WorldWideScience

Sample records for aquifer-pressured carbon storage

  1. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    International Nuclear Information System (INIS)

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir

  2. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  3. Carbon storage in forest soil

    International Nuclear Information System (INIS)

    The article reviews research on short and long term carbon storage. A Norwegian programme with the objective of increasing knowledge of key processes which govern the carbon storage and loss of CO2 from forest soil in Norway is mentioned. Topics that will be studied are: The production and loss of CO2 from the soil, root ecology, the microorganism ability of degrading organic compounds, transport and loss of organic compounds through the soil to creeks and lakes and the modelling of carbon currents and storage in various forest ecosystems both in the soil and above

  4. Fortran computer programs to plot and process aquifer pressure and temperature data

    Science.gov (United States)

    Czarnecki, J.B.

    1983-01-01

    Two FORTRAN computer programs have been written to process water-well temperature and pressure data recorded automatically by a datalogger on magnetic tape. These programs process the data into tabular and graphical form. Both programs are presented with documentation. Sample plots of temperature versus time, water levels versus time, aquifer pressure versus log time , log drawdown versus log 1/time, and log drawdown versus log time/radius squared are presented and are obtained using standard CALCOM directives. Drawdown plots may be used directly to obtain aquifer transmissivities and storage coefficients as well as leakance coefficients.

  5. Carbon storage in Amazonian podzols

    Science.gov (United States)

    Montes, Celia; Lucas, Yves; Pereira, Osvaldo; Merdy, Patricia; Santin, Roberta; Ishida, Débora; du Gardin, Beryl; Melfi, Adolpho

    2014-05-01

    It has recently been discovered that Amazonian podzols may store much larger quantities of carbon than previously thought, particularly in their deep Bh horizons (over 13.6 Pg for Brazilian Amazonia alone [1]). Similarly high carbon stocks are likely to exist in similar climate/soil areas, mainly in Africa and in Borneo. Such carbon stocks raise the problem of their stability in response to changes in land use or climate. Any significant changes in vegetation cover would significantly alter the soil water dynamics, which is likely to affect organic matter turnover in soils. The direction of the change, however, is not clear and is likely to depend on the specific conditions of carbon storage and properties of the soils. It is reasonable to assume that the drying of the Bh horizons of equatorial podzols, which are generally saturated, will lead to an increase in C mineralization, although the extent of this increase has not yet been determined. These unknowns resulted in research programs, granted by the Brazilian FAPESP and the French Région PACA-ARCUS and ANR, dedicated improving estimates of the Amazonian podzol carbon stocks and to an estimate of its mineralisability. Eight test areas were determined from the analysis of remote sensing data in the larger Amazonian podzol region located in the High Rio Negro catchment and studied in detail. Despite the extreme difficulties in carrying out the field work (difficulties in reaching the study sites and extracting the soils), more than a hundred points were sampled. In all podzols the presence of a thick deep Bh was confirmed, sometimes to depths greater than 12 m. The Bh carbon was quantified, indicating that carbon stocks in these podzols are even higher than estimated recently [1]. References 1- Montes, C.R.; Lucas, Y.; Pereira, O.J.R.; Achard, R.; Grimaldi, M.; Mefli, A.J. Deep plant?derived carbon storage in Amazonian podzols. Biogeosciences, 8, 113?120, 2011.

  6. Ocean carbon uptake and storage

    International Nuclear Information System (INIS)

    Full text: The ocean contains about 95% of the carbon in the atmosphere, ocean and land biosphere system, and is of fundamental importance in regulating atmospheric carbon dioxide concentrations. In the 1990s an international research effort involving Australia was established to determine the uptake and storage of anthropogenic C02 for all major ocean basins. The research showed that about 118 of the 244 + 20 billion tons of the anthropogenic carbon emitted through fossil fuel burning and cement production has been stored in the ocean since preindustrial times, thus helping reduce the rate of increase in atmospheric C02. The research also showed the terrestrial biosphere has been a small net source of C02 (39 ± 28 billion tons carbon) to the atmosphere over the same period. About 60% of the total ocean inventory of the anthropogenic C02 was found in the Southern Hemisphere, with most in the 300S to 500S latitude band. This mid-latitude band is where surface waters are subducted as Mode and Intermediate waters, which is a major pathway controlling ocean C02 uptake. High storage (23% of the total) also occurs in the North Atlantic, associated with deep water formation in that basin. The ocean uptake and storage is expected to increase in the coming decades as atmospheric C02 concentrations rise. However, a number of feedback mechanisms associated with surface warming, changes in circulation, and biological effects are likely to impact on the uptake capacity. The accumulation or storage-of the C02 in the ocean is also the major driver of ocean acidification with potential to disrupt marine ecosystems. This talk will describe the current understanding of the ocean C02 uptake and storage and a new international research strategy to detect how the ocean uptake and storage will evolve on interannual through decadal scales. Understanding the ocean response to increasing atmospheric C02 will be a key element in managing future C02 increases and establishing stabilisation

  7. Defaunation affects carbon storage in tropical forests

    OpenAIRE

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A.; Magnago, Luiz Fernando S.; Rocha, Mariana F; Lima, Renato A. F.; Peres, Carlos A.; Ovaskainen, Otso; Jordano, Pedro

    2015-01-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are ...

  8. Carbon allocation in underground storage organs

    OpenAIRE

    Turesson, Helle

    2014-01-01

    By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve such crops, the competitiveness of these types of storage organs can be strengthened. Starch is the most common storage compound in tubers and roots, but some crops accumulate compounds other than starch. This thesis examined representative underground storage organs accumulating starch, oil and sugars. These were: the oil-accumulating nutsedge (Cyperus esculentus), a half-grass whic...

  9. Research Advance on Carbon Storage of Artificial Grassland in China

    Institute of Scientific and Technical Information of China (English)

    Fuping; TIAN; Yongjie; SHI; Yu; HU; Zixuan; CHEN; Yuan; LU; Xiaofu; ZHANG; Runlin; LI

    2013-01-01

    As an essential part of the grassland ecological system,study on the carbon storage has great significances to the carbon reduction in grassland ecological system.The carbon storage in biomass,carbon storage in soil and soil respiration are summarized in this paper to provide scientific reference for the evaluation of carbon storage in artificial grassland.

  10. Defaunation affects carbon storage in tropical forests.

    Science.gov (United States)

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A; Magnago, Luiz Fernando S; Rocha, Mariana F; Lima, Renato A F; Peres, Carlos A; Ovaskainen, Otso; Jordano, Pedro

    2015-12-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067

  11. Methane storage in a commercial activated carbon.

    Directory of Open Access Journals (Sweden)

    K. Wang

    2008-06-01

    Full Text Available A commercial activated carbon was examined for possible methane storage application. The structural and surface propertiesof the carbon were characterized by Nitrogen adsorption isotherm at 77 oK. It was found that the carbon is largelymicroporous with a surface area of approximately 860 m2/g. Adsorption test shows the carbon is able to achieve a methanestorage capacity of approximately 70/cc.

  12. Last chance for carbon capture and storage

    OpenAIRE

    Scott, Vivian; Gilfillan, Stuart; Markusson, Nils; Chalmers, Hannah; Haszeldine, Stuart

    2013-01-01

    Anthropogenic energy-related CO2 emissions are higher than ever. With new fossil-fuel power plants, growing energy-intensive industries and new sources of fossil fuels in development, further emissions increase seems inevitable. The rapid application of carbon capture and storage is a much heralded means to tackle emissions from both existing and future sources. However, despite extensive and successful research and development, progress in deploying carbon capture and storage has stalled. No...

  13. Nanostructural activated carbons for hydrogen storage

    Science.gov (United States)

    Li, Suoding

    A series of nanostructured activated carbons have been synthesized from poly(ether ether ketone) (PEEK), and its derivatives. These carbons, with surface area exceeding 3000 m2/g and with average pore diameters of ≤ 20 A, are proven to be superior hydrogen storage materials, with hydrogen storage capacities up to 5.5 wt% at 77 K and 45 atm. The porous texture of these carbons was controlled via optimizing three synthetic steps: thermo-oxidation of PEEK in air, pyrolysis or carbonization of the oxidized PEEK in an inert atmosphere, and activation of the pre-carbonized PEEK with metal hydroxide. Thermo-oxidation of PEEK and carbonization process were thoroughly studied. These processes have been investigated by MDSC, FTIR, TGA and Py-MS. The pyrolysis or carbonization of PEEK involves the degradation of PEEK chains in three stages. Carbon morphology, including crystallinity and porous texture, is readily controlled by adjusting carbonization temperature. Activation of PEEK carbons, using inorganic bases and other activation agents, produces microporous carbons having a very narrow pore size distribution and an average pore diameter of ≤ 20 A. The activation control parameters including activation agent, activation temperature, time and carbon morphology have been investigated extensively. High surface area activated carbon is obtained by activating a highly amorphous carbon with a high activation agent/carbon ratio at 800°C. Theoretical calculations show that the pores with smaller diameter, especially smaller than 7 A, favor hydrogen adsorption. The experimental results confirm this fact and show that: (1) the hydrogen adsorption capacity per unit surface area at 77 K and 1 bar is larger in the smaller pores, (2) gravimetric hydrogen storage capacity (W(H2)) is directly proportional to the ultramicropore (< 7 A) volume; and (3) the volumetric hydrogen storage capacity is directly proportional to the volume fraction of ultramicropores in carbon. Hydrogen

  14. ROE Carbon Storage - Percent Change

    Data.gov (United States)

    U.S. Environmental Protection Agency — This polygon dataset depicts the percentage change in the amount of carbon stored in forests in counties across the United States, based on the difference in carbon...

  15. Wyoming Carbon Capture and Storage Institute

    Energy Technology Data Exchange (ETDEWEB)

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  16. Activated carbon monoliths for methane storage

    Science.gov (United States)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  17. Carbon cycle: storage beneath mangroves

    OpenAIRE

    BOUILLON, S

    2011-01-01

    In the face of continued deforestation, the high carbon stocks in mangrove forests unveiled by Donato et al. provide a strong incentive to consider mangrove ecosystems as priority areas for conservation. Furthermore, these results highlight the need for scientists and funding agencies to address uncertainties regarding the fate of the carbon after land clearance. Only a handful of studies have quantified the loss of sediment carbon after mangrove clear-cutting – but all suggest that these los...

  18. High Density Methane Storage in Nanoporous Carbon

    Science.gov (United States)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team

    2014-03-01

    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  19. Underground storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi [Univ. of Tokyo, Hongo, Bunkyo-ku (Japan)

    1993-12-31

    Desk studies on underground storage of CO{sub 2} were carried out from 1990 to 1991 fiscal years by two organizations under contract with New Energy and Indestrial Technology Development Organization (NEDO). One group put emphasis on application of CO{sub 2} EOR (enhanced oil recovery), and the other covered various aspects of underground storage system. CO{sub 2} EOR is a popular EOR method in U.S. and some oil countries. At present, CO{sub 2} is supplied from natural CO{sub 2} reservoirs. Possible use of CO{sub 2} derived from fixed sources of industries is a main target of the study in order to increase oil recovery and storage CO{sub 2} under ground. The feasibility study of the total system estimates capacity of storage of CO{sub 2} as around 60 Gton CO{sub 2}, if worldwide application are realized. There exist huge volumes of underground aquifers which are not utilized usually because of high salinity. The deep aquifers can contain large amount of CO{sub 2} in form of compressed state, liquefied state or solution to aquifer. A preliminary technical and economical survey on the system suggests favorable results of 320 Gton CO{sub 2} potential. Technical problems are discussed through these studies, and economical aspects are also evaluated.

  20. Briefing: Carbon capture and storage in Scotland

    OpenAIRE

    Haszeldine, R Stuart; Scott, Vivian; Littlecott, Chris

    2013-01-01

    With world-leading decarbonisation targets, a large and mature hydrocarbon sector, existing pipeline infrastructure and extensive opportunities for geological CO2 storage under the North Sea, Scotland is uniquely placed to deliver and benefit from carbon capture and storage (CCS). CCS has the potential to enable major Scottish emissions reductions towards the 2050 target – it can directly address over 50% of current total emissions from energy and industry. With world-leading decarbonisati...

  1. Green Carbon : The role of natural forests in carbon storage

    OpenAIRE

    Keith, Heather; Lindenmayer, David B; Mackey, Brendan; Berry, Sandra L.

    2008-01-01

    The colour of carbon matters. Green carbon is the carbon stored in the plants and soil of natural ecosystems and is a vital part of the global carbon cycle. This report is the first in a series that examines the role of natural forests in the storage of carbon, the impacts of human land use activities, and the implications for climate change policy nationally and internationally. REDD (“reducing emissions from deforestation and degradation”) is now part of the agenda for the “Bali Action Plan...

  2. Carbon cycling and storage in mangrove forests.

    Science.gov (United States)

    Alongi, Daniel M

    2014-01-01

    Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y(-1)) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y(-1)) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests. PMID:24405426

  3. Carbon Cycling and Storage in Mangrove Forests

    Science.gov (United States)

    Alongi, Daniel M.

    2014-01-01

    Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y-1) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y-1) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests.

  4. Carbon Capture and Storage: Realising the potential?

    OpenAIRE

    Ghaleigh, Navraj Singh; Haszeldine, Stuart; Rossati, David; Kern, Florian; Gross, Matt; Gross, Rob; Heptonstall, Phil; Jones, Felicity; Ascui, Francisco; Chalmers, Hannah; Gibbins, Jon; Markusson, Nils; Marsden, Wendy; Russell, Stewart; Winskel, Mark

    2012-01-01

    The aim of the research is to assess the technical, economic, financial and social uncertainties facing carbon capture and storage (CCS) technologies, and to analyse the potential role they could play in the UK power sector between now and 2030. CCS technologies are often highlighted as a crucial component of future low carbon energy systems – in the UK and internationally. However, it is unclear when these technologies will be technically proven at full scale, and whether their costs will be...

  5. Carbon nanotube materials from hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Bekkedahl, T.A.; Cahill, A.F. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-09-01

    The lack of convenient and cost-effective hydrogen storage is a major impediment to wide scale use of hydrogen in the United States energy economy. Improvements in the energy densities of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted systems are required before viable hydrogen energy use pathways can be established. Carbon-based hydrogen adsorption materials hold particular promise for meeting and exceeding the U.S. Department of Energy hydrogen storage energy density targets for transportation if concurrent increases in hydrogen storage capacity and carbon density can be achieved. These two goals are normally in conflict for conventional porous materials, but may be reconciled by the design and synthesis of new adsorbent materials with tailored pore size distributions and minimal macroporosity. Carbon nanotubes offer the possibility to explore new designs for adsorbents because they can be fabricated with small size distributions, and naturally tend to self-assemble by van der Waals forces. This year we report heats of adsorption for hydrogen on nanotube materials that are 2 and 3 times greater than for hydrogen on activated carbon. The hydrogen which is most strongly bound to these materials remains on the carbon surface to temperatures greater than 285 K. These results suggest that nanocapillary forces are active in stabilizing hydrogen on the surfaces of carbon nanotubes, and that optimization of the adsorbent will lead to effective storage at higher temperatures. In this paper we will also report on our activities which are targeted at understanding and optimizing the nucleation and growth of single wall nanotubes. These experiments were made possible by the development of a unique feedback control circuit which stabilized the plasma-arc during a synthesis run.

  6. Designing Microporus Carbons for Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  7. Solar hydrogen hybrid system with carbon storage

    International Nuclear Information System (INIS)

    A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

  8. The carbon dioxide capture and geological storage

    International Nuclear Information System (INIS)

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO2 generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO2 capture from lage fossil-fueled combustion installations, the three capture techniques and the CO2 transport options, the geological storage of the CO2 and Total commitments in the domain. (A.L.B.)

  9. Carbon dioxide capture and geological storage

    OpenAIRE

    2013-01-01

    Sustainable Carbon dioxide Capture and Storage, or CCS, can be achieved using geological means, an approach that differs in many ways from CO2 capture and storage in vegetation. Firstly, it differs because this latter approach enables CO2 to be stored only temporarily – for less than one year in annual plants or for several centuries in tree phytomass. Secondly, CO2 capture is associated with bioconversion of the sun’s energy which is then stored in biochemical form in the phytomass. As the t...

  10. Attitudes towards Carbon and Storage in Norway

    OpenAIRE

    Berg-Hansen, Anders

    2011-01-01

    This study presents the results of a 2010 Internet survey conducted on 999 Norwegian citizens aiming to investigate and explain the main determinants of public attitudes towards carbon dioxide capture and storage (CCS), a technology considered crucial for mitigating adverse consequences of global climate change. The results confirmed the main hypothesis, in line with previous research based on risk psychology and the risk-benefit model: Attitudes towards CCS were positively related to benefit...

  11. Storage and release of carbon in soils

    OpenAIRE

    Sierra, Jorge

    2011-01-01

    The organic matter (OM) contains between 50 and 60% of carbon (C). Among its functions, theOM helps to preserve the structure and porosity of the soil (thus influencing water storage, aeration,and the risk of erosion), to stimulate biological activity and preserve the soil biodiversity, tosupply nutrients to the plant (nitrogen, phosphorus, sulphur etc.) and to retain certain micropollutants(thus affecting water quality)...

  12. Tracking Progress in Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    At the second Clean Energy Ministerial in Abu Dhabi, April 2011 (CEM 2), the Carbon Capture, Use and Storage Action Group (CCUS AG) presented seven substantive recommendations to Energy Ministers on concrete, near-term actions to accelerate global carbon capture and storage (CCS) deployment. Twelve CCUS AG governments agreed to advance progress against the 2011 recommendations by the third Clean Energy Ministerial (London, 25-26 April 2012) (CEM 3). Following CEM 2, the CCUS AG requested the IEA and the Global CCS Institute to report on progress made against the 2011 recommendations at CEM 3. Tracking Progress in Carbon Capture and Storage: International Energy Agency/Global CCS Institute report to the third Clean Energy Ministerial responds to that request. The report considers a number of key questions. Taken as a whole, what advancements have committed CCUS AG governments made against the 2011 recommendations since CEM 2? How can Energy Ministers continue to drive progress to enable CCS to fully contribute to climate change mitigation? While urgent further action is required in all areas, are there particular areas that are currently receiving less policy attention than others, where efforts could be redoubled? The report concludes that, despite developments in some areas, significant further work is required. CCS financing and industrial applications continue to represent a particularly serious challenge.

  13. 46 CFR 95.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  14. 46 CFR 76.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  15. Functional Carbon Materials for Electrochemical Energy Storage

    Science.gov (United States)

    Zhou, Huihui

    The ability to harvest and convert solar energy has been associated with the evolution of human civilization. The increasing consumption of fossil fuels since the industrial revolution, however, has brought to concerns in ecological deterioration and depletion of the fossil fuels. Facing these challenges, humankind is forced to seek for clean, sustainable and renewable energy resources, such as biofuels, hydraulic power, wind power, geothermal energy and other kinds of alternative energies. However, most alternative energy sources, generally in the form of electrical energy, could not be made available on a continuous basis. It is, therefore, essential to store such energy into chemical energy, which are portable and various applications. In this context, electrochemical energy-storage devices hold great promises towards this goal. The most common electrochemical energy-storage devices are electrochemical capacitors (ECs, also called supercapacitors) and batteries. In comparison to batteries, ECs posses high power density, high efficiency, long cycling life and low cost. ECs commonly utilize carbon as both (symmetric) or one of the electrodes (asymmetric), of which their performance is generally limited by the capacitance of the carbon electrodes. Therefore, developing better carbon materials with high energy density has been emerging as one the most essential challenges in the field. The primary objective of this dissertation is to design and synthesize functional carbon materials with high energy density at both aqueous and organic electrolyte systems. The energy density (E) of ECs are governed by E = CV 2/2, where C is the total capacitance and V is the voltage of the devices. Carbon electrodes with high capacitance and high working voltage should lead to high energy density. In the first part of this thesis, a new class of nanoporous carbons were synthesized for symmetric supercapacitors using aqueous Li2SO4 as the electrolyte. A unique precursor was adopted to

  16. Social acceptance of carbon dioxide storage

    International Nuclear Information System (INIS)

    This article discusses public acceptance of carbon capture and storage (CCS). Responses by citizens are described in relation to responses by professionally involved actors. Interviews with members of the government, industry and environmental NGOs showed that these professional actors are interested in starting up storage projects, based on thorough evaluation processes, including discussions on multi-actor working groups. As appeared from a survey among citizens living near a potential storage site (N=103), public attitudes in general were slightly positive, but attitudes towards storage nearby were slightly negative. The general public appeared to have little knowledge about CO2-storage, and have little desire for more information. Under these circumstances, trust in the professional actors is particularly important. NGOs were found to be trusted most, and industry least by the general public. Trust in each of the three actors appeared to depend on perceived competence and intentions, which in turn were found to be related to perceived similarity of goals and thinking between trustee and trustor. Implications for communication about CCS are discussed

  17. Soil Organic Carbon Storage in China

    Institute of Scientific and Technical Information of China (English)

    XIE Xian-Li; SUN Bo; ZHOU Hui-Zhen; LI An-Bo

    2004-01-01

    Soil organic carbon (SOC) storage under different types of vegetations in China were estimated using measured data of 2 440 soil profiles to compare SOC density distribution between different estimates, to map the soil organic carbon stocks under different types of vegetation in China, and to analyze the relationships between soil organic carbon stocks and environmental variables using stepwise regression analyses. Soil organic carbon storage in China was estimated at 69.38 Gt (10 15 g). There was a big difference in SOC densities for various vegetation types, with SOC distribution closely related to climatic patterns in general. Stepwise regression analyses of SOC against environmental variables showed that SOC generally increased with increasing precipitation and elevation, while it decreased with increasing temperature.Furthermore, the important factor controlling SOC accumulation for forests was elevation, while for temperate steppes mean annual temperature dominated. The more specific the vegetation type used in the regression analysis, the greater was the effect of environmental variables on SOC. However, compared to native vegetation, cultivation activities in the croplands reduced the influence of environmental variables on SOC.

  18. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Jones, K.M.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Hydrogen burns pollution-free and may be produced from renewable energy resources. It is therefore an ideal candidate to replace fossil fuels as an energy carrier. However, the lack of a convenient and cost-effective hydrogen storage system greatly impedes the wide-scale use of hydrogen in both domestic and international markets. Although several hydrogen storage options exist, no approach satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. A material consisting exclusively of micropores with molecular dimensions could simultaneously meet all of the requirements for transportation use if the interaction energy for hydrogen was sufficiently strong to cause hydrogen adsorption at ambient temperatures. Small diameter ({approx}1 mm) carbon single-wall nanotubes (SWNTs) are elongated micropores of molecular dimensions, and materials composed predominantly of SWNTs may prove to be the ideal adsorbent for ambient temperature storage of hydrogen. Last year the authors reported that hydrogen could be adsorbed on arc-generated soots containing 12{Angstrom} diameter nanotubes at temperatures in excess of 285K. In this past year they have learned that such adsorption does not occur on activated carbon materials, and that the cobalt nanoparticles present in their arc-generated soots are not responsible for the hydrogen which is stable at 285 K. These results indicate that enhanced adsorption forces within the internal cavities of the SWNTs are active in stabilizing hydrogen at elevated temperatures. This enhanced stability could lead to effective hydrogen storage under ambient temperature conditions. In the past year the authors have also demonstrated that single-wall carbon nanotubes in arc-generated soots may be selectively opened by oxidation in H{sub 2}O resulting in improved hydrogen adsorption, and they have estimated experimentally that the amount of hydrogen stored is {approximately}10% of the nanotube weight.

  19. Carbon Capture and Storage: legal issues

    Energy Technology Data Exchange (ETDEWEB)

    Mace, M.J.

    2006-10-15

    Carbon dioxide Capture and Storage (CCS) describes the process of capturing CO2 emissions from industrial and energy-related processes, compressing the gas to a liquid form, transporting it to a storage site (by pipeline, ship, truck or rail), and injecting it into a geological cavity – to isolate it from the atmosphere. CCS has been described as one option in the 'portfolio' of mitigation options - useful as a bridging technology to address the most prevalent greenhouse gases by volume in the short term, while economies make the shift from fossil fuels to low-carbon energy sources, including renewables. The IPCC has estimated that CCS has the potential to contribute 15-55% of the cumulative mitigation effort worldwide until 2100. However, for this to occur, the IPCC estimates that several hundreds or thousands of CO2 capture systems would need to be installed over the next century. Such a prospect raises a host of legal and regulatory issues and concerns. CCS activities will have to be undertaken in a manner consistent with the range of existing regulatory frameworks developed at the national level to address environmental and health and safety risks. But consistency with international law will also be essential where transboundary impacts are possible, transboundary transportation is involved, or offshore storage activities are contemplated.

  20. Technology Roadmap: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    As long as fossil fuels and carbon-intensive industries play dominant roles in our economies, carbon capture and storage (CCS) will remain a critical greenhouse gas reduction solution. This CCS roadmap aims at assisting governments and industry in integrating CCS in their emissions reduction strategies and in creating the conditions for scaled-up deployment of all three components of the CCS chain: CO2 capture, transport and storage. To get us onto the right pathway, this roadmap highlights seven key actions needed in the next seven years to create a solid foundation for deployment of CCS starting by 2020. IEA analysis shows that CCS is an integral part of any lowest-cost mitigation scenario where long-term global average temperature increases are limited to significantly less than 4 °C, particularly for 2 °C scenarios (2DS). In the 2DS, CCS is widely deployed in both power generation and industrial applications. The total CO2 capture and storage rate must grow from the tens of megatonnes of CO2 captured in 2013 to thousands of megatonnes of CO2 in 2050 in order to address the emissions reduction challenge. A total cumulative mass of approximately 120 GtCO2 would need to be captured and stored between 2015 and 2050, across all regions of the globe.

  1. Carbon Storage in Soils: Climate vs. Geology

    International Nuclear Information System (INIS)

    In a recently published Nature Geoscience article, scientists took a closer look at the much-discussed topic of carbon storage in soils under Climate Change. In a large-scale study across Chile and the Antarctic Peninsula, they showed that the role of precipitation and temperature in controlling carbon dynamics in soils is less than currently considered in Global Ecosystem Models. Soils are important for carbon (C) storage and thus for atmospheric CO2 concentrations. Whether soils act as a sink or source for atmospheric C generally depend on climatic factors, as they control plant growth (driving the incorporation of C into the soil), the activity of soil microorganism (driving the release of C from the soil to the atmosphere), as well as several other chemical processes in soils. However, we still do not fully understand the response of soil C to Climate Change. An international team of researchers led by Pascal Boeckx and Sebastian Doetterl from Ghent University, Belgium and Erick Zagal from University of Concepcion in Chile, have been investigating the interaction between climate, different types of soil minerals, and soil as sink or source for C. They studied this interaction by sampling soils from numerous locations representing different vegetation types in Chile and the Antarctic Peninsula

  2. Need for relevant timescales when crediting temporary carbon storage

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky

    2013-01-01

    carbon storage in carbon footprinting. Methods: Implications of using a 100-year accounting period is evaluated via a literature review study of the global carbon cycle, as well as by analysing the crediting approaches that are exemplified by the PAS 2050 scheme for crediting temporary carbon storage...... mitigation of the rise in atmospheric greenhouse gas concentration is required and in this perspective, shorter storage times may still provide climatic benefits. Conclusions: Both short- and long-term perspectives should be considered when crediting temporary carbon storage, addressing both acute effects on...

  3. Carbon storage potential in natural fiber composites

    International Nuclear Information System (INIS)

    The environmental performance of hemp based natural fiber mat thermoplastic (NMT) has been evaluated in this study by quantifying carbon storage potential and CO2 emissions and comparing the results with commercially available glass fiber composites. Non-woven mats of hemp fiber and polypropylene matrix were used to make NMT samples by film-stacking method without using any binder aid. The results showed that hemp based NMT have compatible or even better strength properties as compared to conventional flax based thermoplastics. A value of 63 MPa for flexural strength is achieved at 64% fiber content by weight. Similarly, impact energy values (84-154 J/m) are also promising. The carbon sequestration and storage by hemp crop through photosynthesis is estimated by quantifying dry biomass of fibers based on one metric ton of NMT. A value of 325 kg carbon per metric ton of hemp based composite is estimated which can be stored by the product during its useful life. An extra 22% carbon storage can be achieved by increasing the compression ratio by 13% while maintaining same flexural strength. Further, net carbon sequestration by industrial hemp crop is estimated as 0.67 ton/h/year, which is compatible to all USA urban trees and very close to naturally, regenerated forests. A comparative life cycle analysis focused on non-renewable energy consumption of natural and glass fiber composites shows that a net saving of 50 000 MJ (3 ton CO2 emissions) per ton of thermoplastic can be achieved by replacing 30% glass fiber reinforcement with 65% hemp fiber. It is further estimated that 3.07 million ton CO2 emissions (4.3% of total USA industrial emissions) and 1.19 million m3 crude oil (1.0% of total Canadian oil consumption) can be saved by substituting 50% fiber glass plastics with natural fiber composites in North American auto applications. However, to compete with glass fiber effectively, further research is needed to improve natural fiber processing, interfacial bonding and

  4. Carbon dioxide storage. EU legal framework for carbon capture and storage

    International Nuclear Information System (INIS)

    In the correct opinion of the EU Commission, fossil fuels are going to remain the most important energy source worldwide also in the decades to come. The intention of the EU to reduce by 50% the 1990 level of greenhouse gas emission by 2050 can become reality, in the light of worldwide developments, only if the energy potential of coal can be tapped without multiplying emissions. The EU therefore initiated measures to make carbon capture and storage a standard technology in new fossil fired power plants. The CCS technology is to be demonstrated so as to make it available commercially for plant renewal after 2020 (CCS = Carbon Capture and Storage). To outline the future legal framework in the European Union, the EU Commission on January 23, 2008 presented the proposal of a Directive on Geologic Storage of Carbon Dioxide (CO2). That proposal mainly focuses on the storage of CO2 and the removal of obstacles in the way of CO2 storage. The capture and pipeline transport of CO2 are taken into account in the appropriate amendments to existing directives. (orig.)

  5. Prerequisites for Geological Carbon Storage as a Climate Policy Option

    OpenAIRE

    Torvanger, Asbjørn; Kallbekken, Steffen; Rypdal, Kristin

    2004-01-01

    Carbon storage is increasingly being considered as an important climate change mitigation option. This paper explores provisions for including geological carbon storage in climate policy. The storage capacity of Norway’s Continental Shelf is alone sufficient to store a large share of European CO2 emissions for many decades. If carbon dioxide is injected into oil reservoirs there is an additional benefit in terms of enhanced oil recovery. However, there are significant technical and economic c...

  6. Hydrogen storage in carbon derived from solid endosperm of coconut

    OpenAIRE

    Dixit, Viney; Bhatnagar, Ashish; Shahi, R. R.; Yadav, T. P.; O.N. Srivastava

    2014-01-01

    Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen adsorption kinetics and cost effectiveness. However, these materials suffer from low hydrogen storage capacity, particularly at room temperature. The aim of the present study is to develop carbon-based material from natural bio-precursor which shows at least moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of carbon derived from solid endo...

  7. Hydrogen storage in single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Claims have emerged recently, of high hydrogen storage capacities at room temperature and above, for carbons such as single-wall and multi-walled nanotubes. We have been unable to verify any claims of high capacities at room temperature and low pressure. For (10,10) single wall carbon nanotubes, we used a computer controlled Sievert's apparatus to measure an adsorption at RT of 0.07 wt% gravimetric density at 1 bar, typical of what is expected on the basis of BET surface area measurements for carbons. At high pressures of > 60 bar and temperatures of 80K gravimetric densities up to ∼ 8 wt% are obtained, but more typically ∼ 7 wt% after a few adsorption desorption cycles. These values and isotherm shapes can be attributed to rearrangement of the rope structure that is formed by condensed nanotubes. Certain fullerites can also exhibit adsorption/desorption cycle dependent capacity, ranging from 2.5 to 4 wt% at 80K and 120 bar. (author)

  8. Carbon capture and storage (CCS): the boundary dam story

    International Nuclear Information System (INIS)

    This paper discusses the carbon capture and storage project at the Boundary Dam Power Station in Saskatchewan. Carbon capture and storage is a transitional process for future, low carbon footprint, electrical generation. The reduction of greenhouse gas emissions requires the reduction of carbon dioxide from coal-fired electricity. There has been a significant reduction in coal usage across Canada and this trend is expected to continue.

  9. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  10. Global ocean storage of anthropogenic carbon

    Directory of Open Access Journals (Sweden)

    S. Khatiwala

    2013-04-01

    Full Text Available The global ocean is a significant sink for anthropogenic carbon (Cant, absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data-based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air–sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on forward ocean models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of the global ocean inventory of anthropogenic carbon in 2010 of 155 ± 31 PgC (±20% uncertainty. This estimate includes a

  11. Global ocean storage of anthropogenic carbon

    Directory of Open Access Journals (Sweden)

    S. Khatiwala

    2012-07-01

    Full Text Available The global ocean is a significant sink for anthropogenic carbon (Cant, absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data-assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air-sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on ocean forward models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of

  12. Global ocean storage of anthropogenic carbon

    Science.gov (United States)

    Khatiwala, S.; Tanhua, T.; Mikaloff Fletcher, S.; Gerber, M.; Doney, S. C.; Graven, H. D.; Gruber, N.; McKinley, G. A.; Murata, A.; Ríos, A. F.; Sabine, C. L.

    2013-04-01

    The global ocean is a significant sink for anthropogenic carbon (Cant), absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data-based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air-sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on forward ocean models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of the global ocean inventory of anthropogenic carbon in 2010 of 155 ± 31 PgC (±20% uncertainty). This estimate includes a broad range of

  13. Spatial dynamics of carbon storage: a case study from Turkey.

    Science.gov (United States)

    Sivrikaya, Fatih; Baskent, Emin Zeki; Bozali, Nuri

    2013-11-01

    Forest ecosystems have an important role in carbon cycle at both regional and global scales as an important carbon sink. Forest degradation and land cover changes, caused by deforestation and conversion to non-forest area, have a strong impact on carbon storage. The carbon storage of forest biomass and its changes over time in the Hartlap planning unit of the southeastern part of Turkey have been estimated using the biomass expansion factor method based on field measurements of forests plots with forest inventory data between 1991 and 2002. The amount of carbon storage associated with land use and land cover changes were also analyzed. The results showed that the total forested area of the Hartlap planning unit slightly increased by 2.1%, from 27,978.7 ha to 28,282.6 ha during the 11-year period, and carbon storage increased by 9.6%, from 390,367.6 to 427,826.9 tons. Carbon storage of conifer and mixed forests accounted for about 70.6% of carbon storage in 1991, and 67.8% in 2002 which increased by 14,274.6 tons. Land use change and increasing forest area have a strong influence on increasing biomass and carbon storage. PMID:23771281

  14. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  15. Carbon footprint reductions via grid energy storage systems

    Directory of Open Access Journals (Sweden)

    Trevor S. Hale, Kelly Weeks, Coleman Tucker

    2011-07-01

    Full Text Available This effort presents a framework for reducing carbon emissions through the use of large-scale grid-energy-storage (GES systems. The specific questions under investigation herein are as follows: Is it economically sound to invest in a GES system and is the system at least carbon footprint neutral? This research will show the answer to both questions is in the affirmative. Scilicet, when utilized judiciously, grid energy storage systems can be both net present value positive as well as be total carbon footprint negative. The significant contribution herein is a necessary and sufficient condition for achieving carbon footprint reductions via grid energy storage systems.

  16. [Estimation for vegetation carbon storage in Tiantong National Forest Park].

    Science.gov (United States)

    Guo, Chun-Zi; Wu, Yang-Yang; Ni, Jian

    2014-11-01

    Based on the field investigation and the data combination from literature, vegetation carbon storage, carbon density, and their spatial distribution were examined across six forest community types (Schima superba--Castanopsis fargesii community, S. superba--C. fargesii with C. sclerophylla community, S. superba--C. fargesii with Distylium myricoides community, Illicium lanceolatum--Choerospondias axillaris community, Liquidambar formosana--Pinus massoniana community and Hedyotis auricularia--Phylostachys pubescens community) in Tiantong National Forest Park, Zhejiang Province, by using the allometric biomass models for trees and shrubs. Results showed that: Among the six communities investigated, carbon storage and carbon density were highest in the S. superba--C. fargesii with C. sclerophylla community (storage: 12113.92 Mg C; density: 165.03 Mg C · hm(-2)), but lowest in the I. lanceolatum--C. axillaris community (storage: 680.95 Mg C; density: 101.26 Mg C · hm(-2)). Carbon storage was significantly higher in evergreen trees than in deciduous trees across six communities. Carbon density ranged from 76.08 to 144.95 Mg C · hm(-2), and from 0. 16 to 20. 62 Mg C · hm(-2) for evergreen trees and deciduous trees, respectively. Carbon storage was highest in stems among tree tissues in the tree layer throughout communities. Among vegetation types, evergreen broad-leaved forest had the highest carbon storage (23092.39 Mg C), accounting for 81.7% of the total carbon storage in all forest types, with a car- bon density of 126.17 Mg C · hm(-2). Total carbon storage for all vegetation types in Tiantong National Forest Park was 28254.22 Mg C, and the carbon density was 96.73 Mg C · hm(-2). PMID:25898604

  17. Technology Roadmaps: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Carbon capture and storage (CCS) is an important part of the lowest-cost greenhouse gas (GHG) mitigation portfolio. IEA analysis suggests that without CCS, overall costs to reduce emissions to 2005 levels by 2050 increase by 70%. This roadmap includes an ambitious CCS growth path in order to achieve this GHG mitigation potential, envisioning 100 projects globally by 2020 and over 3000 projects by 2050. This roadmap's level of project development requires an additional investment of over USD 2.5-3 trillion from 2010 to 2050, which is about 6% of the overall investment needed to achieve a 50% reduction in GHG emissions by 2050. OECD governments will need to increase funding for CCS demonstration projects to an average annual level of USD 3.5 to 4 billion (bn) from 2010 to 2020. In addition, mechanisms need to be established to incentivise commercialisation beyond 2020 in the form of mandates, GHG reduction incentives, tax rebates or other financing mechanisms.

  18. Carbon capture and storage-Investment strategies for the future?

    International Nuclear Information System (INIS)

    The following article deals with real options modeling for investing into carbon capture and storage technologies. Herein, we derive two separate models. The first model incorporates a constant convenience yield and dividend for the investment project. In the second model, the convenience yield is allowed to follow a mean reverting process which seems to be more realistic, but also increases the model's complexity. Both frameworks are to be solved numerically. Therefore, we calibrate our model with respect to empirical data and provide insights into the models' sensitivity toward the chosen parameter values. We found that given the recently observable prices for carbon dioxide, an investment into C O2-storage facilities is not profitable. - Highlights: → Real options modeling for investing into carbon capture and storage technologies. → Given the recently observable prices for carbon dioxide, an investment into CO2-storage facilities is not profitable. → Investment decision is mainly affected by risk free rate and volatility.

  19. Carbon footprint reductions via grid energy storage systems

    OpenAIRE

    Trevor S. Hale, Kelly Weeks, Coleman Tucker

    2011-01-01

    This effort presents a framework for reducing carbon emissions through the use of large-scale grid-energy-storage (GES) systems. The specific questions under investigation herein are as follows: Is it economically sound to invest in a GES system and is the system at least carbon footprint neutral? This research will show the answer to both questions is in the affirmative. Scilicet, when utilized judiciously, grid energy storage systems can be both net present value positive as well as be tota...

  20. The Indonesia Carbon Capture Storage Capacity Building Program

    OpenAIRE

    World Bank

    2015-01-01

    In order to meet the growing Indonesian demand for electricity, while also constraining carbon dioxide (CO2) emissions, future coal power plants may have to include CO2 capture equipment with storage of that CO2. This study set out to define and evaluate the conditions under which fossil fuel power plants can be deemed as carbon capture and storage (CCS) ready (CCS-R). It considers the tec...

  1. Prospects for Carbon Capture and Storage in Southeast Asia

    OpenAIRE

    Asian Development Bank

    2013-01-01

    This report was produced under the Technical Assistance Grant: Determining the Potential for Carbon Capture and Storage (CCS) in Southeast Asia (TA 7575-REG), and is focused on an assessment of the CCS potential in Thailand, Viet Nam, and specific regions of Indonesia (South Sumatra) and the Philippines (CALABARZON). It contains inventories of carbon dioxide emission sources, estimates of overall storage potential, likely source-sink match options for potential CCS projects, and an analysis o...

  2. SETIS Magazine - Carbon Capture Utilisation and Storage issue

    OpenAIRE

    TZIMAS Evangelos; PEREZ FORTES MARIA DEL MAR

    2016-01-01

    The SETIS magazine aims at delivering timely information and analysis on the state of play of energy technologies, related research and innovation efforts in support of the implementation of the European Strategic Energy Technology Plan (SET-Plan). The current issue is dedicated to Carbon Capture Utilisation and Storage. The editorial for the Carbon Capture Utilisation and Storage issue is provided by A.SPIRE Executive Director Loredana Ghinea. The issue also includes contributions by:...

  3. The Carbon Nanotube Fibers for Optoelectric Conversion and Energy Storage

    OpenAIRE

    Yongfeng Luo; Xi Li; Jianxiong Zhang; Chunrong Liao; Xianjun Li

    2014-01-01

    This review summarizes recent studies on carbon nanotube (CNT) fibers for weavable device of optoelectric conversion and energy storage. The intrinsic properties of individual CNTs make the CNT fibers ideal candidates for optoelectric conversion and energy storage. Many potential applications such as solar cell, supercapacitor, and lithium ion battery have been envisaged. The recent advancement in CNT fibers for optoelectric conversion and energy storage and the current challenge including lo...

  4. Hydrogen storage in carbon materials—preliminary results

    Science.gov (United States)

    Jörissen, Ludwig; Klos, Holger; Lamp, Peter; Reichenauer, Gudrun; Trapp, Victor

    1998-08-01

    Recent developments aiming at the accelerated commercialization of fuel cells for automotive applications have triggered an intensive research on fuel storage concepts for fuel cell cars. The fuel cell technology currently lacks technically and economically viable hydrogen storage technologies. On-board reforming of gasoline or methanol into hydrogen can only be regarded as an intermediate solution due to the inherently poor energy efficiency of such processes. Hydrogen storage in carbon nanofibers may lead to an efficient solution to the above described problems.

  5. Monte Carlo simulations of hydrogen storage in carbon nanotubes

    International Nuclear Information System (INIS)

    The storage capacities of porous materials made up of carbon nanotubes are estimated by Monte Carlo simulations for the specific case of hydrogen in the pressure domain from 0.1 to 20 MPa at temperatures of 293, 150 and 77 K. The use of these materials in devices for hydrogen storage is discussed on the basis of the simulation results. (author)

  6. Carbon storage and recycling in short-rotation energy crops

    International Nuclear Information System (INIS)

    Short-rotation energy crops can play a significant role in storing carbon compared to the agricultural land uses they would displace. However, the benefits from these plantations in avoiding further use of fossil fuels and in taking pressure off native forests for energy uses provides longer term carbon benefits than the plantation carbon sequestration itself. The fast growth and harvest frequency of plantations tends to limit the amount of above- and below-ground carbon storage in them. The primary components of plantation carbon sequestering compared to sustained agricultural practices involve above ground wood, possible increased soil carbon, litter layer formation, and increased root biomass. On the average, short-rotation plantations in total may increase carbon inventories by about 10 to 40 tonnes per hectare over about a 20 to 50 year period when displacing cropland. This is about doubling in storage over cropland and about one-half the storage in human-impacted forests. The sequestration benefit of wood energy crops over cropland would be negated in about 75 to 100 years by the use of fossil fuels to tend the plantations and handle biomass. Plantation interactions with other land uses and total landscape carbon inventory is important in assessing the relative role plantations play in terestrial and atmospheric carbon dynamics. It is speculated that plantations, when viewed in this context, could generate a global levelling of net carbon emissions for approximately 10 to 20 years. 16 refs., 7 figs

  7. Carbon storage and recycling in short-rotation energy crops

    International Nuclear Information System (INIS)

    Short-rotation energy crops can play a significant role in storing carbon compared to the agricultural land uses they would displace. However, the benefits from these plantations in avoiding further use of fossil fuel and in taking pressure off of native forests for energy uses provides longer term carbon benetfits than the plantation carbon sequestration itself. The fast growth and harvest frequency of plantations tends to limit the amount of above and below-ground carbon storage in them. The primary components of plantation carbon sequestering compared to sustained agricultural practices involve above-ground wood, possible increased soil carbon, litter layer formation, and increased root biomass. On the average, short-rotation plantations in total may increase carbon inventories by about 30 to 40 tonnes per hectare over about a 20- to 56-year period when displacing cropland. This is about doubling in storage over cropland and about one-half the storage in human-impacted forests. The sequestration benefit of wood energy crops over cropland would be negated in about 75 to 100 years by the use of fossil fuels to tend the plantations and handle biomass. Plantation interactions with other land uses and total landscape carbon inventory is important in assessing the relative role plantations play in terrestrial and atmospheric carbon dynamics. It is speculated that plantations, when viewed in this context. could trencrate a global leveling of net carbon emissions for approximately 10 to 20 years

  8. The underground storages of carbon dioxide. Juridical aspects

    International Nuclear Information System (INIS)

    In the framework of the reduction of the carbon dioxide emissions in the air, the underground storage of the CO2 is studied. Some experimentation are already realized in the world and envisaged in France. This document aims to study the juridical aspects of these first works in France. After a presentation of the realization conditions and some recalls on the carbon dioxide its capture and storage, the natural CO2 underground storages and the first artificial storages are discussed. The CO2 waste qualification, in the framework of the environmental legislation is then detailed with a special task on the Lacq region. The problem of the sea underground storages is also presented. (A.L.B.)

  9. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  10. Analysis of an Integrated Carbon Cycle for Storage of renewables

    OpenAIRE

    Martin Streibel; Natalie Christine Nakaten; Thomas Kempka; Michael Kühn

    2013-01-01

    Excess electricity from wind and sun can be transformed into hydrogen and with carbon dioxide subsequently into methane. When needed, electricity is regained in a combined cycle plant burning the methane. To close the carbon cycle carbon dioxide is captured on site. Two subsurface storage formations for both gases are required for the technology. Our regional showcase of two German cities, Potsdam and Brandenburg/Havel, demonstrates that about 30% of their electricity demand can be provided i...

  11. Global congruence of carbon storage and biodiversity in terrestrial ecosystems

    OpenAIRE

    Strassburg, BBN; Kelly, A; Balmford, A.; Davies, RG; Gibbs, HK; Lovett, A.; Miles, L; Orme, CDL; Price, J.; Turner, RK; Rodrigues, ASL

    2010-01-01

    Deforestation is a main driver of climate change and biodiversity loss. An incentive mechanism to reduce emissions from deforestation and forest degradation (REDD) is being negotiated under the United Nations Framework Convention on Climate Change. Here we use the best available global data sets on terrestrial biodiversity and carbon storage to map and investigate potential synergies between carbon and biodiversity-oriented conservation. A strong association (rS= 0.82) between carbon stocks a...

  12. Annual Report: Carbon Storage (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Strazisar, Brian; Guthrie, George

    2013-11-07

    Activities include laboratory experimentation, field work, and numerical modeling. The work is divided into five theme areas (or first level tasks) that each address a key research need: Flow Properties of Reservoirs and Seals, Fundamental Processes and Properties, Estimates of Storage Potential, Verifying Storage Performance, and Geospatial Data Resources. The project also includes a project management effort which coordinates the activities of all the research teams.

  13. Mechanisms of soil carbon storage in experimental grasslands

    Science.gov (United States)

    Steinbeiss, S.; Temperton, V. M.; Gleixner, G.

    2007-10-01

    We investigated the fate of root and litter derived carbon into soil organic matter and dissolved organic matter in soil profiles, in order to explain unexpected positive effects of plant diversity on carbon storage. A time series of soil and soil solution samples was investigated at the field site of The Jena Experiment. In addition to the main biodiversity experiment with C3 plants, a C4 species (Amaranthus retroflexus L.) naturally labeled with 13C was grown on an extra plot. Changes in organic carbon concentration in soil and soil solution were combined with stable isotope measurements to follow the fate of plant carbon into the soil and soil solution. A split plot design with plant litter removal versus double litter input simulated differences in biomass input. After 2 years, the no litter and double litter treatment, respectively, showed an increase of 381 g C m-2 and 263 g C m-2 to 20 cm depth, while 71 g C m-2 and 393 g C m-2 were lost between 20 and 30 cm depth. The isotopic label in the top 5 cm indicated that 11 and 15% of soil organic carbon were derived from plant material on the no litter and the double litter treatment, respectively. Without litter, this equals the total amount of carbon newly stored in soil, whereas with double litter this corresponds to twice the amount of stored carbon. Our results indicate that litter input resulted in lower carbon storage and larger carbon losses and consequently accelerated turnover of soil organic carbon. Isotopic evidence showed that inherited soil organic carbon was replaced by fresh plant carbon near the soil surface. Our results suggest that primarily carbon released from soil organic matter, not newly introduced plant organic matter, was transported in the soil solution and contributed to the observed carbon storage in deeper horizons.

  14. Carbon Storage in Urban Areas in the USA

    Science.gov (United States)

    Churkina, G.; Brown, D.; Keoleian, G.

    2007-12-01

    It is widely accepted that human settlements occupy a small proportion of the landmass and therefore play a relatively small role in the dynamics of the global carbon cycle. Most modeling studies focusing on the land carbon cycle use models of varying complexity to estimate carbon fluxes through forests, grasses, and croplands, but completely omit urban areas from their scope. Here, we estimate carbon storage in urban areas within the United States, defined to encompass a range of observed settlement densities, and its changes from 1950 to 2000. We show that this storage is not negligible and has been continuously increasing. We include natural- and human-related components of urban areas in our estimates. The natural component includes carbon storage in urban soil and vegetation. The human related component encompasses carbon stored long term in buildings, furniture, cars, and waste. The study suggests that urban areas should receive continued attention in efforts to accurately account for carbon uptake and storage in terrestrial systems.

  15. Enhanced lithium ion storage in nanoimprinted carbon

    International Nuclear Information System (INIS)

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance

  16. Enhanced lithium ion storage in nanoimprinted carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peiqi; Chen, Qian Nataly; Li, Jiangyu, E-mail: jjli@uw.edu [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195-2600 (United States); Xie, Shuhong [Faculty of Materials, Optoelectronics and Physics, and Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan (China); Liu, Xiaoyan [College of Metallurgy and Materials Engineering, and Advanced Materials for Energy Institute, Chongqing University of Science and Technology, Chongqing 401331 (China)

    2015-07-27

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  17. Weathering controls on mechanisms of carbon storage in grassland soils

    Energy Technology Data Exchange (ETDEWEB)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-09-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation of Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought.

  18. Carbon Capture and Storage in the CDM

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This publication assesses the policy questions as highlighted in the relevant COP/MOP 2 decision, particularly leaks (or seepage) and permanence for geological storage, project boundaries and liability issues, and leakage, as well as a few others raised by some Parties. Since any emissions or leaks during the separation, capture and transport phases would occur during the crediting period of the project (and would therefore be accounted for as project emissions), the paper focuses its analyses for leaks and liability on storage, as it is in this part of the CCS process that long-term leaks could occur.

  19. Nanowire modified carbon fibers for enhanced electrical energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  20. Spatial Characteristics of Soil Organic Carbon Storage in China's Croplands

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-Qiang; YU Gui-Rui; ZHAO Qian-Jun; NIU Dong; CHEN Qing-Mei; WU Zhi-Feng

    2005-01-01

    The soil organic carbon (SOC) pool is the largest component of terrestrial carbon pools. With the construction of a geographically referenced database taken from the second national general soil survey materials and based on 1 546typical cropland soil profiles, the paddy field and dryland SOC storage among six regions of China were systematically quantified to characterize the spatial pattern of cropland SOC storage in China and to examine the relationship between mean annual temperature, precipitation, soil texture features and SOC content. In all regions, paddy soils had higher SOC storage than dryland soils, and cropland SOC content was the highest in Southwest China. Climate controlled the spatial distribution of SOC in both paddy and dryland soils, with SOC storage increasing with increasing precipitation and decreasing with increasing temperature.

  1. On carbon dioxide storage based on biomineralization strategies.

    Science.gov (United States)

    Lee, Seung-Woo; Park, Seung-Bin; Jeong, Soon-Kwan; Lim, Kyoung-Soo; Lee, Si-Hyun; Trachtenberg, Michael C

    2010-06-01

    This study focuses on the separation and storage of the global warming greenhouse gas CO(2), and the use of natural biocatalysts in the development of technologies to improve CO(2) storage rates and provide new methods for CO(2) capture. Carbonic anhydrase (CA) has recently been used as a biocatalyst to sequester CO(2) through the conversion of CO(2) to HCO(-) in the mineralization of CaCO(3). Biomimetic CaCO(3) mineralization for carbon capture and storage offers potential as a stable CO(2) capture technology. In this report, we review recent developments in this field and assess disadvantages and improvements in the use of CA in industrial applications. We discuss the contribution that understanding of mechanisms of CO(2) conversion to CO(3)(-) in the formation and regeneration of bivalve shells will make to developments in biomimetic CO(2) storage. PMID:20144548

  2. Feasibility of Distributed Carbon Capture and Storage (DCCS)

    International Nuclear Information System (INIS)

    Research highlights: → The concept of Distributed Carbon Capture and Storage (DCCS) is proposed. → Carbon Storage in a Shallow Aquifer (CSSA) is studied as a technique for the DCCS. → The CSSA is estimated to allow less than Yen 3000/t-CO2 of the storage cost. → The CSSA is estimated to allow more than 20-years of the injection period. → The required energy for the CSSA is less than 10 % of the energy generated by the CO2 sources. -- Abstract: The concept of Distributed Carbon Capture and Storage (DCCS) for small scale CO2 sources, such as Distributed Energy Systems (DES), is proposed, and Carbon Storage in a Shallow Aquifer (CSSA), in which CO2 is stored in shallow aquifers as aqueous solution, is also studied as a technique for the DCCS. A conceptual design for the CSSA have been performed and the fundamental calculations in this study show that the dissolution capacity, that is, the amount of CO2 which can be dissolved into unit volume of water in a shallow aquifer is 10-35 kg-CO2/m3 in the range of the storage depth of 100-500 m. The dissolution capacity of the CSSA is less than 10% of the possible amount of CO2 stored by the ordinary CCS technique in which CO2 is stored in the supercritical condition. However, the CSSA is estimated to allow the CO2 storage at less than Yen 3000/t-CO2 of the storage cost and more than 20-years of the injection period for CO2 sources of 1800-39,000 t-CO2/year, which correspond to the CO2 emissions from 0.1 to 10 MW DES. The required energy for the CSSA is estimated to be less than 10% of the energy generated by the CO2 sources.

  3. Carbon Capture and Storage: Model Regulatory Framework

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Energy-related carbon dioxide (CO2) emissions are set to double by 2050 unless decisive action is taken. International Energy Agency (IEA) analysis demonstrates, however, that it is possible -- in the same timeframe to 2050 -- to reduce projected greenhouse-gas emissions to half 2005 levels, but this will require an energy technology revolution, involving the aggressive deployment of a portfolio of low-carbon energy technologies.

  4. Optimal Carbon Capture and Storage Policies

    OpenAIRE

    Ayong Le Kama, Alain; Mouez FODHA; Lafforgue, Gilles

    2011-01-01

    Following the IPCC's report (2005), which recommended the development and the use of carbon capture and sequestration (CCS) technologies in order to achieve the environmental goals, defined by the Kyoto Protocol, the issue addressed in this paper concerns the optimal strategy regarding the long-term use of CCS technologies. The aim of this paper is to study the optimal carbon capture and sequestration policy. The CCS technologies has motivated a number of empirical studies, via complex int...

  5. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    Energy Technology Data Exchange (ETDEWEB)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  6. Lithium storage properties of multiwall carbon nanotubes prepared by CVD

    International Nuclear Information System (INIS)

    Full text: Multiwall carbon nanotubes (MWCNTs) were synthesised by chemical vapour deposition (CVD) method using acetylene gas. The XRD pattern of as prepared carbon nanotubes showed that the d002 value is 3.44 Angstroms. The morphology and microstructure of carbon nanotubes were characterized by HRTEM. Most of carbon nanotubes are entangled together to form bundles or ropes. The diameter of the carbon nanotubes is in the range of 10 ∼ 20 nm. There is a small amount of amorphous carbon particles presented in the sample. However, the yield of carbon nanotubes is more than 95%. Electrochemical properties of carbon nanotubes were characterised via a variety of electrochemical testing techniques. The result of CV test showed that the Li insertion potential is quite low, which is very close to O V versus Li+/Li reference electrode, whereas the potential for Li de-intercalation is in the range of 0.2-0.4 V. There exists a slight voltage hysteresis between Li intercalation and Li de-intercalation, which is similar to the other carbonaceous materials. The intensity of redox peaks of carbon nanotubes decrease with scanning cycle, indicating that the reversible Li insertion capacity gradually decreases. The carbon nanotubes electrode demonstrated a reversible lithium storage capacity of 340 mAh/g with good cyclability at moderate current density. Further improvement of Li storage capacity is possible by opening the end of carbon nanotubes to allow lithium insertion into inner graphene sheet of carbon nanotubes. The kinetic properties of lithium insertion in carbon nanotube electrodes were characterised by a.c. impedance measurements. It was found that the lithium diffusion coefficient dLi decreases with an increase of Li ion concentration in carbon nanotube host

  7. The Carbon Nanotube Fibers for Optoelectric Conversion and Energy Storage

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available This review summarizes recent studies on carbon nanotube (CNT fibers for weavable device of optoelectric conversion and energy storage. The intrinsic properties of individual CNTs make the CNT fibers ideal candidates for optoelectric conversion and energy storage. Many potential applications such as solar cell, supercapacitor, and lithium ion battery have been envisaged. The recent advancement in CNT fibers for optoelectric conversion and energy storage and the current challenge including low energy conversion efficiency and low stability and future direction of the energy fiber have been finally summarized in this paper.

  8. Carbon coated textiles for flexible energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Jost, Kristy [Drexel Univ., Philadelphia, PA (United States). Fashion, Product, Design and Merchandising Dept., A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; Perez, Carlos R. [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; McDonough, John K. [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; Presser, Volker [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; Heon, Min [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; Dion, Genevieve [Drexel Univ., Philadelphia, PA (United States). Fashion, Product, Design and Merchandising Dept.; Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering

    2011-10-20

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at ~0.25 A·g⁻¹ achieved a high gravimetric and areal capacitance, an average of 85 F·g⁻¹ on cotton lawn and polyester microfiber, both corresponding to ~0.43 F·cm⁻².

  9. Global Ocean Storage of Anthropogenic Carbon (GOSAC)

    Energy Technology Data Exchange (ETDEWEB)

    Orr, J C

    2002-04-02

    GOSAC was an EC-funded project (1998-2001) focused on improving the predictive capacity and accelerating development of global-scale, three-dimensional, ocean carbon-cycle models by means of standardized model evaluation and model intercomparison. Through the EC Environment and Climate Programme, GOSAC supported the participation of seven European modeling groups in the second phase of the larger international effort OCMIP (the Ocean Carbon-Cycle Model Intercomparison Project). OCMIP included model comparison and validation for both CO{sub 2} and other ocean circulation and biogeochemical tracers. Beyond the international OCMIP effort, GOSAC also supported the same EC ocean carbon cycle modeling groups to make simulations to evaluate the efficiency of purposeful sequestration of CO{sub 2} in the ocean. Such sequestration, below the thermocline has been proposed as a strategy to help mitigate the increase of CO{sub 2} in the atmosphere. Some technical and scientific highlights of GOSAC are given.

  10. Carbon compound used in hydrogen storage

    International Nuclear Information System (INIS)

    In the present work it is studied the activated carbon of mineral origin for the sorption of hydrogen. The carbon decreased of particle size by means of the one alloyed mechanical. The time of mill was of 10 hours. The characterization one carries out by scanning electron microscopy and X-ray diffraction. The hydrogen sipped in the carbon material it was determined using the Thermal gravimetric method (TGA). The conditions of hydrogenation went at 10 atm of pressure and ambient temperature during 18 hours. They were also carried out absorption/desorption cycles of hydrogen in the same one system of thermal gravimetric analysis. The results showed percentages of sorption of 2% approximately in the cycles carried out in the system TGA and of 4.5% in weight of hydrogen at pressure of 10 atmospheres and ambient temperature during 18 hours. (Author)

  11. Carbon Capture and Storage: Legal and Regulatory Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The International Energy Agency (IEA) considers carbon capture and storage (CCS) a crucial part of worldwide efforts to limit global warming by reducing greenhouse-gas emissions. The IEA has estimated that the broad deployment of low-carbon energy technologies could reduce projected 2050 emissions to half 2005 levels -- and that CCS could contribute about one-fifth of those reductions. Reaching that goal, however, would require around 100 CCS projects to be implemented by 2020 and over 3000 by 2050.

  12. Carbon-based electrocatalysts for advanced energy conversion and storage

    OpenAIRE

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER ...

  13. Stakeholder assessments of Carbon Capture and Storage in the UK

    OpenAIRE

    Gough, Clair Amanda

    2014-01-01

    This thesis describes the development of methods and approaches aimed at bringing together diverse knowledge and stakeholder values as part of a broader Integrated Assessment (IA) process applied to the Carbon Capture and Storage (CCS) family of technologies. IA brings together knowledge from a variety of disciplines and stakeholders to provide policy-relevant insights in complex and uncertain contexts. CCS is a climate change mitigation approach which removes carbon dioxide from fossil fuel ...

  14. Impacts of Geological Variability on Carbon Storage Potential

    Science.gov (United States)

    Eccles, Jordan Kaelin

    The changes to the environment caused by anthropogenic climate change pose major challenges for energy production in the next century. Carbon Capture and Storage (CCS) is a group of technologies that would permit the continued use of carbon-intense fuels such as coal for energy production while avoiding further impact on the global climate system. The mechanism most often proposed for storage is injection of CO2 below the surface of the Earth in geological media, with the most promising option for CO2 reservoirs being deep saline aquifers (DSA's). Unlike oil and gas reservoirs, deep saline aquifers are poorly characterized and the variability in their properties is large enough to have a high impact on the overall physical and economic viability of CCS. Storage in saline aquifers is likely to be a very high-capacity resource, but its economic viability is almost unknown. We consider the impact of geological variability on the total viability of the CO 2 storage system from several perspectives. First, we examine the theoretical range of costs of storage by coupling a physical and economic model of CO 2 storage with a range of possible geological settings. With the relevant properties of rock extending over several orders of magnitude, it is not surprising that we find costs and storage potential ranging over several orders of magnitude. Second, we use georeferenced data to evaluate the spatial distribution of cost and capacity. When paired together to build a marginal abatement cost curve (MACC), this cost and capacity data indicates that low cost and high capacity are collocated; storage in these promising areas is likely to be quite viable but may not be available to all CO2 sources. However, when we continue to explore the impact of geological variability on realistic, commercial-scale site sizes by invoking capacity and pressure management constraints, we find that the distribution costs and footprints of these sites may be prohibitively high. The combination

  15. Storage of hydrogen on single-walled carbon nanotubes and other carbon structures

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, E.; Chahine, R.; Benard, P.; Cossement, D.; Lafi, L.; Melancon, E.; Bose, T.K. [Institut de recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres, C.P. 500, G9A 5H7, Trois-Rivieres, Quebec (Canada); Desilets, S. [R and D pour la defense Canada - Valcartier, 2459, boulevard Pie-XI Nord, G3J 1X5, Val-Belair, Quebec (Canada)

    2004-04-01

    The sorption of hydrogen on carbon structures and nanostructures offers a way to reduce the storage pressure of hydrogen with respect to compression storage while achieving interesting gravimetric storage densities. The most readily available carbon structures, activated carbons, can achieve reproducible, high gravimetric storage densities under cryogenic operating conditions: 5-6% at 35 bar and 77 K, in excess of the normal density that would be present in the pore volume under compression at the same temperature and pressure. We discuss and compare the adsorption of hydrogen on high specific surface activated carbons, nanofibres and nanotubes from experimental and theoretical considerations. In particular, we present gravimetric and volumetric hydrogen sorption measurements on single-walled carbon nanotubes (SWNTs) at (1 bar, 77 K) and (1 bar, 295 K) within the context of our ongoing work on the storage of hydrogen on activated carbon and carbon nanostructures. BET surface area and XRD characterization results on SWNTs are also presented. The experiments were performed on as received, chemically treated and metal-incorporated SWNT samples. Hydrogen sorption capacities measured on treated samples ranged from {proportional_to}0 to about 1 wt. % at 1 bar and 295 K and reached about 4 wt. % at 1 bar and 77 K. Our results show that under certain conditions, SWNTs have better hydrogen uptake performance than large surface area activated carbons. (orig.)

  16. The Economics of Carbon Capture and Storage: An Update

    OpenAIRE

    Jepma, Catrinus; Hauck, Dominic

    2011-01-01

    This article surveys recent studies on costs, potential barriers to implementation and marketability of Carbon Dioxide Capture and Storage (CCS). Moreover, it discusses potential incentive schemes to push CCS into the market and, finally, provides an overview over cost types and forecasting uncertainties associated with these.

  17. Unravelling the Contested Nature of Carbon Capture and Storage

    NARCIS (Netherlands)

    van Egmond, Sander

    2016-01-01

    Our climate is changing. Carbon Capture and Storage (CCS) has been identified as an important technology to reduce CO2 emissions in order to avoid dangerous climate change. The implementation of CCS is however slow and CCS is publicly contested. This thesis focuses on the debate on this technology.

  18. Carbon foams for energy storage devices

    Science.gov (United States)

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1996-06-25

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g-1000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  19. Low pressure storage of natural gas on activated carbon

    Science.gov (United States)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  20. Doping of carbon foams for use in energy storage devices

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  1. DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela D.; Li, Qixiu; Badding, John V.; Fonseca, Dania; Gutierrez, Humerto; Sakti, Apurba; Adu, Kofi; Schimmel, Michael

    2010-03-31

    Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

  2. Carbon dioxide:A new material for energy storage

    Institute of Scientific and Technical Information of China (English)

    Jacques Amouroux; Paul Siffert; Jean Pierre Massué; Simeon Cavadias; Béatriz Trujillo; Koji Hashimoto; Phillip Rutberg; Sergey Dresvin; Xianhong Wang

    2014-01-01

    Though carbon dioxide is the main green house gas due to burning of fossil resource or miscellaneous chemical processes, we propose here that carbon dioxide be a new material for energy storage. Since it can be the key to find the solution for three critical issues facing the world: food ecosystems, the greenhouse issue and energy storage. We propose to identify the carbon recovery through a circular industrial revolution in the first part, and in the second part we present the starting way of three business plants to do that from industrial examples. By pointing out all the economic constraints and the hidden competitions between energy, water and food, we try to qualify the phrase “sustainable development” and open the way of a huge circular economy.

  3. Electron and phonon properties and gas storage in carbon honeycomb

    CERN Document Server

    Gao, Yan; Zhong, Chengyong; Zhang, Zhongwei; Xie, Yuee; Zhang, Shengbai

    2016-01-01

    A new kind of three-dimensional carbon allotropes, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks are constructed, and their electronic and phonon properties are calculated by using first principles methods. All networks are porous metal with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channels is originated from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channels is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m/s. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by at least a factor of 15. Our calculations further indicate that these porous carbon networks possess high storage capa...

  4. Valuing the European 'coastal blue carbon' storage benefit.

    Science.gov (United States)

    Luisetti, T; Jackson, E L; Turner, R K

    2013-06-15

    'Blue' carbon ecosystems are important carbon storage providers that are currently not protected by any international mechanism, such as REDD. This study aims to contribute to raising awareness in the political domain about the 'blue' carbon issue. This analysis also provides guidance in terms of how to value stock and flows of ecosystem services adding to the debate begun by the Costanza et al. (1997) paper in Nature. Through scenario analysis we assess how human welfare benefits will be affected by changes in the European coastal blue carbon stock provision. The current extent of European coastal blue carbon has an accounting stock value of about US$180 million. If EU Environmental Protection Directives continue to be implemented and effectively enforced, society will gain an appreciating asset over time. However, a future policy reversal resulting in extensive ecosystem loss could mean economic value losses as high as US$1 billion by 2060. PMID:23623654

  5. Energy Saving High-Capacity Moderate Pressure Carbon Dioxide Storage System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our approach to high-pressure carbon dioxide storage will directly address the challenges associated with storage of compressed carbon dioxide - the need to reduce...

  6. Forest management techniques for carbon dioxide storage

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Takao [Forestry and Forest Products Research Inst., Tsukuba, Ibaraki (Japan)

    1993-12-31

    In the global ecosystem concerning carbon dioxide content in the atmosphere, the forest ecosystem plays an important role. In effect, the ratio of forest biomass to total terrestrial biomass is about 90%, and the ratio of carbon stored in the forest biomass to that in the atmosphere is two thirds. When soils and detritus of forests are added, there is more C stored in forests than in the atmosphere, about 1.3 times or more. Thus, forests can be regarded as the great holder of C on earth. If the area of forest land on the earth is constantly maintained and forests are in the climax stage, the uptake of C and the release of C by and from the forests will balance. In this case, forests are neither sinks nor sources of CO{sub 2} although they store a large amount of C. However, when forests are deforested, they become a source of C; through human activities, forests have become a source of C. According to a report by the IPCC, 1.6{+-}1.2 PgC is annually added to the atmosphere by deforestation. According to the FAO (1992), the area of land deforested annually in the tropics from 1981 to 1990 was 16.9 x 10{sup 6} ha. This value is nearly half the area of Japanese land. The most important thing for the CO{sub 2} environment concerning forests is therefore how to reduce deforestation and to successfully implement a forestation or reforestation.

  7. Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes.

    Science.gov (United States)

    Gilroy, James J; Woodcock, Paul; Edwards, Felicity A; Wheeler, Charlotte; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P

    2014-07-01

    With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether benefits are maximized by including many small features throughout the landscape ('land-sharing' agriculture) or a few large contiguous blocks alongside intensive farmland ('land-sparing' agriculture). In this study, we are the first to integrate carbon storage alongside multi-taxa biodiversity assessments to compare land-sparing and land-sharing frameworks. We do so by sampling carbon stocks and biodiversity (birds and dung beetles) in landscapes containing agriculture and forest within the Colombian Chocó-Andes, a zone of high global conservation priority. We show that woodland fragments embedded within a matrix of cattle pasture hold less carbon per unit area than contiguous primary or advanced secondary forests (>15 years). Farmland sites also support less diverse bird and dung beetle communities than contiguous forests, even when farmland retains high levels of woodland habitat cover. Landscape simulations based on these data suggest that land-sparing strategies would be more beneficial for both carbon storage and biodiversity than land-sharing strategies across a range of production levels. Biodiversity benefits of land-sparing are predicted to be similar whether spared lands protect primary or advanced secondary forests, owing to the close similarity of bird and dung beetle communities between the two forest classes. Land-sparing schemes that encourage the protection and regeneration of natural forest blocks thus provide a synergy between carbon and biodiversity conservation, and represent a promising strategy for reducing the negative impacts of agriculture on tropical ecosystems. However, further studies examining a wider range of ecosystem

  8. Carbon Capture and Storage Legal and Regulatory Review. Edition 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The International Energy Agency (IEA) considers carbon capture and storage (CCS) a crucial part of worldwide efforts to limit global warming by reducing greenhouse-gas emissions. The IEA estimates that emissions can be reduced to a level consistent with a 2°C global temperature increase through the broad deployment of low-carbon energy technologies – and that CCS would contribute about one-fifth of emission reductions in this scenario. Achieving this level of deployment will require that regulatory frameworks – or rather a lack thereof – do not unnecessarily impede environmentally safe demonstration and deployment of CCS, so in October 2010 the IEA launched the IEA Carbon Capture and Storage Legal and Regulatory Review. The CCS Review is a regular review of CCS regulatory progress worldwide. Produced annually, it collates contributions by national and regional governments, as well as leading organisations engaged in CCS regulatory activities, to provide a knowledge-sharing forum to support CCS framework development. Each two page contribution provides a short summary of recent and anticipated CCS regulatory developments and highlights a particular, pre-nominated regulatory theme. To introduce each edition, the IEA provides a brief analysis of key advances and trends, based on the contributions submitted. The theme for this third edition is stakeholder engagement in the development of CO2 storage projects. Other issues addressed include: regulating CO2-EOR, CCS and CO2-EOR for storage; CCS incentive policy; key, substantive issues being addressed by jurisdictions taking steps to finalise CCS regulatory framework development; and CCS legal and regulatory developments in the context of the Clean Energy Ministerial Carbon Capture, Use and Storage Action Group.

  9. Family Matters: Sphagnaceae Versus Cyperaceae in Peatland Carbon Storage

    Science.gov (United States)

    Nichols, J. E.; Peteet, D. M.; Gemma, M.; Fedio, C.; Pavia, F. J.

    2013-12-01

    Peatlands are a vitally important part of the Earth's carbon cycle. What is unclear, however, is how peatland type influences the rate of carbon accumulation, the fate of that accumulated carbon in the short and long term, and the role of methane in the overall carbon cycle. Studies of modern peatlands have shown that fens (dominated by Cyperaceae) may accumulate peat more quickly than bogs (dominated by Sphagnaceae), but in many downcore studies, bog peat may have higher apparent accumulation rates. These generalizations, however, do not apply in all locations, climates, or times throughout the Holocene. To address this conundrum, we present data from several peatland locations throughout the circum-Arctic to determine what types of environments and climate regimes are effective for the long-term storage of carbon, fens or bogs, and what climate conditions promote the development of each peatland type. Our sites include peatlands in the Arctic and boreal regions of North America and Asia. We use a multiproxy approach to directly compare the apparent carbon accumulation rate and methane-recycling rate with peatland type and specific hydroclimatic parameters. To reconstruct peatland type, we use macrofossil analysis. We use compound-specific hydrogen isotope ratios of leaf-wax biomarkers to assess hydrological parameters such as growing season evaporation and seasonality of precipitation. We use the carbon isotope ratios of these same compounds to reconstruct the rate of methane recycling. By reconstructing peat type, carbon cycle and hydroclimatic parameters in the same samples, we most effectively compare their mutual influence.

  10. Synthesis, characterization and hydrogen storage studies on porous carbon

    International Nuclear Information System (INIS)

    Porous carbon sample has been prepared, using zeolite-Y as template followed by annealing at 800°C, with view to estimate the extent of hydrogen storage by the sample. Based on XRD, 13C MAS NMR and Raman spectroscopic studies it is confirmed that the porous Carbon sample contains only sp2 hybridized carbon. The hydrogen sorption isotherms have been recorded for the sample at 273, 223K and 123K and the maximum hydrogen absorption capacity is found to be 1.47wt% at 123K. The interaction energy of hydrogen with the carbon framework was determined to be ∼ 10 kJ mol−1at lower hydrogen uptake and gradually decreases with increase in hydrogen loading

  11. Synthesis, characterization and hydrogen storage studies on porous carbon

    Science.gov (United States)

    Ruz, Priyanka; Banerjee, Seemita; Pandey, M.; Sudarsan, V.

    2015-06-01

    Porous carbon sample has been prepared, using zeolite-Y as template followed by annealing at 800°C, with view to estimate the extent of hydrogen storage by the sample. Based on XRD, 13C MAS NMR and Raman spectroscopic studies it is confirmed that the porous Carbon sample contains only sp2 hybridized carbon. The hydrogen sorption isotherms have been recorded for the sample at 273, 223K and 123K and the maximum hydrogen absorption capacity is found to be 1.47wt% at 123K. The interaction energy of hydrogen with the carbon framework was determined to be ˜ 10 kJ mol-1at lower hydrogen uptake and gradually decreases with increase in hydrogen loading.

  12. Carbon capture and storage: steering between necessity and realism; Le captage and storage du carbone, entre necessite and realisme

    Energy Technology Data Exchange (ETDEWEB)

    Finon, D. [CNRS, CIRED, Nogent-sur-Marne (France); Damian, M. [Universite Pierre Mendes-France, LEPII, Grenoble (France)

    2011-01-15

    Carbon sequestration is the option that will make possible to keep fossil energies in the future energy mix. This technology could be used for fixed carbon emission sources like fossil power plants or oil refineries or steel works or cement factories. Today 3 technologies to capture carbon have to be considered: post-combustion, pre-combustion and oxy-combustion, these technologies are expected to be used equally. The second step is the construction of a network of gas pipelines to transport CO{sub 2} to the storage place. The last step is the storage that can be done in ancient oil or natural gas fields or in deep coal layers on in deep salt aquifer. The latter being the most promising. With a carbon emission price comprised between 30 and 50 euros a tonne, carbon sequestration is expected to be economically competitive around 2030 under the condition that the feedback experience gained from the first industrial installations on a large scale have made investment costs drop sharply. Because of its need for important initial investment carbon sequestration appears to be as capitalistic as nuclear energy and will require public funding. Demonstration programs have been launched in Europe, United-States, Canada and Australia. (A.C.)

  13. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and

  14. Scale-up activation of carbon fibres for hydrogen storage

    OpenAIRE

    Kunowsky, Mirko; Marco Lozar, Juan Pablo; Cazorla Amorós, Diego; Linares Solano, Ángel

    2009-01-01

    In a previous study, we investigated, at a laboratory scale, the chemical activation of two different carbon fibres (CF), their porosity characterization, and their optimization for hydrogen storage [1]. In the present work, this study is extended to: (i) a larger range of KOH activated carbon fibres, (ii) a larger range of hydrogen adsorption measurements at different temperatures and pressures (i.e. at room temperature, up to 20 MPa, and at 77 K, up to 4 MPa), and (iii) a scaling-up activat...

  15. Accounting Carbon Storage in Decaying Root Systems of Harvested Forests

    OpenAIRE

    Wang, G. Geoff; Van Lear, David H.; Hu, Huifeng; Kapeluck, Peter R.

    2011-01-01

    Decaying root systems of harvested trees can be a significant component of belowground carbon storage, especially in intensively managed forests where harvest occurs repeatedly in relatively short rotations. Based on destructive sampling of root systems of harvested loblolly pine trees, we estimated that root systems contained about 32% (17.2 Mg ha−1) at the time of harvest, and about 13% (6.1 Mg ha−1) of the soil organic carbon 10 years later. Based on the published roundwood output data, we...

  16. Carbon Capture and Storage: Progress and Next Steps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Two years after the G8 leaders commitment to the broad deployment of carbon capture and storage (CCS) by 2020, significant progress has been made towards commercialisation of CCS technologies. Yet the 2008 Hokkaido G8 recommendation to launch 20 large-scale CCS demonstration projects by 2010 remains a challenge and will require that governments and industry accelerate the pace toward achieving this critical goal. This is one of the main findings of a new report by the International Energy Agency (IEA), the Carbon Sequestration Leadership Forum (CSLF), and the Global CCS Institute, to be presented to G8 leaders at their June Summit in Muskoka, Canada.

  17. Technology Roadmaps: Carbon Capture and Storage in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    A new technology roadmap on Carbon Capture and Storage in Industrial Applications, released today in Beijing, shows that carbon capture and storage (CCS) has the potential to reduce CO2 emissions from industrial applications by 4 gigatonnes in 2050. Such an amount is equal to roughly one-tenth of the total emission cuts needed from the energy sector by the middle of the century. This requires a rapid deployment of CCS technologies in various industrial sectors, and across both OECD and non-OECD countries. The roadmap, a joint report from the International Energy Agency (IEA) and the United Nations Industrial Development Organization (UNIDO), says that over 1800 industrial-scale projects are required over the next 40 years.

  18. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-01-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity. PMID:27435389

  19. Stakeholder attitudes on carbon capture and storage -- An international comparison

    OpenAIRE

    Johnsson, Filip; Reiner, David; Itaoka, Kenshi; Herzog, Howard J.

    2009-01-01

    This paper presents results from a survey on stakeholder attitudes towards Carbon Capture and Storage (CCS). The survey is the first to make a global comparison across three major regions; USA, Japan, and Europe. The 30-question survey targeted individuals working at stakeholder organizations that seek to shape, and will need to respond to, policy on CCS, including electric utilities, oil & gas companies, CO2-intensive industries and non-governmental organizations (NGOs). The results show ...

  20. Determining the Success of Carbon Capture and Storage Projects

    OpenAIRE

    Thronicker, Dominique; Ian A. Lange

    2015-01-01

    Carbon Capture and Storage (CCS) is regarded as one of the most important technologies to mitigate climate change while providing fossil-fuel based energy security. During the past decade, projects in support of the development and deployment of the technology have been initiated across the globe. However, a considerable number of these projects have later been put on hold or cancelled. Currently, there is little understanding of what characteristics may have led to these undesirable outcomes...

  1. Hydrogen Storage in Boron Nitride and Carbon Nanomaterials

    Directory of Open Access Journals (Sweden)

    Takeo Oku

    2014-12-01

    Full Text Available Boron nitride (BN nanomaterials were synthesized from LaB6 and Pd/boron powder, and the hydrogen storage was investigated by differential thermogravimetric analysis, which showed possibility of hydrogen storage of 1–3 wt%. The hydrogen gas storage in BN and carbon (C clusters was also investigated by molecular orbital calculations, which indicated possible hydrogen storage of 6.5 and 4.9 wt%, respectively. Chemisorption calculation was also carried out for B24N24 cluster with changing endohedral elements in BN cluster to compare the bonding energy at nitrogen and boron, which showed that Li is a suitable element for hydrogenation to the BN cluster. The BN cluster materials would store H2 molecule easier than carbon fullerene materials, and its stability for high temperature would be good. Molecular dynamics calculations showed that a H2 molecule remains stable in a C60 cage at 298 K and 0.1 MPa, and that pressures over 5 MPa are needed to store H2 molecules in the C60 cage.

  2. Carbon dioxide storage capacity in gas shale reservoirs

    International Nuclear Information System (INIS)

    As the commercial success of shale gas exploitation in USA, there also amount of water resource depleted and some potential environmental problems exist. According to the low pore pressure, low porosity, low permeability characteristic of shale gas reservoir, and the successful experience of CO2 sequestration and enhanced methane recovery in the unminable coalbed, incorporating the differential adsorption capacity of CO2 and CH4 in shale, the injection technology of CO2 into shale gas reservoir for storage and enhancing shale gas recovery was pro- posed. Then the technology, economic and safety feasibility of this solution was analyzed. The result suggested that the shales adsorb more carbon dioxide than methane at reservoir conditions, the methane can be displaced by carbon dioxide injection and enhanced shale gas recovery could be achieved. A model for calculation of CO2 storage capacity was development, the preliminary estimate of the CO2 storage potential was 2.11∼4.32 times of the shale gas. So Injection of carbon di- oxide into shale gas reservoir is a promising technology which has the potential to enhance shale gas recovery, while simultaneously sequestering amount of CO2. (authors)

  3. Traceable components of terrestrial carbon storage capacity in biogeochemical models.

    Science.gov (United States)

    Xia, Jianyang; Luo, Yiqi; Wang, Ying-Ping; Hararuk, Oleksandra

    2013-07-01

    Biogeochemical models have been developed to account for more and more processes, making their complex structures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. The framework traces modeled ecosystem carbon storage capacity (Xss ) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE ). The latter τE can be further traced to (ii) baseline carbon residence times (τ'E ), which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars (ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990, modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, leading to a relatively high carbon storage capacity (31.5 kg cm(-2) ). Deciduous needle leaf forest had the longest residence time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm(-2) ). The longest τE in deciduous needle leaf forest was ascribed to its longest τ'E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorporation of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., -12.1% in shrub land) or decreased τE or both. The decreases in τE resulted from nitrogen-induced changes in τ'E (e.g., -26.7% in C3 grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable components for all terrestrial carbon

  4. Carbon Capture and Storage (CCS): Overview, Developments, and Challenges

    Science.gov (United States)

    Busch, Andreas; Amann, Alexandra; Kronimus, Alexander; Kühn, Michael

    2010-05-01

    Carbon dioxide capture and storage (CCS) is a technology that will allow the continued combustion of fossil fuels (coal, oil, gas) for e.g. power generation, transportation and industrial processes for the next decades. It therefore facilitates to bridge to a more renewable energy dominated world, enhances the stability and security of energy systems and at the same time reduces global carbon emissions as manifested by many western countries. Geological media suitable for CO2 storage are mainly saline aquifers due to the large storage volumes associated with them, but also depleted oil and gas reservoirs or deep unminable coal beds. Lately, CO2 storage into mafic- to ultramafic rocks, associated with subsequent mineral carbonation are within the R&D scope and first demonstration projects are being executed. For all these storage options various physical and chemical trapping mechanisms must reveal the necessary capacity and injectivity, and must confine the CO2 both, vertically (through an effective seal) or horizontally (through a confining geological structure). Confinement is the prime prerequisite to prevent leakage to other strata, shallow potable groundwater, soils and/or atmosphere. Underground storage of gases (e.g. CO2, H2S, CH4) in these media has been demonstrated on a commercial scale by enhanced oil recovery operations, natural gas storage and acid gas disposal. Some of the risks associated with CO2 capture and geological storage are comparable with any of these industrial activities for which extensive safety and regulatory frameworks are in place. Specific risks associated with CO2 storage relate to the operational (injection) phase and to the post-operational phase. In both phases the risks of most concern are those posed by the potential for acute or chronic CO2 leakage from the storage site. Currently there are only few operations worldwide where CO2 is injected and stored in the subsurface. Some are related to oil production enhancement but the

  5. The Time Value of Carbon and Carbon Storage: Clarifying the terms and the policy implications of the debate

    OpenAIRE

    Marshall, Liz; Kelly, Alexia

    2010-01-01

    The question of whether there is any value to the temporary storage of carbon is fundamental to climate policy design across a number of arenas, including physical carbon discounting in greenhouse gas accounting, the relative value of temporary carbon offsets, and the value of other carbon mitigation efforts that are known to be impermanent, including deferred deforestation. Quantifying the value of temporary carbon storage depends on a number of assumptions about how the incremental impact (...

  6. Storage of hydrogen on carbons; Stockage de l'hydrogene sur les carbones

    Energy Technology Data Exchange (ETDEWEB)

    Conard, J. [Centre National de la Recherche Scientifique, CNRS-CRMD, 45 - Orleans-la-Source (France)

    2000-07-01

    The storage of hydrogen on carbons, with densities above 10% hydrogen weight, can be used in the sector of transport. However, only the physical-sorption of this gas (which is almost perfect and boils at 20 K under atmospheric pressure) cannot explain this performance. A study of the possible sites for one hydrogen, which can take very different forms, is presented, in order to better understand the rational development of this storage mode which could reach about ten weight %. (O.M.)

  7. Carbon Storage of Forest Vegetation in China and its Relationship with Climatic Factors

    International Nuclear Information System (INIS)

    Estimates of forest vegetation carbon storage in China varied due to different methods used in the assessments. In this paper, we estimated the forest vegetation carbon storage from the Fourth Forest Inventory Data (FFID) in China using a modified volume-derived method. Results showed that total carbon storage and mean carbon density of forest vegetation in China were 3.8 Pg C (about 1.1% of the global vegetation carbon stock) and 41.32 Mg/ha, respectively. In addition, based on linear multiple regression equation and factor analysis method, we analyzed contributions of biotic and abiotic factors (including mean forest age, mean annual temperature, annual precipitation, and altitude) to forest carbon storage. Our results indicated that forest vegetation carbon storage was more sensitive to changes of mean annual temperature than other factors, suggesting that global warming would seriously affect the forest carbon storage

  8. Deformations and nanomechanical energy storage in twisted carbon nanotube ropes

    Science.gov (United States)

    Tomanek, David; Fthenakis, Zacharias G.; Seifert, Gotthard; Teich, David

    2013-03-01

    We determine the deformation energetics and energy density of twisted carbon nanotube ropes that effectively constitute a torsional spring. Due to the unprecedented stiffness and resilience of constituent carbon nanotubes, a twisted nanotube rope becomes an efficient energy carrier. Using ab initio and parameterized density functional calculations, we identify structural changes in these systems and determine their elastic limits. The deformation energy of twisted nanotube ropes contains contributions associated not only with twisting, but also with stretching, bending and compression of individual nanotubes. We quantify these energy contributions and show that their relative role changes with the number of nanotubes in the rope. The calculated reversible nanomechanical energy storage capacity of carbon nanotube ropes surpasses that of advanced Li-ion batteries by up to a factor of ten. Supported by the National Science Foundation Cooperative Agreement #EEC-0832785, titled ``NSEC: Center for High-rate Nanomanufacturing''.

  9. Field-wide Pressure Response of Three Mid-Cenozoic Sandstone Reservoirs to Fluid Production: a Reverse Analog to Carbon Storage

    Science.gov (United States)

    Gillespie, J.; Jordan, P. D.; Chehal, S.; Gonzales, G.; goodell, J. A.; Wilson, J.

    2013-12-01

    low spatial variance. In South Coles Levee, injection was restricted to the eastern portion of the field resulting in high pressures in the east and low pressures in the west. In South Coles Levee, the Stevens reservoir has a PI value of 91,360 m3/yr/MPa. The PI at North Coles Levee could not be calculated accurately because of very low net flux values over the time period analyzed (i.e. injection equaled production). The lack of water production in the Stevens reservoirs suggests they receive minimal aquifer pressure support. Our results suggest that greater care must be exercised during injection and storage of CO2 in the Temblor Formation due to its greater pressure sensitivity to fluid volume changes resulting from compartmentalization (PI equivalent to 2 to 9 kilotons of CO2/year/MPa at original reservoir pressure and temperature). Vedder Formation fields are more likely to accept large volumes of injected fluids (PI equivalent to 53 to 68 kilotons CO2/year/MPa at original reservoir pressure and temperature) within acceptable pressure limits.

  10. Electron and phonon properties and gas storage in carbon honeycombs

    Science.gov (United States)

    Gao, Yan; Chen, Yuanping; Zhong, Chengyong; Zhang, Zhongwei; Xie, Yuee; Zhang, Shengbai

    2016-06-01

    A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m s-1. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by at least a factor of 15. Our calculations further indicate that these porous carbon networks possess high storage capacity for gaseous atoms and molecules in agreement with the experiments.A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m s-1. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by

  11. Carbon Capture and Storage and the London Protocol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The International Energy Agency (IEA) estimates that 100 Carbon Capture and Storage (CCS) projects will be required by 2020 and over 3000 by 2050 if CCS is to contribute fully to the least-cost technology portfolio for CO2 mitigation. For CCS to reach its emissions reduction potential, the 2009 IEA publication Technology Roadmap: Carbon Capture and Storage recommends that international legal obstacles associated with global CCS deployment be removed by 2012 -- including the prohibition on transboundary CO2 transfer under the London Protocol. The London Protocol was amended by contracting parties in 2009 to allow for cross-border transportation of CO2 for sub-seabed storage, but the amendment must be ratified by two-thirds of contracting parties to enter into force. It is unlikely that this will occur in the near term; this working paper therefore outlines options that may be available to contracting parties under international law to address the barrier to deployment presented by Article 6, pending formal entry into force of the 2009 amendment.

  12. Carbon dioxide storage in unconventional reservoirs workshop: summary of recommendations

    Science.gov (United States)

    Jones, Kevin B.; Blondes, Madalyn S.

    2015-01-01

    “Unconventional reservoirs” for carbon dioxide (CO2) storage—that is, geologic reservoirs in which changes to the rock trap CO2 and therefore contribute to CO2 storage—including coal, shale, basalt, and ultramafic rocks, were the focus of a U.S. Geological Survey (USGS) workshop held March 28 and 29, 2012, at the National Conservation Training Center in Shepherdstown, West Virginia. The goals of the workshop were to determine whether a detailed assessment of CO2 storage capacity in unconventional reservoirs is warranted, and if so, to build a set of recommendations that could be used to develop a methodology to assess this storage capacity. Such an assessment would address only the technically available resource, independent of economic or policy factors. At the end of the workshop, participants agreed that sufficient knowledge exists to allow an assessment of the potential CO2 storage resource in coals, organic-rich shales, and basalts. More work remains to be done before the storage resource in ultramafic rocks can be meaningfully assessed.

  13. Carbon capture and storage as a corporate technology strategy challenge

    International Nuclear Information System (INIS)

    Latest estimates suggest that widespread deployment of carbon capture and storage (CCS) could account for up to one-fifth of the needed global reduction in CO2 emissions by 2050. Governments are attempting to stimulate investments in CCS technology both directly through subsidizing demonstration projects, and indirectly through developing price incentives in carbon markets. Yet, corporate decision-makers are finding CCS investments challenging. Common explanations for delay in corporate CCS investments include operational concerns such as the high cost of capture technologies, technological uncertainties in integrated CCS systems and underdeveloped regulatory and liability regimes. In this paper, we place corporate CCS adoption decisions within a technology strategy perspective. We diagnose four underlying characteristics of the strategic CCS technology adoption decision that present unusual challenges for decision-makers: such investments are precautionary, sustaining, cumulative and situated. Understanding CCS as a corporate technology strategy challenge can help us move beyond the usual list of operational barriers to CCS and make public policy recommendations to help overcome them. - Research highlights: → Presents a corporate technology strategy perspective on carbon capture and storage (CCS). → CCS technology is precautionary, sustaining, cumulative and situated. → Decision-makers need to look beyond cost and risk as barriers to investment in CCS.

  14. Conductive porous carbon film as a lithium metal storage medium

    International Nuclear Information System (INIS)

    Highlights: • Conductive porous carbon films were prepared by distributing amorphous carbon nanoparticles. • The porous film provides enough conductive surfaces and reduces the effective current density. • By using the film, dendritic Li growth can be effectively prevented. • The use of the porous framework can be extended for use in other 3D structured materials for efficient Li metal storage. - Abstract: The Li metal anode boasts attractive electrochemical characteristics for use in rechargeable Li batteries, such as a high theoretical capacity and a low redox potential. However, poor cycle efficiency and safety problems relating to dendritic Li growth during cycling should be addressed. Here we propose a strategy to increase the coulombic efficiency of the Li metal electrode. Conductive porous carbon films (CPCFs) were prepared by distributing amorphous carbon nanoparticles within a polymer binder. This porous structure is able to provide enough conductive surfaces for Li deposition and dissolution, which reduce the effective current density. Moreover, the pores in these films enable the electrolyte to easily penetrate into the empty space, and Li can be densely deposited between the carbon particles. As a result, dendritic Li growth can be effectively prevented. Electrochemical tests demonstrate that the coulombic efficiency of the porous electrode can be greatly improved compared to that of the pure Cu electrode. By allowing for the development of robust Li metal electrodes, this approach provides key insight into the design of high-capacity anodes for Li metal batteries, such as Li-air and Li-S systems

  15. Synthesis and Hydrogen Storage in Single-walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Single-walled carbon nanotubes (SWNTs) were synthesized by a hydrogen arc discharge method. A high yield of gram quantity of SWNTs per hour was achieved. Tow kinds of SWNT products: web-like substance and thin films in large slices were obtained. Results of resonant Raman scattering measurements indicate that the SWNTs prepared have a wider diameter distribution and a larger mean diameter. Hydrogen uptake measurements of the two kinds of SWNT samples (both as prepared and pretreated) were carried out using a high pressure volumetric method,respectively. And a hydrogen storage capacity of 4 wt pct could be repeatedly achieved for the suitably pretreated SWNTs, which indicates that SWNTs may be a promising hydrogen storage material.

  16. In Situ X-Ray Photoelectron Spectroscopy Gas-Solid Carbonation of Ultramafic Rocks: Implications for Carbon Capture and Storage

    OpenAIRE

    Zhao, Rong

    2012-01-01

    [ANGLÈS] With the increasing carbon dioxide emission in the atmosphere, there has been an interesting interest in CCS (Carbon Capture and Storage). Mineral carbonation was considered as a better option for storage atmospheric CO2 to slow climate change down. It’s a better method for storing CO2 without re-releasing CO2 in the atmosphere. The reaction rate of carbonation is too slow to be used at industrial scale under natural conditions containing ambient temperature and pressu...

  17. 75 FR 6087 - A Comprehensive Federal Strategy on Carbon Capture and Storage

    Science.gov (United States)

    2010-02-05

    ... Documents#0;#0; ] Memorandum of February 3, 2010 A Comprehensive Federal Strategy on Carbon Capture and... investment in carbon capture and storage of any nation in history, and these investments are being matched by... technologies, I hereby establish an Interagency Task Force on Carbon Capture and Storage (Task Force)....

  18. Aggregation of carbon dioxide sequestration storage assessment units

    Science.gov (United States)

    Blondes, Madalyn S.; Schuenemeyer, John H.; Olea, Ricardo A.; Drew, Lawrence J.

    2013-01-01

    The U.S. Geological Survey is currently conducting a national assessment of carbon dioxide (CO2) storage resources, mandated by the Energy Independence and Security Act of 2007. Pre-emission capture and storage of CO2 in subsurface saline formations is one potential method to reduce greenhouse gas emissions and the negative impact of global climate change. Like many large-scale resource assessments, the area under investigation is split into smaller, more manageable storage assessment units (SAUs), which must be aggregated with correctly propagated uncertainty to the basin, regional, and national scales. The aggregation methodology requires two types of data: marginal probability distributions of storage resource for each SAU, and a correlation matrix obtained by expert elicitation describing interdependencies between pairs of SAUs. Dependencies arise because geologic analogs, assessment methods, and assessors often overlap. The correlation matrix is used to induce rank correlation, using a Cholesky decomposition, among the empirical marginal distributions representing individually assessed SAUs. This manuscript presents a probabilistic aggregation method tailored to the correlations and dependencies inherent to a CO2 storage assessment. Aggregation results must be presented at the basin, regional, and national scales. A single stage approach, in which one large correlation matrix is defined and subsets are used for different scales, is compared to a multiple stage approach, in which new correlation matrices are created to aggregate intermediate results. Although the single-stage approach requires determination of significantly more correlation coefficients, it captures geologic dependencies among similar units in different basins and it is less sensitive to fluctuations in low correlation coefficients than the multiple stage approach. Thus, subsets of one single-stage correlation matrix are used to aggregate to basin, regional, and national scales.

  19. Environmental Responses to Carbon Mitigation through Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives.  Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites.  Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  20. Environmental Responses to Carbon Mitigation through Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  1. Carbon-nanostructured materials for energy generation and storage applications

    Directory of Open Access Journals (Sweden)

    V. Linkov

    2010-01-01

    Full Text Available We have developed and refined a chemical vapour deposition method to synthesise nanotubes using liquid petroleum gasasthe carbonsource. The nanotubes were thoroughly characterised by scanning electron microscopy, transmission electron microscopy
    X-ray diffraction and thermogravimetric analysis. The protocol to grow nanotubes was then adapted to deposit nanotubes on the surface of different substrates, which were chosen based upon how
    the substrates could be applied in various hydrogen energyconver-sion systems. Carbon nanotubes area nanostructured material with an extremely wide range of application sinvariousenergy applications. The methods outlined demonstrate the complete
    development of carbon nanotube composite materials with direct applications in hydrogen energy generation, storage and conversion.

  2. A Policy Strategy for Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    Successful deployment of carbon capture and storage (CCS) is critically dependent on comprehensive policy support. While policy plays an important role in the deployment of many low-carbon technologies, it is especially crucial for CCS. This is because, in contrast to renewable energy or applications of energy efficiency, CCS generates no revenue, nor other market benefits, so long as there is no price on CO2 emissions. It is both costly to install and, once in place, has increased operating costs. Effective, well-designed policy support is essential in overcoming these barriers and the subsequent deployment of CCS technology. This guide for policy makers aims to assist those involved in designing national and international policies around CCS. It covers development of CCS from its early stages through to wide-scale deployment of the technology. The focus is both on incentives for conventional fossil-fuel CCS and for bioenergy with CCS (BECCS).

  3. Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon.

    Science.gov (United States)

    Washbourne, C-L; Renforth, P; Manning, D A C

    2012-08-01

    This paper investigates the potential for engineered urban soils to capture and store atmospheric carbon (C). Calcium (Ca) and magnesium (Mg) bearing waste silicate minerals within the soil environment can capture and store atmospheric C through the process of weathering and secondary carbonate mineral precipitation. Anthropogenic soils, known to contain substantial quantities of Ca and Mg-rich minerals derived from demolition activity (particularly cement and concrete), were systematically sampled at the surface across a 10 ha brownfield site, Science Central, located in the urban centre of Newcastle upon Tyne, U.K. Subsequent analysis yielded average carbonate contents of 21.8±4.7% wt CaCO(3). Isotopic analysis demonstrated δ(18)O values between -9.4‰ and -13.3‰ and δ(13)C values between -7.4‰ and -13.6‰ (relative to Pee Dee Belemnite), suggesting that up to 39.4±8.8% of the carbonate C has been captured from the atmosphere through hydroxylation of dissolved CO(2) in high pH solutions. The remaining carbonate C is derived from lithogenic sources. 37.4 kg of atmospheric CO(2) has already been captured and stored as carbonate per Mg of soil across the site, representing a carbon dioxide (CO(2)) removal rate of 12.5 kg CO(2) Mg(-1) yr(-1). There is the potential for capture and storage of a further 27.3 kg CO(2) Mg(-1) in residual reactive materials, which may be exploited through increased residence time (additional in situ weathering). Overall, the Science Central site has the potential to capture and store a total of 64,800 Mg CO(2) as carbonate minerals. This study illustrates the potential for managing urban soils as tools of C capture and storage, an important ecosystem service, and demonstrates the importance of studying C storage in engineering urban anthropogenic soils. PMID:22683756

  4. Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon

    International Nuclear Information System (INIS)

    This paper investigates the potential for engineered urban soils to capture and store atmospheric carbon (C). Calcium (Ca) and magnesium (Mg) bearing waste silicate minerals within the soil environment can capture and store atmospheric C through the process of weathering and secondary carbonate mineral precipitation. Anthropogenic soils, known to contain substantial quantities of Ca and Mg-rich minerals derived from demolition activity (particularly cement and concrete), were systematically sampled at the surface across a 10 ha brownfield site, Science Central, located in the urban centre of Newcastle upon Tyne, U.K. Subsequent analysis yielded average carbonate contents of 21.8 ± 4.7% wt CaCO3. Isotopic analysis demonstrated δ18O values between − 9.4‰ and − 13.3‰ and δ13C values between − 7.4‰ and − 13.6‰ (relative to Pee Dee Belemnite), suggesting that up to 39.4 ± 8.8% of the carbonate C has been captured from the atmosphere through hydroxylation of dissolved CO2 in high pH solutions. The remaining carbonate C is derived from lithogenic sources. 37.4 kg of atmospheric CO2 has already been captured and stored as carbonate per Mg of soil across the site, representing a carbon dioxide (CO2) removal rate of 12.5 kgCO2 Mg−1 yr−1. There is the potential for capture and storage of a further 27.3 kgCO2 Mg−1 in residual reactive materials, which may be exploited through increased residence time (additional in situ weathering). Overall, the Science Central site has the potential to capture and store a total of 64,800 Mg CO2 as carbonate minerals. This study illustrates the potential for managing urban soils as tools of C capture and storage, an important ecosystem service, and demonstrates the importance of studying C storage in engineering urban anthropogenic soils. Highlights: ► Urban soils potentially capture 12.5 kgCO2 Mg−1 yr−1 (value £51,843–£77,765 ha−1). ► Formation of carbonate may be significant and exploitable storage

  5. Impact of bioenergy production on carbon storage and soil functions

    Science.gov (United States)

    Prays, Nadia; Franko, Uwe

    2016-04-01

    An important renewable energy source is methane produced in biogas plants (BGPs) that convert plant material and animal excrements to biogas and a residue (BGR). If the plant material stems from crops produced specifically for that purpose, a BGP have a 'footprint' that is defined by the area of arable land needed for the production of these energy crops and the area for distributing the BGRs. The BGR can be used to fertilize these lands (reducing the need for carbon and nitrogen fertilizers), and the crop land can be managed to serve as a carbon sink, capturing atmospheric CO2. We focus on the ecological impact of different BGPs in Central Germany, with a specific interest in the long-term effect of BGR-fertilization on carbon storage within the footprint of a BGP. We therefore studied nutrient fluxes using the CANDY (CArbon and Nitrogen Dynamics) model, which processes site-specific information on soils, crops, weather, and land management to compute stocks and fluxes of carbon and nitrogen for agricultural fields. We used CANDY to calculated matter fluxes within the footprints of BGPs of different sizes, and studied the effect of the substrate mix for the BGP on the carbon dynamics of the soil. This included the land requirement of the BGR recycling when used as a fertilizer: the footprint of a BGP required for the production of the energy crop generally differs from its footprint required to take up its BGR. We demonstrate how these findings can be used to find optimal cropping choices and land management for sustainable soil use, maintaining soil fertility and other soil functions. Furthermore, site specific potentials and limitations for agricultural biogas production can be identified and applied in land-use planning.

  6. Effect of Precipitation Fluctuation on Soil Carbon Storage of a Tropical Peat Swamp Forest

    OpenAIRE

    Anton E. Satrio; Seca Gandaseca; Osumanu H. Ahmed; Nik M.A. Majid

    2009-01-01

    Problem statement: It is important to compare the effect of extremely different rainfall conditions on soil carbon storage of lowland tropical peat swamp forest. Therefore, under these natural rainfall gradient, the objectives of this study were to determine whether rainfall affects soil carbon storage of a tropical peat swamp forest and to determine what correlations between variables occurs which stimulate soil carbon storage changes of a tropical peat swamp forest. Approach: Soil sampling ...

  7. Carbon Capture and Storage Legal and Regulatory Review. Edition 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The International Energy Agency (IEA) estimates that 100 carbon capture and storage (CCS) projects must be implemented by 2020 and over 3000 by 2050 if CCS is to fully contribute to the least-cost technology portfolio for CO2 mitigation. To help countries address the many legal and regulatory issues associated with such rapid deployment, the IEA launched the Carbon Capture and Storage Legal and Regulatory Review (CCS Review) in October 2010. The CCS Review gathers contributions by national and regional governments, as well as leading organisations engaged in CCS regulatory activities, to provide a knowledge-sharing forum that supports national-level CCS regulatory development. Each contribution provides a short summary of recent and anticipated developments and highlights a particular regulatory theme (such as financial contributions to long-term stewardship). To introduce each edition, the IEA provides a brief analysis of key advances and trends. Produced bi-annually, the CCS Review provides an up-to-date snapshot of global CCS regulatory developments. The theme for the second edition of the CCS Review, released in May 2011, is long-term liability for stored CO2. Other key issues addressed include: national progress towards implementation of the EU CCS Directive; developments in marine treaties relevant to CCS; international climate change negotiations; and the development process for CCS regulation.

  8. Highly precise atmospheric oxygen measurements as a tool to detect leaks of carbon dioxide from Carbon Capture and Storage sites

    NARCIS (Netherlands)

    van Leeuwen, Charlotte

    2015-01-01

    In Carbon Capture and Storage (CCS), carbon dioxide (CO2) from fossil fuel combustion is stored underground into a geological formation. Although the storage of CO2 is considered as safe, leakage to the atmosphere is an important concern and monitoring is necessary. Detecting and quantifying leaks o

  9. How aware is the public of carbon capture and storage?

    Energy Technology Data Exchange (ETDEWEB)

    Curry, T.; Herzog, H.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Lab. for Energy and the Environment; Reiner, D.M. [Cambridge Univ., Cambridge, (United States). Judge Inst. of Management; Ansolabehere, S. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Dept. of Political Science

    2005-07-01

    This paper presented the results of a survey conducted in the fall of 2003 that examined attitudes toward, and understanding of, carbon dioxide capture and storage (CCS), also known as carbon sequestration. The study was conducted as part of broad range of questions about energy and the environment. The goal of the survey was to determine attitudes toward spending on the environment. In particular, the survey asked 17 questions to determine the level of public understanding of global warming and the carbon cycle and to determine public awareness of CCS. In addition to demographic information, the survey determined the effect of national energy usage information and price data on public preferences. The paper also presented some implications for public acceptance. The survey showed that the environment ranked thirteenth on a list of 22 issues facing the United States at the time of the survey, with the top three being terrorism, health care and the economy. The survey also asked respondents to choose the 2 most important of 10 environmental problems, namely water pollution, destruction of ecosystems, toxic waste, overpopulation, ozone depletion, global warming, urban sprawl, smog, endangered species, and acid rain. Global warming ranked sixth out of the issues in the survey. It was noted that very few people in the United States have heard of CCS, and those who have heard of it were no more likely to know what environmental concern it addressed than those who had not heard of CCS. 13 refs.

  10. Storage of carbon in natural grasses high andean

    Directory of Open Access Journals (Sweden)

    Raúl Marino Yaranga Cano

    2013-12-01

    Full Text Available The aim of the study was to determine the capacity of storage of carbon in species of grasses natural of high andean, between January of 2012 and March of 2013. They were defined two sampling areas in the districts of Huasicancha and Chicche of the county of Huancayo, Junín. The first of the areas was located in the place Pumahuasi (18L 466456E 8628580N and the second in Vista Alegre (18L 464886E 8642964N, between 3 845 and 3 870 meters of altitude. 10 plants per species were collected at random, between April and May, considering the moment of maximum growth of the plants. The samples were washed and dried off to the atmosphere during 15 days, being completed the drying in a stove to 60 °C, during 48 hours. The determination of the percentage of dry matter of the samples was carried out by the difference between the initial and final weights. While that the determination of the percentage of carbon was carried out through the method of Walkley-Black. The results of the correlation of weight between air biomass and biomass radicular were highly significant r = 0.9856 ** and b = 3.4507. The percentage of the weight of the root regarding that of the air biomass oscillated between 27.93% and 30.20%, respectively. The content of carbon expressed as percentage varied according to the part of the plant and the origin place.

  11. How aware is the public of carbon capture and storage?

    International Nuclear Information System (INIS)

    This paper presented the results of a survey conducted in the fall of 2003 that examined attitudes toward, and understanding of, carbon dioxide capture and storage (CCS), also known as carbon sequestration. The study was conducted as part of broad range of questions about energy and the environment. The goal of the survey was to determine attitudes toward spending on the environment. In particular, the survey asked 17 questions to determine the level of public understanding of global warming and the carbon cycle and to determine public awareness of CCS. In addition to demographic information, the survey determined the effect of national energy usage information and price data on public preferences. The paper also presented some implications for public acceptance. The survey showed that the environment ranked thirteenth on a list of 22 issues facing the United States at the time of the survey, with the top three being terrorism, health care and the economy. The survey also asked respondents to choose the 2 most important of 10 environmental problems, namely water pollution, destruction of ecosystems, toxic waste, overpopulation, ozone depletion, global warming, urban sprawl, smog, endangered species, and acid rain. Global warming ranked sixth out of the issues in the survey. It was noted that very few people in the United States have heard of CCS, and those who have heard of it were no more likely to know what environmental concern it addressed than those who had not heard of CCS. 13 refs

  12. Mangrove carbon sink. Do burrowing crabs contribute to sediment carbon storage? Evidence from a Kenyan mangrove system

    OpenAIRE

    Anna Andreetta; Marco Fusi; Irene Cameldi; Filippo Cimò; Stefano Carnicelli; Stefano Cannicci

    2014-01-01

    Mangrove ecosystems are acknowledged as a significant carbon reservoir, with a potential key role as carbon sinks. Little however is known on sediment/soil capacity to store organic carbon and the impact of benthic fauna on soil organic carbon (SOC) stock in mangrove C-poor soils. This study aimed to investigate the effects of macrobenthos on SOC storage and dynamic in mangrove forest at Gazi Bay (Kenya). Although the relatively low amount of organic carbon (OC%) in these soils, they resulted...

  13. Decomposition by ectomycorrhizal fungi alters soil carbon storage in a simulation model

    DEFF Research Database (Denmark)

    Moore, J. A. M.; Jiang, J.; Post, W. M.; Classen, Aimee Taylor

    2015-01-01

    Carbon cycle models often lack explicit belowground organism activity, yet belowground organisms regulate carbon storage and release in soil. Ectomycorrhizal fungi are important players in the carbon cycle because they are a conduit into soil for carbon assimilated by the plant. It is hypothesize...

  14. Optimal Timing of Carbon Capture and Storage Policies Under Learning-by-doing

    OpenAIRE

    Amigues, Jean-Pierre; Lafforgue, Gilles; MOREAUX Michel

    2014-01-01

    Using a standard Hotelling model of resource exploitation, we determine the optimal consumption paths of three energy resources: dirty coal, which is depletable and carbon-emitting; clean coal, which is also depletable but carbon-free thanks to an abatement technology (CCS: Carbon Capture and Storage), and solar energy which is renewable and carbon-free. Carbon emissions are released into the atmosphere and we assume that the atmospheric carbon stock cannot exceed a given ceiling. We consider...

  15. Global Action to Advance Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Representing one-fifth of total global CO2 emissions currently, industrial sectors such as cement, iron and steel, chemicals and refining are expected to emit even more CO2 over the coming decades. Carbon capture and storage (CCS) is currently the only large-scale mitigation option available to cut the emissions intensity of production by over 50% in these sectors. CCS is already proven in some industrial sectors, such as natural gas processing. Yet, the commercial-scale demonstration stage in key sectors such as iron and steel, cement or some processes in the refining sector has not been reached. To achieve decarbonisation goals, policy makers must pay more attention to industrial applications of CCS, while not undermining the global competitiveness of these sectors.

  16. Permanent carbon dioxide storage in deep-sea sediments.

    Science.gov (United States)

    House, Kurt Zenz; Schrag, Daniel P; Harvey, Charles F; Lackner, Klaus S

    2006-08-15

    Stabilizing the concentration of atmospheric CO(2) may require storing enormous quantities of captured anthropogenic CO(2) in near-permanent geologic reservoirs. Because of the subsurface temperature profile of terrestrial storage sites, CO(2) stored in these reservoirs is buoyant. As a result, a portion of the injected CO(2) can escape if the reservoir is not appropriately sealed. We show that injecting CO(2) into deep-sea sediments below [corrected] 3,000-m water depth and a few hundred meters of sediment provides permanent geologic storage even with large geomechanical perturbations. At the high pressures and low temperatures common in deep-sea sediments, CO(2) resides in its liquid phase and can be denser than the overlying pore fluid, causing the injected CO(2) to be gravitationally stable. Additionally, CO(2) hydrate formation will impede the flow of CO(2)(l) and serve as a second cap on the system. The evolution of the CO(2) plume is described qualitatively from the injection to the formation of CO(2) hydrates and finally to the dilution of the CO(2)(aq) solution by diffusion. If calcareous sediments are chosen, then the dissolution of carbonate host rock by the CO(2)(aq) solution will slightly increase porosity, which may cause large increases in permeability. Karst formation, however, is unlikely because total dissolution is limited to only a few percent of the rock volume. The total CO(2) storage capacity within the 200-mile economic zone of the U.S. coastline is enormous, capable of storing thousands of years of current U.S. CO(2) emissions. PMID:16894174

  17. Carbon Capture and Storage (CCS) in the European Union Energy Union’s Governance

    OpenAIRE

    Haszeldine, R. Stuart; Scott, Vivian

    2015-01-01

    Carbon Capture and Storage (CCS) in the European Union Energy Union’s Governance Submission to the House of Lords EU Energy and Environment Sub-Committee inquiry: EU Energy Governance Carbon Capture and Storage (CCS) in the European Union Energy Union’s Governance Submission to the House of Lords EU Energy and Environment Sub-Committee inquiry: EU Energy Governance

  18. Carbon Capture and Storage in the EU's 2030 climate and energy framework

    OpenAIRE

    Haszeldine, R Stuart; Scott, Vivian; Littlecott, Chris

    2014-01-01

    SCCS Policy Briefing and Recommendations for European Council Carbon Capture and Storage in the EU’s 2030 climate and energy framework SCCS Policy Briefing and Recommendations for European Council Carbon Capture and Storage in the EU’s 2030 climate and energy framework

  19. Hydrogen storage capacity of lithium-doped KOH activated carbons

    International Nuclear Information System (INIS)

    Highlights: • The hydrogen adsorption of lithium-doped KOH activated carbons has been studied. • Lithium doping improves their hydrogen adsorption affinity. • Lithium doping is more effective for materials with micropores of 0.8 nm or smaller. • Lithium reagent can alter the pore structure, depending on the raw material. • Optimizing the pore size and functional group is needed for better hydrogen uptake. - Abstract: The authors have studied the hydrogen adsorption performance of several types of lithium-doped KOH activated carbons. In the case of activated cokes, lithium doping improves their hydrogen adsorption affinity from 5.02 kg/m3 to 5.86 kg/m3 at 303 K. Hydrogen adsorption density increases by around 17% after lithium doping, likely due to the fact that lithium doping is more effective for materials with micropores of 0.8 nm or smaller. The effects of lithium on hydrogen storage capacity vary depending on the raw material, because the lithium reagent can react with the material and alter the pore structure, indicating that lithium doping has the effect of plugging or filling the micropores and changing the structures of functional groups, resulting in the formation of mesopores. Despite an observed decrease in hydrogen uptake, lithium doping was found to improve hydrogen adsorption affinity. Lithium doping increases hydrogen uptake by optimizing the pore size and functional group composition

  20. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    Science.gov (United States)

    Serrano, Oscar; Ricart, Aurora M.; Lavery, Paul S.; Mateo, Miguel Angel; Arias-Ortiz, Ariane; Masque, Pere; Rozaimi, Mohammad; Steven, Andy; Duarte, Carlos M.

    2016-08-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3- to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3- to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stocks were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). In addition, soil accumulation rates and fine-grained sediment content (factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  1. Accounting carbon storage in decaying root systems of harvested forests.

    Science.gov (United States)

    Wang, G Geoff; Van Lear, David H; Hu, Huifeng; Kapeluck, Peter R

    2012-05-01

    Decaying root systems of harvested trees can be a significant component of belowground carbon storage, especially in intensively managed forests where harvest occurs repeatedly in relatively short rotations. Based on destructive sampling of root systems of harvested loblolly pine trees, we estimated that root systems contained about 32% (17.2 Mg ha(-1)) at the time of harvest, and about 13% (6.1 Mg ha(-1)) of the soil organic carbon 10 years later. Based on the published roundwood output data, we estimated belowground biomass at the time of harvest for loblolly-shortleaf pine forests harvested between 1995 and 2005 in South Carolina. We then calculated C that remained in the decomposing root systems in 2005 using the decay function developed for loblolly pine. Our calculations indicate that the amount of C stored in decaying roots of loblolly-shortleaf pine forests harvested between 1995 and 2005 in South Carolina was 7.1 Tg. Using a simple extrapolation method, we estimated 331.8 Tg C stored in the decomposing roots due to timber harvest from 1995 to 2005 in the conterminous USA. To fully account for the C stored in the decomposing roots of the US forests, future studies need (1) to quantify decay rates of coarse roots for major tree species in different regions, and (2) to develop a methodology that can determine C stock in decomposing roots resulting from natural mortality. PMID:22535427

  2. CO2 Highways for Europe: Modeling a Carbon Capture, Transport and Storage Infrastructure for Europe

    OpenAIRE

    Mendelevitch, Roman; Herold, Johannes; Oei, Pao-Yu; Tissen, Andreas

    2010-01-01

    We present a mixed integer, multi-period, cost-minimizing carbon capture, transport and storage (CCTS) network model for Europe. The model incorporates endogenous decisions about carbon capture, pipeline and storage investments; capture, flow and injection quantities based on given costs, certificate prices, storage capacities and point source emissions. The results indicate that CCTS can theoretically contribute to the decarbonization of Europe's energy and industry sectors. This requires a ...

  3. Increased fire frequency optimization of black carbon mixing and storage

    Science.gov (United States)

    Pyle, Lacey; Masiello, Caroline; Clark, Kenneth

    2016-04-01

    Soil carbon makes up a substantial part of the global carbon budget and black carbon (BC - produced from incomplete combustion of biomass) can be significant fraction of soil carbon. Soil BC cycling is still poorly understood - very old BC is observed in soils, suggesting recalcitrance, yet in short term lab and field studies BC sometimes breaks down rapidly. Climate change is predicted to increase the frequency of fires, which will increase global production of BC. As up to 80% of BC produced in wildfires can remain at the fire location, increased fire frequency will cause significant perturbations to soil BC accumulation. This creates a challenge in estimating soil BC storage, in light of a changing climate and an increased likelihood of fire. While the chemical properties of BC are relatively well-studied, its physical properties are much less well understood, and may play crucial roles in its landscape residence time. One important property is density. When BC density is less than 1 g/cm3 (i.e. the density of water), it is highly mobile and can easily leave the landscape. This landscape mobility following rainfall may inflate estimates of its degradability, making it crucial to understand both the short- and long term density of BC particles. As BC pores fill with minerals, making particles denser, or become ingrown with root and hyphal anchors, BC is likely to become protected from erosion. Consequently, how quickly BC is mixed deeper into the soil column is likely a primary controller on BC accumulation. Additionally the post-fire recovery of soil litter layers caps BC belowground, protecting it from erosional forces and re-combustion in subsequent fires, but still allowing bioturbation deeper into the soil column. We have taken advantage of a fire chronosequence in the Pine Barrens of New Jersey to investigate how density of BC particles change over time, and how an increase in fire frequency affects soil BC storage and soil column movement. Our plots have

  4. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage.

    Science.gov (United States)

    Hudiburg, Tara; Law, Beverly; Turner, David P; Campbell, John; Donato, Dan; Duane, Maureen

    2009-01-01

    Net uptake of carbon from the atmosphere (net ecosystem production, NEP) is dependent on climate, disturbance history, management practices, forest age, and forest type. To improve understanding of the influence of these factors on forest carbon stocks and flux in the western United States, federal inventory data and supplemental field measurements at additional plots were used to estimate several important components of the carbon balance in forests in Oregon and Northern California during the 1990s. Species- and ecoregion-specific allometric equations were used to estimate live and dead biomass stores, net primary productivity (NPP), and mortality. In the semiarid East Cascades and mesic Coast Range, mean total biomass was 8 and 24 kg C/m2, and mean NPP was 0.30 and 0.78 kg C.m(-2).yr(-1), respectively. Maximum NPP and dead biomass stores were most influenced by climate, whereas maximum live biomass stores and mortality were most influenced by forest type. Within ecoregions, mean live and dead biomass were usually higher on public lands, primarily because of the younger age class distribution on private lands. Decrease in NPP with age was not general across ecoregions, with no marked decline in old stands (>200 years old) in some ecoregions. In the absence of stand-replacing disturbance, total landscape carbon stocks could theoretically increase from 3.2 +/- 0.34 Pg C to 5.9 +/- 1.34 Pg C (a 46% increase) if forests were managed for maximum carbon storage. Although the theoretical limit is probably unattainable, given the timber-based economy and fire regimes in some ecoregions, there is still potential to significantly increase the land-based carbon storage by increasing rotation age and reducing harvest rates. PMID:19323181

  5. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest

    OpenAIRE

    Yong Shen; Shixiao Yu; Juyu Lian; Hao Shen; Honglin Cao; Huanping Lu; Wanhui Ye

    2016-01-01

    Tropical forests play a disproportionately important role in the global carbon (C) cycle, but it remains unclear how local environments and functional diversity regulate tree aboveground C storage. We examined how three components (environments, functional dominance and diversity) affected C storage in Dinghushan 20-ha plot in China. There was large fine-scale variation in C storage. The three components significantly contributed to regulate C storage, but dominance and diversity of traits we...

  6. Comparative study of Hydrogen Storage Efficiency and Thermal Effects of Metal Hydrides vs. Carbon Materials

    International Nuclear Information System (INIS)

    Storage of hydrogen is one of the key challenges in developing hydrogen economy. Conventional storage methods such as high-pressure gas or cryogenic liquid hydrogen can not fulfill the set future storage goals. Storage in solid fuel form by chemically or physically combined within materials has potential advantages over other storage methods. There is enduring research both on modifying and optimizing the known solid store materials. In the present paper, recent developments of metal hydrides and carbon based materials based on storage capacity, operating conditions and thermal effects are comparatively reported. The reported work will provide guidance to planned future programs. (authors)

  7. Activated carbons from African oil palm waste shells and fibre for hydrogen storage

    OpenAIRE

    Liliana Giraldo; Maria Fernanda González-Navarro; Juan Carlos Moreno-Piraján

    2013-01-01

    We prepared a series of activated carbons by chemical activation with two strong bases in-group that few use, and I with waste from shell and fibers and oil-palm African. Activated carbons are obtained with relatively high surface areas (1605 m2/g). We study the textural and chemical properties and its effect on hydrogen storage. The activated carbons obtained from fibrous wastes exhibit a high hydrogen storage capacity of 6.0 wt % at 77 K and 12 bar.

  8. Deployment models for commercialized carbon capture and storage.

    Science.gov (United States)

    Esposito, Richard A; Monroe, Larry S; Friedman, Julio S

    2011-01-01

    Even before technology matures and the regulatory framework for carbon capture and storage (CCS) has been developed, electrical utilities will need to consider the logistics of how widespread commercial-scale operations will be deployed. The framework of CCS will require utilities to adopt business models that ensure both safe and affordable CCS operations while maintaining reliable power generation. Physical models include an infrastructure with centralized CO(2) pipelines that focus geologic sequestration in pooled regional storage sites or supply CO(2) for beneficial use in enhanced oil recovery (EOR) and a dispersed plant model with sequestration operations which take place in close proximity to CO(2) capture. Several prototypical business models, including hybrids of these two poles, will be in play including a self-build option, a joint venture, and a pay at the gate model. In the self-build model operations are vertically integrated and utility owned and operated by an internal staff of engineers and geologists. A joint venture model stresses a partnership between the host site utility/owner's engineer and external operators and consultants. The pay to take model is turn-key external contracting to a third party owner/operator with cash positive fees paid out for sequestration and cash positive income for CO(2)-EOR. The selection of a business model for CCS will be based in part on the desire of utilities to be vertically integrated, source-sink economics, and demand for CO(2)-EOR. Another element in this decision will be how engaged a utility decides to be and the experience the utility has had with precommercial R&D activities. Through R&D, utilities would likely have already addressed or at least been exposed to the many technical, regulatory, and risk management issues related to successful CCS. This paper provides the framework for identifying the different physical and related prototypical business models that may play a role for electric utilities in

  9. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation

    Science.gov (United States)

    Matter, Jürg M.; Kelemen, Peter B.

    2009-12-01

    Anthropogenic greenhouse-gas emissions continue to increase rapidly despite efforts aimed at curbing the release of such gases. One potentially long-term solution for offsetting these emissions is the capture and storage of carbon dioxide. In principle, fluid or gaseous carbon dioxide can be injected into the Earth's crust and locked up as carbonate minerals through chemical reactions with calcium and magnesium ions supplied by silicate minerals. This process can lead to near-permanent and secure sequestration, but its feasibility depends on the ease and vigour of the reactions. Laboratory studies as well as natural analogues indicate that the rate of carbonate mineral formation is much higher in host rocks that are rich in magnesium- and calcium-bearing minerals. Such rocks include, for example, basalts and magnesium-rich mantle rocks that have been emplaced on the continents. Carbonate mineral precipitation could quickly clog up existing voids, presenting a challenge to this approach. However, field and laboratory observations suggest that the stress induced by rapid precipitation may lead to fracturing and subsequent increase in pore space. Future work should rigorously test the feasibility of this approach by addressing reaction kinetics, the evolution of permeability and field-scale injection methods.

  10. Carbon Storage in an Extensive Karst-distributed Region of Southwestern China based on Multiple Methods

    Science.gov (United States)

    Guo, C.; Wu, Y.; Yang, H.; Ni, J.

    2015-12-01

    Accurate estimation of carbon storage is crucial to better understand the processes of global and regional carbon cycles and to more precisely project ecological and economic scenarios for the future. Southwestern China has broadly and continuously distribution of karst landscapes with harsh and fragile habitats which might lead to rocky desertification, an ecological disaster which has significantly hindered vegetation succession and economic development in karst regions of southwestern China. In this study we evaluated the carbon storage in eight political divisions of southwestern China based on four methods: forest inventory, carbon density based on field investigations, CASA model driven by remote sensing data, and BIOME4/LPJ global vegetation models driven by climate data. The results show that: (1) The total vegetation carbon storage (including agricultural ecosystem) is 6763.97 Tg C based on the carbon density, and the soil organic carbon (SOC) storage (above 20cm depth) is 12475.72 Tg C. Sichuan Province (including Chongqing) possess the highest carbon storage in both vegetation and soil (1736.47 Tg C and 4056.56 Tg C, respectively) among the eight political divisions because of the higher carbon density and larger distribution area. The vegetation carbon storage in Hunan Province is the smallest (565.30 Tg C), and the smallest SOC storage (1127.40 Tg C) is in Guangdong Province; (2) Based on forest inventory data, the total aboveground carbon storage in the woody vegetation is 2103.29 Tg C. The carbon storage in Yunnan Province (819.01 Tg C) is significantly higher than other areas while tropical rainforests and seasonal forests in Yunnan contribute the maximum of the woody vegetation carbon storage (account for 62.40% of the total). (3) The net primary production (NPP) simulated by the CASA model is 68.57 Tg C/yr, while the forest NPP in the non-karst region (account for 72.50% of the total) is higher than that in the karst region. (4) BIOME4 and LPJ

  11. Atmospheric monitoring for fugitive emissions from geological carbon storage

    Science.gov (United States)

    Loh, Z. M.; Etheridge, D.; Luhar, A.; Leuning, R.; Jenkins, C.

    2013-12-01

    We present a multi-year record of continuous atmospheric CO2 and CH4 concentration measurements, flask sampling (for CO2, CH4, N2O, δ13CO2 and SF6) and CO2 flux measurements at the CO2CRC Otway Project (http://www.co2crc.com.au/otway/), a demonstration site for geological storage of CO2 in south-western Victoria, Australia. The measurements are used to develop atmospheric methods for operational monitoring of large scale CO2 geological storage. Characterization of emission rates ideally requires concentration measurements upwind and downwind of the source, along with knowledge of the atmospheric turbulence field. Because only a single measurement location was available for much of the measurement period, we develop techniques to filter the record and to construct a ';pseudo-upwind' measurement from our dataset. Carbon dioxide and methane concentrations were filtered based on wind direction, downward shortwave radiation, atmospheric stability and hour-to-hour changes in CO2 flux. These criteria remove periods of naturally high concentration due to the combined effects of biogenic respiration, stable atmospheric conditions and pre-existing sources (both natural and anthropogenic), leaving a reduced data set, from which a fugitive leak from the storage reservoir, the ';(potential) source sector)', could more easily be detected. Histograms of the filtered data give a measure of the background variability in both CO2 and CH4. Comparison of the ';pseudo-upwind' dataset histogram with the ';(potential) source sector' histogram shows no statistical difference, placing limits on leakage to the atmosphere over the preceding two years. For five months in 2011, we ran a true pair of up and downwind CO2 and CH4 concentration measurements. During this period, known rates of gas were periodically released at the surface (near the original injection point). These emissions are clearly detected as elevated concentrations of CO2 and CH4 in the filtered data and in the measured

  12. Towards Regional, Error-Bounded Landscape Carbon Storage Estimates for Data-Deficient Areas of the World

    DEFF Research Database (Denmark)

    Willcock, Simon; Phillips, Oliver L.; Platts, Philip J.;

    2012-01-01

    estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been...

  13. Influence of Chemical Properties on Soil Carbon Storage of a Tropical Peat Swamp Forest

    Directory of Open Access Journals (Sweden)

    Anton E. Satrio

    2009-01-01

    Full Text Available Problem statement: It is important to investigate the seriousness of degradation of peat swamp forest caused by skidding system in terms of its function as a carbon sink. In this study, we formulated assumptions that conditions of our research site before the introduction of skidding system were in their natural states, thus that changes measured are clearly caused by skidding system. The objective of this study was to determine soil carbon storage of a tropical peat swamp forest in their natural state. Approach: Peat soil samples and bulk density were taken at 0-15 cm in a 0.3 ha plot at Sibu, Sarawak, Malaysia. The soil samples were analyzed for acidity, organic matter content, total carbon and total nitrogen. The humic acid extraction was also done and soil carbon storage values obtained by calculation. The calculation of carbon storage was by the bulk density method. Correlation analysis was used where applicable using Statistical Analysis System (SAS version 9.1. Results: The results indicated that this tropical peat swamp forest rich in soil organic matter (97.645 % but had extreme acidic environment (pH 3.737, thereby inhibiting organic matter decomposition rates. This tropical peat swamp forest also had large amounts of total carbon (48.823 %, low mineral nitrogen (0.896 % and high C/N ratio (58.427. Stable carbon (soil carbon storage positively correlated with unstable carbon (p-1 (±61.49 % of unstable carbon. Furthermore, soil carbon storage positively correlated with soil organic matter (pConclusion: From the results, it can be concluded that the tropical peat swamp forest indicates its specific natural state. This natural tropical peat swamp forest plays an important role as a sink rather than a source of carbon. The soil carbon storage in this natural tropical peat swamp forest was derived from unstable carbon and sensitive to soil acidity.

  14. Societal acceptance of carbon capture and storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Alphen, Klaas van [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80115, NL 3508 TC, Utrecht (Netherlands)]. E-mail: k.vanalphen@geo.uu.nl; Voorst tot Voorst, Quirine van [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80115, NL 3508 TC, Utrecht (Netherlands); Hekkert, Marko P. [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80115, NL 3508 TC, Utrecht (Netherlands); Smits, Ruud E.H.M. [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80115, NL 3508 TC, Utrecht (Netherlands)

    2007-08-15

    For the actual implementation of carbon capture and storage (CCS) technologies, societal support is a crucial precondition. This paper describes an extensive study on the acceptance of CCS by stakeholders in the Netherlands and explores one of the determining factors in the acceptance of CCS by the lay public, i.e. the way the Dutch press perceives and portrays CCS. The stakeholder analysis shows that there is a positive attitude towards CCS by industry, government, and environmental NGOs, provided that the conditions they pose on the deployment of CCS are met. The content analysis of Dutch news articles conveys that the media portrayal of CCS is-to a certain extent-a balanced reflection of the way CCS is perceived by the stakeholders. Both analyses show that the concerns about CCS have not overshadowed the main promise that CCS is part of the solution to climate change. However, the current negative aspects of CCS as raised by different stakeholders and the media will remain if no action is taken. Therefore, the conditions posed on the use of CCS, as well as the actions required to meet these conditions, could function as a proxy for the 'societal voice', articulating the most important issues concerning the future acceptance of CCS technology.

  15. Societal acceptance of carbon capture and storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Van Alphen, Klaas; Van Voorst tot Voorst, Quirine; Hekkert, Marko P.; Smits, Ruud E.H.M. [Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Utrecht (Netherlands). Department of Innovation Studies

    2007-08-15

    For the actual implementation of carbon capture and storage (CCS) technologies, societal support is a crucial precondition. This paper describes an extensive study on the acceptance of CCS by stakeholders in the Netherlands and explores one of the determining factors in the acceptance of CCS by the lay public, i.e. the way the Dutch press perceives and portrays CCS. The stakeholder analysis shows that there is a positive attitude towards CCS by industry, government, and environmental NGOs, provided that the conditions they pose on the deployment of CCS are met. The content analysis of Dutch news articles conveys that the media portrayal of CCS is - to a certain extent - a balanced reflection of the way CCS is perceived by the stakeholders. Both analyses show that the concerns about CCS have not overshadowed the main promise that CCS is part of the solution to climate change. However, the current negative aspects of CCS as raised by different stakeholders and the media will remain if no action is taken. Therefore, the conditions posed on the use of CCS, as well as the actions required to meet these conditions, could function as a proxy for the 'societal voice', articulating the most important issues concerning the future acceptance of CCS technology. (author)

  16. Societal acceptance of carbon capture and storage technologies

    International Nuclear Information System (INIS)

    For the actual implementation of carbon capture and storage (CCS) technologies, societal support is a crucial precondition. This paper describes an extensive study on the acceptance of CCS by stakeholders in the Netherlands and explores one of the determining factors in the acceptance of CCS by the lay public, i.e. the way the Dutch press perceives and portrays CCS. The stakeholder analysis shows that there is a positive attitude towards CCS by industry, government, and environmental NGOs, provided that the conditions they pose on the deployment of CCS are met. The content analysis of Dutch news articles conveys that the media portrayal of CCS is - to a certain extent - a balanced reflection of the way CCS is perceived by the stakeholders. Both analyses show that the concerns about CCS have not overshadowed the main promise that CCS is part of the solution to climate change. However, the current negative aspects of CCS as raised by different stakeholders and the media will remain if no action is taken. Therefore, the conditions posed on the use of CCS, as well as the actions required to meet these conditions, could function as a proxy for the 'societal voice', articulating the most important issues concerning the future acceptance of CCS technology. (author)

  17. Stakeholder perspectives on carbon capture and storage in Indonesia

    International Nuclear Information System (INIS)

    Carbon capture and storage (CCS) is being considered as an option to reduce CO2 emissions worldwide. Yet recent cases show that CCS faces divergent public acceptance issues. This paper investigates stakeholder perspectives on CCS in Indonesia. Q methodology was adopted to analyse the diversity of stakeholder perspectives. Four perspectives were identified: (1) “CO2 emissions reduction through clean energy sources rather than CCS”; (2) “CCS as one of the options in the transition to a sustainable energy system”; (3) “CCS as the only optimal solution to reduce CO2 emissions”; (4) “CCS is only a tactic to keep burning coal forever”. Based on these results, we argue that stakeholder acceptance of CCS should be understood as a complex notion. This means that understanding whether or under what conditions stakeholders would be willing to support CCS, requires consideration of stakeholders' viewpoints about broader questions of CO2 emission reduction and energy supply in Indonesia, rather than studying attitudes towards CCS in isolation. We discuss how the approach taken in this study can be used and followed up in policymaking on CCS in Indonesia. - Highlights: • We investigate stakeholder perspectives on CCS in Indonesia with Q methodology. • The study revealed four shared perspectives on CCS in Indonesia. • Of the four perspectives, two are contrasting perspectives: one pro and one con CCS. • The other two are nuanced perspectives and differ in their argumentation on CCS. • From these results we derive academic and policy implications

  18. Carbon capture and storage: Frames and blind spots

    International Nuclear Information System (INIS)

    The European Union (EU) carbon capture and storage (CCS) demonstration programme stands out for the speed with which financial support was agreed to, the size of this support, and its unusual format. This paper sets out to examine CCS policymaking in the EU by analysing the way this technology was framed. It draws up a simple model of technology framing with two variants. The first one describes the creation of “mainstream frames” of technologies in policymaking. The second one explains the effects of a “hegemonic frame”, namely the weakening of evaluation criteria and the increased salience of “blind spots”. On this basis, this paper explains the global mainstreaming of a CCS frame and its transformation into a hegemonic frame in the EU. Finally, the paper reviews the blind spots in this hegemonic frame and their impact on EU policy. -- Highlights: •Absent much public debate, experts alone have framed CCS; yet serious biases exist. •Powerful interests in the EU took advantage of a positive global framing of CCS. •A hegemonic framing of CCS in the EU caused it to bypass rigorous evaluation. •Claims regarding energy security and other benefits of CCS in the EU are dubious

  19. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    Science.gov (United States)

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility. PMID:27090405

  20. Rapid Assessment of U.S. Forest and Soil Organic Carbon Storage and Forest Biomass Carbon-Sequestration Capacity

    Science.gov (United States)

    Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.

    2009-01-01

    This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3-7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within +or- 1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0-0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.

  1. Geologic storage of carbon dioxide and enhanced oil recovery. II. Cooptimization of storage and recovery

    International Nuclear Information System (INIS)

    Geologic sequestration of carbon dioxide (CO2) in oil and gas reservoirs is one possibility to reduce the amount of CO2 released to the atmosphere. Carbon dioxide injection has been used in enhanced oil recovery (EOR) processes since the 1970s; the traditional approach is to reduce the amount of CO2 injected per barrel of oil produced. For a sequestration process, however, the aim is to maximize both the amount of oil produced and the amount of CO2 stored. It is not readily apparent how this aim is achieved in practice. In this study, several strategies are tested via compositional reservoir simulation to find injection and production procedures that 'cooptimize' oil recovery and CO2 storage. Flow simulations are conducted on a synthetic, three dimensional, heterogeneous reservoir model. The reservoir description is stochastic in that multiple realizations of the reservoir are available. The reservoir fluid description is compositional and incorporates 14 distinct components. The results show that traditional reservoir engineering techniques such as injecting CO2 and water in sequential fashion, a so-called water-alternating-gas process, are not conducive to maximizing the CO2 stored within the reservoir. A well control process that shuts in (i.e. closes) wells producing large volumes of gas and allows shut in wells to open as reservoir pressure increases is the most successful strategy for cooptimization. This result holds for both immiscible and miscible gas injection. The strategy appears to be robust in that full physics simulations employing multiple realizations of the reservoir model all confirmed that the well control technique produced the maximum amount of oil and simultaneously stored the most CO2

  2. Ectomycorrhizal fungi increase soil carbon storage: molecular signatures of mycorrhizal competition driving soil C storage at global scale

    Science.gov (United States)

    Averill, C.; Barry, B. K.; Hawkes, C.

    2015-12-01

    Soil carbon storage and decay is regulated by the activity of free-living decomposer microbes, which can be limited by nitrogen availability. Many plants associate with symbiotic ectomycorrhizal fungi on their roots, which produce nitrogen-degrading enzymes and may be able to compete with free-living decomposers for soil organic nitrogen. By doing so, ectomycorrhizal fungi may able to induce nitrogen limitation and reduce activity of free-living microbial decomposition by mining soil organic nitrogen. The implication is that ectomycorrhizal-dominated systems should have increased soil carbon storage relative to non-ectomycorrhizal systems, which has been confirmed at a global scale. To investigate these effects, we analyzed 364 globally distributed observations of soil fungal communities using 454 sequencing of the ITS region, along with soil C and N concentrations, climate and chemical data. We assigned operational taxonomic units using the QIIME pipeline and UNITE fungal database and assigned fungal reads as ectomycorrhizal or non-mycorrhizal based on current taxonomic knowledge. We tested for associations between ectomycorrhizal abundance, climate, and soil carbon and nitrogen. Sites with greater soil carbon had quantitatively more ectomycorrhizal fungi within the soil microbial community based on fungal sequence abundance, after accounting for soil nitrogen availability. This is consistent with our hypothesis that ectomycorrhizal fungi induce nitrogen-limitation of free-living decomposers and thereby increase soil carbon storage. The strength of the mycorrhizal effect increased non-linearly with ectomycorrhizal abundance: the greater the abundance, the greater the effect size. Mean annual temperature, potential evapotranspiration, soil moisture and soil pH were also significant predictors in the final AIC selected model. This analysis suggests that molecular data on soil microbial communities can be used to make quantitative biogeochemical predictions. The

  3. Hydrogen storage on high-surface-area carbon monoliths for Adsorb hydrogen Gas Vehicle

    Science.gov (United States)

    Soo, Yuchoong; Pfeifer, Peter

    2014-03-01

    Carbon briquetting can increase hydrogen volumetric storage capacity by reducing the useless void volume resulting in a better packing density. It is a robust and efficient space-filling form for an adsorbed hydrogen gas vehicle storage tank. To optimize hydrogen storage capacity, we studied three fabrication process parameters: carbon-to-binder ratio, compaction temperature, and pyrolysis atmosphere. We found that carbon-to-binder ratio and pyrolysis atmosphere have influences on gravimetric excess adsorption. Compaction temperature has large influences on gravimetric and volumetric storage capacity. We have been able to optimize these parameters for high hydrogen storage. All monolith uptakes (up to 260 bar) were measured by a custom-built, volumetric, reservoir-type instrument.

  4. Carbon storage and sequestration by trees in urban and community areas of the United States

    International Nuclear Information System (INIS)

    Carbon storage and sequestration by urban trees in the United States was quantified to assess the magnitude and role of urban forests in relation to climate change. Urban tree field data from 28 cities and 6 states were used to determine the average carbon density per unit of tree cover. These data were applied to statewide urban tree cover measurements to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole tree carbon storage densities average 7.69 kg C m−2 of tree cover and sequestration densities average 0.28 kg C m−2 of tree cover per year. Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes ($50.5 billion value; 95% CI = 597 million and 690 million tonnes) and annual sequestration is estimated at 25.6 million tonnes ($2.0 billion value; 95% CI = 23.7 million to 27.4 million tonnes). -- Highlights: •Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes. •Total tree carbon storage in U.S. urban and community areas is estimated at 1.36 billion tonnes. •Net carbon sequestration in U.S. urban areas varies by state and is estimated at 18.9 million tonnes per year. •Overlap between U.S. forest and urban forest carbon estimates is between 247 million and 303 million tonnes. -- Field and tree cover measurements reveal carbon storage and sequestration by trees in U.S. urban and community areas

  5. Preparation of Isolated Single-walled Carbon Nanotubes with High Hydrogen Storage Capacity

    Institute of Scientific and Technical Information of China (English)

    张艾飞; 刘吉平; 吕广庶; 刘华

    2006-01-01

    Isolated single-walled carbon nanotubes with high proportion of opening tips were synthesized by using alcohol as carbon source. The mechanism of cutting action of oxygen was proposed to explain its growth. Compared with carbon nanotubes synthesized with benzene as carbon source, their specific surface area was heightened by approximately 2.2 times (from 200.5 to 648 m2/g) and the hydrogen storage capacity was increased by approximately 6.5 times (from 0.95 to 7.17%, ω)which had exceeded DOE energy standard of vehicular hydrogen storage.

  6. Carbon storage and spatial distribution patterns of paddy soils in China

    Institute of Scientific and Technical Information of China (English)

    WANG Hongjie; LIU Qinghua; SHI Xuezheng; YU Dongsheng; ZHAO Yongcun; SUN Weixia; Jeremy Landon Darilek

    2007-01-01

    Carbon storage in agricultural soils plays a key role in terrestrial ecosystem carbon cycles.Paddy soil is one of the major cultivated soil types in China and is of critical significance in studies on soil carbon sequestration.This paper estimated the organic and inorganic carbon density and storage in paddy soils,and analyzed the paddy soil stock spatial distribution patterns in China based on subgroups and regions using the newly compiled 1:1 000 000 digital soil map of China as well as data from 1 490 paddy soil profiles.Results showed that paddy soils in China cover an area of about 45.69 Mhm2,accounting for 4.92% of total soil area in China.Soil organic and inorganic carbon densities of paddy soils in China showed a great heterogeneity.Paddy soil organic carbon densities (SOCD) in soil profile ranged from 0.53 to 446.2 kg/m2 (0 to 100 cm) while the paddy soil inorganic carbon densities (SICD) ranged from 0.05 to 90.03 kg/m2.Soil organic carbon densities of paddy soils in surface layer ranged from 0.17 to 55.38 kg/m2 (0 to 20 cm),with SICD of paddy soils ranging from 0.01 to 21.85 kg/m2.Profile based and surface layer based paddy soil carbon storages (SCS) are 5.39 Pg and 1.79 Pg,respectively.Paddy soil organic carbon storage (SOCS) accounts for 95% of the total carbon storage.Profile based and surface layer based SOCS of paddy soils are 5.09 Pg and 1.72 Pg,respectively.Soil inorganic carbon storage (SICS) of paddy soils accounts for 5% of the total carbon storage in China.Profile based and surface layer based paddy SICS are 0.30 Pg and 0.07 Pg respectively.Among all the eight paddy soil subgroups,hydromorphic,submergenic and percogenic paddy soils account for 85.2% of the total paddy soil areas all over China.Consequently,profile based carbon storages of these three subgroups account for 78.1% of the total profile based paddy SCS in China.Most paddy soils in China are distributed in the East-China,South-China and South-west China regions,therefore,92.6% of

  7. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  8. Norway's experience of carbon dioxide storage: a basis for pursuing international commitments?

    International Nuclear Information System (INIS)

    Does the Norwegian political landscape indicate advocacy of binding international carbon storage commitments in the foreseeable future? Norway's unique geology has understandably prompted a particular interest in the subject. This article analyses the interests and relative influence of the key domestic actors (the oil industry, environmental organizations, political parties and government bureaucracy) who wield influence in policy-making processes concerning carbon dioxide storage. Despite the level of interest aroused by the issue in Norway, the evidence suggests that policy will not move in the direction of an international carbon storage agreement. This is mainly because Norwegian policy-making in the field is dominated by the Ministry of Petroleum and Energy, whose current interests do not seem compatible with such a position. The fact that carbon storage can be developed in accordance with Norway's interests as a petroleum producer may, however, be a decisive factor for the political parties, government bureaucracy and the oil industry in the future. (author)

  9. Carbon capture and storage projects under the climate policy regime: The case of Halten CO2

    OpenAIRE

    Torvanger, Asbjørn; Rypdal, Kristin; Tjernshaugen, Andreas

    2007-01-01

    The report discusses institutional and policy issues associated with implementation of a planned carbon capture and storage plant in Mid-Norway under the international and national climate policy regime.

  10. Carbon Storage in Beech Stands on the Chřiby Uplands

    Directory of Open Access Journals (Sweden)

    Schneider Jiří

    2015-03-01

    Full Text Available The submitted scientific statement is a contribution to solutions of monitoring the storage of carbon in the woods and its emissions. Four permanent research plots were established in the area of the Chřiby uplands in the Czech Republic. The plots are made of forest stands with nearly 100% of European beech (Fagus sylvatica L.. The stands form simple spatial structures of about the same age (about 180 years. They represent, however, varying site conditions (dwarf acid beech stands, herb-rich beech stands and transitions between them. For quantification of carbon storage, standard dendrometric methods and the Field-Map technology were used. The total amount of carbon was established as the sum of further documented carbon storages in the aboveground biomass, the belowground biomass, woody debris and the forest soil. Determination of total amount of carbon was addressed in a version manner. In the first version, the estimate of the total amount of carbon was established based on Wutzler et al. (2008 equations for the aboveground biomass (AGB and the belowground biomass (BB. In the second version, the AGB was calculated according to Joosten et al. (2004, the BB according to Wirth et al. (2003, the values of storages were consistent with Mund (2004 for woody debris, and with Mackù in Kolektiv (2007 for forest soil. Total carbon storage per hectare of stand is in average 370.2 t. Obtained outcomes support the quantitative results of latest research related to carbon in the woods.

  11. Effect of Logging Operation on Soil Carbon Storage of a Tropical Peat Swamp Forest

    Directory of Open Access Journals (Sweden)

    Anton E. Satrio

    2009-01-01

    Full Text Available Problem statement: Since heavy machinery are used in the logging operation activity for extracting the logs on sensitive forest site with peat soil, environment destruction should be the other concern during its processes especially on its important function as soil carbon storage. The objective of this study was to determine whether logging operation affect soil carbon storage of a tropical peat swamp forest. Approach: Soil sampling was conducted before and after logging operation in a 0.3 ha plot to a depth of 15 cm. The soil samples were analyzed for acidity, organic matter content, total carbon, total nitrogen and total phosphorus. The humic acid extraction was also done and soil carbon storage values were obtained by calculation. Paired t-test was used to compare variables under the two treatments (before and after logging and correlation analysis was used to correlate variables such as soil pH, soil organic matter, total carbon, total nitrogen, total phosphorus, C/N ratio, C/P ratio, humic acid yield, unstable carbon and stable carbon. Results: The availability of unstable carbon and stable carbon controlled by soil acidity on undisturbed peat swamp forest as a result, the accumulation of unstable carbon as well as stable carbon occurred even if the soil pH declines and vice versa. However, stable carbon associated well with soil acidity. It was found that the C/P ratio positively correlated with humic acid and stable carbon of both before and after logging conditions. Nevertheless, that association was prominent on logged peat swamp forest. An indication that even though this peat swamp forest had been logged, humification was strongly maintained. However, the similarity of stable carbon of the logged peat swamp forest with stable carbon of undisturbed peat swamp forest indicate an ineffectiveness humification of logged peat swamp forest. Conclusion: Logging operation on sensitive forest with peat soil using heavy machinery increased the

  12. The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage?

    Science.gov (United States)

    Wiley, Erin; Huepenbecker, Sarah; Casper, Brenda B; Helliker, Brent R

    2013-11-01

    There is no consensus about how stresses such as low water availability and temperature limit tree growth. Sink limitation to growth and survival is often inferred if a given stress does not cause non-structural carbohydrate (NSC) concentrations or levels to decline along with growth. However, trees may actively maintain or increase NSC levels under moderate carbon stress, making the pattern of reduced growth and increased NSCs compatible with carbon limitation. To test this possibility, we used full and half defoliation to impose severe and moderate carbon limitation on 2-year-old Quercus velutina Lam. saplings grown in a common garden. Saplings were harvested at either 3 weeks or 4 months after treatments were applied, representing short- and longer-term effects on woody growth and NSC levels. Both defoliation treatments maintained a lower total leaf area than controls throughout the experiment with no evidence of photosynthetic up-regulation, and resulted in a similar total biomass reduction. While fully defoliated saplings had lower starch levels than controls in the short term, half defoliated saplings maintained control starch levels in both the short and longer term. In the longer term, fully defoliated saplings had the greatest starch concentration increment, allowing them to recover to near-control starch levels. Furthermore, between the two harvest dates, fully and half defoliated saplings allocated a greater proportion of new biomass to starch than did controls. The maintenance of control starch levels in half defoliated saplings indicates that these trees actively store a substantial amount of carbon before growth is carbon saturated. In addition, the allocation shift favouring storage in defoliated saplings is consistent with the hypothesis that, as an adaptation to increasing carbon stress, trees can prioritize carbon reserve formation at the expense of growth. Our results suggest that as carbon limitation increases, reduced growth is not necessarily

  13. Effect of Logging Operation on Soil Carbon Storage of a Tropical Peat Swamp Forest

    OpenAIRE

    Anton E. Satrio; Seca Gandaseca; Ahmed, Osumanu H.; Nik M.A. Majid

    2009-01-01

    Problem statement: Since heavy machinery are used in the logging operation activity for extracting the logs on sensitive forest site with peat soil, environment destruction should be the other concern during its processes especially on its important function as soil carbon storage. The objective of this study was to determine whether logging operation affect soil carbon storage of a tropical peat swamp forest. Approach: Soil sampling was conducted before and after logging operation in a 0.3 h...

  14. Hydrogen Storage in High Surface Area Carbon Nanotubes Produced by Catalytic Chemical Vapor Deposition

    OpenAIRE

    Bacsa, Revathi; Laurent, Christophe; Morishima, Ryuta; Suzuki, Hiroshi; Le Lay, Mikako

    2004-01-01

    Carbon nanotubes, mostly single- and double-walled, are prepared by a catalytic chemical vapor deposition method using H2-CH4 atmospheres with different CH4 contents. The maximum hydrogen storage at room temperatures and 10 MPa is 0.5 wt %. Contrary to expectations, purification of the carbon nanotube specimens by oxidative acid treatments or by heating in inert gas decreases the hydrogen storage. Decreasing the residual catalyst content does not necessarily lead to an increase in ASH. Moreov...

  15. Effect of Precipitation Fluctuation on Soil Carbon Storage of a Tropical Peat Swamp Forest

    Directory of Open Access Journals (Sweden)

    Anton E. Satrio

    2009-01-01

    Full Text Available Problem statement: It is important to compare the effect of extremely different rainfall conditions on soil carbon storage of lowland tropical peat swamp forest. Therefore, under these natural rainfall gradient, the objectives of this study were to determine whether rainfall affects soil carbon storage of a tropical peat swamp forest and to determine what correlations between variables occurs which stimulate soil carbon storage changes of a tropical peat swamp forest. Approach: Soil sampling was conducted in two different plots (0.3 ha each plot to a depth of 15 cm under two extremely different mean rainfall at Sibu, Sarawak, Malaysia. The soil samples were analyzed for acidity, organic matter content, total carbon, total nitrogen and total phosphorus. The humic acid extraction was also done and soil carbon storage values were obtained by calculation. The calculation of carbon storage was by the bulk density method. Comparison between paired means of soil carbon storage under two different rainfall gradients were tested using paired t-test and correlation analysis was used to correlate variables (pH, soil organic matter, total carbon, total nitrogen, total phosphorus, C/N ratio, C/P ratio, humic acid yield, unstable carbon and stable carbon. Results: The percentage of stable carbon count of unstable carbon was 42.93% under lower rainfall, while that of higher rainfall was 62.69 %. It suggests that this natural tropical peat swamp forest plays an important role as a sink rather than a source of carbon under higher rainfall but inversely under lower rainfall. It also suggests that soil organic matter tends to decompose and releases CO2 by oxidation under lower rainfall. Stable carbon positively correlated with humic acid yield for the two areas with different rainfall (pConclusion: Anaerobic environment is more prominent under higher rainfall and may facilitate high value of soil carbon storage in the soil profile of tropical peat swamp forest and

  16. Integrated Assessment of Carbon Capture and Storage (CCS) in South Africa’s Power Sector

    OpenAIRE

    Peter Viebahn; Daniel Vallentin; Samuel Höller

    2015-01-01

    This article presents an integrated assessment conducted in order to explore whether carbon capture and storage (CCS) could be a viable technological option for significantly reducing future CO2 emissions in South Africa. The methodological approach covers a commercial availability analysis, an analysis of the long-term usable CO2 storage potential (based on storage capacity assessment, energy scenario analysis and source-sink matching), an economic and ecological assessment and a stakeholder...

  17. Root biomass and carbon storage in differently managed multispecies temporary grasslands

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Mortensen, Tine Bloch; Søegaard, Karen

    2012-01-01

    Species-rich grasslands may potentially increase carbon (C) storage in soil, and an experiment was established to investigate C storage in highly productive temporary multi-species grasslands. Plots were established with three mixtures: (1) a herb mixture containing salad burnet (Sanguisorba minor...

  18. The role of Carbon Capture and Storage in a future sustainable energy system

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2012-01-01

    This paper presents the results of adding a CCS(Carbon Capture and Storage) plant including an underground CO2 storage to a well described and well documented vision of converting the present Danish fossil based energy system into a future sustainable energy system made by the Danish Society of...

  19. [Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model].

    Science.gov (United States)

    Liu, Chang; Li, Feng-Ri; Zhen, Zhen

    2014-10-01

    Abstract: Based on the data from Chinese National Forest Inventory (CNFI) and Key Ecological Benefit Forest Monitoring plots (5075 in total) in Heilongjiang Province in 2010 and concurrent meteorological data coming from 59 meteorological stations located in Heilongjiang, Jilin and Inner Mongolia, this paper established a spatial error model (SEM) by GeoDA using carbon storage as dependent variable and several independent variables, including diameter of living trees (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope), and product of precipitation and temperature (Rain_Temp). Global Moran's I was computed for describing overall spatial autocorrelations of model results at different spatial scales. Local Moran's I was calculated at the optimal bandwidth (25 km) to present spatial distribution residuals. Intra-block spatial variances were computed to explain spatial heterogeneity of residuals. Finally, a spatial distribution map of carbon storage in Heilongjiang was visualized based on predictions. The results showed that the distribution of forest carbon storage in Heilongjiang had spatial effect and was significantly influenced by stand, topographic and meteorological factors, especially average DBH. SEM could solve the spatial autocorrelation and heterogeneity well. There were significant spatial differences in distribution of forest carbon storage. The carbon storage was mainly distributed in Zhangguangcai Mountain, Xiao Xing'an Mountain and Da Xing'an Mountain where dense, forests existed, rarely distributed in Songnen Plains, while Wanda Mountain had moderate-level carbon storage. PMID:25796882

  20. Impacts of Soil Organic Stability on Carbon Storage in Coastal Wetlands

    Science.gov (United States)

    Williams, E. K.; Rosenheim, B. E.

    2015-12-01

    Coastal wetlands store vast amounts of organic carbon, globally, and are becoming increasingly vulnerable to the effects of anthropogenic sea level rise. Recently, we used ramped pyrolysis/oxidation decomposition characteristics as proxies for soil organic carbon (SOC) stability to understand the fate of carbon storage in coastal wetlands (fresh, brackish, and salt marshes) comprising the Mississippi River deltaic plain, undergoing rapid rates of local sea level rise. At equivalent soil depths, we observed that fresh marsh SOC was more thermochemically stable than brackish and salt marsh SOC. The differences in stability imply stronger carbon sequestration potential of fresh marsh soil carbon, compared to that of salt and brackish marshes. Here, we expand upon these results of differential organic carbon stability/reactivity and model how projected changes in salinity due to sea-level rise and other environmental changes will impact carbon storage in this region with implications globally.

  1. The Environmental and Economic Sustainability of Carbon Capture and Storage

    Directory of Open Access Journals (Sweden)

    Mayuran Sivapalan

    2011-05-01

    Full Text Available For carbon capture and storage (CCS to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO2 abated—there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications—indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO2 entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and

  2. Assessing the economic potential of carbon capture and storage in Canada using an energy-economy model

    OpenAIRE

    Lutes, Kristin Marie

    2012-01-01

    In this paper I investigate the potential for large-scale deployment of carbon capture and storage in Canada. I collected data on carbon emission point sources across Canada and potential carbon storage sites to estimate how carbon capture and storage costs differ by industry, region and increasing cumulative production nationally. The economic costs for all three aspects—capture, transport and storage—are assembled into regional and national cost curves. These cost curves provide a detailed ...

  3. Hydrogen Storage using Physisorption : Modified Carbon Nanofibers and Related Materials

    NARCIS (Netherlands)

    Nijkamp, Marije Gessien

    2002-01-01

    This thesis describes our research on adsorbent systems for hydrogen storage for small scale, mobile application. Hydrogen storage is a key element in the change-over from the less efficient and polluting internal combustion engine to the pollution-free operating hydrogen fuel cell. In general, hydr

  4. Understanding how individuals perceive carbon dioxide. Implications for acceptance of carbon dioxide capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Itaoka, K.; Saito, A. [Mizuho Information and Research Institute, Tokyo (Japan); Paukovic, M.; De Best-Waldhober, M. [ECN Policy Studies, Petten (Netherlands); Dowd, A.M.; Jeanneret, T.; Ashworth, P.; James, M. [The Global CCS Institute, Canberra (Australia)

    2012-06-15

    Carbon dioxide capture and storage (CCS) presents one potential technological solution for mitigating the atmospheric emission of carbon dioxide sources. However, CCS is a relatively new technology with associated uncertainties and perceived risks. For this reason, a growing body of research now focuses on public perceptions and potential for societal acceptance of CCS technology. Almost all explanations of CCS technology make reference to carbon dioxide, with an assumption that the general public understands CO2. It has become apparent that the general public’s knowledge and understanding of CO2’s properties influences how they engage with CO2 emitting industries and CCS technologies. However, surprisingly little research has investigated public perceptions, knowledge, and understanding of CO2. This investigation attempts to fill that gap. This report describes an investigation of how citizens of three countries (Japan, Australia, and the Netherlands) perceive CO2. Furthermore, it attempts to relate individual perceptions of CO2 to perceptions of CCS, and to determine how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards low carbon energy options, particularly CCS. In brief, the research had four ultimate aims. It aimed to: Explore the public’s knowledge and understanding of the properties of CO2; Examine the influence of that knowledge on their perceptions of CO2 and CCS; Investigate how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards CCS; and Identify if any differences between countries exist in relation to values and beliefs, knowledge of CO2’s properties, and CCS perceptions.

  5. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest.

    Science.gov (United States)

    Shen, Yong; Yu, Shixiao; Lian, Juyu; Shen, Hao; Cao, Honglin; Lu, Huanping; Ye, Wanhui

    2016-01-01

    Tropical forests play a disproportionately important role in the global carbon (C) cycle, but it remains unclear how local environments and functional diversity regulate tree aboveground C storage. We examined how three components (environments, functional dominance and diversity) affected C storage in Dinghushan 20-ha plot in China. There was large fine-scale variation in C storage. The three components significantly contributed to regulate C storage, but dominance and diversity of traits were associated with C storage in different directions. Structural equation models (SEMs) of dominance and diversity explained 34% and 32% of variation in C storage. Environments explained 26-44% of variation in dominance and diversity. Similar proportions of variation in C storage were explained by dominance and diversity in regression models, they were improved after adding environments. Diversity of maximum diameter was the best predictor of C storage. Complementarity and selection effects contributed to C storage simultaneously, and had similar importance. The SEMs disengaged the complex relationships among the three components and C storage, and established a framework to show the direct and indirect effects (via dominance and diversity) of local environments on C storage. We concluded that local environments are important for regulating functional diversity and C storage. PMID:27278688

  6. Accelerating the development and deployment of carbon capture and storage technologies : an innovation system perspective

    NARCIS (Netherlands)

    van Alphen, K.

    2011-01-01

    In order to take up the twin challenge of reducing carbon dioxide (CO2) emissions, while meeting a growing energy demand, the potential deployment of carbon dioxide capture and storage (CCS) technologies is attracting a growing interest of policy makers around the world. At present CCS is the only t

  7. Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage

    NARCIS (Netherlands)

    Schakel, Wouter; Meerman, Hans; Talaei, Alireza; Ramírez, Andrea; Faaij, André

    2014-01-01

    Combining co-firing biomass and carbon capture and storage (CCS) in power plants offers attractive potential for net removal of carbon dioxide (CO2) from the atmosphere. In this study, the impact of co-firing biomass (wood pellets and straw pellets) on the emission profile of power plants with carbo

  8. False Hope. Why carbon capture and storage won't save the climate

    International Nuclear Information System (INIS)

    Carbon capture and storage (CCS) aims to reduce the climate impact of burning fossil fuels by capturing carbon dioxide (CO2) from power station smokestacks and disposing of it underground. However, the technology is largely unproven and will not be ready in time to save the climate

  9. Activated carbons from African oil palm waste shells and fibre for hydrogen storage

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2013-06-01

    Full Text Available We prepared a series of activated carbons by chemical activation with two strong bases in-group that few use, and I with waste from shell and fibers and oil-palm African. Activated carbons are obtained with relatively high surface areas (1605 m2/g. We study the textural and chemical properties and its effect on hydrogen storage. The activated carbons obtained from fibrous wastes exhibit a high hydrogen storage capacity of 6.0 wt % at 77 K and 12 bar.

  10. Carbon dioxide capture and storage (CCS): liability for non-permanence under the UNFCCC

    OpenAIRE

    Bode, Sven; Jung, Martina

    2005-01-01

    Prior to CoP 10, our discussion paper ?On the Integration of Carbon Capture and Storage into the International Climate Regime? argued that carbon capture and storage (CCS) was similar to carbon sequestration in the area of Land Use, Land-Use Change and Forestry (LULUCF). This was criticized by several readers who observed that treating CCS as a removal activity (sink) would not be compatible with the UNFCCC sink definition, what we already had mentioned in the paper. The present paper is base...

  11. [Forest biomass carbon storage and its dynamics in Tanjiang River basin].

    Science.gov (United States)

    Yang, Kun; Guan, Dongsheng; Zhou, Chunhua

    2006-09-01

    Based on an improved estimation method of forest carbon storage and the inventory of forest resources, this paper estimated the forest carbon storage and its dynamic changes in Tanjiang River basin, and analyzed the relationships of the carbon storage and its density with the increase of population density and GDP during the urbanization in 1990-2001. The results showed that the forest carbon storage in Tanjiang River basin increased from 5.906 x 10(6) t in 1990 to 7.852 x 10(6) t in 2001, with an annual average accumulation amount of 0.18 x 10(6) t or an annual average accumulation rate of 3.05%, and playing a role of carbon sink. The rapid increase of population density and GDP didn't influence the increase of forest carbon storage and density, but the development of forestry was far lower than that of economy. To have a better service function of forest ecosystem in the process of urbanization, and to promote the sustainable development of regional ecological environment, the key point is the reasonable coordination of forestry management with the development of economy. PMID:17147160

  12. Radiation Shielding and Hydrogen Storage with Multifunctional Carbon Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  13. Leakage and atmospheric dispersion of CO2 associated with carbon capture and storage projects

    OpenAIRE

    Mazzoldi, Alberto

    2009-01-01

    Climate change is affecting planet Earth. The main cause is anthropogenic emissions of greenhouse gases, the principal one being carbon dioxide, released in the atmosphere as a by-product of the combustion of hydrocarbons for the generation of energy. Carbon capture and storage (CCS) is a technology that would prevent carbon dioxide from being emitted into the atmosphere by safely sequestering it underground. For so doing, CO2 must be captured at large emission points and transported at high ...

  14. A study on hydrogen storage through adsorption in nano-structured carbons

    International Nuclear Information System (INIS)

    The aim of this work is to build and calibrate an experimental set-up for the testing of the materials, to produce some carbon materials in large amounts and characterise them, and finally, to test these materials in their ability to store hydrogen. This will help in establishing a link between the hydrogen storage capacities of the carbons and their nano-structure. The script is divided into four chapters. The first chapter will deal with the literature review on the thematic of hydrogen storage through adsorption in the carbon materials, while the second chapter will present the experimental set-up elaborated in the laboratory. The third chapter explains the processes used to produce the two families of carbon materials and finally, the last chapter presents the structural characterisation of the samples as well as the experimental results of hydrogen storage on the materials elaborated. (author)

  15. Effect of Skidding Operations on Soil Carbon Storage of a Tropical Peat Swamp Forest

    Directory of Open Access Journals (Sweden)

    Anton E. Satrio

    2009-01-01

    Full Text Available Problem statement: There is still lack of a study that compares the soil carbon storage of kuda-kuda skidding system and excavator skidding system in tropical peat swamp forests. The objective of this study was to determine whether skidding operations affects soil carbon storage of a tropical peat swamp forest. Approach: Soil sampling was conducted on two different plots (0.3 ha each plot to a depth of 15 cm under different skidding systems at Sibu, Sarawak, Malaysia. Plots were in the same forest concession area but considerably independent from each other. The soil samples were analyzed for acidity, organic matter content, total carbon, total nitrogen and total phosphorus. The humic acid extraction was also done and soil carbon storage values were obtained by calculation. The calculation of carbon storage was by the bulk density method. Unpaired t-test was used to compare variables under the two systems and correlation analysis was used to correlate variables (pH, soil organic matter, total carbon, total nitrogen, total phosphorus, C/N ratio, C/P ratio, humic acid yield, unstable carbon and stable carbon. Results: Soil organic matter, total carbon and unstable carbon were found to be negatively correlated with nitrogen but positively correlated with C/N ratio under kuda-kuda skidding system indicating that the lower nitrogen and higher C/N ratio markedly slowed decomposition process and enabled soil organic matter to accumulate as well as total carbon. Unstable carbon stocks under excavator skidding system was found to be higher (130.200 Mg ha-1 compared with kuda-kuda skidding system (117.124 Mg ha-1, under kuda-kuda skidding system, unstable carbon stock seemed to be preserved better and this was because of the better carbon storage. Although stable carbon contents of the two systems were similar, the excavator skidding system had faster decomposition processes, thus unstable carbon stocks decomposed more and this probably affects its

  16. Carbon nanotube based composites for electricity storage in supercapacitors

    OpenAIRE

    Zhang, Shengwen

    2010-01-01

    In the context of fossil-fuel shortage and climate change, the production, conversion, storage and distribution of energy have become the focus of today's world. Supercapacitors, with their unique energy and power density specifications, cover the application gap between batteries and conventional capacitors and hence making valuable contributions in energy storage and distribution. Caron nanotubes (CNTs), with their unique aspect ratio and other distinctive physical, electrochemical and...

  17. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    Science.gov (United States)

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-01

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles. PMID:26763714

  18. Highly precise atmospheric oxygen measurements as a tool to detect leaks of carbon dioxide from Carbon Capture and Storage sites

    OpenAIRE

    Leeuwen van, Charlotte

    2015-01-01

    In Carbon Capture and Storage (CCS), carbon dioxide (CO2) from fossil fuel combustion is stored underground into a geological formation. Although the storage of CO2 is considered as safe, leakage to the atmosphere is an important concern and monitoring is necessary. Detecting and quantifying leaks of CO2 in the atmosphere is, however, difficult due to the rapid mixing of the emitted CO2 with the surroundings and the high natural variability of the CO2 concentration. In this thesis we present ...

  19. Using conservative and reactive tracers to monitor and verify permanent carbon dioxide storage in basalt

    Science.gov (United States)

    Hall, J. L.; Matter, J. M.; Stute, M.; Bausch, A.

    2012-12-01

    Carbon capture and storage methods can assist in reducing greenhouse gas emissions and tackling global warming. Long term, thermodynamically stable storage of carbon dioxide through mineral carbonation is one such method, in which divalent cations released from rocks such as basalt react with CO2 to form carbonates. [1] Currently used monitoring techniques for geologic CO2 storage fail to detect dissolved or chemically transformed CO2. We use conservative and reactive tracers in an ongoing pilot CO2 injection project in Iceland to characterize subsurface CO2 transport and in situ CO2-water-rock reactions. The Carbfix project in Iceland is a field scale pilot project where CO2 and H2S emissions from the Hellisheidi geothermal power plant are dissolved in groundwater and injected into a permeable basalt formation at ~500 m depth below surface. Trifluormethylsulphur pentafluoride (SF5CF3) and sulfurhexafluoride (SF6) are added as conservative tracers to the injected CO2 for the purpose of characterizing the migration of the injected CO2 in the basaltic storage reservoir. Furthermore, the injected CO2 is labeled with radiocarbon (14C) to monitor the extent of CO2-water-rock reactions and mineral carbonation. Initial results from the monitoring wells show a fast dispersion and reaction of the injected CO2. Breakthrough curves of SF6, SF5CF3 and 14C can be observed in nearby monitoring wells from samples collected and analyzed by gas chromatography or accelerator mass spectrometry, respectively. Changes in the ratios between reactive and conservative tracers demonstrate that mixing and CO2-water-rock reactions are occurring. The use of conservative and reactive tracers contributes to the monitoring, verification and accounting information needed to establish the extent and security of carbon storage and be helpful in furthering the public acceptance of geological CO2 storage via mineral carbonation as a contribution to reducing carbon dioxide emissions. [1] Oelkers, et

  20. Changes in Carbon Storage and Net Carbon Exchange After a Shelterwood Harvest at Howland Forest, Maine

    Science.gov (United States)

    Scott, N. A.; Rodrigues, C. A.; Hughes, H.; Lee, J. T.; Davidson, E. A.; Dail, D. B.; Goltz, S. M.; Malerba, P.; Hollinger, D. Y.

    2003-12-01

    While many forests are actively sequestering carbon, little research has examined the direct effects of forest management practices on carbon sequestration. This is a critical issue in North America, where a large proportion of forests are managed. At the Howland Forest in Maine, we are using eddy covariance, biometric techniques and modeling to evaluate changes in carbon storage following a shelterwood cut that removed just under 30% of aboveground biomass. This management regime is becoming increasingly common throughout the region. Prior to harvest, the stand contained about 76 Mg C ha-1 (30 m2ha-1 basal area) in above- and below-ground live biomass. Harvesting removed about 15 Mg C ha-1 (SEM=2.1), and created about 5.3 Mg C ha-1 (SEM=1.1) of aboveground and 5.2 Mg C ha-1 (SEM=0.7) of root/stump detritus. Leaf-area index and litterfall declined by about 40% with harvest. Approximately half of the harvested wood was used for paper products (half-life of 3.5 years) and half for longer-lived wood products (half-life of 45 years). In a nearby, unharvested stand, eddy covariance measurements indicated that net ecosystem exchange (NEE) averages about 1.8 Mg C ha-1 y-1. A comparison of NEE at unharvested and harvested stands, both pre- and post-harvest, indicated that NEE declined following the harvest by about 18%, which is less than expected based on basal area and LAI changes. Both daily uptake and nocturnal respiration declined after harvest. Soil respiration declined slightly with harvest, suggesting no major soil C loss after harvest; harvesting had little effect on soil moisture and temperature. When decay of paper and wood products is included in a preliminary carbon budget, we predict that the forest will be a net C source to the atmosphere for at least 5 years, assuming pre-harvest growth rates of trees. How quickly the carbon balance becomes positive will depend largely on whether post-harvest tree growth rates increase.

  1. A national look at carbon capture and storage-National carbon sequestration database and geographical information system (NatCarb)

    Science.gov (United States)

    Carr, T.R.; Iqbal, A.; Callaghan, N.; Dana-Adkins-Heljeson; Look, K.; Saving, S.; Nelson, K.

    2009-01-01

    The US Department of Energy's Regional Carbon Sequestration Partnerships (RCSPs) are responsible for generating geospatial data for the maps displayed in the Carbon Sequestration Atlas of the United States and Canada. Key geospatial data (carbon sources, potential storage sites, transportation, land use, etc.) are required for the Atlas, and for efficient implementation of carbon sequestration on a national and regional scale. The National Carbon Sequestration Database and Geographical Information System (NatCarb) is a relational database and geographic information system (GIS) that integrates carbon storage data generated and maintained by the RCSPs and various other sources. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO2 emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project is working to provide all stakeholders with improved online tools for the display and analysis of CO2 carbon capture and storage data. NatCarb is organizing and enhancing the critical information about CO2 sources and developing the technology needed to access, query, model, analyze, display, and distribute natural resource data related to carbon management. Data are generated, maintained and enhanced locally at the RCSP level, or at specialized data warehouses, and assembled, accessed, and analyzed in real-time through a single geoportal. NatCarb is a functional demonstration of distributed data-management systems that cross the boundaries between institutions and geographic areas. It forms the first step toward a functioning National Carbon Cyberinfrastructure (NCCI). NatCarb provides access to first-order information to evaluate the costs, economic potential and societal issues of

  2. Carbon-supported SnO2 nanowire arrays with enhanced lithium storage properties

    International Nuclear Information System (INIS)

    Graphical abstract: Carbon-supported SnO2 nanowire arrays were synthesized facilely using self-assembled mesoporous carbon as template followed by partial removal of the carbon. The obtained materials exhibit improved lithium storage capabilities with high capacity retention due to the presence of the carbon buffering layer. - Highlights: • Carbon-supported SnO2 nanowire arrays were synthesized. • No extra carbon coating step is needed. • The materials exhibit enhanced lithium storage capacity. - Abstract: Carbon-supported SnO2 nanowire arrays were synthesized by a facile strategy using self-assembled mesoporous carbon as template followed by partial removal of the carbon. The as-obtained materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and nitrogen adsorption. The resulting products possess a large specific surface area due to the free interspaces between the nanowires. When evaluated as anode materials for lithium-ion batteries, the carbon-supported SnO2 nanowires can deliver large reversible capabilities with excellent cycling performance on account of the mesoporous carbon matrix, which can be served as a buffering layer to relax the stress, reduce the volume variation, and protect the SnO2 nanowires from severe structural degradation during the insertion-deinsertion process of lithium ions

  3. Developments and innovation in carbon dioxide (CO{sub 2}) capture and storage technology. Volume 2: Carbon dioxide (CO{sub 2}) storage and utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Mercedes Maroto-Valer, M. (ed.)

    2010-07-01

    This volume initially reviews geological sequestration of CO{sub 2}, from saline aquifer sequestration to oil and gas reservoir and coal bed storage, including coverage of reservoir sealing, and monitoring and modelling techniques used to verify geological sequestration of CO{sub 2}. Terrestrial and ocean sequestration are also reviewed, along with the environmental impact and performance assessments for these routes. The final section reviews advanced concepts for CO{sub 2} storage and utilization, such as industrial utilization, biofixation, mineral carbonation and photocatalytic reduction.

  4. Modeling Carbon Capture and Storage Technologies in Energy and Economic Models

    International Nuclear Information System (INIS)

    There is a growing body of literature that points to the significant potential of carbon capture and storage technologies as a means for addressing concerns relating to climate change. In particular, carbon capture and storage technologies could be fundamental to controlling the costs of addressing climate change - not only in sectors such as electric power production from fossil fuels, but it may also be key to facilitating the emergence of an affordable global hydrogen economy which is one potential promising pathway for decarbonizing the transportation sector. This paper examines the current state-of-the-art in modeling these carbon capture and storage technologies within 'top-down' and 'bottom-up' models, and explores what these types of models tell us about the potential deployment of these technologies. Generally, 'top-down' models represent the overall energy-economic system while 'bottom-up' models are more narrowly focused on the physical or geographical details of the entity being modeled. The paper identifies key knowledge gaps that need to be closed in order to improve the resolution and accuracy of these models' projections of the deployment of carbon capture and storage technology in the near term and over the course of this century. The paper concludes by emphasizing which features of the different types of models must be combined in order to strengthen our understanding of the global potential for carbon capture and storage as a mechanism for emissions mitigation

  5. Towards regional, error-bounded landscape carbon storage estimates for data-deficient areas of the world.

    Directory of Open Access Journals (Sweden)

    Simon Willcock

    Full Text Available Monitoring landscape carbon storage is critical for supporting and validating climate change mitigation policies. These may be aimed at reducing deforestation and degradation, or increasing terrestrial carbon storage at local, regional and global levels. However, due to data-deficiencies, default global carbon storage values for given land cover types such as 'lowland tropical forest' are often used, termed 'Tier 1 type' analyses by the Intergovernmental Panel on Climate Change (IPCC. Such estimates may be erroneous when used at regional scales. Furthermore uncertainty assessments are rarely provided leading to estimates of land cover change carbon fluxes of unknown precision which may undermine efforts to properly evaluate land cover policies aimed at altering land cover dynamics. Here, we present a repeatable method to estimate carbon storage values and associated 95% confidence intervals (CI for all five IPCC carbon pools (aboveground live carbon, litter, coarse woody debris, belowground live carbon and soil carbon for data-deficient regions, using a combination of existing inventory data and systematic literature searches, weighted to ensure the final values are regionally specific. The method meets the IPCC 'Tier 2' reporting standard. We use this method to estimate carbon storage over an area of33.9 million hectares of eastern Tanzania, reporting values for 30 land cover types. We estimate that this area stored 6.33 (5.92-6.74 Pg C in the year 2000. Carbon storage estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been underestimated for this region of Africa. Our study demonstrates the importance of obtaining regionally appropriate carbon storage estimates, and shows how such values can be produced

  6. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    Science.gov (United States)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  7. Density,Storage and Distribution of Carbon in Mangrove Ecosystem in Guangdong’s Coastal Areas

    Institute of Scientific and Technical Information of China (English)

    Na; LI; Pimao; CHEN; Chuanxin; QIN

    2015-01-01

    Using the mangrove plants and sediment of the typical mangrove areas in Guangdong’s coastal areas,P. R. China as the research object,the density,storage and spatial distribution of carbon are studied. The study method is the combination of the wild field analysis and laboratory testing method. The results show that the carbon density of the sediment will gradually decrease because of the increased depth,and has nothing to do with the difference of the area and tree species. The average carbon density of 50 cm sediment is 0. 007 g C / g. The carbon density is obviously different in different components of different mangrove species in different regions. The total carbon storage in different regions is in the following order: Zhuhai > Gaoqiao > Shenzhen > Shuidong Bay > Guanghai Bay > Raoping > Daya Bay > Chenghai. The carbon density and carbon storage are obviously higher in mangrove covered area than blank area. It shows that mangroves have very strong carbon sink function.

  8. Carbon stocks and potential carbon storage in the mangrove forests of China.

    Science.gov (United States)

    Liu, Hongxiao; Ren, Hai; Hui, Dafeng; Wang, Wenqing; Liao, Baowen; Cao, Qingxian

    2014-01-15

    Mangrove forests provide important ecosystem services, and play important roles in terrestrial and oceanic carbon (C) cycling. Although the C stocks or storage in terrestrial ecosystems in China have been frequently assessed, the C stocks in mangrove forests have often been overlooked. In this study, we estimated the C stocks and the potential C stocks in China's mangrove forests by combining our own field data with data from the National Mangrove Resource Inventory Report and from other published literature. The results indicate that mangrove forests in China store about 6.91 ± 0.57 Tg C, of which 81.74% is in the top 1 m soil, 18.12% in the biomass of mangrove trees, and 0.08% in the ground layer (i.e. mangrove litter and seedlings). The potential C stocks are as high as 28.81 ± 4.16 Tg C. On average, mangrove forests in China contain 355.25 ± 82.19 Mg C ha(-1), which is consistent with the global average of mangrove C density at similar latitudes, but higher than the average C density in terrestrial forests in China. Our results suggest that C storage in mangroves can be increased by selecting high C-density species for afforestation and stand improvement, and even more by increasing the mangrove area. The information gained in this study will facilitate policy decisions concerning the restoration of mangrove forests in China. PMID:24374165

  9. National Scale Analysis of Soil Organic Carbon Storage in China Based on Chinese Soil Taxonomy

    Institute of Scientific and Technical Information of China (English)

    YU Dong-Sheng; SHI Xue-Zheng; WANG Hong-Jie; SUN Wei-Xia; E. D. WARNER; LIU Qing-Hua

    2007-01-01

    Patterns of soil organic carbon (SOC) storage and density in various soil types or locations are the foundation for examining the role of soil in the global carbon cycle. An assessment of SOC storage and density patterns in China based on soil types as defined by Chinese Soil Taxonomy (CST) and the recently compiled digital 1:1000 000 Soil Database of China was conducted to generate a rigorous database for the future study of SOC storage. First, SOC densities of 7292soil profiles were calculated and linked by soil type to polygons of a digital soil map using geographic information system resulting in a 1:1000 000 SOC density distribution map of China. Further results showed that soils in China covered 9 281 ×103 km2 with a total SOC storage of 89.14 Gt and a mean SOC density 96.0 t ha-1. Among the 14 CST orders, Cambosols and Argosols constituted high percentage of China's total SOC storage, while Andosols, Vertosols, and Spodsols had a low percentage. As for SOC density, Histosols were the highest, while Primosols were the lowest. Specific patterns of SOC storage of various soil types at the CST suborder, group, and subgroup levels were also described. Results obtained from the study of SOC storage and density of all CST soil types would be not only useful for international comparative research, but also for more accurately estimating and monitoring of changes of SOC storage in China.

  10. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Koteen, Laura E; Harte, John [Energy and Resources Group, 310 Barrows Hall, University of California, Berkeley, CA 94720 (United States); Baldocchi, Dennis D, E-mail: lkoteen@berkeley.edu [Department of Environmental Science, Policy and Management, 137 Mulford Hall, University of California, Berkeley, CA 94720 (United States)

    2011-10-15

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  11. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    International Nuclear Information System (INIS)

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  12. SET-Plan - Scientific Assessment in Support of the Materials Roadmap Enabling Low Carbon Energy Technologies - Fossil Fuel Energies Sector, Including Carbon Capture and Storage

    OpenAIRE

    GOMEZ-BRICEÑO Dolores; Jong, Martin; DRAGE Trevor; Falzetti, Marco; Hedin, Niklas; Snijkers, Frans

    2011-01-01

    This document is part of a series of Scientific Assessment reports that underpin the Materials Roadmap enabling Low Carbon Energy Technologies. This report deals with the Fossil Fuel Energies Sector, including Carbon Capture and Storage.

  13. Effects of structure and surface properties on carbon nanotubes' hydrogen storage characteristics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrogen adsorption experiments were carried out in special stainless steel vessels at room temperature (298K) and under 10 MPa using self-synthesized multi-walled carbon nanotubes. In the experiments, carbon nanotubes synthesized by the seeded catalyst method were pretreated by being soaked in chemical reagents or annealed at high temperature before they were used to adsorb hydrogen, but their capacity for hydrogen storage was still poor. Carbon nanotubes synthesized by the floating catalyst method were found to be able to adsorb more hydrogen. They have a hydrogen storage capacity of over 4% after they were annealed at high temperatures, which suggested that they could be used as a promising material for hydrogen storage.``

  14. Hydrogen storage capacity of some carbon nanotubes and filaments

    International Nuclear Information System (INIS)

    We have studied the sorption of hydrogen by 8 different carbon materials at pressures up to 11 MPa (1600 psi) and temperatures from -80oC to +500oC. Our samples include graphite flakes, Aldrich activated carbon, graphitized PYROGRAF vapor-grown carbon fibers (VGCF), etched PYROGRAF fibers, Showa-Denko VGCF, filaments grown from a FeNiCu alloy, and nanotubes from MER Corp. and Rice University. The results so far have been remarkably similar: very little hydrogen sorption. In fact, the sorption is so small that we must pay careful attention to calibration to get reliable answers. The largest sorption observed is less than 0.1 weight percent hydrogen at room temperature and 3.5 MPa. Furthermore, our efforts to activate these materials by reduction at high temperatures and pressures were also futile. These results cast serious doubts on any claims for large hydrogen sorption in carbon materials. (author)

  15. Effect of chemical potential on the computer simulation of hydrogen storage in single walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Hong; WANG; Shaoqing; CHENG; Huiming

    2004-01-01

    Grand canonical Monte Carlo molecular simulations were carried out for hydrogen adsorption in single-walled carbon nanotubes. It was found that variations in chemical potential may result in a great change in the hydrogen storage capacity of single-walled carbon nanotubes. Hydrogen adsorption isotherms of single-walled carbon nanotubes at 298.15 K were calculated using a modified chemical potential, and the result obtained is closer to the experimental results. By comparing the experimental and simulation results, it is proposed that chemical adsorption may exist for hydrogen adsorption in single-walled carbon nanotubes.

  16. Monitoring carbon dioxide injection and storage in aquifers and depleted oilfields using carbon and sulfur isotope techniques

    International Nuclear Information System (INIS)

    Fluid and gas monitoring can be used to confirm the security and integrity of geological CO2 storage. The distinct carbon isotopic composition of CO2 from many industrial sources that process or combust hydrocarbons allows the use of isotopic and chemical analyses of produced fluids and gases to trace the injected CO2 and quantify CO2 storage processes in the subsurface. Our four year monitoring programme at the International Energy Agency Weyburn CO2 Monitoring and Storage Project in Saskatchewan, Canada, featured frequent chemical and isotopic measurements of produced fluids and gases from around forty wells. Over the four year period, over four million tonnes of CO2 were injected for storage and enhanced hydrocarbon recovery in the Weyburn oilfield. CO2 concentration and carbon isotopic measurements of produced fluids and gases trace CO2, and confirm that the order of magnitude increase in the amount of CO2 in the subsurface resulted from CO2 injection. The amount of CO2 stored as HCO3- can be quantified using HCO3- concentration and carbon isotopic measurements, while concentration and isotope data for SO42- and H2S indicate that bacterial sulfate reduction was not a major source of HCO3- . To allow widespread application of geological CO2 storage, reliable, cost effective monitoring of storage integrity will be essential. The produced fluid and gas monitoring techniques described here are based on chemical and isotopic techniques that are already widely employed and well understood by environmental isotope hydrologists, and have the potential to play an essential role in future geological CO2 storage monitoring programmes. (author)

  17. Monitoring carbon dioxide injection and storage in aquifers and depleted oilfields using carbon and sulfur isotope techniques

    International Nuclear Information System (INIS)

    Fluid and gas monitoring can be used to confirm the security and integrity of geological CO2 storage. The distinct carbon isotopic composition of CO2 from many industrial sources that process or combust hydrocarbons allows the use of isotopic and chemical analyses of produced fluids and gases to trace the injected CO2 and quantify CO2 storage processes in the subsurface. Our four year monitoring programme at the International Energy Agency Weyburn CO2 Monitoring and Storage Project in Saskatchewan, Canada, featured frequent chemical and isotopic measurements of produced fluids and gases from around forty wells. Over the four year period, over four million tonnes of CO2 were injected for storage and enhanced hydrocarbon recovery in the Weyburn Oilfield. CO2 concentration and carbon isotopic measurements of produced fluids and gases trace CO2, and confirm that the order of magnitude increase in the amount of CO2 in the subsurface resulted from CO2 injection. The amount of CO2 stored as HCO3- can be quantified using HCO3- concentration and carbon isotopic measurements, while concentration and isotope data for SO42- and H2S indicate that bacterial sulfate reduction was not a major source of HCO3-. To allow widespread application of geological CO2 storage, reliable, cost effective monitoring of storage integrity will be essential. The produced fluid and gas monitoring techniques described here are based on chemical and isotopic techniques that are already widely employed and well understood by environmental isotope hydrologists, and have the potential to play an essential role in future geological CO2 storage monitoring programmes. (author)

  18. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  19. Effect of interannual climate variability on carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K., III; Moore, B., III; Vorosmarty, C.J.

    1998-01-01

    The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.

  20. Reversible Storage of Hydrogen and Natural Gas in Nanospace-Engineered Activated Carbons

    Science.gov (United States)

    Romanos, Jimmy; Beckner, Matt; Rash, Tyler; Yu, Ping; Suppes, Galen; Pfeifer, Peter

    2012-02-01

    An overview is given of the development of advanced nanoporous carbons as storage materials for natural gas (methane) and molecular hydrogen in on-board fuel tanks for next-generation clean automobiles. High specific surface areas, porosities, and sub-nm/supra-nm pore volumes are quantitatively selected by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process. Tunable bimodal pore-size distributions of sub-nm and supra-nm pores are established by subcritical nitrogen adsorption. Optimal pore structures for gravimetric and volumetric gas storage, respectively, are presented. Methane and hydrogen adsorption isotherms up to 250 bar on monolithic and powdered activated carbons are reported and validated, using several gravimetric and volumetric instruments. Current best gravimetric and volumetric storage capacities are: 256 g CH4/kg carbon and 132 g CH4/liter carbon at 293 K and 35 bar; 26, 44, and 107 g H2/kg carbon at 303, 194, and 77 K respectively and 100 bar. Adsorbed film density, specific surface area, and binding energy are analyzed separately using the Clausius-Clapeyron equation, Langmuir model, and lattice gas models.

  1. Effect of Skidding Operations on Soil Carbon Storage of a Tropical Peat Swamp Forest

    OpenAIRE

    Anton E. Satrio; Seca Gandaseca; Osumanu H. Ahmed; Nik M.A. Majid

    2009-01-01

    Problem statement: There is still lack of a study that compares the soil carbon storage of kuda-kuda skidding system and excavator skidding system in tropical peat swamp forests. The objective of this study was to determine whether skidding operations affects soil carbon storage of a tropical peat swamp forest. Approach: Soil sampling was conducted on two different plots (0.3 ha each plot) to a depth of 15 cm under different skidding systems at Sibu, Sarawak, Malaysia. Plots were in the same ...

  2. Effect of chemical treatments on hydrogen storage behaviors of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    In this work, the hydrogen storage behaviors of chemically treated multi-walled carbon nanotubes (MWNTs) were investigated. The surface properties of the functionalized MWNTs were confirmed by Fourier transfer infrared spectroscopy, X-ray diffraction, the Boehm titration method, and zeta-potential measurements. The hydrogen storage capacity of the MWNTs was evaluated at 298 K and 100 bar. In the experimental results, it was found that the chemical treatments introduced functional groups onto the MWNT surfaces. The amount of hydrogen storage was enhanced, by acidic surface treatment, to 0.42 wt.% in the acidic-treated MWNTs compared with 0.26 wt.% in the as-received MWNTs. Meanwhile, the basic surface treatment actually reduced the hydrogen storage capacity, to 0.24 wt.% in the basic-treated MWNTs sample. Consequently, it could be concluded that hydrogen storage is greatly influenced by the acidic characteristics of MWNT surfaces, resulting in enhanced electron acceptor-donor interaction at interfaces.

  3. Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes

    Science.gov (United States)

    Hasegawa, George; Kanamori, Kazuyoshi; Kannari, Naokatsu; Ozaki, Jun-ichi; Nakanishi, Kazuki; Abe, Takeshi

    2016-06-01

    Hard carbons emerge as one of the most promising candidate for an anode of Na-ion batteries. This research focuses on the carbon monolith derived from resorcinol-formaldehyde (RF) gels as a model hard carbon electrode. A series of binder-free monolithic carbon electrodes heat-treated at varied temperatures allow the comparative investigation of the correlation between carbon nanotexture and electrochemical Na+-ion storage. The increase in carbonization temperature exerts a favorable influence on electrode performance, especially in the range between 1600 °C and 2500 °C. The comparison between Li+- and Na+-storage behaviors in the carbon electrodes discloses that the Na+-trapping in nanovoids is negligible when the carbonization temperature is higher than 1600 °C. On the other hand, the high-temperature sintering at 2500-3000 °C enlarges the resistance for Na+-insertion into interlayer spacing as well as Na+-filling into nanovoids. In addition, the study on the effect of pore size clearly demonstrates that not the BET surface area but the surface area related to meso- and macropores is a predominant factor for the initial irreversible capacity. The outcomes of this work are expected to become a benchmark for other hard carbon electrodes prepared from various precursors.

  4. Physical and chemical changes during carbon dioxide injection and storage (Invited)

    Science.gov (United States)

    Faulkner, D. R.; Armitage, P. J.; Blake, O. O.; Worden, R.

    2013-12-01

    Many of the lessons learnt from carbon capture and storage projects can be instructive for other applications, such as geothermal energy. More than 3M tonnes of carbon dioxide was injected at In Salah, Algeria between 2004 to 2011. We have tested rocks from this field to investigate the change in properties resulting from geomechanical and geochemical changes produced by injection and storage. Injection produced inflation of the reservoir that was recorded at the surface by satellite measurements. The uplift was asymmetrical around the injection wells indicating an inherent permeability anisotropy of around 15. Laboratory measurements of permeability indicate that a maximum horizontal permeability anisotropy of a factor of 2 is possible from the differential stress field alone. The permeability anisotropy can be explained by fracture damage produced by sub-failure stresses, as shown in laboratory experiments. The base of the caprock to the storage reservoir shows significant increases in permeability during flow of carbon dioxide-saturated water. The acidic fluid rapidly dissolves siderite and chlorite within the pore throats. Precipitation of the dissolved material is likely where lower carbon dioxide concentrations are present and may produce a lower permeability caprock at some distance from the injection well. Identifying changes that occur within carbon dioxide storage sites not only helps with future planning of these sites but can also provide valuable insights into likely processes in geothermal fields.

  5. Permanent carbon dioxide storage in deep-sea sediments

    OpenAIRE

    House, Kurt Zenz; Schrag, Daniel P.; Harvey, Charles F.; Klaus S. Lackner

    2006-01-01

    Stabilizing the concentration of atmospheric CO2 may require storing enormous quantities of captured anthropogenic CO2 in near-permanent geologic reservoirs. Because of the subsurface temperature profile of terrestrial storage sites, CO2 stored in these reservoirs is buoyant. As a result, a portion of the injected CO2 can escape if the reservoir is not appropriately sealed. We show that injecting CO2 into deep-sea sediments

  6. Remote sensing assessment of carbon storage by urban forest

    International Nuclear Information System (INIS)

    Urban forests play a crucial role in mitigating global warming by absorbing excessive CO2 emissions due to transportation, industry and house hold activities in the urban environment. In this study we have assessed the role of trees in an urban forest, (Mutiara Rini) located within the Iskandar Development region in south Johor, Malaysia. We first estimated the above ground biomass/carbon stock of the trees using allometric equations and biometric data (diameter at breast height of trees) collected in the field. We used remotely sensed vegetation indices (VI) to develop an empirical relationship between VI and carbon stock. We used five different VIs derived from a very high resolution World View-2 satellite data. Results show that model by [1] and Normalized Difference Vegetation Index are correlated well (R2 = 0.72) via a power model. We applied the model to the entire study area to obtain carbon stock of urban forest. The average carbon stock in the urban forest (mostly consisting of Dipterocarp species) is ∼70 t C ha−1. Results of this study can be used by the Iskandar Regional Development Authority to better manage vegetation in the urban environment to establish a low carbon city in this region

  7. Storage to energy: Modeling the carbon emission of storage task offloading between data centers

    NARCIS (Netherlands)

    Taal, A.; Drupsteen, D.; Makkes, M.X.; Grosso, P.

    2014-01-01

    Storing data in the cloud is becoming a common trend, for both end-customers and data center operators. We propose a method for deciding where to host data storage tasks under the constraint of minimal greenhouse gas emission. The decision on whether to store data locally or store it remotely at a c

  8. Fire impact on carbon storage in light conifer forests of the Lower Angara region, Siberia

    International Nuclear Information System (INIS)

    This study focused on structural analysis of ground carbon storage following fires in light conifer stands of the Lower Angara region (Siberia, Russia). Experimental fires of varying frontal intensity were conducted at Scots pine and mixed larch forests of southern taiga. Considerable amounts of surface and ground forest fuels (21–38 tC ha−1) enhanced low- to high-intensity fires. Post-fire carbon storage decreased by 16–49% depending on fire intensity and rate of spread, with depth of burn being 0.9–6.6 cm. Carbon emissions varied from 4.48 to 15.89 t ha−1 depending on fire intensity and forest type. Depth of burn and carbon emissions for four major site types were correlated with a weather-based fire hazard index.

  9. Activated carbon derived from waste coffee grounds for stable methane storage

    Science.gov (United States)

    Kemp, K. Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M.; Kim, Kwang S.

    2015-09-01

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m2 g-1 and a micropore volume of 0.574 cm3 g-1 and exhibits a stable CH4 adsorption capacity of ˜4.2 mmol g-1 at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  10. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2

    International Nuclear Information System (INIS)

    The current rise in atmospheric CO2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO2 concentrations (565 μ l1). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely. (author)

  11. When to invest in carbon capture and storage technology: A mathematical model

    International Nuclear Information System (INIS)

    We present two models of the optimal investment decision in carbon capture and storage technology (CCS)—one where the carbon price is deterministic (based on the newly introduced carbon floor price in Great Britain) and one where the carbon price is stochastic (based on the ETS permit price in the rest of Europe). A novel feature of this work is that in both models investment costs are time dependent which adds an extra dimension to the decision problem. Our deterministic model allows for quite general dependence on carbon price and consideration of time to build and simple calculus techniques determine the optimal time to invest. We then analyse the effect of carbon price volatility on the optimal investment decision by solving a Bellman equation with an infinite planning horizon. We find that increasing the carbon price volatility increases the critical investment threshold and that adoption of this technology is not optimal at current prices, in agreement with other works. However reducing carbon price volatility by switching from carbon permits to taxes or by introducing a carbon floor as in Great Britain would accelerate the adoption of carbon abatement technologies such as CCS. - Highlights: • Analytic solution for the critical ETS permit price for optimal investment in CCS • Solution for the optimal time for investment in CCS in GB subject to carbon floor • Time varying investment cost included • Not optimal to invest at current ETS prices • ETS permit price volatility increases the optimal investment threshold

  12. Above Ground Biomass-carbon Partitioning, Storage and Sequestration in a Rehabilitated Forest, Bintulu, Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Forest degradation and deforestation are some of the major global concerns as it can reduce forest carbon storage and sequestration capacity. Forest rehabilitation on degraded forest areas has the potential to improve carbon stock, hence mitigate greenhouse gases emission. However, the carbon storage and sequestration potential in a rehabilitated tropical forest remains unclear due to the lack of information. This paper reports an initiative to estimate biomass-carbon partitioning, storage and sequestration in a rehabilitated forest. The study site was at the UPM-Mitsubishi Corporation Forest Rehabilitation Project, UPM Bintulu Sarawak Campus, Bintulu, Sarawak. A plot of 20 x 20 m2 was established each in site 1991 (Plot 1991), 1999 (Plot 1999) and 2008 (Plot 2008). An adjacent natural regenerating secondary forest plot (Plot NF) was also established for comparison purposes. The results showed that the contribution of tree component biomass/ carbon to total biomass/ carbon was in the order of main stem > branch > leaf. As most of the trees were concentrated in diameter size class = 10 cm for younger rehabilitated forests, the total above ground biomass/ carbon was from this class. These observations suggest that the forests are in the early successional stage. The total above ground biomass obtained for the rehabilitated forest ranged from 4.3 to 4,192.3 kg compared to natural regenerating secondary forest of 3,942.3 kg while total above ground carbon ranged from 1.9 to 1,927.9 kg and 1,820.4 kg, respectively. The mean total above ground biomass accumulated ranged from 1.3 x 10-2 to 20.5 kg/ 0.04 ha and mean total carbon storage ranged from 5.9 x 10-3 to 9.4 kg/ 0.04 ha. The total CO2 sequestrated in rehabilitated forest ranged from 6.9 to 7,069.1 kg CO2/ 0.04 ha. After 19 years, the rehabilitated forest had total above ground biomass and carbon storage comparable to the natural regeneration secondary forest. The forest rehabilitated activities have the potential

  13. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    OpenAIRE

    Cao, Zeyuan; Wei, Bingqing

    2015-01-01

    Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high-performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical vapor deposition products is developed as a general synthetic method to prepare a family of metal oxides [MxOy (M = Fe, Co, Ni)]/single-walled carbon nanotube (SWNT) macrofilm nanocomposites. The MxOy nanoparticles obt...

  14. Influence of Chemical Properties on Soil Carbon Storage of a Tropical Peat Swamp Forest

    OpenAIRE

    Anton E. Satrio; Seca Gandaseca; Osumanu H. Ahmed; Nik M.A. Majid

    2009-01-01

    Problem statement: It is important to investigate the seriousness of degradation of peat swamp forest caused by skidding system in terms of its function as a carbon sink. In this study, we formulated assumptions that conditions of our research site before the introduction of skidding system were in their natural states, thus that changes measured are clearly caused by skidding system. The objective of this study was to determine soil carbon storage of a tropical peat swamp forest in their nat...

  15. Soil carbon storage in plantation forests and pastures: land-use change implications

    OpenAIRE

    Neal A. Scott; Tate, Kevin R; Ford-Robertson, Justin; Giltrap, David J.; Smith, C. Tattersall

    2011-01-01

    Afforestation may lead to an accumulation of carbon (C) in vegetation, but little is known about changes in soil C storage with establishment of plantation forests. Plantation forest carbon budget models often omit mineral soil C changes from stand-level C budget calculations, while including forest floor C accumulation, or predict continuous soil C increases over several rotations. We used national soil C databases to quantify differences in soil C content between pasture and exotic pine for...

  16. An International Regulatory Framework for Risk Governance of Carbon Capture and Storage

    OpenAIRE

    2007-01-01

    This essay was prepared as part of a workshop on carbon capture and sequestration held by the International Risk Governance Council (IRGC) in Washington, DC, from March 15–16, 2007. The goal of the workshop was to bring together researchers, practitioners, and regulators from Europe, the United States, and Australia to outline the attributes that an effective regulatory regime for carbon capture and storage should possess. This essay focuses specifically on providing an overview of eight fund...

  17. Density, Storage and Distribution of Carbon in Mangrove Ecosystem in Guangdong's Coastal Areas

    OpenAIRE

    Li, Na; Chen, Pimao; Qin, Chuanxin

    2015-01-01

    Using the mangrove plants and sediment of the typical mangrove areas in Guangdong's coastal areas, P. R. China as the research object, the density, storage and spatial distribution of carbon are studied. The study method is the combination of the wild field analysis and laboratory testing method. The results show that the carbon density of the sediment will gradually decrease because of the increased depth, and has nothing to do with the difference of the area and tree species. The average ca...

  18. Mineral Carbonation for Long-term CO2 Storage: an Exergy Analysis

    OpenAIRE

    Zevenhoven, Ron; Kavaliauskaite, Inga

    2004-01-01

    Magnesium oxide-based minerals (serpentine, olivine) may be used for long-term storage of CO2, from combustion of fossil fuels or industrial processes in the form of magnesium carbonate. Large resources of suitable minerals appear to exist in Finland and at many other locations worldwide. The efficiency of mineral carbonation processing can be evaluated using exergy analysis, which will allow for comparing different mineral types characterised by different composition and quality. Other impor...

  19. Trees and biomass energy: carbon storage and/or fossil fuel substitution?

    International Nuclear Information System (INIS)

    Studies on climate change and energy production increasingly recognise the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some key issues which arise. This paper assesses various forestry strategies and examines land availability, forest management, environmental sustainability, social and political factors, infrastructure and organisation, economic feasibility, and ancillary benefits associated with biomass for energy. (author)

  20. Uncertainty assessment of carbon dioxide storage capacity evaluation in deep saline aquifer:a case study in Songliao Basin, China

    Science.gov (United States)

    Liu, Y.; Yang, X.

    2012-12-01

    Carbon dioxide Capture and Storage techniques (CCS) are one of the effective measures for reduction Carbon dioxide emissions to the atmosphere to mitigate the global warming. Among the Carbon dioxide geological storage options, deep saline aquifers offer the largest storage potential and are widely distributed throughout the Earth. Implementation of carbon dioxide capture and geological storage to reduce greenhouse gas emissions requires carbon dioxide storage capacity in deep saline aquifers. The storage capacity estimation depends on the storage trapping mechanisms and the availability, resolution and certainty of data. There are five different types of trapping mechanisms in deep saline aquifers namely structural and stratigraphic trapping, residual gas trapping, solubility trapping, mineral trapping and hydrodynamic trapping in which storage capacity by solubility trapping is the largest. The carbon dioxide storage capacities in deep saline aquifer can be evaluated by the method recommended by Carbon Sequestration Leadership Forum (CSLF), which mainly depends on the area of study area, thickness and porosity of sandstone, density and carbon dioxide content (mass fraction) in formation water at initial and saturated state. Hydrogeological parameters in aquifer are uncertainty because of uncertainty of measurement and the spatial variety, which leads evaluation uncertainty of carbon dioxide storage capacity. In this paper, acceptance of evaluated carbon dioxide storage capacity in deep saline aquifer caused by hydrological parameters was discussed based on geostatistical methods and stochastic simulation. The stratum named Yaojialing group in the center depressed area of Songliao Basin was chosen as study area because of the rich data. The porosity of sandstone, thickness ration of sandstone to stratum and the total dissolved solid in formation water were regarded as the main source of the uncertainty of carbon dioxide storage capacity evaluation in deep saline

  1. Comparison of methods for geologic storage of carbon dioxide in saline formations

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Angela L. [U.S. DOE; Bromhal, Grant S. [U.S. DOE; Strazisar, Brian [U.S. DOE; Rodosta, Traci D. [U.S. DOE; Guthrie, William J. [U.S. DOE; Allen, Douglas E. [ORISE; Guthrie, George D. [U.S. DOE

    2013-01-01

    Preliminary estimates of CO{sub 2} storage potential in geologic formations provide critical information related to Carbon Capture, Utilization, and Storage (CCUS) technologies to mitigate CO{sub 2} emissions. Currently multiple methods to estimate CO{sub 2} storage and multiple storage estimates for saline formations have been published, leading to potential uncertainty when comparing estimates from different studies. In this work, carbon dioxide storage estimates are compared by applying several commonly used methods to general saline formation data sets to assess the impact that the choice of method has on the results. Specifically, six CO{sub 2} storage methods were applied to thirteen saline formation data sets which were based on formations across the United States with adaptations to provide the geologic inputs required by each method. Methods applied include those by (1) international efforts – the Carbon Sequestration Leadership Forum (Bachu et al., 2007); (2) United States government agencies – U.S. Department of Energy – National Energy Technology Laboratory (US-DOE-NETL, 2012) and United States Geological Survey (Brennan et al., 2010); and (3) the peer-reviewed scientific community – Szulczewski et al. (2012) and Zhou et al. (2008). A statistical analysis of the estimates generated by multiple methods revealed that assessments of CO{sub 2} storage potential made at the prospective level were often statistically indistinguishable from each other, implying that the differences in methodologies are small with respect to the uncertainties in the geologic properties of storage rock in the absence of detailed site-specific characterization.

  2. Improved methane storage capacities by sorption on wet active carbons

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, A.; Celzard, A.; Marache, J.F.; Furdin, G. [Universite Henri Poincare, Nancy (France). Laboratoire de Chimie du Solide Mineral

    2004-07-01

    The possibility of storing large amounts of natural gas within wet active carbons is examined. The sorption isotherms of methane at 2{sup o}C and up to 8 MPa are built for four carbonaceous materials. Three of them originate from the same precursor (coconut shell), are physically activated at various burn-offs and are mainly microporous. The fourth material is a highly mesoporous chemically activated pinewood carbon. These adsorbents are wetted with a constant weight ratio water/carbon close to 1. The resulting isotherms all exhibit a marked step occurring near the expected formation pressure of methane hydrates, thus supporting their occurrence within the porous materials. The amount of gas stored at the highest pressures investigated then ranges from 6 to 17 mol/kg of wet adsorbent (i.e., corresponding to 10-36 mol/kg of dry carbon), depending on the material. The results are discussed on the basis of the known pore texture of each adsorbent, and stoichiometries of the formed hydrates are calculated. Considerations about adsorption/desorption kinetics and metastability are also developed. (author)

  3. PRAIRIE WETLANDS OF NORTH AMERICA IMPORTANT FOR CARBON STORAGE

    Science.gov (United States)

    Our research suggests that greater amounts of atmospheric carbon could be stored in wetlands in the prairie pothole region (PPR) through restoration programs than on no-till cropland even though the acreage of wetlands is much smaller. Additionally, limited data suggests that restored wetlands emit ...

  4. Fast Synthesis of Multilayer Carbon Nanotubes from Camphor Oil as an Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Amin TermehYousefi

    2014-01-01

    Full Text Available Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD. Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs.

  5. Rock Physics of Geologic Carbon Sequestration/Storage

    Energy Technology Data Exchange (ETDEWEB)

    Dvorkin, Jack; Mavko, Gary

    2013-05-31

    This report covers the results of developing the rock physics theory of the effects of CO{sub 2} injection and storage in a host reservoir on the rock's elastic properties and the resulting seismic signatures (reflections) observed during sequestration and storage. Specific topics addressed are: (a) how the elastic properties and attenuation vary versus CO{sub 2} saturation in the reservoir during injection and subsequent distribution of CO{sub 2} in the reservoir; (b) what are the combined effects of saturation and pore pressure on the elastic properties; and (c) what are the combined effects of saturation and rock fabric alteration on the elastic properties. The main new results are (a) development and application of the capillary pressure equilibrium theory to forecasting the elastic properties as a function of CO{sub 2} saturation; (b) a new method of applying this theory to well data; and (c) combining this theory with other effects of CO{sub 2} injection on the rock frame, including the effects of pore pressure and rock fabric alteration. An important result is translating these elastic changes into synthetic seismic responses, specifically, the amplitude-versus-offset (AVO) response depending on saturation as well as reservoir and seal type. As planned, three graduate students participated in this work and, as a result, received scientific and technical training required should they choose to work in the area of monitoring and quantifying CO{sub 2} sequestration.

  6. Non-isothermal compositional gas flow during carbon dioxide storage and enhanced gas recovery

    DEFF Research Database (Denmark)

    Singh, Ashok; Böettcher, N.; Wang, W.; Görke, U. J.; Kolditz, O.

    In this work we present the conceptual modeling and the numerical scheme for carbon dioxide storage into nearly depleted gas reservoirs for enhanced gas recovery reasons. For this we develop non-isothermal compositional gas flow model. We used a combined monolithic / staggered coupling scheme to...

  7. Reversible storage of lithium in a rambutan-like tin-carbon electrode.

    Science.gov (United States)

    Deng, Da; Lee, Jim Yang

    2009-01-01

    Fruity electrodes: A simple bottom-up self-assembly method was used to fabricate rambutan-like tin-carbon (Sn@C) nanoarchitecture (see scheme, green Sn) to improve the reversible storage of lithium in tin. The mechanism of the growth of the pear-like hairs is explored. PMID:19156791

  8. Theoretical studies of carbon-based nanostructured materials with applications in hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Kuc, Agnieszka

    2008-07-01

    The main goal of this work is to search for new stable porous carbon-based materials, which have the ability to accommodate and store hydrogen gas. Theoretical and experimental studies suggest a close relation between the nano-scale structure of the material and its storage capacity. In order to design materials with a high storage capacity, a compromise between the size and the shape of the nanopores must be considered. Therefore, a number of different carbon-based materials have been investigated: carbon foams, dislocated graphite, graphite intercalated by C60 molecules, and metal-organic frameworks. The structures of interest include experimentally well-known as well as hypothetical systems. The studies were focused on the determination of important properties and special features, which may result in high storage capacities. Although the variety of possible pure carbon structures and metal-organic frameworks is almost infinite, the materials described in this work possess the main structural characteristics, which are important for gas storage. (orig.)

  9. Ecosystem carbon storage and partitioning in a tropical seasonal forest in Southwestern China

    DEFF Research Database (Denmark)

    Lü, Xiao-Tao; Yin, Jiang-Xia; Jepsen, Martin Rudbeck;

    2010-01-01

    in Malaysia. The variation of C storage in the tree layer among different plots was mainly due to different densities of large trees (DBH > 70 cm). The contributions of the shrub layer, herb layer, woody lianas, and fine litter each accounted for 1-2 t C ha-1 to the total carbon stock. The mineral...

  10. Hashemite Kingdom of Jordan : Carbon Capture and Storage Capacity Building Technical Assistance

    OpenAIRE

    World Bank

    2012-01-01

    This study was funded by the Carbon Capture and Storage (CCS) capacity building trust fund, and administered by the World Bank. The main objectives of the study were: to build or enhance Jordan s institutional capacity to make informed policy decisions on CCS technology and applications; to assess the potential application of CCS technology in Jordan; and to identify barriers-legal, regula...

  11. Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    This factsheet describes a research project whose goal is to translate a unique approach for the synthesis of self-assembled nanostructured carbon into industrially viable technologies for two important, large-scale applications: electrochemical double-layer capacitors (also referred to as ultracapacitors) for electrical energy storage, and capacitive deionization (CDI) systems for water treatment and desalination.

  12. Second Generation CO2 FEP Analysis: CASSIF - Carbon Storage Scenario Identification Framework

    NARCIS (Netherlands)

    Yavuz, F.; Tilburg, T. van; David, P.; Spruijt, M.; Wildenborg, T.

    2009-01-01

    Carbon dioxide Capture and Storage (CCS) is a promising contribution to reduce further increase of atmospheric CO2 emissions from fossil fuels. The CCS concept anticipates that large amounts of CO2 are going to be stored in the subsurface for the long term. Since CCS is a rather new technology, unce

  13. Evaluating the development of carbon capture and storage technologies in the United States

    NARCIS (Netherlands)

    Alphen, K. van; Noothout, P.M.; Hekkert, M.P.; Turkenburg, W.C.

    2010-01-01

    Carbon capture and storage (CCS) is seen as an important solution to solve the twin challenge of reducing GHG emissions, while utilizing fossil fuel reserves to meet future energy requirements. In this study an innovation systems perspective is applied to review the development of CCS technologies i

  14. Economic and environmental evaluation of flexible integrated gasification polygeneration facilities with carbon capture and storage

    Science.gov (United States)

    One innovative option for reducing greenhouse gas (GHG) emissions involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from co-processed coal and biomass. In this scheme, the feedstocks are first converted to syngas, from which ...

  15. Light Enables a Very High Efficiency of Carbon Storage in Developing Embryos of Rapeseed1

    Science.gov (United States)

    Goffman, Fernando D.; Alonso, Ana P.; Schwender, Jörg; Shachar-Hill, Yair; Ohlrogge, John B.

    2005-01-01

    The conversion of photosynthate to seed storage reserves is crucial to plant fitness and agricultural production, yet quantitative information about the efficiency of this process is lacking. To measure metabolic efficiency in developing seeds, rapeseed (Brassica napus) embryos were cultured in media in which all carbon sources were [U-14C]-labeled and their conversion into CO2, oil, protein, and other biomass was determined. The conversion efficiency of the supplied carbon into seed storage reserves was very high. When provided with 0, 50, or 150 μmol m−2 s−1 light, the proportion of carbon taken up by embryos that was recovered in biomass was 60% to 64%, 77% to 86%, and 85% to 95%, respectively. Light not only improved the efficiency of carbon storage, but also increased the growth rate, the proportion of 14C recovered in oil relative to protein, and the fixation of external 14CO2 into biomass. Embryos grown at 50 μmol m−2 s−1 in the presence of 5 μm 1,1-dimethyl-3-(3,4-dichlorophenyl) urea (an inhibitor of photosystem II) were reduced in total biomass and oil synthesis by 3.2-fold and 2.8-fold, respectively, to the levels observed in the dark. To explore if the reduced growth and carbon conversion efficiency in dark were related to oxygen supplied by photosystem II, embryos and siliques were cultured with increased oxygen. The carbon conversion efficiency of embryos remained unchanged when oxygen levels were increased 3-fold. Increasing the O2 levels surrounding siliques from 21% to 60% did not increase oil synthesis rates either at 1,000 μmol m−2 s−1 or in the dark. We conclude that light increases the growth, efficiency of carbon storage, and oil synthesis in developing rapeseed embryos primarily by providing reductant and/or ATP. PMID:16024686

  16. Light enables a very high efficiency of carbon storage in developing embryos of rapeseed.

    Science.gov (United States)

    Goffman, Fernando D; Alonso, Ana P; Schwender, Jörg; Shachar-Hill, Yair; Ohlrogge, John B

    2005-08-01

    The conversion of photosynthate to seed storage reserves is crucial to plant fitness and agricultural production, yet quantitative information about the efficiency of this process is lacking. To measure metabolic efficiency in developing seeds, rapeseed (Brassica napus) embryos were cultured in media in which all carbon sources were [U-14C]-labeled and their conversion into CO2, oil, protein, and other biomass was determined. The conversion efficiency of the supplied carbon into seed storage reserves was very high. When provided with 0, 50, or 150 micromol m(-2) s(-1) light, the proportion of carbon taken up by embryos that was recovered in biomass was 60% to 64%, 77% to 86%, and 85% to 95%, respectively. Light not only improved the efficiency of carbon storage, but also increased the growth rate, the proportion of 14C recovered in oil relative to protein, and the fixation of external 14CO2 into biomass. Embryos grown at 50 micromol m(-2) s(-1) in the presence of 5 microM 1,1-dimethyl-3-(3,4-dichlorophenyl) urea (an inhibitor of photosystem II) were reduced in total biomass and oil synthesis by 3.2-fold and 2.8-fold, respectively, to the levels observed in the dark. To explore if the reduced growth and carbon conversion efficiency in dark were related to oxygen supplied by photosystem II, embryos and siliques were cultured with increased oxygen. The carbon conversion efficiency of embryos remained unchanged when oxygen levels were increased 3-fold. Increasing the O2 levels surrounding siliques from 21% to 60% did not increase oil synthesis rates either at 1,000 micromol m(-2) s(-1) or in the dark. We conclude that light increases the growth, efficiency of carbon storage, and oil synthesis in developing rapeseed embryos primarily by providing reductant and/or ATP. PMID:16024686

  17. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  18. Organic carbon storage in four ecosystem types in the karst region of southwestern China.

    Directory of Open Access Journals (Sweden)

    Yuguo Liu

    Full Text Available Karst ecosystems are important landscape types that cover about 12% of the world's land area. The role of karst ecosystems in the global carbon cycle remains unclear, due to the lack of an appropriate method for determining the thickness of the solum, a representative sampling of the soil and data of organic carbon stocks at the ecosystem level. The karst region in southwestern China is the largest in the world. In this study, we estimated biomass, soil quantity and ecosystem organic carbon stocks in four vegetation types typical of karst ecosystems in this region, shrub grasslands (SG, thorn shrubbery (TS, forest - shrub transition (FS and secondary forest (F. The results showed that the biomass of SG, TS, FS, and F is 0.52, 0.85, 5.9 and 19.2 kg m(-2, respectively and the corresponding organic cabon storage is 0.26, 0.40, 2.83 and 9.09 kg m(-2, respectively. Nevertheless, soil quantity and corresponding organic carbon storage are very small in karst habitats. The quantity of fine earth overlaying the physical weathering zone of the carbonate rock of SG, TS, FS and F is 38.10, 99.24, 29.57 and 61.89 kg m(-2, respectively, while the corresponding organic carbon storage is only 3.34, 4.10, 2.37, 5.25 kg m(-2, respectively. As a whole, ecosystem organic carbon storage of SG, TS, FS, and F is 3.81, 4.72, 5.68 and 15.1 kg m(-2, respectively. These are very low levels compared to other ecosystems in non-karst areas. With the restoration of degraded vegetation, karst ecosystems in southwestern China may play active roles in mitigating the increasing CO2 concentration in the atmosphere.

  19. Process for producing carbon foams for energy storage devices

    Science.gov (United States)

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1998-08-04

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g--1,000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  20. Individual-Based Allometric Equations Accurately Measure Carbon Storage and Sequestration in Shrublands

    Directory of Open Access Journals (Sweden)

    Norman W.H. Mason

    2014-02-01

    Full Text Available Many studies have quantified uncertainty in forest carbon (C storage estimation, but there is little work examining the degree of uncertainty in shrubland C storage estimates. We used field data to simulate uncertainty in carbon storage estimates from three error sources: (1 allometric biomass equations; (2 measurement errors of shrubs harvested for the allometry; and (3 measurement errors of shrubs in survey plots. We also assessed uncertainty for all possible combinations of these error sources. Allometric uncertainty had the greatest independent effect on C storage estimates for individual plots. The largest error arose when all three error sources were included in simulations (where the 95% confidence interval spanned a range equivalent to 40% of mean C storage. Mean C sequestration (1.73 Mg C ha–1 year–1 exceeded the margin of error produced by the simulated sources of uncertainty. This demonstrates that, even when the major sources of uncertainty were accounted for, we were able to detect relatively modest gains in shrubland C storage.

  1. Forests and ozone: productivity, carbon storage, and feedbacks.

    Science.gov (United States)

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-01-01

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution. PMID:26899381

  2. Forests and ozone: productivity, carbon storage, and feedbacks

    Science.gov (United States)

    Wang, Bin; Shugart, Herman H.; Shuman, Jacquelyn K.; Lerdau, Manuel T.

    2016-01-01

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution. PMID:26899381

  3. Comparative Study of Carbon Storage and Allocation Characteristics of Mature Evergreen Broad-leaved Forest

    Institute of Scientific and Technical Information of China (English)

    Zhangquan; ZENG; Canming; ZHANGY; Yandong; NIU; Xiquan; LI; Zijian; WU; Jia; LUO

    2014-01-01

    Evergreen broad-leaved forest is an important forest type in China.This paper analyzes the allocation characteristics of vegetation and soil carbon pool of evergreen broad-leaved forest,to understand the current status of research on the carbon storage of evergreen broadleaved forest as well as shortcomings.In the context of global climate change,it is necessary to carry out the long-term research of evergreen broad-leaved forest,in order to grasp the formation mechanism of evergreen broad-leaved forest productivity,and the impact of climate change on the carbon sequestration function of evergreen broad-leaved forest ecosystem.

  4. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, Erik [Center For Transportation And The Environment, Inc., Atlanta, GA (United States)

    2013-01-01

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries

  5. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    Science.gov (United States)

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  6. Identifying potential sources of variability between vegetation carbon storage estimates for urban areas

    International Nuclear Information System (INIS)

    Although urbanisation is a major cause of land-use change worldwide, towns and cities remain relatively understudied ecosystems. Research into urban ecosystem service provision is still an emerging field, yet evidence is accumulating rapidly to suggest that the biological carbon stores in cities are more substantial than previously assumed. However, as more vegetation carbon densities are derived, substantial variability between these estimates is becoming apparent. Here, we review procedural differences evident in the literature, which may be drivers of variation in carbon storage assessments. Additionally, we quantify the impact that some of these different approaches may have when extrapolating carbon figures derived from surveys up to a city-wide scale. To understand how/why carbon stocks vary within and between cities, researchers need to use more uniform methods to estimate stores and relate this quantitatively to standardised ‘urbanisation’ metrics, in order to facilitate comparisons. -- Highlights: • Broad-scale spatial data fail to capture the fine-grained urban landcover mosaic. • This can have a large impact when extrapolating carbon densities up to a city-wide value. • We review how methodologies to estimate vegetation carbon vary in the literature. • We need a more uniform method for estimating carbon stores to aid inter-city comparisons. • This will allow the drivers underpinning urban carbon stock variability to be identified. -- As variability between urban vegetation carbon storage estimates is becoming increasingly apparent, we examine potential methodological drivers that may be responsible, and illustrate why a more consistent approach to biological carbon accounting would be beneficial

  7. Soil carbon storage and respiration potential across a landscape age and climate gradient in western Greenland

    Science.gov (United States)

    Bradley-Cook, J. I.; Virginia, R. A.; Hammond Wagner, C.; Racine, P. E.

    2013-12-01

    The soil formation state factors proposed by Hans Jenny (climate, organisms, relief, parent material, time) explain many soil characteristics, yet geological controls on biological carbon cycling are not well represented in regional carbon models. Landscape age, for instance, can directly affect the quantity and quality of soil organic carbon, which are key determinants of the temperature sensitivity of soil organic matter (SOM) to decomposition. Temperature control of SOM decomposition is of particular importance in Arctic soils, which contain nearly half of global belowground organic carbon and have a permafrost thermal regime that straddles the freeze-thaw threshold. We investigated soil carbon storage and respiration potential across a west Greenland transect, and related the landscape carbon patterns to regional variation in climate and landscape age. The four study sites capture a range in: landscape age from 180 years on the inland Little Ice Age moraine near Kangerlussuaq to ~10,000 years at the coastal sites near Sisimiut and Nuuk, mean annual air temperatures from -5.7 to -1.4 °C, and mean annual precipitation from 149 to 752 mm. At each site, we collected surface and mineral samples from nine soil pits within similar vegetation cover and relief classes. We measured total organic carbon and nitrogen though elemental analysis, and incubated soils at 4 °C and field capacity moisture for 175 day to measure carbon dioxide production from which we derived soil respiration potential. We hypothesized that soil carbon storage and respiration potential would be greatest at the sites with the oldest landscape age. Soil carbon content was more than four times greater at the 10,000 year sites (Nuuk = 24.03%, Sisimiut = 17.34%) than the inland sites (Ørkendalen = 3.49%, LIA = 0.05%). Carbon quality decreased across the age gradient, as measured by a nearly two-fold increase in C:N ratio from the youngest and driest to the oldest and wettest soils (LIA = 12.2, Nuuk

  8. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting

    DEFF Research Database (Denmark)

    Brandao, Miguel; Levasseur, Annie; Kirschbaum, Miko U. F.;

    2013-01-01

    footprinting (CF) are increasingly popular tools for the environmental assessment of products, that take into account their entire life cycle. There have been significant efforts to develop robust methods to account for the benefits, if any, of sequestration and temporary storage and release of biogenic carbon...... and CF. Several viewpoints and approaches are presented in a structured manner to help decision-makers in their selection of an option from competing approaches for dealing with timing issues, including delayed emissions of fossil carbon. Results: Key issues identified are that the benefits of...

  9. Percolative metal-organic framework/carbon composites for hydrogen storage

    Science.gov (United States)

    Xie, Shuqian; Hwang, Jiann-Yang; Sun, Xiang; Shi, Shangzhao; Zhang, Zheng; Peng, Zhiwei; Zhai, Yuchun

    2014-05-01

    Percolative Metal-organic framework/Carbon (MOFAC) composites are synthesized by IRMOF8 (isoreticular metal-organic frameworks) directly depositing on activated carbon via heterogeneous nucleation. Carbon content is calculated by TGA (Thermogravimetric analysis) tests. XRD (X-ray diffraction) and FESEM (Field emission-scanning electron microscope) are carried out to characterize the structures of the samples. BET surface areas and the pore size distribution are measured. The dielectric constant is measured with impedance analyzer and a specially designed sample holder. The dielectric constants of the MOFAC composites rise with increasing the carbon content, and the composites possess the insulator-conductor transition as the carbon content increases from 17.77 wt% to 22.2 wt%. The composites are further tested for hydrogen storage capability under assist of the PMN-PT (single crystal lead magnesium niobate-lead titanate) generated electric field. With help from the PMN-PT, the hydrogen uptake capability is increased about 31.5% over the MOFAC3 (MOF-Carbon composite with 22.2 wt% of carbon) without PMN-PT, which is elucidated by the charge distribution mechanisms. The improved storage is due to a stronger electrostatic interaction between IRMOF8 and hydrogen molecule caused by field polarization. Meanwhile, rapid adsorption/desorption kinetics and total reversibility on the samples are observed in the present or absence of external electric field.

  10. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service.

    Directory of Open Access Journals (Sweden)

    Paul S Lavery

    Full Text Available The recent focus on carbon trading has intensified interest in 'Blue Carbon'-carbon sequestered by coastal vegetated ecosystems, particularly seagrasses. Most information on seagrass carbon storage is derived from studies of a single species, Posidonia oceanica, from the Mediterranean Sea. We surveyed 17 Australian seagrass habitats to assess the variability in their sedimentary organic carbon (C org stocks. The habitats encompassed 10 species, in mono-specific or mixed meadows, depositional to exposed habitats and temperate to tropical habitats. There was an 18-fold difference in the Corg stock (1.09-20.14 mg C org cm(-3 for a temperate Posidonia sinuosa and a temperate, estuarine P. australis meadow, respectively. Integrated over the top 25 cm of sediment, this equated to an areal stock of 262-4833 g C org m(-2. For some species, there was an effect of water depth on the C org stocks, with greater stocks in deeper sites; no differences were found among sub-tidal and inter-tidal habitats. The estimated carbon storage in Australian seagrass ecosystems, taking into account inter-habitat variability, was 155 Mt. At a 2014-15 fixed carbon price of A$25.40 t(-1 and an estimated market price of $35 t(-1 in 2020, the C org stock in the top 25 cm of seagrass habitats has a potential value of $AUD 3.9-5.4 bill. The estimates of annual C org accumulation by Australian seagrasses ranged from 0.093 to 6.15 Mt, with a most probable estimate of 0.93 Mt y(-1 (10.1 t. km(-2 y(-1. These estimates, while large, were one-third of those that would be calculated if inter-habitat variability in carbon stocks were not taken into account. We conclude that there is an urgent need for more information on the variability in seagrass carbon stock and accumulation rates, and the factors driving this variability, in order to improve global estimates of seagrass Blue Carbon storage.

  11. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  12. Development of a Probabilistic Assessment Methodology for Evaluation of Carbon Dioxide Storage

    Science.gov (United States)

    Burruss, Robert A.; Brennan, Sean T.; Freeman, P.A.; Merrill, Matthew D.; Ruppert, Leslie F.; Becker, Mark F.; Herkelrath, William N.; Kharaka, Yousif K.; Neuzil, Christopher E.; Swanson, Sharon M.; Cook, Troy A.; Klett, Timothy R.; Nelson, Philip H.; Schenk, Christopher J.

    2009-01-01

    This report describes a probabilistic assessment methodology developed by the U.S. Geological Survey (USGS) for evaluation of the resource potential for storage of carbon dioxide (CO2) in the subsurface of the United States as authorized by the Energy Independence and Security Act (Public Law 110-140, 2007). The methodology is based on USGS assessment methodologies for oil and gas resources created and refined over the last 30 years. The resource that is evaluated is the volume of pore space in the subsurface in the depth range of 3,000 to 13,000 feet that can be described within a geologically defined storage assessment unit consisting of a storage formation and an enclosing seal formation. Storage assessment units are divided into physical traps (PTs), which in most cases are oil and gas reservoirs, and the surrounding saline formation (SF), which encompasses the remainder of the storage formation. The storage resource is determined separately for these two types of storage. Monte Carlo simulation methods are used to calculate a distribution of the potential storage size for individual PTs and the SF. To estimate the aggregate storage resource of all PTs, a second Monte Carlo simulation step is used to sample the size and number of PTs. The probability of successful storage for individual PTs or the entire SF, defined in this methodology by the likelihood that the amount of CO2 stored will be greater than a prescribed minimum, is based on an estimate of the probability of containment using present-day geologic knowledge. The report concludes with a brief discussion of needed research data that could be used to refine assessment methodologies for CO2 sequestration.

  13. Allocation to carbon storage pools in Norway spruce saplings under drought and low CO2.

    Science.gov (United States)

    Hartmann, Henrik; McDowell, Nate G; Trumbore, Susan

    2015-03-01

    Non-structural carbohydrates (NSCs) are critical to maintain plant metabolism under stressful environmental conditions, but we do not fully understand how NSC allocation and utilization from storage varies with stress. While it has become established that storage allocation is unlikely to be a mere overflow process, very little empirical evidence has been produced to support this view, at least not for trees. Here we present the results of an intensively monitored experimental manipulation of whole-tree carbon (C) balance (young Picea abies (L.) H Karst.) using reduced atmospheric [CO2] and drought to reduce C sources. We measured specific C storage pools (glucose, fructose, sucrose, starch) over 21 weeks and converted concentration measurement into fluxes into and out of the storage pool. Continuous labeling ((13)C) allowed us to track C allocation to biomass and non-structural C pools. Net C fluxes into the storage pool occurred mainly when the C balance was positive. Storage pools increased during periods of positive C gain and were reduced under negative C gain. (13)C data showed that C was allocated to storage pools independent of the net flux and even under severe C limitation. Allocation to below-ground tissues was strongest in control trees followed by trees experiencing drought followed by those grown under low [CO2]. Our data suggest that NSC storage has, under the conditions of our experimental manipulation (e.g., strong progressive drought, no above-ground growth), a high allocation priority and cannot be considered an overflow process. While these results also suggest active storage allocation, definitive proof of active plant control of storage in woody plants requires studies involving molecular tools. PMID:25769339

  14. Synthesis and applications of carbon nanomaterials for energy generation and storage.

    Science.gov (United States)

    Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy; Motta, Nunzio

    2016-01-01

    The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage - the key to the portable electronics of the future. PMID:26925363

  15. Large-scale carbon capture and storage for coal-fired power: Effect on global carbon dioxide emissions

    OpenAIRE

    Torvanger, Asbjørn

    2007-01-01

    The scenarios in this report show that large-scale deployment of carbon capture and storage technologies for new coal-fired power plants from year 2015 may reduce global CO2 emissions by 8-18% by 2030 and 22-25% by 2100. These estimates are sensitive to the Business-as-Usual scenarios chosen, both for total CO2 emissions and for power production based on coal.

  16. Carbon storage in Chinese grassland ecosystems: Influence of different integrative methods

    Science.gov (United States)

    Ma, Anna; He, Nianpeng; Yu, Guirui; Wen, Ding; Peng, Shunlei

    2016-02-01

    The accurate estimate of grassland carbon (C) is affected by many factors at the large scale. Here, we used six methods (three spatial interpolation methods and three grassland classification methods) to estimate C storage of Chinese grasslands based on published data from 2004 to 2014, and assessed the uncertainty resulting from different integrative methods. The uncertainty (coefficient of variation, CV, %) of grassland C storage was approximately 4.8% for the six methods tested, which was mainly determined by soil C storage. C density and C storage to the soil layer depth of 100 cm were estimated to be 8.46 ± 0.41 kg C m-2 and 30.98 ± 1.25 Pg C, respectively. Ecosystem C storage was composed of 0.23 ± 0.01 (0.7%) above-ground biomass, 1.38 ± 0.14 (4.5%) below-ground biomass, and 29.37 ± 1.2 (94.8%) Pg C in the 0-100 cm soil layer. Carbon storage calculated by the grassland classification methods (18 grassland types) was closer to the mean value than those calculated by the spatial interpolation methods. Differences in integrative methods may partially explain the high uncertainty in C storage estimates in different studies. This first evaluation demonstrates the importance of multi-methodological approaches to accurately estimate C storage in large-scale terrestrial ecosystems.

  17. Carbon sequestration via wood harvest and storage: An assessment of its harvest potential

    DEFF Research Database (Denmark)

    Zeng, Ning; King, Anthony W.; Zaitchik, Ben; Wullschleger, Stan D.; Gregg, Jay Sterling; Wang, Shaoqiang; Kirk-Davidoff, Dan

    2013-01-01

    A carbon sequestration strategy has recently been proposed in which a forest is actively managed, and a fraction of the wood is selectively harvested and stored to prevent decomposition. The forest serves as a ‘carbon scrubber’ or ‘carbon remover’ that provides continuous sequestration (negative...... emissions). Earlier estimates of the theoretical potential of wood harvest and storage (WHS) based on coarse wood production rates were 10±5 GtC y−1. Starting from this physical limit, here we apply a number of practical constraints: (1) land not available due to agriculture; (2) forest set aside as...... more efficient wood use without increasing harvest, finds 0.1–0.5 GtC y−1 available for carbon sequestration. We suggest a range of 1–3 GtCy−1 carbon sequestration potential if major effort is made to expand managed forests and/or to increase harvest intensity. The implementation of such a scheme at...

  18. Modeling mechanical energy storage in springs based on carbon nanotubes

    International Nuclear Information System (INIS)

    A modeling study of the potential for storing energy in the elastic deformation of springs comprised of carbon nanotubes (CNTs) is presented. Analytic models were generated to estimate the ideal achievable energy density in CNTs subject to axial tension, compression, bending and torsion, taking into account limiting mechanisms such as the strength of individual CNTs, the onset of buckling, and the packing density limitations of CNT groupings. The stored energy density in CNT springs is predicted to be highest under tensile loading, with maximum values more than three orders of magnitude greater than the energy density of steel springs, and approximately eight times greater than the energy density of lithium-ion batteries. Densely packed bundles of precisely aligned, small diameter single-walled carbon nanotubes are identified as the best structure for high performance springs. The conceptual design and modeling of a portable electric power source that stores energy in a CNT spring are presented as tools for studying the potential performance of a system for generating electricity from the CNTs' stored mechanical energy.

  19. Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops

    Science.gov (United States)

    Woo, D.; Quijano, J.; Kumar, P.; Chaoka, S.; Bernacchi, C.

    2014-12-01

    Due to increasing demands for bioenergy, a considerable amount of land in the Midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. In this study, we attempt to explore and analyze how different amounts of above-ground biomass returned to the soil at harvest affect the below-ground dynamics of carbon and nitrogen as a comparative study between miscanthus, swichgrass, and corn-corn-soybean rotation. The simulation results show that there is a threshold effect in the amount of above-ground litter input in the soil after harvest that will reach a critical organic matter C:N ratio in the soil, triggering a reduction of the soil microbial population, with significant consequences in other microbe-related processes such as decomposition and mineralization. These thresholds are approximately 25% and 15% of above-ground biomass for switchgrass and miscanthus, respectively. However, we do not observe such threshold effects for corn-corn-soybean rotation. These results suggest that values above these thresholds could result in a significant reduction of decomposition and mineralization, which in turn would enhance the sequestration of atmospheric carbon dioxide in the topsoil and reduce inorganic nitrogen losses when compared with a corn-corn-soybean rotation.

  20. Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean and in geological reservoirs

    OpenAIRE

    Haugan, Peter Mosby; Joos, Fortunat

    2004-01-01

    Different metrics to assess mitigation of global warming by carbon capture and storage are discussed. The climatic impact of capturing 30% of the anthropogenic carbon emission and its storage in the ocean or in geological reservoir are evaluated for different stabilization scenarios using a reduced-form carbon cycle-climate model. The accumulated Global Warming Avoided (GWA) remains, after a ramp-up during the first ~50 years, in the range of 15 to 30% over the next millennium for de...

  1. Ecosystem carbon storage capacity as affected by disturbance regimes: a general theoretical model

    Science.gov (United States)

    Weng, E.; Luo, Y.; Wang, W.; Wang, H.; Hayes, D. J.; McGuire, A. D.; Hastings, A.; Schimel, D.

    2012-12-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x]=UτE λ/(λ+sτ1) , where U is ecosystem carbon influx, τE is ecosystem carbon residence time, and τ1 is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval (λ) and the mean disturbance severity (s). It is a Michaelis-Menten type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model , for example, approximately 1.8 Pg C will be lost in the high latitude regions of North America (>45°N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of 21st century, which will require around 12% increases in NPP to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  2. Carbon capture and storage & the optimal path of the carbon tax

    OpenAIRE

    Lontzek, Thomas S.; Rickels, Wilfried

    2008-01-01

    In the presence of rising carbon concentrations more attention should be given to the role of the oceans as a sink for atmospheric carbon. We do so by setting up a simple dynamic global carbon cycle model with two reservoirs containing atmosphere and two ocean layers. The net flux between these reservoirs is determined by the relative reservoir size and therefore constitutes a more appropriate description of the carbon cycle than a proportional decay assumption. We exploit the specific featur...

  3. Analysis of carbon capture and storage cost-supply curves for the UK

    International Nuclear Information System (INIS)

    This report details the results of a study carried out on behalf of the Department of Trade and Industry to develop an understanding of the potential costs of carbon capture and storage (CCS) in the UK and to construct supply curves of CCS for the future based on the most up-to-date information available. Poyry Energy Consulting developed a model to examine how the economics of the entire process of CCS in the UK will change as the volume of deployment increases (i.e. develop a cost supply curve). The model is designed to include major sources of carbon dioxide (CO2) emissions from all industrial sectors, pipelines to transport the CO2 and major potential offshore storage sites. It allows investigation of sensitivities so that parameters and assumptions can be varied to allow consideration of a range of cost scenarios. The report presents an overview of the CCS model and concepts, and sets out the model results in terms of capture costs, transport, storage, total costs, impact of fuel prices, inclusion of carbon allowances, counterfactual and its conclusions. A worked example is included to show detailed cost calculations from source to sink including detail of volume of CO2 abated, capital costs, fuel cost, non-fuel operation and maintenance cost, and transport and storage cost

  4. Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Haiqing L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We developed a novel porous graphitic carbon nanofiber material using a synthesis strategy combining electrospinning and catalytic graphitization. RF hydrogel was used as carbon precursors, transition metal ions were successfully introduced into the carbon matrix by binding to the carboxylate groups of a resorcinol derivative. Transition metal particles were homogeneously distributed throughout the carbon matrix, which are used as in-situ catalysts to produce graphitic fullerene-like nanostructures surrounding the metals. The success design of graphitic carbons with enlarged interlayer spacing will enable the multivalent ion intercalation for the development of multivalent rechargeable batteries.

  5. Preparation of re-constructed carbon nanosheet powders and their efficient lithium-ion storage mechanism

    International Nuclear Information System (INIS)

    Highlights: • Novel folding re-constructed carbon nanosheet powders (re-CNSs) with unique microstructure and higher lithium-ion storage capacity than prototype graphite powders are prepared. • The wrinkles on the surface of the re-CNSs play an important role on the enhanced lithium-ions storage and provide a new way to improve the capacity of anode materials for lithium ion batteries (LIBs). • A dislocation mechanism is used to describe the role of the wrinkles for the enhanced lithium-ion storage. - Abstract: Based on the re-construction idea of carbon nanomaterials, novel folding re-constructed carbon nanosheets (re-CNSs) with unique microstructure and higher lithium-ion storage capacity than prototype graphite powders are prepared. The nanoscale carbon-fragment suspension is firstly prepared through a successive chemical oxidation of graphite and ultrasonic crushing operation, and the re-CNS powders are then obtained by spray drying the suspension and a subsequent high-temperature reducing process. The as-prepared re-CNSs exhibit a folding appearance with a width of several micrometers, with a maximum initial specific capacity of 903 mAh g−1 for the re-CNSs sample thermally reduced at 500 °C (re-CNSs500). After 100 cycles, the reversible capacity is maintained at about 400 mAh g−1 for the re-CNSs500. The abundant carboxylic and hydroxide groups, edges, and defective sites of individual graphite oxide fragments facilitate the dislocation formation in the re-CNSs. In addition, a dislocation mechanism is thus used to describe the enhanced lithium-ion storage

  6. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  7. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage

    Science.gov (United States)

    Blackford, Jerry; Stahl, Henrik; Bull, Jonathan M.; Bergès, Benoît J. P.; Cevatoglu, Melis; Lichtschlag, Anna; Connelly, Douglas; James, Rachael H.; Kita, Jun; Long, Dave; Naylor, Mark; Shitashima, Kiminori; Smith, Dave; Taylor, Peter; Wright, Ian; Akhurst, Maxine; Chen, Baixin; Gernon, Tom M.; Hauton, Chris; Hayashi, Masatoshi; Kaieda, Hideshi; Leighton, Timothy G.; Sato, Toru; Sayer, Martin D. J.; Suzumura, Masahiro; Tait, Karen; Vardy, Mark E.; White, Paul R.; Widdicombe, Steve

    2014-11-01

    Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate, yet many economies will remain reliant on these technologies for several decades. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system. In many regions storage reservoirs are located offshore, over a kilometre or more below societally important shelf seas. Therefore, concerns about the possibility of leakage and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.

  8. Limits of mechanical energy storage and structural changes in twisted carbon nanotube ropes

    Science.gov (United States)

    Fthenakis, Zacharias G.; Zhu, Zhen; Teich, David; Seifert, Gotthard; Tománek, David

    2013-12-01

    Arrays of twisted carbon nanotubes and nanotube ropes are equivalent to a torsional spring capable of storing energy. The advantage of carbon nanotubes over a twisted rubber band, which is used to store energy in popular toys, is their unprecedented toughness. Using ab initio and parametrized density functional calculations, we determine the elastic range and energy storage capacity of twisted carbon nanotubes and nanotube ropes. We find that a twisted nanotube rope may reversibly store energy by twisting, stretching, bending, and compressing constituent nanotubes. We find that in the elastic regime, the interior of a twisted rope encounters hydrostatic pressures of up to tens of GPa. We examine the limits of reversible energy storage and identify structural deformations beyond the elastic limit, where irreversibility is associated with breaking and forming new covalent bonds. Under optimum conditions, the calculated reversible mechanical energy storage capacity of twisted carbon nanotube ropes surpasses that of advanced Li-ion batteries by up to a factor of 4 to 10.

  9. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors.

    Science.gov (United States)

    Simon, Patrice; Gogotsi, Yury

    2010-07-28

    Electrochemical capacitors, also known as supercapacitors, are energy storage devices that fill the gap between batteries and dielectric capacitors. Thanks to their unique features, they have a key role to play in energy storage and harvesting, acting as a complement to or even a replacement of batteries which has already been achieved in various applications. One of the challenges in the supercapacitor area is to increase their energy density. Some recent discoveries regarding ion adsorption in microporous carbon exhibiting pores in the nanometre range can help in designing the next generation of high-energy-density supercapacitors. PMID:20566518

  10. Spatial and Temporal Patterns of Carbon Storage in Forest Ecosystems on Hainan Island, Southern China

    OpenAIRE

    Hai Ren; Linjun Li; Qiang Liu; Xu Wang; Yide Li; Dafeng Hui; Shuguang Jian; Jun Wang; Huai Yang; Hongfang Lu; Guoyi Zhou; Xuli Tang; Qianmei Zhang; Dong Wang; Lianlian Yuan

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993-2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The...

  11. Carbon Storage in a Eucalyptus Plantation Chronosequence in Southern China

    Directory of Open Access Journals (Sweden)

    Hu Du

    2015-05-01

    Full Text Available Patterns of carbon (C allocation across different stages of stand development in Eucalyptus urophylla × E. grandis plantations are not well understood. In this study, we examined biomass and mineral soil C content in five development stages (1, 2, 3, 4–5, and 6–8 years old of a Eucalyptus stand in southern China. The tree biomass C pool increased with stand age and showed a high annual rate of accumulation. Stems accounted for the highest proportion of biomass C sequestered. The C pool in mineral soil increased initially after afforestation and then declined gradually, with C density decreasing with soil depth. The upper 50 cm of soil contained the majority (57%–68% of sequestered C. The other biomass components (shrubs, herbaceous plants, litter, and fine roots accounted for <5% of the total ecosystem C pool. Total C pools in the Eucalyptus plantation ecosystem were 112.9, 172.5, 203.8, 161.1, and 162.7 Mg ha−1 in the five developmental stages, respectively, with most of the C sequestered below ground. We conclude that Eucalyptus plantations have considerable biomass C sequestration potential during stand development.

  12. A Probabilistic Assessment Methodology for the Evaluation of Geologic Carbon Dioxide Storage

    Science.gov (United States)

    Brennan, Sean T.; Burruss, Robert A.; Merrill, Matthew D.; Freeman, P.A.; Ruppert, Leslie F.

    2010-01-01

    In 2007, the Energy Independence and Security Act (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) in cooperation with the U.S. Environmental Protection Agency and the U.S. Department of Energy. The first year of that activity was specified for development of a methodology to estimate storage potential that could be applied uniformly to geologic formations across the United States. After its release, the methodology was to receive public comment and external expert review. An initial methodology was developed and published in March 2009 (Burruss and others, 2009), and public comments were received. The report was then sent to a panel of experts for external review. The external review report was received by the USGS in December 2009. This report is in response to those external comments and reviews and describes how the previous assessment methodology (Burruss and others, 2009) was revised. The resource that is assessed is the technically accessible storage resource, which is defined as the mass of CO2 that can be stored in the pore volume of a storage formation. The methodology that is presented in this report is intended to be used for assessments at scales ranging from regional to subbasinal in which storage assessment units are defined on the basis of common geologic and hydrologic characteristics. The methodology does not apply to site-specific evaluation of storage resources or capacity.

  13. Effect of high carbon dioxide storage and gamma irradiation on membrane deterioration in cauliflower florets

    International Nuclear Information System (INIS)

    Controlled atmospheres and gamma irradiation are technologies which extend storage-life of fruits and vegetables. Separate and combined effects of high CO2 storage and gamma irradiation on cell membranes from cauliflower florets (Brassica oleracea L., Botrytis group) were investigated. Storage of the florets for 8 days at 13°C, either under 15% carbon dioxide or in air after irradiation at 2 kGy, accelerated the deterioration of microsomal membranes during storage. Both treatments caused an early loss in lipid phosphate. Irradiation enhanced the free fatty acid content of the membranes during storage and caused an extensive protein loss. When irradiation and high CO2 storage were combined, electrolyte leakage significantly increased while protein loss was considerably reduced. The results indicate that high CO2 and irradiation accelerate membrane degradation through different mechanisms. The combined effects of the treatments were not additive, but membrane yield was apparently reduced. CO2 protected the membranes from protein loss induced by irradiation. The apparent increase in electrolyte leakage after irradiation may be caused by the release of ions following cell wall deterioration

  14. Air pollution impacts from carbon capture and storage (CCS)

    Energy Technology Data Exchange (ETDEWEB)

    Harmelen, T. van; Horssen, A. van; Jozwicka, M.; Pulles, T. (TNO, Delft (Netherlands)); Odeh, N. (AEA Technology, Harwell (United Kingdom)); Adams, M. (EEA, Copenhagen (Denmark))

    2011-11-15

    This report comprises two separate complementary parts that address the links between CCS implementation and its subsequent impacts on GHG and air pollutant emissions on a life-cycle basis: Part A discusses and presents key findings from the latest literature, focusing upon the potential air pollution impacts across the CCS life-cycle arising from the implementation of the main foreseen technologies. Both negative and positive impacts on air quality are presently suggested in the literature - the basis of scientific knowledge on these issues is rapidly advancing. Part B comprises a case study that quantifies and highlights the range of GHG and air pollutant life-cycle emissions that could occur by 2050 under a low-carbon pathway should CCS be implemented in power plants across the European Union under various hypothetical scenarios. A particular focus of the study was to quantify the main life-cycle emissions of the air pollutants taking into account the latest knowledge on air pollutant emission factors and life-cycle aspects of the CCS life-cycle as described in Part A of the report. Pollutants considered in the report were the main GHGs CO{sub 2}, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) and the main air pollutants with potential to harm human health and/or the environment - nitrogen oxides (NO{sub X}), sulphur dioxide (SO{sub 2}), ammonia (NH{sub 3}), non-methane volatile organic compounds (NMVOCs) and particulate matter (PM{sub 10}). (Author)

  15. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States

    Science.gov (United States)

    Schimel, D.; Melillo, J.; Tian, H.; McGuire, A.D.; Kicklighter, D.; Kittel, T.; Rosenbloom, N.; Running, S.; Thornton, P.; Ojima, D.; Parton, W.; Kelly, R.; Sykes, M.; Neilson, R.; Rizzo, B.

    2000-01-01

    The effects of increasing carbon dioxide (CO2) and climate on net carbon storage in terrestrial ecosystems of the conterminous United States for the period 1895-1993 were modeled with new, detailed historical climate information. For the period 1980-1993, results from an ensemble of three models agree within 25%, simulating a land carbon sink from CO2 and climate effects of 0.08 gigaton of carbon per year. The best estimates of the total sink from inventory data are about three times larger, suggesting that processes such as regrowth on abandoned agricultural land or in forests harvested before 1980 have effects as large as or larger than the direct effects of CO2 and climate. The modeled sink varies by about 100% from year to year as a result of climate variability.

  16. Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest

    OpenAIRE

    Rowland, Lucy; Hill, Timothy Charles; Stahl, Clement; Siebicke, Lukas; Burban, Benoît; Zaragoza-Castells, Joana; Ponton, Stéphane; Bonal, Damien; Meir, Patrick; Williams, Mathew

    2014-01-01

    The relative contribution of gross primary production and ecosystem respiration to seasonal changes in the net carbon flux of tropical forests remains poorly quantified by both modelling and field studies. We use data assimilation to combine nine ecological time series from an eastern Amazonian forest, with mass balance constraints from an ecosystem carbon cycle model. The resulting analysis quantifies, with uncertainty estimates, the seasonal changes in the net carbon flux of a tropical rain...

  17. Spatial distribution and variability of carbon storage in different sympodial bamboo species in China.

    Science.gov (United States)

    Teng, Jiangnan; Xiang, Tingting; Huang, Zhangting; Wu, Jiasen; Jiang, Peikun; Meng, Cifu; Li, Yongfu; Fuhrmann, Jeffry J

    2016-03-01

    Selection of tree species is potentially an important management decision for increasing carbon storage in forest ecosystems. This study investigated and compared spatial distribution and variability of carbon storage in 8 sympodial bamboo species in China. The results of this study showed that average carbon densities (CDs) in the different organs decreased in the order: culms (0.4754 g g(-1)) > below-ground (0.4701 g g(-1)) > branches (0.4662 g g(-1)) > leaves (0.4420 g g(-1)). Spatial distribution of carbon storage (CS) on an area basis in the biomass of 8 sympodial bamboo species was in the order: culms (17.4-77.1%) > below-ground (10.6-71.7%) > branches (3.8-11.6%) > leaves (0.9-5.1%). Total CSs in the sympodial bamboo ecosystems ranged from 103.6 Mg C ha(-1) in Bambusa textilis McClure stand to 194.2 Mg C ha(-1) in Dendrocalamus giganteus Munro stand. Spatial distribution of CSs in 8 sympodial bamboo ecosystems decreased in the order: soil (68.0-83.5%) > vegetation (16.8-31.1%) > litter (0.3-1.7%). Total current CS and biomass carbon sequestration rate in the sympodial bamboo stands studied in China is 93.184 × 10(6) Mg C ha(-1) and 8.573 × 10(6) Mg C yr(-1), respectively. The sympodial bamboos had a greater CSs and higher carbon sequestration rates relative to other bamboo species. Sympodial bamboos can play an important role in improving climate and economy in the widely cultivated areas of the world. PMID:26696605

  18. Does deciduous tree species identity affect carbon storage in temperate soils?

    Science.gov (United States)

    Jungkunst, Hermann; Schleuß, Per; Heitkamp, Felix

    2015-04-01

    Forest soils contribute roughly 70 % to the global terrestrial soil organic carbon (SOC) pool and thus play a vital role in the global carbon cycle. It is less clear, however, whether temperate tree species identity affects SOC storage beyond the coarse differentiation between coniferous and deciduous trees. The most important driver for soil SOC storage definitely is the fine mineral fraction (clay and fine silt) because of its high sorption ability. It is difficult to disentangle any additional biotic effects since clay and silt vary considerably in nature. For experimental approaches, the process of soil carbon accumulation is too slow and, therefore, sound results cannot be expected for decades. Here we will present our success to distinguish between the effects of fine particle content (abiotic) and tree species composition (biotic) on the SOC pool in an old-growth broad-leaved forest plots along a tree diversity gradient , i.e., 1- (beech), 3- (plus ash and lime tree)- and 5-(plus maple and hornbeam) species. The particle size fractions were separated first and then the carbon concentrations of each fraction was measured. Hence, the carbon content per unit clay was not calculated, as usually done, but directly measured. As expected, the variation in SOC content was mainly explained by the variations in clay content but not entirely. We found that the carbon concentration per unit clay and fine silt in the subsoil was by 30-35% higher in mixed than in monospecific stands indicating a significant species identity or species diversity effect on C stabilization. In contrast to the subsoil, no tree species effects was identified for the topsoil. Indications are given that the mineral phase was already carbon saturated and thus left no more room for a possible biotic effect. Underlying processes must remain speculative, but we will additionally present our latest microcosm results, including isotopic signatures, to underpin the proposed deciduous tree species

  19. Vegetation Carbon Storage, Spatial Patterns and Response to Altitude in Lancang River Basin, Southwest China

    Directory of Open Access Journals (Sweden)

    Long Chen

    2016-01-01

    Full Text Available Vegetation plays a very important role of carbon (C sinks in the global C cycle. With its complex terrain and diverse vegetation types, the Lancang River Basin (LRB of southwest China has huge C storage capacity. Therefore, understanding the spatial variations and controlling mechanisms of vegetation C storage is important to understand the regional C cycle. In this study, data from a forest inventory and field plots were used to estimate and map vegetation C storage distribution in the LRB, to qualify the quantitative relationships between vegetation C density and altitude at sublot and township scale, and a linear model or polynomial model was used to identify the relationship between C density and altitude at two spatial scales and two statistical scales. The results showed that a total of 300.32 Tg C was stored in the LRB, an important C sink in China. The majority of C storage was contributed by forests, notably oaks. The vegetation C storage exhibited nonlinear variation with latitudinal gradients. Altitude had tremendous influences on spatial patterns of vegetation C storage of three geomorphological types in the LRB. C storage decreased with increasing altitude at both town and sublot scales in the flat river valley (FRV region and the mid-low mountains gorge (MMG region, and first increased then decreased in the alpine gorge (AG region. This revealed that, in southwest China, altitude changes the latitudinal patterns of vegetation C storage; especially in the AG area, C density in the mid-altitude (3100 m area was higher than that of adjacent areas.

  20. Considerations in forecasting the demand for carbon sequestration and biotic storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, M.C. [Trexler and Associates, Inc., Portland, OR (United States)

    1997-12-31

    The Intergovernmental Panel on Climate Change (IPCC) has identified forestry and other land-use based mitigation measures as possible sources and sinks of greenhouse gases. An overview of sequestration and biotic storage is presented, and the potential impacts of the use of carbon sequestration as a mitigation technology are briefly noted. Carbon sequestration is also compare to other mitigation technologies. Biotic mitigation technologies are concluded to be a legitimate and potentially important part of greenhouse gas mitigation due to their relatively low costs, ancillary benefits, and climate impact. However, not all biotic mitigation techniques perfectly match the idealized definition of a mitigation measure, and policies are becoming increasingly biased against biotic technologies.

  1. Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia

    OpenAIRE

    Telles, Everaldo de Carvalho Conceicao; Camargo, Plinio Barbosa; Luiz A Martinelli; Trumbore, Susan E.; da Costa, Enir Salazar; Santos, Joaquim; Higuchi, Niro; de Oliveira, Raimundo Cosme

    2003-01-01

    Stable and radiocarbon isotopes were used to investigate the role of soil clay content in the storage and dynamics of soil carbon in tropical forest soils. Organic matter in clay-rich Oxisols and Ultisols contains at least two distinct components: (1) material with light δ13C signatures and turnover times of decades or less; and (2) clay-associated, 13C-enriched, carbon with turnover times of decades at the surface to millennia at depths >20 cm. Soil texture, in this case clay content, exerts...

  2. Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia

    OpenAIRE

    Telles, E.; de Camargo, P.; Martinelli, L.; Trumbore, S.; Da Costa, E; Santos, J.; N. Higuchi; de Oliveira, R.

    2003-01-01

    [1] Stable and radiocarbon isotopes were used to investigate the role of soil clay content in the storage and dynamics of soil carbon in tropical forest soils. Organic matter in clay-rich Oxisols and Ultisols contains at least two distinct components: ( 1) material with light delta(13)C signatures and turnover times of decades or less; and ( 2) clay-associated, C-13-enriched, carbon with turnover times of decades at the surface to millennia at depths > 20 cm. Soil texture, in this case clay c...

  3. Natural gas storage in microporous carbon obtained from waste of the olive oil production

    OpenAIRE

    Cecilia Solar; Fabiana Sardella; Cristina Deiana; Rochel Montero Lago; Andrea Vallone; Karim Sapag

    2008-01-01

    A series of activated carbons (AC) were prepared from waste of the olive oil production in the Cuyo Region, Argentine by two standard methods: a) physical activation by steam and b) chemical activation with ZnCl2. The AC samples were characterized by nitrogen adsorption at 77 K and evaluated for natural gas storage purposes through the adsorption of methane at high pressures. The activated carbons showed micropore volumes up to 0.50 cm³.g-1 and total pore volumes as high as 0.9 cm³.g-1. The B...

  4. Estimating changes in terrestrial vegetation and carbon storage. Using palaeoecological data and models

    Science.gov (United States)

    Peng, C. H.; Guiot, J.; Van Campo, E.

    Climatic changes that accompanied the transition from the last glacial to the present interglacial conditions over the past 18,000 14C years impacted both terrestrial ecosystem structure (vegetation distribution) and function (carbon dynamics), which in turn influenced the climate through biogeophysical mechanisms. Palaeoecological records provide not only past records of vegetation patterns at various spatial and temporal scales, but also a means of evaluating the associated change in past terrestrial carbon storage. After a brief review of the role of palaeoecological data and biosphere models in evaluating the potential impacts of past climate change on terrestrial ecosystems, we synthesize the methods for reconstructing the vegetation patterns from palaeoecological data and the way to integrate it with biosphere models to reconstruct the long-term terrestrial carbon dynamics since the Last Glacial Maximum (LGM). The main results obtained at both the global and regional scales suggest that colder, more arid and low atmospheric CO 2 climatic conditions at the LGM may have favored the extensions of steppe and grassland dominated by C4 plants, to the detriment of forested ecosystems. However, the warmer and wetter climatic conditions during the Holocene favored extensions of temperate deciduous forests in mid-latitudes and reduced the tundra and taiga forests at high latitudes. Carbon storage in terrestrial vegetation was relatively low during the full-glacial time and increased considerably to a maximum during the mid-Holocene. Most of the recent estimates converge to an increase of about 30% global carbon storage from the LGM to the present. There still is a significant gap in our understanding of ice-age terrestrial carbon budget. The difference between the marine and terrestrial estimations is about 150-430 Pg C (1 Pg=10 15 g). It results from the uncertainties in reconstruction of terrestrial vegetation and carbon storage as well as the uncertainties in the

  5. Final Scientific/Technical Report Carbon Capture and Storage Training Northwest - CCSTNW

    Energy Technology Data Exchange (ETDEWEB)

    Workman, James

    2013-09-30

    This report details the activities of the Carbon Capture and Storage Training Northwest (CCSTNW) program 2009 to 2013. The CCSTNW created, implemented, and provided Carbon Capture and Storage (CCS) training over the period of the program. With the assistance of an expert advisory board, CCSTNW created curriculum and conducted three short courses, more than three lectures, two symposiums, and a final conference. The program was conducted in five phases; 1) organization, gap analysis, and form advisory board; 2) develop list serves, website, and tech alerts; 3) training needs survey; 4) conduct lectures, courses, symposiums, and a conference; 5) evaluation surveys and course evaluations. This program was conducted jointly by Environmental Outreach and Stewardship Alliance (dba. Northwest Environmental Training Center – NWETC) and Pacific Northwest National Laboratories (PNNL).

  6. Electrochemical energy storage devices using electrodes incorporating carbon nanocoils and metal oxides nanoparticles

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-07-28

    Carbon nanocoil (CNC) based electrodes are shown to be promising candidates for electrochemical energy storage applications, provided the CNCs are properly functionalized. In the present study, nanocrystalline metal oxide (RuO 2, MnO2, and SnO2) dispersed CNCs were investigated as electrodes for supercapacitor applications using different electrochemical methods. In the two electrode configuration, the samples exhibited high specific capacitance with values reaching up to 311, 212, and 134 F/g for RuO2/CNCs, MnO2/CNCs, and SnO2/CNCs, respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be superior to those reported for metal oxide dispersed multiwalled carbon nanotubes in two electrode configuration. In addition, the fabricated supercapacitors retained excellent cycle life with ∼88% of the initial specific capacitance retained after 2000 cycles. © 2011 American Chemical Society.

  7. Adsorbed Natural Gas Storage in Optimized High Surface Area Microporous Carbon

    Science.gov (United States)

    Romanos, Jimmy; Rash, Tyler; Nordwald, Erik; Shocklee, Joshua Shawn; Wexler, Carlos; Pfeifer, Peter

    2011-03-01

    Adsorbed natural gas (ANG) is an attractive alternative technology to compressed natural gas (CNG) or liquefied natural gas (LNG) for the efficient storage of natural gas, in particular for vehicular applications. In adsorbants engineered to have pores of a few molecular diameters, a strong van der Walls force allows reversible physisorption of methane at low pressures and room temperature. Activated carbons were optimized for storage by varying KOH:C ratio and activation temperature. We also consider the effect of mechanical compression of powders to further enhance the volumetric storage capacity. We will present standard porous material characterization (BET surface area and pore-size distribution from subcritical N2 adsorption) and methane isotherms up to 250 bar at 293K. At sufficiently high pressure, specific surface area, methane binding energy and film density can be extracted from supercritical methane adsorption isotherms. Research supported by the California Energy Commission (500-08-022).

  8. Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses

    OpenAIRE

    Abou Rajab, Yasmin; Leuschner, Christoph; Barus, Henry; Tjoa, Aiyen; Hertel, Dietrich

    2016-01-01

    One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each) with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia...

  9. Carbon Capture and Storage : Major uncertainties prevailing in theFutureGen project

    OpenAIRE

    Ullah, Sami

    2014-01-01

    Carbon Capture and Storage (CCS) is an old technology matrix with new concept to mitigate climate change while utilizing fossil fuels by advancing the technology. The various level of advancement in technology has been successfully demonstrated in some part of the world. However the technology has inherent uncertainty of not having commercial CCS plant. Efforts to make CCS commercially viable unfold uncertainties in numerous aspects of CCS technology. Beside the uncertainties in technology ma...

  10. Techno-economic analysis of polygeneration systems with carbon capture and storage and CO reuse

    OpenAIRE

    Ng, KS; Zhang, N.; Sadhukhan, J

    2013-01-01

    Several decarbonised polygeneration schemes exploiting carbon capture and storage (CCS) or CO reuse technologies for the generation of clean fuels, chemicals, electricity and heat have been systematically analysed for techno-economic feasibility. Process simulation, energy integration and economic analysis were undertaken to analyse the effect of process configurations and operating conditions on the economic potential (EP) and risks. CO capture and reuse producing methane using Sabatier's re...

  11. Opportunities for early Carbon Capture, Utilisation and Storage development in China

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, D. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-01-15

    The outline of the presentation shows the following elements: China CCUS (Carbon Capture, Utilisation and Storage) policy, strategy and development status; International developments in CCUS; High-purity CO2 sources and potential EOR (Enhanced Oil Recovery) locations in China; Capture routes: (a) Separation technologies/processes, (b) CO2 purity specifications, compression and after treatment, (c) CO2 transportation options, (d) Associated Cost; Potential cost-effective full-chain CCUS projects in Shaanxi; Barriers to CCUS development in Shaanxi; and Conclusions.

  12. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration

    International Nuclear Information System (INIS)

    Closing the gap between carbon dioxide capture and storage (CCS) rhetoric and technical progress is critically important to global climate mitigation efforts. Developing strong international cooperation on CCS demonstration with global coordination, transparency, cost-sharing and communication as guiding principles would facilitate efficient and cost-effective collaborative global learning on CCS, would allow for improved understanding of the global capacity and applicability of CCS, and would strengthen global trust, awareness and public confidence in the technology.

  13. 110 Years of change in urban tree stocks and associated carbon storage

    OpenAIRE

    Díaz-Porras, D.F; Evans, K.L.; Gaston, K J

    2014-01-01

    Understanding the long-term dynamics of urban vegetation is essential in determining trends in the provision of key resources for biodiversity and ecosystem services and improving their management. Such studies are, however, extremely scarce due to the lack of suitable historical data. We use repeat historical photographs from the 1900s, 1950s, and 2010 to assess general trends in the quantity and size distributions of the tree stock in urban Sheffield and resultant aboveground carbon storage...

  14. Climate change effects on organic carbon storage in agricultural soils of northeastern Spain

    OpenAIRE

    Álvaro-Fuentes, Jorge; Easter, Mark; Paustian, Keith

    2012-01-01

    The interactive effects of climatechange and atmospheric CO2 rise could have potential effects on both soilorganiccarbon (SOC) storage and the capability of certain management practices to sequester atmospheric carbon (C) in soils. In this study, we present the first regional estimation of SOC stock changes under climatechange in Spanish agroecosystems. The Century model was applied over a 80-yr period (i.e., from 2007 to 2087) to an agricultural area of 40,498 km2 located in northeast Spain ...

  15. The Impact Of Carbon Capture And Storage On A Decarbonized German Power Market

    OpenAIRE

    Spiecker, Stephan; Eickholt, Volker

    2013-01-01

    The European energy policy is substantially driven by the target to reduce the CO2-emissions significantly and to mitigate climate change. Nevertheless European power generation is still widely based on fossil fuels. The carbon capture and storage technology (CCS) could be part of an approach to achieve ambitious CO2 reduction targets without large scale transformations of the existing energy system. In this context the paper investigates in how far the CCS-technology could play a role in the...

  16. News Media Analysis of Carbon Capture and Storage and Biomass: Perceptions and Possibilities

    OpenAIRE

    Andrea M. Feldpausch-Parker; Morey Burnham; Maryna Melnik; Meaghan L. Callaghan; Theresa Selfa

    2015-01-01

    In the US, carbon capture and storage (CCS) has received most of its attention when coupled with the fossil fuel industry as a mitigation strategy for climate change. CCS, which is constituted as a broad suite of capture and sequestration technologies and techniques, does not preclude coupling with other energy industries such as bioenergy (bioenergy and CCS or BECCS). In this paper, we examined news media coverage of CCS and biomass individually in locations throughout the US where these te...

  17. On the Integration of Carbon Capture and Storage into the International Climate Regime

    OpenAIRE

    Bode, Sven; Jung, Martina

    2004-01-01

    As GHG emissions did not decline as anticipated early of the 1990ties Carbon Capture and Storage (CCS) recently gained more and more attention as a climate change mitigation option. However, CO2 suppressed in geological reservoirs is likely to lead to future releases of the CO2 stored. This ?non-permanence? must be considered if an environmentally sound policy is desired. Against this background, the present article analyses a potential integration of CCS in the international climate regime. ...

  18. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution

    Science.gov (United States)

    Siewert, Matthias B.; Hanisch, Jessica; Weiss, Niels; Kuhry, Peter; Maximov, Trofim C.; Hugelius, Gustaf

    2015-10-01

    Permafrost-affected ecosystems are important components in the global carbon (C) cycle that, despite being vulnerable to disturbances under climate change, remain poorly understood. This study investigates ecosystem carbon storage in two contrasting continuous permafrost areas of NE and East Siberia. Detailed partitioning of soil organic carbon (SOC) and phytomass carbon (PC) is analyzed for one tundra (Kytalyk) and one taiga (Spasskaya Pad/Neleger) study area. In total, 57 individual field sites (24 and 33 in the respective areas) have been sampled for PC and SOC, including the upper permafrost. Landscape partitioning of ecosystem C storage was derived from thematic upscaling of field observations using a land cover classification from very high resolution (2 × 2 m) satellite imagery. Nonmetric multidimensional scaling was used to explore patterns in C distribution. In both environments the ecosystem C is mostly stored in the soil (≥86%). At the landscape scale C stocks are primarily controlled by the presence of thermokarst depressions (alases). In the tundra landscape, site-scale variability of C is controlled by periglacial geomorphological features, while in the taiga, local differences in catenary position, soil texture, and forest successions are more important. Very high resolution remote sensing is highly beneficial to the quantification of C storage. Detailed knowledge of ecosystem C storage and ground ice distribution is needed to predict permafrost landscape vulnerability to projected climatic changes. We argue that vegetation dynamics are unlikely to offset mineralization of thawed permafrost C and that landscape-scale reworking of SOC represents the largest potential changes to C cycling.

  19. Inducing the international diffusion of carbon capture and storage technologies in the power sector

    OpenAIRE

    Vallentin, Daniel

    2007-01-01

    Although CO2 capture and storage(CCS) technologies are heatedly debated, many politicians and energy producers consider them to be a possible technical option to mitigate carbon dioxide from large-point sources. Hence, both national and international decision-makers devote a growing amount of capacities and financial resources to CCS in order to develop and demonstrate the technology and enable ist broad diffusion.The presented report concentrates on the influence of policy incentives on CCS ...

  20. Underground Coal Gasification and CO2 Storage Support Bulgaria's Low Carbon Energy Supply

    OpenAIRE

    Natalie Christine Nakaten; P. Kötting; R. Azzam; Thomas Kempka

    2013-01-01

    Underground coal gasification facilitates the utilization of deep-seated coals that are economically not exploitable via conventional mining. This study examines UCG as an approach for coal conversion into a synthesis gas as substitute for natural gas or to fuel a combined cycle gas turbine with CO2 capture and storage. Modelling results show that implementing UCG-CCS into the Bulgarian energy system depicts a low carbon alternative to coal fired power generation and can potentially decrease ...

  1. Carbon Capture and Storage (CCS) pipeline operating temperature effects on UK soils: The first empirical data

    OpenAIRE

    Lake, J A; Johnson, I.; Cameron, D.D.

    2016-01-01

    This paper presents the first empirical data of soil temperature and soil moisture profiles with depth in the context of a buried Carbon Capture and Storage transportation pipeline operating at higher than ambient soil temperatures. In an experimental approach, soil temperature responses are non-linear and are raised and restricted to within 45 cm of the subsurface heat source (hypothetical pipeline). A surface heat source is included to investigate interactions of natural seasonal surface he...

  2. Effect of Tropical Peat Swamp Forest Clearing on Soil Carbon Storage

    Directory of Open Access Journals (Sweden)

    Ahmad S.M. Nuri

    2011-01-01

    Full Text Available Problem Statement: Forest clearing in Tropical Peat Swamp Forest (TPSF will affect forest soil carbon storage. Thus this study is essential to determine whether the effect of clearing of forest does to the nature of soil forest concentrating on soil carbon storage. The objectives of this study were to analyze carbon storage values in logged and clear cut TPSF and to compare these values to see whether clearing of forest will affect its soil in terms of carbon storage. Approach: Soil sampling was conducted in July 2009 on two different plots at Batang Igan, Sibu, Sarawak, Malaysia. The plots are secondary TPSF where this area has been logged but not been cleared while another plot is the clear cut area where the forest has been cut down and cleared for other land use. Soil samples were taken in each plot in the depth of 0-15 cm. Every sample was taken randomly by peat auger using bulking method. The soils were air dried, pounded using mortar and sieved. The bulk densities were determined by coring method. Total Carbon (TC, total Organic Matter (OM, Total Nitrogen (TN and stable C estimation per hectare were determined from bulk density. The soil pH was determined using pH meter by using water and KCl. SOM, TC and stable C in Humic Acid (HA were determined by loss-on ignition method. TN was determined using Micro-Kjeldahl method followed by steam distillation and titration. HA was extracted and purified using distilled water. Then, the HA were oven dried in 40oC. The E4/E6 ratio by using spectrometer was used. Total acidity of HA which consists of carboxylic (-COOH and phenolic (-OH functional group were analyzed. The statistical analysis and comparison was using t-test to compare between two means. Results: The variables that showing the significant differences between two plots were pH water and KCl, soil OM, total C and HA yield. The insignificant differences were bulk density, total N, C/N ratio, E4/E6, phenol, carboxyl

  3. Carbon storage in Organic Soils (COrS): Quantifying past variations in carbon accumulation in peatlands of South Wales, UK.

    Science.gov (United States)

    Carless, Donna; Kulessa, Bernd; Street-Perrott, Alayne; Davies, Siwan; Sinnadurai, Paul

    2014-05-01

    addition, long-term environmental changes are being identified through the use of humification and plant-macrofossil analyses to reconstruct past variations in bog vegetation and surface wetness. This ensemble of techniques will permit direct comparisons to be made between records of carbon accumulation, palaeoclimate and vegetation, and hence will allow the factors influencing long-term carbon storage to be determined.

  4. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    Energy Technology Data Exchange (ETDEWEB)

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride

  5. Study of the mechanism of electrochemical hydrogen storage in nano-porous carbons

    International Nuclear Information System (INIS)

    An efficient method of hydrogen storage in nano-porous carbons is its reversible sorption by electrochemical decomposition of a KOH water solution according to the following equation: C + xH2O + xe- → (CHx) + xOH- where (CHx) stands for the hydrogen inserted into the nano-porous carbon during charging and oxidized during discharging. Although various carbon materials have been investigated as hydrogen adsorbents, the information about the storage mechanism as well as the nature of the hydrogen/carbon interaction is still not sufficient. In order to extend the understanding of the process, carbon samples charged electrochemically were investigated by temperature programmed desorption (TPD). The nature of the hydrogen/carbon interaction was studied by electrochemical analysis at different temperatures. The TPD experiments consist of heating the samples from room temperature to 950 C and of quantitative analysis by On-line mass spectrometry, the di-hydrogen evolved from the carbon material. Fig 1 shows the desorption rate of hydrogen during the TPD experiment carried out on an activated carbon cloth loaded at -500 mA/g during 12 hours. The first peak below 300 C corresponds to the desorption of hydrogen fixed on the carbon surface during the charging process. The shape and the position of this peak suggests that the gas is released from sites of different and relatively high energies. The second hydrogen peak results from the reaction between the carbon material and KOH as already mentioned in literature. Carbon materials were also loaded at - 500 mA/g during different times (3, 6, 12 and 24 hours), and then analysed by TPD, showing that the intensity of the peak below 300 C increases with the charging time. Hence TPD gives the direct proof that hydrogen is really stored in nano-porous carbons by this electrochemical process. Moreover, the position of the desorption peaks demonstrates that at least a part of hydrogen presents stronger interactions than in the state

  6. Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage.

    Science.gov (United States)

    Sassin, Megan B; Mansour, Azzam N; Pettigrew, Katherine A; Rolison, Debra R; Long, Jeffrey W

    2010-08-24

    We describe a simple self-limiting electroless deposition process whereby conformal, nanoscale iron oxide (FeO(x)) coatings are generated at the interior and exterior surfaces of macroscopically thick ( approximately 90 microm) carbon nanofoam paper substrates via redox reaction with aqueous K(2)FeO(4). The resulting FeO(x)-carbon nanofoams are characterized as device-ready electrode structures for aqueous electrochemical capacitors and they demonstrate a 3-to-7 fold increase in charge-storage capacity relative to the native carbon nanofoam when cycled in a mild aqueous electrolyte (2.5 M Li(2)SO(4)), yielding mass-, volume-, and footprint-normalized capacitances of 84 F g(-1), 121 F cm(-3), and 0.85 F cm(-2), respectively, even at modest FeO(x) loadings (27 wt %). The additional charge-storage capacity arises from faradaic pseudocapacitance of the FeO(x) coating, delivering specific capacitance >300 F g(-1) normalized to the content of FeO(x) as FeOOH, as verified by electrochemical measurements and in situ X-ray absorption spectroscopy. The additional capacitance is electrochemically addressable within tens of seconds, a time scale of relevance for high-rate electrochemical charge storage. We also demonstrate that the addition of borate to buffer the Li(2)SO(4) electrolyte effectively suppresses the electrochemical dissolution of the FeO(x) coating, resulting in <20% capacitance fade over 1000 consecutive cycles. PMID:20731433

  7. Buried black soils surrounding the white roof of Africa as regional carbon storage hotspot

    Science.gov (United States)

    Zech, M.; Hörold, C.; Leiber-Sauheitl, K.; Hemp, A.; Zech, W.

    2012-04-01

    Mt. Kilimanjaro, the at least still "white roof" of Africa, attracts much attention because of its dramatically shrinking ice caps. By contrast, it was discovered only recently that intriguing paleosol sequences with buried and often strikingly black soils developed along the slopes of Mt. Kilimanjaro during the Late Quaternary. In our study we investigated in detail the soil organic carbon (SOC) contents and SOC stocks of soil profiles which are situated along two altitudinal transects; one along the humid southern slopes and the other one along the more arid northern slopes. We found up to 3 m thick paleosol sequences occurring almost area-wide particularly in the montane forest zone. SOC contents are remarkable high with values of up to more than 10%, indicating high preservation of soil organic matter (SOM). We suggest that the SOM preservation is favoured by several factors, such as (i) the burial by aeolian deposition, (ii) lower temperatures and (iii) more resistant Erica litter during glacial periods, (iv) formation of stable organo-mineral complexes and (v) high black carbon (BC) contents. The SOC-rich buried black soils account for mean SOC stocks of ~82 kg m-2 in the montane rainforest. Extrapolating this SOC storage and comparing it with the SOC storage achieved by the surrounding savannah soils of the Maasai Steppe highlights that the buried black soils are a prominent regional carbon storage hotspot.

  8. Characterization and Design of the FutureGen 2.0 Carbon Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Tyler J.; Bonneville, Alain H.; Sullivan, Elsie C.; Kelley, Mark E.; Appriou, Delphine; Vermeul, Vincent R.; White, Signe K.; Zhang, Zhuanfang; Bjornstad, Bruce N.; Cornet, Francois; Gerst, Jacqueline L.; Gupta, Neeraj; Hund, Gretchen; Horner, Jacob A.; Last, George V.; Lanigan, David C.; Oostrom, Martinus; McNeil, Caitlin; Moody, Mark A.; Rockhold, Mark L.; Elliott, Michael L.; Spane, Frank A.; Strickland, Christopher E.; Swartz, Lucinda L.; Thorne, Paul D.; Brown, Christopher F.; Hoffmann, Jeffrey; Humphreys, Kenneth K.

    2016-07-29

    The objective of the FutureGen 2.0 Project was to demonstrate, at the commercial scale, the technical feasibility of implementing carbon capture and storage (CCS) in a deep saline formation in Illinois, USA. Over approximately 5 years, the FutureGen Alliance conducted a detailed site-selection process and identified a site for carbon sequestration storage in Morgan County, Illinois. The storage site was fully characterized, including the collection of seismic data and the drilling and characterization of a stratigraphic borehole. The characterization data provided critical input for developing a site-specific conceptual model and subsequent numerical modeling simulations. The modeling simulations, coupled with the upstream designs of the pipeline and power plant supported the development of a detailed 90 percent design that included the injection wells and associated control and monitoring infrastructure. Collectively, all these data were used by the FutureGen Alliance to develop the required documentation to support the applications for four underground injection control (UIC) permits (one for each proposed well). In August 2014, the U.S. Environmental Protection Agency issued four, first-of-their-kind, Class VI UIC permits for carbon sequestration in the United States to the FutureGen Alliance. The information and data generated under this project have been made publically available through reports and publications, including this journal and others.

  9. Divergent predictions of carbon storage between two global land models: attribution of the causes through traceability analysis

    Science.gov (United States)

    Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra; Asrar, Ghassem R.; Leng, Guoyong; Wang, Yingping; Luo, Yiqi

    2016-07-01

    Representations of the terrestrial carbon cycle in land models are becoming increasingly complex. It is crucial to develop approaches for critical assessment of the complex model properties in order to understand key factors contributing to models' performance. In this study, we applied a traceability analysis which decomposes carbon cycle models into traceable components, for two global land models (CABLE and CLM-CASA') to diagnose the causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, CLM-CASA' predicted ˜ 31 % larger carbon storage capacity than CABLE. Since ecosystem carbon storage capacity is a product of net primary productivity (NPP) and ecosystem residence time (τE), the predicted difference in the storage capacity between the two models results from differences in either NPP or τE or both. Our analysis showed that CLM-CASA' simulated 37 % higher NPP than CABLE. On the other hand, τE, which was a function of the baseline carbon residence time (τ'E) and environmental effect on carbon residence time, was on average 11 years longer in CABLE than CLM-CASA'. This difference in τE was mainly caused by longer τ'E of woody biomass (23 vs. 14 years in CLM-CASA'), and higher proportion of NPP allocated to woody biomass (23 vs. 16 %). Differences in environmental effects on carbon residence times had smaller influences on differences in ecosystem carbon storage capacities compared to differences in NPP and τ'E. Overall, the traceability analysis showed that the major causes of different carbon storage estimations were found to be parameters setting related to carbon input and baseline carbon residence times between two models.

  10. Limited opportunities for management-induced soil carbon storage in New South Wales, Australia.

    Science.gov (United States)

    Wilson, Brian; Lonergan, Vanessa

    2013-04-01

    Soil management has been promoted internationally and in Australia as a means of storing additional soil carbon to offset greenhouse gas emissions (GHG) elsewhere. Despite considerable investment in research in Australia, difficulties with reliable detection and estimation of soil carbon change remain as significant barriers to soil carbon accounting and trading. Here we present examples from an extensive dataset across the diverse production landscapes of New South Wales, Australia generated from both the NSW Statewide Soil Monitoring Program and the National Soil Carbon Research Program. Issues relating to climate, spatial variability, historical and contemporary land-management are highlighted to illustrate the challenges of detecting and estimating management-induced soil carbon change. We further demonstrate that, where it is possible to detect soil carbon change resulting from agricultural management, the quantities stored are unlikely to make a significant contribution to reductions in net greenhouse gas emissions. Historical factors and non-agricultural land-use options are likely to provide more significant potential for long-term soil carbon storage in this environment.

  11. PAF-derived nitrogen-doped 3D Carbon Materials for Efficient Energy Conversion and Storage

    Science.gov (United States)

    Xiang, Zhonghua; Wang, Dan; Xue, Yuhua; Dai, Liming; Chen, Jian-Feng; Cao, Dapeng

    2015-01-01

    Owing to the shortage of the traditional fossil fuels caused by fast consumption, it is an urgent task to develop the renewable and clean energy sources. Thus, advanced technologies for both energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) are being studied extensively. In this work, we use porous aromatic framework (PAF) as precursor to produce nitrogen-doped 3D carbon materials, i.e., N-PAF-Carbon, by exposing NH3 media. The “graphitic” and “pyridinic” N species, large surface area, and similar pore size as electrolyte ions endow the nitrogen-doped PAF-Carbon with outstanding electronic performance. Our results suggest the N-doping enhance not only the ORR electronic catalysis but also the supercapacitive performance. Actually, the N-PAF-Carbon obtains ~70 mV half-wave potential enhancement and 80% increase as to the limiting current after N doping. Moreover, the N-PAF-Carbon displays free from the CO and methanol crossover effect and better long-term durability compared with the commercial Pt/C benchmark. Moreover, N-PAF-Carbon also possesses large capacitance (385 F g−1) and excellent performance stability without any loss in capacitance after 9000 charge–discharge cycles. These results clearly suggest that PAF-derived N-doped carbon material is promising metal-free ORR catalyst for fuel cells and capacitor electrode materials. PMID:26045229

  12. Comparison of Publically Available Methodologies for Development of Geologic Storage Estimates for Carbon Dioxide in Saline Formations

    Science.gov (United States)

    Goodman, A.; Strazisar, B. R.; Guthrie, G. D.; Bromhal, G.

    2012-12-01

    High-level estimates of CO2 storage potential at the national, regional, and basin scale are required to assess the potential for carbon capture, utilization, and storage (CCUS) technologies to reduce CO2 emissions for application to saline formations. Both private and public entities worldwide rely on CO2 storage potential estimates for broad energy-related government policy and business decisions. High-level estimates of CO2 geologic storage potential, however, have a high degree of uncertainty because the assessments rely on simplifying assumptions due to the deficiency or absence of data from the subsurface associated with areas of potential storage in saline formations and the natural heterogeneity of geologic formations in general, resulting in undefined rock properties. As site characterization progresses to individual CO2 storage sites, additional site-specific data will likely be collected and analyzed that will allow for the refinement of high-level CO2 storage resource estimates and development of CO2 storage capacities. Until such detailed characterization can be documented, dependable high-level CO2 storage estimates are essential to ensure successful widespread deployment of CCUS technologies. Initiatives for assessing CO2 geologic storage potential have been conducted since 1993. Although dependable high-level CO2 storage estimates are essential to ensure successful deployment of CCUS technologies, it is difficult to assess the uncertainty of these estimates without knowing how the current methodologies targeted at high-level CO2 storage resource estimates for saline formations compare to one another. In this study, we compare high-level CO2 methodologies for development of geologic storage estimates for CO2 in saline formations to assess the uncertainty associated with various methodologies. The methodologies applied are listed as follows: (1) U.S. DOE Methodology: Development of Geologic Storage Potential for Carbon Dioxide at the National and

  13. Above ground standing biomass and carbon storage in village bamboos in North East India

    Energy Technology Data Exchange (ETDEWEB)

    Jyoti Nath, Arun; Das, Ashesh Kumar [Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam (India); Das, Gitasree [Department of Statistics, North Eastern Hill University, Shillong 793022, Meghalaya (India)

    2009-09-15

    Bamboo forms an important component in the traditional landscape of North East India. For biomass estimation of village bamboos of Barak Valley, North East India, allometric relationships were developed by harvest method describing leaf, branch and culm biomass with DBH as an independent variable using a log linear model. The culm density of the stand was 8950 culms ha{sup -1} during 2005 of which 67% of growing stock was represented by Bambusa cacharensis, 17.88% by Bambusa vulgaris and 15.12% by Bambusa balcooa. Above ground stand biomass was 121.51 t ha{sup -1} of which 86% was contributed by culm component followed by branch (10%) and leaf (4%). With respect to species, B. cacharensis made up to 46% of total stand biomass followed by B. vulgaris (28%) and B. balcooa (26%). Carbon storage in the above ground biomass was 61.05 t ha{sup -1}. Allocation of C was more in culm components (53.05 t ha{sup -1}) than in branch (5.81 t ha{sup -1}) and leaf (2.19 t ha{sup -1}). Carbon storage in the litter floor mass was 2.40 t ha{sup -1}, of which leaf litter made up the highest amount (1.37 t ha{sup -1}) followed by sheath (0.86 t ha{sup -1}) and branch (0.17 t ha{sup -1}). Carbon stock in the soil up to 30 cm depth was 57.3 t ha{sup -1}. Gross C stock in the plantation was estimated to be 120.75 t ha{sup -1}. Carbon storage estimated in the bamboo stand of present study offers insights into the opportunity of village bamboos in the rural landscape for carbon storage through carbon sequestration. Management and utilization of village bamboos as a potential source of carbon sink by smallholder farmers are discussed in the context of their livelihood security and the Millennium Development Goals of the United Nations. (author)

  14. When to invest in carbon capture and storage technology in the presence of uncertainty: A mathematical model

    OpenAIRE

    Walsh, D. M.; O'Sullivan, K; Lee, W. T.; Devine, M.

    2013-01-01

    We present a model for determining analytically the critical threshold for investment in carbon capture and storage technology in a region where carbon costs are volatile and assuming the cost of investment decreases. We first study a deterministic model with quite general dependence on carbon price and then analyse the effect of carbon price volatility on the optimal investment decision by solving a Bellman equation with an infinite planning horizon. We find that increasing the expected carb...

  15. Carbon Storage Potential of Forest Land: A Comparative Study of Cases in Finland and Croatia

    Directory of Open Access Journals (Sweden)

    Martina Tijardović

    2013-06-01

    Full Text Available Background and Purpose: The concentrations of greenhouse gases in the atmosphere have been increasing over the last hundred years in relation to the Fourth IPCC assessment report that highlighted human activities as a direct influence on climate changes. Since Croatia and Finland signed the Kyoto Protocol, they are both committed to fulfil international obligations of lowering GHG’s emissions, enhancing the storage, as well as protecting and enhancing the current pools where the forestry sector has a prominent role. These obligations created a need for a review on carbon storage potentials for both countries with the aim of setting further scientific and management guidelines as the basic purpose of this research. Materials and Methods: Data collection was conducted within the scope of the Sort Term Scientific Mission (STSM in the period from May 2 – July 22, 2009 in the Finnish Forest Research Institute in Joensuu. The research encompassed an overview of literature, personal contacts with scientists and experts from both countries (research institutes, ministries, the EFI branch office in Joensuu and a field inspection which altogether provided an insight into the applied silvicultural and utilization activities. A significant data source were official documents and published project results on the carbon storage potential. Results and Discussion: Mitigation activities within the framework of the LULUCF project reduced the total emissions for 33.4 millions tons of CO2 equivalents in Finland in 2006 (this data has varied from 18 to 33.4 millions tons CO2 equivalents in the last fifteen years while for Croatia the availability of such data is limited. Finland has some former agricultural land which may be afforested but not in the substantial share, while in Croatia such areas amount to around 1 million ha. According to the climate change scenario for Finland (FINADAPT, predicting the largest climate changes, the total forest growth

  16. A synthesis of current knowledge on forests and carbon storage in the United States.

    Science.gov (United States)

    McKinley, Duncan C; Ryan, Michael G; Birdsey, Richard A; Giardina, Christian P; Harmon, Mark E; Heath, Linda S; Houghton, Richard A; Jackson, Robert B; Morrison, James F; Murray, Brian C; Patakl, Diane E; Skog, Kenneth E

    2011-09-01

    Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding

  17. The Potential of Microbial Activity to Increase the Efficacy of Geologic Carbon Capture and Storage

    Science.gov (United States)

    Cunningham, A. B.; Gerlach, R.; Phillips, A. J.; Eldring, J.; Lauchnor, E.; Klapper, I.; Ebigbo, A.; Mitchell, A. C.; Spangler, L.

    2012-12-01

    Geologic carbon capture and storage involves the injection of CO2 into underground formations such as brine aquifers where microbe-rock-fluid interactions will occur. These interactions may be important for the long-term fate of the injected CO2 particularly near well bores and potential leakage pathways. Herein, concepts and results are presented from bench to meso-scale experiments focusing on the utility of attached microorganisms and biofilms to enhance storage security of injected CO2. Batch and flow experiments at atmospheric and geologic CO2storage-relevant pressures have demonstrated the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to scCO2, and facilitate the conversion of CO2 into long-term stable carbonate phases as well as increase the solubility of CO2 in brines. Recently, the microbially catalyzed process of ureolysis has been investigated for the potential to promote calcium carbonate mineralization in subsurface reservoirs using native or introduced ureolytic microorganisms, which increase the saturation state of CaCO3 via the hydrolysis of urea. The anticipated applications for this biomineralization process in the subsurface include sealing microfractures and CO2 leakage pathways for increased security of geologic carbon storage. Recent work has focused on facilitating this biomineralization process in large scale (74 cm diameter, 38 cm high sandstone) radial flow systems under ambient and subsurface relevant pressures with the goal of developing injection strategies suited for field scale deployment. Methods for microscopic and macroscopic visualization of relevant processes, such as growth of microbial biofilms, their interactions with minerals and influence on pore spaces in porous media reactors are being developed and have been used to calibrate reactive transport models. As a result, these models are being used to predict the effect of biological processes on CO2

  18. Microbially enhanced carbon capture and storage - from pores to cores (Invited)

    Science.gov (United States)

    Mitchell, A. C.; Cunningham, A. B.; Spangler, L.; Gerlach, R.

    2010-12-01

    During the operation of Geologic Carbon Capture and Storage (CCS) and the injection of supercritical CO2 into underground formations, microbe-rock-fluid interactions occur. These interactions may be important for controlling the ultimate fate of the injected CO2, and may also be manipulated to enhance the storage of the CO2, via mineral-trapping, solubility trapping, formation trapping, and leakage reduction. We have demonstrated that engineered microbial biofilms are capable of enhancing formation, mineral, and solubility trapping in carbon sequestration-relevant formation materials. Batch and flow experiments at atmospheric and high pressures (> 74 bar) have shown the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to supercritical CO2, and facilitate the conversion of gaseous and supercritical CO2 into long-term stable carbonate phases as well as increase the solubility of CO2 in brines. Ongoing microscopy and modelling studies aim to understand these processes at both the pore- and core-scale in order to facilitate larger scale understanding and potential manipulation for biologically based CCS engineering. Successful development of these biologically-based concepts could result in microbially enhanced carbon sequestration strategies as well as CO2 leakage mitigation technologies, which can be applied either before CO2 injection or as a remedial measure around injection wells.

  19. Carbon-coated Fe2O3 nanocrystals with enhanced lithium storage capability

    International Nuclear Information System (INIS)

    Highlights: • Fe2O3 nanocrystals embedded in interconnected carbon nanospheres were synthesized. • The Fe2O3@C nanospheres deliver high reversible lithium storage capacity. • The interconnected carbon matrix can buffer the volume expansion of Fe2O3. - Abstract: Homogeneous and highly crystalline Fe2O3 nanocrystals (∼8 nm) embedded in interconnected carbon nanospheres (∼50 nm) (Fe2O3@C) have been fabricated by one-step hydrothermal reaction followed by annealing with Ar. When used as the anode materials for lithium-ion batteries, the Fe2O3@C nanospheres with 55.24 wt% Fe2O3 deliver high reversible lithium storage capacity (826 mAh/g at 0.1 A/g after 20 cycles), high Coulombic efficiency (∼99%) and good cycling stability, which are much better than that of commercial Fe2O3 nanoparticles. These excellent electrochemical performances could be attributed to the robust and high-conducting interconnected carbon nanospheres embedded with a mass of small Fe2O3 nanocrystals, which not only can offer large quantity of accessible active sites for lithium-ion reaction as well as good conductivity and short diffusion length for electron and ion transport, but also can effectively suppress the aggregation and buffer the volume expansion of Fe2O3 nanocrystals during the repeated lithiation and delithiation processes

  20. Climate change impacts on soil carbon storage in global croplands: 1901-2010

    Science.gov (United States)

    Ren, W.; Tian, H.

    2015-12-01

    New global data finds 12% of earth's surface in cropland at present. Croplands will take on the responsibility to support approximate 60% increase in food production by 2050 as FAO estimates. In addition to nutrient supply to plants, cropland soils also play a major source and sink of greenhouse gases regulating global climate system. It is a big challenge to understand how soils function under global changes, but it is also a great opportunity for agricultural sector to manage soils to assure sustainability of agroecosystems and mitigate climate change. Previous studies have attempted to investigate the impacts of different land uses and climates on cropland soil carbon storage. However, large uncertainty still exists in magnitude and spatiotemporal patterns of global cropland soil organic carbon, due to the lack of reliable environmental databases and relatively poorly understanding of multiple controlling factors involved climate change and land use etc. Here, we use a process-based agroecosystem model (DLEM-Ag) in combination with diverse data sources to quantify magnitude and tempo-spatial patterns of soil carbon storage in global croplands during 1901-2010. We also analyze the relative contributions of major environmental variables (climate change, land use and management etc.). Our results indicate that intensive land use management may hidden the vulnerability of cropland soils to climate change in some regions, which may greatly weaken soil carbon sequestration under future climate change.

  1. Preparation of SnO 2 /Carbon Composite Hollow Spheres and Their Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen

    2008-10-28

    In this work, we present a novel concept of structural design for preparing functional composite hollow spheres and derived double-shelled hollow spheres. The approach involves two main steps: preparation of porous hollow spheres of one component and deposition of the other component onto both the interior and exterior surfaces of the shell as well as in the pores. We demonstrate the concept by preparing SnO2/carbon composite hollow spheres and evaluate them as potential anode materials for lithium-ion batteries. These SnO2/carbon hollow spheres are able to deliver a reversible Li storage capacity of 473 mA h g-1 after 50 cycles. Unusual double-shelled carbon hollow spheres are obtained by selective removal of the sandwiched porous SnO2 shells. © 2008 American Chemical Society.

  2. A Survey of Measurement, Mitigation, and Verification Field Technologies for Carbon Sequestration Geologic Storage

    Science.gov (United States)

    Cohen, K. K.; Klara, S. M.; Srivastava, R. D.

    2004-12-01

    The U.S. Department of Energy's (U.S. DOE's) Carbon Sequestration Program is developing state-of-the-science technologies for measurement, mitigation, and verification (MM&V) in field operations of geologic sequestration. MM&V of geologic carbon sequestration operations will play an integral role in the pre-injection, injection, and post-injection phases of carbon capture and storage projects to reduce anthropogenic greenhouse gas emissions. Effective MM&V is critical to the success of CO2 storage projects and will be used by operators, regulators, and stakeholders to ensure safe and permanent storage of CO2. In the U.S. DOE's Program, Carbon sequestration MM&V has numerous instrumental roles: Measurement of a site's characteristics and capability for sequestration; Monitoring of the site to ensure the storage integrity; Verification that the CO2 is safely stored; and Protection of ecosystems. Other drivers for MM&V technology development include cost-effectiveness, measurement precision, and frequency of measurements required. As sequestration operations are implemented in the future, it is anticipated that measurements over long time periods and at different scales will be required; this will present a significant challenge. MM&V sequestration technologies generally utilize one of the following approaches: below ground measurements; surface/near-surface measurements; aerial and satellite imagery; and modeling/simulations. Advanced subsurface geophysical technologies will play a primary role for MM&V. It is likely that successful MM&V programs will incorporate multiple technologies including but not limited to: reservoir modeling and simulations; geophysical techniques (a wide variety of seismic methods, microgravity, electrical, and electromagnetic techniques); subsurface fluid movement monitoring methods such as injection of tracers, borehole and wellhead pressure sensors, and tiltmeters; surface/near surface methods such as soil gas monitoring and infrared

  3. Estimation of the carbon storage of forest vegetation and carbon emission from forest fires in Heilongjiang Province, China

    Institute of Scientific and Technical Information of China (English)

    HU Hai-qing; LIU Yuan-chun; JIAO Yan

    2007-01-01

    The forest resource of Heilongjiang province has important position in china. On the basis of the six times of national forest inventory data (1973-1976, 1977-1981, 1985-1988, 1989-1993, 1994-1998, 1999-2003) surveyed by the Forestry Ministry of P. R. China from 1973 to 2003, the carbon storage of forests in Heilongjiang Province are estimated by using the method of linear relationship of each tree species between biomass and volume. The results show that the carbon storage of Heilongjiang forests in the six periods (1973-1976,1977-1981, 1985-1988, 1989-1993, 1994-1998, 1999-2003) are 7.164×108 t, 4.871×108 t, 5.094×108 t, 5.292×108 t, 5.594×108 t and 5.410×108 t, respectively., which showed a trend of decreasing in early time and then increasing. It indicated that Heilongjiang forests play an important role as a sink of atmospheric carbon dioxide during past 30 years. Based on the data of forest fires from 1980 to 1999 and ground biomass estimation for some forest types in Heilongjiang Province, it is estimated that the amount of mean annual consumed biomass of forests is 391758.65t-522344.95t, accounting for 6.4%-8.4% of total national consummation from forest fires, and the amount of carbon emission is 176 291.39t-235 055.23t, about 8% of total national emission from forest fires. The emission of CO2, CO, CH4 and NMHC from forest fires in Heilongjiang Province are estimated at 581761.6-775682.25 t, 34892.275-46523.04 t, 14091.11-18788.15 t and 6500-9000 t, respectively, every year.

  4. Carbon storage increases by major forest ecosystems in tropical South America since the Last Glacial Maximum and the early Holocene

    Science.gov (United States)

    Behling, Hermann

    2002-06-01

    To study the carbon storage increase of major forest ecosystems in tropical South America, such as Amazon rain forest, Atlantic rain forest, semideciduous forest, and Araucaria forest, the Last Glacial Maximum (LGM) and the early Holocene vegetation cover were reconstructed by pollen records. Marked forest expansion points to a significant total carbon storage increase by tropical forests in South America since the LGM and the early Holocene. The Amazon rain forest expansion, about 39% in area, had 28.3×10 9 tC (+20%), the highest carbon storage increase since the LGM. The expansion of the other much smaller forest areas also had a significant carbon storage increase since the LGM, the Atlantic rain forest with 4.9×10 9 tC (+55%), the semideciduous forest of eastern Brazil with 6.3×10 9 tC (+46%), the Araucaria forest with 3.4×10 9 tC (+108%). The estimated carbon storage increase of the four forest biomes since the early Holocene is also remarkable. The extensive deforestation in the last century strongly affected the carbon storage by tropical forests.

  5. Popcorn-Derived Porous Carbon for Energy Storage and CO2 Capture.

    Science.gov (United States)

    Liang, Ting; Chen, Chunlin; Li, Xing; Zhang, Jian

    2016-08-16

    Porous carbon materials have drawn tremendous attention due to its applications in energy storage, gas/water purification, catalyst support, and other important fields. However, producing high-performance carbons via a facile and efficient route is still a big challenge. Here we report the synthesis of microporous carbon materials by employing a steam-explosion method with subsequent potassium activation and carbonization of the obtained popcorn. The obtained carbon features a large specific surface area, high porosity, and doped nitrogen atoms. Using as an electrode material in supercapacitor, it displays a high specific capacitance of 245 F g(-1) at 0.5 A g(-1) and a remarkable stability of 97.8% retention after 5000 cycles at 5 A g(-1). The product also exhibits a high CO2 adsorption capacity of 4.60 mmol g(-1) under 1066 mbar and 25 °C. Both areal specific capacitance and specific CO2 uptake are directly proportional to the surface nitrogen content. This approach could thus enlighten the batch production of porous nitrogen-doped carbons for a wide range of energy and environmental applications. PMID:27455183

  6. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage.

    Science.gov (United States)

    Ezcurra, Paula; Ezcurra, Exequiel; Garcillán, Pedro P; Costa, Matthew T; Aburto-Oropeza, Octavio

    2016-04-19

    Given their relatively small area, mangroves and their organic sediments are of disproportionate importance to global carbon sequestration and carbon storage. Peat deposition and preservation allows some mangroves to accrete vertically and keep pace with sea-level rise by growing on their own root remains. In this study we show that mangroves in desert inlets in the coasts of the Baja California have been accumulating root peat for nearly 2,000 y and harbor a belowground carbon content of 900-34,00 Mg C/ha, with an average value of 1,130 (± 128) Mg C/ha, and a belowground carbon accumulation similar to that found under some of the tallest tropical mangroves in the Mexican Pacific coast. The depth-age curve for the mangrove sediments of Baja California indicates that sea level in the peninsula has been rising at a mean rate of 0.70 mm/y (± 0.07) during the last 17 centuries, a value similar to the rates of sea-level rise estimated for the Caribbean during a comparable period. By accreting on their own accumulated peat, these desert mangroves store large amounts of carbon in their sediments. We estimate that mangroves and halophyte scrubs in Mexico's arid northwest, with less than 1% of the terrestrial area, store in their belowground sediments around 28% of the total belowground carbon pool of the whole region. PMID:27035950

  7. Carbon compound used in hydrogen storage; Compuesto de carbon utilizado en almacenamiento de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J.L.; Lopez M, B.E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    In the present work it is studied the activated carbon of mineral origin for the sorption of hydrogen. The carbon decreased of particle size by means of the one alloyed mechanical. The time of mill was of 10 hours. The characterization one carries out by scanning electron microscopy and X-ray diffraction. The hydrogen sipped in the carbon material it was determined using the Thermal gravimetric method (TGA). The conditions of hydrogenation went at 10 atm of pressure and ambient temperature during 18 hours. They were also carried out absorption/desorption cycles of hydrogen in the same one system of thermal gravimetric analysis. The results showed percentages of sorption of 2% approximately in the cycles carried out in the system TGA and of 4.5% in weight of hydrogen at pressure of 10 atmospheres and ambient temperature during 18 hours. (Author)

  8. Trends in Global Demonstrations of Carbon Management Technologies to Advance Coal- Based Power Generation With Carbon Capture and Storage

    Science.gov (United States)

    Cohen, K. K.; Plasynski, S.; Feeley, T. J.

    2008-05-01

    Atmospheric CO2 concentrations increased an estimated 35% since preindustrial levels two centuries ago, reportedly due to the burning of fossil fuels combined with increased deforestation. In the U.S., energy-related activities account for 75% of anthropogenic greenhouse gas (GHG) emissions, with more than 50% from large stationary sources such as power plants and about one-third from transportation. Mitigation technologies for CO2 atmospheric stabilization based on energy and economic scenarios include coal-based power plant- carbon capture and storage (CCS), and the U.S. Department of Energy (DOE) is assessing CCS operations and supporting technologies at U.S. locations and opportunities abroad reported here. The Algerian In Salah Joint Industry Project injecting 1 million tons CO2 (MtCO2)/year into a gas field sandstone, and the Canadian Weyburn-Midale CO2 Monitoring and Storage Project injecting over 1.8 MtCO2/year into carbonate oil reservoirs are ongoing industrial-scale storage operations DOE participates in. DOE also supports mid-scale CCS demonstrations at the Australian Otway Project and CO2SINK in Germany. Enhanced oil recovery operations conducted for decades in west Texas and elsewhere have provided the industrial experience to build on, and early pilots such as Frio-I Texas in 2004 have spearheaded technology deployment. While injecting 1,600 tons of CO2 into a saline sandstone at Frio, time-lapse borehole and surface seismic detected P-wave velocity decreases and reflection amplitude changes resulting from the replacement of brine with CO2 in the reservoir. Just two of many cutting-edge technologies tested at Frio, these and others are now deployed by U.S. researchers with international teams to evaluate reservoir injectivity, capacity, and integrity, as well as to assess CO2 spatial distribution, trapping, and unlikely leakage. Time-lapse Vertical Seismic Profiling at Otway and microseismic at In Salah and Otway, monitor injection and reservoir

  9. Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage

    International Nuclear Information System (INIS)

    We examined the co-evolution of the transportation, and electricity and heat generation sectors in the Netherlands until 2040 using a MARKAL bottom-up cost optimisation model. All scenario variants investigated indicate a switch away from crude oil-based diesel and petrol for transportation. Lowest overall CO2 abatement cost is achieved by accommodating transportation first and using relatively expensive options for emissions reduction in electricity generation if needed. Biomass and carbon capture and storage (CCS) are used to full potential. Transportation CO2 emissions are reduced by switching to ethanol or bio-based synthetic fuels combined with CCS, and series hybrid cars if needed. Depending on the availability of biomass and carbon storage capacity, electricity is produced from biomass, coal with CCS, or wind complemented with natural gas. Indirect greenhouse gas emissions rise to 34-54% of national emissions in 2040. The difference in annual investment required between the scenario variants with and without CO2 emissions reductions of 68% by 2040 is 4-7 billion euro/year, or 0.5-1.2% of projected GDP. Investment costs are mostly determined by the cost of cars and electricity generation capacity. We observe competition for limited biomass supply and CO2 storage capacity between the transportation and power sectors.

  10. Li and Na Co-decorated carbon nitride nanotubes as promising new hydrogen storage media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu Sheng [Center of Clean Energy and Quantum Structures, and School of Physics and Engineering, Zhengzhou University, Zhengzhou, Henan, 450052 (China); College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450011 (China); Li, Meng; Wang, Fei; Sun, Qiang [Center of Clean Energy and Quantum Structures, and School of Physics and Engineering, Zhengzhou University, Zhengzhou, Henan, 450052 (China); Jia, Yu, E-mail: jiayu@zzu.edu.cn [Center of Clean Energy and Quantum Structures, and School of Physics and Engineering, Zhengzhou University, Zhengzhou, Henan, 450052 (China)

    2012-01-09

    The capacity of Li and Na co-decorated carbon nitride nanotube (CNNT) for hydrogen storage is studied using first-principles density functional theory. The results show that with two H{sub 2} molecules attached to per Li and four H{sub 2} molecules per Na the Li and Na co-decorated CNNT gains a gravimetric density of H{sub 2} as high as 9.09 wt% via electrostatic interaction without the clustering of the deposited metal atoms (at T=0 K). The average adsorption energy of hydrogen molecule is in the range of 0.09–0.22 eV/H{sub 2}, which is suitable for practical hydrogen storage at ambient temperatures. -- Highlights: ► Li and Na co-decorated carbon nitride nanotubes as hydrogen storage media. ► The gravimetric density of H{sub 2} is 9.09 wt%. ► The average adsorption energy of hydrogen molecule is 0.09–0.22 eV/H{sub 2}. ► It can operate under ambient thermodynamic conditions.

  11. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2015-01-01

    While lasting mitigation solutions are needed to avoid climate change in the long term, temporary solutions may play a positive role in terms of avoiding certain climatic target levels, for preventing the crossing of critical and perhaps irreversible climatic tipping points. While the potential v...... the long-term climate change impacts given by the global warming potential which does not account for temporary aspects like benefits from non-permanent storage in terms of avoiding a critical climatic target level.......While lasting mitigation solutions are needed to avoid climate change in the long term, temporary solutions may play a positive role in terms of avoiding certain climatic target levels, for preventing the crossing of critical and perhaps irreversible climatic tipping points. While the potential...... value of temporary carbon storage in terms of climate change mitigation has been widely discussed, this has not yet been directly coupled to avoiding climatic target levels representing predicted climatic tipping points. This paper provides recommendations on how to model temporary carbon storage in...

  12. Resting in peace?- regulatory approaches to the geological storage of radioactive waste and carbon dioxide

    International Nuclear Information System (INIS)

    An emerging and much heralded technology for fighting climate change by reducing anthropogenic greenhouse gas emissions is carbon capture and storage (CCS). The final stage of CCS is the storage (or disposal) of the carbon dioxide (CO2) away from the atmosphere, typically in a deep geological formation. Although the risks posed by CO2 differ from those presented by nuclear waste and spent fuel, the similarities - most noticeably the vast time scales involved and the preference for concentration and containment - make a comparison of regulatory approaches to such risks relevant and informative. The intention of the current paper is to carry out such a comparison. Using Sweden as a focal point, applicable legal frameworks for the management of captured CO2 and spent nuclear fuel and nuclear waste will be juxtaposed. Two aspects in particular will be chosen for closer scrutiny: requirements pertaining to the selection of sites for disposal/storage of nuclear material and captured CO2 respectively, and the nature and allocation of economic responsibility for handling and minimizing long-term hazards associated with those substances. In the case of nuclear residues, responsibility for spent fuel will be the main focus. However, the same principles mostly apply to other radioactive waste from the nuclear industry, such as parts of decommissioned nuclear reactors

  13. Pore-scale imaging of geological carbon dioxide storage under in situ conditions

    Science.gov (United States)

    Andrew, Matthew; Bijeljic, Branko; Blunt, Martin J.

    2013-08-01

    While geological carbon dioxide (CO2) storage could contribute to reducing global emissions, it must be designed such that the CO2 cannot escape from the porous rock into which it is injected. An important mechanism to immobilize the CO2, preventing escape, is capillary trapping, where CO2 is stranded as disconnected pore-scale droplets (ganglia) in the rock, surrounded by water. We used X-Ray microtomography to image, at a resolution of 6.4 µm, the pore-scale arrangement and distribution of trapped CO2 clusters in a limestone. We applied high pressures and temperatures typical of a storage formation, while maintaining chemical equilibrium between the CO2, brine, and rock. Substantial amounts of CO2 were trapped, with an average saturation of 0.18. The cluster sizes obeyed a power law distribution, with an exponent of approximately -2.1, consistent with predictions from percolation theory. This work confirms that residual trapping could aid storage security in carbonate aquifers.

  14. Accelerated soil carbon turnover under tree plantations limits soil carbon storage.

    Science.gov (United States)

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation's canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations. PMID:26805949

  15. Accelerated soil carbon turnover under tree plantations limits soil carbon storage

    Science.gov (United States)

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation’s canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations.

  16. Geologic Carbon Dioxide Capture and Storage via Low-Temperature Carbonation of Peridotite

    Science.gov (United States)

    Matter, J. M.; Kelemen, P. B.; Mervine, E. M.; Paukert, A. N.; Streit, E.

    2011-12-01

    Carbon dioxide is naturally captured and stored in mantle peridotite in two forms: travertine deposits on the surface and carbonate-filled veins in the subsurface. Both are the product of near-surface reactions of CO2-bearing fluids with peridotite in an open and closed system reaction path. As originally discussed by Barnes and O'Neil [1], meteoric water infiltrates and reacts with peridotite in equilibrium with atmospheric CO2, resulting in increasing Mg, Ca and SiO2 concentrations. Further reaction with peridotite at closed system conditions leads to the precipitation of Mg-carbonates and serpentine. The resulting alkaline Ca-OH water absorbs CO2 from the atmosphere and precipitates calcite as travertine deposits when it exits the peridotite as spring water. In order to evaluate the potential of enhancing peridotite carbonation, we have to better understand the processes that occur along the reaction path, and the time scales involved in these processes. For the past few years we have been investigating natural CO2 mineralization in the peridotite of the Samail Ophiolite in northern Oman. We have obtained fluid and rock samples for chemical and isotopic analysis from at least 15 active alkaline spring systems. Concerning the residence time of groundwater along the reaction path, measured tritium concentrations in shallow groundwater and alkaline spring water range from 1.4-2.6 and 0.05-0.15 TU, respectively. Alkaline spring waters with values close to the detection limit (mineralization in the Samail Ophiolite is limited by the infiltration rate of CO2 saturated meteoric water as well as by the CO2 dissolution rate into alkaline spring water. Based on our data, the natural rate of carbonation is ~5x104 tons of carbonate per year [4]. This natural carbonation mechanism has to be accelerated to have a significant impact in mitigating rising atmospheric CO2 levels. Several options, including injection of high-PCO2 aqueous fluid into preheated peridotite will be

  17. Integrated Assessment of Carbon Capture and Storage (CCS in South Africa’s Power Sector

    Directory of Open Access Journals (Sweden)

    Peter Viebahn

    2015-12-01

    Full Text Available This article presents an integrated assessment conducted in order to explore whether carbon capture and storage (CCS could be a viable technological option for significantly reducing future CO2 emissions in South Africa. The methodological approach covers a commercial availability analysis, an analysis of the long-term usable CO2 storage potential (based on storage capacity assessment, energy scenario analysis and source-sink matching, an economic and ecological assessment and a stakeholder analysis. The findings show, that a reliable storage capacity assessment is needed, since only rough figures concerning the effective capacity currently exist. Further constraints on the fast deployment of CCS may be the delayed commercial availability of CCS, significant barriers to increasing the economic viability of CCS, an expected net maximum reduction rate of the power plant’s greenhouse gas emissions of 67%–72%, an increase in other environmental and social impacts, and low public awareness of CCS. One precondition for opting for CCS would be to find robust solutions to these constraints, taking into account that CCS could potentially conflict with other important policy objectives, such as affordable electricity rates to give the whole population access to electricity.

  18. Coal and energy security for India: Role of carbon dioxide (CO2) capture and storage (CCS)

    International Nuclear Information System (INIS)

    Coal is the abundant domestic energy resource in India and is projected to remain so in future under a business-as-usual scenario. Using domestic coal mitigates national energy security risks. However coal use exacerbates global climate change. Under a strict climate change regime, coal use is projected to decline in future. However this would increase imports of energy sources like natural gas (NG) and nuclear and consequent energy security risks for India. The paper shows that carbon dioxide (CO2) capture and storage (CCS) can mitigate CO2 emissions from coal-based large point source (LPS) clusters and therefore would play a key role in mitigating both energy security risks for India and global climate change risks. This paper estimates future CO2 emission projections from LPS in India, identifies the potential CO2 storage types at aggregate level and matches the two into the future using Asia-Pacific Integrated Model (AIM/Local model) with a Geographical Information System (GIS) interface. The paper argues that clustering LPS that are close to potential storage sites could provide reasonable economic opportunities for CCS in future if storage sites of different types are further explored and found to have adequate capacity. The paper also indicates possible LPS locations to utilize CCS opportunities economically in future, especially since India is projected to add over 220,000 MW of thermal power generation capacity by 2030.

  19. Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network.

    Science.gov (United States)

    Wang, Min; Yang, Zhenzhong; Li, Weihan; Gu, Lin; Yu, Yan

    2016-05-01

    Carbonaceous materials have attracted immense interest as anode materials for Na-ion batteries (NIBs) because of their good chemical, thermal stabilities, as well as high Na-storage capacity. However, the carbonaceous materials as anodes for NIBs still suffer from the lower rate capability and poor cycle life. An N,O-dual doped carbon (denoted as NOC) network is designed and synthesized, which is greatly favorable for sodium storage. It exhibits high specific capacity and ultralong cycling stability, delivering a capacity of 545 mAh g(-1) at 100 mA g(-1) after 100 cycles and retaining a capacity of 240 mAh g(-1) at 2 A g(-1) after 2000 cycles. The NOC composite with 3D well-defined porosity and N,O-dual doped induces active sites, contributing to the enhanced sodium storage. In addition, the NOC is synthesized through a facile solution process, which can be easily extended to the preparation of many other N,O-dual doped carbonaceous materials for wide applications in catalysis, energy storage, and solar cells. PMID:27028729

  20. Sub-Seafloor Carbon Dioxide Storage Potential on the Juan de Fuca Plate, Western North America

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Fairley; Robert Podgorney

    2012-11-01

    The Juan de Fuca plate, off the western coast of North America, has been suggested as a site for geological sequestration of waste carbon dioxide because of its many attractive characteristics (high permeability, large storage capacity, reactive rock types). Here we model CO2 injection into fractured basalts comprising the upper several hundred meters of the sub-seafloor basalt reservoir, overlain with low-permeability sediments and a large saline water column, to examine the feasibility of this reservoir for CO2 storage. Our simulations indicate that the sub-seafloor basalts of the Juan de Fuca plate may be an excellent CO2 storage candidate, as multiple trapping mechanisms (hydrodynamic, density inversions, and mineralization) act to keep the CO2 isolated from terrestrial environments. Questions remain about the lateral extent and connectivity of the high permeability basalts; however, the lack of wells or boreholes and thick sediment cover maximize storage potential while minimizing potential leakage pathways. Although promising, more study is needed to determine the economic viability of this option.

  1. Natural gas storage in microporous carbon obtained from waste of the olive oil production

    Directory of Open Access Journals (Sweden)

    Cecilia Solar

    2008-12-01

    Full Text Available A series of activated carbons (AC were prepared from waste of the olive oil production in the Cuyo Region, Argentine by two standard methods: a physical activation by steam and b chemical activation with ZnCl2. The AC samples were characterized by nitrogen adsorption at 77 K and evaluated for natural gas storage purposes through the adsorption of methane at high pressures. The activated carbons showed micropore volumes up to 0.50 cm³.g-1 and total pore volumes as high as 0.9 cm³.g-1. The BET surface areas reached, in some cases, more than 1000 m².g-1. The methane adsorption -measured in the range of 1-35 bar- attained values up to 59 V CH4/V AC and total uptakes of more than 120 cm³.g-1 (STP. These preliminary results suggest that Cuyo's olive oil waste is appropriate for obtaining activated carbons for the storage of natural gas.

  2. Important accounting issues for carbon dioxide capture and storage projects under the UNFCCC

    International Nuclear Information System (INIS)

    Carbon dioxide capture and storage (CCS) provides options for making continued use of fossil fuels more compatible with pollution abatement policies. This paper evaluated policy issues related to CCS, with particular focus on the geological sequestration of carbon dioxide (CO2) into geological storage sites. Before any carbon dioxide (CO2) CCS activities can be included in the portfolio of climate change mitigation activities, several issues need to be resolved such as the development of appropriate accounting and baselines rules and monitoring modalities. Guidance and policies on baselines and the accounting of emission reductions are critical to ensure that CCS projects can benefit from CO2 markets and are recognized under various mitigation schemes. This paper examined the major issues that should considered along with changes to current accounting approaches. Issues that need to be addressed in order to prepare national inventories for the inclusion of CCS under the United Nations Framework Convention on Climate Change (UNFCCC) and emission reduction schemes such as the European greenhouse gas emissions trading scheme were first presented, followed by an examination of CCS issues under project-based mechanisms such as the Kyoto Protocol's Clean Development Mechanism. The importance of clear definitions and monitoring guidelines for the proper accounting of CCS were also highlighted. 12 refs., 2 figs

  3. Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective

    Directory of Open Access Journals (Sweden)

    Bobo Zheng

    2014-08-01

    Full Text Available The world’s energy needs have been continually growing over the past decade, yet fossil fuels are limited. Renewable energies are becoming more prevalent, but are still a long way from being commonplace worldwide. Literature mining is applied to review carbon capture and storage (CCS development trends and to develop and examine a novel carbon capture and storage technological paradigm (CCSTP, which incorporates CCSTP competition, diffusion and shift. This paper first provides an overview of the research and progress in CCS technological development, then applies a techno-paradigm theory to analyze CCSTP development and to provide a guide for future CCS technological trends. CCS could avoid CO2 being released into the atmosphere. Moreover, bioenergy with CCS (BECCS can make a significant contribution to a net removal of anthropogenic CO2 emissions. In this study, we compare the different CCSTP developmental paths and the conventional techno-paradigm by examining the S-curves. The analyses in this paper provide a useful guide for scholars seeking new inspiration in their research and for potential investors who are seeking to invest research funds in more mature technologies. We conclude that political barriers and public acceptance are the major distinctions between the CCSTP and the conventional techno-paradigm. It is expected that policy instruments and economic instruments are going to play a pivotal role in the accomplishment of global carbon reduction scenarios.

  4. Public perception of carbon dioxide storage. The role of trust and affect in attitude formation

    International Nuclear Information System (INIS)

    In this study a multidisciplinary description of, and investigation into carbon dioxide storage is given. Carbon dioxide storage is a CO2-emission reduction option that might be implemented to combat climate change. The threat of climate change has led to emission reduction goals for greenhouse gases in the Netherlands for the period 2008-2010 compared to the year 1990, and possibly more stringent goals for the longer term. The technology of carbon dioxide capture, transport and storage is shortly described, and it is expected that it is possible to perform the technology. Possible identified barriers are the costs, the risks and public perception. A wide range for the estimation of the costs has been found. Any price in the range however leads to a significant increase of the electricity price, when applying CO2 capture and storage to power plants. Risks are not quantified yet, but possible risks are described for man, environment, and buildings in literature. So far, little research had been performed on the public perception of carbon dioxide storage. Therefore a field study has been conducted for this study. From personal communication and literature, the current points of view of government, industry, and environmental NGOs (non-governmental organizations) are described for the Netherlands. Government and environmental NGOs believe that carbon dioxide storage can only be a temporary solution, because it is not considered a sustainable solution. Opposition from environmental NGOs might arise when the storage of carbon dioxide diverts effort from the development of sustainable energy sources. Industry that would perform storage expects that it can be done in a safe and acceptable way. The points of view of the actors involved can influence the perception of citizens and have therefore been summarised and added to the information for the participants in the study. From literature in the field of psychology, a conceptual model for the formation of an attitude

  5. Assessing Links Between Water and Carbon Storage in Indonesian Peatlands Using Data from the Gravity Recovery and Climate Experiment

    Science.gov (United States)

    Swails, E.; Reager, J. T., II; Randerson, J. T.; Famiglietti, J. S.; Lawrence, D.; Yu, K.

    2014-12-01

    Deforestation and drainage of tropical peat swamp forests for conversion to other uses results in a loss of carbon storage through the clearing and burning of forest vegetation as well as decomposition of peat soils and increased frequency of fires following drainage. We used Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations and a global forest cover change product to investigate trends in terrestrial water storage associated with land use conversion in Indonesian peatlands between 2002 and 2012. Our initial analysis indicated that secular trends in GRACE terrestrial water storage were consistent with the spatial distribution of peatlands drained for the establishment of oil palm plantations. A decreasing trend in GRACE terrestrial water storage measurements over the observation period indicated a substantial decrease in water table heights. Combining this information with measurements of bulk density and carbon content of surface peat layers, we estimated potential emissions from carbon stocks now vulnerable to oxidation. Independent measurements of fire carbon emissions were used to estimate the fraction of committed emission that was combusted. Our research represents the first known application of GRACE data to assess loss of soil carbon storage associated with depletion of soil water.

  6. Deliberative decarbonisation? Assessing the potential of an ethical governance framework for low-carbon energy through the case of carbon dioxide capture and storage

    OpenAIRE

    Leslie Mabon; Simon Shackley; Samuela Vercelli; Jonathan Anderlucci; Kelvin Boot

    2015-01-01

    In this paper we explore the potential of a framework of ethical governance for low-carbon energy. Developing mainly in the field of information and communications technology, ethical governance is concerned with the marginalisation of ethical and moral issues during development and deployment of new technologies. Focusing on early carbon dioxide capture and storage (CCS) projects, we argue that a focus on technical arguments in the governance of low-carbon energy similarly risks sidelining d...

  7. A study on hydrogen storage through adsorption in nano-structured carbons; Etude du stockage d'hydrogene par adsorption dans des carbones nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Langohr, D

    2004-10-15

    The aim of this work is to build and calibrate an experimental set-up for the testing of the materials, to produce some carbon materials in large amounts and characterise them, and finally, to test these materials in their ability to store hydrogen. This will help in establishing a link between the hydrogen storage capacities of the carbons and their nano-structure. The script is divided into four chapters. The first chapter will deal with the literature review on the thematic of hydrogen storage through adsorption in the carbon materials, while the second chapter will present the experimental set-up elaborated in the laboratory. The third chapter explains the processes used to produce the two families of carbon materials and finally, the last chapter presents the structural characterisation of the samples as well as the experimental results of hydrogen storage on the materials elaborated. (author)

  8. The legacy of forest harvest and burning on ecosystem carbon storage in the northern midwest, USA

    Science.gov (United States)

    Gough, C. M.; Vogel, C. S.; Harrold, K. H.; George, K. D.; Curtis, P. S.

    2005-12-01

    Over 90 % of the forested area in the upper Great Lakes region was harvested by the early 20th century. In many cases, harvests were followed by uncontrolled burns, similar to current patterns of disturbance in many developing countries. While afforestation in the northern midwest has resulted in increased regional carbon (C) storage, the rate of C storage by forests will depend on the severity of prior disturbance and consequent changes in site quality. We were interested in how long the legacy of poor management practices from the early 20th century would be reflected in forest C storage rates. We investigated C cycling and storage following disturbance in mixed deciduous forests of northern lower Michigan, USA. Study plots ranged in age from 6 to 68 yrs and were created following experimental clear-cut harvesting and fire disturbance. Annual C storage was estimated biometrically from measurements of wood, leaf, fine root, and woody debris mass, mass losses to herbivory, soil carbon content, and soil respiration. Maximum annual carbon storage, or net ecosystem production (NEP), in the disturbed stands was 50 % lower than that of adjacent, undisturbed forest. This decrease was caused by a reduction in site quality following disturbance. However, during regrowth the cut and burned forest rapidly became a net C sink, storing 0.86 Mg C ha-1 yr-1 after six yrs. Carbon storage reached a peak of 1.00 Mg C ha-1 yr-1 after 50 yrs and declined to 0.57 Mg C ha-1 yr-1 after 68 yrs. Above- and below-ground net primary production (NPP) averaged 42 and 59 % of total NPP, respectively, with fine root litter production accounting for 57 % of total NPP. Soil heterotrophic respiration was high, ranging from 4.55 Mg C ha-1 yr-1 in the 6-yr-old stand to 5.74 Mg C ha-1 yr-1 in the 50-yr-old stand. Soil C and coarse woody debris pools exhibited a U-shaped trend over time following disturbance. Mineral soil and coarse woody debris pools lost C at a combined annual rate of 1.10 Mg C ha-1

  9. Evaluation of carbon cryogels used as cathodes for non-flowing zinc-bromine storage cells

    Energy Technology Data Exchange (ETDEWEB)

    Ayme-Perrot, David; Walter, Serge; Gabelica, Zelimir [Groupe Securite et Ecologie Chimiques (GSEC), ENSCMu, 3 rue Alfred Werner, F-68093 Mulhouse Cedex (France); Valange, Sabine [Laboratoire de Catalyse en Chimie Organique (LACCO), ESIP, 40 Avenue du Recteur Pineau, F-86022 Poitiers Cedex (France)

    2008-01-03

    Monolithic megaloporous carbon cryogels were examined for their potential applications as cathodic electrodes in secondary zinc-bromine cells. This work investigates the possibility of using their particular macroporous texture as microscopic bromine tanks in a zinc/bromine battery. The electrochemical behaviour of a cell based upon such a Br{sub 2} electrode was studied and discussed in terms of energy yields, energy storage capability and cycle life. Good storages (over 20 Wh kg{sup -1}) could be obtained during the first 2 h of cell charging for currents between 10 and 20 mA g{sup -1}. The energy yield remains almost constant during a fairly large number of cycles, basically for weak charges (e.g. 25 C g{sup -1}). Our findings show that the good cyclability of the cathodic electrode is a consequence of the liquid state of the active bromine phase. (author)

  10. Carbon Capture and Storage in the Permian Basin, a Regional Technology Transfer and Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Rychel, Dwight

    2013-09-30

    The Permian Basin Carbon Capture, Utilization and Storage (CCUS) Training Center was one of seven regional centers formed in 2009 under the American Recovery and Reinvestment Act of 2009 and managed by the Department of Energy. Based in the Permian Basin, it is focused on the utilization of CO2 Enhanced Oil Recovery (EOR) projects for the long term storage of CO2 while producing a domestic oil and revenue stream. It delivers training to students, oil and gas professionals, regulators, environmental and academia through a robust web site, newsletter, tech alerts, webinars, self-paced online courses, one day workshops, and two day high level forums. While course material prominently features all aspects of the capture, transportation and EOR utilization of CO2, the audience focus is represented by its high level forums where selected graduate students with an interest in CCUS interact with Industry experts and in-house workshops for the regulatory community.

  11. Hydrogen Storage in Benzene Moiety Decorated Single-Walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bing-Yun; LIANG Qi-Min; SONG Chen; XIA Yue-Yuan; ZHAO Ming-wen; LIU Xiang-Dong; ZHANG Hong-Yu

    2006-01-01

    The hydrogen storage capacity of(5,5)single-walled carbon nanotubes(SWNTs)decorated chemically with benzene moieties is studied by using molecular dynamics simulations(MDSs)and density functional theory(DFT) calculations.It is found that benzene molecules colliding on (5,5) SWNTs at incident energy of 50 eV form very stable configurations of benzene moiety adsorption on the wall of SWNTs.The MDSs indicate that when the benzene moiety decorated(5,5)SWNTs and a pristine(5,5)SWNT are put in a box in which hydrogen molecules are filled to a pressure of~26 atm,the hydrogen storage capacity of the benzene moiety decorated(5,5)SWNT is about 4.7wt.% and that of the pristine (5,5) SwNT is nearly 3.9 wt.%.

  12. Impacts of deforestation and reforestation on soil organic carbon storage and CO2 emission

    Directory of Open Access Journals (Sweden)

    Mohammad Ghannadi

    2013-05-01

    Full Text Available Soil organic carbon (SOC storage and CO2 flux into the atmosphere can be influenced by land use change, especially re/deforestation. The impacts of conversion of primary deciduous (PF to secondary coniferous (SF forest and deforestation of PF land to abandoned rangeland (AR on various soil properties, SOC storage, and soil CO2 emission were investigated on the selected sites (Neshat and Garakpass in Kelardasht region, northern Iran. The highest SOC storages were determined in coniferous forest land uses (SF1=255.00 and SF2=237.90 Mg C ha−1 followed by deciduous forest (PF1=216.74 and PF2=159.12 Mg C ha−1 and abandoned rangeland (AR1=185.31 and AR2=151.60 Mg C ha−1. Land use changes showed significant impacts on soil CO2 efflux. The significant positive correlations, with exponential and linear relationships were observed between the monthly CO2 emissions; the minimum air temperature and the cumulative precipitation in the last week ended to CO2 measurement time. The highest recorded soil CO2 efflux in a wide range of land uses were obtained in August to October due to more suitable temperature and rainfall distribution. Based on lower CO2 emission in abandoned rangelands, lesser soil organic carbon is related to lower input to soil. The higher C: N ratios in litter and some of mineral horizons (SF2 and lower CO2 emissions by the higher lignin and polyphenol concentrations (SF1 in coniferous forests compared to deciduous forests have probably caused increasing SOC storage.

  13. Detection of potential leakage pathways from geological carbon storage by fluid pressure data assimilation

    Science.gov (United States)

    González-Nicolás, Ana; Baù, Domenico; Alzraiee, Ayman

    2015-12-01

    One of the main concerns of geological carbon storage (GCS) systems is the risk of leakage through "weak" permeable areas of the sealing formation or caprock. Since the fluid pressure pulse travels faster than the carbon dioxide (CO2) plume across the storage reservoir, the fluid overpressure transmitted into overlying permeable formations through caprock discontinuities is potentially detectable sooner than actual CO2 leakage occurs. In this work, an inverse modeling method based on fluid pressure measurements collected in strata above the target CO2 storage formation is proposed, which aims at identifying the presence, the location, and the extent of possible leakage pathways through the caprock. We combine a three-dimensional subsurface multiphase flow model with ensemble-based data assimilation algorithms to recognize potential caprock discontinuities that could undermine the long-term safety of GCS. The goal of this work is to examine and compare the capabilities of data assimilation algorithms such as the ensemble smoother (ES) and the restart ensemble Kalman filter (REnKF) to detect the presence of brine and/or CO2 leakage pathways, potentially in real-time during GCS operations. For the purpose of this study, changes in fluid pressure in the brine aquifer overlying to CO2 storage formation aquifer are hypothetically observed in monitoring boreholes, or provided by time-lapse seismic surveys. Caprock discontinuities are typically characterized locally by higher values of permeability, so that the permeability distribution tends to fit to a non-Gaussian bimodal process, which hardly complies with the requirements of the ES and REnKF algorithms. Here, issues related to the non-Gaussianity of the caprock permeability field are investigated by developing and applying a normal score transform procedure. Results suggest that the REnKF is more effective than the ES in characterizing caprock discontinuities.

  14. The impact of carbon capture and storage on a decarbonized German power market

    International Nuclear Information System (INIS)

    The European energy policy is substantially driven by the target to reduce the CO2-emissions significantly and to mitigate climate change. Nevertheless European power generation is still widely based on fossil fuels. The carbon capture and storage technology (CCS) could be part of an approach to achieve ambitious CO2 reduction targets without large scale transformations of the existing energy system. In this context the paper investigates on how far the CCS-technology could play a role in the European and most notably in the German electricity generation sector. To account for all the interdependencies with the European neighboring countries, the embedding of the German electricity system is modeled using a stochastic European electricity market model (E2M2s). After modeling the European side constraints, the German electricity system is considered in detail with the stochastic German Electricity market model (GEM2s). The focus is thereby on the location of CCS plant sites, the structure of the CO2-pipeline network and the regional distribution of storage sites. Results for three different European energy market scenarios are presented up to the year 2050. Additionally, the use of CCS with use of onshore and offshore sites is investigated. - Highlights: • We present a model framework for the evaluation of carbon capture and storage (CCS). • Different scenarios to analyze regional differences within Germany. • Interdependencies between CO2 bound and demand are the main influencing factors. • A comprehensive investment in CCS power plants is not likely in the next decades. • Storage sites are no restricting factor but public acceptance is a crucial point

  15. Study of the mechanism of electrochemical hydrogen storage in nano-porous carbons

    International Nuclear Information System (INIS)

    An efficient method of hydrogen storage in nano-porous carbons is its reversible sorption by electrochemical decomposition of a KOH water solution [1-3] according to the following equation: C + xH2O + xe- → (CHx) + xOH- where (CHx) stands for the hydrogen inserted into the nano-porous carbon during charging and oxidized during discharging. Although various carbon materials have been investigated as hydrogen adsorbents, the information about the storage mechanism as well as the nature of the hydrogen/carbon interaction is still not sufficient. In order to extend the understanding of the process, carbon samples charged electrochemically were investigated by temperature programmed desorption (TPD). The nature of the hydrogen/carbon interaction was studied by electrochemical analysis at different temperatures. The TPD experiments consist of heating the samples from room temperature to 950 C and of quantitative analysis by on-line mass spectrometry, the di-hydrogen evolved from the carbon material. Fig 1 shows the desorption rate of hydrogen during the TPD experiment carried out on an activated carbon cloth loaded at -500 mA/g during 12 hours. The first peak below 300 C corresponds to the desorption of hydrogen fixed on the carbon surface during the charging process. The shape and the position of this peak suggests that this gas is released from sites of different and relatively high energies. The second hydrogen peak results from the reaction between the carbon material and KOH as already mentioned in literature [4]. Carbon materials were also loaded at -500 mA/g during different times (3, 6, 12 and 24 hours), and then analysed by TPD, showing that the intensity of the peak below 300 C increases with the charging time. Hence TPD gives the direct proof that hydrogen is really stored in nano-porous carbons by this electrochemical process. Moreover, the position of the desorption peaks demonstrates that at least a part of hydrogen presents stronger interactions than in

  16. Soil carbon storage in a small arid catchment in the Negev desert (Israel)

    Science.gov (United States)

    Hoffmann, Ulrike; Kuhn, Nikolaus

    2010-05-01

    The mineral soil represents a major pool in the global carbon cycle. The behavior of mineral soil as a carbon reservoir in global climate and environmental issues is far from fully understood and causes a serious lack of comparable data on mineral soil organic carbon (SOC) at regional scale. To improve our understanding of soil carbon sequestration, it is necessary to acquire regional estimates of soil carbon pools in different ecosystem types. So far, little attention has been given to Dryland ecosystems, but they are often considered as highly sensitive to environmental change, with large and rapid responses to even smallest changes of climate conditions. Due to this fact, Drylands, as an ecosystem with extensive surface area across the globe (6.15 billion ha), have been suggested as a potential component for major carbon storage. A priori reasoning suggests that regional spatial patterns of SOC density (kg/m²) in Drylands are mostly affected by vegetation, soil texture, landscape position, soil truncation, wind erosion/deposition and the effect of water supply. Particularly unassigned is the interaction between soil volume, geomorphic processes and SOC density on regional scale. This study aims to enhance our understanding of regional spatial variability in dependence on soil volume, topography and surface parameters in areas susceptible to environmental change. Soil samples were taken in small transects at different representative slope positions across a range of elevations, soil texture, vegetation types, and terrain positions in a small catchment (600 ha) in the Negev desert. Topographic variables were extracted from a high resolution (0.5m) digital elevation model. Subsequently, we estimated the soil volume by excavating the entire soil at the representative sampling position. The volume was then estimated by laser scanning before and after soil excavation. SOC concentration of the soil samples was determined by CHN-analyser. For each sample, carbon

  17. Pattern and change of soil organic carbon storage in China: 1960s-1980s

    International Nuclear Information System (INIS)

    Soils, an important component of the global carbon cycle, can be either net sources or net sinks of atmospheric carbon dioxide (CO2). In this study, we use the first and second national soil surveys of China to investigate patterns and changes in soil organic carbon storage (SOC) during the period from the 1960s to the 1980s. Our results show that there is a large amount of variability in SOC density among different soil types and land uses in the 1980s. The SOC density in the wetlands of Southwest China was the highest (45 kg/m2), followed by meadow soils in the South (26 kg/m2), forest and woodlands in the Northwest (19 kg/m2), steppe and grassland in the Northwest (15 kg/m2), shrubs in the Northwest (12 kg/m2), paddy lands in the Northwest (13 kg/m2), and drylands in the Northwest (11 kg/m2). The desert soils of the Western region ranked the lowest (1 kg/m2). The density of SOC was generally higher in the west than other regions. Eastern China had the lowest SOC density, which was associated with a long history of extensive land use in the region. The estimation of SOC storage for the entire nation was 93 Pg C in the 1960s and 92 Pg C in the 1980s. SOC storage decreased about 1 Pg C during the 1960s-1980s. This amount of decrease in SOC for the entire nation is small and statistically insignificant. To adequately characterize spatial variations in SOC, larger sampling sizes of soil profiles will be required in the future analyses

  18. Pore-Scale Modeling of Reactive-Multiphase-Buoyant Flow for Carbon Capture and Storage

    Science.gov (United States)

    Anwar, S.; Cunningham, J. A.; Trotz, M.; Thomas, M. W.; Stewart, M.

    2010-12-01

    Physical and geochemical processes at multiple scales are yet to be understood for the storage of carbon dioxide (CO2) in aquifers and the concomitant mitigation of CO2 concentration in the atmosphere. In deep saline aquifers, the pores in the potential aquifers for CO2 storage are initially filled with saline water (brine). The entrapment of brine in pores after injection of CO2 is controlled by capillary forces and by the inertial force driving CO2 inside the carbonate aquifer. The entrapped/residual brine will be a site for geochemical reactions which could alter the pore network and/or the permeability of the formation. Therefore, the pore-scale understanding of displacement of resident brine by CO2 is critical to evaluate the storage efficiency of carbonate aquifers and to quantify any dissolution or precipitation of minerals (e.g., gypsum, calcite, dolomite). In this project, we have developed a multiphase flow model, based on the lattice Boltzmann equation, that can describe pore-scale displacement of brine by invading CO2. The multiphase flow model is applied to three different pore networks saturated with brine. The amount of brine trapped after invasion of the domain by CO2 is strongly dependent on the pore network. We also examine the effects of CO2 density and viscosity (which depend on formation temperature and pressure) on the amount of entrapped brine. Only by resolving the flow at the pore scale can we predict the residual brine saturation and other parameters which control CO2 sequestration in deep saline aquifers. Future work will focus on coupling the pore-scale multiphase flow model to a chemistry model to predict mineral dissolution and precipitation.

  19. Pore-Scale Modeling of Reactive-Multiphase Flow for Carbon Capture and Storage

    Science.gov (United States)

    Anwar, S.; Cunningham, J. A.; Trotz, M.; Thomas, M. W.; Stewart, M.

    2011-12-01

    Physical and geochemical processes at multiple scales are yet to be understood for the storage of carbon dioxide (CO2) in aquifers and the concomitant mitigation of CO2 concentration in the atmosphere. In deep saline aquifers, the pores in the potential aquifers for CO2 storage are initially filled with saline water (brine). The entrapment of brine in pores after injection of CO2 is controlled by capillary forces and by the inertial force driving CO2 inside the carbonate aquifer. The entrapped/residual brine will be a site for geochemical reactions which could alter the pore network and/or the permeability of the formation. Therefore, the pore-scale understanding of displacement of resident brine by CO2 is critical to evaluate the storage efficiency of carbonate aquifers and to quantify any dissolution or precipitation of minerals (e.g., gypsum, calcite, dolomite). In this project, we have developed a multiphase flow model, based on the lattice Boltzmann equation, which can describe pore-scale displacement of brine by invading CO2. We also examine the effects of CO2 density and viscosity (which depend on formation temperature and pressure) on the amount of entrapped brine. Only by resolving the flow at the pore scale can we predict the residual brine saturation and other parameters which control CO2 sequestration in deep saline aquifers. The rock is assumed to consist of only calcite minerals. The multiphase flow model is coupled with the diffusion model and the geochemical reaction model to predict mineral dissolution and precipitation. The amount of brine trapped after invasion of the domain by CO2 is strongly dependent on the pore network and viscosity ratio between brine and CO2. The pH drops to 3.0 in brine after injection of CO2 and dissolution of calcite occurs where CO2, brine and mineral comes in contact.

  20. Soil organic carbon storage and soil CO2 flux in the alpine meadow ecosystem

    Institute of Scientific and Technical Information of China (English)

    TAO Zhen; SHEN ChengDe; GAO QuanZhou; SUN YanMin; YI WeiXi; LI YingNian

    2007-01-01

    High-resolution sampling, measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12(104 kg C hm-2 to 30.75(104 kg C hm-2 in the alpine meadow ecosystems, with an average of 26.86(104 kg C hm-2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m-2 a-1 to 254.93 gC m-2 a-1, with an average of 191.23 g C m-2 a-1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m-2 a-1 to 181 g C m-2 a-1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%-81.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research.

  1. Soil organic carbon storage and soil CO2 flux in the alpine meadow ecosystem

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High-resolution sampling,measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau,and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic car-bon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12×104 kg C hm-2 to 30.75×104 kg C hm-2 in the alpine meadow eco-systems,with an average of 26.86×104 kg C hm-2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m-2 a-1 to 254.93 gC m-2 a-1,with an average of 191.23 g C m-2 a-1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m-2 a-1 to 181 g C m-2 a-1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%―81.23% of total CO2 emitted from or-ganic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming,the storage,volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed,which needs further research.

  2. Rechargeable Batteries with High Energy Storage Activated by In-situ Induced Fluorination of Carbon Nanotube Cathode

    OpenAIRE

    Xinwei Cui; Jian Chen; Tianfei Wang; Weixing Chen

    2014-01-01

    High performance rechargeable batteries are urgently demanded for future energy storage systems. Here, we adopted a lithium-carbon battery configuration. Instead of using carbon materials as the surface provider for lithium-ion adsorption and desorption, we realized induced fluorination of carbon nanotube array (CNTA) paper cathodes, with the source of fluoride ions from electrolytes, by an in-situ electrochemical induction process. The induced fluorination of CNTA papers activated the revers...

  3. Analysis of carbon and nutrient storage of dry tropical forest of chhattisgarh using satellite data

    OpenAIRE

    Thakur, T. K.

    2014-01-01

    The purpose of this study was to characterize the carbon, nitrogen, phosphorus and potassium in the Barnowpara Sanctuary, Raipur district, Chhattisgarh, India through the use of satellite remote sensing and GIS The total storage of nutrients in vegetation (OS + US + GS) varied from 105.1 to 560.69 kg ha−1 in N, 4.09 kg ha−1 to 49.59 kg ha−1 in P, 24.59 kg ha−1 to 255.58 kg ha−1 for K and 7310 to 4836 kg ha−1 for C in different forest types. They we...

  4. Hybrid Geo-Energy Systems for Energy Storage and Dispatchable Renewable and Low-Carbon Electricity

    Science.gov (United States)

    Buscheck, Thomas; Bielicki, Jeffrey; Ogland-Hand, Jonathan; Hao, Yue; Sun, Yunwei; Randolph, Jimmy; Saar, Martin

    2015-04-01

    Three primary challenges for energy systems are to (1) reduce the amount of carbon dioxide (CO2) being emitted to the atmosphere, (2) increase the penetration of renewable energy technologies, and (3) reduce the water intensity of energy production. Integrating variable renewable energy sources (wind, sunlight) into electric grids requires advances in energy storage approaches, which are currently expensive, and tend to have limited capacity and/or geographic deployment potential. Our approach uses CO2, that would otherwise be emitted to the atmosphere, to generate electricity from geothermal resources, to store excess energy from variable (wind, solar photovoltaic) and thermal (nuclear, fossil, concentrated solar power) sources, and to thus enable increased penetration of renewable energy technologies. We take advantage of the enormous fluid and thermal storage capacity of the subsurface to harvest, store, and dispatch energy. Our approach uses permeable geologic formations that are vertically bounded by impermeable layers to constrain pressure and the migration of buoyant CO2 and heated brine. Supercritical CO2 captured from fossil power plants is injected into these formations as a cushion gas to store pressure (bulk energy), provide an heat efficient extraction fluid for efficient power conversion in Brayton Cycle turbines, and generate artesian flow of brine -- which can be used to cool power plants and/or pre-heated (thermal storage) prior to re-injection. Concentric rings of injection and production wells create a hydraulic divide to store pressure, CO2, and thermal energy. The system is pressurized and/or heated when power supply exceeds demand and depressurized when demand exceeds supply. Time-shifting the parasitic loads from pressurizing and injecting brine and CO2 provides bulk energy storage over days to months, whereas time-shifting thermal-energy supply provides dispatchable power and addresses seasonal mismatches between supply and demand. These

  5. Carbon Storage in Beech Stands on the Chřiby Uplands

    OpenAIRE

    Schneider Jiří; Holušová Kateřina; Rychtář Jan; Vyskot Ilja; Lampartová Ivana

    2015-01-01

    The submitted scientific statement is a contribution to solutions of monitoring the storage of carbon in the woods and its emissions. Four permanent research plots were established in the area of the Chřiby uplands in the Czech Republic. The plots are made of forest stands with nearly 100% of European beech (Fagus sylvatica L.). The stands form simple spatial structures of about the same age (about 180 years). They represent, however, varying site conditions (dwarf acid beech stands, herb-ric...

  6. Measuring Mangrove Type, Structure And Carbon Storage With UAVSAR And ALOS/PALSAR Data

    Science.gov (United States)

    Fatoyinbo, T. E.; Cornforth, W.; Pinto, N.; Simard, M.; Pettorelli, N.

    2011-12-01

    Mangrove forests provide a great number of ecosystem services ranging from shoreline protection (e.g. against erosion, tsunamis and storms), nutrient cycling, fisheries production, building materials and habitat. Mangrove forests have been shown to store very large amounts of Carbon, both above and belowground, with storage capacities even greater than tropical rainforests. But as a result of their location and economic value, they are among the most rapidly changing landscapes in the World. Mangrove extent is limited 1) in total extent to tidally influenced coastal areas and 2) to tropical and subtropical regions. This can lead to difficulties mapping mangrove type (such as degraded vs non degraded, scrub vs tall, dense vs sparse) because of cloud cover and limited access to high-resolution optical data. To accurately quantify the effect of land use and climate change on tropical wetland ecosystems, we must develop effective mapping methodologies that take into account not only extent, but also the structure and health of the ecosystem. This must be done by including Synthetic Aperture Radar (SAR) data. In this research, we used L-band Synthetic Aperture Radar data from the ALOS/PALSAR and UAVSAR instruments over selected sites in the Americas (Sierpe, Costa Rica and Everglades, Florida)and Asia (Sundarbans). In particular, we used the SAR data in combination with other remotely sensed data and field data to 1) map mangrove extent 2) determine mangrove type, health and adjascent land use, and 3) estimate aboveground biomass and carbon storage for entire mangrove systems. We used different classification methodologies such as polarimetric decomposition, unsupervised classification and image segmentation to map mangrove type. Because of the high resolution of the radar data, and its ability to interact with forest volume, we are able to identify mangrove zones and differentiate between mangroves and other forests/land uses. We also integrated InSAR data (SRTM

  7. Prototype reflectivity analyses of hydrogen storage levels in single-walled carbon nanotubes.

    Science.gov (United States)

    Tran, Nick E; Lambrakos, S G; Moore, P G; Ashraf Imam, M; Dulcey, C S

    2004-06-01

    A prototype case study is presented that examines the level of hydrogen content in H-SWNTs using the Surface Plasmon Resonance technique. The damping effect and the angular shift in the resonance minimum of an SWNT-gold interface due to the presence of hydrogen is analyzed using a parametric model, which is based on the concept of an effective permittivity. The new approach provides for a non-invasive analysis of the level of hydrogen content in H-SWNTs and is potentially extendable to other carbon-based hydrogen storage materials. PMID:15268050

  8. Research or Carbon Capture and Storage – How to limit climate change?

    OpenAIRE

    Kollenbach, Gilbert

    2014-01-01

    The consequences of the 2° C climate target and the implicitly imposed ceiling on CO2 have been analyzed in several studies. We use an endogenous rowth model with a ceiling and a carbon capture and storage (CCS) technology to study the effect of the ceiling on the allocation of limited funds for R&D, CCS and capital accumulation. It turns out that the advantagenousness of CCS investments rise with the CO2 stock. If the gains of CCS, in terms of lower energy costs, outweigh the gains of R&D an...

  9. The role of large scale storage in a GB low carbon energy future: Issues and policy challenges

    International Nuclear Information System (INIS)

    Large scale storage offers the prospect of capturing and using excess electricity within a low carbon energy system, which otherwise might have to be wasted. Incorporating the role of storage into current scenario tools is challenging, because it requires high temporal resolution to reflect the effects of intermittent sources on system balancing. This study draws on results from a model with such resolution. It concludes that large scale storage could become economically viable for scenarios with high penetration of renewables. As the proportion of intermittent sources increases, the optimal type of storage shifts towards solutions with low energy related costs, even at the expense of efficiency. However, a range of uncertainties have been identified, concerning storage technology development, the regulatory environment, alternatives to storage and the stochastic uncertainty of year-on-year revenues. All of these negatively affect the cost of finance and the chances of successful market uptake. We argue, therefore, that, if the possible wider system and social benefits from the presence of storage are to be achieved, stronger and more strategic policy support may be necessary. More work on the social and system benefits of storage is needed to gauge the appropriate extent of support measures. - Highlights: → Time resolved modelling shows future potential for large scale power storage in GB. → The value of storage is highly sensitive to a range of parameters. → Uncertainty over the revenue from storage could pose a barrier to investment. → To realise wider system benefits stronger and more strategic policy support may be necessary.

  10. Lightweight carbon nanotube-based structural-energy storage devices for micro unmanned systems

    Science.gov (United States)

    Rivera, Monica; Cole, Daniel P.; Hahm, Myung Gwan; Reddy, Arava L. M.; Vajtai, Robert; Ajayan, Pulickel M.; Karna, Shashi P.; Bundy, Mark L.

    2012-06-01

    There is a strong need for small, lightweight energy storage devices that can satisfy the ever increasing power and energy demands of micro unmanned systems. Currently, most commercial and developmental micro unmanned systems utilize commercial-off-the-shelf (COTS) lithium polymer batteries for their energy storage needs. While COTS lithium polymer batteries are the industry norm, the weight of these batteries can account for up to 60% of the overall system mass and the capacity of these batteries can limit mission durations to the order of only a few minutes. One method to increase vehicle endurance without adding mass or sacrificing payload capabilities is to incorporate multiple system functions into a single material or structure. For example, the body or chassis of a micro vehicle could be replaced with a multifunctional material that would serve as both the vehicle structure and the on-board energy storage device. In this paper we present recent progress towards the development of carbon nanotube (CNT)-based structural-energy storage devices for micro unmanned systems. Randomly oriented and vertically aligned CNT-polymer composite electrodes with varying degrees of flexibility are used as the primary building blocks for lightweight structural-supercapacitors. For the purpose of this study, the mechanical properties of the CNT-based electrodes and the charge-discharge behavior of the supercapacitor devices are examined. Because incorporating multifunctionality into a single component often degrades the properties or performance of individual structures, the performance and property tradeoffs of the CNT-based structural-energy storage devices will also be discussed.

  11. Potential for in situ carbonation of peridotite for geological CO2 storage

    Science.gov (United States)

    Kelemen, P.; Matter, J.; Streit, L.; Rudge, J.; Spiegelman, M.

    2008-12-01

    The rate of natural carbonation of tectonically exposed mantle peridotite during weathering and low temperature alteration can probably be enhanced to develop a significant sink for atmospheric CO2. Formation of solid carbonate minerals in situ constitutes an important alternative that should be explored. It may be less costly than ex situ mineral carbonation involving transport of solid reactants, grinding, heat treatment, and reaction in pressurized vessels. It is certainly safer and much easier to monitor than storage of super-critical CO2 fluid in pore space at depth. Natural carbonation of peridotite in the Samail ophiolite, an uplifted slice of oceanic crust and upper mantle in the Sultanate of Oman, is surprisingly rapid. Carbonate veins in mantle peridotite in Oman have an average 14C age of approx 26,000 years, and are not 30 to 95 million years old as previously believed. These data and reconnaissance mapping show that 10,000 to 100,000 tons per year of atmospheric CO2 are converted to solid carbonate minerals via peridotite weathering in Oman [1]. Peridotite carbonation can be accelerated via drilling, hydraulic fracture, input of purified CO2 at elevated pressure, and - particularly - increased temperature at depth. Our simple 1D thermal models suggest that, after an initial heating step, CO2 injected at 25 or 30°C can be heated by exothermic carbonation reactions that sustain high temperature and rapid reaction rates at depth with little expenditure of energy. In situ carbonation of peridotite could consume more than 1 billion tons of CO2 per year in Oman alone, affording a low-cost, safe and permanent method to store atmospheric CO2 [1]. In the appropriate PTX regime, solid volume changes associated with peridotite carbonation may induce reaction driven cracking as well as exothermic heating. If cracks expose fresh, new surface area to sustain continued reaction, carbonation rates could accelerate over time. Alternatively, if cracking is too slow

  12. Projecting Carbon Cycling Trajectories in Forests of the Upper Midwest, USA: Has Carbon Storage Peaked?

    Science.gov (United States)

    Curtis, P. S.; Gough, C. M.; Vogel, C. S.; Hardiman, B.; Bohrer, G.; Nave, L. E.

    2008-12-01

    The mixed deciduous forests of the upper Midwest, USA are approaching an ecological threshold in which dominant early successional aspen and birch trees are reaching maturity and beginning to senesce, giving way to a canopy that is more species diverse and structurally heterogeneous. Widespread ecological changes in maturing forests of the upper Midwest are predicted to reduce terrestrial C storage in the region; however, no empirical evidence exists to support this hypothesis. At the University of Michigan Biological Station in northern Michigan, we are combining long-term C cycling measurements with a large-scale experimental manipulation to forecast how forest C storage will change in response to ongoing succession and disturbance, and to climate variation. At the plot scale, 10-yr trajectories of increasing wood net primary production were accompanied by significant increases in leaf area index (LAI), which were positively correlated with successional advances in canopy species diversity as late-successional species grew into predominately aspen and birch canopies. Surveys of canopy structure indicate that more species diverse canopies support greater LAI by increasing the vertical distribution of leaf area. These results suggest that forests of the upper Midwest may store more C if, as predicted, their canopies become more species diverse and structurally heterogeneous. To examine changes in forest C cycling following successional transition from mature aspen and birch to a young mixed conifer-deciduous ecosystem, we accelerated forest succession by stem girdling all aspen and birch (>6,700 trees, ~35% canopy LAI) within a 39 ha area in Spring 2008. The Forest Accelerated Succession ExperimenT (FASET) will test the hypothesis that forest net ecosystem production will decline temporarily following an initial disturbance that results in partial canopy defoliation and subsequently increase as canopies become more biologically and structurally complex. Our goal is

  13. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of Alaska

    Science.gov (United States)

    2016-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to contribute to knowledge of the storage, fluxes, and balance of carbon and methane gas in ecosystems of Alaska. The carbon and methane variables were examined for major terrestrial ecosystems (uplands and wetlands) and inland aquatic ecosystems in Alaska in two time periods: baseline (from 1950 through 2009) and future (projections from 2010 through 2099). The assessment used measured and observed data and remote sensing, statistical methods, and simulation models. The national assessment, conducted using the methodology described in SIR 2010-5233, has been completed for the conterminous United States, with results provided in three separate regional reports (PP 1804, PP 1797, and PP 1897).

  14. Effects of Carbon Dioxide Capture and Storage in Germany on European Electricity Exchange and Welfare

    OpenAIRE

    Rübbelke, Dirk; Vögele, Stefan

    2012-01-01

    In the course of European efforts to mitigate global warming, the application of carbon dioxide capture and storage (CCS) technologies is discussed as a potential option. Some political opposition was raised – inter alia – by uncertainties about the effective cost of such technologies. Because of the cost structure of CCS power plants with high â€ÂËœflatâ€Ââ„¢ investment cost and – in case of high carbon allowance prices – comparable low...

  15. Development of Specific Rules for the Application of Life Cycle Assessment to Carbon Capture and Storage

    Directory of Open Access Journals (Sweden)

    Michela Gallo

    2013-03-01

    Full Text Available Carbon Capture and Storage (CCS is a very innovative and promising solution for greenhouse gases (GHG reduction, i.e., capturing carbon dioxide (CO2 at its source and storing it indefinitely to avoid its release to the atmosphere. This paper investigates a set of key issues in the development of specific rules for the application of Life Cycle Assessment (LCA to CCS. The following LCA-based information are addressed in this work: definition of service type, definition of functional unit, definition of system boundaries, choice of allocation rules, choice of selected Life Cycle Inventory (LCI results or other selected parameters for description of environmental performance. From a communication perspective, the specific rules defined in this study have been developed coherently with the requirements of a type III environment label scheme, the International EPD® System, according to the ISO 14025 standard.

  16. High Performance and Economic Supercapacitors for Energy Storage Based on Carbon Nanomaterials

    Science.gov (United States)

    Samuilov, Vladimir; Farshid, Behzad; Frenkel, Alexander; Sensor CAT at Stony Brook Team

    2015-03-01

    We designed and manufactured very inexpensive prototypes of supercapacitors for energy storage based on carbon nanomaterials comprised of: reduced graphene oxide (RGOs) and carbon nanotubes (CNTs) as electrodes filled with polymer gel electrolytes. The electrochemical properties of supercapacitors made using these materials were compared and analyzed. A significant tradeoff between the energy density and the power density was determined; RGO electrodes demonstrated the highest energy density, while composite RGO/CNT electrodes showed the highest power density. The thickness of the RGO electrode was varied to determine its effect on the power density of the supercapacitor and results showed that with decreasing electrode thickness power density would increase. The specific capacitances of over 600 F/g were observed.

  17. Developing Radioactive Carbon Isotope Tagging for Monitoring, Verification and Accounting in Geological Carbon Storage

    Science.gov (United States)

    Ji, Yinghuang

    In the wake of concerns about the long-term integrity and containment of sub-surface CO2 sequestration reservoirs, many efforts have been made to improve the monitoring, verification, and accounting methods for geo-sequestered CO2. This Ph.D. project has been part of a larger U.S. Department of Energy (DOE) sponsored research project to demonstrate the feasibility of a system designed to tag CO2 with radiocarbon at a concentration of one part per trillion, which is the ambient concentration of 14C in the modern atmosphere. Because carbon found at depth is naturally free of 14C, this tag would easily differentiate pre-existing carbon in the underground from anthropogenic, injected carbon and provide an excellent handle for monitoring its whereabouts in the subsurface. It also creates an excellent handle for adding up anthropogenic carbon inventories. Future inventories in effect count 14C atoms. Accordingly, we developed a 14C tagging system suitable for use at the part-per-trillion level. This tagging system uses small containers of tracer fluid of 14C enriched CO2. The content of these containers is transferred into a CO2 stream readied for underground injection in a controlled manner so as to tag it at the part-per-trillion level. These containers because of their shape are referred to in this document as tracer loops. The demonstration of the tracer injection involved three steps. First, a tracer loop filling station was designed and constructed featuring a novel membrane based gas exchanger, which degassed the fluid in the first step and then equilibrated the fluid with CO2 at fixed pressure and fixed temperature. It was demonstrated that this approach could achieve uniform solutions and prevent the formation of bubbles and degassing downstream. The difference between measured and expected results of the CO2 content in the tracer loop was below 1%. Second, a high-pressure flow loop was built for injecting, mixing, and sampling of the fast flowing stream of

  18. How CO2 Leakage May Impact the Role of Geologic Carbon Storage in Climate Mitigation

    Science.gov (United States)

    Peters, C. A.; Deng, H.; Bielicki, J. M.; Fitts, J. P.; Oppenheimer, M.

    2014-12-01

    Among CCUS technologies (Carbon Capture Utilization and Sequestration), geological storage of CO2 has a large potential to mitigate greenhouse gas emissions, but confidence in its deployment is often clouded by the possibility and cost of leakage. In this study, we took the Michigan sedimentary basin as an example to investigate the monetized risks associated with leakage, using the Risk Interference of Subsurface CO2 Storage (RISCS) model. The model accounts for spatial heterogeneity and variability of hydraulic properties of the subsurface system and permeability of potential leaking wells. In terms of costs, the model quantifies the financial consequences of CO2 escaping back to the atmosphere as well as the costs incurred if CO2 or brine leaks into overlying formations and interferes with other subsurface activities or resources. The monetized leakage risks derived from the RISCS model were then used to modify existing cost curves by shifting them upwards and changing their curvatures. The modified cost curves were used in the integrated assessment model - GCAM (Global Change Assessment Model), which provides policy-relevant results to help inform the potential role of CCUS in future energy systems when carbon mitigation targets and incentives are in place. The results showed that the extent of leakage risks has a significant effect on the extent of CCUS deployment. Under more stringent carbon mitigation policies such as a high carbon tax, higher leakage risks can be afforded and incorporating leakage risks will have a smaller impact on CCUS deployment. Alternatively, if the leakage risks were accounted for by charging a fixed premium, similar to how the risk of nuclear waste disposal is treated, the contribution of CCUS in mitigating climate change varies, depending on the value of the premium.

  19. Soil carbon storage following road removal and timber harvesting in redwood forests

    Science.gov (United States)

    Seney, Joseph; Madej, Mary Ann

    2015-01-01

    Soil carbon storage plays a key role in the global carbon cycle and is important for sustaining forest productivity. Removal of unpaved forest roads has the potential for increasing carbon storage in soils on forested terrain as treated sites revegetate and soil properties improve on the previously compacted road surfaces. We compared soil organic carbon (SOC) content at several depths on treated roads to SOC in adjacent second-growth forests and old-growth redwood forests in California, determined whether SOC in the upper 50 cm of soil varies with the type of road treatment, and assessed the relative importance of site-scale and landscape-scale variables in predicting SOC accumulation in treated road prisms and second-growth redwood forests. Soils were sampled at 5, 20, and 50 cm depths on roads treated by two methods (decommissioning and full recontouring), and in adjacent second-growth and old-growth forests in north coastal California. Road treatments spanned a period of 32 years, and covered a range of geomorphic and vegetative conditions. SOC decreased with depth at all sites. Treated roads on convex sites exhibited higher SOC than on concave sites, and north aspect sites had higher SOC than south aspect sites. SOC at 5, 20, and 50 cm depths did not differ significantly between decommissioned roads (treated 18–32 years previous) and fully recontoured roads (treated 2–12 years previous). Nevertheless, stepwise multiple regression models project higher SOC developing on fully recontoured roads in the next few decades. The best predictors for SOC on treated roads and in second-growth forest incorporated aspect, vegetation type, soil depth, lithology, distance from the ocean, years since road treatment (for the road model) and years since harvest (for the forest model). The road model explained 48% of the variation in SOC in the upper 50 cm of mineral soils and the forest model, 54%

  20. The prospects for coal-fired power plants with carbon capture and storage: A UK perspective

    International Nuclear Information System (INIS)

    Highlights: • Currently available and novel CCS technologies for coal-fired power plants are evaluated. • Energy and carbon analyses are made for coal-fired power stations with and without CCS. • Estimates of life-cycle CO2 emissions from these CCS plants have been made. • Cost estimates of coal-fired power stations with and without CCS are reported. • Recent UK industry-led estimates of comparable CCS cost reductions are also reported. - Abstract: Carbon capture and storage (CCS) facilities coupled to coal-fired power plants provide a climate change mitigation strategy that potentially permits the continued use of fossil fuels whilst reducing the carbon dioxide (CO2) emissions. Potential design routes for the capture, transport and storage of CO2 from United Kingdom (UK) power plants are examined. Energy and carbon analyses were performed on coal-fired power stations with and without CCS. Both currently available and novel CCS technologies are evaluated. Due to lower operating efficiencies, the CCS plants showed a longer energy payback period and a lower energy gain ratio than conventional plant. Cost estimates are reported in the context of recent UK industry-led attempts to determine opportunities for cost reductions across the whole CCS chain, alongside international endeavours to devise common CCS cost estimation methods. These cost figures should be viewed as ‘indicative’ or suggestive. They are nevertheless helpful to various CCS stakeholder groups [such as those in industry, policy makers (civil servants and the staff of various government agencies), and civil society and environmental ‘non-governmental organisations’ (NGOs)] in order to enable them to assess the role of this technology in national energy strategies and its impact on local communities

  1. Carbon storage of artificial forests in rehabilitated lands in the upper reaches of the Yellow River

    Institute of Scientific and Technical Information of China (English)

    HU Jianzhong

    2006-01-01

    We studied 10- to 27-year-old artificial forests on rehabilitated lands in the upper reaches of the Yellow River with the objective of comparing the carbon densities of various artificial and natural forests.Under artificial plantations,the vegetation layer (including roots) had a mean carbon density of 111.3 t/hm2,the litter layer a density of 5.1 t/hm2,and the soil layer a density of 64.9 t/hm2.These values accounted for 28.6%,13.8%,and 61.0% of their respective counterparts in the natural secondary forests under the same site conditions in the region.The ratios of carbon density among vegetation,litter,and soil pools were 39.6:1.8:58.6 for artificial forests and 57.4:2.7:39.9 for natural forests.The carbon densities of the vegetation and litter layers increased exponentially with forest age.The total carbon density ratios were also increasing gradually.Although the mean total carbon density of the artificial forests in the rehabilitated lands was 281.2 t/hm2 in the experimental area,it accounted for only 41.5% of the carbon density of the natural secondary forests (677.4 t/hm2).The annual increase in total carbon density of artificial forests was as high as 15.2 t/hm2,which was 11.7% more than that of natural forests and 6.8 times higher than that (1.95 t/hm) of artificial forests in the entire country as measured during 1994-1998.This indicates that growth and carbon storage capacity of artificial forests in the rehabilitated lands were higher than those of forests on the barren hills and the secondary forests.We concluded that the conversion project from croplands to forests and grasslands based on scientific principles is very important in the formation of carbon sinks for reducing greenhouse effects.

  2. Divergent predictions of carbon storage between two global land models: attribution of the causes through traceability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra; Asrar, Ghassem R.; Wang, Yingping; Luo, Yiqi

    2015-08-27

    Representations of the terrestrial carbon cycle in land models are becoming increasingly complex. It is crucial to develop approaches for critical assessment of the complex model properties in order to understand key factors contributing to models’ performance. In this study, we applied a traceability analysis, which decomposes carbon cycle models into traceable components, to two global land models (CABLE and CLM-CASA’) to diagnose the causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, the CLM-CASA’ model predicted ~31% larger carbon storage capacity than the CABLE model. Since ecosystem carbon storage capacity is a product of net primary productivity (NPP) and ecosystem residence time (τE), the predicted difference in the storage capacity between the two models results from differences in either NPP or τE or both. Our analysis showed that CLM-CASA’ simulated 37% higher NPP than CABLE due to higher rates of carboxylation (Vcmax) in CLM-CASA’. On the other hand, τE , which was a function the baseline carbon residence time (τ´E) and environmental effect on carbon residence time, was on average 11 years longer in CABLE than CLM-CASA’. The difference in τE was mainly found to be caused by longer τ´E in CABLE than CLM-CASA’. This difference in τE was mainly caused by longer τ´E of woody biomass (23 vs. 14 years in CLM-CASA’) and higher proportion of NPP allocated to woody biomass (23% vs. 16%). Differences in environmental effects on carbon residence times had smaller influences on differences in ecosystem carbon storage capacities compared to differences in NPP and τ´E. Overall; the traceability analysis is an effective method for identifying sources of variations between the two models.

  3. Carbon, nitrogen, and phosphorus storage in alpine grassland ecosystems of Tibet: effects of grazing exclusion.

    Science.gov (United States)

    Lu, Xuyang; Yan, Yan; Sun, Jian; Zhang, Xiaoke; Chen, Youchao; Wang, Xiaodan; Cheng, Genwei

    2015-10-01

    In recent decades, alpine grasslands have been seriously degraded on the Tibetan Plateau and grazing exclusion by fencing has been widely adopted to restore degraded grasslands since 2004. To elucidate how alpine grasslands carbon (C), nitrogen (N), and phosphorus (P) storage responds to this management strategy, three types of alpine grassland in nine counties in Tibet were selected to investigate C, N, and P storage in the environment by comparing free grazing (FG) and grazing exclusion (GE) treatments, which had run for 6-8 years. The results revealed that there were no significant differences in total ecosystem C, N, and P storage, as well as the C, N, and P stored in both total biomass and soil (0-30 cm) fractions between FG and GE grasslands. However, precipitation played a key role in controlling C, N, and P storage and distribution. With grazing exclusion, C and N stored in aboveground biomass significantly increased by 5.7 g m(-2) and 0.1 g m(-2), respectively, whereas the C and P stored in the soil surface layer (0-15 cm) significantly decreased by 862.9 g m(-2) and 13.6 g m(-2), respectively. Furthermore, the storage of the aboveground biomass C, N, and P was positively correlated with vegetation cover and negatively correlated with the biodiversity index, including Pielou evenness index, Shannon-Wiener diversity index, and Simpson dominance index. The storage of soil surface layer C, N, and P was positively correlated with soil silt content and negatively correlated with soil sand content. Our results demonstrated that grazing exclusion had no impact on total C, N, and P storage, as well as C, N, and P in both total biomass and soil (0-30 cm) fractions in the alpine grassland ecosystem. However, grazing exclusion could result in increased aboveground biomass C and N pools and decreased soil surface layer (0-15 cm) C and P pools. PMID:26664694

  4. Carbon Sequestration and Carbon Capture and Storage (CCS) in Southeast Asia

    Science.gov (United States)

    Hisyamudin Muhd Nor, Nik; Norhana Selamat, Siti; Hanif Abd Rashid, Muhammad; Fauzi Ahmad, Mohd; Jamian, Saifulnizan; Chee Kiong, Sia; Fahrul Hassan, Mohd; Mohamad, Fariza; Yokoyama, Seiji

    2016-06-01

    Southeast Asia is a standout amongst the most presented districts to unnatural weather change dangers even they are not principle worldwide carbon dioxide (CO2) maker, its discharge will get to be significant if there is no move made. CO2 wellsprings of Southeast Asia are mainly by fossil fuel through era of power and warmth generation, and also transportation part. The endeavors taken by these nations can be ordered into administrative and local level. This paper review the potential for carbon catch and capacity (CCS) as a part of the environmental change moderation system for the Malaysian power area utilizing an innovation appraisal structure. The country's recorded pattern of high dependence on fossil fuel for its power segment makes it a prime possibility for CCS reception. This issue leads to gradual increment of CO2 emission. It is evident from this evaluation that CCS can possibly assume a vital part in Malaysia's environmental change moderation methodology gave that key criteria are fulfilled. With the reason to pick up considerations from all gatherings into the earnestness of an Earth-wide temperature boost issue in Southeast Asia, assume that more efficient measures can be taken to effectively accomplish CO2 diminishment target.

  5. Decomposition and carbon storage of hardwood and softwood branches in laboratory-scale landfills.

    Science.gov (United States)

    Wang, Xiaoming; Barlaz, Morton A

    2016-07-01

    Tree branches are an important component of yard waste disposed in U.S. municipal solid waste (MSW) landfills. The objective of this study was to characterize the anaerobic biodegradability of hardwood (HW) and softwood (SW) branches under simulated but optimized landfill conditions by measuring methane (CH4) yields, decay rates, the decomposition of cellulose, hemicellulose and organic carbon, as well as carbon storage factors (CSFs). Carbon conversions to CH4 and CO2 ranged from zero to 9.5% for SWs and 17.1 to 28.5% for HWs. When lipophilic or hydrophilic compounds present in some of the HW and SW samples were extracted, some samples showed increased biochemical methane potentials (BMPs). The average CH4 yield, carbon conversion, and CSF measured here, 59.4mLCH4g(-1) dry material, 13.9%, and 0.39gcarbonstoredg(-1) dry material, respectively, represent reasonable values for use in greenhouse gas inventories in the absence of detailed wood type/species data for landfilled yard waste. PMID:27016683

  6. Low pressure storage of methane on interlayered clays for potential vehicular applications. [Comparison with activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Innes, R.A.; Lutinski, F.E.; Occelli, M.L.; Kennedy, J.V.

    1984-07-01

    Inexpensive, high surface area sorbents were prepared by treating naturally occurring hectorite and bentonite clays with aluminum chlorohydroxide, zirconium chlorohydroxide, or silica-sol solutions. Data were obtained comparing these interlayered clays with activated carbons and zeolites as sorbents for the low pressure storage of methane onboard natural gas powered vehicles. Methane sorption at pressures up to 7 MPa (1000 psig) resembled a Langmuir-type curve with a saturation sorption equal to about six micromoles of methane per square meter of surface area. Even at low pressures, methane sorption capacity was largely determined by surface area. At 2.2 MPa (300 psig), the best interlayered clay sorbed less than one-third the methane sorbed by an equal volume of Witco grade 9JXC activated carbon. Both the activated carbons and interlayered clays exhibited excellent release-on-demand capability. Driving ranges were calculated for a 2500-lb automobile equipped with three, 35-liter fuel tanks filled with sorbent and pressurized to 3.6 MPa (500 psig) with methane. Enough methane was stored with the best interlayered clay to travel 41 km (25 mi). With 9JXC carbon, one could travel 82 km (51 mi). The same vehicle equipped with high pressure (2400 psig) fuel tanks having the same volume but containing no sorbent would have a 190 km (118 mi) range.

  7. Title: Flushed Away: Linking Carbon Storage and Log Jams in Colorado's Front Range

    Science.gov (United States)

    Beckman, N. D.; Wohl, E. E.

    2011-12-01

    Historical documents and recent field studies suggest that resource use within the Colorado Rockies during the past two centuries has reduced the wood loads and frequency of wood jams along most forested streams. Recent research has also shown that streams play a significant role in the sequestration and transport of organic carbon, and wood jams are a key component of storage and biological processing in mountain headwater streams. Log jams tend to slow the transport of carbon and encourage its uptake in the riverine environment and therefore may have effects which extend beyond streams and into the global carbon cycle. The paper aims to quantify the effects of past and present resource management on instream wood loads and logjam frequency along Colorado's Front Range. We hypothesize that more highly impacted reaches (as measured by recent fire, logging, and high flow regulation) will demonstrate lower wood loads, lower jam densities and lower overall volume of stored sediment. In addition, we hypothesize that soils stored behind log jams will have a higher OM and TC content. If these hypothesis hold true, then by implication areas with younger forests and higher impacts will have higher carbon flux and lower return of carbon and nutrients to the surrounding ecosystem. Wood loads and jam frequency are compared based on stream characteristics, forest age, and flow alteration. In addition, sediment samples from reaches with and without log jams are compared based on organic matter (OM) content and Total Carbon (TC) content. Samples taken from behind log jams are compared to samples taken from other backwater areas along a river reach. Preliminary results of the 2010/2011 field seasons indicate that sediment samples taken from log jams (regardless of forest age) have an overall average of 5% OM, as compared to an average of 1% OM in samples taken from non-jam areas. Samples taken from log jams on streams draining old growth forests (more than 250 years since last

  8. Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers

    International Nuclear Information System (INIS)

    Coal power coupled with Carbon [Dioxide] Capture and Storage (CCS), and Concentrating Solar Power (CSP) technologies are often included in the portfolio of climate change mitigation options intended to decarbonize electricity systems. Both of these technologies can provide baseload electricity, are in early stages of maturity, and have benefits, costs, and obstacles. We compare and contrast CCS applied to coal-fired power plants with CSP. At present, both technologies are more expensive than existing electricity-generating options, but costs should decrease with large-scale deployment, especially in the case of CSP. For CCS, technological challenges still remain, storage risks must be clarified, and regulatory and legal uncertainties remain. For CSP, current challenges include electricity transmission and business models for a rapid and extensive expansion of high-voltage transmission lines. The need for international cooperation may impede CSP expansion in Europe. Highlights: ► Both technologies could provide low-carbon base load power. ► Both technologies require new networks, for either CO2 or power transmission. ► CSP is closer to being a viable technology ready for pervasive diffusion. ► The costs associated with market saturation would be lower for CSP. ► The regulatory changes required for CSP diffusion are somewhat greater than for CCS.

  9. Simulation of heat and mass transfer in activated carbon tank for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jinsheng [School of Automotive Engineering, Wuhan University of Technology, Hubei 430070 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Progressing, Wuhan University of Technology, Hubei 430070 (China); Hydrogen Research Institute, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, QC G9A 5H7 (Canada); Tong, Liang [School of Automotive Engineering, Wuhan University of Technology, Hubei 430070 (China); Department of Mechanical and Automotive Engineering, Huaxia College, Wuhan University of Technology, Hubei 430070 (China); Deng, Caihua [School of Automotive Engineering, Wuhan University of Technology, Hubei 430070 (China); Benard, Pierre; Chahine, Richard [Hydrogen Research Institute, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, QC G9A 5H7 (Canada)

    2010-08-15

    The charging process of hydrogen storage tank based on bed of activated carbon in a steel container at room temperature (295 K) and medium storage pressure (10 MPa) is simulated with an axisymmetric geometry model using the finite volume commercial solver Fluent. The mass flux profile at the entrance is established using user-defined functions (UDFs). The heat and mass transfer processes in the cylindrical steel tank packed with activated carbon are discussed considering the influence of viscous resistance and inertial resistance of the porous media. The velocity distribution and its effect on the temperature distribution are analyzed. The effects of the flow rate at the inlet and of the adsorption factor on the charging process are studied. A computational fluid dynamics (CFD) approach based on finite volume simulations is used. Results show that the temperature near the bottom of the tank is higher than that at the entrance, temperature in the center of the tank is higher than that near the wall and rises somewhat faster along the axial compared to the radial direction. The highest hydrogen absolute adsorption occurs at the entrance of the tank. A good agreement is found between the simulation results and the available experimental data. The maximum magnitude of the axial velocity is much higher than that of the radial component, resulting in more heat energy transfer along the axial direction than radial direction. In addition, the pressure reaches equilibrium earlier when the mass flow is higher, and the temperature reaches a maximum value faster. (author)

  10. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    Directory of Open Access Journals (Sweden)

    Zeyuan eCao

    2015-05-01

    Full Text Available Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni/single-walled carbon nanotube (SWNT macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  11. Carbon storage change in a partially forestry-drained boreal mire determined through peat column inventories

    Energy Technology Data Exchange (ETDEWEB)

    Pitkanen, A.; Tahvanainen, T.; Simola, H. [Univ. of Eastern Finland, Joensuu (Finland). Dept. pf Biology; Turunen, J. [Geological Survey of Finland, Kuopio (Finland)

    2013-09-01

    To study the impact of forestry drainage on peat carbon storage, we cored paired quantitative peat samples from undrained and drained sides of an eccentric bog. Five pairs of 0 to {<=} 100-cm-deep surface-peat cores, and a pair of profiles representing the full peat deposit provided stratigraphic evidence of marked loss of surface peat due to drainage. For the drained side cores, we found a relative subsidence of 25-37 cm of the surface, and a loss of about 10 kg{sub DW}{sup m-2}, corresponding to 131 {+-} 28 g C m{sup -2} a{sup -1} (mean {+-} SE) for the post-drainage period. Similar peat loss was also found in the full deposit profiles, thus lending credibility to the whole-column inventory approach, even though the decrease (9 kg{sub DW} m{sup -2}) was relatively small in comparison with the total carbon storage (233 and 224 kg{sub DW} m{sup -2} for the undrained and drained sides, respectively). (orig.)

  12. Inherent Tracers for Carbon Capture and Storage in Sedimentary Formations: Composition and Applications.

    Science.gov (United States)

    Flude, Stephanie; Johnson, Gareth; Gilfillan, Stuart M V; Haszeldine, R Stuart

    2016-08-01

    Inherent tracers-the "natural" isotopic and trace gas composition of captured CO2 streams-are potentially powerful tracers for use in CCS technology. This review outlines for the first time the expected carbon isotope and noble gas compositions of captured CO2 streams from a range of feedstocks, CO2-generating processes, and carbon capture techniques. The C-isotope composition of captured CO2 will be most strongly controlled by the feedstock, but significant isotope fractionation is possible during capture; noble gas concentrations will be controlled by the capture technique employed. Comparison with likely baseline data suggests that CO2 generated from fossil fuel feedstocks will often have δ(13)C distinguishable from storage reservoir CO2. Noble gases in amine-captured CO2 streams are likely to be low concentration, with isotopic ratios dependent on the feedstock, but CO2 captured from oxyfuel plants may be strongly enriched in Kr and Xe which are potentially valuable subsurface tracers. CO2 streams derived from fossil fuels will have noble gas isotope ratios reflecting a radiogenic component that will be difficult to distinguish in the storage reservoir, but inheritance of radiogenic components will provide an easily recognizable signature in the case of any unplanned migration into shallow aquifers or to the surface. PMID:27379462

  13. Technology roadmap study on carbon capture, utilization and storage in China

    International Nuclear Information System (INIS)

    Carbon capture, utilization and storage (CCUS) technology will likely become an important approach to reduce carbon dioxide (CO2) emissions and optimize the structure of energy consumption in China in the future. In order to provide guidance and recommendations for CCUS Research, Development and Demonstration in China, a high level stakeholder workshop was held in Chongqing in June 2011 to develop a technology roadmap for the development of CCUS technology. This roadmap outlines the overall vision to provide technically viable and economically affordable technological options to combat climate change and facilitate socio-economic development in China. Based on this vision, milestone goals from 2010 to 2030 are set out in accordance with the technology development environment and current status in China. This study identifies the critical technologies in capture, transport, utilization and storage of CO2 and proposes technical priorities in the different stages of each technical aspect by evaluating indices such as the objective contribution rate and technical maturity, and gives recommendations on deployment of full-chain CCUS demonstration projects. Policies which would support CCUS are also suggested in this study. - Highlights: • A technology roadmap for CCUS development in China from 2010 to 2030 is presented. • Sound data and analysis in combination with expert workshops are used. • Critical technologies in CCUS are identified. • Priority actions of all stages are identified and proposed. • Guidance and recommendations for CCUS RD and D are provided

  14. High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles.

    Science.gov (United States)

    Aboutalebi, Seyed Hamed; Jalili, Rouhollah; Esrafilzadeh, Dorna; Salari, Maryam; Gholamvand, Zahra; Aminorroaya Yamini, Sima; Konstantinov, Konstantin; Shepherd, Roderick L; Chen, Jun; Moulton, Simon E; Innis, Peter Charles; Minett, Andrew I; Razal, Joselito M; Wallace, Gordon G

    2014-03-25

    The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young's modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature. PMID:24517282

  15. Surface Soil Carbon Storage in Urban Green Spaces in Three Major South Korean Cities

    Directory of Open Access Journals (Sweden)

    Tae Kyung Yoon

    2016-05-01

    Full Text Available Quantifying and managing carbon (C storage in urban green space (UGS soils is associated with the ecosystem services necessary for human well-being and the national C inventory report of the Intergovernmental Panel on Climate Change (IPCC. Here, the soil C stocks at 30-cm depths in different types of UGS’s (roadside, park, school forest, and riverside were studied in three major South Korean cities that have experienced recent, rapid development. The total C of 666 soil samples was analyzed, and these results were combined with the available UGS inventory data. Overall, the mean soil bulk density, C concentration, and C density at 30-cm depths were 1.22 g·cm−3, 7.31 g·C·kg−1, and 2.13 kg·C·m−2, respectively. The UGS soil C stock (Gg·C at 30-cm depths was 105.6 for Seoul, 43.6 for Daegu, and 26.4 for Daejeon. The lower C storage of Korean UGS soils than those of other countries is due to the low soil C concentration and the smaller land area under UGS. Strategic management practices that augment the organic matter supply in soil are expected to enhance C storage in South Korean UGS soils.

  16. Carbon Storage Patterns of Caragana korshinskii in Areas of Reduced Environmental Moisture on the Loess Plateau, China.

    Science.gov (United States)

    Gong, Chunmei; Bai, Juan; Wang, Junhui; Zhou, Yulu; Kang, Tai; Wang, Jiajia; Hu, Congxia; Guo, Hongbo; Chen, Peilei; Xie, Pei; Li, Yuanfeng

    2016-01-01

    Precipitation patterns are influenced by climate change and profoundly alter the carbon sequestration potential of ecosystems. Carbon uptake by shrubbery alone accounts for approximately one-third of the total carbon sink; however, whether such uptake is altered by reduced precipitation is unclear. In this study, five experimental sites characterised by gradual reductions in precipitation from south to north across the Loess Plateau were used to evaluate the Caragana korshinskii's functional and physiological features, particularly its carbon fixation capacity, as well as the relationships among these features. We found the improved net CO2 assimilation rates and inhibited transpiration at the north leaf were caused by lower canopy stomatal conductance, which enhanced the instantaneous water use efficiency and promoted plant biomass as well as carbon accumulation. Regional-scale precipitation reductions over a certain range triggered a distinct increase in the shrub's organic carbon storage with an inevitable decrease in the soil's organic carbon storage. Our results confirm C. korshinskii is the optimal dominant species for the reconstruction of fragile dryland ecosystems. The patterns of organic carbon storage associated with this shrub occurred mostly in the soil at wetter sites, and in the branches and leaves at drier sites across the arid and semi-arid region. PMID:27412432

  17. Carbon Storage Patterns of Caragana korshinskii in Areas of Reduced Environmental Moisture on the Loess Plateau, China

    Science.gov (United States)

    Gong, Chunmei; Bai, Juan; Wang, Junhui; Zhou, Yulu; Kang, Tai; Wang, Jiajia; Hu, Congxia; Guo, Hongbo; Chen, Peilei; Xie, Pei; Li, Yuanfeng

    2016-07-01

    Precipitation patterns are influenced by climate change and profoundly alter the carbon sequestration potential of ecosystems. Carbon uptake by shrubbery alone accounts for approximately one-third of the total carbon sink; however, whether such uptake is altered by reduced precipitation is unclear. In this study, five experimental sites characterised by gradual reductions in precipitation from south to north across the Loess Plateau were used to evaluate the Caragana korshinskii’s functional and physiological features, particularly its carbon fixation capacity, as well as the relationships among these features. We found the improved net CO2 assimilation rates and inhibited transpiration at the north leaf were caused by lower canopy stomatal conductance, which enhanced the instantaneous water use efficiency and promoted plant biomass as well as carbon accumulation. Regional-scale precipitation reductions over a certain range triggered a distinct increase in the shrub’s organic carbon storage with an inevitable decrease in the soil’s organic carbon storage. Our results confirm C. korshinskii is the optimal dominant species for the reconstruction of fragile dryland ecosystems. The patterns of organic carbon storage associated with this shrub occurred mostly in the soil at wetter sites, and in the branches and leaves at drier sites across the arid and semi-arid region.

  18. CarbFix I: Rapid CO2 mineralization in basalt for permanent carbon storage

    Science.gov (United States)

    Matter, J. M.; Stute, M.; Snæbjörnsdóttir, S.; Gíslason, S. R.; Oelkers, E. H.; Sigfússon, B.; Gunnarsson, I.; Aradottir, E. S.; Gunnlaugsson, E.; Broecker, W. S.

    2015-12-01

    Carbon dioxide mineralization via CO2-fluid-rock reactions provides the most permanent solution for geologic CO2 storage. Basalts, onshore or offshore, have the potential to store million metric tons of CO2 as (Ca, Mg, Fe) carbonates [1, 2]. However, as of today it was unclear how fast CO2 is converted to carbonate minerals in-situ in a basalt storage reservoir. The CarbFix I project in Iceland was designed to verify in-situ CO2 mineralization in basaltic rocks. Two injection tests were performed at the CarbFix I pilot injection site near the Hellisheidi geothermal power plant in 2012. 175 tons of pure CO2 and 73 tons of a CO2+H2S mixture were injection from January to March 2012 and in June 2013, respectively. The gases were injected fully dissolved in groundwater into a permeable basalt formation between 400 and 800 m depth using a novel CO2 injection system. Using conservative (SF6, SF5CF3) and reactive (14C) tracers, we quantitatively monitor and detect dissolved and chemically transformed CO2. Tracer breakthrough curves obtained from the first monitoring well indicate that the injected solution arrived in a fast short pulse and a late broad peak. Ratios of 14C/SF6, 14C/SF5CF3 or DIC/SF6 and DIC/SF5CF3 are significantly lower in the monitoring well compared to the injection well, indicating that the injected dissolved CO2 reacted. Mass balance calculations using the tracer data reveal that >95% of the injected CO2 has been mineralized over a period of two years. Evidence of carbonate precipitation has been found in core samples that were collected from the storage reservoir using wireline core drilling as well as in and on the submersible pump in the monitoring well. Results from the core analysis will be presented with emphasis on the CO2 mineralization. [1] McGrail et al. (2006) JGR 111, B12201; [2] Goldberg et al. (2008) PNAS 105(29), 9920-9925.

  19. The role of stakeholders in developing an international regulatory framework for carbon capture and storage

    Science.gov (United States)

    Augustin, C. M.; Broad, K.; Swart, P. K.

    2011-12-01

    It is estimated that carbon capture and storage (CCS) could be used to achieve between 15% and 55% of the carbon emission reductions necessary to avoid dangerous levels of climate change. It is also believed that achieving emission reduction goals will be less costly with CCS than without it. The expansion of active CCS sites over the past decade, from three to 53 demonstrates the value that industry sees in CCS as a transition technology for governments seeking to reduce their CO2 emissions. However, to continue developing CCS for industry scale implementation, it is essential to provide the regulatory certainty needed to foster energy industry wide adoption of CCS. Existing CCS regulatory regimes are inadequate, fragmented and contradictory. There is a need for comprehensive, unifying regulations for CCS that are flexible enough to adapt as the technology develops. Governments are limited by the fact that carbon capture and storage is a multidisciplinary issue that touches on the fields of oil drilling, groundwater quality, greenhouse gas management, air quality, and risk management. Though it is in part a technological, environmental and management issue there is also a complex political element to tackling the CCS problem. Due to its cross-cutting nature, CCS regulations should be based off the best practices and standards developed by industry stakeholders. Industry standards are stakeholder developed and consensus based, created through a democratic and collaborative process by bodies such as the International Standards Organization, the National Institutes of Standards and Testing (USA), ASTM International, and the Canadian Standards Organization. Standards can typically be broken down into six general categories: test methods, specifications, classifications, practices, guides, and terminology. These standards are created by stakeholders across the industry and across geographic boundaries to create an trade-wide, rather than nationwide, consensus and

  20. PDF Weaving - Linking Inventory Data and Monte Carlo Uncertainty Analysis in the Study of how Disturbance Affects Forest Carbon Storage

    Science.gov (United States)

    Healey, S. P.; Patterson, P.; Garrard, C.

    2014-12-01

    Altered disturbance regimes are likely a primary mechanism by which a changing climate will affect storage of carbon in forested ecosystems. Accordingly, the National Forest System (NFS) has been mandated to assess the role of disturbance (harvests, fires, insects, etc.) on carbon storage in each of its planning units. We have developed a process which combines 1990-era maps of forest structure and composition with high-quality maps of subsequent disturbance type and magnitude to track the impact of disturbance on carbon storage. This process, called the Forest Carbon Management Framework (ForCaMF), uses the maps to apply empirically calibrated carbon dynamics built into a widely used management tool, the Forest Vegetation Simulator (FVS). While ForCaMF offers locally specific insights into the effect of historical or hypothetical disturbance trends on carbon storage, its dependence upon the interaction of several maps and a carbon model poses a complex challenge in terms of tracking uncertainty. Monte Carlo analysis is an attractive option for tracking the combined effects of error in several constituent inputs as they impact overall uncertainty. Monte Carlo methods iteratively simulate alternative values for each input and quantify how much outputs vary as a result. Variation of each input is controlled by a Probability Density Function (PDF). We introduce a technique called "PDF Weaving," which constructs PDFs that ensure that simulated uncertainty precisely aligns with uncertainty estimates that can be derived from inventory data. This hard link with inventory data (derived in this case from FIA - the US Forest Service Forest Inventory and Analysis program) both provides empirical calibration and establishes consistency with other types of assessments (e.g., habitat and water) for which NFS depends upon FIA data. Results from the NFS Northern Region will be used to illustrate PDF weaving and insights gained from ForCaMF about the role of disturbance in carbon

  1. An Optimization Scheduling Model for Wind Power and Thermal Power with Energy Storage System considering Carbon Emission Trading

    Directory of Open Access Journals (Sweden)

    Huan-huan Li

    2015-01-01

    Full Text Available Wind power has the characteristics of randomness and intermittence, which influences power system safety and stable operation. To alleviate the effect of wind power grid connection and improve power system’s wind power consumptive capability, this paper took emission trading and energy storage system into consideration and built an optimization model for thermal-wind power system and energy storage systems collaborative scheduling. A simulation based on 10 thermal units and wind farms with 2800 MW installed capacity verified the correctness of the models put forward by this paper. According to the simulation results, the introduction of carbon emission trading can improve wind power consumptive capability and cut down the average coal consumption per unit of power. The introduction of energy storage system can smooth wind power output curve and suppress power fluctuations. The optimization effects achieve the best when both of carbon emission trading and energy storage system work at the same time.

  2. Geologic framework for the national assessment of carbon dioxide storage resources

    Science.gov (United States)

    2012-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) and to consult with other Federal and State agencies to locate the pertinent geological data needed for the assessment. The geologic sequestration of CO2 is one possible way to mitigate its effects on climate change. The methodology used for the national CO2 assessment (Open-File Report 2010-1127; http://pubs.usgs.gov/of/2010/1127/) is based on previous USGS probabilistic oil and gas assessment methodologies. The methodology is non-economic and intended to be used at regional to subbasinal scales. The operational unit of the assessment is a storage assessment unit (SAU), composed of a porous storage formation with fluid flow and an overlying sealing unit with low permeability. Assessments are conducted at the SAU level and are aggregated to basinal and regional results. This report identifies and contains geologic descriptions of SAUs in separate packages of sedimentary rocks within the assessed basin and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage

  3. Estimating Carbon Storage of a Temperate North American Forest with Terrestrial Laser Scanning (TLS)

    Science.gov (United States)

    Stovall, A. E.; Shugart, H. H.

    2013-12-01

    Secondary forests in North America act as one of the largest active carbon sinks in the world, yet current estimates of forest biomass are widely varied when based on allometric equations alone. Remote sensing data such as LIDAR offers an excellent method of quantifying biomass, but information on structural heterogeneity is often lost, even with postings of approximately 0.5 meters. In order to inform estimates of biomass and carbon storage the use of a high-precision Terrestrial Laser Scanner (TLS) can be employed and three-dimensional structure of the forest can be resolved with sub-centimeter accuracy, improving current allometric equations. This technology is utilized on 16 15-meter radius plots within the temperate forest of the Smithsonian Conservation Biology Institute outside of Front Royal, VA with a Faro Focus 3D. A stem map of this forest has recently been created, allowing a direct comparison between manual measurement methods and TLS. Standard measurements such as DBH, tree height, and basal area can then quickly be calculated within the three-dimensional point cloud. A DEM at the plot scale is developed with the point cloud data and the structure of the forest can be resolved. Volumetric calculations can be used to determine biomass at the plot level, a fine-scale variable that is otherwise not obtainable without destruction of the sample. The calculation of biomass will inform current estimates of carbon storage that have been made with course 30 m resolution data (i.e. Landsat). Canopy and understory structure can be analyzed with these methods, helping inform current knowledge of habitat suitability and complexity.

  4. Carbon capture and storage: a novel technique for reducing greenhouse gas emissions regulated by the European Union

    Directory of Open Access Journals (Sweden)

    Íñigo Sanz Rubiles

    2013-12-01

    Full Text Available This article deals with main aspects of a novel technique for carbon dioxide capture and storage released by large combustion plants. Since this novel technique has become essential for reducing greenhouse gas emissions, it has been regulated by the European Union through the Directive number 2009/31. Therefore, acknowledging relevant legal aspects for regulation, suchas: mandatory, exploration permits, storage among others, the focus has been pointed out on responsibilities and guarantees regime.

  5. Hybrid Multi-Walled Carbon Nanotube TiO2 Electrode Material for Next Generation Energy Storage Devices

    OpenAIRE

    Marler, Sydney

    2016-01-01

    Current supercapacitors present several distinct limitations that severely inhibit the efficiency, power, and electrical capacitance of energy storage devices. Supercapacitors present an exciting prospect that has countless applications in renewable energy storage and modern day electronic devices. In recent years the exciting development of carbon nanotubes (CNTs) has presented an advantage in electrode development. CNTs, however beneficial for their increased electrode surface area, have se...

  6. Decomposition and carbon storage of selected paper products in laboratory-scale landfills

    International Nuclear Information System (INIS)

    The objective of this study was to measure the anaerobic biodegradation of different types of paper products in laboratory-scale landfill reactors. The study included (a) measurement of the loss of cellulose, hemicellulose, organic carbon, and (b) measurement of the methane yields for each paper product. The test materials included two samples each of newsprint (NP), copy paper (CP), and magazine paper (MG), and one sample of diaper (DP). The methane yields, carbon storage factors and the extent of cellulose and hemicellulose decomposition all consistently show that papers made from mechanical pulps (e.g., NPs) are less degradable than those made from chemical pulps where essentially all lignin was chemically removed (e.g., CPs). The diaper, which is not only made from chemical pulp but also contains some gel and plastic, exhibited limited biodegradability. The extent of biogenic carbon conversion varied from 21 to 96% among papers, which contrasts with the uniform assumption of 50% by the Intergovernmental Panel on Climate Change (IPCC) for all degradable materials discarded in landfills. Biochemical methane potential tests also showed that the solids to liquid ratio used in the test can influence the results. - Highlights: • Decomposition of major paper products measured under simulated landfill conditions • Varied decomposition behaviors across paper types governed by pulp types • A copy paper made from eucalyptus exhibited inhibited decomposition

  7. Hydrothermally Oxidized Single-Walled Carbon Nanotube Networks for High Volumetric Electrochemical Energy Storage.

    Science.gov (United States)

    Liu, Tianyuan; Davijani, Amir A Bakhtiary; Sun, Jingying; Chen, Shuo; Kumar, Satish; Lee, Seung Woo

    2016-07-01

    Improving volumetric energy density is one of the major challenges in nanostructured carbon electrodes for electrochemical energy storage device applications. Herein, a simple hydrothermal oxidation process of single-walled carbon nanotube (SWNT) networks in dilute nitric acid is reported, enabling simultaneous physical densification and chemical functionalization of the as-assembled randomly-packed SWNT films. After the hydrothermal oxidation process, the density of the SWNT films increases from 0.63 to 1.02 g cm(-3) and a considerable amount of redox-active oxygen functional groups are introduced on the surface of the SWNTs. The functionalized SWNT films are used as positive electrodes against Li metal negative electrodes for potential Li-ion capacitors or Li-ion battery applications. The functionalized SWNT electrodes deliver high volumetric as well as gravimetric capacities, 154 Ah L(-1) and 152 mAh g(-1) , respectively, owing to the surface redox reactions between the introduced oxygen functional groups and Li ions. In addition, these electrodes exhibit a remarkable rate-capability by retaining its high capacity of 94 Ah L(-1) (92 mAh g(-1) ) at a high discharge rate of 10 A g(-1) . These results demonstrate the simple hydrothermal oxidation process as an attractive strategy for improving the volumetric performance of nanostructured carbon electrodes. PMID:27200509

  8. Decomposition and carbon storage of selected paper products in laboratory-scale landfills

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoming, E-mail: wangxiaoming_cqu@163.com [Key Laboratory of Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, National Center for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing (China); Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); De la Cruz, Florentino B. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Ximenes, Fabiano [Department of Primary Industries, New South Wales (Australia); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2015-11-01

    The objective of this study was to measure the anaerobic biodegradation of different types of paper products in laboratory-scale landfill reactors. The study included (a) measurement of the loss of cellulose, hemicellulose, organic carbon, and (b) measurement of the methane yields for each paper product. The test materials included two samples each of newsprint (NP), copy paper (CP), and magazine paper (MG), and one sample of diaper (DP). The methane yields, carbon storage factors and the extent of cellulose and hemicellulose decomposition all consistently show that papers made from mechanical pulps (e.g., NPs) are less degradable than those made from chemical pulps where essentially all lignin was chemically removed (e.g., CPs). The diaper, which is not only made from chemical pulp but also contains some gel and plastic, exhibited limited biodegradability. The extent of biogenic carbon conversion varied from 21 to 96% among papers, which contrasts with the uniform assumption of 50% by the Intergovernmental Panel on Climate Change (IPCC) for all degradable materials discarded in landfills. Biochemical methane potential tests also showed that the solids to liquid ratio used in the test can influence the results. - Highlights: • Decomposition of major paper products measured under simulated landfill conditions • Varied decomposition behaviors across paper types governed by pulp types • A copy paper made from eucalyptus exhibited inhibited decomposition.

  9. Effect of ultrasonic treatment of activated carbon on capacitive and pseudocapacitive energy storage in electrochemical supercapacitors

    Directory of Open Access Journals (Sweden)

    B.Ya. Venhryn

    2013-10-01

    Full Text Available Purpose: Use of ultrasonic radiation for improving the properties of activated carbon was the aim of this paper. Increase of density of states at Fermi level was the main factor, responsible for working characteristics of electrochemical supercapacitors. Design/methodology/approach: Working parameters of supercapacitors on the base of activated carbon have been studied by means of precisional porometry, small angle X-ray scattering, cyclic voltamerometry, electrochemical impedance spectroscopy and computer simulation methods. Findings: The possibility to effect the interface between activated carbon and electrolyte by means of ultrasonic treatment in cavitation and noncavitation regimes is proved. It is shown that ultrasonic treatment in noncavitation regimes causes the significant increase of density of states at Fermi level that results in better farad-volt dependences. Research limitations/implications: This research is a complete and accomplished work. Practical implications: Modification of electric double layer by meanans in ultrasonic treatment, proposed in this work, could be regarded as effective way to obtaine the advanced electrode materials in devices of energy generation and storage. Originality/value: This work is important for physics, material science and chemistry because it is related with new possibilities to change the mobility of charge carries in electric double layer by means of ultrasonic irradiation.

  10. Functional porous carbon-ZnO nanocomposites for high-performance biosensors and energy storage applications.

    Science.gov (United States)

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming; Veerakumar, Pitchaimani; Liu, Shang-Bin; Miyamoto, Nobuyoshi

    2016-06-28

    A one-pot synthesis method for the fabrication of biomass-derived activated carbon-zinc oxide (ZAC) nanocomposites using sugarcane bagasse as a carbon precursor and ZnCl2 as an activating agent is reported. For the first time, we used ZnCl2 as not only an activating agent and also for the synthesis of ZnO nanoparticles on the AC surface. ZAC materials with varying ZnO loading were prepared and characterized by a variety of analytical and spectroscopic techniques such as FE-SEM, FE-TEM, XRD, EA, XPS, and Raman spectroscopy. ZAC-modified glassy carbon electrodes (GCEs) were found to exhibit remarkable electrochemical properties for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) as well as hazardous pollutants such as hydrogen peroxide (H2O2) and hydrazine (N2H4) with desirable sensitivity, selectivity, and detection limits. Moreover, ZAC-modified stainless steel electrodes also showed superior performances for supercapacitor applications. The ZAC nanocomposites, which may be mass produced by the reported facile direct route from sugarcane bagasse, are not only eco-friendly but also cost-effective, and thus, are suitable as a practical platform for bio-sensing and energy storage applications. PMID:27265120

  11. Storage/Turnover rate of inorganic carbon and its dissolvable part in the profile of saline/alkaline soils.

    Directory of Open Access Journals (Sweden)

    Yugang Wang

    Full Text Available Soil inorganic carbon is the most common form of carbon in arid and semiarid regions, and has a very long turnover time. However, little is known about dissolved inorganic carbon storage and its turnover time in these soils. With 81 soil samples taken from 6 profiles in the southern Gurbantongute Desert, China, we investigated the soil inorganic carbon (SIC and the soil dissolved inorganic carbon (SDIC in whole profiles of saline and alkaline soils by analyzing their contents and ages with radiocarbon dating. The results showed that there is considerable SDIC content in SIC, and the variations of SDIC and SIC contents in the saline soil profile were much larger than that in the alkaline profile. SDIC storage accounted for more than 20% of SIC storage, indicating that more than 1/5 of the inorganic carbon in both saline and alkaline soil is not in non-leachable forms. Deep layer soil contains considerable inorganic carbon, with more than 80% of the soil carbon stored below 1 m, whether for SDIC or SIC. More importantly, SDIC ages were much younger than SIC in both saline soil and alkaline soil. The input rate of SDIC and SIC ranged from 7.58 to 29.54 g C m(-2 yr(-1 and 1.34 to 5.33 g C m(-2 yr(-1 respectively for saline soil, and from 1.43 to 4.9 g C m(-2 yr(-1 and 0.79 to 1.27 g C m(-2 yr(-1respectively for alkaline soil. The comparison of SDIC and SIC residence time showed that using soil inorganic carbon to estimate soil carbon turnover would obscure an important fraction that contributes to the modern carbon cycle: namely the shorter residence and higher input rate of SDIC. This is especially true for SDIC in deep layers of the soil profile.

  12. Hydrogen storage studies on palladium-doped carbon materials (AC, CB, CNMs) @ metal-organic framework-5.

    Science.gov (United States)

    Viditha, V; Srilatha, K; Himabindu, V

    2016-05-01

    Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities. PMID:26298339

  13. 110 Years of change in urban tree stocks and associated carbon storage.

    Science.gov (United States)

    Díaz-Porras, Daniel F; Gaston, Kevin J; Evans, Karl L

    2014-04-01

    Understanding the long-term dynamics of urban vegetation is essential in determining trends in the provision of key resources for biodiversity and ecosystem services and improving their management. Such studies are, however, extremely scarce due to the lack of suitable historical data. We use repeat historical photographs from the 1900s, 1950s, and 2010 to assess general trends in the quantity and size distributions of the tree stock in urban Sheffield and resultant aboveground carbon storage. Total tree numbers declined by a third from the 1900s to the 1950s, but increased by approximately 50% from the 1900s-2010, and by 100% from the 1950s-2010. Aboveground carbon storage in urban tree stocks had doubled by 2010 from the levels present in the 1900s and 1950s. The initial decrease occurred at a time when national and regional tree stocks were static and are likely to be driven by rebuilding following bombing of the urban area during the Second World War and by urban expansion. In 2010, trees greater than 10 m in height comprised just 8% of those present. The increases in total tree numbers are thus largely driven by smaller trees and are likely to be associated with urban tree planting programmes. Changes in tree stocks were not constant across the urban area but varied with the current intensity of urbanization. Increases from 1900 to 2010 in total tree stocks, and smaller sized trees, tended to be greatest in the most intensely urbanized areas. In contrast, the increases in the largest trees were more marked in areas with the most green space. These findings emphasize the importance of preserving larger fragments of urban green space to protect the oldest and largest trees that contribute disproportionately to carbon storage and other ecosystem services. Maintaining positive trends in urban tree stocks and associated ecosystem service provision will require continued investment in urban tree planting programmes in combination with additional measures, such as

  14. Cryo-adsorptive hydrogen storage on activated carbon. I: Thermodynamic analysis of adsorption vessels and comparison with liquid and compressed gas hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Paggiaro, R.; Polifke, W. [Lehrstuhl fuer Thermodynamik, TU Muenchen, Boltzmannstr. 15, D-85747 Garching (Germany); Benard, P. [Institut de recherche sur l' hydrogene, Universite du Quebec, C.P. 500, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2010-01-15

    This paper presents a thermodynamic analysis of cryo-adsorption vessels for hydrogen storage. The analysis is carried out with an unsteady lumped model and gives a global assessment of the behavior of the storage system during operation (discharge), dormancy and filling. The adsorbent used is superactivated carbon AX-21 trademark. Cryogenic hydrogen storage, either by compression or adsorption, takes advantage of the effect of temperature on the storage density. In order to store 4.1 kg H{sub 2} in 100 L, a pressure of 750 bar at 298 K is necessary, but only 150 bar at 77 K. The pressure is further reduced to 60 bar if the container is filled with pellets of activated carbon. However, adsorption vessels are submitted to intrinsic thermal effects which considerably influence their dynamic behavior and due to which thermal management is required for smooth operation. In this analysis, among energy balances for filling and discharge processes, the influence of the intrinsic thermal effects during vessel operation is presented. Hydrogen losses during normal operation as well as during long periods of inactivity are also considered. The results are compared to those obtained in low-pressure and high-pressure insulated LH{sub 2} and CH{sub 2} tanks. (author)

  15. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.; Ringrose, P.; Mathieson, A.; Wright, I.

    2009-10-15

    Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model, the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.

  16. Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks.

    KAUST Repository

    Li, Yanqiang

    2013-01-01

    The carbonized PAF-1 derivatives formed by high-temperature KOH activation showed a unique bimodal microporous structure located at 0.6 nm and 1.2 nm and high surface area. These robust micropores were confirmed by nitrogen sorption experiment and high-resolution transmission electron microscopy (TEM). Carbon dioxide, methane and hydrogen sorption experiments indicated that these novel porous carbon materials have significant gas sorption abilities in both low-pressure and high-pressure environments. Moreover the methane storage ability of K-PAF-1-750 is among the best at 35 bars, and its low-pressure gas adsorption abilities are also comparable to the best porous materials in the world. Combined with excellent physicochemical stability, these materials are very promising for industrial applications such as carbon dioxide capture and high-density clean energy storage.

  17. An Assessment of Geological Carbon Storage Options in the Illinois Basin: Validation Phase

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Robert

    2012-12-01

    The Midwest Geological Sequestration Consortium (MGSC) assessed the options for geological carbon dioxide (CO{sub 2}) storage in the 155,400 km{sup 2} (60,000 mi{sup 2}) Illinois Basin, which underlies most of Illinois, western Indiana, and western Kentucky. The region has annual CO{sub 2} emissions of about 265 million metric tonnes (292 million tons), primarily from 122 coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year (U.S. Department of Energy, 2010). Validation Phase (Phase II) field tests gathered pilot data to update the Characterization Phase (Phase I) assessment of options for capture, transportation, and storage of CO{sub 2} emissions in three geological sink types: coal seams, oil fields, and saline reservoirs. Four small-scale field tests were conducted to determine the properties of rock units that control injectivity of CO{sub 2}, assess the total storage resources, examine the security of the overlying rock units that act as seals for the reservoirs, and develop ways to control and measure the safety of injection and storage processes. The MGSC designed field test operational plans for pilot sites based on the site screening process, MVA program needs, the selection of equipment related to CO{sub 2} injection, and design of a data acquisition system. Reservoir modeling, computational simulations, and statistical methods assessed and interpreted data gathered from the field tests. Monitoring, Verification, and Accounting (MVA) programs were established to detect leakage of injected CO{sub 2} and ensure public safety. Public outreach and education remained an important part of the project; meetings and presentations informed public and private regional stakeholders of the results and findings. A miscible (liquid) CO{sub 2} flood pilot project was conducted in the Clore Formation sandstone (Mississippian System, Chesterian Series) at Mumford Hills Field in Posey County, southwestern

  18. Impedance aspect of charge storage at graphite and glassy carbon electrodes in potassium hexacyanoferrate (II) redox active electrolyte

    OpenAIRE

    Katja Magdić; Višnja Horvat-Radošević; Krešimir Kvastek

    2016-01-01

    Different types of charge storage mechanisms at unmodified graphite vs. glassy carbon electrodes in acid sulphate supporting solution containing potassium hexacyanoferrate (II) redox active electrolyte, have been revealed by electrochemical impedance spectroscopy and supported by cyclic voltammetry experiments. Reversible charge transfer of Fe(CN)63-/4- redox reaction detected by assessment of CVs of glassy carbon electrode, is in impedance spectra indicated by presence of bulk diffusion impe...

  19. An assessment of global resources of rocks as suitable raw materials for carbon capture and storage by mineralisation

    OpenAIRE

    Bide, T.P.; Styles, M. T.; Naden, J.

    2014-01-01

    Carbon capture and storage by mineralisation (CCSM) is a method proposed for capturing CO2 by reacting it with magnesium in ultramafic rocks to form carbonate minerals and silica. Large quantities of magnesium silicate rocks are required for this process and to demonstrate the feasibility, and adequately plan for the development and supply of mineral resources, their locations and quantities must be known. This study attempts to globally define the spatial extent and quantity of resources tha...

  20. Sensitivity of the Carbon Storage of Potential Vegetation to Historical Climate Variability and CO2 in Continental China

    Institute of Scientific and Technical Information of China (English)

    MAO Jiafu; WANG Bin; DAI Yongjiu

    2009-01-01

    The interest in the national levels of the terrestrial carbon sink and its spatial and temporal variability with the climate and CO2 concentrations has been increasing. How the climate and the increasing atmospheric CO2 concentrations in the last century affect the carbon storage in continental China was investigated in this study by using the Modified Sheffield Dynamic Global Vegetation Model (M-SDGVM). The estimates of the M-SDGVM indicated that during the past 100 years a combination of increasing CO2 with historical temperature and precipitation variability in continental China have caused the total vegetation carbon storage to increase by 2.04 Pg C, with 2.07 Pg C gained in the vegetation biomass but 0.03 Pg C lost from the organic soil carbon matter. The increasing CO2 concentration in the 20th century is primarily responsible for the increase of the total potential vegetation carbon. These factorial experiments show that temperature variability alone decreases the total carbon storage by 1.36 Pg C and precipitation variability alone causes a loss of 1.99 Pg C. The effect of the increasing CO2 concentration alone increased the total carbon storage in the potential vegetation of China by 3.22 Pg C over the past 100 years. With the changing of the climate, the CO2 fertilization on China's ecosystems is the result of the enhanced net biome production (NBP), which is caused by a greater stimulation of the gross primary production (GPP) than the total soil-vegetation respiration. Our study also shows notable interannual and decadal variations in the net carbon exchange between the atmosphere and terrestrial ecosystems in China due to the historical climate variability.

  1. Estimating changes in soil organic carbon storage due to land use changes using a modified calculation method

    OpenAIRE

    Li Y; Xia Y; Lei Y.; Deng Y; Chen H.; Sha L; Cao M; Deng X

    2015-01-01

    Carbon sources and sinks have been widely scrutinized over the last ten years as a result of the Kyoto Protocol. In this paper we added a new concept (standardized reference depth, DSR) to the current calculation method in order to assess and compare the soil organic carbon (SOC) storage changes due to three major land use changes with a certain historical relationship (from primary rain forest to fallow land to natural secondary forest and finally to rubber plantations - Hevea brasiliensis) ...

  2. Reactive Tracer Techniques to Quantitatively Monitor Carbon Dioxide Storage in Geologic Formations

    Science.gov (United States)

    Matter, J. M.; Carson, C.; Stute, M.; Broecker, W. S.

    2012-12-01

    Injection of CO2 into geologic storage reservoirs induces fluid-rock reactions that may lead to the mineralization of the injected CO2. The long-term safety of geologic CO2 storage is, therefore, determined by in situ CO2-fluid-rock reactions. Currently existing monitoring and verification techniques for CO2 storage are insufficient to characterize the solubility and reactivity of the injected CO2, and to establish a mass balance of the stored CO2. Dissolved and chemically transformed CO2 thus avoid detection. We developed and are testing a new reactive tracer technique for quantitative monitoring and detection of dissolved and chemically transformed CO2 in geologic storage reservoirs. The technique involves tagging the injected carbon with radiocarbon (14C). Carbon-14 is a naturally occurring radioisotope produced by cosmic radiation and made artificially by 14N neutron capture. The ambient concentration is very low with a 14C/12C ratio of 10-12. The concentration of 14C in deep geologic formations and fossil fuels is at least two orders of magnitude lower. This makes 14C an ideal quantitative tracer for tagging underground injections of anthropogenic CO2. We are testing the feasibility of this tracer technique at the CarbFix pilot injection site in Iceland, where approximately 2,000 tons of CO2 dissolved in water are currently injected into a deep basalt aquifer. The injected CO2 is tagged with 14C by dynamically adding calibrated amounts of H14CO3 solution to the injection stream. The target concentration is 12 Bq/kg of injected water, which results in a 14C activity that is 5 times enriched compared to the 1850 background. In addition to 14C as a reactive tracer, trifluormethylsulphur pentafluoride (SF5CF3) and sulfurhexafluoride (SF6) are used as conservative tracers to monitor the transport of the injected CO2 in the subsurface. Fluid samples are collected for tracer analysis from the injection and monitoring wells on a regular basis. Results show a fast

  3. Near-surface monitoring strategies for geologic carbon dioxide storage verification

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M.; Lewicki, Jennifer L.; Hepple, Robert P.

    2003-10-31

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. Geologic CO{sub 2} storage verification will be needed to ensure that CO{sub 2} is not leaking from the intended storage formation and seeping out of the ground. Because the ultimate failure of geologic CO{sub 2} storage occurs when CO{sub 2} seeps out of the ground into the atmospheric surface layer, and because elevated concentrations of CO{sub 2} near the ground surface can cause health, safety, and environmental risks, monitoring will need to be carried out in the near-surface environment. The detection of a CO{sub 2} leakage or seepage signal (LOSS) in the near-surface environment is challenging because there are large natural variations in CO{sub 2} concentrations and fluxes arising from soil, plant, and subsurface processes. The term leakage refers to CO{sub 2} migration away from the intended storage site, while seepage is defined as CO{sub 2} passing from one medium to another, for example across the ground surface. The flow and transport of CO{sub 2} at high concentrations in the near-surface environment will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of leakage and seepage show that CO{sub 2} concentrations can reach very high levels in the shallow subsurface even for relatively modest CO{sub 2} leakage fluxes. However, once CO{sub 2} seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO{sub 2} seepage. In natural ecological systems with no CO{sub 2} LOSS, near-surface CO{sub 2} fluxes and concentrations are controlled by CO{sub 2} uptake by photosynthesis, and production by root respiration, organic carbon biodegradation in soil, deep outgassing of CO{sub 2}, and by exchange of CO{sub 2} with the atmosphere. Existing technologies available for monitoring CO{sub 2} in the near-surface environment

  4. Carbon storage and soil property changes following afforestation in mountain ecosystems of the Western Rhodopes, Bulgaria

    Directory of Open Access Journals (Sweden)

    Zhiyanski M

    2016-05-01

    Full Text Available Land-use changes and afforestation activities are widely recognized as possible measures for mitigating climate change through carbon sequestration. The present study was conducted to evaluate the effect of afforestation on (i soil physical and chemical properties and soil carbon stocks in four mountain ecosystems and (ii whole ecosystem carbon storage. The four experimental sites, situated in the Western Rhodope Mountains (Bulgaria were characterized by typical forest-related land-use conversions. The four sites were a Douglas fir (Pseudotsuga menziesii [Mirb.] Franco plantation (Rd1 established on former cropland, a mixed black pine (Pinus nigra Arn. with Scots pine (Pinus sylvestris L. plantation (Rd2 established on former cropland, a cropland (RdA1 and an abandoned land with uncontrolled extensive grazing (RdA2 historically used as cropland. Soil parameters, i.e., sand content, pH, organic C and N contents, C/N ratio and soil organic carbon (SOC stocks, were significantly affected by land use and land-use history. Conversion from cropland into forestland significantly reduced soil bulk density and coarse fragments at 0-10 cm depth. Compared with adjacent cropland and abandoned land, soils in coniferous plantations were acidified in their upper layers. Sites Rd2 and RdA2 contained the least SOC owing to the previous long-term arable cultivation (>100 years. Analysis of the ecosystem C stock distribution revealed that most of C in forests was stored in the aboveground tree biomass. Our study confirmed that afforestation of cropland turned the soil into a C sink for the selected mountain region, but showed conflicting results when afforestation occurred on abandoned cropland.

  5. Latitudinal Variation in Carbon Storage Can Help Predict Changes in Swamps Affected by Global Warming

    Science.gov (United States)

    Middleton, Beth A.; McKee, Karen

    2004-01-01

    Plants may offer our best hope of removing greenhouse gases (gases that contribute to global warming) emitted to the atmosphere from the burning of fossil fuels. At the same time, global warming could change environments so that natural plant communities will either need to shift into cooler climate zones, or become extirpated (Prasad and Iverson, 1999; Crumpacker and others, 2001; Davis and Shaw, 2001). It is impossible to know the future, but studies combining field observation of production and modeling can help us make predictions about what may happen to these wetland communities in the future. Widespread wetland types such as baldcypress (Taxodium distichum) swamps in the southeastern portion of the United States could be especially good at carbon sequestration (amount of CO2 stored by forests) from the atmosphere. They have high levels of production and sometimes store undecomposed dead plant material in wet conditions with low oxygen, thus keeping gases stored that would otherwise be released into the atmosphere (fig. 1). To study the ability of baldcypress swamps to store carbon, our project has taken two approaches. The first analysis looked at published data to develop an idea (hypothesis) of how production levels change across a temperature gradient in the baldcypress region (published data study). The second study tested this idea by comparing production levels across a latitudinal range by using swamps in similar field conditions (ongoing carbon storage study). These studies will help us make predictions about the future ability of baldcypress swamps to store carbon in soil and plant biomass, as well as the ability of these forests to shift northward with global warming.

  6. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    Science.gov (United States)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  7. Ten times more difficult: Quantifying the carbon capture and storage challenge

    International Nuclear Information System (INIS)

    Carbon Capture and Storage (CCS) is receiving much attention and is being promoted as an important low-carbon technology. This paper communicates key insights and conclusions from a larger study that conducted review work, policy analysis, and interviews with actors in the global CCS community (Varnäs et al., 2012). No judgment is made of the desirability of choosing CCS as a low carbon technology option, but if this technology is indeed pursued, four challenges are found to be 10 times greater than often recognized. These are; (i) a tenfold up-scaling in size (MW) from pilot plants to that of commercial demonstration, (ii) a tenfold increase in number of large scale demonstration plants actually being constructed, (iii) a tenfold increase in available annual funding over the coming 40 years and, (iv) a tenfold increase in the price put on carbon dioxide emissions. It is clear that the current development path will not fulfil expectations of CCS being commercially available at the end of this decade, nor will CCS be widely applied in time for significant contributions to needed CO2 emission reductions. CCS will only be developed if policymakers continue to favour coal based power generation while simultaneously developing stringent climate policy. - Highlights: ► Four key challenges for CCS are found to be of an order magnitude greater than often recognized. ► The possibility for CCS to be commercially available by 2020 is greatly exaggerated. ► Reducing CO2 emissions with CCS is a political challenge, not a technological

  8. Learning through a portfolio of carbon capture and storage demonstration projects

    Science.gov (United States)

    Reiner, David M.

    2016-01-01

    Carbon dioxide capture and storage (CCS) technology is considered by many to be an essential route to meet climate mitigation targets in the power and industrial sectors. Deploying CCS technologies globally will first require a portfolio of large-scale demonstration projects. These first projects should assist learning by diversity, learning by replication, de-risking the technologies and developing viable business models. From 2005 to 2009, optimism about the pace of CCS rollout led to mutually independent efforts in the European Union, North America and Australia to assemble portfolios of projects. Since 2009, only a few of these many project proposals remain viable, but the initial rationales for demonstration have not been revisited in the face of changing circumstances. Here I argue that learning is now both more difficult and more important given the slow pace of deployment. Developing a more coordinated global portfolio will facilitate learning across projects and may determine whether CCS ever emerges from the demonstration phase.

  9. Electrochemical lithium-ion storage properties of quinone molecules encapsulated in single-walled carbon nanotubes.

    Science.gov (United States)

    Ishii, Yosuke; Tashiro, Kosuke; Hosoe, Kento; Al-Zubaidi, Ayar; Kawasaki, Shinji

    2016-04-21

    We investigated the electrochemical lithium-ion storage properties of 9,10-anthraquinone (AQ) and 9,10-phenanthrenequinone (PhQ) molecules encapsulated in the inner hollow core of single-walled carbon nanotubes (SWCNTs). The structural properties of the obtained encapsulated systems were characterized by electron microscopy, synchrotron powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. We found that almost all quinone molecules encapsulated in the SWCNTs can store Li-ions reversibly. Interestingly, the undesired capacity fading, which comes from the dissolution of quinone molecules into the electrolyte, was suppressed by the encapsulation. It was also found that the overpotential of AQ was decreased by the encapsulation, probably due to the high-electric conductivity of SWCNTs. PMID:27030581

  10. Multiwalled carbon nanotubes anchored with maghemite nanocrystals for high-performance lithium storage

    International Nuclear Information System (INIS)

    Highlights: • γ-Fe2O3 nanocrystals uniformly anchored on MWCNT via facile layer-by-layer technique. • The hybrid exhibits enhanced structural stability and charge transport capability. • Superior lithium storage performance by virtue of unique structural characteristics. - Abstract: In this paper, we have anchored maghemite (γ-Fe2O3) nanocrystals compactly and uniformly on multiwalled carbon nanotubes (MWCNT) via a polyelectrolyte-assisted layer-by-layer assembly approach based on electrostatic attraction. When evaluated as an anode for lithium-ion batteries (LIBs), the as-synthesized MWCNT-γ-Fe2O3 nanohybrid displays high reversible capacities, remarkable cycling stability, and magnificent high rate capability, facilitating its application as an advanced anode for high-energy, long-life, and high-power LIBs

  11. The public perspective of carbon capture and storage for CO2 emission reductions in China

    International Nuclear Information System (INIS)

    To explore public awareness of carbon capture and storage (CCS), attitudes towards the use of CCS and the determinants of CCS acceptance in China, a study was conducted in July 2009 based on face-to-face interviews with participants across the country. The result showed that the awareness of CCS was low among the surveyed public in China, compared to other clean energy technologies. Respondents indicated a slightly supportive attitude towards the use of CCS as an alternative technology to CO2 emission reductions. The regression model revealed that in addition to CCS knowledge, respondents' understanding of the characteristics of CCS, such as the maturity of the technology, risks, capability of CO2 emission reductions, and CCS policy were all significant factors in predicting the acceptance of CCS. The findings suggest that integrating public education and communication into CCS development policy would be an effective strategy to overcome the barrier of low public acceptance.

  12. Near-Term Opportunities for Carbon Dioxide Capture and Storage 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This document contains the summary report of the workshop on global assessments for near-term opportunities for carbon dioxide capture and storage (CCS), which took place on 21-22 June 2007 in Oslo, Norway. It provided an opportunity for direct dialogue between concerned stakeholders in the global effort to accelerate the development and commercialisation of CCS technology. This is part of a series of three workshops on near-term opportunities for this important mitigation option that will feed into the G8 Plan of Action on Climate Change, Clean Energy and Sustainable Development. The ultimate goal of this effort is to present a report and policy recommendations to the G8 leaders at their 2008 summit meeting in Japan.

  13. News Media Analysis of Carbon Capture and Storage and Biomass: Perceptions and Possibilities

    Directory of Open Access Journals (Sweden)

    Andrea M. Feldpausch-Parker

    2015-04-01

    Full Text Available In the US, carbon capture and storage (CCS has received most of its attention when coupled with the fossil fuel industry as a mitigation strategy for climate change. CCS, which is constituted as a broad suite of capture and sequestration technologies and techniques, does not preclude coupling with other energy industries such as bioenergy (bioenergy and CCS or BECCS. In this paper, we examined news media coverage of CCS and biomass individually in locations throughout the US where these technologies are being explored to determine how they are perceived and what possibilities lay in their coupling for climate change mitigation. From our analyses, we found that individually, both CCS and biomass are perceived generally as beneficial for energy development by the news media, though they are not often mentioned in combination. Combined references do, however, speak to their value for climate change mitigation and as an alternative to fossil fuels.

  14. Space Geodesy and Geochemistry Applied to the Monitoring, Verification of Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Swart, Peter

    2013-11-30

    This award was a training grant awarded by the U.S. Department of Energy (DOE). The purpose of this award was solely to provide training for two PhD graduate students for three years in the general area of carbon capture and storage (CCS). The training consisted of course work and conducting research in the area of CCS. Attendance at conferences was also encouraged as an activity and positive experience for students to learn the process of sharing research findings with the scientific community, and the peer review process. At the time of this report, both students have approximately two years remaining of their studies, so have not fully completed their scientific research projects.

  15. Multiwalled carbon nanotubes anchored with maghemite nanocrystals for high-performance lithium storage

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ping, E-mail: zjuwuping@njnu.edu.cn; Xie, Kongwei; Xu, Xiali; Li, Jianping; Tang, Yawen; Zhou, Yiming, E-mail: zhouyiming@njnu.edu.cn; Lu, Tianhong

    2015-04-15

    Highlights: • γ-Fe{sub 2}O{sub 3} nanocrystals uniformly anchored on MWCNT via facile layer-by-layer technique. • The hybrid exhibits enhanced structural stability and charge transport capability. • Superior lithium storage performance by virtue of unique structural characteristics. - Abstract: In this paper, we have anchored maghemite (γ-Fe{sub 2}O{sub 3}) nanocrystals compactly and uniformly on multiwalled carbon nanotubes (MWCNT) via a polyelectrolyte-assisted layer-by-layer assembly approach based on electrostatic attraction. When evaluated as an anode for lithium-ion batteries (LIBs), the as-synthesized MWCNT-γ-Fe{sub 2}O{sub 3} nanohybrid displays high reversible capacities, remarkable cycling stability, and magnificent high rate capability, facilitating its application as an advanced anode for high-energy, long-life, and high-power LIBs.

  16. Modeled Differential Muon Flux Measurements for Monitoring Geological Storage of Carbon Dioxide

    Science.gov (United States)

    Coleman, M. L.; Naudet, C. J.; Gluyas, J.

    2012-12-01

    Recently, we published the first, theoretical feasibility study of the use of muon tomography to monitor injection of supercritical carbon dioxide into a geological storage reservoir for carbon storage (Kudryavtsev et al., 2012). Our initial concept showed that attenuation of the total muon downward flux, which is controlled effectively by its path-length and the density of the material through which it passes, could quantify the replacement in a porous sandstone reservoir of relatively dense aqueous brine by less dense supercritical carbon dioxide (specific gravity, 0.75). Our model examined the change in the muon flux over periods of about one year. However, certainly, in the initial stages of carbon dioxide injection it would be valuable to examine its emplacement over much shorter periods of time. Over a year there are small fluctuations of about 2% in the flux of high energy cosmic ray muons, because of changes in pressure and temperature, and therefore density, of the upper atmosphere (Ambrosio, 1997). To improve precision, we developed the concept of differential muon monitoring. The muon flux at the bottom of the reservoir is compared with the incident flux at its top. In this paper we present the results of three simulations. In all of them, as in our previous modeling exercise, we assume a 1000 sq. m total area of muon detectors, but in this case both above and below a 300 m thick sandstone bed, with 35% porosity, capped by shale and filled initially with a dense brine (specific gravity, 1.112). We assume high sweep efficiency, since supercritical CO2 and water are miscible, and therefore that 80% of the water will be replaced over a period of injection spanning 10 years. In the first two cases the top of the reservoir is at 1200 m and the overburden is either continuous shale or a 100m shale horizon beneath a sandstone aquifer, respectively. In the third case, which is somewhat analogous to the FutureGen 2.0 site in Illinois (FutureGen Industrial

  17. Computer simulation study of in-zeolites templated carbon replicas: structural and adsorption properties for hydrogen storage application

    International Nuclear Information System (INIS)

    Hydrogen storage is the key issue to envisage this gas for instance as an energy vector in the field of transportation. Porous carbons are materials that are considered as possible candidates. We have studied well-controlled microporous carbon nano-structures, carbonaceous replicas of meso-porous ordered silica materials and zeolites. We realized numerically (using Grand Canonical Monte Carlo Simulations, GCMC) the atomic nano-structures of the carbon replication of four zeolites: AlPO4-5, silicalite-1, and Faujasite (FAU and EMT). The faujasite replicas allow nano-casting of a new form of carbon crystalline solid made of tetrahedrally or hexagonally interconnected single wall nano-tubes. The pore size networks are nano-metric giving these materials optimized hydrogen molecular storage capacities (for pure carbon phases). However, we demonstrate that these new carbon forms are not interesting for room temperature efficient storage compared to the void space of a classical gas cylinder. We showed that doping with an alkaline element, such as lithium, one could store the same quantities at 350 bar compared to a classical tank at 700 bar. This result is a possible route to achieve interesting performances for on-board docking systems for instance. (author)

  18. Life-history variation in the short-lived herb Rorippa palustris: The role of carbon storage

    Science.gov (United States)

    Sosnová, Monika; Klimešová, Jitka

    2009-09-01

    Carbon storage is commonly found among perennials, but only rarely in annuals. However, many short-lived species may behave as annuals or short-lived perennials depending on the date of germination, photoperiod or disturbance. Due to the trade-off between investments into current reproduction vs. survival, these life-history modes presumably differ in carbon allocation. In this study, we aimed to evaluate how carbon storage is affected by germination date and disturbance in an outdoor pot experiment with the short-lived Rorippa palustris. Plants from autumnal and summer cohorts were injured in different ontogenetic stages (vegetative, flowering and fruiting) and the starch content in roots was assessed. Plants from the autumnal cohort invested more carbon into growth and reproduction, whereas plants from the summer cohort invested preferentially into reserves. However, injury changed the allocation pattern: in plants from the autumnal cohort, injury prevented allocation to reproduction and thus injured plants had a larger carbon storage at the end of the season than control plants; injury at the flowering and fruiting stage caused depletion of reserves for regrowth in plants from the summer cohort, resulting in lower starch reserves compared to control plants. We suggest that life-history variation in R. palustris can be caused by changes in its carbon economy: when all resources could not be used for flowering due to weak photoinduction or loss of flowering organs due to injury, part of the resources is stored for over wintering and reproduction in the next year.

  19. Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses.

    Science.gov (United States)

    Abou Rajab, Yasmin; Leuschner, Christoph; Barus, Henry; Tjoa, Aiyen; Hertel, Dietrich

    2016-01-01

    One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each) with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia sepium shade trees, and cacao with several shade tree species) in Sulawesi (Indonesia) with respect to above- and belowground biomass and productivity, and cacao bean yield. Total biomass C stocks (above- and belowground) increased fivefold from the monoculture to the multi-shade tree system (from 11 to 57 Mg ha-1), total net primary production rose twofold (from 9 to 18 Mg C ha-1 yr-1). This increase was associated with a 6fold increase in aboveground biomass, but only a 3.5fold increase in root biomass, indicating a clear shift in C allocation to aboveground tree organs with increasing shade for both cacao and shade trees. Despite a canopy cover increase from 50 to 93%, cacao bean yield remained invariant across the systems (variation: 1.1-1.2 Mg C ha-1 yr-1). The monocultures had a twice as rapid leaf turnover suggesting that shading reduces the exposure of cacao to atmospheric drought, probably resulting in greater leaf longevity. Thus, contrary to general belief, cacao bean yield does not necessarily decrease under shading which seems to reduce physical stress. If planned properly, cacao plantations under a shade tree cover allow combining high yield with benefits for carbon sequestration and storage, production system stability under stress, and higher levels of animal and plant diversity. PMID:26927428

  20. Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity.

    Science.gov (United States)

    Li, Weihan; Yang, Zhenzhong; Li, Minsi; Jiang, Yu; Wei, Xiang; Zhong, Xiongwu; Gu, Lin; Yu, Yan

    2016-03-01

    Red phosphorus (P) have been considered as one of the most promising anode material for both lithium-ion batteries (LIBs) and (NIBs), because of its high theoretical capacity. However, natural insulating property and the large volume expansion of red P during cycling lead to poor cyclability and low rate performance, which prevents its practical application. Here, we significantly improves both lithium storage and sodium storage performance of red P by confining nanosized amorphous red P into the mesoporous carbon matrix (P@CMK-3) using a vaporization-condensation-conversion process. The P@CMK-3 shows a high reversible specific capacity of ∼2250 mA h g(-1) based on the mass of red P at 0.25 C (∼971 mA h g(-1) based on the composite), excellent rate performance of 1598 and 624 mA h g(-1) based on the mass of red P at 6.1 and 12 C, respectively (562 and 228 mA h g(-1) based on the mass of the composite at 6.1 and 12 C, respectively) and significantly enhanced cycle life of 1150 mA h g(-1) based on the mass of red P at 5 C (500 mA h g(-1) based on the mass of the composite) after 1000 cycles for LIBs. For Na ions, it also displays a reversible capacity of 1020 mA h g(-1) based on the mass of red P (370 mA h g(-1) based on the mass of the composite) after 210 cycles at 5C. The significantly improved electrochemical performance could be attributed to the unique structure that combines a variety of advantages: easy access of electrolyte to the open channel structure, short transport path of ions through carbon toward the red P, and high ionic and electronic conductivity. PMID:26866666

  1. Partitioning Behavior of Organic Contaminants in Carbon Storage Environments: A Critical Review

    Energy Technology Data Exchange (ETDEWEB)

    Burant, Aniela; Lowry, Gregory V; Karamalidis, Athanasios K

    2012-12-04

    Carbon capture and storage is a promising strategy for mitigating the CO{sub 2} contribution to global climate change. The large scale implementation of the technology mandates better understanding of the risks associated with CO{sub 2} injection into geologic formations and the subsequent interactions with groundwater resources. The injected supercritical CO{sub 2} (sc-CO{sub 2}) is a nonpolar solvent that can potentially mobilize organic compounds that exist at residual saturation in the formation. Here, we review the partitioning behavior of selected organic compounds typically found in depleted oil reservoirs in the residual oil–brine–sc-CO{sub 2} system under carbon storage conditions. The solubility of pure phase organic compounds in sc-CO{sub 2} and partitioning of organic compounds between water and sc-CO{sub 2} follow trends predicted based on thermodynamics. Compounds with high volatility and low aqueous solubility have the highest potential to partition to sc-CO{sub 2}. The partitioning of low volatility compounds to sc-CO{sub 2} can be enhanced by co-solvency due to the presence of higher volatility compounds in the sc-CO{sub 2}. The effect of temperature, pressure, salinity, pH, and dissolution of water molecules into sc-CO{sub 2} on the partitioning behavior of organic compounds in the residual oil-brine-sc-CO{sub 2} system is discussed. Data gaps and research needs for models to predict the partitioning of organic compounds in brines and from complex mixtures of oils are presented. Models need to be able to better incorporate the effect of salinity and co-solvency, which will require more experimental data from key classes of organic compounds.

  2. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.

    Science.gov (United States)

    Wiesmeier, Martin; Munro, Sam; Barthold, Frauke; Steffens, Markus; Schad, Peter; Kögel-Knabner, Ingrid

    2015-10-01

    Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi-arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78-85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi-arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long-term OC sequestration. PMID:25916410

  3. High Carbon Use Efficiency is Not Explained by Production of Storage Compounds

    Science.gov (United States)

    Dijkstra, Paul; van Groenigen, Kees-Jan

    2015-04-01

    The efficiency with which microbes use substrate to make new microbial biomass (Carbon Use Efficiency or CUE; mol C / mol C) is an important variable in soil and ecosystem C cycling models. Estimates of CUE in soil microbial communities vary widely. It has been hypothesized that high values of CUE are associated with production of storage compounds following a sudden increases in substrate availability during CUE measurements. In that case, these high CUE values would not be representative for balanced microbial growth (i.e. the production of all compounds needed to make new microbial cells). To test this hypothesis, we added position-specific 13C-labeled glucose isotopomers in parallel incubations of a ponderosa pine and piñon-juniper soil. We compared the measured pattern of CO2 release for the six glucose C atoms with patterns of CO2 production expected for balanced growth with a low, medium, or high CUE, and with CO2 production patterns associated with production of storage compounds (glycogen, lipids, or polyhydroxybutyrate). The measured position-specific CO2 production did not match that for production of glycogen, lipids, or polyhydroxybutyrate, but agreed closely with that expected for balanced growth at high CUE and high pentose phosphate pathway activity. We conclude that soil microbial communities utilize glucose substrate for biomass growth with high CUE, and that addition of small amounts of 13C-labeled glucose tracers do not affect CUE or induce storage compounds production. We submit that the measurement of position-specific CO2 production offers a quick and easy way to test biochemically explicit hypotheses concerning microbial growth metabolism.

  4. A meta-analysis on the impacts of partial cutting on forest structure and carbon storage

    Directory of Open Access Journals (Sweden)

    D. Zhou

    2013-01-01

    Full Text Available Partial cutting, which removes some individual trees from a forest, is one of the major and widespread forest management practices that can significantly alter both forest structure and carbon (C storage. Using 746 observations from 82 publications, we synthesized the impacts of partial cutting on three variables associated with forest structure (i.e. mean annual growth of diameter at breast height (DBH, basal area (BA, and volume and four variables related to various C stock components (i.e. aboveground biomass C (AGBC, understory C, forest floor C, and mineral soil C. Results shows that the growth of DBH elevated by 112% after partial cutting, compared to the uncut control, while stand BA and volume reduced immediately by 34% and 29%, respectively. On average, partial cutting reduced AGBC by 43%, increased understory C storage by 392%, but did not show significant effects on C storages on forest floor and in mineral soil. All the effects on DBH growth, stand BA, volume, and AGBC intensified linearly with cutting intensity (CI and decreased linearly with the number of recovery years (RY. In addition to the strong impacts of CI and RY, other factors such as climate zone and forest type also affected forest responses to partial cutting. The data assembled in this synthesis were not sufficient to determine how long it would take for a complete recovery after cutting because long-term experiments were rare. Future efforts should be tailored to increase the duration of the experiments and balance geographic locations of field studies.

  5. Nitrogen deposition and its effect on carbon storage in Chinese forests during 1981-2010

    Science.gov (United States)

    Gu, Fengxue; Zhang, Yuandong; Huang, Mei; Tao, Bo; Yan, Huimin; Guo, Rui; Li, Jie

    2015-12-01

    Human activities have resulted in dramatically increased nitrogen (N) deposition worldwide, which is closely linked to the carbon (C)-cycle processes and is considered to facilitate terrestrial C sinks. In this study, we firstly estimated the spatial and temporal variations of N deposition during 1981-2010 based on a new algorithm; then we used a newly improved process-based ecosystem model, CEVSA2, to examine the effects of N deposition on C storage in Chinese forests. The results show that the rate of N deposition increased by 0.058 g N m-2 yr-1 between 1981 and 2010. The N deposition rate in 2010 was 2.32 g N m-2 yr-1, representing a large spatial variation from 0 to 0.25 g N m-2 yr-1 on the northwestern Qinghai-Tibet Plateau to over 4.5 g N m-2 yr-1 in the southeastern China. The model simulations suggest that N deposition induced a 4.78% increase in the total C storage in Chinese forests, most of which accumulated in vegetation. C storage increased together with the increase in N deposition, in both space and time. However, N use efficiency was highest when N deposition was 0.4-1.0 g N m-2 yr-1. We suggest conducting more manipulation experiments and observations in different vegetation types, which will be greatly helpful to incorporate additional processes and mechanisms into the ecosystem modeling. Further development of ecosystem models and identification of C-N interactions will be important for determining the effects of N input on C cycles on both regional and global scales.

  6. Expert opinions on carbon dioxide capture and storage-A framing of uncertainties and possibilities

    International Nuclear Information System (INIS)

    There are many uncertainties and knowledge gaps regarding the development of carbon dioxide capture and storage (CCS)-e.g., when it comes to costs, life-cycle effects, storage capacity and permanence. In spite of these uncertainties and barriers, the CCS research community is generally very optimistic regarding CCS' development. The discrepancy between the uncertainties and the optimism is the point of departure in this study, which is based on interviews with 24 CCS experts. The aim is to analyse experts' framings of CCS with focus on two key aspects: (i) the function and potential of CCS and (ii) uncertainties. The optimism among the CCS experts is tentatively explained. The interpretative flexibility of CCS is claimed to be an essential explanation for the optimism. CCS is promoted from a wide variety of perspectives, e.g., solidarity and peace, bridge to a sustainable energy system, sustaining the modern lifestyle and compatibility with the fossil fuel lock-in. Awareness of the uncertainties and potential over-optimism is warranted within policy and decision making as they often rely on scientific forecasts and experts' judgements.

  7. Nickel Nanofoam/Different Phases of Ordered Mesoporous Carbon Composite Electrodes for Superior Capacitive Energy Storage.

    Science.gov (United States)

    Lee, Kangsuk; Song, Haeni; Lee, Kwang Hoon; Choi, Soo Hyung; Jang, Jong Hyun; Char, Kookheon; Son, Jeong Gon

    2016-08-31

    Electrochemical energy storage devices based on electric double layer capacitors (EDLCs) have received considerable attention due to their high power density and potential for obtaining improved energy density in comparison to the lithium ion battery. Ordered mesoporous carbon (OMC) is a promising candidate for use as an EDLC electrode because it has a high specific surface area (SSA), providing a wider charge storage space and size-controllable mesopore structure with a long-range order, suppling high accessibility to the electrolyte ions. However, OMCs fabricated using conventional methods have several drawbacks including low electronic conductivity and long ionic diffusion paths in mesopores. We used nickel nanofoam, which has a relatively small pore (sub-100 nm to subμm) network structure, as a current collector. This provides a significantly shortened electronic/ionic current paths and plentiful surface area, enabling stable and close attachment of OMCs without the use of binders. Thus, we present hierarchical binder-free electrode structures based on OMC/Ni nanofoams. These structures give rise to enhanced specific capacitance and a superior rate capability. We also investigated the mesopore structural effect of OMCs on electrolyte transport by comparing the capacitive performances of collapsed lamellar, cylindrical, and spherical mesopore electrodes. The highly ordered and straightly aligned cylindrical OMCs exhibited the highest specific capacitance and the best rate capability. PMID:27490161

  8. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis.

    Science.gov (United States)

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition. PMID:26813078

  9. Analytical solutions to dissolved contaminant plume evolution with source depletion during carbon dioxide storage

    Science.gov (United States)

    Yang, Yong; Liu, Yongzhong; Yu, Bo; Ding, Tian

    2016-06-01

    Volatile contaminants may migrate with carbon dioxide (CO2) injection or leakage in subsurface formations, which leads to the risk of the CO2 storage and the ecological environment. This study aims to develop an analytical model that could predict the contaminant migration process induced by CO2 storage. The analytical model with two moving boundaries is obtained through the simplification of the fully coupled model for the CO2-aqueous phase -stagnant phase displacement system. The analytical solutions are confirmed and assessed through the comparison with the numerical simulations of the fully coupled model. Then, some key variables in the analytical solutions, including the critical time, the locations of the dual moving boundaries and the advance velocity, are discussed to present the characteristics of contaminant migration in the multi-phase displacement system. The results show that these key variables are determined by four dimensionless numbers, Pe, RD, Sh and RF, which represent the effects of the convection, the dispersion, the interphase mass transfer and the retention factor of contaminant, respectively. The proposed analytical solutions could be used for tracking the migration of the injected CO2 and the contaminants in subsurface formations, and also provide an analytical tool for other solute transport in multi-phase displacement system.

  10. Interpretation of hydraulic tests performed at a carbonate rock site for CO2 storage

    Science.gov (United States)

    María Gómez Castro, Berta; Fernández López, Sheila; Carrera, Jesús; de Simone, Silvia; Martínez, Lurdes; Roetting, Tobias; Soler, Joaquim; Ortiz, Gema; de Dios, Carlos; Huber, Christophe

    2014-05-01

    Interpretation of hydraulic tests performed at a carbonate rock site for CO2 storage Berta Gómez, Sheila Fernández, Tobias Roetting, Lurdes Martínez, Silvia de Simone, Joaquim Soler, Jesus Carrera, Gema Ortiz, Christophe Huber, Carlos de Dios Proper design of CO2 geological storage facilities requires knowledge of the reservoir hydraulic parameters. Specifically, permeability controls the flux of CO2, the rate at which it dissolves, local and regional pressure buildup and the likelihood of induced seismicity. Permeability is obtained from hydraulic tests, which may yield local permeability, which controls injectivity, and large scale permeability, which controls pressure buildup at the large scale. If pressure response measurements are obtained at different elevations, hydraulic tests may also yield vertical permeability, which controls the rate at which CO2 dissolves. The objective of this work is to discuss the interpretation of hydraulic tests at deep reservoirs and the conditions under which these permeabilities can be obtained. To achieve this objective, we have built a radially symmetric model, including a skin and radial as well as vertical heterogeneity. We use this model to simulate hydraulic tests with increasing degrees of complexity about the medium response. We start by assuming Darcy flow, then add coupled mechanical effects (fractures opening) and, finally, we add thermal effects. We discuss how these affect the conventional interpretation of the tests and how to identify their presence. We apply these findings to the interpretation of hydraulic tests at Hontomin.

  11. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis

    Science.gov (United States)

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition.

  12. Environmental analysis of a German strategy for carbon capture and storage of coal power plants

    International Nuclear Information System (INIS)

    This paper combines an existing projection of the development of electricity production with a technology-specific environmental assessment. The combination of these two approaches, which so far have only been performed separately, allows a discussion about environmental effects of carbon capture and storage (CCS) implementation strategies on a national level. The results identify the future role of lignite and hard coal in German power production. The implementation of CCS technology leads to a considerable loss of efficiency. Due to CCS, about 50 million t of lignite will be additionally required in 2030 in comparison to the reference case without CCS in 2010. Increasing demand, the replacement of old plants and the compensation of efficiency losses lead to highly ambitious expansion rates. In the case of CCS implementation, the global warming potential (GWP) can be reduced by up to 70%. However, other environmental impacts increase in part considerably. Compliance with national ceilings for NOx emissions can only be reached by compensation measures in other sectors. The results of the environmental assessment demonstrate the significant role of the coal composition, coal origin and the required transport. CO2 pipeline transport and CO2 storage make a fairly minor contribution to the overall environmental impact. - Research highlights: →Environmental effects of CCS in Germany. →50 million t lignite more in 2030. →70 % GWP reduction.

  13. Experimental studies on an indigenous coconut shell based activated carbon suitable for natural gas storage

    Indian Academy of Sciences (India)

    SATYABRATA SAHOO; M RAMGOPAL

    2016-04-01

    Experimental studies are carried out to characterize an indigenous, coconut shell based, activated carbon suitable for storage of natural gas. Properties such as BET surface area, micropore volume, average pore diameter and pore size distribution are obtained by using suitable instruments and techniques. An experimental setup is developed to estimate the equilibrium methane adsorption capacity and adsorption/desorption kinetics. The experimental isothermal uptake data is used to fit four different isotherm models. Using the constants obtained for the D–A isotherm model the variation of heat of adsorption and adsorbed phase specific heat with equilibrium pressure and temperature are obtained. Similarly Henry’s Law coefficients, important at low pressure and low uptake regime are also obtained. Finally using the kinetic data and a linear driving force model,constants in the kinetic equation are obtained. Results show that the indigenous material used in this study offers reasonably high natural gas storage capacity and fast kinetics and is suitable for adsorbed natural gas (ANG)applications. It is expected that this study will be useful in the design and development of ANG systems based on this indigenous material.

  14. Methane adsorption in nanoporous carbon: the numerical estimation of optimal storage conditions

    Science.gov (United States)

    Ortiz, L.; Kuchta, B.; Firlej, L.; Roth, M. W.; Wexler, C.

    2016-05-01

    The efficient storage and transportation of natural gas is one of the most important enabling technologies for use in energy applications. Adsorption in porous systems, which will allow the transportation of high-density fuel under low pressure, is one of the possible solutions. We present and discuss extensive grand canonical Monte Carlo (GCMC) simulation results of the adsorption of methane into slit-shaped graphitic pores of various widths (between 7 Å and 50 Å), and at pressures P between 0 bar and 360 bar. Our results shed light on the dependence of film structure on pore width and pressure. For large widths, we observe multi-layer adsorption at supercritical conditions, with excess amounts even at large distances from the pore walls originating from the attractive interaction exerted by a very high-density film in the first layer. We are also able to successfully model the experimental adsorption isotherms of heterogeneous activated carbon samples by means of an ensemble average of the pore widths, based exclusively on the pore-size distributions (PSD) calculated from subcritical nitrogen adsorption isotherms. Finally, we propose a new formula, based on the PSD ensemble averages, to calculate the isosteric heat of adsorption of heterogeneous systems from single-pore-width calculations. The methods proposed here will contribute to the rational design and optimization of future adsorption-based storage tanks.

  15. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  16. What can we expect from Europe's carbon capture and storage demonstrations?

    International Nuclear Information System (INIS)

    Carbon capture and storage (CCS) on electricity generation and energy intensive industry is expected to play a considerable role in achieving the European Union's decarbonisation goals. EU CCS demonstration project funding has been created to encourage development and accelerate commercial CCS deployment by providing funds to bridge the capital gap for early commercial-scale CCS installation. Eleven CCS project proposals currently remain at least nominally active, but reduced funding and other constraints suggest at best delivery of around a third of these. To explore how these demonstrations impact on the scale of subsequent CCS deployment in the EU three simple scenarios for post-demonstration CCS activity and deployment (none, limited and considerable) are considered and examined in the context of key factors that have influenced the demonstration programme. Without strong political support for post-demonstration deployment including measures such as strategic storage validation and CO2 pipeline planning, and a clear process to make CCS commercially attractive to investors on a timeline consistent with climate ambitions, even a positive result from the demonstration programme is unlikely to enable CCS to deliver as expected. - Research Highlights: ► Presents possible scenarios for EU CCS deployment. ► Examines role of CCS demonstration in determining role of CCS in EU decarbonisation. ► Examines key factors influencing CCS deployment raised by CCS demonstrations. ► Successful CCS demonstrations needed to maintain CCS an option. ► Significant, timely deployment requires coordinated building on demonstrations

  17. The impact of oxalogenic plants on soil carbon dynamics: formation of a millennium carbon storage as calcium carbonate

    OpenAIRE

    Ferro, Katia Imeria; Verrecchia, Eric

    2013-01-01

    Au sud du Burkina Faso, des milliers d’années de pédogénèse ont produit des «Plinthic Ferralsols Arenic» (suivant la WRB). Il a toutefois été observé que sous l’influence d’arbres oxalogènes tels que Milicia excelsa, Afzelia africana et Bombax costatum, les sols évoluent vers des «Ferralic Calcisols Arenic» (selon la WRB) en quelques décennies. Il est admis que le moteur de cette accumulation carbonatée est l’oxalotrophie bactérienne, qui crée une pompe à carbone entre l’atmosphère et les sol...

  18. Geologic framework for the national assessment of carbon dioxide storage resources: Denver Basin, Colorado, Wyoming, and Nebraska: Chapter G in Geologic framework for the national assessment of carbon dioxide storage resources

    Science.gov (United States)

    Drake II, Ronald M.; Brennan, Sean T.; Covault, Jacob A.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    This is a report about the geologic characteristics of five storage assessment units (SAUs) within the Denver Basin of Colorado, Wyoming, and Nebraska. These SAUs are Cretaceous in age and include (1) the Plainview and Lytle Formations, (2) the Muddy Sandstone, (3) the Greenhorn Limestone, (4) the Niobrara Formation and Codell Sandstone, and (5) the Terry and Hygiene Sandstone Members. The described characteristics, as specified in the methodology, affect the potential carbon dioxide storage resource in the SAUs. The specific geologic and petrophysical properties of interest include depth to the top of the storage formation, average thickness, net-porous thickness, porosity, permeability, groundwater quality, and the area of structural reservoir traps. Descriptions of the SAU boundaries and the overlying sealing units are also included. Assessment results are not contained in this report; however, the geologic information included here will be used to calculate a statistical Monte Carlo-based distribution of potential storage volume in the SAUs.

  19. CONTROLLED GROWTH OF CARBON NANOTUBES ON CONDUCTIVE METAL SUBSTRATES FOR ENERGY STORAGE APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.; Engtrakul, C.

    2009-01-01

    The impressive mechanical and electronic properties of carbon nanotubes (CNTs) make them ideally suited for use in a variety of nanostructured devices, especially in the realm of energy production and storage. In particular, vertically-aligned CNT “forests” have been the focus of increasing investigation for use in supercapacitor electrodes and as hydrogen adsorption substrates. Vertically-aligned CNT growth was attempted on metal substrates by waterassisted chemical vapor deposition (CVD). CNT growth was catalyzed by iron-molybdenum (FeMo) nanoparticle catalysts synthesized by a colloidal method, which were then spin-coated onto Inconel® foils. The substrates were loaded into a custom-built CVD apparatus, where CNT growth was initiated by heating the substrates to 750 °C under the fl ow of He, H2, C2H4 and a controlled amount of water vapor. The resultant CNTs were characterized by a variety of methods including Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and the growth parameters were varied in an attempt to optimize the purity and growth yield of the CNTs. The surface area and hydrogen adsorption characteristics of the CNTs were quantifi ed by the Brunauer- Emmett-Teller (BET) and Sieverts methods, and their capacitance was measured via cyclic voltammetry. While vertically-aligned CNT growth could not be verifi ed, TEM and SEM analysis indicated that CNT growth was still obtained, resulting in multiwalled CNTs of a wide range in diameter along with some amorphous carbon impurities. These microscopy fi ndings were reinforced by Raman spectroscopy, which resulted in a G/D ratio ranging from 1.5 to 3 across different samples, suggestive of multiwalled CNTs. Changes in gas fl ow rates and water concentration during CNT growth were not found to have a discernable effect on the purity of the CNTs. The specifi c capacitance of a CNT/FeMo/Inconel® electrode was found to be 3.2 F/g, and the BET surface area of

  20. Uncertainty in the deployment of Carbon Capture and Storage (CCS): A sensitivity analysis to techno-economic parameter uncertainty

    NARCIS (Netherlands)

    Koelbl, Barbara; van den Broek, Machteld; van Ruijven, Bastiaan Johannes; Faaij, André; van Vuuren, Detlef

    2014-01-01

    Projections of the deployment of Carbon Capture and Storage (CCS) technologies vary considerably. Cumulative emission reductions by CCS until 2100 vary in the majority of projections of the IPCC-TAR scenarios from 220 to 2200 GtCO2. This variation is a result of uncertainty in key determinants of th