recent studies identified two related pfkB-type carbohydrate kinases, named FRUCTOKINASE-LIKE PROTEIN (FLN1 and FLN2, as components of the thylakoid bound PEP complex in both Arabidopsis thaliana and Sinapis alba (mustard. Additional work demonstrated that RNAi-mediated reduction in FLN expression specifically diminished transcription of PEP-dependent genes. Results Here, we report the characterization of Arabidopsis FLN knockout alleles to examine the contribution of each gene in plant growth, chloroplast development, and in mediating PEP-dependent transcription. We show that fln plants have severe phenotypes with fln1 resulting in an albino phenotype that is seedling lethal without a source of exogenous carbon. In contrast, fln2 plants display chlorosis prior to leaf expansion, but exhibit slow greening, remain autotrophic, can grow to maturity, and set viable seed. fln1 fln2 double mutant analysis reveals haplo-insufficiency, and fln1 fln2 plants have a similar, but more severe phenotype than either single mutant. Normal plastid development in both light and dark requires the FLNs, but surprisingly skotomorphogenesis is unaffected in fln seedlings. Seedlings genetically fln1-1 with dexamethasone-inducible FLN1-HA expression at germination are phenotypically indistinguishable from wild-type. Induction of FLN-HA after 24 hours of germination cannot rescue the mutant phenotype, indicating that the effects of loss of FLN are not always reversible. Examination of chloroplast gene expression in fln1-1 and fln2-1 by qRT-PCR reveals that transcripts of PEP-dependent genes were specifically reduced compared to NEP-dependent genes in both single mutants. Conclusions Our results demonstrate that each FLN protein contributes to wild type growth, and acting additively are

  18. Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana.

    Science.gov (United States)

    Junker, Astrid; Mönke, Gudrun; Rutten, Twan; Keilwagen, Jens; Seifert, Michael; Thi, Tuyet Minh Nguyen; Renou, Jean-Pierre; Balzergue, Sandrine; Viehöver, Prisca; Hähnel, Urs; Ludwig-Müller, Jutta; Altschmied, Lothar; Conrad, Udo; Weisshaar, Bernd; Bäumlein, Helmut

    2012-08-01

    The transcription factor LEAFY COTYLEDON1 (LEC1) controls aspects of early embryogenesis and seed maturation in Arabidopsis thaliana. To identify components of the LEC1 regulon, transgenic plants were derived in which LEC1 expression was inducible by dexamethasone treatment. The cotyledon-like leaves and swollen root tips developed by these plants contained seed-storage compounds and resemble the phenotypes produced by increased auxin levels. In agreement with this, LEC1 was found to mediate up-regulation of the auxin synthesis gene YUCCA10. Auxin accumulated primarily in the elongation zone at the root-hypocotyl junction (collet). This accumulation correlates with hypocotyl growth, which is either inhibited in LEC1-induced embryonic seedlings or stimulated in the LEC1-induced long-hypocotyl phenotype, therefore resembling etiolated seedlings. Chromatin immunoprecipitation analysis revealed a number of phytohormone- and elongation-related genes among the putative LEC1 target genes. LEC1 appears to be an integrator of various regulatory events, involving the transcription factor itself as well as light and hormone signalling, especially during somatic and early zygotic embryogenesis. Furthermore, the data suggest non-embryonic functions for LEC1 during post-germinative etiolation. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  19. Humic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Khaleda, Laila; Park, Hee Jin; Yun, Dae-Jin; Jeon, Jong-Rok; Kim, Min Gab; Cha, Joon-Yung; Kim, Woe-Yeon

    2017-12-31

    Excessive salt disrupts intracellular ion homeostasis and inhibits plant growth, which poses a serious threat to global food security. Plants have adapted various strategies to survive in unfavorable saline soil conditions. Here, we show that humic acid (HA) is a good soil amendment that can be used to help overcome salinity stress because it markedly reduces the adverse effects of salinity on Arabidopsis thaliana seedlings. To identify the molecular mechanisms of HA-induced salt stress tolerance in Arabidopsis, we examined possible roles of a sodium influx transporter HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1). Salt-induced root growth inhibition in HKT1 overexpressor transgenic plants (HKT1-OX) was rescued by application of HA, but not in wild-type and other plants. Moreover, salt-induced degradation of HKT1 protein was blocked by HA treatment. In addition, the application of HA to HKT1-OX seedlings led to increased distribution of Na+ in roots up to the elongation zone and caused the reabsorption of Na+ by xylem and parenchyma cells. Both the influx of the secondary messenger calcium and its cytosolic release appear to function in the destabilization of HKT1 protein under salt stress. Taken together, these results suggest that HA could be applied to the field to enhance plant growth and salt stress tolerance via post-transcriptional control of the HKT1 transporter gene under saline conditions.

  20. Abscisic acid promotes proteasome-mediated degradation of the transcription coactivator NPR1 in Arabidopsis thaliana.

    Science.gov (United States)

    Ding, Yezhang; Dommel, Matthew; Mou, Zhonglin

    2016-04-01

    Proteasome-mediated turnover of the transcription coactivator NPR1 is pivotal for efficient activation of the broad-spectrum plant immune responses known as localized acquired resistance (LAR) and systemic acquired resistance (SAR) in adjacent and systemic tissues, respectively, and requires the CUL3-based E3 ligase and its adaptor proteins, NPR3 and NPR4, which are receptors for the signaling molecule salicylic acid (SA). It has been shown that SA prevents NPR1 turnover under non-inducing and LAR/SAR-inducing conditions, but how cellular NPR1 homeostasis is maintained remains unclear. Here, we show that the phytohormone abscisic acid (ABA) and SA antagonistically influence cellular NPR1 protein levels. ABA promotes NPR1 degradation via the CUL3(NPR) (3/) (NPR) (4) complex-mediated proteasome pathway, whereas SA may protect NPR1 from ABA-promoted degradation through phosphorylation. Furthermore, we demonstrate that the timing and strength of SA and ABA signaling are critical in modulating NPR1 accumulation and target gene expression. Perturbing ABA or SA signaling in adjacent tissues alters the temporal dynamic pattern of NPR1 accumulation and target gene transcription. Finally, we show that sequential SA and ABA treatment leads to dynamic changes in NPR1 protein levels and target gene expression. Our results revealed a tight correlation between sequential SA and ABA signaling and dynamic changes in NPR1 protein levels and NPR1-dependent transcription in plant immune responses. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  1. WRKY transcription factors

    Science.gov (United States)

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  2. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides.

    Science.gov (United States)

    Sun, Yingjiao; Wang, Yonglin; Tian, Chengming

    2016-10-01

    Yeast AP1 transcription factor is a regulator of oxidative stress response. Here, we report the identification and characterization of CgAP1, an ortholog of YAP1 in poplar anthracnose fungus Colletotrichum gloeosporioides. The expression of CgAP1 was highly induced by reactive oxygen species. CgAP1 deletion mutants displayed enhanced sensitivity to oxidative stress compared with the wild-type strain, and their poplar leaf virulence was obviously reduced. However, the mutants exhibited no obvious defects in aerial hyphal growth, conidia production, and appressoria formation. CgAP1::eGFP fusion protein localized to the nucleus after TBH (tert-Butyl hydroperoxide) treatment, suggesting that CgAP1 functions as a redox sensor in C. gloeosporioides. In addition, CgAP1 prevented the accumulation of ROS during early stages of biotrophic growth. CgAP1 also acted as a positive regulator of several ROS-related genes (i.e., Glr1, Hyr1, and Cyt1) involved in the antioxidative response. These results highlight the key regulatory role of CgAP1 transcription factor in oxidative stress response and provide insights into the function of ROS detoxification in virulence of C. gloeosporioides. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Reference: 346 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available th a function in purine turnover in Arabidopsis. To our knowledge this is the fir...ock in allantoate catabolism. AtAAH transcript was detected in all tissues examined by RT-PCR, consistent wi

  4. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lydia J R Hunter

    Full Text Available RNA-dependent RNA polymerases (RDRs function in anti-viral silencing in Arabidopsis thaliana and other plants. Salicylic acid (SA, an important defensive signal, increases RDR1 gene expression, suggesting that RDR1 contributes to SA-induced virus resistance. In Nicotiana attenuata RDR1 also regulates plant-insect interactions and is induced by another important signal, jasmonic acid (JA. Despite its importance in defense RDR1 regulation has not been investigated in detail.In Arabidopsis, SA-induced RDR1 expression was dependent on 'NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1', indicating regulation involves the same mechanism controlling many other SA- defense-related genes, including pathogenesis-related 1 (PR1. Isochorismate synthase 1 (ICS1 is required for SA biosynthesis. In defensive signal transduction RDR1 lies downstream of ICS1. However, supplying exogenous SA to ics1-mutant plants did not induce RDR1 or PR1 expression to the same extent as seen in wild type plants. Analysing ICS1 gene expression using transgenic plants expressing ICS1 promoter:reporter gene (β-glucuronidase constructs and by measuring steady-state ICS1 transcript levels showed that SA positively regulates ICS1. In contrast, ICS2, which is expressed at lower levels than ICS1, is unaffected by SA. The wound-response hormone JA affects expression of Arabidopsis RDR1 but jasmonate-induced expression is independent of CORONATINE-INSENSITIVE 1, which conditions expression of many other JA-responsive genes. Transiently increased RDR1 expression following tobacco mosaic virus inoculation was due to wounding and was not a direct effect of infection. RDR1 gene expression was induced by ethylene and by abscisic acid (an important regulator of drought resistance. However, rdr1-mutant plants showed normal responses to drought.RDR1 is regulated by a much broader range of phytohormones than previously thought, indicating that it plays roles beyond those already suggested in virus

  5. Upland cotton gene GhFPF1 confers promotion of flowering time and shade-avoidance responses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wang

    Full Text Available Extensive studies on floral transition in model species have revealed a network of regulatory interactions between proteins that transduce and integrate developmental and environmental signals to promote or inhibit the transition to flowering. Previous studies indicated FLOWERING PROMOTING FACTOR 1 (FPF1 gene was involved in the promotion of flowering, but the molecular mechanism was still unclear. Here, FPF1 homologous sequences were screened from diploid Gossypium raimondii L. (D-genome, n = 13 and Gossypium arboreum L. genome (A-genome, n = 13 databases. Orthologous genes from the two species were compared, suggesting that distinctions at nucleic acid and amino acid levels were not equivalent because of codon degeneracy. Six FPF1 homologous genes were identified from the cultivated allotetraploid Gossypium hirsutum L. (AD-genome, n = 26. Analysis of relative transcripts of the six genes in different tissues revealed that this gene family displayed strong tissue-specific expression. GhFPF1, encoding a 12.0-kDa protein (Accession No: KC832319 exerted more transcripts in floral apices of short-season cotton, hinting that it could be involved in floral regulation. Significantly activated APETALA 1 and suppressed FLOWERING LOCUS C expression were induced by over-expression of GhFPF1 in the Arabidopsis Columbia-0 ecotype. In addition, transgenic Arabidopsis displayed a constitutive shade-avoiding phenotype that is characterized by long hypocotyls and petioles, reduced chlorophyll content, and early flowering. We propose that GhFPF1 may be involved in flowering time control and shade-avoidance responses.

  6. Reference: 453 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ctor. We demonstrate that this protein functions as a transcriptional repressor in vivo. The express...ion of all members of the CYCLINA2 (CYCA2) family was reduced in an ILP1 overexpressing l...ine, and the mouse (Mus musculus) homolog of ILP1 repressed cyclin A2 expression in mouse NIH3T3 cells. T-DN...A insertion mutants of ILP1 showed reduced polyploidy and upregulated all CYCA2 express...ion. Furthermore, loss of CYCA2;1 expression induces an increase in polyploidy in Arabidopsis. We demo

  7. VvVHP1; 2 Is Transcriptionally Activated by VvMYBA1 and Promotes Anthocyanin Accumulation of Grape Berry Skins via Glucose Signal.

    Science.gov (United States)

    Sun, Tianyu; Xu, Lili; Sun, Hong; Yue, Qianyu; Zhai, Heng; Yao, Yuxin

    2017-01-01

    In this work, four vacuolar H + -PPase ( VHP ) genes were identified in the grape genome. Among them, VvVHP1; 2 was strongly expressed in berry skin and its expression exhibited high correlations to anthocyanin content of berry skin during berry ripening and under ABA and UVB treatments. VvVHP1; 2 was transcriptionally activated directly by VvMYBA1, and VvVHP1; 2 overexpression promoted anthocyanin accumulation in berry skins and Arabidopsis leaves; therefore, VvVHP1; 2 mediated VvMYBA1-regulated berry pigmentation. On the other hand, RNA-Seq analysis of WT and transgenic berry skins revealed that carbohydrate metabolism, flavonoid metabolism and regulation and solute carrier family expression were the most clearly altered biological processes. Further experiments elucidated that VvVHP1; 2 overexpression up-regulated the expression of the genes related to anthocyanin biosynthesis and transport via hexokinase-mediated glucose signal and thereby promoted anthocyanin accumulation in berry skins and Arabidopsis leaves. Additionally, modifications of sugar status caused by enhanced hexokinase activities likely play a key role in VvVHP1; 2- induced sugar signaling.

  8. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots.

    Directory of Open Access Journals (Sweden)

    Muhammad Amjad Ali

    Full Text Available Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin.

  9. LSM Proteins Provide Accurate Splicing and Decay of Selected Transcripts to Ensure Normal Arabidopsis Development[W

    Science.gov (United States)

    Perea-Resa, Carlos; Hernández-Verdeja, Tamara; López-Cobollo, Rosa; Castellano, María del Mar; Salinas, Julio

    2012-01-01

    In yeast and animals, SM-like (LSM) proteins typically exist as heptameric complexes and are involved in different aspects of RNA metabolism. Eight LSM proteins, LSM1 to 8, are highly conserved and form two distinct heteroheptameric complexes, LSM1-7 and LSM2-8,that function in mRNA decay and splicing, respectively. A search of the Arabidopsis thaliana genome identifies 11 genes encoding proteins related to the eight conserved LSMs, the genes encoding the putative LSM1, LSM3, and LSM6 proteins being duplicated. Here, we report the molecular and functional characterization of the Arabidopsis LSM gene family. Our results show that the 11 LSM genes are active and encode proteins that are also organized in two different heptameric complexes. The LSM1-7 complex is cytoplasmic and is involved in P-body formation and mRNA decay by promoting decapping. The LSM2-8 complex is nuclear and is required for precursor mRNA splicing through U6 small nuclear RNA stabilization. More importantly, our results also reveal that these complexes are essential for the correct turnover and splicing of selected development-related mRNAs and for the normal development of Arabidopsis. We propose that LSMs play a critical role in Arabidopsis development by ensuring the appropriate development-related gene expression through the regulation of mRNA splicing and decay. PMID:23221597

  10. Novel nuclear-encoded proteins interacting with a plastid sigma factor, Sig1, in Arabidopsis thaliana.

    Science.gov (United States)

    Morikawa, Kazuya; Shiina, Takashi; Murakami, Shinya; Toyoshima, Yoshinori

    2002-03-13

    Sigma factor binding proteins are involved in modifying the promoter preferences of the RNA polymerase in bacteria. We found the nuclear encoded protein (SibI) that is transported into chloroplasts and interacts specifically with the region 4 of Sig1 in Arabidopsis. SibI and its homologue, T3K9.5 are novel proteins, which are not homologous to any protein of known function. The expression of sibI was tissue specific, light dependent, and developmentally timed. We suggest the transcriptional regulation by sigma factor binding proteins to function in the plastids of higher plant.

  11. Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1.

    OpenAIRE

    Taiko Kim To; Jong-Myong Kim; Akihiro Matsui; Yukio Kurihara; Taeko Morosawa; Junko Ishida; Maho Tanaka; Takaho Endo; Tetsuji Kakutani; Tetsuro Toyoda; Hiroshi Kimura; Shigeyuki Yokoyama; Kazuo Shinozaki; Motoaki Seki

    2011-01-01

    Heterochromatin silencing is pivotal for genome stability in eukaryotes. In Arabidopsis, a plant-specific mechanism called RNA–directed DNA methylation (RdDM) is involved in heterochromatin silencing. Histone deacetylase HDA6 has been identified as a component of such machineries; however, its endogenous targets and the silencing mechanisms have not been analyzed globally. In this study, we investigated the silencing mechanism mediated by HDA6. Genome-wide transcript profiling revealed that t...

  12. Transcriptional and metabolic insights into the differential physiological responses of arabidopsis to optimal and supraoptimal atmospheric CO2.

    Directory of Open Access Journals (Sweden)

    Fatma Kaplan

    Full Text Available BACKGROUND: In tightly closed human habitats such as space stations, locations near volcano vents and closed culture vessels, atmospheric CO(2 concentration may be 10 to 20 times greater than Earth's current ambient levels. It is known that super-elevated (SE CO(2 (>1,200 µmol mol(-1 induces physiological responses different from that of moderately elevated CO(2 (up to 1,200 µmol mol(-1, but little is known about the molecular responses of plants to supra-optimal [CO(2]. METHODOLOGY/PRINCIPAL FINDINGS: To understand the underlying molecular causes for differential physiological responses, metabolite and transcript profiles were analyzed in aerial tissue of Arabidopsis plants, which were grown under ambient atmospheric CO(2 (400 µmol mol(-1, elevated CO(2 (1,200 µmol mol(-1 and SE CO(2 (4,000 µmol mol(-1, at two developmental stages early and late vegetative stage. Transcript and metabolite profiling revealed very different responses to elevated versus SE [CO(2]. The transcript profiles of SE CO(2 treated plants were closer to that of the control. Development stage had a clear effect on plant molecular response to elevated and SE [CO(2]. Photosynthetic acclimation in terms of down-regulation of photosynthetic gene expression was observed in response to elevated [CO(2], but not that of SE [CO(2] providing the first molecular evidence that there appears to be a fundamental disparity in the way plants respond to elevated and SE [CO(2]. Although starch accumulation was induced by both elevated and SE [CO(2], the increase was less at the late vegetative stage and accompanied by higher soluble sugar content suggesting an increased starch breakdown to meet sink strength resulting from the rapid growth demand. Furthermore, many of the elevated and SE CO(2-responsive genes found in the present study are also regulated by plant hormone and stress. CONCLUSIONS/SIGNIFICANCE: This study provides new insights into plant acclimation to elevated and SE [CO

  13. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem1[OPEN

    Science.gov (United States)

    Street, Ian H.; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N.; Kieber, Joseph J.; Schaller, G. Eric

    2015-01-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574

  14. Wheat Brassinosteroid-Insensitive1 (TaBRI1 Interacts with Members of TaSERK Gene Family and Cause Early Flowering and Seed Yield Enhancement in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Akanksha Singh

    Full Text Available Brassinosteroids (BRs hormones are important for plant growth, development and immune responses. They are sensed by the transmembrane receptor kinase Brassinosteroid-Insensitive 1 (BRI1 when they bind to its extracellular Leu-rich repeat (LRR domain. We cloned and characterized the TaBRI1 from T. aestivum and raised overexpression transgenics in Arabidopsis to decipher its functional role. TaBRI1 protein consists of a putative signal peptide followed by 25 leucine rich repeats (LRR, a transmembrane domain and a C-terminal kinase domain. The analysis determined the interaction of TaBRI1 with five members of the wheat Somatic Embryogenesis Receptor Kinase (TaSERKs gene family (TaSERK1, TaSERK2, TaSERK3, TaSERK4 and TaSERK5, at the plasma membrane. Furthermore, overexpression of TaBRI1 in Arabidopsis leads to the early flowering, increased silique size and seed yield. Root growth analysis of TaBRI1 overexpressing transgenic plants showed hypersensitivity to epi-brassinolide (epi-BL hormone in a dose-dependent manner. Interestingly, transgenic Arabidopsis plants show thermotolerance phenotype at the seedling stages as revealed by chlorophyll content, photosystem II activity and membrane stability. The transcriptome profiling on the basis of microarray analysis indicates up-regulation of several genes related to brassinosteroid signaling pathway, abiotic stress response, defense response and transcription factors. These studies predict the possible role of TaBRI1 gene in plant growth and development imparting tolerance to thermal stress.

  15. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    Science.gov (United States)

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  16. Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation1[OPEN

    Science.gov (United States)

    Preuss, Aileen S.

    2016-01-01

    Biosynthesis of the polyamines putrescine, spermidine, and spermine is induced in response to pathogen infection of plants. Putrescine, which is produced from Arg, serves as a metabolic precursor for longer polyamines, including spermidine and spermine. Polyamine acetylation, which has important regulatory functions in mammalian cells, has been observed in several plant species. Here we show that Arabidopsis (Arabidopsis thaliana) N-ACETYLTRANSFERASE ACTIVITY1 (NATA1) catalyzes acetylation of putrescine to N-acetylputrescine and thereby competes with spermidine synthase for a common substrate. NATA1 expression is strongly induced by the plant defense signaling molecule jasmonic acid and coronatine, an effector molecule produced by DC3000, a Pseudomonas syringae strain that initiates a virulent infection in Arabidopsis ecotype Columbia-0. DC3000 growth is reduced in nata1 mutant Arabidopsis, suggesting a role for NATA1-mediated putrescine acetylation in suppressing antimicrobial defenses. During infection by P. syringae and other plant pathogens, polyamine oxidases use spermidine and spermine as substrates for the production of defense-related H2O2. Compared to wild-type Columbia-0 Arabidopsis, the response of nata1mutants to P. syringae infection includes reduced accumulation of acetylputrescine, greater abundance of nonacetylated polyamines, elevated H2O2 production by polyamine oxidases, and higher expression of genes related to pathogen defense. Together, these results are consistent with a model whereby P. syringae growth is improved in a targeted manner through coronatine-induced putrescine acetylation by NATA1. PMID:27208290

  17. Natural Variation in Monoterpene Synthesis in Kiwifruit: Transcriptional Regulation of Terpene Synthases by NAC and ETHYLENE-INSENSITIVE3-Like Transcription Factors1

    Science.gov (United States)

    Nieuwenhuizen, Niels J.; Chen, Xiuyin; Wang, Mindy Y.; Matich, Adam J.; Perez, Ramon Lopez; Allan, Andrew C.; Green, Sol A.; Atkinson, Ross G.

    2015-01-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-d-erythritol 4-phosphate pathway enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-d-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. PMID:25649633

  18. JUNGBRUNNEN1 Confers Drought Tolerance Downstream of the HD-Zip I Transcription Factor AtHB13

    Directory of Open Access Journals (Sweden)

    Saghar Ebrahimian-Motlagh

    2017-12-01

    Full Text Available Low water availability is the major environmental factor limiting growth and productivity of plants and crops and is therefore considered of high importance for agriculture affected by climate change. Identifying regulatory components controlling the response and tolerance to drought stress is thus of major importance. The NAC transcription factor (TF JUNGBRUNNEN1 (JUB1 from Arabidopsis thaliana extends leaf longevity under non-stress growth conditions, lowers cellular hydrogen peroxide (H2O2 level, and enhances tolerance against heat stress and salinity. Here, we additionally find that JUB1 strongly increases tolerance to drought stress in Arabidopsis when expressed from both, a constitutive (CaMV 35S and an abiotic stress-induced (RD29A promoter. Employing a yeast one-hybrid screen we identified HD-Zip class I TF AtHB13 as an upstream regulator of JUB1. AtHB13 has previously been reported to act as a positive regulator of drought tolerance. AtHB13 and JUB1 thereby establish a joint drought stress control module.

  19. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew1

    Science.gov (United States)

    Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-01-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. PMID:26813794

  20. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis.

    Science.gov (United States)

    Verweij, Walter; Spelt, Cornelis E; Bliek, Mattijs; de Vries, Michel; Wit, Niek; Faraco, Marianna; Koes, Ronald; Quattrocchio, Francesca M

    2016-03-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) from Arabidopsis thaliana and associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein AN1 activate, together with the MYB protein AN2, anthocyanin biosynthesis and, together with the MYB protein PH4, distinct genes, such as PH1 and PH5, that acidify the vacuole. To understand how AN1 and AN11 activate anthocyanin biosynthetic and PH genes independently, we isolated PH3. We found that PH3 is a target gene of the AN11-AN1-PH4 complex and encodes a WRKY protein that can bind to AN11 and is required, in a feed-forward loop, together with AN11-AN1-PH4 for transcription of PH5. PH3 is highly similar to TTG2, which regulates hair development, tannin accumulation, and mucilage production in Arabidopsis. Like PH3, TTG2 can bind to petunia AN11 and the Arabidopsis homolog TTG1, complement ph3 in petunia, and reactivate the PH3 target gene PH5. Our findings show that the specificity of WD40-bHLH-MYB complexes is in part determined by interacting proteins, such as PH3 and TTG2, and reveal an unanticipated similarity in the regulatory circuitry that controls petunia vacuolar acidification and Arabidopsis hair development. © 2016 American Society of Plant Biologists. All rights reserved.

  1. Reference: 439 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available or IID (TFIID) complex. Overexpression of atTAF10 under the control of the 35S promoter in Arabidopsis impro...is TATA box-binding protein (TBP)-associated factor 10 (atTAF10), which constitutes the transcriptional fact

  2. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Castleden Ian

    2010-11-01

    Full Text Available Abstract Background Arabidopsis thaliana is clearly established as the model plant species. Given the ever-growing demand for food, there is a need to translate the knowledge learned in Arabidopsis to agronomically important species, such as rice (Oryza sativa. To gain a comparative insight into the similarities and differences into how organs are built and how plants respond to stress, the transcriptomes of Arabidopsis and rice were compared at the level of gene orthology and functional categorisation. Results Organ specific transcripts in rice and Arabidopsis display less overlap in terms of gene orthology compared to the orthology observed between both genomes. Although greater overlap in terms of functional classification was observed between root specific transcripts in rice and Arabidopsis, this did not extend to flower, leaf or seed specific transcripts. In contrast, the overall abiotic stress response transcriptome displayed a significantly greater overlap in terms of gene orthology compared to the orthology observed between both genomes. However, ~50% or less of these orthologues responded in a similar manner in both species. In fact, under cold and heat treatments as many or more orthologous genes responded in an opposite manner or were unchanged in one species compared to the other. Examples of transcripts that responded oppositely include several genes encoding proteins involved in stress and redox responses and non-symbiotic hemoglobins that play central roles in stress signalling pathways. The differences observed in the abiotic transcriptomes were mirrored in the presence of cis-acting regulatory elements in the promoter regions of stress responsive genes and the transcription factors that potentially bind these regulatory elements. Thus, both the abiotic transcriptome and its regulation differ between rice and Arabidopsis. Conclusions These results reveal significant divergence between Arabidopsis and rice, in terms of the

  3. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition

    Directory of Open Access Journals (Sweden)

    Steven Grant Hussey

    2013-08-01

    Full Text Available The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.

  4. Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis

    OpenAIRE

    Liu, Zhi-Qiang; Yan, Lu; Wu, Zhen; Mei, Chao; Lu, Kai; Yu, Yong-Tao; Liang, Shan; Zhang, Xiao-Feng; Wang, Xiao-Fang; Zhang, Da-Peng

    2012-01-01

    Three evolutionarily closely related WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in Arabidopsis were previously identified as negative abscisic acid (ABA) signalling regulators, of which WRKY40 regulates ABI4 and ABI5 expression, but it remains unclear whether and how the three transcription factors cooperate to regulate expression of ABI4 and ABI5. In the present experiments, it was shown that WRKY18 and WRKY60, like WRKY40, interact with the W-box in the promoters of ABI4 a...

  5. Inhibition of histone deacetylation alters Arabidopsis root growth in response to auxin via PIN1 degradation.

    Science.gov (United States)

    Nguyen, Hoai Nguyen; Kim, Jun Hyeok; Jeong, Chan Young; Hong, Suk-Whan; Lee, Hojoung

    2013-10-01

    Our results showed the histone deacetylase inhibitors (HDIs) control root development in Arabidopsis via regulation of PIN1 degradation. Epigenetic regulation plays a crucial role in the expression of many genes in response to exogenous or endogenous signals in plants as well as other organisms. One of epigenetic mechanisms is modifications of histone, such as acetylation and deacetylation, are catalyzed by histone acetyltransferase (HAT) and histone deacetylase (HDAC), respectively. The Arabidopsis HDACs, HDA6, and HDA19, were reported to function in physiological processes, including embryo development, abiotic stress response, and flowering. In this study, we demonstrated that histone deacetylase inhibitors (HDIs) inhibit primary root elongation and lateral root emergence. In response to HDIs treatment, the PIN1 protein was almost abolished in the root tip. However, the PIN1 gene did not show decreased expression in the presence of HDIs, whereas IAA genes exhibited increases in transcript levels. In contrast, we observed a stable level of gene expression of stress markers (KIN1 and COR15A) and a cell division marker (CYCB1). Taken together, these results suggest that epigenetic regulation may control auxin-mediated root development through the 26S proteasome-mediated degradation of PIN1 protein.

  6. The MIEL1 E3 Ubiquitin Ligase Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis Stems.

    Science.gov (United States)

    Lee, Hong Gil; Kim, Juyoung; Suh, Mi Chung; Seo, Pil Joon

    2017-07-01

    Cuticular wax is an important hydrophobic layer that covers the plant aerial surface. Cuticular wax biosynthesis is shaped by multiple layers of regulation. In particular, a pair of R2R3-type MYB transcription factors, MYB96 and MYB30, are known to be the main participants in cuticular wax accumulation. Here, we report that the MYB30-INTERACTING E3 LIGASE 1 (MIEL1) E3 ubiquitin ligase controls the protein stability of the two MYB transcription factors and thereby wax biosynthesis in Arabidopsis. MIEL1-deficient miel1 mutants exhibit increased wax accumulation in stems, with up-regulation of wax biosynthetic genes targeted by MYB96 and MYB30. Genetic analysis reveals that wax accumulation of the miel1 mutant is compromised by myb96 or myb30 mutation, but MYB96 is mainly epistatic to MIEL1, playing a predominant role in cuticular wax deposition. These observations indicate that the MIEL1-MYB96 module is important for balanced cuticular wax biosynthesis in developing inflorescence stems. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. The Rose (Rosa hybrida) NAC Transcription Factor 3 Gene, RhNAC3, Involved in ABA Signaling Pathway Both in Rose and Arabidopsis

    OpenAIRE

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory seq...

  8. Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Carmen Espinoza

    Full Text Available In plants, there is a large overlap between cold and circadian regulated genes and in Arabidopsis, we have shown that cold (4°C affects the expression of clock oscillator genes. However, a broader insight into the significance of diurnal and/or circadian regulation of cold responses, particularly for metabolic pathways, and their physiological relevance is lacking. Here, we performed an integrated analysis of transcripts and primary metabolites using microarrays and gas chromatography-mass spectrometry. As expected, expression of diurnally regulated genes was massively affected during cold acclimation. Our data indicate that disruption of clock function at the transcriptional level extends to metabolic regulation. About 80% of metabolites that showed diurnal cycles maintained these during cold treatment. In particular, maltose content showed a massive night-specific increase in the cold. However, under free-running conditions, maltose was the only metabolite that maintained any oscillations in the cold. Furthermore, although starch accumulates during cold acclimation we show it is still degraded at night, indicating significance beyond the previously demonstrated role of maltose and starch breakdown in the initial phase of cold acclimation. Levels of some conventional cold induced metabolites, such as γ-aminobutyric acid, galactinol, raffinose and putrescine, exhibited diurnal and circadian oscillations and transcripts encoding their biosynthetic enzymes often also cycled and preceded their cold-induction, in agreement with transcriptional regulation. However, the accumulation of other cold-responsive metabolites, for instance homoserine, methionine and maltose, did not have consistent transcriptional regulation, implying that metabolic reconfiguration involves complex transcriptional and post-transcriptional mechanisms. These data demonstrate the importance of understanding cold acclimation in the correct day-night context, and are further

  9. B-GATA transcription factors - insights into their structure, regulation and role in plant development

    Directory of Open Access Journals (Sweden)

    Claus eSchwechheimer

    2015-02-01

    Full Text Available GATA transcription factors are evolutionarily conserved transcriptional regulators that recognize promoter elements with a G-A-T-A core sequence. In comparison to animal genomes, the GATA transcription factor family in plants is comparatively large with approximately 30 members. In spite of a long-standing interest of plant molecular biologists in GATA factors, only research conducted in the last years has led to reliable insights into their functions during plant development. Here, we review the current knowledge on B-GATAs, one of four GATA factor subfamilies from Arabidopsis thaliana. We show that B-GATAs can be subdivided based on structural features and their biological function into family members with a C-terminal LLM- (leucine-leucine-methionine domain or an N-terminal HAN- (HANABA TARANU domain. The paralogous GNC (GATA, NITRATE-INDUCIBLE, CARBON-METABOLISM INVOLVED and CGA1/GNL (CYTOKININ-INDUCED GATA1/GNC-LIKE are introduced as LLM-domain containing B-GATAs from Arabidopsis that control germination, greening, senescence and flowering time downstream from several growth regulatory signals including light and the hormones gibberellin, auxin, and cytokinin. Arabidopsis HAN and its monocot-specific paralogs from rice (NECK LEAF1, maize (TASSEL SHEATH1, and barley (THIRD OUTER GLUME are HAN-domain-containing B-GATAs with a predominant role in embryo development and floral development. We also review GATA23, a regulator of lateral root initiation from Arabidopsis, that is closely related to GNC and GNL but has a degenerate LLM-domain that is seemingly specific for the Brassicaceae family. The Brassicaceae-specific GATA23 together with the above-mentioned monocot-specific HAN-domain GATAs provide evidence that neofunctionalization of the B-GATAs was used during plant evolution to expand the functional repertoire of these transcription factors.

  10. Integrating data on the Arabidopsis NPR1/NPR3/NPR4 salicylic acid receptors; a differentiating argument.

    Science.gov (United States)

    Kuai, Xiahezi; MacLeod, Brandon J; Després, Charles

    2015-01-01

    Salicylic acid (SA) is a mandatory plant metabolite in the deployment of systemic acquired resistance (SAR), a broad-spectrum systemic immune response induced by local inoculation with avirulent pathogens. The NPR1 transcription co-activator is the central node positively regulating SAR. SA was the last of the major hormones to be without a known receptor. Recently, NPR1 was shown to be the direct link between SA and gene activation. This discovery seems to be controversial. NPR1 being an SA-receptor is reminiscent of the mammalian steroid receptors, which are transcription factors whose binding to DNA is dependent on the interaction with a ligand. Unlike steroid receptors, NPR1 does not bind directly to DNA, but is recruited to promoters by the TGA family of transcription factors to form an enhanceosome. In Arabidopsis, NPR1 is part of a multigene family in which two other members, NPR3 and NPR4, have also been shown to interact with SA. NPR3/NPR4 are negative regulators of immunity and act as substrate adaptors for the recruitment of NPR1 to an E3-ubiquitin ligase, leading to its subsequent degradation by the proteasome. In this perspective, we will stress-test in a friendly way the current NPR1/NPR3/NPR4 model.

  11. Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana.

    Science.gov (United States)

    Shi, Y; Zhang, X; Xu, Z-Y; Li, L; Zhang, C; Schläppi, M; Xu, Z-Q

    2011-09-01

    EARLI1 encodes a 14.7 kDa protein in the cell wall, is a member of the PRP (proline-rich protein) family and has multiple functions, including resistance to low temperature and fungal infection. RNA gel blot analyses in the present work indicated that expression of EARLI1-like genes, EARLI1, At4G12470 and At4G12490, was down-regulated in Col-FRI-Sf2 RNAi plants derived from transformation with Agrobacterium strain ABI, which contains a construct encoding a double-strand RNA targeting 8CM of EARLI1. Phenotype analyses revealed that Col-FRI-Sf2 RNAi plants of EARLI1 flowered earlier than Col-FRI-Sf2 wild-type plants. The average bolting time of Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants was 39.7 and 19.4 days, respectively, under a long-day photoperiod. In addition, there were significant differences in main stem length, internode number and rosette leaf number between Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants. RT-PCR showed that EARLI1-like genes might delay flowering time through the autonomous and long-day photoperiod pathways by maintaining the abundance of FLC transcripts. In Col-FRI-Sf2 RNAi plants, transcription of FLC was repressed, while expression of SOC1 and FT was activated. Microscopy observations showed that EARLI1-like genes were also associated with morphogenesis of leaf cells in Arabidopsis. Using histochemical staining, EARLI1-like genes were found to be involved in regulation of lignin synthesis in inflorescence stems, and Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants had 9.67% and 8.76% dry weight lignin, respectively. Expression analysis revealed that cinnamoyl-CoA reductase, a key enzyme in lignin synthesis, was influenced by EARLI1-like genes. These data all suggest that EARLI1-like genes could control the flowering process and lignin synthesis in Arabidopsis. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Arabidopsis Histone Demethylases LDL1 and LDL2 Control Primary Seed Dormancy by Regulating DELAY OF GERMINATION 1 and ABA Signaling-Related Genes

    Directory of Open Access Journals (Sweden)

    Ming lei Zhao

    2015-03-01

    Full Text Available Seed dormancy controls germination and plays a critical role in regulating the beginning of the life cycle of plants. Seed dormancy is established and maintained during seed maturation and is gradually broken during dry storage (after-ripening. The plant hormone abscisic acid (ABA and DELAY OF GERMINATION1 (DOG1 protein are essential regulators of seed dormancy. Recent studies revealed that chromatin modifications are also involved in the transcription regulation of seed dormancy. Here, we showed that two Arabidopsis histone demethylases, LYSINESPECIFIC DEMETHYLASE LIKE 1 and 2 (LDL1 and LDL2 act redundantly in repressing of seed dormancy. LDL1 and LDL2 are highly expressed in the early silique developing stage. The ldl1 ldl2 double mutant displays increased seed dormancy, whereas overexpression of LDL1 or LDL2 in Arabidopsis causes reduced dormancy. Furthermore, we showed that LDL1 and LDL2 repress the expression of seed dormancy-related genes, including DOG1, ABA2 and ABI3 during seed dormancy establishment. Furthermore, genetic analysis revealed that the repression of seed dormancy by LDL1 and LDL2 requires DOG1, ABA2 and ABI3. Taken together, our findings revealed that LDL1 and LDL2 play an essential role in seed dormancy.

  13. Both AtrbohD and AtrbohF are essential for mediating responses to oxygen deficiency in Arabidopsis.

    Science.gov (United States)

    Liu, Bo; Sun, Lirong; Ma, Liya; Hao, Fu-Shun

    2017-06-01

    Both AtrbohD and AtrbohF promote the increases in activities of ADH, PDC, LDH, and Ca 2+ levels, and induce the expression of multiple hypoxia response genes, thus improving Arabidopsis adaptation to oxygen deficiency. NADPH oxidase AtrbohD and AtrbohF cooperatively play key roles in regulation of growth and stress signaling in Arabidopsis. However, reports on AtrbohD and AtrbohF functioning together in hypoxia signaling are scarce, and the underlying mechanisms remain elusive. Here, we show that the double null mutant atrbohD/F is more sensitive to oxygen deprivation compared with wild type (WT) and the single mutant atrbohD and atrbohF. Under oxygen deficiency, enhancements of the transcripts of alcohol dehydrogenase 1 (ADH1) and pyruvate decarboxylase 1 (PDC1) and the activities of ADH, PDC and lactate dehydrogenase in WT are clearly reduced in the single mutants, and more strongly reduced in the double mutant. Moreover, increases in the production of ATP, H 2 O 2 and Ca 2+ in WT are significantly arrested in atrbohD, atrbohF, and especially in atrbohD/F. Hypoxia-promoted rise in the expression of some hypoxic responsive genes is also inhibited in atrbohD/F relative to WT, atrbohD and atrbohF. These genes include ethylene response factor 73, lactate dehydrogenase, MYB transcription factor 2, sucrose synthase 1 (SUS1), SUS4, heat stress transcription factor A2 and heat-shock protein 18.2. These results suggest that both AtrbohD and AtrbohF are essential for mediating hypoxia signaling. H 2 O 2 derived from AtrbohD and AtrbohF triggers the Ca 2+ increase and induces the expression of multiple hypoxia response genes, thus improving Arabidopsis tolerance to low-oxygen stress. These findings provide new insights into the mechanisms of AtrbohF in regulating the responses to oxygen deprivation in Arabidopsis.

  14. Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in vitro cultured thin cell layers.

    Science.gov (United States)

    Della Rovere, F; Fattorini, L; D'Angeli, S; Veloccia, A; Del Duca, S; Cai, G; Falasca, G; Altamura, M M

    2015-03-01

    Adventitious roots (ARs) are essential for vegetative propagation. The Arabidopsis thaliana transcription factors SHORT ROOT (SHR) and SCARECROW (SCR) affect primary/lateral root development, but their involvement in AR formation is uncertain. LAX3 and AUX1 auxin influx carriers contribute to primary/lateral root development. LAX3 expression is regulated by SHR, and LAX3 contributes to AR tip auxin maximum. In contrast, AUX1 involvement in AR development is unknown. Xylogenesis is induced by auxin plus cytokinin as is AR formation, but the genes involved are largely unknown. Stem thin cell layers (TCLs) form ARs and undergo xylogenesis under the same auxin plus cytokinin input. The aim of this research was to investigate SHR, SCR, AUX1 and LAX3 involvement in AR formation and xylogenesis in intact hypocotyls and stem TCLs in arabidopsis. Hypocotyls of scr-1, shr-1, lax3, aux1-21 and lax3/aux1-21 Arabidopsis thaliana null mutant seedlings grown with or without auxin plus cytokinin were examined histologically, as were stem TCLs cultured with auxin plus cytokinin. SCR and AUX1 expression was monitored using pSCR::GFP and AUX1::GUS lines, and LAX3 expression and auxin localization during xylogenesis were monitored by using LAX3::GUS and DR5::GUS lines. AR formation was inhibited in all mutants, except lax3. SCR was expressed in pericycle anticlinally derived AR-forming cells of intact hypocotyls, and in cell clumps forming AR meristemoids of TCLs. The apex was anomalous in shr and scr ARs. In all mutant hypocotyls, the pericycle divided periclinally to produce xylogenesis. Xylary element maturation was favoured by auxin plus cytokinin in shr and aux1-21. Xylogenesis was enhanced in TCLs, and in aux1-21 and shr in particular. AUX1 was expressed before LAX3, i.e. in the early derivatives leading to either ARs or xylogenesis. AR formation and xylogenesis are developmental programmes that are inversely related, but they involve fine-tuning by the same proteins, namely SHR

  15. Regulation of abiotic stress signalling by Arabidopsis C-terminal domain phosphatase-like 1 requires interaction with a k-homology domain-containing protein.

    Directory of Open Access Journals (Sweden)

    In Sil Jeong

    Full Text Available Arabidopsis thaliana CARBOXYL-TERMINAL DOMAIN (CTD PHOSPHATASE-LIKE 1 (CPL1 regulates plant transcriptional responses to diverse stress signals. Unlike typical CTD phosphatases, CPL1 contains two double-stranded (ds RNA binding motifs (dsRBMs at its C-terminus. Some dsRBMs can bind to dsRNA and/or other proteins, but the function of the CPL1 dsRBMs has remained obscure. Here, we report identification of REGULATOR OF CBF GENE EXPRESSION 3 (RCF3 as a CPL1-interacting protein. RCF3 co-purified with tandem-affinity-tagged CPL1 from cultured Arabidopsis cells and contains multiple K-homology (KH domains, which were predicted to be important for binding to single-stranded DNA/RNA. Yeast two-hybrid, luciferase complementation imaging, and bimolecular fluorescence complementation analyses established that CPL1 and RCF3 strongly associate in vivo, an interaction mediated by the dsRBM1 of CPL1 and the KH3/KH4 domains of RCF3. Mapping of functional regions of CPL1 indicated that CPL1 in vivo function requires the dsRBM1, catalytic activity, and nuclear targeting of CPL1. Gene expression profiles of rcf3 and cpl1 mutants were similar during iron deficiency, but were distinct during the cold response. These results suggest that tethering CPL1 to RCF3 via dsRBM1 is part of the mechanism that confers specificity to CPL1-mediated transcriptional regulation.

  16. In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme

    Directory of Open Access Journals (Sweden)

    Iqbal M Javed

    2008-09-01

    Full Text Available Abstract Background Sudden death syndrome (SDS of soybean (Glycine max L. Merr. is an economically important disease, caused by the semi-biotrophic fungus Fusarium solani f. sp. glycines, recently renamed Fusarium virguliforme (Fv. Due to the complexity and length of the soybean-Fusarium interaction, the molecular mechanisms underlying plant resistance and susceptibility to the pathogen are not fully understood. F. virguliforme has a very wide host range for the ability to cause root rot and a very narrow host range for the ability to cause a leaf scorch. Arabidopsis thaliana is a host for many types of phytopathogens including bacteria, fungi, viruses and nematodes. Deciphering the variations among transcript abundances (TAs of functional orthologous genes of soybean and A. thaliana involved in the interaction will provide insights into plant resistance to F. viguliforme. Results In this study, we reported the analyses of microarrays measuring TA in whole plants after A. thaliana cv 'Columbia' was challenged with fungal pathogen F. virguliforme. Infection caused significant variations in TAs. The total number of increased transcripts was nearly four times more than that of decreased transcripts in abundance. A putative resistance pathway involved in responding to the pathogen infection in A. thaliana was identified and compared to that reported in soybean. Conclusion Microarray experiments allow the interrogation of tens of thousands of transcripts simultaneously and thus, the identification of plant pathways is likely to be involved in plant resistance to Fusarial pathogens. Dissection of the set functional orthologous genes between soybean and A. thaliana enabled a broad view of the functional relationships and molecular interactions among plant genes involved in F. virguliforme resistance.

  17. A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Lu, Xiang; Yang, Lei; Yu, Mengyuan; Lai, Jianbin; Wang, Chao; McNeil, David; Zhou, Meixue; Yang, Chengwei

    2017-04-01

    The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis.

    Science.gov (United States)

    Gao, Zhen; Daneva, Anna; Salanenka, Yuliya; Van Durme, Matthias; Huysmans, Marlies; Lin, Zongcheng; De Winter, Freya; Vanneste, Steffen; Karimi, Mansour; Van de Velde, Jan; Vandepoele, Klaas; Van de Walle, Davy; Dewettinck, Koen; Lambrecht, Bart N; Nowack, Moritz K

    2018-05-28

    Flowers have a species-specific functional life span that determines the time window in which pollination, fertilization and seed set can occur. The stigma tissue plays a key role in flower receptivity by intercepting pollen and initiating pollen tube growth toward the ovary. In this article, we show that a developmentally controlled cell death programme terminates the functional life span of stigma cells in Arabidopsis. We identified the leaf senescence regulator ORESARA1 (also known as ANAC092) and the previously uncharacterized KIRA1 (also known as ANAC074) as partially redundant transcription factors that modulate stigma longevity by controlling the expression of programmed cell death-associated genes. KIRA1 expression is sufficient to induce cell death and terminate floral receptivity, whereas lack of both KIRA1 and ORESARA1 substantially increases stigma life span. Surprisingly, the extension of stigma longevity is accompanied by only a moderate extension of flower receptivity, suggesting that additional processes participate in the control of the flower's receptive life span.

  19. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function.

    Science.gov (United States)

    Lei, Rihua; Li, Xiaoli; Ma, Zhenbing; Lv, Yan; Hu, Yanru; Yu, Diqiu

    2017-09-01

    Plant male gametogenesis is tightly regulated, and involves complex and precise regulations of transcriptional reprogramming. WRKY transcription factors have been demonstrated to play critical roles in plant development and stress responses. Several members of this family physically interact with VQ motif-containing proteins (VQ proteins) to mediate a plethora of programs in Arabidopsis; however, the involvement of WRKY-VQ complexes in plant male gametogenesis remains largely unknown. In this study, we found that WRKY2 and WKRY34 interact with VQ20 both in vitro and in vivo. Further experiments displayed that the conserved VQ motif of VQ20 is responsible for their physical interactions. The VQ20 protein localizes in the nucleus and specifically expresses in pollens. Phenotypic analysis showed that WRKY2, WRKY34 and VQ20 are crucial for pollen development and function. Mutations of WRKY2, WRKY34 and VQ20 simultaneously resulted in male sterility, with defects in pollen development, germination and tube growth. Further investigation revealed that VQ20 affects the transcriptional functions of its interacting WRKY partners. Complementation evidence supported that the VQ motif of VQ20 is essential for pollen development, as a mutant form of VQ20 in which LVQK residues in the VQ motif were replaced by EDLE did not rescue the phenotype of the w2-1 w34-1 vq20-1 triple-mutant plants. Further expression analysis indicated that WRKY2, WRKY34 and VQ20 co-modulate multiple genes involved in pollen development, germination and tube growth. Taken together, our study provides evidence that VQ20 acts as a key partner of WRKY2 and WKRY34 in plant male gametogenesis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.

    Science.gov (United States)

    Kerchev, Pavel I; Pellny, Till K; Vivancos, Pedro Diaz; Kiddle, Guy; Hedden, Peter; Driscoll, Simon; Vanacker, Hélène; Verrier, Paul; Hancock, Robert D; Foyer, Christine H

    2011-09-01

    Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation.

  1. Overexpression of the mulberry latex gene MaMLX-Q1 enhances defense against Plutella xylostella in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Liu Yan

    2017-01-01

    Full Text Available Purified mulberry latex chitinase (MLX has a role in defense against some lepidopteran insects. In this study, a full length chitinase gene, MaMLX-Q1, of 1405 bp with a 1140 bp open reading frame, was obtained from mulberry leaves by the degenerate primers and rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR procedure. The gene encoded a mature protein with the predicted molecular mass of 39.38 kDa and an isoelectric point (pI of 6.43; it contained two chitin-binding domains and a hydrolase family 19 chitinase domain. Sequence alignment and phylogenetic analysis grouped it in the class I chitinase protein group. Heterogeneous expression of this MaMLX-Q1 in Arabidopsis showed non-visible alterations in growth phenotype, except for the higher transcriptional expression of MaMLX-Q1 when compared to that of wild-type Arabidopsis. This ectopic MaMLX-Q1 exhibited toxicity to the growth and development of Plutella xylostella larvae, causing significantly lower weight gain and higher mortality. These results indicate an application of MaMLX-Q1 as an insecticide for plant protection.

  2. Large-scale analysis of Arabidopsis transcription reveals a basal co-regulation network

    Directory of Open Access Journals (Sweden)

    Chamovitz Daniel A

    2009-09-01

    Full Text Available Abstract Background Analyses of gene expression data from microarray experiments has become a central tool for identifying co-regulated, functional gene modules. A crucial aspect of such analysis is the integration of data from different experiments and different laboratories. How to weigh the contribution of different experiments is an important point influencing the final outcomes. We have developed a novel method for this integration, and applied it to genome-wide data from multiple Arabidopsis microarray experiments performed under a variety of experimental conditions. The goal of this study is to identify functional globally co-regulated gene modules in the Arabidopsis genome. Results Following the analysis of 21,000 Arabidopsis genes in 43 datasets and about 2 × 108 gene pairs, we identified a globally co-expressed gene network. We found clusters of globally co-expressed Arabidopsis genes that are enriched for known Gene Ontology annotations. Two types of modules were identified in the regulatory network that differed in their sensitivity to the node-scoring parameter; we further showed these two pertain to general and specialized modules. Some of these modules were further investigated using the Genevestigator compendium of microarray experiments. Analyses of smaller subsets of data lead to the identification of condition-specific modules. Conclusion Our method for identification of gene clusters allows the integration of diverse microarray experiments from many sources. The analysis reveals that part of the Arabidopsis transcriptome is globally co-expressed, and can be further divided into known as well as novel functional gene modules. Our methodology is general enough to apply to any set of microarray experiments, using any scoring function.

  3. VvVHP1; 2 Is Transcriptionally Activated by VvMYBA1 and Promotes Anthocyanin Accumulation of Grape Berry Skins via Glucose Signal

    Directory of Open Access Journals (Sweden)

    Tianyu Sun

    2017-10-01

    Full Text Available In this work, four vacuolar H+-PPase (VHP genes were identified in the grape genome. Among them, VvVHP1; 2 was strongly expressed in berry skin and its expression exhibited high correlations to anthocyanin content of berry skin during berry ripening and under ABA and UVB treatments. VvVHP1; 2 was transcriptionally activated directly by VvMYBA1, and VvVHP1; 2 overexpression promoted anthocyanin accumulation in berry skins and Arabidopsis leaves; therefore, VvVHP1; 2 mediated VvMYBA1-regulated berry pigmentation. On the other hand, RNA-Seq analysis of WT and transgenic berry skins revealed that carbohydrate metabolism, flavonoid metabolism and regulation and solute carrier family expression were the most clearly altered biological processes. Further experiments elucidated that VvVHP1; 2 overexpression up-regulated the expression of the genes related to anthocyanin biosynthesis and transport via hexokinase-mediated glucose signal and thereby promoted anthocyanin accumulation in berry skins and Arabidopsis leaves. Additionally, modifications of sugar status caused by enhanced hexokinase activities likely play a key role in VvVHP1; 2-induced sugar signaling.

  4. Functional characterization of a heterologously expressed Brassica napus WRKY41-1 transcription factor in regulating anthocyanin biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Duan, Shaowei; Wang, Jianjun; Gao, Chenhao; Jin, Changyu; Li, Dong; Peng, Danshuai; Du, Guomei; Li, Yiqian; Chen, Mingxun

    2018-03-01

    Previous studies have shown that a plant WRKY transcription factor, WRKY41, has multiple functions, and regulates seed dormancy, hormone signaling pathways, and both biotic and abiotic stress responses. However, it is not known about the roles of AtWRKY41 from the model plant, Arabidopsis thaliana, and its ortholog, BnWRKY41, from the closely related and important oil-producing crop, Brassica napus, in the regulation of anthocyanin biosynthesis. Here, we found that the wrky41 mutation in A. thaliana resulted in a significant increase in anthocyanin levels in rosette leaves, indicating that AtWRKY41 acts as repressor of anthocyanin biosynthesis. RNA sequencing and quantitative real-time PCR analysis revealed increased expression of three regulatory genes AtMYB75, AtMYB111, and AtMYBD, and two structural genes, AT1G68440 and AtGSTF12, all of which contribute to anthocyanin biosynthesis, in the sixth rosette leaves of wrky41-2 plants at 20 days after germination. We cloned the full length complementary DNA of BnWRKY41-1 from the C2 subgenome of the B. napus genotype Westar and observed that, when overexpressed in tobacco leaves as a fusion protein with green fluorescent protein, BnWRKY41-1 is localized to the nucleus. We further showed that overexpression of BnWRKY41-1 in the A. thaliana wrky41-2 mutant rescued the higher anthocyanin content phenotype in rosette leaves of the mutant. Moreover, the elevated expression levels in wrky41-2 rosette leaves of several important regulatory and structural genes regulating anthocyanin biosynthesis were not observed in the BnWRKY41-1 overexpressing lines. These results reveal that BnWRKY41-1 has a similar role with AtWRKY41 in regulating anthocyanin biosynthesis when overexpressed in A. thaliana. This gene represents a promising target for genetically manipulating B. napus to increase the amounts of anthocyanins in rosette leaves. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a , and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH , we used a yeast ( Saccharomyces cerevisiae ) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant ( soc1-6 ) showed an accelerated yellowing phenotype, whereas those of SOC1 -overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis ( Arabidopsis thaliana ) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES ( SAGs ) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis. © 2017 American Society of Plant Biologists. All

  6. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis

    NARCIS (Netherlands)

    Verweij, W.; Spelt, C.E.; Bliek, M.; de Vries, M.; Wit, N.; Faraco, M.; Koes, R.; Quattrocchio, F.

    2016-01-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) fromArabidopsis thalianaand associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein

  7. Beyond Histones: New Substrate Proteins of Lysine Deacetylases in Arabidopsis Nuclei

    Directory of Open Access Journals (Sweden)

    Magdalena Füßl

    2018-04-01

    Full Text Available The reversible acetylation of lysine residues is catalyzed by the antagonistic action of lysine acetyltransferases and deacetylases, which can be considered as master regulators of their substrate proteins. Lysine deacetylases, historically referred to as histone deacetylases, have profound functions in regulating stress defenses and development in plants. Lysine acetylation of the N-terminal histone tails promotes gene transcription and decondensation of chromatin, rendering the DNA more accessible to the transcription machinery. In plants, the classical lysine deacetylases from the RPD3/HDA1-family have thus far mainly been studied in the context of their deacetylating activities on histones, and their versatility in molecular activities is still largely unexplored. Here we discuss the potential impact of lysine acetylation on the recently identified nuclear substrate proteins of lysine deacetylases from the Arabidopsis RPD3/HDA1-family. Among the deacetylase substrate proteins, many interesting candidates involved in nuclear protein import, transcriptional regulation, and chromatin remodeling have been identified. These candidate proteins represent key starting points for unraveling new molecular functions of the Arabidopsis lysine deacetylases. Site-directed engineering of lysine acetylation sites on these target proteins might even represent a new approach for optimizing plant growth under climate change conditions.

  8. Loss of CDKC;2 increases both cell division and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Lina; Li, Yaqiong; Xie, Qi; Wu, Yaorong

    2017-09-01

    Drought stress is one of the abiotic stresses that limit plant growth and agricultural productivity. To further understand the mechanism of drought tolerance and identify the genes involved in this process, a genetic screen for altered drought response was conducted in Arabidopsis. One mutant with enhanced drought tolerance was isolated and named Arabidopsis drought tolerance mutant 1 (atdtm1), which has larger lateral organs, prolonged growth duration, increased relative water content and a reduced leaf stomatal density compared with the wild type. The loss of AtDTM1 increases cell division during leaf development. The phenotype is caused by the loss of a T-DNA tagged gene encoding CYCLIN-DEPENDENT KINASE C;2 (CDKC;2), which functions in the regulation of transcription by influencing the phosphorylation status of RNA polymerase II (Pol II). Here, we show that CDKC;2 affects the transcription of downstream genes such as cell cycle genes and genes involved in stomatal development, resulting in altered plant organ size as well as drought tolerance of the plant. These results reveal the crucial role of CDKC;2 in modulating both cell division and the drought response in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes.

    Science.gov (United States)

    Catinot, Jérémy; Huang, Jing-Bo; Huang, Pin-Yao; Tseng, Min-Yuan; Chen, Ying-Lan; Gu, Shin-Yuan; Lo, Wan-Sheng; Wang, Long-Chi; Chen, Yet-Ran; Zimmerli, Laurent

    2015-12-01

    The ERF (ethylene responsive factor) family is composed of transcription factors (TFs) that are critical for appropriate Arabidopsis thaliana responses to biotic and abiotic stresses. Here we identified and characterized a member of the ERF TF group IX, namely ERF96, that when overexpressed enhances Arabidopsis resistance to necrotrophic pathogens such as the fungus Botrytis cinerea and the bacterium Pectobacterium carotovorum. ERF96 is jasmonate (JA) and ethylene (ET) responsive and ERF96 transcripts accumulation was abolished in JA-insensitive coi1-16 and in ET-insensitive ein2-1 mutants. Protoplast transactivation and electrophoresis mobility shift analyses revealed that ERF96 is an activator of transcription that binds to GCC elements. In addition, ERF96 mainly localized to the nucleus. Microarray analysis coupled to chromatin immunoprecipitation-PCR of Arabidopsis overexpressing ERF96 revealed that ERF96 enhances the expression of the JA/ET defence genes PDF1.2a, PR-3 and PR-4 as well as the TF ORA59 by direct binding to GCC elements present in their promoters. While ERF96-RNAi plants demonstrated wild-type resistance to necrotrophic pathogens, basal PDF1.2 expression levels were reduced in ERF96-silenced plants. This work revealed ERF96 as a key player of the ERF network that positively regulates the Arabidopsis resistance response to necrotrophic pathogens. © 2015 John Wiley & Sons Ltd.

  10. The Bacterial Effector HopX1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis

    Science.gov (United States)

    Gimenez-Ibanez, Selena; Boter, Marta; Fernández-Barbero, Gemma; Chini, Andrea; Rathjen, John P.; Solano, Roberto

    2014-01-01

    Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR), which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile). Inside the plant cell, effectors target host molecules to subvert the host cell physiology and disrupt defenses. However, despite the fact that elucidating effector action is essential to understanding bacterial pathogenesis, the molecular function and host targets of the vast majority of effectors remain largely unknown. Here, we found that effector HopX1 from Pseudomonas syringae pv. tabaci (Pta) 11528, a strain that does not produce COR, interacts with and promotes the degradation of JAZ proteins, a key family of JA-repressors. We show that hopX1 encodes a cysteine protease, activity that is required for degradation of JAZs by HopX1. HopX1 associates with JAZ proteins through its central ZIM domain and degradation occurs in a COI1-independent manner. Moreover, ectopic expression of HopX1 in Arabidopsis induces the expression of JA-dependent genes, represses salicylic acid (SA)-induced markers, and complements the growth of a COR-deficient P. syringae pv. tomato (Pto) DC3000 strain during natural bacterial infections. Furthermore, HopX1 promoted susceptibility when delivered by the natural type III secretion system, to a similar extent as the addition of COR, and this effect was dependent on its catalytic activity. Altogether, our results indicate that JAZ proteins are direct targets of bacterial effectors to promote activation of JA-induced defenses and susceptibility in Arabidopsis. HopX1 illustrates a paradigm of an alternative evolutionary solution to COR with similar physiological outcome. PMID:24558350

  11. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    Science.gov (United States)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  12. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco.

    Science.gov (United States)

    Aharoni, A; De Vos, C H; Wein, M; Sun, Z; Greco, R; Kroon, A; Mol, J N; O'Connell, A P

    2001-11-01

    Fruit ripening is characterized by dramatic changes in gene expression, enzymatic activities and metabolism. Although the process of ripening has been studied extensively, we still lack valuable information on how the numerous metabolic pathways are regulated and co-ordinated. In this paper we describe the characterization of FaMYB1, a ripening regulated strawberry gene member of the MYB family of transcription factors. Flowers of transgenic tobacco lines overexpressing FaMYB1 showed a severe reduction in pigmentation. A reduction in the level of cyanidin 3-rutinoside (an anthocyanin) and of quercetin-glycosides (flavonols) was observed. Expression of late flavonoid biosynthesis genes and their enzyme activities were adversely affected by FaMYB1 overexpression. Two-hybrid assays in yeast showed that FaMYB1 could interact with other known anthocyanin regulators, but it does not act as a transcriptional activator. Interestingly, the C-terminus of FaMYB1 contains the motif pdLNL(D)/(E)Lxi(G)/S. This motif is contained in a region recently proposed to be involved in the repression of transcription by AtMYB4, an Arabidopsis MYB protein. Our results suggest that FaMYB1 may play a key role in regulating the biosynthesis of anthocyanins and flavonols in strawberry. It may act to repress transcription in order to balance the levels of anthocyanin pigments produced at the latter stages of strawberry fruit maturation, and/or to regulate metabolite levels in various branches of the flavonoid biosynthetic pathway.

  13. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xinguo Mao

    Full Text Available Abiotic stresses are major environmental factors that affect agricultural productivity worldwide. NAC transcription factors play pivotal roles in abiotic stress signaling in plants. As a staple crop, wheat production is severely constrained by abiotic stresses whereas only a few NAC transcription factors have been characterized functionally. To promote the application of NAC genes in wheat improvement by biotechnology, a novel NAC gene designated TaNAC67 was characterized in common wheat. To determine its role, transgenic Arabidopsis overexpressing TaNAC67-GFP controlled by the CaMV-35S promoter was generated and subjected to various abiotic stresses for morphological and physiological assays. Gene expression showed that TaNAC67 was involved in response to drought, salt, cold and ABA treatments. Localization assays revealed that TaNAC67 localized in the nucleus. Morphological analysis indicated the transgenics had enhanced tolerances to drought, salt and freezing stresses, simultaneously supported by enhanced expression of multiple abiotic stress responsive genes and improved physiological traits, including strengthened cell membrane stability, retention of higher chlorophyll contents and Na(+ efflux rates, improved photosynthetic potential, and enhanced water retention capability. Overexpression of TaNAC67 resulted in pronounced enhanced tolerances to drought, salt and freezing stresses, therefore it has potential for utilization in transgenic breeding to improve abiotic stress tolerance in crops.

  14. Integrating Data on the Arabidopsis NPR1/NPR3/NPR4 Salicylic Acid Receptors; a Differentiating Argument

    Directory of Open Access Journals (Sweden)

    Xiahezi eKuai

    2015-04-01

    Full Text Available Salicylic acid (SA is a mandatory plant metabolite in the deployment of systemic acquired resistance (SAR, a broad-spectrum systemic immune response induced by local inoculation with avirulent pathogens. The NPR1 transcription co-activator is the central node positively regulating SAR. SA was the last of the major hormones to be without a known receptor. Recently, NPR1 was shown to be the direct link between SA and gene activation. This discovery seems to be controversial. NPR1 being an SA-receptor is reminiscent of the mammalian steroid receptors, which are transcription factors whose binding to DNA is dependent on the interaction with a ligand. Unlike steroid receptors, NPR1 does not bind directly to DNA, but is recruited to promoters by the TGA family of transcription factors to form an enhanceosome. In Arabidopsis, NPR1 is part of a multigene family in which two other members, NPR3 and NPR4, have also been shown to interact with SA. NPR3/NPR4 are negative regulators of immunity and act as substrate adaptors for the recruitment of NPR1 to an E3-ubiquitin ligase, leading to its subsequent degradation by the proteasome. In this perspective, we will stress-test in a friendly way the current NPR1/NPR3/NPR4 model.

  15. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuxiang, E-mail: yuxiangqin@126.com [Department of Biotechnology, University of Jinan, Jinan 250022 (China); Tian, Yanchen [The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100 (China); Han, Lu; Yang, Xinchao [Department of Biotechnology, University of Jinan, Jinan 250022 (China)

    2013-11-15

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway.

  16. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Qin, Yuxiang; Tian, Yanchen; Han, Lu; Yang, Xinchao

    2013-01-01

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway

  17. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis.

    Science.gov (United States)

    Qin, Yuxiang; Wang, Mengcheng; Tian, Yanchen; He, Wenxing; Han, Lu; Xia, Guangmin

    2012-06-01

    Salt and drought stresses often adversely affect plant growth and productivity, MYB transcription factors have been shown to participate in the response to these stresses. Here we identified a new R2R3-type MYB transcription factor gene TaMYB33 from wheat (Triticum aestivum). TaMYB33 was induced by NaCl, PEG and ABA treatments, and its promoter sequence contains putative ABRE, MYB and other abiotic stress related cis-elements. Ectopic over-expression of TaMYB33 in Arabidopsis thaliana remarkably enhanced its tolerance to drought and NaCl stresses, but not to LiCl and KCl treatments. The expressions of AtP5CS and AtZAT12 which mirror the activities of proline and ascorbate peroxidase synthesis respectively were induced in TaMYB33 over-expression lines, indicating TaMYB33 promotes the ability for osmotic pressure balance-reconstruction and reactive oxidative species (ROS) scavenging. The up-regulation of AtAAO3 along with down-regulation of AtABF3, AtABI1 in TaMYB33 over-expression lines indicated that ABA synthesis was elevated while its signaling was restricted. These results suggest that TaMYB33 enhances salt and drought tolerance partially through superior ability for osmotic balance reconstruction and ROS detoxification.

  18. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Dong-bei Xu

    Full Text Available Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2 was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1, were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44, were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  19. A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development.

    Science.gov (United States)

    Ben-Simhon, Zohar; Judeinstein, Sylvie; Nadler-Hassar, Talia; Trainin, Taly; Bar-Ya'akov, Irit; Borochov-Neori, Hamutal; Holland, Doron

    2011-11-01

    Anthocyanins are the major pigments responsible for the pomegranate (Punica granatum L.) fruit skin color. The high variability in fruit external color in pomegranate cultivars reflects variations in anthocyanin composition. To identify genes involved in the regulation of anthocyanin biosynthesis pathway in the pomegranate fruit skin we have isolated, expressed and characterized the pomegranate homologue of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1), encoding a WD40-repeat protein. The TTG1 protein is a regulator of anthocyanins and proanthocyanidins (PAs) biosynthesis in Arabidopsis, and acts by the formation of a transcriptional regulatory complex with two other regulatory proteins: bHLH and MYB. Our results reveal that the pomegranate gene, designated PgWD40, recovered the anthocyanin, PAs, trichome and seed coat mucilage phenotype in Arabidopsis ttg1 mutant. PgWD40 expression and anthocyanin composition in the skin were analyzed during pomegranate fruit development, in two accessions that differ in skin color intensity and timing of appearance. The results indicate high positive correlation between the total cyanidin derivatives quantity (red pigments) and the expression level of PgWD40. Furthermore, strong correlation was found between the steady state levels of PgWD40 transcripts and the transcripts of pomegranate homologues of the structural genes PgDFR and PgLDOX. PgWD40, PgDFR and PgLDOX expression also correlated with the expression of pomegranate homologues of the regulatory genes PgAn1 (bHLH) and PgAn2 (MYB). On the basis of our results we propose that PgWD40 is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development and that expression of PgWD40, PgAn1 and PgAn2 in the pomegranate fruit skin is required to regulate the expression of downstream structural genes involved in the anthocyanin biosynthesis.

  20. Characterization of the Promoter Region of an Arabidopsis Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Dehydration-Inducible Transcription

    Science.gov (United States)

    Behnam, Babak; Iuchi, Satoshi; Fujita, Miki; Fujita, Yasunari; Takasaki, Hironori; Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Kobayashi, Masatomo; Shinozaki, Kazuo

    2013-01-01

    Plants respond to dehydration stress and tolerate water-deficit status through complex physiological and cellular processes. Many genes are induced by water deficit. Abscisic acid (ABA) plays important roles in tolerance to dehydration stress by inducing many stress genes. ABA is synthesized de novo in response to dehydration. Most of the genes involved in ABA biosynthesis have been identified, and they are expressed mainly in leaf vascular tissues. Of the products of such genes, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme in ABA biosynthesis. One of the five NCED genes in Arabidopsis, AtNCED3, is significantly induced by dehydration. To understand the regulatory mechanism of the early stages of the dehydration stress response, it is important to analyse the transcriptional regulatory systems of AtNCED3. In the present study, we found that an overlapping G-box recognition sequence (5′-CACGTG-3′) at −2248 bp from the transcriptional start site of AtNCED3 is an important cis-acting element in the induction of the dehydration response. We discuss the possible transcriptional regulatory system of dehydration-responsive AtNCED3 expression, and how this may control the level of ABA under water-deficit conditions. PMID:23604098

  1. Arabidopsis thaliana sucrose phosphate synthase (sps) genes are expressed differentially in organs and tissues, and their transcription is regulated by osmotic stress.

    Science.gov (United States)

    Solís-Guzmán, María Gloria; Argüello-Astorga, Gerardo; López-Bucio, José; Ruiz-Herrera, León Francisco; López-Meza, Joel Edmundo; Sánchez-Calderón, Lenin; Carreón-Abud, Yazmín; Martínez-Trujillo, Miguel

    2017-11-01

    Sucrose is synthesized from UDP-Glc and Fru-6-phosphate via the activity of sucrose-phosphate synthase (SPS) enzymes, which produce Suc-6-phosphate. Suc-6-phosphate is rapidly dephosphorylated by phosphatases to produce Suc and inorganic phosphate. Arabidopsis has four sps genes encoding SPS enzymes. Of these enzymes, AtSPS1F and AtSPS2F have been grouped with other dicotyledonous SPS enzymes, while AtSPS3F and AtSPS4F are included in groups with both dicotyledonous and monocotyledonous SPS enzymes. In this work, we generated Arabidopsis thaliana transformants containing the promoter region of each sps gene fused to gfp::uidA reporter genes. A detailed characterization of expression conferred by the sps promoters in organs and tissues was performed. We observed expression of AtSPS1F, AtSPS2F and AtSPS3F in the columella roots of the plants that support sucrose synthesis. Hence, these findings support the idea that sucrose synthesis occurs in the columella cells, and suggests that sucrose has a role in this tissue. In addition, the expression of AtSPS4F was identified in embryos and suggests its participation in this developmental stage. Quantitative transcriptional analysis of A. thaliana plants grown in media with different osmotic potential showed that AtSPS2F and AtSPS4F respond to osmotic stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana.

    Science.gov (United States)

    Park, Jin-Sup; Frost, Jennifer M; Park, Kyunghyuk; Ohr, Hyonhwa; Park, Guen Tae; Kim, Seohyun; Eom, Hyunjoo; Lee, Ilha; Brooks, Janie S; Fischer, Robert L; Choi, Yeonhee

    2017-02-21

    The DEMETER (DME) DNA glycosylase initiates active DNA demethylation via the base-excision repair pathway and is vital for reproduction in Arabidopsis thaliana DME-mediated DNA demethylation is preferentially targeted to small, AT-rich, and nucleosome-depleted euchromatic transposable elements, influencing expression of adjacent genes and leading to imprinting in the endosperm. In the female gametophyte, DME expression and subsequent genome-wide DNA demethylation are confined to the companion cell of the egg, the central cell. Here, we show that, in the male gametophyte, DME expression is limited to the companion cell of sperm, the vegetative cell, and to a narrow window of time: immediately after separation of the companion cell lineage from the germline. We define transcriptional regulatory elements of DME using reporter genes, showing that a small region, which surprisingly lies within the DME gene, controls its expression in male and female companion cells. DME expression from this minimal promoter is sufficient to rescue seed abortion and the aberrant DNA methylome associated with the null dme-2 mutation. Within this minimal promoter, we found short, conserved enhancer sequences necessary for the transcriptional activities of DME and combined predicted binding motifs with published transcription factor binding coordinates to produce a list of candidate upstream pathway members in the genetic circuitry controlling DNA demethylation in gamete companion cells. These data show how DNA demethylation is regulated to facilitate endosperm gene imprinting and potential transgenerational epigenetic regulation, without subjecting the germline to potentially deleterious transposable element demethylation.

  3. The Clubroot Pathogen (Plasmodiophora brassicae Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Linda Jahn

    2013-11-01

    Full Text Available The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1 in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA and transcription factors (ARF. As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3, the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae.

  4. Transgenic plants expressing GLK1 and CCA1 having increased nitrogen assimilation capacity

    Science.gov (United States)

    Coruzzi, Gloria [New York, NY; Gutierrez, Rodrigo A [Santiago, CL; Nero, Damion C [Woodside, NY

    2012-04-10

    Provided herein are compositions and methods for producing transgenic plants. In specific embodiments, transgenic plants comprise a construct comprising a polynucleotide encoding CCA1, GLK1 or bZIP1, operably linked to a plant-specific promote, wherein the CCA1, GLK1 or bZIP1 is ectopically overexpressed in the transgenic plants, and wherein the promoter is optionally a constitutive or inducible promoter. In other embodiments, transgenic plants in which express a lower level of CCA1, GLK1 or bZIP1 are provided. Also provided herein are commercial products (e.g., pulp, paper, paper products, or lumber) derived from the transgenic plants (e.g., transgenic trees) produced using the methods provided herein.

  5. Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis.

    Science.gov (United States)

    Xu, Li; Jin, Li; Long, Lu; Liu, Linlin; He, Xin; Gao, Wei; Zhu, Longfu; Zhang, Xianlong

    2012-12-01

    Overexpression of a cotton defense-related gene GbWRKY1 in Arabidopsis resulted in modification of the root system by enhanced auxin sensitivity to positively regulate the Pi starvation response. GbWRKY1 was a cloned WRKY transcription factor from Gossypium barbadense, which was firstly identified as a defense-related gene and showed moderate similarity with AtWRKY75 from Arabidopsis thaliana. Overexpression of GbWRKY1 in Arabidopsis resulted in attenuated Pi starvation stress symptoms, including reduced accumulation of anthocyanin and impaired density of lateral roots (LR) in low Pi stress. The study also indicated that overexpression of GbWRKY1 caused plants constitutively exhibited Pi starvation response including increased development of LR, relatively high level of total P and Pi, high expression level of some high-affinity Pi transporters and phosphatases as well as enhanced accumulation of acid phosphatases activity during Pi-sufficient. It was speculated that GbWRKY1 may act as a positive regulator in the Pi starvation response as well as AtWRKY75. GbWRKY1 probably involves in the modulation of Pi homeostasis and participates in the Pi allocation and remobilization but do not accumulate more Pi in Pi-deficient condition, which was different from the fact that AtWRKY75 influenced the Pi status of the plant during Pi deprivation by increasing root surface area and accumulation of more Pi. Otherwise, further study suggested that the overexpression plants were more sensitive to auxin than wild-type and GbWRKY1 may partly influence the LPR1-dependent (low phosphate response 1) Pi starvation signaling pathway and was putatively independent of SUMO E3 ligase SIZ1 and PHR1 (phosphate starvation response 1) in response to Pi starvation.

  6. Characterization of a Cytokinin Response Factor in Arabidopsis thaliana

    OpenAIRE

    Ketelsen, Bernd

    2012-01-01

    The papers of this thesis are not available in Munin: 1. Bernd Ketelsen, Rainer Schwacke, Kirsten Krause and Karsten Fischer: 'Transcriptional activation by Cytokinin Response Factor 5 is governed by an acidic Cterminus containing two conserved domains' (manuscript) 2. Bernd Ketelsen, Stian Olsen, Kirsten Krause and Karsten Fischer: 'Cytokinin responsive factor 5 (CRF5) is involved in root development, hormonal crosstalk and sugar metabolism in Arabidopsis thaliana' (manuscript) 3. Bernd K...

  7. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1.

    Science.gov (United States)

    Furihata, Takashi; Maruyama, Kyonoshin; Fujita, Yasunari; Umezawa, Taishi; Yoshida, Riichiro; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-02-07

    bZIP-type transcription factors AREBs/ABFs bind an abscisic acid (ABA)-responsive cis-acting element named ABRE and transactivate downstream gene expression in Arabidopsis. Because AREB1 overexpression could not induce downstream gene expression, activation of AREB1 requires ABA-dependent posttranscriptional modification. We confirmed that ABA activated 42-kDa kinase activity, which, in turn, phosphorylated Ser/Thr residues of R-X-X-S/T sites in the conserved regions of AREB1. Amino acid substitutions of R-X-X-S/T sites to Ala suppressed transactivation activity, and multiple substitution of these sites resulted in almost complete suppression of transactivation activity in transient assays. In contrast, substitution of the Ser/Thr residues to Asp resulted in high transactivation activity without exogenous ABA application. A phosphorylated, transcriptionally active form was achieved by substitution of Ser/Thr in all conserved R-X-X-S/T sites to Asp. Transgenic plants overexpressing the phosphorylated active form of AREB1 expressed many ABA-inducible genes, such as RD29B, without ABA treatment. These results indicate that the ABA-dependent multisite phosphorylation of AREB1 regulates its own activation in plants.

  8. The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization.

    Directory of Open Access Journals (Sweden)

    Alexandra Steffens

    2015-07-01

    Full Text Available Members of the highly conserved class of BEACH domain containing proteins (BDCPs have been established as broad facilitators of protein-protein interactions and membrane dynamics in the context of human diseases like albinism, bleeding diathesis, impaired cellular immunity, cancer predisposition, and neurological dysfunctions. Also, the Arabidopsis thaliana BDCP SPIRRIG (SPI is important for membrane integrity, as spi mutants exhibit split vacuoles. In this work, we report a novel molecular function of the BDCP SPI in ribonucleoprotein particle formation. We show that SPI interacts with the P-body core component DECAPPING PROTEIN 1 (DCP1, associates to mRNA processing bodies (P-bodies, and regulates their assembly upon salt stress. The finding that spi mutants exhibit salt hypersensitivity suggests that the local function of SPI at P-bodies is of biological relevance. Transcriptome-wide analysis revealed qualitative differences in the salt stress-regulated transcriptional response of Col-0 and spi. We show that SPI regulates the salt stress-dependent post-transcriptional stabilization, cytoplasmic agglomeration, and localization to P-bodies of a subset of salt stress-regulated mRNAs. Finally, we show that the PH-BEACH domains of SPI and its human homolog FAN (Factor Associated with Neutral sphingomyelinase activation interact with DCP1 isoforms from plants, mammals, and yeast, suggesting the evolutionary conservation of an association of BDCPs and P-bodies.

  9. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin; Ntui, Valentine Otang; Zhang, Nianshu; Xiong, Liming

    2015-01-01

    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  10. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin

    2015-10-09

    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  11. The Transcription Factor ABI4 Is Required for the Ascorbic Acid–Dependent Regulation of Growth and Regulation of Jasmonate-Dependent Defense Signaling Pathways in Arabidopsis[C][W

    Science.gov (United States)

    Kerchev, Pavel I.; Pellny, Till K.; Vivancos, Pedro Diaz; Kiddle, Guy; Hedden, Peter; Driscoll, Simon; Vanacker, Hélène; Verrier, Paul; Hancock, Robert D.; Foyer, Christine H.

    2011-01-01

    Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation. PMID:21926335

  12. Post-transcriptional regulation of ethylene perception and signaling in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Schaller, George Eric [Dartmouth College, Hanover, NH (United States)

    2014-03-19

    The simple gas ethylene functions as an endogenous regulator of plant growth and development, and modulates such energy relevant processes as photosynthesis and biomass accumulation. Ethylene is perceived in the plant Arabidopsis by a five-member family of receptors related to bacterial histidine kinases. Our data support a general model in which the receptors exist as parts of larger protein complexes. Our goals have been to (1) characterize physical interactions among members of the signaling complex; (2) the role of histidine-kinase transphosphorylation in signaling by the complex; and (3) the role of a novel family of proteins that regulate signal output by the receptors.

  13. Phosphorylation sites of Arabidopsis MAP Kinase Substrate 1 (MKS1)

    DEFF Research Database (Denmark)

    Caspersen, M.B.; Qiu, J.-L.; Zhang, X.

    2007-01-01

    The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified by electrophore......The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified...... phosphopeptide detection. As MAP kinases generally phosphorylate serine or threonine followed by proline (Ser/Thr-Pro), theoretical masses of potentially phosphorylated peptides were calculated and mass spectrometric peaks matching these masses were fragmented and searched for a neutral-loss signal...... at approximately 98 Da indicative of phosphorylation. Additionally, mass spectrometric peaks present in the MPK4-treated MKS1, but not in the control peptide map of untreated MKS1, were fragmented. Fragmentation spectra were subjected to a MASCOT database search which identified three of the twelve Ser-Pro serine...

  14. Thirty-seven transcription factor genes differentially respond to a ...

    Indian Academy of Sciences (India)

    Plant transcription factors and insect defence si. Thirty-seven transcription factor genes differentially respond to a harpin protein and affect resistance to the green peach aphid in Arabidopsis. HUNLIN. PIN. RUOXUE LIŲ, BEIBEI LÜ, XIAOMENG WANG, CHUNLING ZHANG, SHUPING ZHANG, JUN QIAN, LEI CHEN,.

  15. Characterization of Putative cis-Regulatory Elements in Genes Preferentially Expressed in Arabidopsis Male Meiocytes

    Directory of Open Access Journals (Sweden)

    Junhua Li

    2014-01-01

    Full Text Available Meiosis is essential for plant reproduction because it is the process during which homologous chromosome pairing, synapsis, and meiotic recombination occur. The meiotic transcriptome is difficult to investigate because of the size of meiocytes and the confines of anther lobes. The recent development of isolation techniques has enabled the characterization of transcriptional profiles in male meiocytes of Arabidopsis. Gene expression in male meiocytes shows unique features. The direct interaction of transcription factors (TFs with DNA regulatory sequences forms the basis for the specificity of transcriptional regulation. Here, we identified putative cis-regulatory elements (CREs associated with male meiocyte-expressed genes using in silico tools. The upstream regions (1 kb of the top 50 genes preferentially expressed in Arabidopsis meiocytes possessed conserved motifs. These motifs are putative binding sites of TFs, some of which share common functions, such as roles in cell division. In combination with cell-type-specific analysis, our findings could be a substantial aid for the identification and experimental verification of the protein-DNA interactions for the specific TFs that drive gene expression in meiocytes.

  16. Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation1[W][OA

    Science.gov (United States)

    Morales, Luis O.; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I.; Wargent, Jason J.; Sipari, Nina; Strid, Åke; Lindfors, Anders V.; Tegelberg, Riitta; Aphalo, Pedro J.

    2013-01-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV. PMID:23250626

  17. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava.

    Science.gov (United States)

    An, Dong; Ma, Qiuxiang; Wang, Hongxia; Yang, Jun; Zhou, Wenzhi; Zhang, Peng

    2017-05-01

    Cassava MeCBF1 is a typical CBF transcription factor mediating cold responses but its low expression in apical buds along with a retarded response cause inefficient upregulation of downstream cold-related genes, rendering cassava chilling-sensitive. Low temperature is a major abiotic stress factor affecting survival, productivity and geographic distribution of important crops worldwide. The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB) are important regulators of abiotic stress response in plants. In this study, MeCBF1, a CBF-like gene, was identified in the tropical root crop cassava (Manihot esculenta Crantz). The MeCBF1 encodes a protein that shares strong homology with DREB1As/CBFs from Arabidopsis as well as other species. The MeCBF1 was localized to the nucleus and is mainly expressed in stem and mature leaves, but not in apical buds or stem cambium. MeCBF1 expression was not only highly responsive to cold, but also significantly induced by salt, PEG and ABA treatment. Several stress-associated cis-elements were found in its promoter region, e.g., ABRE-related, MYC recognition sites, and MYB responsive element. Compared with AtCBF1, the MeCBF1 expression induced by cold in cassava was retarded and upregulated only after 4 h, which was also confirmed by its promoter activity. Overexpression of MeCBF1 in transgenic Arabidopsis and cassava plants conferred enhanced crytolerance. The CBF regulon was smaller and not entirely co-regulated with MeCBF1 expression in overexpressed cassava. The retarded MeCBF1 expression in response to cold and attenuated CBF-regulon might lead cassava to chilling sensitivity.

  18. An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica.

    Science.gov (United States)

    Feng, Kai; Xu, Zhi-Sheng; Que, Feng; Liu, Jie-Xia; Wang, Feng; Xiong, Ai-Sheng

    2018-02-01

    This study showed that an R2R3-MYB transcription factor, OjMYB1, is involved in anthocyanin biosynthesis and accumulation in Oenanthe javanica. Anthocyanins can be used as safe natural food colorants, obtained from many plants. R2R3-MYB transcription factors (TFs) play important roles in anthocyanins biosynthesis during plant development. Oenanthe javanica is a popular vegetable with high nutritional values and numerous medical functions. O. javanica has purple petioles that are mainly due to anthocyanins accumulation. In the present study, the gene encoding an R2R3-MYB TF, OjMYB1, was isolated from purple O. javanica. Sequencing results showed that OjMYB1 contained a 912-bp open reading frame encoding 303 amino acids. Sequence alignments revealed that OjMYB1 contained bHLH-interaction motif ([DE]Lx2[RK]x3Lx6Lx3R) and ANDV motif ([A/G]NDV). Phylogenetic analysis indicated that the OjMYB1 classified into the anthocyanins biosynthesis clade. Subcellular localization assay showed that OjMYB1 was a nuclear protein in vivo. The heterologous expression of OjMYB1 in Arabidopsis could enhance the anthocyanins content and up-regulate the expression levels of the structural genes-related anthocyanins biosynthesis. Yeast two-hybrid assay indicated that OjMYB1 could interact with AtTT8 and AtEGL3 proteins. Enzymatic analysis revealed that overexpression of OjMYB1 gene up-regulated the enzyme activity of 3-O-glycosyltransferase encoded by AtUGT78D2 in transgenic Arabidopsis. Our results provided a comprehensive understanding of the structure and function of OjMYB1 TF in O. javanica.

  19. The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Sergi Portolés

    2010-11-01

    Full Text Available Circadian rhythms are daily biological oscillations driven by an endogenous mechanism known as circadian clock. The protein kinase CK2 is one of the few clock components that is evolutionary conserved among different taxonomic groups. CK2 regulates the stability and nuclear localization of essential clock proteins in mammals, fungi, and insects. Two CK2 regulatory subunits, CKB3 and CKB4, have been also linked with the Arabidopsis thaliana circadian system. However, the biological relevance and the precise mechanisms of CK2 function within the plant clockwork are not known. By using ChIP and Double-ChIP experiments together with in vivo luminescence assays at different temperatures, we were able to identify a temperature-dependent function for CK2 modulating circadian period length. Our study uncovers a previously unpredicted mechanism for CK2 antagonizing the key clock regulator CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1. CK2 activity does not alter protein accumulation or subcellular localization but interferes with CCA1 binding affinity to the promoters of the oscillator genes. High temperatures enhance the CCA1 binding activity, which is precisely counterbalanced by the CK2 opposing function. Altering this balance by over-expression, mutation, or pharmacological inhibition affects the temperature compensation profile, providing a mechanism by which plants regulate circadian period at changing temperatures. Therefore, our study establishes a new model demonstrating that two opposing and temperature-dependent activities (CCA1-CK2 are essential for clock temperature compensation in Arabidopsis.

  20. A microarray analysis of the rice transcriptome and its comparison to Arabidopsis

    DEFF Research Database (Denmark)

    Ma, Ligeng; Chen, Chen; Liu, Xigang

    2005-01-01

    Arabidopsis and rice are the only two model plants whose finished phase genome sequence has been completed. Here we report the construction of an oligomer microarray based on the presently known and predicted gene models in the rice genome. This microarray was used to analyze the transcriptional...... with similar genome-wide surveys of the Arabidopsis transcriptome, our results indicate that similar proportions of the two genomes are expressed in their corresponding organ types. A large percentage of the rice gene models that lack significant Arabidopsis homologs are expressed. Furthermore, the expression...... patterns of rice and Arabidopsis best-matched homologous genes in distinct functional groups indicate dramatic differences in their degree of conservation between the two species. Thus, this initial comparative analysis reveals some basic similarities and differences between the Arabidopsis and rice...

  1. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    LENUS (Irish Health Repository)

    McKeown, Peter C

    2011-08-12

    Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was

  2. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    Directory of Open Access Journals (Sweden)

    Wennblom Trevor J

    2011-08-01

    Full Text Available Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination. We identified these MEGs by developing a bioinformatics tool (GenFrag which can directly determine the identities of transcript-derived fragments from (i their size and (ii which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1

  3. SHB1/HY1 Alleviates Excess Boron Stress by Increasing BOR4 Expression Level and Maintaining Boron Homeostasis in Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Qiang Lv

    2017-05-01

    Full Text Available Boron is an essential mineral nutrient for higher plant growth and development. However, excessive amounts of boron can be toxic. Here, we report on the characterization of an Arabidopsis mutant, shb1 (sensitive to high-level of boron 1, which exhibits hypersensitivity to excessive boron in roots. Positional cloning demonstrated that the shb1 mutant bears a point mutation in a gene encoding a heme oxygenase 1 (HO1 corresponding to the HY1 gene involved in photomorphogenesis. The transcription level of the SHB1/HY1 gene in roots is up-regulated under excessive boron stimulation. Either overexpressing SHB1/HY1 or applying the HO1 inducer hematin reduces boron accumulation in roots and confers high boron tolerance. Furthermore, carbon monoxide and bilirubin, catalytic products of HO1, partially rescue the boron toxicity-induced inhibition of primary root growth in shb1. Additionally, the mRNA level of BOR4, a boron efflux transporter, is reduced in shb1 roots with high levels of boron supplementation, and hematin cannot relieve the boron toxicity-induced root inhibition in bor4 mutants. Taken together, our study reveals that HO1 acts via its catalytic by-products to promote tolerance of excessive boron by up-regulating the transcription of the BOR4 gene and therefore promoting the exclusion of excessive boron in root cells.

  4. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Nair Prasanth

    2012-11-01

    Full Text Available Abstract Background We have previously shown that lipophilic components (LPC of the brown seaweed Ascophyllum nodosum (ANE improved freezing tolerance in Arabidopsis thaliana. However, the mechanism(s of this induced freezing stress tolerance is largely unknown. Here, we investigated LPC induced changes in the transcriptome and metabolome of A. thaliana undergoing freezing stress. Results Gene expression studies revealed that the accumulation of proline was mediated by an increase in the expression of the proline synthesis genes P5CS1 and P5CS2 and a marginal reduction in the expression of the proline dehydrogenase (ProDH gene. Moreover, LPC application significantly increased the concentration of total soluble sugars in the cytosol in response to freezing stress. Arabidopsis sfr4 mutant plants, defective in the accumulation of free sugars, treated with LPC, exhibited freezing sensitivity similar to that of untreated controls. The 1H NMR metabolite profile of LPC-treated Arabidopsis plants exposed to freezing stress revealed a spectrum dominated by chemical shifts (δ representing soluble sugars, sugar alcohols, organic acids and lipophilic components like fatty acids, as compared to control plants. Additionally, 2D NMR spectra suggested an increase in the degree of unsaturation of fatty acids in LPC treated plants under freezing stress. These results were supported by global transcriptome analysis. Transcriptome analysis revealed that LPC treatment altered the expression of 1113 genes (5% in comparison with untreated plants. A total of 463 genes (2% were up regulated while 650 genes (3% were down regulated. Conclusion Taken together, the results of the experiments presented in this paper provide evidence to support LPC mediated freezing tolerance enhancement through a combination of the priming of plants for the increased accumulation of osmoprotectants and alteration of cellular fatty acid composition.

  5. A WRKY transcription factor, PcWRKY33, from Polygonum cuspidatum reduces salt tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Bao, Wenqi; Wang, Xiaowei; Chen, Mo; Chai, Tuanyao; Wang, Hong

    2018-07-01

    PcWRKY33 is a transcription factor which can reduce salt tolerance by decreasing the expression of stress-related genes and increasing the cellular levels of reactive oxygen species (ROS). WRKY transcription factors play important roles in the regulation of biotic and abiotic stresses. Here, we report a group I WRKY gene from Polygonum cuspidatum, PcWRKY33, that encodes a nucleoprotein, which specifically binds to the W-box in the promoter of target genes to regulate their expression. The results from qPCR and promoter analysis show that expression of PcWRKY33 can be induced by various abiotic stresses, including NaCl and plant hormones. Overexpression of PcWRKY33 in Arabidopsis thaliana reduced tolerance to salt stress. More specifically, several physiological parameters (such as root length, seed germination rate, seedling survival rate, and chlorophyll concentration) of the transgenic lines were significantly lower than those of the wild type under salt stress. In addition, following exposure to salt stress, transgenic plants showed decreased expression of stress-related genes, a weakened ability to maintain Na + /K + homeostasis, decreased activities of reactive oxygen species- (ROS-) scavenging enzymes, and increased accumulation of ROS. Taken together, these results suggest that PcWRKY33 negatively regulates the salt tolerance in at least two ways: by down-regulating the induction of stress-related genes and by increasing the level of cellular ROS. In sum, our results indicate that PcWRKY33 is a group I WRKY transcription factor involved in abiotic stress regulation.

  6. Molecular cloning and characterization of a novel freezing-inducible DREB1/CBF transcription factor gene in boreal plant Iceland poppy (Papaver nudicaule

    Directory of Open Access Journals (Sweden)

    Zhuo Huang

    Full Text Available Abstract DREB1 of the AP2/ERF superfamily plays a key role in the regulation of plant response to low temperatures. In this study, a novel DREB1/CBF transcription factor, PnDREB1, was isolated from Iceland poppy (Papaver nudicaule, a plant adaptive to low temperature environments. It is homologous to the known DREB1s of Arabidopsis and other plant species. It also shares similar 3D structure, and conserved and functionally important motifs with DREB1s of Arabidopsis. The phylogenetic analysis indicated that the AP2 domain of PnDREB1 is similar to those of Glycine max, Medicago truncatula, and M. sativa. PnDREB1 is constitutively expressed in diverse tissues and is increased in roots. qPCR analyses indicated that PnDREB1 is significantly induced by freezing treatment as well as by abscissic acid. The expression levels induced by freezing treatment were higher in the variety with higher degree of freezing tolerance. These results suggested that PnDREB1 is a novel and functional DREB1 transcription factor involved in freezing response and possibly in other abiotic stresses. Furthermore, the freezing-induction could be suppressed by exogenous gibberellins acid, indicating that PnDREB1 might play some role in the GA signaling transduction pathway. This study provides a basis for better understanding the roles of DREB1 in adaption of Iceland poppy to low temperatures.

  7. SAGE ANALYSIS OF TRANSCRIPTOME RESPONSES IN ARABIDOPSIS ROOTS EXPOSED TO 2,4,6-TRINITROTOLUENE

    Science.gov (United States)

    Serial Analysis of Gene Expression (SAGE) was used to profile transcript levels in Arabidopsis thaliana roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and ea...

  8. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    can replace light in eliciting an increase of nitrate reductase mRNA accumulation in dark-adapted green Arabidopsis plants. We show further that sucrose alone is sufficient for the full expression of nitrate reductase genes in etiolated Arabidopsis plants. Finally, using a reporter gene, we show......Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression....... Located in the cytosol, nitrate reductase obtains its reductant not from photosynthesis but from carbohydrate catabolism. This relationship prompted us to investigate the indirect role that light might play, via photosynthesis, in the regulation of nitrate reductase gene expression. We show that sucrose...

  9. Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis.

    Science.gov (United States)

    Han, Xinxin; Yin, Linlin; Xue, Hongwei

    2012-07-01

    Fatty acids (FAs) play crucial rules in signal transduction and plant development, however, the regulation of FA metabolism is still poorly understood. To study the relevant regulatory network, fifty-eight FA biosynthesis genes including de novo synthases, desaturases and elongases were selected as "guide genes" to construct the co-expression network. Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT) identifies 797 candidate FA-correlated genes. Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism, and function in many processes. Interestingly, 63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched. Two TF genes, CRC and AP1, both correlating with 8 FA guide genes, were further characterized. Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds. The contents of palmitoleic acid, stearic acid, arachidic acid and eicosadienoic acid are decreased, whereas that of oleic acid is increased in ap1 and crc seeds, which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes. In addition, yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15, indicating that CRC may directly regulate FA biosynthesis. © 2012 Institute of Botany, Chinese Academy of Sciences.

  10. HFR1 Sequesters PIF1 to Govern the Transcriptional Network Underlying Light-Initiated Seed Germination in Arabidopsis[C][W][OPEN

    Science.gov (United States)

    Shi, Hui; Zhong, Shangwei; Mo, Xiaorong; Liu, Na; Nezames, Cynthia D.; Deng, Xing Wang

    2013-01-01

    Seed germination is the first step for seed plants to initiate a new life cycle. Light plays a predominant role in promoting seed germination, where the initial phase is mediated by photoreceptor phytochrome B (phyB). Previous studies showed that PHYTOCHROME-INTERACTING FACTOR1 (PIF1) represses seed germination downstream of phyB. Here, we identify a positive regulator of phyB-dependent seed germination, LONG HYPOCOTYL IN FAR-RED1 (HFR1). HFR1 blocks PIF1 transcriptional activity by forming a heterodimer with PIF1 that prevents PIF1 from binding to DNA. Our whole-genomic analysis shows that HFR1 and PIF1 oppositely mediate the light-regulated transcriptome in imbibed seeds. Through the HFR1–PIF1 module, light regulates expression of numerous genes involved in cell wall loosening, cell division, and hormone pathways to initiate seed germination. The functionally antagonistic HFR1–PIF1 pair constructs a fail-safe mechanism for fine-tuning seed germination during low-level illumination, ensuring a rapid response to favorable environmental changes. This study identifies the HFR1–PIF1 pair as a central module directing the whole genomic transcriptional network to rapidly initiate light-induced seed germination. PMID:24179122

  11. A p300 and SIRT1 Regulated Acetylation Switch of C/EBPα Controls Mitochondrial Function

    NARCIS (Netherlands)

    Zaini, Mohamad A; Müller, Christine; de Jong, Tristan V; Ackermann, Tobias; Hartleben, Götz; Kortman, Gertrud; Gührs, Karl-Heinz; Fusetti, Fabrizia; Krämer, Oliver H; Guryev, Victor; Calkhoven, Cornelis F

    2018-01-01

    Cellular metabolism is a tightly controlled process in which the cell adapts fluxes through metabolic pathways in response to changes in nutrient supply. Among the transcription factors that regulate gene expression and thereby cause changes in cellular metabolism is the basic leucine-zipper (bZIP)

  12. Quantification of tomato and Arabidopsis mobile RNAs trafficking into the parasitic plant Cuscuta pentagona.

    Science.gov (United States)

    LeBlanc, Megan; Kim, Gunjune; Patel, Beneeta; Stromberg, Verlyn; Westwood, James

    2013-12-01

    The cross-species movement of mRNA from hosts to the parasitic plant Cuscuta pentagona has been reported previously, but has not been characterized quantitatively or with attention to uptake patterns and the fate of specific mRNAs. Real-time PCR and RNA-Seq approaches were used to identify and characterize mobile transcripts from tomato and Arabidopsis hosts into C. pentagona. Tomato transcripts of Gibberellic Acid Insensitive (SlGAI) and Cathepsin D Proteinase Inhibitor (SlPI) differed significantly in the rate of uptake into the parasite, but were then distributed over the length of the parasite shoot. When parasite shoots were detached from the hosts, the SlPI transcript concentrations in the parasite showed the greatest decrease within the first 8 h. Arabidopsis transcripts also varied in mobility into the parasite, and assay of specific regions of a Salt-inducible Zinc Finger Protein (AtSZF1) transcript revealed distinct patterns of abundance in the parasite. The uptake and distribution of host mRNAs into C. pentagona appears to vary among mRNAs, and perhaps even with the region of the mRNA under investigation. We propose that mRNAs traffic into the parasite via multiple routes, or that other mechanisms for selective uptake and mobility exist between host and parasite. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. Enhanced Arabidopsis disease resistance against Botrytis cinerea induced by sulfur dioxide.

    Science.gov (United States)

    Xue, Meizhao; Yi, Huilan

    2018-01-01

    Sulfur dioxide (SO 2 ) is a common air pollutant that has complex impacts on plants. The effect of prior exposure to 30mgm -3 SO 2 on defence against Botrytis cinerea (B. cinerea) in Arabidopsis thaliana and the possible mechanisms of action were investigated. The results indicated that pre-exposure to 30mgm -3 SO 2 resulted in significantly enhanced resistance to B. cinerea infection. SO 2 pre-treatment significantly enhanced the activities of defence-related enzymes including phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), β-1,3-glucanase (BGL) and chitinase (CHI). Transcripts of the defence-related genes PAL, PPO, PR2, and PR3, encoding PAL, PPO, BGL and CHI, respectively, were markedly elevated in Arabidopsis plants pre-exposed to SO 2 and subsequently inoculated with B. cinerea (SO 2 + treatment group) compared with those that were only treated with SO 2 (SO 2 ) or inoculated with B. cinerea (CK+). Moreover, SO 2 pre-exposure also led to significant increases in the expression levels of MIR393, MIR160 and MIR167 in Arabidopsis. Meanwhile, the expression of known targets involved in the auxin signalling pathway, was negatively correlated with their corresponding miRNAs. Additionally, the transcript levels of the primary auxin-response genes GH3-like, BDL/IAA12, and AXR3/IAA17 were markedly repressed. Our findings indicate that 30mgm -3 SO 2 pre-exposure enhances disease resistance against B. cinerea in Arabidopsis by priming defence responses through enhancement of defence-related gene expression and enzyme activity, and miRNA-mediated suppression of the auxin signalling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Functional characterisation of an Arabidopsis gene strongly induced by ionising radiation: the gene coding the poly(ADP-ribose)polymerase-1 (AthPARP-1)

    International Nuclear Information System (INIS)

    Doucet-Chabeaud, G.

    2000-01-01

    Arabidopsis thaliana, the model-system in plant genetics, has been used to study the responses to DNA damage, experimentally introduced by γ-irradiation. We have characterised a radiation-induced gene coding a 111 kDa protein, AthPARP-1, homologous to the human poly(ADP-ribose)polymerase-1 (hPARP-1). As hPARP-1 is composed by three functional domain with characteristic motifs, AthPARP-1 binds to DNA bearing single-strand breaks and shows DNA damage-dependent poly(ADP-ribosyl)ation. The preferential expression of AthPARP-1 in mitotically active tissues is in agreement with a potential role in the maintenance of genome integrity during DNA replication, as proposed for its human counterpart. Transcriptional gene activation by ionising radiation of AthPARP-1 and AthPARP-2 genes is to date plant specific activation. Our expression analyses after exposure to various stress indicate that 1) AthPARP-1 and AthPARP-2 play an important role in the response to DNA lesions, particularly they are activated by genotoxic agents implicating the BER DNA repair pathway 2) AthPARP-2 gene seems to play an additional role in the signal transduction induced by oxidative stress 3) the observed expression profile of AthPARP-1 is in favour of the regulation of AthPARP-1 gene expression at the level of transcription and translation. This mode of regulation of AthPARP-1 protein biosynthesis, clearly distinct from that observed in animals, needs the implication of a so far unidentified transcription factor that is activated by the presence of DNA lesions. The major outcome of this work resides in the isolation and characterisation of such new transcription factor, which will provide new insight on the regulation of plant gene expression by genotoxic stress. (author) [fr

  15. Functional Characterization of NAC and MYB Transcription Factors Involved in Regulation of Biomass Production in Switchgrass (Panicum virgatum.

    Directory of Open Access Journals (Sweden)

    Ruiqin Zhong

    Full Text Available Switchgrass is a promising biofuel feedstock due to its high biomass production and low agronomic input requirements. Because the bulk of switchgrass biomass used for biofuel production is lignocellulosic secondary walls, studies on secondary wall biosynthesis and its transcriptional regulation are imperative for designing strategies for genetic improvement of biomass production in switchgrass. Here, we report the identification and functional characterization of a group of switchgrass transcription factors, including several NACs (PvSWNs and a MYB (PvMYB46A, for their involvement in regulating secondary wall biosynthesis. PvSWNs and PvMYB46A were found to be highly expressed in stems and their expression was closely associated with sclerenchyma cells. Overexpression of PvSWNs and PvMYB46A in Arabidopsis was shown to result in activation of the biosynthetic genes for cellulose, xylan and lignin and ectopic deposition of secondary walls in normally parenchymatous cells. Transactivation and complementation studies demonstrated that PvSWNs were able to activate the SNBE-driven GUS reporter gene and effectively rescue the secondary wall defects in the Arabidopsis snd1 nst1 double mutant, indicating that they are functional orthologs of Arabidopsis SWNs. Furthermore, we showed that PvMYB46A could activate the SMRE-driven GUS reporter gene and complement the Arabidopsis myb46 myb83 double mutant, suggesting that it is a functional ortholog of Arabidopsis MYB46/MYB83. Together, these results indicate that PvSWNs and PvMYB46A are transcriptional switches involved in regulating secondary wall biosynthesis, which provides molecular tools for genetic manipulation of biomass production in switchgrass.

  16. Localization of ENHANCER OF TRY AND CPC1 protein in Arabidopsis root epidermis.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Kurata, Tetsuya; Wada, Takuji

    2017-07-01

    CAPRICE (CPC) is a R3-type MYB transcription factor, which induces root-hair cell differentiation in Arabidopsis thaliana. The CPC homologous gene ENHANCER TRY AND CPC1 (ETC1) has a similar function to CPC, and acts in concert with CPC. The CPC protein moves between root epidermal cells, from hairless cells to the neighboring cells, and promotes root-hair differentiation. Therefore, ETC1 is predicted to have movement ability similar to that of CPC. In this study, we generated ETC1:ETC1:GFP and CPC:ETC1:GFP transgenic plants to clarify whether ETC1 exhibits cell-to-cell movement. Transgenic plants showed many-root-haired and trichome-less phenotypes, similar to those observed in CPC:CPC:GFP plants, suggesting a similar function of ETC1 and CPC. However, the ETC1:GFP fusion protein located exclusively to the hairless cells in both ETC1:ETC1:GFP and CPC:ETC1:GFP transgenic plants. These results indicate that, unexpectedly, the ETC1 protein cannot move in the root epidermis from hairless cells to the neighboring cells. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Chlorophyll b Reductase Plays an Essential Role in Maturation and Storability of Arabidopsis Seeds1[W

    Science.gov (United States)

    Nakajima, Saori; Ito, Hisashi; Tanaka, Ryouichi; Tanaka, Ayumi

    2012-01-01

    Although seeds are a sink organ, chlorophyll synthesis and degradation occurs during embryogenesis and in a manner similar to that observed in photosynthetic leaves. Some mutants retain chlorophyll after seed maturation, and they are disturbed in seed storability. To elucidate the effects of chlorophyll retention on the seed storability of Arabidopsis (Arabidopsis thaliana), we examined the non-yellow coloring1 (nyc1)/nyc1-like (nol) mutants that do not degrade chlorophyll properly. Approximately 10 times more chlorophyll was retained in the dry seeds of the nyc1/nol mutant than in the wild-type seeds. The germination rates rapidly decreased during storage, with most of the mutant seeds failing to germinate after storage for 23 months, whereas 75% of the wild-type seeds germinated after 42 months. These results indicate that chlorophyll retention in the seeds affects seed longevity. Electron microscopic studies indicated that many small oil bodies appeared in the embryonic cotyledons of the nyc1/nol mutant; this finding indicates that the retention of chlorophyll affects the development of organelles in embryonic cells. A sequence analysis of the NYC1 promoter identified a potential abscisic acid (ABA)-responsive element. An electrophoretic mobility shift assay confirmed the binding of an ABA-responsive transcriptional factor to the NYC1 promoter DNA fragment, thus suggesting that NYC1 expression is regulated by ABA. Furthermore, NYC1 expression was repressed in the ABA-insensitive mutants during embryogenesis. These data indicate that chlorophyll degradation is induced by ABA during seed maturation to produce storable seeds. PMID:22751379

  18. GNC and CGA1 Modulate Chlorophyll Biosynthesis and Glutamate Synthase (GLU1/Fd-GOGAT) Expression in Arabidopsis

    Science.gov (United States)

    Hudson, Darryl; Guevara, David; Yaish, Mahmoud W.; Hannam, Carol; Long, Nykoll; Clarke, Joseph D.; Bi, Yong-Mei; Rothstein, Steven J.

    2011-01-01

    Chloroplast development is an important determinant of plant productivity and is controlled by environmental factors including amounts of light and nitrogen as well as internal phytohormones including cytokinins and gibberellins (GA). The paralog GATA transcription factors GNC and CGA1/GNL up-regulated by light, nitrogen and cytokinin while also being repressed by GA signaling. Modifying the expression of these genes has previously been shown to influence chlorophyll content in Arabidopsis while also altering aspects of germination, elongation growth and flowering time. In this work, we also use transgenic lines to demonstrate that GNC and CGA1 exhibit a partially redundant control over chlorophyll biosynthesis. We provide novel evidence that GNC and CGA1 influence both chloroplast number and leaf starch in proportion to their transcript level. GNC and CGA1 were found to modify the expression of chloroplast localized GLUTAMATE SYNTHASE (GLU1/Fd-GOGAT), which is the primary factor controlling nitrogen assimilation in green tissue. Altering GNC and CGA1 expression was also found to modulate the expression of important chlorophyll biosynthesis genes (GUN4, HEMA1, PORB, and PORC). As previously demonstrated, the CGA1 transgenic plants demonstrated significantly altered timing to a number of developmental events including germination, leaf production, flowering time and senescence. In contrast, the GNC transgenic lines we analyzed maintain relatively normal growth phenotypes outside of differences in chloroplast development. Despite some evidence for partial divergence, results indicate that regulation of both GNC and CGA1 by light, nitrogen, cytokinin, and GA acts to modulate nitrogen assimilation, chloroplast development and starch production. Understanding the mechanisms controlling these processes is important for agricultural biotechnology. PMID:22102866

  19. Meiotically stable natural epialleles of Sadhu, a novel Arabidopsis retroposon.

    Directory of Open Access Journals (Sweden)

    Sanjida H Rangwala

    2006-03-01

    Full Text Available Epigenetic variation is a potential source of genomic and phenotypic variation among different individuals in a population, and among different varieties within a species. We used a two-tiered approach to identify naturally occurring epigenetic alleles in the flowering plant Arabidopsis: a primary screen for transcript level polymorphisms among three strains (Col, Cvi, Ler, followed by a secondary screen for epigenetic alleles. Here, we describe the identification of stable, meiotically transmissible epigenetic alleles that correspond to one member of a previously uncharacterized non-LTR retroposon family, which we have designated Sadhu. The pericentromeric At2g10410 element is highly expressed in strain Col, but silenced in Ler and 18 other strains surveyed. Transcription of this locus is inversely correlated with cytosine methylation and both the expression and DNA methylation states map in a Mendelian manner to stable cis-acting variation. The silent Ler allele can be converted by the epigenetic modifier mutation ddm1 to a meiotically stable expressing allele with an identical primary nucleotide sequence, demonstrating that the variation responsible for transcript level polymorphism among Arabidopsis strains is epigenetic. We extended our characterization of the Sadhu family members and show that different elements are subject to both genetic and epigenetic variation in natural populations. These findings support the view that an important component of natural variation in retroelements is epigenetic.

  20. Genetic evidence suggests that GIS functions downstream of TCL1 to regulate trichome formation in Arabidopsis.

    Science.gov (United States)

    Zhang, Na; Yang, Li; Luo, Sha; Wang, Xutong; Wang, Wei; Cheng, Yuxin; Tian, Hainan; Zheng, Kaijie; Cai, Ling; Wang, Shucai

    2018-04-13

    Trichome formation in Arabidopsis is regulated by a MBW complex formed by MYB, bHLH and WD40 transcriptional factors, which can activate GLABRA2 (GL2) and the R3 MYB transcription factor genes. GL2 promotes trichome formation, whereas R3 MYBs are able to block the formation of the MBW complex. It has been reported that the C2H2 transcription factor GIS (GLABROUS INFLORESCENCE STEMS) functions upstream of the MBW activator complex to regulate trichome formation, and that the expression of TCL1 is not regulated by the MBW complex. However, gis and the R3 MYB gene mutant tcl1 (trichomeless 1) have opposite inflorescence trichome phenotypes, but their relationship in regulating trichome formation remained unknown. By generating and characterization of the gis tcl1 double mutant, we found that trichome formation in the gis tcl1double and the tcl1 single mutants were largely indistinguishable, but the trichome formation in the 35S:TCL1/gis transgenic plant was similar to that in the gis mutant. By using quantitative RT-PCR analysis, we showed that expression level of GIS was increased in the triple mutant tcl1 try cpc, but the expression level of TCL1 was not affected in the gis mutant. On the other hand, trichome morphology in both gis tcl1 and 35S:TCL1/gis plants was similar to that in the gis mutant. In summary, our results indicate that GIS may work downstream of TCL1 to regulate trichome formation, and GIS has a dominant role in controlling trichome morphology.

  1. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway.

    Science.gov (United States)

    Hsieh, Wei-Yu; Liao, Jo-Chien; Wang, Hsin-Tzu; Hung, Tzu-Huan; Tseng, Ching-Chih; Chung, Tsui-Yun; Hsieh, Ming-Hsiun

    2017-07-01

    Thiamin diphosphate (TPP, vitamin B 1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  2. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    Science.gov (United States)

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  3. Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Blumwald Eduardo

    2007-04-01

    Full Text Available Abstract Background AtNHX1, the most abundant vacuolar Na+/H+ antiporter in Arabidopsis thaliana, mediates the transport of Na+ and K+ into the vacuole, influencing plant development and contributing to salt tolerance. In this report, microarray expression profiles of wild type plants, a T-DNA insertion knockout mutant of AtNHX1 (nhx1, and a 'rescued' line (NHX1::nhx1 were exposed to both short (12 h and 48 h and long (one and two weeks durations of a non-lethal salt stress to identify key gene transcripts associated with the salt response that are influenced by AtNHX1. Results 147 transcripts showed both salt responsiveness and a significant influence of AtNHX1. Fifty-seven of these genes showed an influence of the antiporter across all salt treatments, while the remaining genes were influenced as a result of a particular duration of salt stress. Most (69% of the genes were up-regulated in the absence of AtNHX1, with the exception of transcripts encoding proteins involved with metabolic and energy processes that were mostly down-regulated. Conclusion While part of the AtNHX1-influenced transcripts were unclassified, other transcripts with known or putative roles showed the importance of AtNHX1 to key cellular processes that were not necessarily limited to the salt stress response; namely calcium signaling, sulfur metabolism, cell structure and cell growth, as well as vesicular trafficking and protein processing. Only a small number of other salt-responsive membrane transporter transcripts appeared significantly influenced by AtNHX1.

  4. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hyper-g, and to simulated and sounding rocket micro-g

    Science.gov (United States)

    Hampp, R.; Babbick, M.

    Previous microarray studies with cell cultures of Arabidopsis thaliana cv Columbia have shown responses in gene expression which were partly specific to exposure to microgravity sounding rocket experiment TEXUS In order to get access to early responses upon changes in gravitational fields we used exposure times as short as 2 min For this purpose we selected a range of genes which code for different groups of transcription factors WRKY ERF MYB MADS Samples were taken in 5-min clinorotation 2- and 3-dimensional hypergravity 8g and 2-min intervals sounding rocket experiment Amounts of transcripts were determined by quantitative RT PCR Most transcripts showed a significant transient change in content within a time frame of up to 30 min after changing the external gravitational field strength They could be grouped into 1 basic stress responses which occurred under all conditions 2 clinorotation-related effects which were either identical or opposite between 2D 60 rpm 4x10 -2 g and 3D clinorotation random positioning machine and 3 alterations specific to the microgravity exposure under sounding rocket conditions MAXUS The data are discussed in relation to gravitation-dependent signalling chains and with regard to the simulation of microgravity by means of clinorotation Supported by a grant from the Deutsches Zentrum f u r Luft- und Raumfahrt e V grant no 50 WB 0143

  5. Gibberellic Acid-Stimulated Arabidopsis6 Serves as an Integrator of Gibberellin, Abscisic Acid, and Glucose Signaling during Seed Germination in Arabidopsis.

    Science.gov (United States)

    Zhong, Chunmei; Xu, Hao; Ye, Siting; Wang, Shiyi; Li, Lingfei; Zhang, Shengchun; Wang, Xiaojing

    2015-11-01

    The DELLA protein REPRESSOR OF ga1-3-LIKE2 (RGL2) plays an important role in seed germination under different conditions through a number of transcription factors. However, the functions of the structural genes associated with RGL2-regulated germination are less defined. Here, we report the role of an Arabidopsis (Arabidopsis thaliana) cell wall-localized protein, Gibberellic Acid-Stimulated Arabidopsis6 (AtGASA6), in functionally linking RGL2 and a cell wall loosening expansin protein (Arabidopsis expansin A1 [AtEXPA1]), resulting in the control of embryonic axis elongation and seed germination. AtGASA6-overexpressing seeds showed precocious germination, whereas transfer DNA and RNA interference mutant seeds displayed delayed seed germination under abscisic acid, paclobutrazol, and glucose (Glc) stress conditions. The differences in germination rates resulted from corresponding variation in cell elongation in the hypocotyl-radicle transition region of the embryonic axis. AtGASA6 was down-regulated by RGL2, GLUCOSE INSENSITIVE2, and ABSCISIC ACID-INSENSITIVE5 genes, and loss of AtGASA6 expression in the gasa6 mutant reversed the insensitivity shown by the rgl2 mutant to paclobutrazol and the gin2 mutant to Glc-induced stress, suggesting that it is involved in regulating both the gibberellin and Glc signaling pathways. Furthermore, it was found that the promotion of seed germination and length of embryonic axis by AtGASA6 resulted from a promotion of cell elongation at the embryonic axis mediated by AtEXPA1. Taken together, the data indicate that AtGASA6 links RGL2 and AtEXPA1 functions and plays a role as an integrator of gibberellin, abscisic acid, and Glc signaling, resulting in the regulation of seed germination through a promotion of cell elongation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor.

    Science.gov (United States)

    Wang, Feifei; Wang, Lijuan; Qiao, Longfei; Chen, Jiacai; Pappa, Maria Belen; Pei, Haixia; Zhang, Tao; Chang, Caren; Dong, Chun-Hai

    2017-11-01

    The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane-bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor-interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi-fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1-1 and etr1-2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis. © 2017 Institute of Botany, Chinese Academy of Sciences.

  7. The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering[W

    Science.gov (United States)

    Lazaro, Ana; Valverde, Federico; Piñeiro, Manuel; Jarillo, Jose A.

    2012-01-01

    The Arabidopsis thaliana early in short days6 (esd6) mutant was isolated in a screen for mutations that accelerate flowering time. Among other developmental alterations, esd6 displays early flowering in both long- and short-day conditions. Fine mapping of the mutation showed that the esd6 phenotype is caused by a lesion in the HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) locus, which encodes a RING finger–containing E3 ubiquitin ligase. The esd6/hos1 mutation causes decreased FLOWERING LOCUS C expression and requires CONSTANS (CO) protein for its early flowering phenotype under long days. Moreover, CO and HOS1 physically interact in vitro and in planta, and HOS1 regulates CO abundance, particularly during the daylight period. Accordingly, hos1 causes a shift in the regular long-day pattern of expression of FLOWERING LOCUS T (FT) transcript, starting to rise 4 h after dawn in the mutant. In addition, HOS1 interacts synergistically with CONSTITUTIVE PHOTOMORPHOGENIC1, another regulator of CO protein stability, in the regulation of flowering time. Taken together, these results indicate that HOS1 is involved in the control of CO abundance, ensuring that CO activation of FT occurs only when the light period reaches a certain length and preventing precocious flowering in Arabidopsis. PMID:22408073

  8. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings.

    Science.gov (United States)

    Liu, Zhongjuan; Zhang, Yongqiang; Wang, Jianfeng; Li, Ping; Zhao, Chengzhou; Chen, Yadi; Bi, Yurong

    2015-09-01

    Light is an important environmental factor inducing anthocyanin accumulation in plants. Phytochrome-interacting factors (PIFs) have been shown to be a family of bHLH transcription factors involved in light signaling in Arabidopsis. Red light effectively increased anthocyanin accumulation in wild-type Col-0, whereas the effects were enhanced in pif4 and pif5 mutants but impaired in overexpression lines PIF4OX and PIF5OX, indicating that PIF4 and PIF5 are both negative regulators for red light-induced anthocyanin accumulation. Consistently, transcript levels of several genes involved in anthocyanin biosynthesis and regulatory pathway, including CHS, F3'H, DFR, LDOX, PAP1 and TT8, were significantly enhanced in mutants pif4 and pif5 but decreased in PIF4OX and PIF5OX compared to in Col-0, indicating that PIF4 and PIF5 are transcriptional repressor of these gene. Transient expression assays revealed that PIF4 and PIF5 could repress red light-induced promoter activities of F3'H and DFR in Arabidopsis protoplasts. Furthermore, chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) test and electrophoretic mobility shift assay (EMSA) showed that PIF5 could directly bind to G-box motifs present in the promoter of DFR. Taken together, these results suggest that PIF4 and PIF5 negatively regulate red light-induced anthocyanin accumulation through transcriptional repression of the anthocyanin biosynthetic genes in Arabidopsis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Dissection of Ire1 functions reveals stress response mechanisms uniquely evolved in Candida glabrata.

    Directory of Open Access Journals (Sweden)

    Taiga Miyazaki

    2013-01-01

    Full Text Available Proper protein folding in the endoplasmic reticulum (ER is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR, is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata.

  10. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1

    Directory of Open Access Journals (Sweden)

    Sandhu Devinder

    2009-08-01

    Full Text Available Abstract Background Systemic acquired resistance (SAR is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR genes. Arabidopsis non-expressor of PR1 (NPR1 is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. Results Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i PR-1 was induced following INA treatment and (ii BGL2 following infection with Pseudomonas syringae pv. tomato (Pst, and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. Conclusion Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential

  11. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1.

    Science.gov (United States)

    Sandhu, Devinder; Tasma, I Made; Frasch, Ryan; Bhattacharyya, Madan K

    2009-08-05

    Systemic acquired resistance (SAR) is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA) is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR) genes. Arabidopsis non-expressor of PR1 (NPR1) is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA) or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i) PR-1 was induced following INA treatment and (ii) BGL2 following infection with Pseudomonas syringae pv. tomato (Pst), and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential for oligomer-monomer transition of Arabidopsis NPR1

  12. The leucine zipper domains of the transcription factors GCN4 and c-Jun have ribonuclease activity.

    Directory of Open Access Journals (Sweden)

    Yaroslav Nikolaev

    Full Text Available Basic-region leucine zipper (bZIP proteins are one of the largest transcription factor families that regulate a wide range of cellular functions. Owing to the stability of their coiled coil structure leucine zipper (LZ domains of bZIP factors are widely employed as dimerization motifs in protein engineering studies. In the course of one such study, the X-ray structure of the retro-version of the LZ moiety of yeast transcriptional activator GCN4 suggested that this retro-LZ may have ribonuclease activity. Here we show that not only the retro-LZ but also the authentic LZ of GCN4 has weak but distinct ribonuclease activity. The observed cleavage of RNA is unspecific, it is not suppressed by the ribonuclease A inhibitor RNasin and involves the breakage of 3',5'-phosphodiester bonds with formation of 2',3'-cyclic phosphates as the final products as demonstrated by HPLC/electrospray ionization mass spectrometry. Several mutants of the GCN4 leucine zipper are catalytically inactive, providing important negative controls and unequivocally associating the enzymatic activity with the peptide under study. The leucine zipper moiety of the human factor c-Jun as well as the entire c-Jun protein are also shown to catalyze degradation of RNA. The presented data, which was obtained in the test-tube experiments, adds GCN4 and c-Jun to the pool of proteins with multiple functions (also known as moonlighting proteins. If expressed in vivo, the endoribonuclease activity of these bZIP-containing factors may represent a direct coupling between transcription activation and controlled RNA turnover. As an additional result of this work, the retro-leucine zipper of GCN4 can be added to the list of functional retro-peptides.

  13. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew.

    Science.gov (United States)

    Liu, Jie; Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-03-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. An SGS3-like protein functions in RNA-directed DNA methylation and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Zheng, Zhimin

    2010-01-06

    RNA-directed DNA methylation (RdDM) is an important epigenetic mechanism for silencing transgenes and endogenous repetitive sequences such as transposons. The RD29A promoter-driven LUCIFERASE transgene and its corresponding endogenous RD29A gene are hypermethylated and silenced in the Arabidopsis DNA demethylase mutant ros1. By screening for second-site suppressors of ros1, we identified the RDM12 locus. The rdm12 mutation releases the silencing of the RD29A-LUC transgene and the endogenous RD29A gene by reducing the promoter DNA methylation. The rdm12 mutation also reduces DNA methylation at endogenous RdDM target loci, including transposons and other repetitive sequences. In addition, the rdm12 mutation affects the levels of small interfering RNAs (siRNAs) from some of the RdDM target loci. RDM12 encodes a protein with XS and coiled-coil domains, and is similar to SGS3, which is a partner protein of RDR6 and can bind to double-stranded RNAs with a 5′ overhang, and is required for several post-transcriptional gene silencing pathways. Our results show that RDM12 is a component of the RdDM pathway, and suggest that RdDM may involve double-stranded RNAs with a 5′ overhang and the partnering between RDM12 and RDR2. © 2010 Blackwell Publishing Ltd.

  15. Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors

    NARCIS (Netherlands)

    Jaspers, P.; Blomster, T.; Brosché, M.; Salojärvi, J.; Ahlfors, R.; Vainonen, J.P.; Reddy, R.A.; Immink, G.H.; Angenent, G.C.; Turck, F.; Overmyer, K.; Kangasjärvi, J.

    2009-01-01

    RADICAL-INDUCED CELL DEATH1 (RCD1) is an important regulator of stress and hormonal and developmental responses in Arabidopsis thaliana. Together with its closest homolog, SIMILAR TO RCD-ONE1 (SRO1), it is the only Arabidopsis protein containing the WWE domain, which is known to mediate

  16. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Li, Meichao [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032 (China); Wen, Yuezhong, E-mail: wenyuezhong@zju.edu.cn [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-04-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  17. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia; Li, Meichao; Wen, Yuezhong

    2016-01-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  18. A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and brassica napus

    Science.gov (United States)

    In this study, genome-wide expression profiling based on Affymetrix ATH1 arrays was used to identify discriminating responses of Arabidopsis thaliana to five herbicides, which contain active ingredients targeting two different branches of amino acid biosynthesis. One herbicide co...

  19. Activity of the Brassinosteroid Transcription Factors BRASSINAZOLE RESISTANT1 and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1/BRASSINAZOLE RESISTANT2 Blocks Developmental Reprogramming in Response to Low Phosphate Availability

    Czech Academy of Sciences Publication Activity Database

    Singh, A.P.; Fridman, Y.; Friedlander-Shani, L.; Tarkowská, Danuše; Strnad, Miroslav; Savaldi-Goldstein, S.

    2014-01-01

    Roč. 166, č. 2 (2014), s. 678-688 ISSN 0032-0889 Institutional support: RVO:61389030 Keywords : Transcription * Brassinosteroid * Arabidopsis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.841, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25136063

  20. Overexpression of cotton RAV1 gene in Arabidopsis confers transgenic plants high salinity and drought sensitivity.

    Science.gov (United States)

    Li, Xiao-Jie; Li, Mo; Zhou, Ying; Hu, Shan; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2015-01-01

    RAV (related to ABI3/VP1) protein containing an AP2 domain in the N-terminal region and a B3 domain in the C-terminal region, which belongs to AP2 transcription factor family, is unique in higher plants. In this study, a gene (GhRAV1) encoding a RAV protein of 357 amino acids was identified in cotton (Gossypium hirsutum). Transient expression analysis of the eGFP:GhRAV1 fusion genes in tobacco (Nicotiana tabacum) epidermal cells revealed that GhRAV1 protein was localized in the cell nucleus. Quantitative RT-PCR analysis indicated that expression of GhRAV1 in cotton is induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). Overexpression of GhRAV1 in Arabidopsis resulted in plant sensitive to ABA, NaCl and PEG. With abscisic acid (ABA) treatment, seed germination and green seedling rates of the GhRAV1 transgenic plants were remarkably lower than those of wild type. In the presence of NaCl, the seed germination and seedling growth of the GhRAV1 transgenic lines were inhibited greater than those of wild type. And chlorophyll content and maximum photochemical efficiency of the transgenic plants were significantly lower than those of wild type. Under drought stress, the GhRAV1 transgenic plants displayed more severe wilting than wild type. Furthermore, expressions of the stress-related genes were altered in the GhRAV1 transgenic Arabidopsis plants under high salinity and drought stresses. Collectively, our data suggested that GhRAV1 may be involved in response to high salinity and drought stresses through regulating expressions of the stress-related genes during cotton development.

  1. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    DEFF Research Database (Denmark)

    Barah, Pankaj; Jayavelu, Naresh Doni; Rasmussen, Simon

    2013-01-01

    available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about......BACKGROUND: Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking....... RESULTS: In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes...

  2. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    International Nuclear Information System (INIS)

    Backues, Steven K.; Bednarek, Sebastian Y.

    2010-01-01

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  3. Arabidopsis GCP3-interacting protein 1/MOZART 1 is an integral component of the γ-tubulin-containing microtubule nucleating complex.

    Science.gov (United States)

    Nakamura, Masayoshi; Yagi, Noriyoshi; Kato, Takehide; Fujita, Satoshi; Kawashima, Noriyuki; Ehrhardt, David W; Hashimoto, Takashi

    2012-07-01

    Microtubules in eukaryotic cells are nucleated from ring-shaped complexes that contain γ-tubulin and a family of homologous γ-tubulin complex proteins (GCPs), but the subunit composition of the complexes can vary among fungi, animals and plants. Arabidopsis GCP3-interacting protein 1 (GIP1), a small protein with no homology to the GCP family, interacts with GCP3 in vitro, and is a plant homolog of vertebrate mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1), a recently identified component of the γ-tubulin complex in human cell lines. In this study, we characterized two closely related Arabidopsis GIP1s: GIP1a and GIP1b. Single mutants of gip1a and gip1b were indistinguishable from wild-type plants, but their double mutant was embryonic lethal, and showed impaired development of male gametophytes. Functional fusions of GIP1a with green fluorescent protein (GFP) were used to purify GIP1a-containing complexes from Arabidopsis plants, which contained all the subunits (except NEDD1) previously identified in the Arabidopsis γ-tubulin complexes. GIP1a and GIP1b interacted specifically with Arabidopsis GCP3 in yeast. GFP-GIP1a labeled mitotic microtubule arrays in a pattern largely consistent with, but partly distinct from, the localization of the γ-tubulin complex containing GCP2 or GCP3 in planta. In interphase cortical arrays, the labeled complexes were preferentially recruited to existing microtubules, from which new microtubules were efficiently nucleated. However, in contrast to complexes labeled with tagged GCP2 or GCP3, their recruitment to cortical areas with no microtubules was rarely observed. These results indicate that GIP1/MOZART1 is an integral component of a subset of the Arabidopsis γ-tubulin complexes. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  4. Cis-regulatory PLETHORA promoter elements directing root and nodule expression are conserved between Arabidopsis thaliana and Medicago truncatula

    NARCIS (Netherlands)

    Franssen, H.G.J.M.; Kulikova, O.; Willemsen, V.A.; Heidstra, R.

    2017-01-01

    Nodules are unique organs formed on roots of legumes by soil-borne bacteria, collectively known as rhizobium. Recently, we have shown that orthologs of the AINTEGUMENTA-like (AIL) AP2 transcription factors PLETHORA (PLT) 1 to 4, that redundantly regulate Arabidopsis thaliana root development are

  5. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm.

    Science.gov (United States)

    Wang, Jie-Chen; Xu, Heng; Zhu, Ying; Liu, Qiao-Quan; Cai, Xiu-Ling

    2013-08-01

    Starch composition and the amount in endosperm, both of which contribute dramatically to seed yield, cooking quality, and taste in cereals, are determined by a series of complex biochemical reactions. However, the mechanism regulating starch biosynthesis in cereal seeds is not well understood. This study showed that OsbZIP58, a bZIP transcription factor, is a key transcriptional regulator controlling starch synthesis in rice endosperm. OsbZIP58 was expressed mainly in endosperm during active starch synthesis. osbzip58 null mutants displayed abnormal seed morphology with altered starch accumulation in the white belly region and decreased amounts of total starch and amylose. Moreover, osbzip58 had a higher proportion of short chains and a lower proportion of intermediate chains of amylopectin. Furthermore, OsbZIP58 was shown to bind directly to the promoters of six starch-synthesizing genes, OsAGPL3, Wx, OsSSIIa, SBE1, OsBEIIb, and ISA2, and to regulate their expression. These findings indicate that OsbZIP58 functions as a key regulator of starch synthesis in rice seeds and provide new insights into seed quality control.

  6. Arabidopsis YAK1 regulates abscisic acid response and drought resistance.

    Science.gov (United States)

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming

    2016-07-01

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  7. Arabidopsis YAK1 regulates abscisic acid response and drought resistance

    KAUST Repository

    Kim, Dongjin

    2016-06-06

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  8. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1

    Czech Academy of Sciences Publication Activity Database

    Bouguyon, E.; Brun, F.; Meynard, D.; Kubeš, Martin; Pervent, M.; Leran, S.; Lacombe, B.; Krouk, G.; Guiderdoni, E.; Zažímalová, Eva; Hoyerová, Klára; Nacry, P.; Gojon, A.

    2015-01-01

    Roč. 1, March (2015), s. 15015 ISSN 2055-026X R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional support: RVO:61389030 Keywords : nitrate transceptor * Arabidopsis * lateral root development Subject RIV: EB - Genetics ; Molecular Biology

  9. The Multifaceted Roles of HY5 in Plant Growth and Development.

    Science.gov (United States)

    Gangappa, Sreeramaiah N; Botto, Javier F

    2016-10-10

    ELONGATED HYPOCOTYL5 (HY5), a member of the bZIP transcription factor family, inhibits hypocotyl growth and lateral root development, and promotes pigment accumulation in a light-dependent manner in Arabidopsis. Recent research on its role in different processes such as hormone, nutrient, abiotic stress (abscisic acid, salt, cold), and reactive oxygen species signaling pathways clearly places HY5 at the center of a transcriptional network hub. HY5 regulates the transcription of a large number of genes by directly binding to cis-regulatory elements. Recently, HY5 has also been shown to activate its own expression under both visible and UV-B light. Moreover, HY5 acts as a signal that moves from shoot to root to promote nitrate uptake and root growth. Here, we review recent advances on HY5 research in diverse aspects of plant development and highlight still open questions that need to be addressed in the near future for a complete understanding of its function in plant signaling and beyond. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  10. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    International Nuclear Information System (INIS)

    Jia, Fengjuan; Qi, Shengdong; Li, Hui; Liu, Pu; Li, Pengcheng; Wu, Changai; Zheng, Chengchao; Huang, Jinguang

    2014-01-01

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis

  11. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Fengjuan, E-mail: jfj.5566@163.com; Qi, Shengdong, E-mail: zisexanwu@163.com; Li, Hui, E-mail: 332453593@qq.com; Liu, Pu, E-mail: banbaokezhan@163.com; Li, Pengcheng, E-mail: lpcsdau@163.com; Wu, Changai, E-mail: cawu@sdau.edu.cn; Zheng, Chengchao, E-mail: cczheng@sdau.edu.cn; Huang, Jinguang, E-mail: jghuang@sdau.edu.cn

    2014-11-28

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis.

  12. Hybrids of the bHLH and bZIP protein motifs display different DNA-binding activities in vivo vs. in vitro.

    Directory of Open Access Journals (Sweden)

    Hiu-Kwan Chow

    Full Text Available Minimalist hybrids comprising the DNA-binding domain of bHLH/PAS (basic-helix-loop-helix/Per-Arnt-Sim protein Arnt fused to the leucine zipper (LZ dimerization domain from bZIP (basic region-leucine zipper protein C/EBP were designed to bind the E-box DNA site, CACGTG, targeted by bHLHZ (basic-helix-loop-helix-zipper proteins Myc and Max, as well as the Arnt homodimer. The bHLHZ-like structure of ArntbHLH-C/EBP comprises the Arnt bHLH domain fused to the C/EBP LZ: i.e. swap of the 330 aa PAS domain for the 29 aa LZ. In the yeast one-hybrid assay (Y1H, transcriptional activation from the E-box was strong by ArntbHLH-C/EBP, and undetectable for the truncated ArntbHLH (PAS removed, as detected via readout from the HIS3 and lacZ reporters. In contrast, fluorescence anisotropy titrations showed affinities for the E-box with ArntbHLH-C/EBP and ArntbHLH comparable to other transcription factors (K(d 148.9 nM and 40.2 nM, respectively, but only under select conditions that maintained folded protein. Although in vivo yeast results and in vitro spectroscopic studies for ArntbHLH-C/EBP targeting the E-box correlate well, the same does not hold for ArntbHLH. As circular dichroism confirms that ArntbHLH-C/EBP is a much more strongly alpha-helical structure than ArntbHLH, we conclude that the nonfunctional ArntbHLH in the Y1H must be due to misfolding, leading to the false negative that this protein is incapable of targeting the E-box. Many experiments, including protein design and selections from large libraries, depend on protein domains remaining well-behaved in the nonnative experimental environment, especially small motifs like the bHLH (60-70 aa. Interestingly, a short helical LZ can serve as a folding- and/or solubility-enhancing tag, an important device given the focus of current research on exploration of vast networks of biomolecular interactions.

  13. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes.

    Science.gov (United States)

    Wuest, Samuel E; Vijverberg, Kitty; Schmidt, Anja; Weiss, Manuel; Gheyselinck, Jacqueline; Lohr, Miriam; Wellmer, Frank; Rahnenführer, Jörg; von Mering, Christian; Grossniklaus, Ueli

    2010-03-23

    The development of multicellular organisms is controlled by differential gene expression whereby cells adopt distinct fates. A spatially resolved view of gene expression allows the elucidation of transcriptional networks that are linked to cellular identity and function. The haploid female gametophyte of flowering plants is a highly reduced organism: at maturity, it often consists of as few as three cell types derived from a common precursor [1, 2]. However, because of its inaccessibility and small size, we know little about the molecular basis of cell specification and differentiation in the female gametophyte. Here we report expression profiles of all cell types in the mature Arabidopsis female gametophyte. Differentially expressed posttranscriptional regulatory modules and metabolic pathways characterize the distinct cell types. Several transcription factor families are overrepresented in the female gametophyte in comparison to other plant tissues, e.g., type I MADS domain, RWP-RK, and reproductive meristem transcription factors. PAZ/Piwi-domain encoding genes are upregulated in the egg, indicating a role of epigenetic regulation through small RNA pathways-a feature paralleled in the germline of animals [3]. A comparison of human and Arabidopsis egg cells for enrichment of functional groups identified several similarities that may represent a consequence of coevolution or ancestral gametic features. 2010 Elsevier Ltd. All rights reserved.

  14. Main: 1UT7 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1UT7 シロイヌナズナ Arabidopsis Arabidopsis thaliana (L.) Heynh. Nac-Domain Containing Pro... Meristem Protein; Synonym: Nam, Anac, Abscisic Acid Responsive Nac, Dicyanoaurate Derivative; Chain: A, B; ...Fragment: Dna-Binding Nac Domain, Residues 1-168; Engineered: Yes; Other_details:...A.Ernst, A.N.Olsen, K.Skriver, S.Larsen, L.Lo Leggio Structure Of The Conserved Domain Of Anac, A Member Of ... Transcription Factor, Dna Binding, Abscisic Acid Response, Arabidopsis Thaliana, Crystal Structure, Nac Domai

  15. Abscisic Acid Antagonizes Ethylene Production through the ABI4-Mediated Transcriptional Repression of ACS4 and ACS8 in Arabidopsis.

    Science.gov (United States)

    Dong, Zhijun; Yu, Yanwen; Li, Shenghui; Wang, Juan; Tang, Saijun; Huang, Rongfeng

    2016-01-04

    Increasing evidence has revealed that abscisic acid (ABA) negatively modulates ethylene biosynthesis, although the underlying mechanism remains unclear. To identify the factors involved, we conducted a screen for ABA-insensitive mutants with altered ethylene production in Arabidopsis. A dominant allele of ABI4, abi4-152, which produces a putative protein with a 16-amino-acid truncation at the C-terminus of ABI4, reduces ethylene production. By contrast, two recessive knockout alleles of ABI4, abi4-102 and abi4-103, result in increased ethylene evolution, indicating that ABI4 negatively regulates ethylene production. Further analyses showed that expression of the ethylene biosynthesis genes ACS4, ACS8, and ACO2 was significantly decreased in abi4-152 but increased in the knockout mutants, with partial dependence on ABA. Chromatin immunoprecipitation-quantitative PCR assays showed that ABI4 directly binds the promoters of these ethylene biosynthesis genes and that ABA enhances this interaction. A fusion protein containing the truncated ABI4-152 peptide accumulated to higher levels than its full-length counterpart in transgenic plants, suggesting that ABI4 is destabilized by its C terminus. Therefore, our results demonstrate that ABA negatively regulates ethylene production through ABI4-mediated transcriptional repression of the ethylene biosynthesis genes ACS4 and ACS8 in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  16. Within and between whorls: comparative transcriptional profiling of Aquilegia and Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Claudia Voelckel

    Full Text Available BACKGROUND: The genus Aquilegia is an emerging model system in plant evolutionary biology predominantly because of its wide variation in floral traits and associated floral ecology. The anatomy of the Aquilegia flower is also very distinct. There are two whorls of petaloid organs, the outer whorl of sepals and the second whorl of petals that form nectar spurs, as well as a recently evolved fifth whorl of staminodia inserted between stamens and carpels. METHODOLOGY/PRINCIPAL FINDINGS: We designed an oligonucleotide microarray based on EST sequences from a mixed tissue, normalized cDNA library of an A. formosa x A. pubescens F2 population representing 17,246 unigenes. We then used this array to analyze floral gene expression in late pre-anthesis stage floral organs from a natural A. formosa population. In particular, we tested for gene expression patterns specific to each floral whorl and to combinations of whorls that correspond to traditional and modified ABC model groupings. Similar analyses were performed on gene expression data of Arabidopsis thaliana whorls previously obtained using the Ath1 gene chips (data available through The Arabidopsis Information Resource. CONCLUSIONS/SIGNIFICANCE: Our comparative gene expression analyses suggest that 1 petaloid sepals and petals of A. formosa share gene expression patterns more than either have organ-specific patterns, 2 petals of A. formosa and A. thaliana may be independently derived, 3 staminodia express B and C genes similar to stamens but the staminodium genetic program has also converged on aspects of the carpel program and 4 staminodia have unique up-regulation of regulatory genes and genes that have been implicated with defense against microbial infection and herbivory. Our study also highlights the value of comparative gene expression profiling and the Aquilegia microarray in particular for the study of floral evolution and ecology.

  17. Mutually Exclusive Alterations in Secondary Metabolism Are Critical for the Uptake of Insoluble Iron Compounds by Arabidopsis and Medicago truncatula1[C][W

    Science.gov (United States)

    Rodríguez-Celma, Jorge; Lin, Wen-Dar; Fu, Guin-Mau; Abadía, Javier; López-Millán, Ana-Flor; Schmidt, Wolfgang

    2013-01-01

    The generally low bioavailability of iron in aerobic soil systems forced plants to evolve sophisticated genetic strategies to improve the acquisition of iron from sparingly soluble and immobile iron pools. To distinguish between conserved and species-dependent components of such strategies, we analyzed iron deficiency-induced changes in the transcriptome of two model species, Arabidopsis (Arabidopsis thaliana) and Medicago truncatula. Transcriptional profiling by RNA sequencing revealed a massive up-regulation of genes coding for enzymes involved in riboflavin biosynthesis in M. truncatula and phenylpropanoid synthesis in Arabidopsis upon iron deficiency. Coexpression and promoter analysis indicated that the synthesis of flavins and phenylpropanoids is tightly linked to and putatively coregulated with other genes encoding proteins involved in iron uptake. We further provide evidence that the production and secretion of phenolic compounds is critical for the uptake of iron from sources with low bioavailability but dispensable under conditions where iron is readily available. In Arabidopsis, homozygous mutations in the Fe(II)- and 2-oxoglutarate-dependent dioxygenase family gene F6′H1 and defects in the expression of PLEIOTROPIC DRUG RESISTANCE9, encoding a putative efflux transporter for products from the phenylpropanoid pathway, compromised iron uptake from an iron source of low bioavailability. Both mutants were partially rescued when grown alongside wild-type Arabidopsis or M. truncatula seedlings, presumably by secreted phenolics and flavins. We concluded that production and secretion of compounds that facilitate the uptake of iron is an essential but poorly understood aspect of the reduction-based iron acquisition strategy, which is likely to contribute substantially to the efficiency of iron uptake in natural conditions. PMID:23735511

  18. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    International Nuclear Information System (INIS)

    Ju, Yan; Liu, Chunying; Lu, Wenwen; Zhang, Quan; Sodmergen

    2016-01-01

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysis revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.

  19. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yan; Liu, Chunying; Lu, Wenwen; Zhang, Quan; Sodmergen, E-mail: sodmergn@pku.edu.cn

    2016-05-27

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysis revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.

  20. Transcription factor Nrf1 is topologically repartitioned across membranes to enable target gene transactivation through its acidic glucose-responsive domains.

    Science.gov (United States)

    Zhang, Yiguo; Ren, Yonggang; Li, Shaojun; Hayes, John D

    2014-01-01

    The membrane-bound Nrf1 transcription factor regulates critical homeostatic and developmental genes. The conserved N-terminal homology box 1 (NHB1) sequence in Nrf1 targets the cap'n'collar (CNC) basic basic-region leucine zipper (bZIP) factor to the endoplasmic reticulum (ER), but it is unknown how its activity is controlled topologically within membranes. Herein, we report a hitherto unknown mechanism by which the transactivation activity of Nrf1 is controlled through its membrane-topology. Thus after Nrf1 is anchored within ER membranes, its acidic transactivation domains (TADs), including the Asn/Ser/Thr-rich (NST) glycodomain situated between acidic domain 1 (AD1) and AD2, are transiently translocated into the lumen of the ER, where NST is glycosylated in the presence of glucose to yield an inactive 120-kDa Nrf1 glycoprotein. Subsequently, portions of the TADs partially repartition across membranes into the cyto/nucleoplasmic compartments, whereupon an active 95-kDa form of Nrf1 accumulates, a process that is more obvious in glucose-deprived cells and may involve deglycosylation. The repartitioning of Nrf1 out of membranes is monitored within this protein by its acidic-hydrophobic amphipathic glucose-responsive domains, particularly the Neh5L subdomain within AD1. Therefore, the membrane-topological organization of Nrf1 dictates its post-translational modifications (i.e. glycosylation, the putative deglycosylation and selective proteolysis), which together control its ability to transactivate target genes.

  1. A compatible interaction of Alternaria brassicicola with Arabidopsis thaliana ecotype DiG: evidence for a specific transcriptional signature

    Directory of Open Access Journals (Sweden)

    Gepstein Shimon

    2009-03-01

    Full Text Available Abstract Background The interaction of Arabidopsis with Alternaria brassicicola provides a model for disease caused by necrotrophs, but a drawback has been the lack of a compatible pathosystem. Infection of most ecotypes, including the widely-studied line Col-0, with this pathogen generally leads to a lesion that does not expand beyond the inoculated area. This study examines an ecotype, Dijon G (DiG, which is considered sensitive to A. brassicicola. Results We show that the interaction has the characteristics of a compatible one, with expanding rather than limited lesions. To ask whether DiG is merely more sensitive to the pathogen or, rather, interacts in distinct manner, we identified genes whose regulation differs between Col-0 and DiG challenged with A. brassicicola. Suppression subtractive hybridization was used to identify differentially expressed genes, and their expression was verified using semi-quantitative PCR. We also tested a set of known defense-related genes for differential regulation in the two plant-pathogen interactions. Several known pathogenesis-related (PR genes are up-regulated in both interactions. PR1, and a monooxygenase gene identified in this study, MO1, are preferentially up-regulated in the compatible interaction. In contrast, GLIP1, which encodes a secreted lipase, and DIOX1, a pathogen-response related dioxygenase, are preferentially up-regulated in the incompatible interaction. Conclusion The results show that DiG is not only more susceptible, but demonstrate that its interaction with A. brassicicola has a specific transcriptional signature.

  2. Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Dan Qian

    Full Text Available Cyanate is toxic to all organisms. Cyanase converts cyanate to CO₂ and NH₃ in a bicarbonate-dependent reaction. The biophysical functions and biochemical characteristics of plant cyanases are poorly studied, although it has been investigated in a variety of proteobacteria, cyanobacteria and fungi. In this study, we characterised plant cyanases from Arabidopsis thaliana and Oryza sativa (AtCYN and OsCYN. Prokaryotic-expressed AtCYN and OsCYN both showed cyanase activity in vitro. Temperature had a similar influence on the activity of both cyanases, but pH had a differential impact on AtCYN and OsCYN activity. Homology modelling provided models of monomers of AtCYN and OsCYN, and a coimmunoprecipitation assay and gel filtration indicated that AtCYN and OsCYN formed homodecamers. The analysis of single-residue mutants of AtCYN indicated that the conserved catalytic residues also contributed to the stability of the homodecamer. KCNO treatment inhibited Arabidopsis germination and early seedling growth. Plants containing AtCYN or OsCYN exhibited resistance to KCNO stress, which demonstrated that one role of cyanases in plants is detoxification. Transcription level of AtCYN was higher in the flower than in other organs of Arabidopsis. AtCYN transcription was not significantly affected by KCNO treatment in Arabidopsis, but was induced by salt stress. This research broadens our knowledge on plant detoxification of cyanate via cyanase.

  3. Interferon-γ Promotes Inflammation and Development of T-Cell Lymphoma in HTLV-1 bZIP Factor Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Yu Mitagami

    2015-08-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 is an etiological agent of several inflammatory diseases and a T-cell malignancy, adult T-cell leukemia (ATL. HTLV-1 bZIP factor (HBZ is the only viral gene that is constitutively expressed in HTLV-1-infected cells, and it has multiple functions on T-cell signaling pathways. HBZ has important roles in HTLV-1-mediated pathogenesis, since HBZ transgenic (HBZ-Tg mice develop systemic inflammation and T-cell lymphomas, which are similar phenotypes to HTLV-1-associated diseases. We showed previously that in HBZ-Tg mice, HBZ causes unstable Foxp3 expression, leading to an increase in regulatory T cells (Tregs and the consequent induction of IFN-γ-producing cells, which in turn leads to the development of inflammation in the mice. In this study, we show that the severity of inflammation is correlated with the development of lymphomas in HBZ-Tg mice, suggesting that HBZ-mediated inflammation is closely linked to oncogenesis in CD4+ T cells. In addition, we found that IFN-γ-producing cells enhance HBZ-mediated inflammation, since knocking out IFN-γ significantly reduced the incidence of dermatitis as well as lymphoma. Recent studies show the critical roles of the intestinal microbiota in the development of Tregs in vivo. We found that even germ-free HBZ-Tg mice still had an increased number of Tregs and IFN-γ-producing cells, and developed dermatitis, indicating that an intrinsic activity of HBZ evokes aberrant T-cell differentiation and consequently causes inflammation. These results show that immunomodulation by HBZ is implicated in both inflammation and oncogenesis, and suggest a causal connection between HTLV-1-associated inflammation and ATL.

  4. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  5. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    Science.gov (United States)

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ).

  6. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5 is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2015-11-01

    Full Text Available The phytohormone abscisic acid (ABA regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5, which is a basic leucine zipper motif transcriptional factor (TF. GhABI5 is expressed in dormant vegetative organs (corm, cormel and stolon as well as in reproductive organs (stamen, and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6 and RD29B. Down-regulation of GhABI5 in dormant cormels via Virus Induced Gene Silence (VIGS promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B. The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ.

  7. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na + /K + homeostasis under salt stress conditions

    KAUST Repository

    Abdelaziz, Mohamed Ewis

    2017-07-13

    The mutualistic, endophytic fungus Piriformospora indica has been shown to confer biotic and abiotic stress tolerance to host plants. In this study, we investigated the impact of P. indica on the growth of Arabidopsis plants under normal and salt stress conditions. Our results demonstrate that P. indica colonization increases plant biomass, lateral roots density, and chlorophyll content under both conditions. Colonization with P. indica under salt stress was accompanied by a lower Na+/K+ ratio and less pronounced accumulation of anthocyanin, compared to control plants. Moreover, P. indica colonized roots under salt stress showed enhanced transcript levels of the genes encoding the high Affinity Potassium Transporter 1 (HKT1) and the inward-rectifying K+ channels KAT1 and KAT2, which play key roles in regulating Na+ and K+ homeostasis. The effect of P. indica colonization on AtHKT1;1 expression was also confirmed in the Arabidopsis line gl1-HKT:AtHKT1;1 that expresses an additional AtHKT1;1 copy driven by the native promoter. Colonization of the gl1-HKT:AtHKT1;1 by P. indica also increased lateral roots density and led to a better Na+/K+ ratio, which may be attributed to the observed increase in KAT1 and KAT2 transcript levels. Our findings demonstrate that P. indica colonization promotes Arabidopsis growth under salt stress conditions and that this effect is likely caused by modulation of the expression levels of the major Na+ and K+ ion channels, which allows establishing a balanced ion homeostasis of Na+/K+ under salt stress conditions.

  8. Dominant Repression by Arabidopsis Transcription Factor MYB44 Causes Oxidative Damage and Hypersensitivity to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Helene Persak

    2014-02-01

    Full Text Available In any living species, stress adaptation is closely linked with major changes of the gene expression profile. As a substrate protein of the rapidly stress-induced mitogen-activated protein kinase MPK3, Arabidopsis transcription factor MYB44 likely acts at the front line of stress-induced re-programming. We recently characterized MYB44 as phosphorylation-dependent positive regulator of salt stress signaling. Molecular events downstream of MYB44 are largely unknown. Although MYB44 binds to the MBSII element in vitro, it has no discernible effect on MBSII-driven reporter gene expression in plant co-transfection assays. This may suggest limited abundance of a synergistic co-regulator. MYB44 carries a putative transcriptional repression (Ethylene responsive element binding factor-associated Amphiphilic Repression, EAR motif. We employed a dominant repressor strategy to gain insights into MYB44-conferred stress resistance. Overexpression of a MYB44-REP fusion markedly compromised salt and drought stress tolerance—the opposite was seen in MYB44 overexpression lines. MYB44-mediated resistance likely results from induction of tolerance-enhancing, rather than from repression of tolerance-diminishing factors. Salt stress-induced accumulation of destructive reactive oxygen species is efficiently prevented in transgenic MYB44, but accelerated in MYB44-REP lines. Furthermore, heterologous overexpression of MYB44-REP caused tissue collapse in Nicotiana. A mechanistic model of MAPK-MYB-mediated enhancement in the antioxidative capacity and stress tolerance is proposed. Genetic engineering of MYB44 variants with higher trans-activating capacity may be a means to further raise stress resistance in crops.

  9. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill, E-mail: ccheon@sookmyung.ac.kr

    2016-03-25

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction. - Highlights: • Multiple regions on the Arabidopsis Raptor protein were found to be involved in substrate binding. • N-terminal end of the Arabidopsis ribosomal S6 kinase 1 (AtS6K1) was responsible for interacting with AtRaptor1. • The Raptor-interacting fragment of AtS6K1 could be utilized as an effective inhibitor of plant TOR signaling.

  10. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor

    International Nuclear Information System (INIS)

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill

    2016-01-01

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction. - Highlights: • Multiple regions on the Arabidopsis Raptor protein were found to be involved in substrate binding. • N-terminal end of the Arabidopsis ribosomal S6 kinase 1 (AtS6K1) was responsible for interacting with AtRaptor1. • The Raptor-interacting fragment of AtS6K1 could be utilized as an effective inhibitor of plant TOR signaling.

  11. A R2R3-MYB transcription factor gene in common wheat (namely TaMYBsm1) involved in enhancement of drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Li, Meng-Jun; Qiao, Yu; Li, Ya-Qing; Shi, Zhan-Liang; Zhang, Nan; Bi, Cai-Li; Guo, Jin-Kao

    2016-11-01

    We isolated the TaMYBsm1 genes, encoding R2R3-type MYB proteins in common wheat, aimed to uncover the possible molecular mechanisms related to drought response. The TaMYBsm1 genes, TaMYBsm1-A, TaMYBsm1-B and TaMYBsm1-D, were isolated and analyzed from the common wheat cultivar Shimai 15. Their expression patterns under PEG 6000 and mannitol were monitored by semi-quantitative RT-PCR and β-glucuronidase (Gus) assay. The function of TaMYBsm1-D under drought stress in transgenic Arabidopsis plants was investigated, and the germination rate, water loss rate, as well as the proline and malondialdehyde (MDA) content were compared with that in wild type (WT) plants. The expression of three downstream genes (DREB2A, P5CS1 and RD29A) in TaMYBsm1-D transgenic plants was analyzed. The R2R3-MYB domains of the MYBsm1 proteins were highly conserved in plants. In addition, the TaMYBsm1 proteins were targeted to the nucleus and contained transcriptional activation domains (TADs). Gus assay and semi-quantitative RT-PCR analysis demonstrated that the TaMYBsm1 genes were up-regulated when the wheat was treated by PEG and mannitol. Compared with WT plants, the germination rates were much higher, but the water loss rates were much lower in TaMYBsm1-D overexpression plants. TaMYBsm1-D transgenic plants showed distinct higher proline contents but a lower MDA content than the WT plants. The three downstream genes were highly expressed in TaMYBsm1-D transgenic plants. We concluded from these results that TaMYBsm1 genes play an important role in plant drought stress tolerance through up-regulation of DREB2A, P5CS1 and RD29A. The increase of proline content and decrease of MDA content may also be involved in the drought response.

  12. Systematic analysis of phloem-feeding insect-induced transcriptional reprogramming in Arabidopsis highlights common features and reveals distinct responses to specialist and generalist insects.

    Science.gov (United States)

    Foyer, Christine H; Verrall, Susan R; Hancock, Robert D

    2015-02-01

    Phloem-feeding insects (PFIs), of which aphids are the largest group, are major agricultural pests causing extensive damage to crop plants. In contrast to chewing insects, the nature of the plant response to PFIs remains poorly characterized. Scrutiny of the literature concerning transcriptional responses of model and crop plant species to PFIs reveals surprisingly little consensus with respect to the transcripts showing altered abundance following infestation. Nevertheless, core features of the transcriptional response to PFIs can be defined in Arabidopsis thaliana. This comparison of the PFI-associated transcriptional response observed in A. thaliana infested by the generalists Myzus persicae and Bemisia tabaci with the specialist Brevicoryne brassicae highlights the importance of calcium-dependent and receptor kinase-associated signalling. We discuss these findings within the context of the complex cross-talk between the different hormones regulating basal immune response mechanisms in plants. We identify PFI-responsive genes, highlighting the importance of cell wall-associated kinases in plant-PFI interactions, as well as the significant role of kinases containing the domain of unknown function 26. A common feature of plant-PFI interaction is enhanced abundance of transcripts encoding WRKY transcription factors. However, significant divergence was observed with respect to secondary metabolism dependent upon the insect attacker. Transcripts encoding enzymes and proteins associated with glucosinolate metabolism were decreased following attack by the generalist M. persicae but not by the specialist B. brassicae. This analysis provides a comprehensive overview of the molecular patterns associated with the plant response to PFIs and suggests that plants recognize and respond to perturbations in the cell wall occurring during PFI infestation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  13. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin

    Science.gov (United States)

    Lu, C.; Fedoroff, N.

    2000-01-01

    Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419-amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein-protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.

  14. Interplay between the HTLV-2 Tax and APH-2 proteins in the regulation of the AP-1 pathway

    Directory of Open Access Journals (Sweden)

    Marban Céline

    2012-12-01

    Full Text Available Abstract Background In contrast with human T-cell leukemia virus type 1 (HTLV-1 that causes ATL (adult T-cell leukemia, HTLV-2 has not been causally linked to malignant disease. The minus strand of the HTLV genomes encode the regulatory proteins HTLV-1 bZIP factor (HBZ for HTLV-1 and antisense protein of HTLV-2 (APH-2 for HTLV-2. Unlike the viral proteins Tax1 and Tax2, both HBZ and APH-2 are constitutively expressed in infected cells suggesting that they may play important roles in the pathogenesis of these viruses. To date, very little is known about the function of APH-2 except that it inhibits Tax2-mediated transcription of HTLV-2 genes. In the present study, we investigated the role of APH-2 in basal and Tax2B-mediated activation of the AP-1 pathway. Results We demonstrate that, unlike HBZ, APH-2 stimulates basal AP-1 transcription by interacting with c-Jun and JunB through its non-conventional bZIP domain. In addition, when Tax2 and APH-2 are co-expressed, they physically interact in vivo and in vitro and APH-2 acts as an inhibitor of Tax2-mediated activation of AP-1 transcription. Conclusions This report is the first to document that HTLV-2 can modulate the AP-1 pathway. Altogether our results reveal that, in contrast with HBZ, APH-2 regulates AP-1 activity in a Tax2-dependant manner. As the AP-1 pathway is involved in numerous cellular functions susceptible to affect the life cycle of the virus, these distinct biological properties between HBZ and APH-2 may contribute to the differential pathogenic potential of HTLV-1 and HTLV-2.

  15. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases

    Directory of Open Access Journals (Sweden)

    Saito Koji

    2005-08-01

    Full Text Available Abstract Background In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1 is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS, in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. Results Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. Conclusion These results suggest that ETO1

  16. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns.

    Science.gov (United States)

    Millet, Yves A; Danna, Cristian H; Clay, Nicole K; Songnuan, Wisuwat; Simon, Matthew D; Werck-Reichhart, Danièle; Ausubel, Frederick M

    2010-03-01

    Despite the fact that roots are the organs most subject to microbial interactions, very little is known about the response of roots to microbe-associated molecular patterns (MAMPs). By monitoring transcriptional activation of beta-glucuronidase reporters and MAMP-elicited callose deposition, we show that three MAMPs, the flagellar peptide Flg22, peptidoglycan, and chitin, trigger a strong tissue-specific response in Arabidopsis thaliana roots, either at the elongation zone for Flg22 and peptidoglycan or in the mature parts of the roots for chitin. Ethylene signaling, the 4-methoxy-indole-3-ylmethylglucosinolate biosynthetic pathway, and the PEN2 myrosinase, but not salicylic acid or jasmonic acid signaling, play major roles in this MAMP response. We also show that Flg22 induces the cytochrome P450 CYP71A12-dependent exudation of the phytoalexin camalexin by Arabidopsis roots. The phytotoxin coronatine, an Ile-jasmonic acid mimic produced by Pseudomonas syringae pathovars, suppresses MAMP-activated responses in the roots. This suppression requires the E3 ubiquitin ligase COI1 as well as the transcription factor JIN1/MYC2 but does not rely on salicylic acid-jasmonic acid antagonism. These experiments demonstrate the presence of highly orchestrated and tissue-specific MAMP responses in roots and potential pathogen-encoded mechanisms to block these MAMP-elicited signaling pathways.

  17. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Frédéric Pontvianne

    2010-11-01

    Full Text Available In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1. Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre-rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis.

  18. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  19. G2 Checkpoint Responses in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Anne [Univ. of California, Davis, CA (United States)

    2013-03-18

    This project focused on the mechanism and biological significance of the G2 arrest response to replication stress in plants. We employed both forward and reverse genetic approaches to identify genes required for this response. A total of 3 different postdocs, 5 undergraduates, and 2 graduate students participated in the project. We identified several genes required for damage response in plants, including homologs of genes previously identified in animals (ATM and ATR), novel, a plant-specific genes (SOG1) and a gene known in animals but previously thought to be missing from the Arabidopsis genome (ATRIP). We characterized the transcriptome of gamma-irradiated plants, and found that plants, unlike animals, express a robust transcriptional response to damage, involving genes that regulate the cell cycle and DNA metabolism. This response requires both ATM and the transcription factor SOG1. We found that both ATM and ATR play a role in meiosis in plants. We also found that plants have a cell-type-specific programmed cell death response to ionizing radiation and UV light, and that this response requires ATR, ATM, and SOG1. These results were published in a series of 5 papers.

  20. Chromatin Immunoprecipitation Assay for the Identification of Arabidopsis Protein-DNA Interactions In Vivo.

    Science.gov (United States)

    Komar, Dorota N; Mouriz, Alfonso; Jarillo, José A; Piñeiro, Manuel

    2016-01-14

    Intricate gene regulatory networks orchestrate biological processes and developmental transitions in plants. Selective transcriptional activation and silencing of genes mediate the response of plants to environmental signals and developmental cues. Therefore, insights into the mechanisms that control plant gene expression are essential to gain a deep understanding of how biological processes are regulated in plants. The chromatin immunoprecipitation (ChIP) technique described here is a procedure to identify the DNA-binding sites of proteins in genes or genomic regions of the model species Arabidopsis thaliana. The interactions with DNA of proteins of interest such as transcription factors, chromatin proteins or posttranslationally modified versions of histones can be efficiently analyzed with the ChIP protocol. This method is based on the fixation of protein-DNA interactions in vivo, random fragmentation of chromatin, immunoprecipitation of protein-DNA complexes with specific antibodies, and quantification of the DNA associated with the protein of interest by PCR techniques. The use of this methodology in Arabidopsis has contributed significantly to unveil transcriptional regulatory mechanisms that control a variety of plant biological processes. This approach allowed the identification of the binding sites of the Arabidopsis chromatin protein EBS to regulatory regions of the master gene of flowering FT. The impact of this protein in the accumulation of particular histone marks in the genomic region of FT was also revealed through ChIP analysis.

  1. The Purple Cauliflower Arises from Activation of a MYB Transcription Factor1[W][OA

    Science.gov (United States)

    Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L.; Li, Li

    2010-01-01

    Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3’-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal. PMID:20855520

  2. Antisense Suppression of 2-Cysteine Peroxiredoxin in Arabidopsis Specifically Enhances the Activities and Expression of Enzymes Associated with Ascorbate Metabolism But Not Glutathione Metabolism1

    Science.gov (United States)

    Baier, Margarete; Noctor, Graham; Foyer, Christine H.; Dietz, Karl-Josef

    2000-01-01

    The aim of this study was to characterize the effect of decreased 2-cysteine peroxiredoxin (2-CP) on the leaf anti-oxidative system in Arabidopsis. At three stages of leaf development, two lines of transgenic Arabidopsis mutants with decreased contents of chloroplast 2-CP were compared with wild type and a control line transformed with an empty vector. Glutathione contents and redox state were similar in all plants, and no changes in transcript levels for enzymes involved in glutathione metabolism were observed. Transcript levels for chloroplastic glutathione peroxidase were much lower than those for 2-CP, and both cytosolic and chloroplastic glutathione peroxidase were not increased in the mutants. In contrast, the foliar ascorbate pool was more oxidized in the mutants, although the difference decreased with plant age. The activities of thylakoid and stromal ascorbate peroxidase and particularly monodehydroascorbate reductase were increased as were transcripts for these enzymes. No change in dehydroascorbate reductase activity was observed, and effects on transcript abundance for glutathione reductase, catalase, and superoxide dismutase were slight or absent. The results demonstrate that 2-CP forms an integral part of the anti-oxidant network of chloroplasts and is functionally interconnected with other defense systems. Suppression of 2-CP leads to increased expression of other anti-oxidative genes possibly mediated by increased oxidation state of the leaf ascorbate pool. PMID:11027730

  3. Identification of transcription factors linked to cell cycle regulation in Arabidopsis

    OpenAIRE

    Dehghan Nayeri, Fatemeh

    2014-01-01

    Cell cycle is an essential process in growth and development of living organisms consists of the replication and mitotic phases separated by 2 gap phases; G1 and G2. It is tightly controlled at the molecular level and especially at the level of transcription. Precise regulation of the cell cycle is of central significance for plant growth and development and transcription factors are global regulators of gene expression playing essential roles in cell cycle regulation. This study has uncovere...

  4. Identification of the arabidopsis RAM/MOR signalling network: adding new regulatory players in plant stem cell maintenance and cell polarization

    Science.gov (United States)

    Zermiani, Monica; Begheldo, Maura; Nonis, Alessandro; Palme, Klaus; Mizzi, Luca; Morandini, Piero; Nonis, Alberto; Ruperti, Benedetto

    2015-01-01

    Background and Aims The RAM/MOR signalling network of eukaryotes is a conserved regulatory module involved in co-ordination of stem cell maintenance, cell differentiation and polarity establishment. To date, no such signalling network has been identified in plants. Methods Genes encoding the bona fide core components of the RAM/MOR pathway were identified in Arabidopsis thaliana (arabidopsis) by sequence similarity searches conducted with the known components from other species. The transcriptional network(s) of the arabidopsis RAM/MOR signalling pathway were identified by running in-depth in silico analyses for genes co-regulated with the core components. In situ hybridization was used to confirm tissue-specific expression of selected RAM/MOR genes. Key Results Co-expression data suggested that the arabidopsis RAM/MOR pathway may include genes involved in floral transition, by co-operating with chromatin remodelling and mRNA processing/post-transcriptional gene silencing factors, and genes involved in the regulation of pollen tube polar growth. The RAM/MOR pathway may act upstream of the ROP1 machinery, affecting pollen tube polar growth, based on the co-expression of its components with ROP-GEFs. In silico tissue-specific co-expression data and in situ hybridization experiments suggest that different components of the arabidopsis RAM/MOR are expressed in the shoot apical meristem and inflorescence meristem and may be involved in the fine-tuning of stem cell maintenance and cell differentiation. Conclusions The arabidopsis RAM/MOR pathway may be part of the signalling cascade that converges in pollen tube polarized growth and in fine-tuning stem cell maintenance, differentiation and organ polarity. PMID:26078466

  5. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ora [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Sunghan [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Shin, Yun-jeong [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Woo-Young [College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Koh, Hee-Jong, E-mail: heejkoh@snu.ac.kr [Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Cheon, Choong-Ill, E-mail: ccheon@sookmyung.ac.kr [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2015-09-18

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. - Highlights: • Nucleosome assembly protein 1 (AtNAP1) interacts with RPS6 as well as with AtHD2B. • rDNA transcription is regulated S6K1. • Overexpression or down regulation of AtNAP1 results in concomitant increase or decrease in rDNA transcription.

  6. Seed-specific elevation of non-symbiotic hemoglobin AtHb1: beneficial effects and underlying molecular networks in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Tschiersch Henning

    2011-03-01

    Full Text Available Abstract Background Seed metabolism is dynamically adjusted to oxygen availability. Processes underlying this auto-regulatory mechanism control the metabolic efficiency under changing environmental conditions/stress and thus, are of relevance for biotechnology. Non-symbiotic hemoglobins have been shown to be involved in scavenging of nitric oxide (NO molecules, which play a key role in oxygen sensing/balancing in plants and animals. Steady state levels of NO are suggested to act as an integrator of energy and carbon metabolism and subsequently, influence energy-demanding growth processes in plants. Results We aimed to manipulate oxygen stress perception in Arabidopsis seeds by overexpression of the non-symbiotic hemoglobin AtHb1 under the control of the seed-specific LeB4 promoter. Seeds of transgenic AtHb1 plants did not accumulate NO under transient hypoxic stress treatment, showed higher respiratory activity and energy status compared to the wild type. Global transcript profiling of seeds/siliques from wild type and transgenic plants under transient hypoxic and standard conditions using Affymetrix ATH1 chips revealed a rearrangement of transcriptional networks by AtHb1 overexpression under non-stress conditions, which included the induction of transcripts related to ABA synthesis and signaling, receptor-like kinase- and MAP kinase-mediated signaling pathways, WRKY transcription factors and ROS metabolism. Overexpression of AtHb1 shifted seed metabolism to an energy-saving mode with the most prominent alterations occurring in cell wall metabolism. In combination with metabolite and physiological measurements, these data demonstrate that AtHb1 overexpression improves oxidative stress tolerance compared to the wild type where a strong transcriptional and metabolic reconfiguration was observed in the hypoxic response. Conclusions AtHb1 overexpression mediates a pre-adaptation to hypoxic stress. Under transient stress conditions transgenic seeds

  7. Spatial and temporal expression patterns of auxin response transcription factors in the syncytium induced by the beet cyst nematode Heterodera schachtii in Arabidopsis.

    Science.gov (United States)

    Hewezi, Tarek; Piya, Sarbottam; Richard, Geoffrey; Rice, J Hollis

    2014-09-01

    Plant-parasitic cyst nematodes induce the formation of a multinucleated feeding site in the infected root, termed the syncytium. Recent studies point to key roles of the phytohormone auxin in the regulation of gene expression and establishment of the syncytium. Nevertheless, information about the spatiotemporal expression patterns of the transcription factors that mediate auxin transcriptional responses during syncytium formation is limited. Here, we provide a gene expression map of 22 auxin response factors (ARFs) during the initiation, formation and maintenance stages of the syncytium induced by the cyst nematode Heterodera schachtii in Arabidopsis. We observed distinct and overlapping expression patterns of ARFs throughout syncytium development phases. We identified a set of ARFs whose expression is predominantly located inside the developing syncytium, whereas others are expressed in the neighbouring cells, presumably to initiate specific transcriptional programmes required for their incorporation within the developing syncytium. Our analyses also point to a role of certain ARFs in determining the maximum size of the syncytium. In addition, several ARFs were found to be highly expressed in fully developed syncytia, suggesting a role in maintaining the functional phenotype of mature syncytia. The dynamic distribution and overlapping expression patterns of various ARFs seem to be essential characteristics of ARF activity during syncytium development. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  8. Susceptibility to Verticillium longisporum is linked to monoterpene production by TPS23/27 in Arabidopsis.

    Science.gov (United States)

    Roos, Jonas; Bejai, Sarosh; Mozūraitis, Raimondas; Dixelius, Christina

    2015-02-01

    The fungus Verticillium longisporum is a soil-borne plant pathogen of increasing economic importance, and information on plant responses to it is limited. To identify the genes and components involved in the early stages of infection, transcripts in roots of V. longisporum-challenged Arabidopsis Col-0 and the susceptible NON-RACE SPECIFIC DISEASE RESISTANCE 1 (ndr1-1) mutant were compared using ATH1 gene chips. The analysis revealed altered transcript levels of several terpene biosynthesis genes, including the monoterpene synthase TPS23/27. When transgenic 35S:TPS23/27 and TPS23/27-amiRNA plants were monitored the over-expresser line showed enhanced fungal colonization whereas the silenced genotype was indistinguishable from Col-0. Transcript analysis of terpene biosynthesis genes suggested that only the TPS23/27 pathway is affected in the two transgenic genotypes. To confirm changes in monoterpene production, emitted volatiles were determined using solid-phase microextraction and gas chromatography-mass spectrometry. Levels of all identified TPS23/27 monoterpene products were significantly altered in the transgenic plants. A stimulatory effect on conidial germination and hyphal growth of V. longisporum was also seen in co-cultivation with 35S:TPS23/27 plants and upon exposure to 1,8-cineole, the main product of TPS23/27. Methyl jasmonate treatments of myc2-1 and myc2-2 mutants and analysis of TPS23/27:uidA in the myc2-2 background suggested a dependence on jasmonic acid mediated by the transcription factor MYC2. Taken together, our results show that TPS23/27-produced monoterpenes stimulate germination and subsequent invasion of V. longisporum in Arabidopsis roots. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  9. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF.

    Directory of Open Access Journals (Sweden)

    Elena García-Cano

    Full Text Available Agrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins. Here we identify one such interactor, an Arabidopsis trihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. To better understand the potential scope of VFP3 function, we used RNAi to reduce expression of the VFP3 gene. Transcriptome profiling of these VFP3-silenced plants using high-throughput cDNA sequencing (RNA-seq revealed that VFP3 substantially affected plant gene expression; specifically, 1,118 genes representing approximately 5% of all expressed genes were significantly either up- or down-regulated in the VFP3 RNAi line compared to wild-type Col-0 plants. Among the 507 up-regulated genes were genes implicated in the regulation of transcription, protein degradation, calcium signaling, and hormone metabolism, whereas the 611 down-regulated genes included those involved in redox regulation, light reactions of photosynthesis, and metabolism of lipids, amino acids, and cell wall. Overall, this pattern of changes in gene expression is characteristic of plants under stress. Thus, VFP3 likely plays an important role in controlling plant homeostasis.

  10. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF

    Science.gov (United States)

    García-Cano, Elena; Magori, Shimpei; Sun, Qi; Ding, Zehong; Lazarowitz, Sondra G.; Citovsky, Vitaly

    2015-01-01

    Agrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS) to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins. Here we identify one such interactor, an Arabidopsis trihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. To better understand the potential scope of VFP3 function, we used RNAi to reduce expression of the VFP3 gene. Transcriptome profiling of these VFP3-silenced plants using high-throughput cDNA sequencing (RNA-seq) revealed that VFP3 substantially affected plant gene expression; specifically, 1,118 genes representing approximately 5% of all expressed genes were significantly either up- or down-regulated in the VFP3 RNAi line compared to wild-type Col-0 plants. Among the 507 up-regulated genes were genes implicated in the regulation of transcription, protein degradation, calcium signaling, and hormone metabolism, whereas the 611 down-regulated genes included those involved in redox regulation, light reactions of photosynthesis, and metabolism of lipids, amino acids, and cell wall. Overall, this pattern of changes in gene expression is characteristic of plants under stress. Thus, VFP3 likely plays an important role in controlling plant homeostasis. PMID:26571494

  11. Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A Polymerases in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Christian Kappel

    2015-08-01

    Full Text Available The poly(A tail at 3' ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression.

  12. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jinying Peng

    2014-10-01

    Full Text Available Ethylene has been regarded as a stress hormone to regulate myriad stress responses. Salinity stress is one of the most serious abiotic stresses limiting plant growth and development. But how ethylene signaling is involved in plant response to salt stress is poorly understood. Here we showed that Arabidopsis plants pretreated with ethylene exhibited enhanced tolerance to salt stress. Gain- and loss-of-function studies demonstrated that EIN3 (ETHYLENE INSENSITIVE 3 and EIL1 (EIN3-LIKE 1, two ethylene-activated transcription factors, are necessary and sufficient for the enhanced salt tolerance. High salinity induced the accumulation of EIN3/EIL1 proteins by promoting the proteasomal degradation of two EIN3/EIL1-targeting F-box proteins, EBF1 and EBF2, in an EIN2-independent manner. Whole-genome transcriptome analysis identified a list of SIED (Salt-Induced and EIN3/EIL1-Dependent genes that participate in salt stress responses, including several genes encoding reactive oxygen species (ROS scavengers. We performed a genetic screen for ein3 eil1-like salt-hypersensitive mutants and identified 5 EIN3 direct target genes including a previously unknown gene, SIED1 (At5g22270, which encodes a 93-amino acid polypeptide involved in ROS dismissal. We also found that activation of EIN3 increased peroxidase (POD activity through the direct transcriptional regulation of PODs expression. Accordingly, ethylene pretreatment or EIN3 activation was able to preclude excess ROS accumulation and increased tolerance to salt stress. Taken together, our study provides new insights into the molecular action of ethylene signaling to enhance plant salt tolerance, and elucidates the transcriptional network of EIN3 in salt stress response.

  13. Overexpression of the PAP1 transcription factor reveals a complex regulation of flavonoid and phenylpropanoid metabolism in Nicotiana tabacum plants attacked by Spodoptera litura.

    Science.gov (United States)

    Mitsunami, Tomoko; Nishihara, Masahiro; Galis, Ivan; Alamgir, Kabir Md; Hojo, Yuko; Fujita, Kohei; Sasaki, Nobuhiro; Nemoto, Keichiro; Sawasaki, Tatsuya; Arimura, Gen-ichiro

    2014-01-01

    Anthocyanin pigments and associated flavonoids have demonstrated antioxidant properties and benefits for human health. Consequently, current plant bioengineers have focused on how to modify flavonoid metabolism in plants. Most of that research, however, does not consider the role of natural biotic stresses (e.g., herbivore attack). To understand the influence of herbivore attack on the metabolic engineering of flavonoids, we examined tobacco plants overexpressing the Arabidopsis PAP1 gene (encoding an MYB transcription factor), which accumulated anthocyanin pigments and other flavonoids/phenylpropanoids. In comparison to wild-type and control plants, transgenic plants exhibited greater resistance to Spodoptera litura. Moreover, herbivory suppressed the PAP1-induced increase of transcripts of flavonoid/phenylpropanoid biosynthetic genes (e.g., F3H) and the subsequent accumulation of these genes' metabolites, despite the unaltered PAP1 mRNA levels after herbivory. The instances of down-regulation were independent of the signaling pathways mediated by defense-related jasmonates but were relevant to the levels of PAP1-induced and herbivory-suppressed transcription factors, An1a and An1b. Although initially F3H transcripts were suppressed by herbivory, after the S. litura feeding was interrupted, F3H transcripts increased. We hypothesize that in transgenic plants responding to herbivory, there is a complex mechanism regulating enriched flavonoid/phenylpropanoid compounds, via biotic stress signals.

  14. Overexpression of the PAP1 transcription factor reveals a complex regulation of flavonoid and phenylpropanoid metabolism in Nicotiana tabacum plants attacked by Spodoptera litura.

    Directory of Open Access Journals (Sweden)

    Tomoko Mitsunami

    Full Text Available Anthocyanin pigments and associated flavonoids have demonstrated antioxidant properties and benefits for human health. Consequently, current plant bioengineers have focused on how to modify flavonoid metabolism in plants. Most of that research, however, does not consider the role of natural biotic stresses (e.g., herbivore attack. To understand the influence of herbivore attack on the metabolic engineering of flavonoids, we examined tobacco plants overexpressing the Arabidopsis PAP1 gene (encoding an MYB transcription factor, which accumulated anthocyanin pigments and other flavonoids/phenylpropanoids. In comparison to wild-type and control plants, transgenic plants exhibited greater resistance to Spodoptera litura. Moreover, herbivory suppressed the PAP1-induced increase of transcripts of flavonoid/phenylpropanoid biosynthetic genes (e.g., F3H and the subsequent accumulation of these genes' metabolites, despite the unaltered PAP1 mRNA levels after herbivory. The instances of down-regulation were independent of the signaling pathways mediated by defense-related jasmonates but were relevant to the levels of PAP1-induced and herbivory-suppressed transcription factors, An1a and An1b. Although initially F3H transcripts were suppressed by herbivory, after the S. litura feeding was interrupted, F3H transcripts increased. We hypothesize that in transgenic plants responding to herbivory, there is a complex mechanism regulating enriched flavonoid/phenylpropanoid compounds, via biotic stress signals.

  15. Overexpression of the PAP1 Transcription Factor Reveals a Complex Regulation of Flavonoid and Phenylpropanoid Metabolism in Nicotiana tabacum Plants Attacked by Spodoptera litura

    Science.gov (United States)

    Mitsunami, Tomoko; Nishihara, Masahiro; Galis, Ivan; Alamgir, Kabir Md; Hojo, Yuko; Fujita, Kohei; Sasaki, Nobuhiro; Nemoto, Keichiro; Sawasaki, Tatsuya; Arimura, Gen-ichiro

    2014-01-01

    Anthocyanin pigments and associated flavonoids have demonstrated antioxidant properties and benefits for human health. Consequently, current plant bioengineers have focused on how to modify flavonoid metabolism in plants. Most of that research, however, does not consider the role of natural biotic stresses (e.g., herbivore attack). To understand the influence of herbivore attack on the metabolic engineering of flavonoids, we examined tobacco plants overexpressing the Arabidopsis PAP1 gene (encoding an MYB transcription factor), which accumulated anthocyanin pigments and other flavonoids/phenylpropanoids. In comparison to wild-type and control plants, transgenic plants exhibited greater resistance to Spodoptera litura. Moreover, herbivory suppressed the PAP1-induced increase of transcripts of flavonoid/phenylpropanoid biosynthetic genes (e.g., F3H) and the subsequent accumulation of these genes' metabolites, despite the unaltered PAP1 mRNA levels after herbivory. The instances of down-regulation were independent of the signaling pathways mediated by defense-related jasmonates but were relevant to the levels of PAP1-induced and herbivory-suppressed transcription factors, An1a and An1b. Although initially F3H transcripts were suppressed by herbivory, after the S. litura feeding was interrupted, F3H transcripts increased. We hypothesize that in transgenic plants responding to herbivory, there is a complex mechanism regulating enriched flavonoid/phenylpropanoid compounds, via biotic stress signals. PMID:25268129

  16. Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum).

    Science.gov (United States)

    Djemal, Rania; Khoudi, Habib

    2015-11-01

    Over the last decade, APETALA2/Ethylene Responsive Factor (AP2/ERF) proteins have become the subject of intensive research activity due to their involvement in a variety of biological processes. This research led to the identification of AP2/ERF genes in many species; however, little is known about these genes in durum wheat, one of the most important cereal crops in the world. In this study, a new member of the AP2/ERF transcription factor family, designated TdSHN1, was isolated from durum wheat using thermal asymetric interlaced PCR (TAIL-PCR) method. Protein sequence analysis showed that TdSHN1 contained an AP2/ERF domain of 63 amino acids and a putative nuclear localization signal (NLS). Phylogenetic analysis showed that TdSHN1 belongs to a group Va protein in the ERF subfamily which contains the Arabidopsis ERF proteins (SHN1, SHN2, and SHN3). Expression of TdSHN1 was strongly induced by salt, drought, abscisic acid (ABA), and cold. In planta, TdSHN1 protein was able to activate the transcription of GUS reporter gene driven by the GCC box and DRE element sequences. In addition, TdSHN1 was targeted to the nucleus when transiently expressed in tobacco epidermal cells. In transgenic yeast, overexpression of TdSHN1 increased tolerance to multiple abiotic stresses. Taken together, the results showed that TdSHN1 encodes an abiotic stress-inducible, transcription factor which confers abiotic stress tolerance in yeast. TdSHN1 is therefore a promising candidate for improvement of biotic and abiotic stress tolerance in wheat as well as other crops.

  17. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance.

    Science.gov (United States)

    Kim, Sunmi; Kang, Jung-Youn; Cho, Dong-Im; Park, Ji Hye; Kim, Soo Young

    2004-10-01

    Phytohormone abscisic acid (ABA) regulates stress-responsive gene expression during vegetative growth, which is mediated largely by cis-elements sharing the ACGTGGC consensus. Although many transcription factors are known to bind the elements in vitro, only a few have been demonstrated to have in vivo functions and their specific roles in ABA/stress responses are mostly unknown. Here, we report that ABF2, an ABF subfamily member of bZIP proteins interacting with the ABA-responsive elements, is involved in ABA/stress responses. Its overexpression altered ABA sensitivity, dehydration tolerance, and the expression levels of ABA/stress-regulated genes. Furthermore, ABF2 overexpression promoted glucose-induced inhibition of seedling development, whereas its mutation impaired glucose response. The reduced sugar sensitivity was not observed with mutants of two other ABF family members, ABF3 and ABF4. Instead, these mutants displayed defects in ABA, salt, and dehydration responses, which were not observed with the abf2 mutant. Our data indicate distinct roles of ABF family members: whereas ABF3 and ABF4 play essential roles in ABA/stress responses, ABF2 is required for normal glucose response. We also show that ABF2 overexpression affects multiple stress tolerance.

  18. Repression of BLADE-ON-PETIOLE genes by KNOX homeodomain protein BREVIPEDICELLUS is essential for differentiation of secondary xylem in Arabidopsis root.

    Science.gov (United States)

    Woerlen, Natalie; Allam, Gamalat; Popescu, Adina; Corrigan, Laura; Pautot, Véronique; Hepworth, Shelley R

    2017-06-01

    Repression of boundary genes by KNOTTED1-like homeodomain transcription factor BREVIPEDICELLUS promotes the differentiation of phase II secondary xylem in Arabidopsis roots. Plant growth and development relies on the activity of meristems. Boundaries are domains of restricted growth that separate forming organs and the meristem. Class I KNOX homeodomain transcription factors are important regulators of meristem maintenance. Members of this class including BREVIDICELLUS also called KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (BP/KNAT1) fulfill this function in part by spatially regulating boundary genes. The vascular cambium is a lateral meristem that allows for radial expansion of organs during secondary growth. We show here that BP/KNAT1 repression of boundary genes plays a crucial role in root secondary growth. In particular, exclusion of BLADE-ON-PETIOLE1/2 (BOP1/2) and other members of this module from xylem is required for the differentiation of lignified fibers and vessels during the xylem expansion phase of root thickening. These data reveal a previously undiscovered role for boundary genes in the root and shed light on mechanisms controlling wood development in trees.

  19. Genome structures and halophyte-specific gene expression of the extremophile thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and arabidopsis

    KAUST Repository

    Oh, Dongha

    2010-09-10

    The genome of Thellungiella parvula, a halophytic relative of Arabidopsis (Arabidopsis thaliana), is being assembled using Roche-454 sequencing. Analyses of a 10-Mb scaffold revealed synteny with Arabidopsis, with recombination and inversion and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously Thellungiella halophila). The three-way comparison of sequences, from one abiotic stress-sensitive species and two tolerant species, revealed extensive sequence conservation and microcolinearity, but grouping Thellungiella species separately from Arabidopsis. However, the T. parvula segments are distinguished from their T. salsuginea counterparts by a pronounced paucity of repeat sequences, resulting in a 30% shorter DNA segment with essentially the same gene content in T. parvula. Among the genes is SALT OVERLY SENSITIVE1 (SOS1), a sodium/proton antiporter, which represents an essential component of plant salinity stress tolerance. Although the SOS1 coding region is highly conserved among all three species, the promoter regions show conservation only between the two Thellungiella species. Comparative transcript analyses revealed higher levels of basal as well as salt-induced SOS1 expression in both Thellungiella species as compared with Arabidopsis. The Thellungiella species and other halophytes share conserved pyrimidine-rich 5\\' untranslated region proximal regions of SOS1 that are missing in Arabidopsis. Completion of the genome structure of T. parvula is expected to highlight distinctive genetic elements underlying the extremophile lifestyle of this species. © American Society of Plant Biologists.

  20. The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis.

    NARCIS (Netherlands)

    Sugliani, M.; Brambilla, V.; Clerkx, E.J.M.; Koornneef, M.; Soppe, W.J.J.

    2010-01-01

    ABSCISIC ACID INSENSITIVE3 (ABI3) is a major regulator of seed maturation in Arabidopsis thaliana. We detected two ABI3 transcripts, ABI3- and ABI3-ß, which encode full-length and truncated proteins, respectively. Alternative splicing of ABI3 is developmentally regulated, and the ABI3-ß transcript

  1. In silico identification of known osmotic stress responsive genes from Arabidopsis in soybean and Medicago

    Directory of Open Access Journals (Sweden)

    Nina M. Soares-Cavalcanti

    2012-01-01

    Full Text Available Plants experience various environmental stresses, but tolerance to these adverse conditions is a very complex phenomenon. The present research aimed to evaluate a set of genes involved in osmotic response, comparing soybean and medicago with the well-described Arabidopsis thaliana model plant. Based on 103 Arabidopsis proteins from 27 categories of osmotic stress response, comparative analyses against Genosoja and Medicago truncatula databases allowed the identification of 1,088 soybean and 1,210 Medicago sequences. The analysis showed a high number of sequences and high diversity, comprising genes from all categories in both organisms. Genes with unknown function were among the most representative, followed by transcription factors, ion transport proteins, water channel, plant defense, protein degradation, cellular structure, organization & biogenesis and senescence. An analysis of sequences with unknown function allowed the annotation of 174 soybean and 217 Medicago sequences, most of them concerning transcription factors. However, for about 30% of the sequences no function could be attributed using in silico procedures. The establishment of a gene set involved in osmotic stress responses in soybean and barrel medic will help to better understand the survival mechanisms for this type of stress condition in legumes.

  2. Overexpression of a PLDα1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance.

    Science.gov (United States)

    Peng, Yunling; Zhang, Jinpeng; Cao, Gaoyi; Xie, Yuanhong; Liu, Xihui; Lu, Minhui; Wang, Guoying

    2010-07-01

    Phospholipase D (PLD) plays an important role in various physiological processes in plants, including drought tolerance. Here, we report the cloning and characterization of the full-length cDNA of PLDalpha1 from foxtail millet, which is a cereal crop with high water use efficiency. The expression pattern of the SiPLDalpha1 gene in foxtail millet revealed that it is up-regulated under dehydration, ABA and NaCl treatments. Heterologous overexpression of SiPLDalpha1 in Arabidopsis can significantly enhance their sensitivity to ABA, NaCl and mannitol during post-germination growth. Under water deprivation, overexpression of SiPLDalpha1 in Arabidopsis resulted in significantly enhanced tolerance to drought stress, displaying higher biomass and RWC, lower ion leakage and higher survival percentages than the wild type. Further analysis indicated that transgenic plants showed increased transcription of the stress-related genes, RD29A, RD29B, RAB18 and RD22, and the ABA-related genes, ABI1 and NCED3 under dehydration conditions. These results demonstrate that SiPLDalpha1 is involved in plant stress signal transduction, especially in the ABA signaling pathway. Moreover, no obvious adverse effects on growth and development in the 35S::SiPLDalpha1 transgenic plants implied that SiPLDalpha1 is a good candidate gene for improving crop drought tolerance.

  3. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor.

    Science.gov (United States)

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill

    2016-03-25

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family

    NARCIS (Netherlands)

    Danisman, S.; Dijk, van A.D.J.; Bimbo, A.; Wal, van der F.; Hennig, L.; Folter, de S.; Angenent, G.C.; Immink, R.G.H.

    2013-01-01

    Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and ROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by

  5. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation)

    Science.gov (United States)

    Babbick, M.; Dijkstra, C.; Larkin, O. J.; Anthony, P.; Davey, M. R.; Power, J. B.; Lowe, K. C.; Cogoli-Greuter, M.; Hampp, R.

    Gravity is an important environmental factor that controls plant growth and development. Studies have shown that the perception of gravity is not only a property of specialized cells, but can also be performed by undifferentiated cultured cells. In this investigation, callus of Arabidopsis thaliana cv. Columbia was used to investigate the initial steps of gravity-related signalling cascades, through altered expression of transcription factors (TFs). TFs are families of small proteins that regulate gene expression by binding to specific promoter sequences. Based on microarray studies, members of the gene families WRKY, MADS-box, MYB, and AP2/EREBP were selected for investigation, as well as members of signalling chains, namely IAA 19 and phosphoinositol-4-kinase. Using qRT-PCR, transcripts were quantified within a period of 30 min in response to hypergravity (8 g), clinorotation [2-D clinostat and 3-D random positioning machine (RPM)] and magnetic levitation (ML). The data indicated that (1) changes in gravity induced stress-related signalling, and (2) exposure in the RPM induced changes in gene expression which resemble those of magnetic levitation. Two dimensional clinorotation resulted in responses similar to those caused by hypergravity. It is suggested that RPM and ML are preferable to simulate microgravity than clinorotation.

  6. Positive- and negative-acting regulatory elements contribute to the tissue-specific expression of INNER NO OUTER, a YABBY-type transcription factor gene in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Simon Marissa K

    2012-11-01

    Full Text Available Abstract Background The INNER NO OUTER (INO gene, which encodes a YABBY-type transcription factor, specifies and promotes the growth of the outer integument of the ovule in Arabidopsis. INO expression is limited to the abaxial cell layer of the developing outer integument of the ovule and is regulated by multiple regions of the INO promoter, including POS9, a positive element that when present in quadruplicate can produce low-level expression in the normal INO pattern. Results Significant redundancy in activity between different regions of the INO promoter is demonstrated. For specific regulatory elements, multimerization or the addition of the cauliflower mosaic virus 35S general enhancer was able to activate expression of reporter gene constructs that were otherwise incapable of expression on their own. A new promoter element, POS6, is defined and is shown to include sufficient positive regulatory information to reproduce the endogenous pattern of expression in ovules, but other promoter regions are necessary to fully suppress expression outside of ovules. The full-length INO promoter, but not any of the INO promoter deletions tested, is able to act as an enhancer-blocking insulator to prevent the ectopic activation of expression by the 35S enhancer. Sequence conservation between the promoter regions of Arabidopsis thaliana, Brassica oleracea and Brassica rapa aligns closely with the functional definition of the POS6 and POS9 regions, and with a defined INO minimal promoter. The B. oleracea INO promoter is sufficient to promote a similar pattern and level of reporter gene expression in Arabidopsis to that observed for the Arabidopsis promoter. Conclusions At least two independent regions of the INO promoter contain sufficient regulatory information to direct the specific pattern but not the level of INO gene expression. These regulatory regions act in a partially redundant manner to promote the expression in a specific pattern in the ovule and

  7. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions.

    Science.gov (United States)

    Abdelaziz, Mohamed E; Kim, Dongjin; Ali, Shawkat; Fedoroff, Nina V; Al-Babili, Salim

    2017-10-01

    The mutualistic, endophytic fungus Piriformospora indica has been shown to confer biotic and abiotic stress tolerance to host plants. In this study, we investigated the impact of P. indica on the growth of Arabidopsis plants under normal and salt stress conditions. Our results demonstrate that P. indica colonization increases plant biomass, lateral roots density, and chlorophyll content under both conditions. Colonization with P. indica under salt stress was accompanied by a lower Na + /K + ratio and less pronounced accumulation of anthocyanin, compared to control plants. Moreover, P. indica colonized roots under salt stress showed enhanced transcript levels of the genes encoding the high Affinity Potassium Transporter 1 (HKT1) and the inward-rectifying K + channels KAT1 and KAT2, which play key roles in regulating Na + and K + homeostasis. The effect of P. indica colonization on AtHKT1;1 expression was also confirmed in the Arabidopsis line gl1-HKT:AtHKT1;1 that expresses an additional AtHKT1;1 copy driven by the native promoter. Colonization of the gl1-HKT:AtHKT1;1 by P. indica also increased lateral roots density and led to a better Na + /K + ratio, which may be attributed to the observed increase in KAT1 and KAT2 transcript levels. Our findings demonstrate that P. indica colonization promotes Arabidopsis growth under salt stress conditions and that this effect is likely caused by modulation of the expression levels of the major Na + and K + ion channels, which allows establishing a balanced ion homeostasis of Na + /K + under salt stress conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Molecular and physiological characterization of AtHIGD1 in Arabidopsis.

    Science.gov (United States)

    Hwang, Soong-Taek; Li, Huiling; Alavilli, Hemasundar; Lee, Byeong-Ha; Choi, Dongsu

    2017-06-10

    Flooding is a principal stress that limits plant productivity. The sensing of low oxygen levels (hypoxia) plays a critical role in the signaling pathway that functions in plants in flooded environments. In this study, to investigate hypoxia response mechanisms in Arabidopsis, we identified three hypoxia-related genes and subjected one of these genes, Arabidopsis thaliana HYPOXIA-INDUCED GENE DOMAIN 1 (AtHIGD1), to molecular characterization including gene expression analysis and intracellular localization of the encoded protein. AtHIGD1 was expressed in various organs but was preferentially expressed in developing siliques. Confocal microscopy of transgenic plants harboring eGFP-tagged AtHIGD1 indicated that AtHIGD1 is localized to mitochondria. Importantly, plants overexpressing AtHIGD1 exhibited increased resistance to hypoxia compared to wild type. Our results represent the first report of a biological function for an HIGD protein in plants and indicate that AtHIGD1 is a mitochondrial protein that plays an active role in mitigating the effects of hypoxia on plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana.

    Science.gov (United States)

    Chang, Ing-Feng; Curran, Amy; Woolsey, Rebekah; Quilici, David; Cushman, John C; Mittler, Ron; Harmon, Alice; Harper, Jeffrey F

    2009-06-01

    In eukaryotes, 14-3-3 dimers regulate hundreds of functionally diverse proteins (clients), typically in phosphorylation-dependent interactions. To uncover new clients, 14-3-3 omega (At1g78300) from Arabidopsis was engineered with a "tandem affinity purification" tag and expressed in transgenic plants. Purified complexes were analyzed by tandem MS. Results indicate that 14-3-3 omega can dimerize with at least 10 of the 12 14-3-3 isoforms expressed in Arabidopsis. The identification here of 121 putative clients provides support for in vivo 14-3-3 interactions with a diverse array of proteins, including those involved in: (i) Ion transport, such as a K(+) channel (GORK), a Cl(-) channel (CLCg), Ca(2+) channels belonging to the glutamate receptor family (1.2, 2.1, 2.9, 3.4, 3.7); (ii) hormone signaling, such as ACC synthase (isoforms ACS-6, -7 and -8 involved in ethylene synthesis) and the brassinolide receptors BRI1 and BAK1; (iii) transcription, such as 7 WRKY family transcription factors; (iv) metabolism, such as phosphoenol pyruvate carboxylase; and (v) lipid signaling, such as phospholipase D (beta and gamma). More than 80% (101) of these putative clients represent previously unidentified 14-3-3 interactors. These results raise the number of putative 14-3-3 clients identified in plants to over 300.

  10. The coat protein of Alfalfa mosaic virus interacts and interferes with the transcriptional activity of the bHLH transcription factor ILR3 promoting salicylic acid-dependent defence signalling response.

    Science.gov (United States)

    Aparicio, Frederic; Pallás, Vicente

    2017-02-01

    During virus infection, specific viral component-host factor interaction elicits the transcriptional reprogramming of diverse cellular pathways. Alfalfa mosaic virus (AMV) can establish a compatible interaction in tobacco and Arabidopsis hosts. We show that the coat protein (CP) of AMV interacts directly with transcription factor (TF) ILR3 of both species. ILR3 is a basic helix-loop-helix (bHLH) family member of TFs, previously proposed to participate in diverse metabolic pathways. ILR3 has been shown to regulate NEET in Arabidopsis, a critical protein in plant development, senescence, iron metabolism and reactive oxygen species (ROS) homeostasis. We show that the AMV CP-ILR3 interaction causes a fraction of this TF to relocate from the nucleus to the nucleolus. ROS, pathogenesis-related protein 1 (PR1) mRNAs, salicylic acid (SA) and jasmonic acid (JA) contents are increased in healthy Arabidopsis loss-of-function ILR3 mutant (ilr3.2) plants, which implicates ILR3 in the regulation of plant defence responses. In AMV-infected wild-type (wt) plants, NEET expression is reduced slightly, but is induced significantly in ilr3.2 mutant plants. Furthermore, the accumulation of SA and JA is induced in Arabidopsis wt-infected plants. AMV infection in ilr3.2 plants increases JA by over 10-fold, and SA is reduced significantly, indicating an antagonist crosstalk effect. The accumulation levels of viral RNAs are decreased significantly in ilr3.2 mutants, but the virus can still systemically invade the plant. The AMV CP-ILR3 interaction may down-regulate a host factor, NEET, leading to the activation of plant hormone responses to obtain a hormonal equilibrium state, where infection remains at a level that does not affect plant viability. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  11. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart; Tzfadia, Oren; Vallabhaneni, Ratnakar; Gehring, Christoph A; Wurtzel, Eleanore T

    2011-01-01

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  12. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart

    2011-05-19

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  13. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vallabhaneni Ratnakar

    2011-05-01

    Full Text Available Abstract Background The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana. Results A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR but was inhibited by abscisic acid (ABA. Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced

  14. Divergent regulation of Arabidopsis SAUR genes: a focus on the SAUR10-clade.

    Science.gov (United States)

    van Mourik, Hilda; van Dijk, Aalt D J; Stortenbeker, Niek; Angenent, Gerco C; Bemer, Marian

    2017-12-19

    Small Auxin-Upregulated RNA (SAUR) genes encode growth regulators that induce cell elongation. Arabidopsis contains more than 70 SAUR genes, of which the growth-promoting function has been unveiled in seedlings, while their role in other tissues remained largely unknown. Here, we focus on the regulatory regions of Arabidopsis SAUR genes, to predict the processes in which they play a role, and understand the dynamics of plant growth. In this study, we characterized in detail the entire SAUR10-clade: SAUR8, SAUR9, SAUR10, SAUR12, SAUR16, SAUR50, SAUR51 and SAUR54. Overexpression analysis revealed that the different proteins fulfil similar functions, while the SAUR expression patterns were highly diverse, showing expression throughout plant development in a variety of tissues. In addition, the response to application of different hormones largely varied between the different genes. These tissue-specific and hormone-specific responses could be linked to transcription factor binding sites using in silico analyses. These analyses also supported the existence of two groups of SAURs in Arabidopsis: Class I genes can be induced by combinatorial action of ARF-BZR-PIF transcription factors, while Class II genes are not regulated by auxin. SAUR10-clade genes generally induce cell-elongation, but exhibit diverse expression patterns and responses to hormones. Our experimental and in silico analyses suggest that transcription factors involved in plant development determine the tissue specific expression of the different SAUR genes, whereas the amplitude of this expression can often be controlled by hormone response transcription factors. This allows the plant to fine tune growth in a variety of tissues in response to internal and external signals.

  15. Overexpression of herbaceous peony miR156e-3p improves anthocyanin accumulation in transgenic Arabidopsis thaliana lateral branches.

    Science.gov (United States)

    Zhao, Daqiu; Xia, Xing; Wei, Mengran; Sun, Jing; Meng, Jiasong; Tao, Jun

    2017-12-01

    microRNAs (miRNAs) play critical regulatory roles in plant growth and development. In the present study, the function of herbaceous peony ( Paeonia lactiflora Pall.) miR156e-3p in the regulation of color formation has been investigated. Firstly, P. lactiflora miR156e-3p precursor sequence (pre-miR156e-3p) was isolated. Subsequently, the overexpression vector of pre-miR156e-3p was constructed and transformed into Arabidopsis thaliana . Moreover, the medium screening, GUS staining, polymerase chain reaction (PCR) of the GUS region and real-time quantitative PCR (qRT-PCR) of miR156e-3p all confirmed that the purpose gene had been successfully transferred into Arabidopsis plants and expressed, which resulted in apparent purple lateral branches. And this change in color was caused by the improved anthocyanin accumulation. In addition, expression analysis had shown that the level of miR156e-3p transcript was increased, while transcription level of target gene squamosa promoter binding protein-like gene ( SPL1 ), encoding SPL transcription factor that negatively regulated anthocyanin accumulation, was repressed in miR156e-3p-overexpressing transgenic plants, and its downstream gene dihydroflavonol 4-reductase gene ( DFR ) that was directly involved in anthocyanin biosynthesis was strongly expressed, which resulted in anthocyanin accumulation of Arabidopsis lateral branches. These findings would improve the understanding of miRNAs regulation of color formation in P. lactiflora .

  16. Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves.

    Science.gov (United States)

    Kim, Hyojin; Choi, Dongsu; Suh, Mi Chung

    2017-06-01

    An increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis and may allow plants to cope with oxygen deficiency. The hydrophobic cuticle layer consisting of cutin polyester and cuticular wax is the first barrier to protect the aerial parts of land plants from environmental stresses. In the present study, we investigated the role of cuticle membrane in Arabidopsis responses to oxygen deficiency. TEM analysis showed that the epidermal cells of hypoxia-treated Arabidopsis stems and leaves possessed a thinner electron-translucent cuticle proper and a more electron-dense cuticular layer. A reduction in epicuticular wax crystal deposition was observed in SEM images of hypoxia-treated Arabidopsis stem compared with normoxic control. Cuticular transpiration was more rapid in hypoxia-stressed leaves than in normoxic control. Total wax and cutin loads decreased by approximately 6-12 and 12-22%, respectively, and the levels of C29 alkanes, secondary alcohols, and ketones, C16:0 ω-hydroxy fatty acids, and C18:2 dicarboxylic acids were also prominently reduced in hypoxia-stressed Arabidopsis leaves and/or stems relative to normoxic control. Genome-wide transcriptome and quantitative RT-PCR analyses revealed that the expression of several genes involved in the biosynthesis and transport of cuticular waxes and cutin monomers were downregulated more than fourfold, but no significant alterations were detected in the transcript levels of fatty acid biosynthetic genes, BCCP2, PDH-E1α, and ENR1 in hypoxia-treated Arabidopsis stems and leaves compared with normoxic control. Taken together, an increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis. The present study elucidates one of the cuticle-related adaptive responses that may allow plants to cope with low oxygen levels.

  17. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control.

    Science.gov (United States)

    Celton, Jean-Marc; Gaillard, Sylvain; Bruneau, Maryline; Pelletier, Sandra; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Navarro, Lionel; Laurens, François; Renou, Jean-Pierre

    2014-07-01

    Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  18. Evolutionary Analysis of DELLA-Associated Transcriptional Networks

    Directory of Open Access Journals (Sweden)

    Miguel A. Blázquez

    2017-04-01

    Full Text Available DELLA proteins are transcriptional regulators present in all land plants which have been shown to modulate the activity of over 100 transcription factors in Arabidopsis, involved in multiple physiological and developmental processes. It has been proposed that DELLAs transduce environmental information to pre-wired transcriptional circuits because their stability is regulated by gibberellins (GAs, whose homeostasis largely depends on environmental signals. The ability of GAs to promote DELLA degradation coincides with the origin of vascular plants, but the presence of DELLAs in other land plants poses at least two questions: what regulatory properties have DELLAs provided to the behavior of transcriptional networks in land plants, and how has the recruitment of DELLAs by GA signaling affected this regulation. To address these issues, we have constructed gene co-expression networks of four different organisms within the green lineage with different properties regarding DELLAs: Arabidopsis thaliana and Solanum lycopersicum (both with GA-regulated DELLA proteins, Physcomitrella patens (with GA-independent DELLA proteins and Chlamydomonas reinhardtii (a green alga without DELLA, and we have examined the relative evolution of the subnetworks containing the potential DELLA-dependent transcriptomes. Network analysis indicates a relative increase in parameters associated with the degree of interconnectivity in the DELLA-associated subnetworks of land plants, with a stronger effect in species with GA-regulated DELLA proteins. These results suggest that DELLAs may have played a role in the coordination of multiple transcriptional programs along evolution, and the function of DELLAs as regulatory ‘hubs’ became further consolidated after their recruitment by GA signaling in higher plants.

  19. Genome-wide analysis of the HD-ZIP IV transcription factor family in Gossypium arboreum and GaHDG11 involved in osmotic tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Chen, Eryong; Zhang, Xueyan; Yang, Zhaoen; Wang, Xiaoqian; Yang, Zuoren; Zhang, Chaojun; Wu, Zhixia; Kong, Depei; Liu, Zhao; Zhao, Ge; Butt, Hamama Islam; Zhang, Xianlong; Li, Fuguang

    2017-06-01

    HD-ZIP IV proteins belong to the homeodomain-leucine zipper (HD-ZIP) transcription factor family and are involved in trichome development and drought stress in plants. Although some functions of the HD-ZIP IV group are well understood in Arabidopsis, little is known about their function in cotton. In this study, HD-ZIP genes were identified from three Gossypium species (G. arboreum, G. raimondii and G. hirsutum) and clustered into four families (HD-ZIP I, II, III and IV) to separate HD-ZIP IV from the other three families. Systematic analyses of phylogeny, gene structure, conserved domains, and expression profiles in different plant tissues and the expression patterns under osmotic stress in leaves were further conducted in G. arboreum. More importantly, ectopic overexpression of GaHDG11, a representative of the HD-ZIP IV family, confers enhanced osmotic tolerance in transgenic Arabidopsis plants, possibly due to elongated primary root length, lower water loss rates, high osmoprotectant proline levels, significant levels of antioxidants CAT, and/or SOD enzyme activity with reduced levels of MDA. Taken together, these observations may lay the foundation for future functional analysis of cotton HD-ZIP IV genes to unravel their biological roles in cotton.

  20. The NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    He, Huan [Nanjing Agricultural Univ. (China); Yan, Jingwei [Nanjing Agricultural Univ. (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Xiaoyun [Nanjing Agricultural Univ. (China); Liang, Yan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fang, Lin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scheller, Henrik Vibe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Aying [Nanjing Agricultural Univ. (China)

    2017-05-27

    As the major resource of reactive oxygen species (ROS), the NADPH oxidases (Rbohs) have been shown to play important roles in plant cells under normal growth and stress conditions. Although many family members of Rbohs were studied, little is known about the function of RbohI in Arabidopsis thaliana. Here, we report that exogenous ABA application decreases RbohI expression and mannitol significantly increases RbohI expression at transcript level. The RbohI transcripts were strongly detected in dry seeds and roots. The loss-of-function mutant rbohI exhibited sensitivity to ABA and mannitol stress during germination. Furthermore, the lateral root growth of rbohI was severely inhibited after treatment with mannitol stress. Overexpression of RbohI in Arabidopsis significantly improves the drought tolerance. Moreover, more H2O2 accumulated in RbohI overexpressors than in wild type plants in response to mannitol stress. Our conclusion is that AtRbohI functions in drought-stress response in Arabidopsis thaliana.

  1. Overexpression of sweet sorghum cryptochrome 1a confers hypersensitivity to blue light, abscisic acid and salinity in Arabidopsis.

    Science.gov (United States)

    Zhou, Tingting; Meng, Lingyang; Ma, Yue; Liu, Qing; Zhang, Yunyun; Yang, Zhenming; Yang, Deguang; Bian, Mingdi

    2018-02-01

    This work provides the bioinformatics, expression pattern and functional analyses of cryptochrome 1a from sweet sorghum (SbCRY1a), together with an exploration of the signaling mechanism mediated by SbCRY1a. Sweet sorghum [Sorghum bicolor (L.) Moench] is considered to be an ideal candidate for biofuel production due to its high efficiency of photosynthesis and the ability to maintain yield under harsh environmental conditions. Blue light receptor cryptochromes regulate multiple aspects of plant growth and development. Here, we reported the function and signal mechanism of sweet sorghum cryptochrome 1a (SbCRY1a) to explore its potential for genetic improvement of sweet sorghum varieties. SbCRY1a transcripts experienced almost 24 h diurnal cycling; however, its protein abundance showed no oscillation. Overexpression of SbCRY1a in Arabidopsis rescued the phenotype of cry1 mutant in a blue light-specific manner and regulated HY5 accumulation under blue light. SbCRY1a protein was present in both nucleus and cytoplasm. The photoexcited SbCRY1a interacted directly with a putative RING E3 ubiquitin ligase constitutive photomorphogenesis 1 (COP1) from sweet sorghum (SbCOP1) instead of SbSPA1 to suppress SbCOP1-SbHY5 interaction responding to blue light. These observations indicate that the function and signaling mechanism of cryptochromes are basically conservative between monocotyledons and dicotyledons. Moreover, SbCRY1a-overexpressed transgenic Arabidopsis showed oversensitive to abscisic acid (ABA) and salinity. The ABA-responsive gene ABI5 was up-regulated evidently in SbCRY1a transgenic lines, suggesting that SbCRY1a might regulate ABA signaling through the HY5-ABI5 regulon.

  2. Two differentially regulated Arabidopsis genes define a new branch of the DFR superfamily

    DEFF Research Database (Denmark)

    Østergaard, L; Lauvergeat, V; Naested, H

    2001-01-01

    that, whereas high expression of AtCRL1 in mature seeds declines during subsequent vegetative growth, transcriptional activity from the AtCRL2 promoter increases during vegetative growth. Expression of both genes is restricted to vascular tissue. Based upon their homology to proteins involved in lignin......Two tandem genes were identified on Arabidopsis chromosome II (AtCRL1 and AtCRL2) encoding proteins with homology to members of the dihydroflavonol-4-reductase (DFR) superfamily. The encoded CRL1 and CRL2 proteins share 87% mutual amino acid sequence identity whereas their promoter regions...

  3. Transcriptional mechanisms associated with seed dormancy and dormancy loss in the gibberellin-insensitive sly1-2 mutant of Arabidopsis thaliana

    Science.gov (United States)

    While widespread transcriptome changes have been previously observed with seed dormancy loss, this study specifically characterized transcriptional changes associated with the increased seed dormancy and dormancy loss of the gibberellin (GA) hormone-insensitive sleepy1-2 (sly1-2) mutant. The SLY1 g...

  4. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy

    Directory of Open Access Journals (Sweden)

    Eva Külshammer

    2015-10-01

    Full Text Available Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (RasV12 and loss of the tumor suppressor Scribble (scrib1. We show that malignant transformation of the rasV12scrib1 tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK. Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to rasV12scrib1 tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1 upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in rasV12scrib1 tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with RasV12 in inducing malignant clones that, like rasV12scrib1 tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8. While rasV12ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In conclusion, our

  5. Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers

    NARCIS (Netherlands)

    Bovy, A.G.; Angenent, G.C.; Dons, H.J.M.; Altvorst, van A.

    1999-01-01

    The Arabidopsis thaliana etr1-1 allele, capable of conferring ethylene insensitivity in a heterologous host, was introduced into transgenic carnation plants. This gene was expressed under control of either its own promoter, the constitutive CaMV 35S promoter or the flower-specific petunia FBP1

  6. The Arabidopsis Halophytic Relative Thellungiella halophila Tolerates Nitrogen-Limiting Conditions by Maintaining Growth, Nitrogen Uptake, and Assimilation1[W][OA

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J.

    2008-01-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low 15NO3− supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance. PMID:18467466

  7. The rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Science.gov (United States)

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  8. The rose (Rosa hybrida NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Guimei Jiang

    Full Text Available Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida, RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose Rh

  9. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds.

    Science.gov (United States)

    Gaufichon, Laure; Marmagne, Anne; Belcram, Katia; Yoneyama, Tadakatsu; Sakakibara, Yukiko; Hase, Toshiharu; Grandjean, Olivier; Clément, Gilles; Citerne, Sylvie; Boutet-Mercey, Stéphanie; Masclaux-Daubresse, Céline; Chardon, Fabien; Soulay, Fabienne; Xu, Xiaole; Trassaert, Marion; Shakiebaei, Maryam; Najihi, Amina; Suzuki, Akira

    2017-08-01

    Despite a general view that asparagine synthetase generates asparagine as an amino acid for long-distance transport of nitrogen to sink organs, its role in nitrogen metabolic pathways in floral organs during seed nitrogen filling has remained undefined. We demonstrate that the onset of pollination in Arabidopsis induces selected genes for asparagine metabolism, namely ASN1 (At3g47340), GLN2 (At5g35630), GLU1 (At5g04140), AapAT2 (At5g19950), ASPGA1 (At5g08100) and ASPGB1 (At3g16150), particularly at the ovule stage (stage 0), accompanied by enhanced asparagine synthetase protein, asparagine and total amino acids. Immunolocalization confined asparagine synthetase to the vascular cells of the silique cell wall and septum, but also to the outer and inner seed integuments, demonstrating the post-phloem transport of asparagine in these cells to developing embryos. In the asn1 mutant, aberrant embryo cell divisions in upper suspensor cell layers from globular to heart stages assign a role for nitrogen in differentiating embryos within the ovary. Induction of asparagine metabolic genes by light/dark and nitrate supports fine shifts of nitrogen metabolic pathways. In transgenic Arabidopsis expressing promoter Ca MV 35S ::ASN1 fusion, marked metabolomics changes at stage 0, including a several-fold increase in free asparagine, are correlated to enhanced seed nitrogen. However, specific promoter Napin2S ::ASN1 expression during seed formation and a six-fold increase in asparagine toward the desiccation stage result in wild-type seed nitrogen, underlining that delayed accumulation of asparagine impairs the timing of its use by releasing amide and amino nitrogen. Transcript and metabolite profiles in floral organs match the carbon and nitrogen partitioning to generate energy via the tricarboxylic acid cycle, GABA shunt and phosphorylated serine synthetic pathway. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants.

    Science.gov (United States)

    Li, Peiling; Song, Aiping; Gao, Chunyan; Wang, Linxiao; Wang, Yinjie; Sun, Jing; Jiang, Jiafu; Chen, Fadi; Chen, Sumei

    2015-08-01

    CmWRKY17 was induced by salinity in chrysanthemum, and it might negatively regulate salt stress in transgenic plants as a transcriptional repressor. WRKY transcription factors play roles as positive or negative regulators in response to various stresses in plants. In this study, CmWRKY17 was isolated from chrysanthemum (Chrysanthemum morifolium). The gene encodes a 227-amino acid protein and belongs to the group II WRKY family, but has an atypical WRKY domain with the sequence WKKYGEK. Our data indicated that CmWRKY17 was localized to the nucleus in onion epidermal cells. CmWRKY17 showed no transcriptional activation in yeast; furthermore, luminescence assay clearly suggested that CmWRKY17 functions as a transcriptional repressor. DNA-binding assay showed that CmWRKY17 can bind to W-box. The expression of CmWRKY17 was induced by salinity in chrysanthemum, and a higher expression level was observed in the stem and leaf compared with that in the root, disk florets, and ray florets. Overexpression of CmWRKY17 in chrysanthemum and Arabidopsis increased the sensitivity to salinity stress. The activities of superoxide dismutase and peroxidase and proline content in the leaf were significantly lower in transgenic chrysanthemum than those in the wild type under salinity stress, whereas electrical conductivity was increased in transgenic plants. Expression of the stress-related genes AtRD29, AtDREB2B, AtSOS1, AtSOS2, AtSOS3, and AtNHX1 was reduced in the CmWRKY17 transgenic Arabidopsis compared with that in the wild-type Col-0. Collectively, these data suggest that CmWRKY17 may increase the salinity sensitivity in plants as a transcriptional repressor.

  11. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis.

    Science.gov (United States)

    Rubin, Grit; Tohge, Takayuki; Matsuda, Fumio; Saito, Kazuki; Scheible, Wolf-Rüdiger

    2009-11-01

    Nitrogen (N) and nitrate (NO(3)(-)) per se regulate many aspects of plant metabolism, growth, and development. N/NO(3)(-) also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO(3)(-)-induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of each of the three genes in the absence of N/NO(3)(-) strongly suppresses the key regulators of anthocyanin synthesis PAP1 and PAP2, genes in the anthocyanin-specific part of flavonoid synthesis, as well as cyanidin- but not quercetin- or kaempferol-glycoside production. Conversely, lbd37, lbd38, or lbd39 mutants accumulate anthocyanins when grown in N/NO(3)(-)-sufficient conditions and show constitutive expression of anthocyanin biosynthetic genes. The LBD genes also repress many other known N-responsive genes, including key genes required for NO(3)(-) uptake and assimilation, resulting in altered NO(3)(-) content, nitrate reductase activity/activation, protein, amino acid, and starch levels, and N-related growth phenotypes. The results identify LBD37 and its two close homologs as novel repressors of anthocyanin biosynthesis and N availability signals in general. They also show that, besides being developmental regulators, LBD genes fulfill roles in metabolic regulation.

  12. Transcriptional regulation of receptor-like protein genes by environmental stresses and hormones and their overexpression activities in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Jinbin; Liu, Zhijun; Zhang, Zhao; Lv, Yanting; Yang, Nan; Zhang, Guohua; Wu, Menyao; Lv, Shuo; Pan, Lixia; Joosten, Matthieu H A J; Wang, Guodong

    2016-05-01

    Receptor-like proteins (RLPs) have been implicated in multiple biological processes, including plant development and immunity to microbial infection. Fifty-seven AtRLP genes have been identified in Arabidopsis, whereas only a few have been functionally characterized. This is due to the lack of suitable physiological screening conditions and the high degree of functional redundancy among AtRLP genes. To overcome the functional redundancy and further understand the role of AtRLP genes, we studied the evolution of AtRLP genes and compiled a comprehensive profile of the transcriptional regulation of AtRLP genes upon exposure to a range of environmental stresses and different hormones. These results indicate that the majority of AtRLP genes are differentially expressed under various conditions that were tested, an observation that will help to select certain AtRLP genes involved in a specific biological process for further experimental studies to eventually dissect their function. A large number of AtRLP genes were found to respond to more than one treatment, suggesting that one single AtRLP gene may be involved in multiple physiological processes. In addition, we performed a genome-wide cloning of the AtRLP genes, and generated and characterized transgenic Arabidopsis plants overexpressing the individual AtRLP genes, presenting new insight into the roles of AtRLP genes, as exemplified by AtRLP3, AtRLP11 and AtRLP28 Our study provides an overview of biological processes in which AtRLP genes may be involved, and presents valuable resources for future investigations into the function of these genes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. RIMA-dependent nuclear accumulation of IYO triggers auxin-irreversible cell differentiation in arabidopsis

    NARCIS (Netherlands)

    Muñoz, Alfonso; Mangano, Silvina; González-García, Mary Paz; Contreras, Ramón; Sauer, Michael; Rybel, De Bert; Weijers, Dolf; Sánchez-Serrano, José Juan; Sanmartín, Maite; Rojo, Enrique

    2017-01-01

    The transcriptional regulator MINIYO (IYO) is essential and rate-limiting for initiating cell differentiation in Arabidopsis thaliana. Moreover, IYO moves from the cytosol into the nucleus in cells at the meristem periphery, possibly triggering their differentiation. However, the genetic mechanisms

  14. SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Soto-Burgos, Junmarie; Bassham, Diane C

    2017-01-01

    Autophagy is a degradation process in which cells break down and recycle their cytoplasmic contents when subjected to environmental stress or during cellular remodeling. The Arabidopsis thaliana SnRK1 complex is a protein kinase that senses changes in energy levels and triggers downstream responses to enable survival. Its mammalian ortholog, AMPK, and yeast ortholog, Snf-1, activate autophagy in response to low energy conditions. We therefore hypothesized that SnRK1 may play a role in the regulation of autophagy in response to nutrient or energy deficiency in Arabidopsis. To test this hypothesis, we determined the effect of overexpression or knockout of the SnRK1 catalytic subunit KIN10 on autophagy activation by abiotic stresses, including nutrient deficiency, salt, osmotic, oxidative, and ER stress. While wild-type plants had low basal autophagy activity in control conditions, KIN10 overexpression lines had increased autophagy under these conditions, indicating activation of autophagy by SnRK1. A kin10 mutant had a basal level of autophagy under control conditions similar to wild-type plants, but activation of autophagy by most abiotic stresses was blocked, indicating that SnRK1 is required for autophagy induction by a wide variety of stress conditions. In mammals, TOR is a negative regulator of autophagy, and AMPK acts to activate autophagy both upstream of TOR, by inhibiting its activity, and in a parallel pathway. Inhibition of Arabidopsis TOR leads to activation of autophagy; inhibition of SnRK1 did not block this activation. Furthermore, an increase in SnRK1 activity was unable to induce autophagy when TOR was also activated. These results demonstrate that SnRK1 acts upstream of TOR in the activation of autophagy in Arabidopsis.

  15. Deficiency of the Arabidopsis helicase RTEL1 triggers a SOG1-dependent replication checkpoint in response to DNA cross-links.

    Science.gov (United States)

    Hu, Zhubing; Cools, Toon; Kalhorzadeh, Pooneh; Heyman, Jefri; De Veylder, Lieven

    2015-01-01

    To maintain genome integrity, DNA replication is executed and regulated by a complex molecular network of numerous proteins, including helicases and cell cycle checkpoint regulators. Through a systematic screening for putative replication mutants, we identified an Arabidopsis thaliana homolog of human Regulator of Telomere Length 1 (RTEL1), which functions in DNA replication, DNA repair, and recombination. RTEL1 deficiency retards plant growth, a phenotype including a prolonged S-phase duration and decreased cell proliferation. Genetic analysis revealed that rtel1 mutant plants show activated cell cycle checkpoints, specific sensitivity to DNA cross-linking agents, and increased homologous recombination, but a lack of progressive shortening of telomeres, indicating that RTEL1 functions have only been partially conserved between mammals and plants. Surprisingly, RTEL1 deficiency induces tolerance to the deoxynucleotide-depleting drug hydroxyurea, which could be mimicked by DNA cross-linking agents. This resistance does not rely on the essential replication checkpoint regulator WEE1 but could be blocked by a mutation in the SOG1 transcription factor. Taken together, our data indicate that RTEL1 is required for DNA replication and that its deficiency activates a SOG1-dependent replication checkpoint. © 2015 American Society of Plant Biologists. All rights reserved.

  16. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Science.gov (United States)

    Dobón, Albor; Canet, Juan Vicente; García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-04-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  17. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Albor Dobón

    2015-04-01

    Full Text Available Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  18. Intergenic sequence between Arabidopsis caseinolytic protease B-cytoplasmic/heat shock protein100 and choline kinase genes functions as a heat-inducible bidirectional promoter.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Grover, Anil

    2014-11-01

    In Arabidopsis (Arabidopsis thaliana), the At1g74310 locus encodes for caseinolytic protease B-cytoplasmic (ClpB-C)/heat shock protein100 protein (AtClpB-C), which is critical for the acquisition of thermotolerance, and At1g74320 encodes for choline kinase (AtCK2) that catalyzes the first reaction in the Kennedy pathway for phosphatidylcholine biosynthesis. Previous work has established that the knockout mutants of these genes display heat-sensitive phenotypes. While analyzing the AtClpB-C promoter and upstream genomic regions in this study, we noted that AtClpB-C and AtCK2 genes are head-to-head oriented on chromosome 1 of the Arabidopsis genome. Expression analysis showed that transcripts of these genes are rapidly induced in response to heat stress treatment. In stably transformed Arabidopsis plants harboring this intergenic sequence between head-to-head oriented green fluorescent protein and β-glucuronidase reporter genes, both transcripts and proteins of the two reporters were up-regulated upon heat stress. Four heat shock elements were noted in the intergenic region by in silico analysis. In the homozygous transfer DNA insertion mutant Salk_014505, 4,393-bp transfer DNA is inserted at position -517 upstream of ATG of the AtClpB-C gene. As a result, AtCk2 loses proximity to three of the four heat shock elements in the mutant line. Heat-inducible expression of the AtCK2 transcript was completely lost, whereas the expression of AtClpB-C was not affected in the mutant plants. Our results suggest that the 1,329-bp intergenic fragment functions as a heat-inducible bidirectional promoter and the region governing the heat inducibility is possibly shared between the two genes. We propose a model in which AtClpB-C shares its regulatory region with heat-induced choline kinase, which has a possible role in heat signaling. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana

    OpenAIRE

    Besseau, Sébastien; Li, Jing; Palva, E. Tapio

    2012-01-01

    The plant-specific WRKY transcription factor (TF) family with 74 members in Arabidopsis thaliana appears to be involved in the regulation of various physiological processes including plant defence and senescence. WRKY53 and WRKY70 were previously implicated as positive and negative regulators of senescence, respectively. Here the putative function of other WRKY group III proteins in Arabidopsis leaf senescence has been explored and the results suggest the involvement of two additional WRKY TF...

  20. The SKP1-like gene family of Arabidopsis exhibits a high degree of differential gene expression and gene product interaction during development.

    Directory of Open Access Journals (Sweden)

    Mohammad H Dezfulian

    Full Text Available The Arabidopsis thaliana genome encodes several families of polypeptides that are known or predicted to participate in the formation of the SCF-class of E3-ubiquitin ligase complexes. One such gene family encodes the Skp1-like class of polypeptide subunits, where 21 genes have been identified and are known to be expressed in Arabidopsis. Phylogenetic analysis based on deduced polypeptide sequence organizes the family of ASK proteins into 7 clades. The complexity of the ASK gene family, together with the close structural similarity among its members raises the prospect of significant functional redundancy among select paralogs. We have assessed the potential for functional redundancy within the ASK gene family by analyzing an expanded set of criteria that define redundancy with higher resolution. The criteria used include quantitative expression of locus-specific transcripts using qRT-PCR, assessment of the sub-cellular localization of individual ASK:YFP auto-fluorescent fusion proteins expressed in vivo as well as the in planta assessment of individual ASK-F-Box protein interactions using bimolecular fluorescent complementation techniques in combination with confocal imagery in live cells. The results indicate significant functional divergence of steady state transcript abundance and protein-protein interaction specificity involving ASK proteins in a pattern that is poorly predicted by sequence-based phylogeny. The information emerging from this and related studies will prove important for defining the functional intersection of expression, localization and gene product interaction that better predicts the formation of discrete SCF complexes, as a prelude to investigating their molecular mode of action.