WorldWideScience

Sample records for aqueuous uranium complexes

  1. Quantum mechanical calculation of aqueuous uranium complexes: carbonate, phosphate, organic and biomolecular species

    Directory of Open Access Journals (Sweden)

    Jha Prashant

    2009-08-01

    Full Text Available Abstract Background Quantum mechanical calculations were performed on a variety of uranium species representing U(VI, U(V, U(IV, U-carbonates, U-phosphates, U-oxalates, U-catecholates, U-phosphodiesters, U-phosphorylated N-acetyl-glucosamine (NAG, and U-2-Keto-3-doxyoctanoate (KDO with explicit solvation by H2O molecules. These models represent major U species in natural waters and complexes on bacterial surfaces. The model results are compared to observed EXAFS, IR, Raman and NMR spectra. Results Agreement between experiment and theory is acceptable in most cases, and the reasons for discrepancies are discussed. Calculated Gibbs free energies are used to constrain which configurations are most likely to be stable under circumneutral pH conditions. Reduction of U(VI to U(IV is examined for the U-carbonate and U-catechol complexes. Conclusion Results on the potential energy differences between U(V- and U(IV-carbonate complexes suggest that the cause of slower disproportionation in this system is electrostatic repulsion between UO2 [CO3]35- ions that must approach one another to form U(VI and U(IV rather than a change in thermodynamic stability. Calculations on U-catechol species are consistent with the observation that UO22+ can oxidize catechol and form quinone-like species. In addition, outer-sphere complexation is predicted to be the most stable for U-catechol interactions based on calculated energies and comparison to 13C NMR spectra. Outer-sphere complexes (i.e., ion pairs bridged by water molecules are predicted to be comparable in Gibbs free energy to inner-sphere complexes for a model carboxylic acid. Complexation of uranyl to phosphorus-containing groups in extracellular polymeric substances is predicted to favor phosphonate groups, such as that found in phosphorylated NAG, rather than phosphodiesters, such as those in nucleic acids.

  2. Uranium nucleophilic carbene complexes

    International Nuclear Information System (INIS)

    The only stable f-metal carbene complexes (excluding NHC) metals f present R2C2- groups having one or two phosphorus atoms in the central carbon in alpha position. The objective of this work was to develop the chemistry of carbenes for uranium (metal 5f) with the di-anion C{Ph2P(=S)}22- (SCS2-) to extend the organometallic chemistry of this element in its various oxidation states (+3-+6), and to reveal the influence of the 5f orbitals on the nature and reactivity of the double bond C=U. We first isolated the reactants M(SCHS) (M = Li and K) and demonstrated the role of the cation M+ on the evolution of the di-anion M2SCS (M = Li, K, Tl) which is transformed into LiSCHS in THF or into product of intramolecular cyclization K2[C(PhPS)2(C6H4)]. We have developed the necessary conditions mono-, bis- and tris-carbene directly from the di-anion SCS2- and UCl4, as the precursor used in uranium chemistry. The protonolysis reactions of amides compounds (U-NEt2) by the neutral ligand SCH2S were also studied. The compounds [Li(THF)]2[U(SCS)Cl3] and [U(SCS)Cl2(THF)2] were then used to prepare a variety of cyclopentadienyl and mono-cyclo-octa-tetra-enyliques uranium(IV) carbene compounds of the DFT analysis of compounds [M(SCS)Cl2(py)2] and [M(Cp)2(SCS)] (M = U, Zr) reveals the strong polarization of the M=C double bond, provides information on the nature of the σ and π interactions in this binding, and shows the important role of f orbitals. The influence of ancillary ligands on the M=C bond is revealed by examining the effects of replacing Cl- ligands and pyridine by C5H5- groups. Mulliken and NBO analyzes show that U=C bond, unlike the Zr=C bond, is not affected by the change in environment of the metal center. While the oxidation tests of carbene complexes of U(IV) were disappointing, the first carbene complex of uranium (VI), [UO2(SCS)(THF)2], was isolated with the uranyl ion UO22+. The reactions of compounds UO2X2 (X = I, OTf) with anions SCS2- and SCHS- provide the

  3. Uranium extraction by complexation with siderophores

    Science.gov (United States)

    Bahamonde Castro, Cristina

    One of the major concerns of energy production is the environmental impact associated with the extraction of natural resources. Nuclear energy fuel is obtained from uranium, an abundant and naturally occurring element in the environment, but the currently used techniques for uranium extraction leave either a significant fingerprint (open pit mines) or a chemical residue that alters the pH of the environment (acid or alkali leaching). It is therefore clear that a new and greener approach to uranium extraction is needed. Bioleaching is one potential alternative. In bioleaching, complexants naturally produced from fungi or bacteria may be used to extract the uranium. In the following research, the siderophore enterobactin, which is naturally produced by bacteria to extract and solubilize iron from the environment, is evaluated to determine its potential for complexing with uranium. To determine whether enterobactin could be used for uranium extraction, its acid dissociation and its binding strength with the metal of interest must be determined. Due to the complexity of working with radioactive materials, lanthanides were used as analogs for uranium. In addition, polyprotic acids were used as structural and chemical analogs for the siderophore during method development. To evaluate the acid dissociation of enterobactin and the subsequent binding constants with lanthanides, three different analytical techniques were studied including: potentiometric titration, UltraViolet Visible (UV-Vis) spectrophotometry and Isothermal Titration Calorimetry (ITC). After evaluation of three techniques, a combination of ITC and potentiometric titrations was deemed to be the most viable way for studying the siderophore of interest. The results obtained from these studies corroborate the ideal pH range for enterobactin complexation to the lanthanide of interest and pave the way for determining the strength of complexation relative to other naturally occurring metals. Ultimately, this

  4. Chapter 6. Uranium extraction possibilities from natural uranium-bearing waters of complex salt composition. 6.1. Some uranium extraction methods from natural uranium-bearing waters of complex salt composition

    International Nuclear Information System (INIS)

    Present article is devoted to various uranium extraction methods from natural uranium-bearing waters of complex salt composition. Various uranium extraction methods from natural uranium-bearing waters of complex salt composition were described.

  5. Uranium

    International Nuclear Information System (INIS)

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  6. Macrocyclic ligands for uranium complexation

    International Nuclear Information System (INIS)

    A highly preorganized 24-macrocycle containing biuret, thiobiuret and pyridine subunits has been prepared by high dilution ring-closure procedures. Intermediate products to this macrocycle have been utilized to extend this synthetic route to include further representatives where solubility and stability will be influenced by substituent variation. A 1:1 complex has been formed from uranyl acetate and a quinquepyridine derivative, this representing a new type of ligand for the uranyl ion. A very convenient synthetic procedure that will allow the incorporation of these macrocycles into polymeric systems has been developed for the introduction of a vinyl substituent into the 4-position of the pyridine ring. Using triflate, vinyltributyltin and Pd0 chemistry, this procedure should make a variety of substituted 4-vinylpyridines available for the first time. 3 refs

  7. Speciation and Precipitation of Uranium Complexes in Hydrothermal Solutions Related to Granite—type Uranium Deposits

    Institute of Scientific and Technical Information of China (English)

    陈培荣; 章邦桐; 等

    1992-01-01

    Uranium-bearing hydrothermal solutions during the stage of ore deposition are weakly alkaline and of the Ca2+ -Na+/HCO3- -F- type.UO2(CO3)22- and UO2F4-, are dominant in the hydrothermal solutions with respect to their activity.Wall-rock hydrothermal alterations ,temperature and pressure drop and the reducing capability of rock assemblage (Δeh) led to a decrease in Eh of the hydrothermal solutions and an increase in Eh at which uranium began precipitating.Therefore,the mechanism of uranium precipitation is essentially the reduction of uranium complexes.The granite-type uranium deposits are the most important type of uranium resources in China.Discussions will be made in this paper concerning the hydrothermal speciation and precipitation mech-anisms of uranium complexes in the light of fluid inclusion and geological data from some major de-posits of this type in South China.

  8. Synthesis and reactivity of triscyclopentadienyl uranium (III) and (IV) complexes

    International Nuclear Information System (INIS)

    The reactions of (RC5H4)3U with R=trimethylsilylcyclopentadienyl or tertiobutylcyclopentadienyl are studied for the synthesis of new uranium organometallic compounds. Reactions with sodium hydride are first described uranium (III) anionic hydrides obtained are oxidized for synthesis of stable uranium (IV) organometallic hydrides. Stability of these compounds is discussed. Reactivity of these uranium (III) and (IV) hydrides are studied. Formation of new binuclear compounds with strong U-O and U-N bonds is examined and crystal structure are presented. Monocyclooctatetraenylic uranium complexes are also investigated

  9. The chemical state of complex uranium oxides

    OpenAIRE

    Kvashnina, K. O.; Butorin, S. M.; Martin, P.; P. Glatzel

    2013-01-01

    We report here the first direct observation of U(V) in uranium binary oxides and analyze the gradual conversion of the U oxidation state in the mixed uranium systems. Our finding clarifies previous contradicting results and provides important input for the geological disposal of spent fuel, recycling applications and chemistry of uranium species.

  10. RECOVERY OF URANIUM BY CYCLOALKYLDITHIO-CARBAMATE COMPLEXING

    Science.gov (United States)

    Neville, O.K.

    1959-06-30

    The separation of uranium-233 from an aqueous nitric acid solution of neutron irradiated thorium by selectively complexing the uranium is described. The separation is carried out by contacting the thorium solution with a non- aromatic organic dithiocarbamate selected from the group which consists of alkali and alkaline earth cycloalkyldithiocarbamates and recovering the resulting uranyl cycloalkyldithiocarbamate complex by organic solvent extraction such as with methyl ethyl ketone. The complexed uranium may be stripped from the separated organic phase by scrubbing with one normal nitric acid solution.

  11. Unique advantages of organometallic supporting ligands for uranium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Diaconescu, Paula L. [Univ. of California, Los Angeles, CA (United States); Garcia, Evan [Univ. of California, Los Angeles, CA (United States)

    2014-05-31

    The objective of our research project was to study the reactivity of uranium complexes supported by ferrocene-based ligands. In addition, this research provides training of graduate students as the next generation of actinide scientists.

  12. Six-coordinate uranium complexes featuring a bidentate anilide ligand

    Energy Technology Data Exchange (ETDEWEB)

    Fox, A.R.; Silvia, J.S.; Townsend, E.M.; Cummins, Ch.C. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2010-06-15

    The synthesis of a new bidentate anilide ligand and four uranium amide complexes utilizing the ligand are reported. The secondary aniline HN[R]Ar{sub Met} (R = C(CD{sub 3}){sub 2}CH{sub 3}, Ar{sub Met} = 2-NMe{sub 2}-5-MeC{sub 6}H{sub 3}) is prepared by condensation of H{sub 2}NAr{sub Met} and acetone-d6 followed by alkylation of the resulting imine with MeLi. The ligand precursors (Et{sub 2}O)Li(N[R]Ar{sub Met}) and K(N[R]Ar{sub Met}) are prepared through deprotonation of HN[R]Ar{sub Met} with n-BuLi and KH, respectively. Treatment of UI{sub 3}(THF){sub 4} with (Et{sub 2}O)Li(N[R]Ar{sub Met}) (2 equiv) provides the uranium(III) -ate complex Li[I{sub 2}U(N[R]Ar{sub Met}){sub 2}] (Li[1]), while treatment of UI{sub 3} with three equiv. of K(N[R]Ar{sub Met}) provides the neutral uranium(III) complex U(N[R]Ar{sub Met}){sub 3} (2). Both uranium(III) complexes are susceptible to 1e oxidation, as is demonstrated by the syntheses of the uranium(IV) derivatives I{sub 2}U(N[R]Ar{sub Met}){sub 2} (1) and [U(N[R]Ar{sub Met}){sub 3}][OTf] ([2][OTf]; OTf=CF{sub 3}SO{sub 3}). The spectroscopic and X-ray structural characterization of all four uranium complexes is described. The structures of 2 and [2][OTf] exhibit a large degree of steric pressure about the uranium center, effectively preventing the [2]{sup +} ion from achieving a seven-coordinate structure. (authors)

  13. A literature review of interaction of oxidized uranium species and uranium complexes with soluble organic matter

    Science.gov (United States)

    Jennings, Joan K.; Leventhal, J.S.

    1978-01-01

    Organic material is commonly found associated with uranium ores in sandstone-type deposits. This review of the literature summarizes the classes and separations of naturally occurring organic material but the emphasis is on soluble organic species. The main class of materials of interest is humic substances which are high-molecular-weight complex molecules that are soluble in alkaline solution. These humic substances are able to solubilize (make soluble) minerals and also to complex [by ion exchange and (or) chelation] many cations. The natural process of soil formation results in both mineral decomposition and element complexing by organic species. Uranium in solution, such as ground water, can form many species with other elements or complexes present depending on Eh and pH. In natural systems (oxidizing Eh, pH 5-9) the uranium is usually present as a complex with hydroxide or carbonate. Thermodynamic data for these species are presented. Interacting metals and organic materials have been observed in nature and studied in the laboratory by many workers in diverse scientific disciplines. The results are not easily compared. Measurements of the degree of complexation are reported as equilibrium stability constant determinations. This type of research has been done for Mn, Fe, Cu, Zn, Pb, Ni, Co, Mg, Ca, Al, and to a limited degree for U. The use of Conditional Stability Constants has given quantitative results in some cases. The methods utilized in experiments and calculations are reviewed.

  14. Uranium complexes with macrosyclic polyethers. Synthesis and structural chemical analysis

    International Nuclear Information System (INIS)

    This dissertation reports about studies on the chemical coordination behaviour of uranium of oxidation stages IV and VI with regard to twelve different macrocyclic ligands. For the preparation of the complexes, for every system a different method has been developed. The elementary analysis of the various complexes including the uranium had been done by X-ray fluorescence analysis, and the structural characterization proceeded via vibrational, uv-vis and emission spectroscopy as well as 1H-NMR and 13C-spin-lattice relaxation time studies. Conformational analysis of the polyethers used allowed the structural changes in the complexes to be observed. The structural analysis of the hydrous uranium VI crown ether complexes yielded information of characteristic features of these types of complexes. The first coordination sphere of the uranyl ion with covalently bonded anion remains unchanged. As to the water content, there is a certain range. Depending upon the solvent used, the complexes have two or four H2O molecules per formula unit. (orig./EF)

  15. Nitrite complexes of uranium and thorium.

    Science.gov (United States)

    Dulong, Florian; Pouessel, Jacky; Thuéry, Pierre; Berthet, Jean-Claude; Ephritikhine, Michel; Cantat, Thibault

    2013-03-25

    The first examples of inorganic nitrite complexes of the natural actinides are described, including the structures of the homoleptic thorium(IV) [PPh(4)](2)[Th(NO(2))(6)] and the uranyl(VI) [PPh(4)](2)[UO(2)(NO(2))(4)] complexes; the nitrite ligand can adopt two different coordination modes in the coordination sphere of the uranyl ion and is unstable towards reduction.

  16. Preparation, spectroscopic and structural analysis of uranium-arabinose complexes

    International Nuclear Information System (INIS)

    The reaction between L-arabinose and hydrated uranyl salts has been investigated in aqueous solution and the solid complexes of the type UO2(L-arabinose)X2·2H2O, where X=Cl-, Br-, and NO3-, have been isolated and characterized. Due to the marked similarities with those of the structurally known Ca(L-arabinose)X2·4H2O and Mg(L-arabinose)X2·4H2O (X=Cl- or Br-) compounds, the UO22+ ion binds obviously to two L-arabinose moieties, through O1, O5 of the first and O3, O4 of the second molecule resulting into a six-coordinated geometry around the uranium ion with no direct U-X (X=Cl-, Br- or NO3-) interaction. The intermolecular hydrogen bonding network of the free L-arabinose is rearranged upon uranium interaction. The β-anomer configuration is predominant in the free L-arabinose, whereas the α-anomer conformation is preferred in the uranium complexes. (Author)

  17. Homoleptic 2-mercapto benzothiazolate uranium and lanthanide complexes

    International Nuclear Information System (INIS)

    Treatment of [Ln(BH4)3(THF)3] (Ln = Ce, Nd) with 3 and 4 mol equiv of KSBT in tetrahydrofuran (THF) led to the formation of [Ln(SBT)3(THF)] and [K(THF)Ln(SBT)4], respectively. The uranium(IV) compound [U(SBT)4(THF)2] was obtained from U(BH4)4 and was reversibly reduced by sodium amalgam into the corresponding anionic uranium(III) complex. The crystal structures of [Ln(SBT)3(THF)2] (Ln = Ce, Nd), [K(15-crown-5)2][Nd(SBT)4], [U(SBT)4(THF)], and [K(15-crown-5)2][U(SBT)4(py)] show the bidentate coordination mode and the thionate character of the SBT ligand. (authors)

  18. Study of new complexes of uranium and comba radical. I.- Complexes defective in sodium carbonate

    International Nuclear Information System (INIS)

    Some complexes formed in presence of defect of sodium carbonate with respect to the stoichiometric ratio (U): (C03) = 1:3 are studied. This ratio corresponds to the main complex which is responsible for the uranium extraction with CDMBAC organic solutions and from U(VI) aqueous solutions with an excess of sodium carbonate. (Author) 10 refs

  19. Interactions of quercetin-uranium complexes with biomembranes and DNA

    International Nuclear Information System (INIS)

    Uranium decontamination gains a great importance with the spread of nuclear waste in both soil and water systems across the planet. All known remediation methods of uranium can be exclusively based either on synthetic materials with high adsorbent power and known physical chemistry or life organisms by which the uranium eventually accumulated inside their tissues. In the present thesis, it was attempted to design a rational approach for uranyl removal primarily from waters using the reducing potential of quercetin, which is a plant-derived small organic molecules, along with its photochemical activities. Such approach, which is neither a fully synthetic nor an organism-based approach, was chosen here to avoid disadvantages with both traditional strategies. Here, complexation experiments were designed to assess the use of uranyl-quercetin complexes for the photoreduction of water-soluble U(VI) to insoluble U(IV) by comparing absorption properties of uranyl-quercetin complexes in acetone, water, and hydrophobic bilayer lipid vesicles. The UV-vis data show that uranyl quercetin complex can form in both hydrophobic and hydrophilic environments. In both cases the B-ring band in quercetin structure becomes reduced, red shifted and a pronounced absorption arises in the 400-500 nm range. Such data suggests that U(VI) binds at the 3-OH and 4-carbonyl of ring C of quercetin. Interestingly, the results of UV-Vis spectroscopy part hint at a crucial role of a stable or transiently ionized hydroxyl for the efficient uranyl-dependent photodegradation of quercetin. FTIR spectroscopy absorption changes further demonstrates that the UV-vis-spectroscopic changes are indeed accompanied by changes in the chemical structure of the complex as expected for a uranyl-dependent photodegradation. IR data thus suggest that U(VI) becomes reduced by the photoreaction, rather than merely changing its coordination shell. The frequency shifts in the C=C and C=O absorption range on the other hand

  20. Determination of the stability constants of uranium-tetracycline complexes

    International Nuclear Information System (INIS)

    Stability constants of complexes formed with tetracycline (TC) and uranium have been determined by solvent extraction technique. The site on the tetracycline molecule at which uranyl ion may be bound has been studied by means of potentiometric titration and spectrophotometric techniques. The complex species with 1:1 and 1:2 for UO2: TC ratio have been identified by conductometric titration. Solvent extraction studies have also shown that the complexes are mononuclear of the type UO2 (TC) sub (n) (n=1,2) and that no hidroxocomplexes or negatively charged complexes have been formed. Stability constant values have been calculated by numerical weighted least square method and by graphical methods of two parameters, of the average number of ligands and of the limiting value. (Author)

  1. Uranium hetero-bimetallic complexes: synthesis, structure and magnetic properties

    International Nuclear Information System (INIS)

    The aim of this thesis is to synthesize molecular complexes with uranium and transition metal ions in close proximity, to determine the nature of the magnetic interaction between them. We decided to use Schiff bases as assembling ligands, which are unusual for uranium (IV). Although the simplest Schiff bases, such as H2Salen, lead to ligand exchange reactions, the bi-compartmental Schiff base H4L6 (bis(3-hydroxy-salicylidene) - 2,2-dimethyl-propylene) allows the crystal structure determination of the complex [L6Cu(pyr)]U[L6Cu].2pyr, obtained by reaction of the metallo-ligand H2L6Cu with U(acac)4. In this manner, the complexes [L6Co(pyr)]2U and [L6Ni(pyr)]2U.pyr were also isolated, as well as the compounds in which the paramagnetic ions have been exchanged by the diamagnetic ions ZnII, ZrIV and ThIV': [L6Zn(pyr)]2U, [L6Cu]2Zr and [L6Cu(pyr)]Th[L6Cu].2pyr. These complexes are the first which involve three metallic centres assembling by the means of a hexa-dentate Schiff base. The crystalline structures show, for all these complexes, the outstanding orthogonal arrangement of the two fragments L6M around the central atom which is in a dodecahedral environment of eight oxygen atoms of two Schiff bases. The syntheses of the isostructural complexes Cu2II and Zn2U in which the uranium (IV) ion is close, in the first one, to the paramagnetic ion CuII and, in the second one, to the diamagnetic ion ZnII, has allowed the use of the empiric method to determine the nature of the magnetic interaction between an f element and a transition metal. The comparison of the magnetic behaviour of two complexes Cu2U and Zn2U, expressed by the variation of χT vs T, reveals the ferromagnetic interaction in the heart of the triad Cu-U-Cu. The magnetic behaviour of the complexes Cu2Th et Cu2Zr which does not show any coupling between the two copper (II) ions and the weak antiferromagnetic interaction in the Ni2U compound, favour the hypothesis of ferromagnetic coupling between UIV and Cu

  2. Interactions of quercetin-uranium complexes with biomembranes and DNA

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Enas Mohammed Hassan

    2014-07-21

    Uranium decontamination gains a great importance with the spread of nuclear waste in both soil and water systems across the planet. All known remediation methods of uranium can be exclusively based either on synthetic materials with high adsorbent power and known physical chemistry or life organisms by which the uranium eventually accumulated inside their tissues. In the present thesis, it was attempted to design a rational approach for uranyl removal primarily from waters using the reducing potential of quercetin, which is a plant-derived small organic molecules, along with its photochemical activities. Such approach, which is neither a fully synthetic nor an organism-based approach, was chosen here to avoid disadvantages with both traditional strategies. Here, complexation experiments were designed to assess the use of uranyl-quercetin complexes for the photoreduction of water-soluble U(VI) to insoluble U(IV) by comparing absorption properties of uranyl-quercetin complexes in acetone, water, and hydrophobic bilayer lipid vesicles. The UV-vis data show that uranyl quercetin complex can form in both hydrophobic and hydrophilic environments. In both cases the B-ring band in quercetin structure becomes reduced, red shifted and a pronounced absorption arises in the 400-500 nm range. Such data suggests that U(VI) binds at the 3-OH and 4-carbonyl of ring C of quercetin. Interestingly, the results of UV-Vis spectroscopy part hint at a crucial role of a stable or transiently ionized hydroxyl for the efficient uranyl-dependent photodegradation of quercetin. FTIR spectroscopy absorption changes further demonstrates that the UV-vis-spectroscopic changes are indeed accompanied by changes in the chemical structure of the complex as expected for a uranyl-dependent photodegradation. IR data thus suggest that U(VI) becomes reduced by the photoreaction, rather than merely changing its coordination shell. The frequency shifts in the C=C and C=O absorption range on the other hand

  3. Uranium mill tailings neutralization: contaminant complexation and tailings leaching studies

    International Nuclear Information System (INIS)

    Laboratory experiments were performed to compare the effectiveness of limestone (CaCO3) and hydrated lime [Ca(OH)2] for improving waste water quality through the neutralization of acidic uranium mill tailings liquor. The experiments were designed to also assess the effects of three proposed mechanisms - carbonate complexation, elevated pH, and colloidal particle adsorption - on the solubility of toxic contaminants found in a typical uranium mill waste solution. Of special interest were the effects each of these possible mechanisms had on the solution concentrations of trace metals such as Cd, Co, Mo, Zn, and U after neutralization. Results indicated that the neutralization of acidic tailings to a pH of 7.3 using hydrated lime provided the highest overall waste water quality. Both the presence of a carbonate source or elevating solution pH beyond pH = 7.3 resulted in a lowering of previously achieved water quality, while adsorption of contaminants onto colloidal particles was not found to affect the solution concentration of any constituent investigated. 24 refs., 8 figs., 19 tabs

  4. Uranium

    International Nuclear Information System (INIS)

    The author discusses the contribution made by various energy sources in the production of electricity. Estimates are made of the future nuclear contribution, the future demand for uranium and future sales of Australian uranium. Nuclear power growth in the United States, Japan and Western Europe is discussed. The present status of the six major Australian uranium deposits (Ranger, Jabiluka, Nabarlek, Koongarra, Yeelerrie and Beverley) is given. Australian legislation relevant to the uranium mining industry is also outlined

  5. Uranium

    International Nuclear Information System (INIS)

    The development, prospecting, research, processing and marketing of South Africa's uranium industry and the national policies surrounding this industry form the headlines of this work. The geology of South Africa's uranium occurences and their positions, the processes used in the extraction of South Africa's uranium and the utilisation of uranium for power production as represented by the Koeberg nuclear power station near Cape Town are included in this publication

  6. Uranium

    International Nuclear Information System (INIS)

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  7. Occurrence of uranium in rocks of the intrusive complex at Ekiek Creek, western Alaska

    Science.gov (United States)

    Wallace, Alan R.

    1979-01-01

    Uranium in the Ekiek Creek Complex of western Alaska is related to a niobium-rich pyrochlore in the nepheline syenite of the complex. The complex consists of an aegirine-phlogopite pyroxenite that has been intruded and partly replaced by nepheline syenite. The contact zone between the two igneous units varies from a sharp contact to a diffuse zone where the pyroxenite has been metasomatically replaced by the syenite. The entire complex was intruded into an older Cretaceous monzonite. The pyrochlore occurs as an accessory mineral in the syenite, and is visible in rocks containing over 50 ppm uranium. Chemical analyses indicate that, in all samples of syenite, there is a positive correlation between uranium and niobium; this suggests that the uranium-pyrochlore association persists even when pyrochlore is not readily visible in thin section. The small amount of pyrochlore, and its refractory nature, make the complex an unfavorable source for secondary uranium leaching or heavy-mineral concentration.

  8. Toxicity of depleted uranium complexes is independent of p53 activity

    OpenAIRE

    Heintze, Ellie; Aguilera, Camille; Davis, Malia; Fricker, Avery; Li, Qiang; Martinez, Jesse; Matthew J. Gage

    2010-01-01

    The p53 tumor suppressor protein is one of the key checkpoints in cellular response to a variety of stress mechanisms, including exposure to various toxic metal complexes. Previous studies have demonstrated that arsenic and chromium complexes are able to activate p53, but there is a dearth of data investigating whether uranium complexes exhibit similar effects. The use of depleted uranium (DU) has increased in recent years, raising concern about DU’s potential carcinogenic effects. Previous s...

  9. Environmental Survey preliminary report, Portsmouth Uranium Enrichment Complex, Piketon, Ohio

    International Nuclear Information System (INIS)

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Portsmouth Uranium Enrichment Complex (PUEC), conducted August 4 through August 15, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Team specialists are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at PUEC, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Argonne National Laboratory. When completed, the results will be incorporated into the PUEC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the PUEC Survey. 55 refs., 22 figs., 21 tabs

  10. MICROBIAL TRANSFORMATIONS OF URANIUM COMPLEXED WITH ORGANIC AND INORGANIC LIGANDS.

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS,A.J.

    2002-09-15

    Biotransformation of various chemical forms of uranium present in wastes, contaminated soils and materials by microorganisms under different process conditions such as aerobic and anaerobic (denitrifying, iron-reducing, fermentative, and sulfate-reducing) conditions will affect the solubility, bioavailability, and mobility of uranium in the natural environment. Fundamental understanding of the mechanisms of microbial transformations of uranium under a variety of environmental conditions will be useful in developing appropriate remediation and waste management strategies as well as predicting the microbial impacts on the long-term stewardship of contaminated sites.

  11. Electrochemistry, Spectroscopy, and Reactivity of Uranium Complexes Supported by Ferrocene Diamide Ligands

    OpenAIRE

    Duhovic, Selma

    2012-01-01

    This work culminates a systematic study of various uranium complexes supported by ferrocene diamide ligands. Chapter 1 reports the synthesis of 1,1'-ferrocene diamines and describes their electronic and steric properties in both neutral and oxidized forms. Chapter 2 describes an efficient synthesis of uranium dialkyl complexes supported by a single 1,1'- ferrocene diamide ligand, while Chapter 3 explores their reactivity with several aromatic heterocycles. Chapter 4 focuses on the electrochem...

  12. Trivalent metallocene chemistry of some uranium, titanium, and zirconium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, W.W. Jr.

    1995-05-01

    Dicyclopentadienyluranium halide dimers have been prepared and their solution behavior examined. These molecules exist as dimers in solution, and the halide ligands undergo rapid site exchange on the NMR timescale above 50 C. Analogous dicyclopentadienyluranium hydroxide dimers have also been prepared; they oxidatively eliminate hydrogen to give the corresponding oxide dimers. Mechanism of this reaction is consistent with {alpha}migration of one of the hydroxide hydrogen atoms to a uranium center followed by elimination of hydrogen. Ground state of [(Me{sub 3}Si){sub 2}C{sub 5}H{sub 3}]{sub 3}M M = Nd, U and their base adducts has been examined by variable temperature magnetic susceptibility and EPR spectroscopy. The ground state is found to be {sup 4}I{sub 9/2} with a crystal field state consisting largely of J{sub z} = 1/2 lowest, in agreement with previous studies on tris-cyclopentadienylneodymium complexes. The zirconium metallocene Cp{sub 3}Zr has been prepared, characterized crystallographically, and its reactivity studied. Its chemical behavior is controlled by presence of an electron in the non-bonding, d{sub z}2 orbital which prevents formation of base adducts Of Cp{sub 3}Zr, but allows Cp{sub 3}Zr to abstract atoms from other molecules. Electonic and EPR spectra of Cp*{sub 2}TiX complexes, where Cp* is Me{sub 5}C{sub 5} and X is a monodentate, anionic ligand such as halide, have been studied. A {pi}-bonding spectrochemical series is developed, and trends in {pi}-bonding ability are found similar to those in other inorganic complexes. The {beta}-agostic interactions in Cp*{sub 2}TiN(Me)Ph have been examined using variable temperature EPR spectroscopy, and the enthalpy/entropy of the interaction determined. In Cp*{sub 2}TiEt, enthalpy of the {beta}-agostic interaction is {minus}1.9 kcal/mol. The titanocene anion, Cp*{sub 2}TiLi(TMEDA) (TMEDA is N,N,N`,N`-tetramethylethylenediamine), has been prepared and its structure determined.

  13. Ligand influences on properties of uranium coordination complexes. Structure, reactivity, and spectroscopy

    International Nuclear Information System (INIS)

    In this thesis several different aspects of uranium chemistry are presented. It was shown that terminal uranium(V) oxo and imido complexes [((RArO)3tacn)UV(O)] and [((RArO)3tacn)UV(NSiMe3)] (R = t Bu, Ad) can be oxidized by silver(I) hexafluoro-antimonate to the uranium(VI) oxo and imido complexes [((RArO)3tacn)UVI(O)]SbF6 and [((RArO)3tacn)UVI(NSiMe3)]SbF6. While for the t Bu-derivative of the oxo complex an equatorial coordination is observed due to stabilization by the inverse trans-influence, normal axial coordination is observed for the Ad-derivative and both imido complexes. The inverse trans-influence was thus proven to be a key factor for the coordination mode of a terminal ligand on high valent uranium complexes. LIII XANES was shown to be a great tool for the determination of oxidation states of uranium complexes. Therefore, a series of uranium complexes in all stable oxidation states for uranium, +III to +VI was prepared, and their spectra analyzed. All compounds bear only O-donor ligands in addition to the chlating trisaryloxide-tacn-ligand. A separation of 1.5 to 3 eV in the white line energy is observed between the different oxidation states. This series can be used as reference for compounds, where oxidation state assignment is not obvious, such as a ketyl radical complex [((t-BuAr)O3tacn)U(O-C(t-BuPh)2.-)]. For this complex, the oxidation state of +IV could be assigned. Moreover, a series of isostructural uranium(IV) complexes was prepared. The influence of different ligands according to the spectrochemical series on the electronic and magnetic properties could be shown using UV/vis/NIR spectroscopy and variable temperature SQUID measurements. Calculations of uranium LIII XANES spectra show a variation in the shape of the spectra and thus high resolution PFY-XANES would be a great tool to determine the electronic influence of these different axial ligands. Using the single N-anchored ligand system, the first example of a uranium(IV)

  14. Oxo-group-14-element bond formation in binuclear uranium(V) Pacman complexes.

    Science.gov (United States)

    Jones, Guy M; Arnold, Polly L; Love, Jason B

    2013-07-29

    Simple and versatile routes to the functionalization of uranyl-derived U(V)-oxo groups are presented. The oxo-lithiated, binuclear uranium(V)-oxo complexes [{(py)3LiOUO}2(L)] and [{(py)3LiOUO}(OUOSiMe3)(L)] were prepared by the direct combination of the uranyl(VI) silylamide "ate" complex [Li(py)2][(OUO)(N")3] (N" = N(SiMe3)2) with the polypyrrolic macrocycle H4L or the mononuclear uranyl (VI) Pacman complex [UO2(py)(H2L)], respectively. These oxo-metalated complexes display distinct U-O single and multiple bonding patterns and an axial/equatorial arrangement of oxo ligands. Their ready availability allows the direct functionalization of the uranyl oxo group leading to the binuclear uranium(V) oxo-stannylated complexes [{(R3Sn)OUO}2(L)] (R = nBu, Ph), which represent rare examples of mixed uranium/tin complexes. Also, uranium-oxo-group exchange occurred in reactions with [TiCl(OiPr)3] to form U-O-C bonds [{(py)3LiOUO}(OUOiPr)(L)] and [(iPrOUO)2(L)]. Overall, these represent the first family of uranium(V) complexes that are oxo-functionalised by Group 14 elements.

  15. Radiological risk assessment of U(nat) in the ground water around Jaduguda uranium mining complex

    International Nuclear Information System (INIS)

    Uranium is present naturally in earth crust and hence at trace level in ground water, sea water, building materials etc. Naturally occurring radionuclide originating from industrial activities, metal mining and waste depository may contribute to the nearby ground water by radionuclide migration. Ground water ecosystem surrounding the uranium processing facility at Jaduguda has been studied for natural uranium distribution. In the present study, the drinking water sources at various distance zone (with in 1.6 km, 1.6-5 km and > 5km) covering all directions around the waste depository (tailings pond) have been investigated for uranium content. Evaluation of intake, ingestion dose and subsequent risk for population residing around the tailings pond has been carried out. Annual intake of uranium through drinking water for members of public residing around the uranium complex is found to be in the range of 41.8 - 44.4 Bq.y-1. The intake and ingestion dose is appreciably low (-1) which is far below the WHO recommended level of 100 Sv.y-1. The life time radiological risk due to uranium natural in drinking water is insignificant and found to be of the order of 10-6. (author)

  16. Structure studies of uranium complexes with macrocycles in solid phase and in solution

    International Nuclear Information System (INIS)

    The molecular structure of uranium complexes is determined by X-ray diffraction for monocrystals, paramagnetic NMR for solutions and EXAFS for both. The last method can be applied for any oxidation degree of uranium. Solubilization of uranyl and uranium IV hydroxides by cyclodextrins is evidenced and complexation is shown by NMR and polarography. The [222] cryptand diamine-N-oxide was synthesized and the structure of various compounds of this macrocycle is studied. Insertion of uranium III in 18-crown-16 is studied by EXAFS in the complex U3 (BH4)9 (18-crown-6)2. The structure of the uranium complex U(BH4)2 dicyclohexyl-(18-crown-6)B)2+UCl5BH4)2- is determined by X-ray diffraction. NMR shows that 18-crown-6 and B isomer of dicyclohexyl 18-crown-6 stabilize the cation U(BH4)2+ in dichloromethane and [222] cryptand stabilizes U(BH4)3 in nitromethane

  17. Mineralogical, radiographic and uranium leaching studies on the uranium ore from Kvanefjeld, Ilimaussaq Complex, South Greenland

    International Nuclear Information System (INIS)

    102 samples of low-grade uranium ore from 70 drill holes at Kvanefjeld, Ilimaussaq alkaline intrusion, South Greenland were studied by means of autoradiography, fission-track investigations, microscopy, microprobe analyses and uraniumleaching experiments. The principal U-Th bearing mineral, steenstrupine, and several less common uranium minerals are disseminated in lujavrite (nepheline syenite) and altered volcanic rocks. Steenstrupine has average composition Nasub(6.7)Hsub(x)Casub(1.0) (REE+Y)sub(5.8)(Th,U)sub(0.5)(Mnsub(1.6)Fesub(1.8)Zrsub(0.3)Tisub(0.1)Alsub(o.2))Sisub(12)Osub(36)(Psub(4.3)Sisub(1.7))Osub(24)(F,OH) x nHsub(2)O; n and x are variable. It either is of magnetic origin (type A) or connected with metasomatic processes (type B), or occurs in late veins (type C). Preponderance of grains are metamict (usually 2000-5000 ppm U3O8) or altered (usually above 5000 ppm U3O8), sometimes zoned with both components present. Occasionally they are extremely altered with U content falling to 500-5000 ppm U3O8 and local accumulations of high-U minerals formed. Replacement by crystalline monazite (+- metamict uranothorite and other components) is locally important. Uranium recovery by carbonate leaching (NaHCO3+Na2CO3+O20) depends both on alteration of steenstrupine and on hydration of parent rocks. Yield is between 98 and 50%, the average U concentration in the examined rock around 350 ppm U. (author)

  18. Thermochemistry of complex oxides of uranium(6), arsenic and alkali metals

    International Nuclear Information System (INIS)

    Standard reaction enthalpies for stoichiometric mixtures of mono-potassium orthoarsenate, uranium(6) and alkali metal nitrate oxides as well as mixtures of complex oxides of the M1AsUO6 (M1 = Li, Na, K, Rb, Cs) general formulas and potassium nitrate with hydrofluoric acid are determined in adiabatic calorimeter at the temperature of 298.15 K. Standard enthalpies for formation of complex oxides of uranium(6), arsenic and alkali metals at the temperature of 298.15 K are calculated by the obtained results. 8 refs., 1 tab

  19. Synthesis of uranium and thorium dioxides by Complex Sol-Gel Processes (CSGP). Synthesis of uranium oxides by Complex Sol-Gel Processes (CSGP)

    International Nuclear Information System (INIS)

    In the Institute of Nuclear Chemistry and Technology (INCT), a new method of synthesis of uranium and thorium dioxides by original variant of sol-gel method - Complex Sol-Gel Process (CSGP), has been elaborated. The main modification step is the formation of nitrate-ascorbate sols from components alkalized by aqueous ammonia. Those sols were gelled into: - irregularly agglomerates by evaporation of water; - medium sized microspheres (diameter <150) by IChTJ variant of sol-gel processes by water extraction from drops of emulsion sols in 2-ethylhexanol-1 by this solvent. Uranium dioxide was obtained by a reduction of gels with hydrogen at temperatures >700 deg. C, while thorium dioxide by a simple calcination in the air atmosphere. (authors)

  20. Public communication on times of environmental crisis. The opening of San Rafael 's uranium complex

    International Nuclear Information System (INIS)

    Full text: Argentina has had a lot of cultural changes in the last few years. An environmental movement has gathered and is trying to stop the opening of the Sierra Pintada uranium complex, near the city of San Rafael, in the south of Mendoza province. Since 2005, several 'groundless information' have been published in the local media about the dangers of this re-opening. These news exaggerate the properties of radon gas, claiming that it will reach San Rafael city (20 miles from the complex), rising radiological risk among the population, etc. This scene shows a 'non-real' picture of the regulatory activities that the Nuclear Regulatory Authority (ARN), a government agency that regulates nuclear facilities in Argentina, is really and systematically accomplishing. In this situation, the board of Directors of ARN decided to entrust a full analysis of the environmental issue in the area. The Office of Press and Communication implemented a local communication plan, using a Strategic and Systemic tool kit. The period to be analyzed is from second semester 2005 to February 2007. A little bit of history: the San Rafael Complex started in September 20 of 1979. It belongs to the National Commission of Atomic Energy (CNEA), a government agency. Until its temporary suspension in 1995 for international market reasons (uranium price was U$S 10 / pound), almost 2 million tons of uranium were processed. Besides its temporary suspension, the ARN has been constantly monitoring this particular former complex. In the year 2001, CNEA notices that the uranium price starts to rise and entrust National Technology University, Avellaneda Branch, to accomplish an Environmental Impact Report, according to the argentine law 25.585. Due especially to the rising of uranium price, (actually, the uranium price is approximately U$S 200) the national government determined to restart the extraction of the mineral again. By the year 2004, with the results of the Environmental Impact report, CNEA

  1. Reactions of ketones with uranium tetraborohydride, mechanism and stereoselectivity, synthesis and structure of uranium (IV) tetrahydroborato alkoxide complexes

    International Nuclear Information System (INIS)

    The mono- and bisalkoxide uranium complexes U(BH4)3(OCHR1R2)(THF)2 1 and U(BH4)2(OCHR1R2)2(THF)2 2 were prepared successively in tetrahydrofuran (THF) by treatment of U(BH4)4 with the corresponding ketone R1R2C = O (acetone, benzophenone, cyclohexanone, 2-methylcyclohexanone, 4-tert-butylcyclohexanone, and norcamphor). The borane BH3.THF was liberated during the formation of 1 and 2, and reacted with the ketone to give the alkoxyborane species B(OCHR1R2)nH3-n. Formation of 1 also resulted from: a) reaction of U-BH4)4 with the alkoxyborane species; b) reaction of U(BH4)4 with 2; and c) reaction of 2 with BH3.THF. The alkoxide groups of 1 and 2 rapidly exchange with those of the alkoxyborane species. The uranium complexes 1 and alkoxyborane species resulting from the reaction of U(BH4)4 with the substituted cyclohexanones or norcamphor have been separated and their hydrolysis afforded the corresponding epimeric alcohols in different proportions. The monoalkoxide compounds 1 were alternatively prepared by reaction of the ketones R1R2C = O with UCl4 in the presence of LiBH4 or by treatment of U(BH4)4 with the alcohols R1R2CHOH. The octahedral crystal structures of U(BH4)3(OCHPh2)(THF)2 1b and U(BH4)2(OCHPh2)2(THF)2 2b show that in 1b, the two equatorial THF ligands (and the two equatorial BH4 groups) are in relative cis positions whereas they are trans in 2b

  2. Dissolution of uranium and plutonium oxide using TBP-HNO3 complex. Research document

    International Nuclear Information System (INIS)

    The current technology for the selective separation of plutonium and uranium from spent nuclear fuel (MOX) using TBP-HNO3 complex is being developed (Powdered fuel extraction process). It is promising to simplify the reprocessing process for the selective separation because of its potential to unite the chemical processes, dissolution process using nitric acid and co-extraction process using TBP solvent, and to operate under the ambient pressure and at relatively 'mild' temperature. Plutonium oxide has reported to provide slower dissolution than uranium oxide in nitric acid. In this work dissolution behaviors of plutonium into TBP-HNO3 complex from powdered plutonium and uranium mixed oxide were examined. The powdered MOX fuel (average particles size 10 μm) was prepared from PuO2-UO2 pellets by heating for 4 hours at 400degC. The prepared powder was dissolved into TBP-4.74mol/L HNO3 complex and was stirred for 300 minutes. In the test with 6 grams of powdered MOX fuel and 20 mL of the TBP-HNO3 complex, the concentration of plutonium reached 0.17 mol/L and about 90 percent of plutonium was dissolved. It is experimentally confirmed plutonium was dissolved into the TBP-HNO3 complex from plutonium and uranium mixed oxide. The early dissolution rate was almost the same as that obtained with nitric acid solution. It is likely to predict the dissolution rate from the rate for nitric acid solution. Americium that was contained in the MOX fuel was also dissolved into the TBP-HNO3 complex, but was slower than plutonium. (author)

  3. A uranium (VI) complex: Synthesis, structural and thermal kinetic analysis

    Science.gov (United States)

    Goel, Nidhi

    2016-08-01

    A new complex [UO2(2,6-DNP)2phen] (1) (2,6-DNP = 2,6-dinitrophenol, phen = 1,10-phenanthroline) was synthesized, and identified by elemental analysis, IR, Powder XRD and single crystal X-ray crystallography. Crystal structure provides the abundant information's about the bonding and geometry around the U(VI) metal center. The thermal decomposition was studied by TG-DSC, and the kinetics of thermolysis was investigated by applying model fitting as well as isoconversional methods. Explosion delay measurement (De) was also evaluated to determine the response of this complex under the condition of rapid heating.

  4. Reliable modeling of the electronic spectra of realistic uranium complexes

    Science.gov (United States)

    Tecmer, Paweł; Govind, Niranjan; Kowalski, Karol; de Jong, Wibe A.; Visscher, Lucas

    2013-07-01

    We present an EOMCCSD (equation of motion coupled cluster with singles and doubles) study of excited states of the small [UO2]2+ and [UO2]+ model systems as well as the larger UVIO2(saldien) complex. In addition, the triples contribution within the EOMCCSDT and CR-EOMCCSD(T) (completely renormalized EOMCCSD with non-iterative triples) approaches for the [UO2]2+ and [UO2]+ systems as well as the active-space variant of the CR-EOMCCSD(T) method—CR-EOMCCSd(t)—for the UVIO2(saldien) molecule are investigated. The coupled cluster data were employed as benchmark to choose the "best" appropriate exchange-correlation functional for subsequent time-dependent density functional (TD-DFT) studies on the transition energies for closed-shell species. Furthermore, the influence of the saldien ligands on the electronic structure and excitation energies of the [UO2]+ molecule is discussed. The electronic excitations as well as their oscillator dipole strengths modeled with TD-DFT approach using the CAM-B3LYP exchange-correlation functional for the [UVO2(saldien)]- with explicit inclusion of two dimethyl sulfoxide molecules are in good agreement with the experimental data of Takao et al. [Inorg. Chem. 49, 2349 (2010), 10.1021/ic902225f].

  5. Interest of uranium complexes for the mechanism study of the McMurry reaction

    International Nuclear Information System (INIS)

    The reducing coupling reactions of ketones in diols and olefins are generally carried out with titanium or samarium compounds. In this work uranium complexes have been used. They have allowed to study the chemical reaction mechanism. This thesis is divided into three parts: 1) the reduction mechanism of uranium tetrachloride by cyclic voltametry has been studied at first. It has been shown that this reduction is followed by a transfer reaction of chlorides between the reduced specie of the higher electronic density and UCl . 2) In the second part is described: the synthesis, the crystal structure, the reactivity of the chemical agents, the stereochemistry of diols and alkenes formation and the pinacolisation reaction catalysis. 3) In the last part, the limits of the McMurry reaction are given by the study of the aromatic ketones pinacolisation reaction by-products. The obtained results show that the complexes of the metals which present a high reducing and oxo-philic (Ti, Sm, U..) character react in a similar way with the carbonyl compounds. If the uranium compounds are less used than those of the titanium in the field of the organic synthesis applications, they are precious auxiliaries and excellent models for reactions mechanisms study and for the synthesis methods optimization. (O.M.)

  6. Uranium hetero-bimetallic complexes: synthesis, structure and magnetic properties; Complexes heterobimetalliques de l'uranium: synthese, structure et proprietes magnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Le Borgne, Th

    2000-10-04

    The aim of this thesis is to synthesize molecular complexes with uranium and transition metal ions in close proximity, to determine the nature of the magnetic interaction between them. We decided to use Schiff bases as assembling ligands, which are unusual for uranium (IV). Although the simplest Schiff bases, such as H{sub 2}Salen, lead to ligand exchange reactions, the bi-compartmental Schiff base H{sub 4}L{sup 6} (bis(3-hydroxy-salicylidene) - 2,2-dimethyl-propylene) allows the crystal structure determination of the complex [L{sup 6}Cu(pyr)]U[L{sup 6}Cu].2pyr, obtained by reaction of the metallo-ligand H{sub 2}L{sup 6}Cu with U(acac){sub 4}. In this manner, the complexes [L{sup 6}Co(pyr)]{sub 2}U and [L{sup 6}Ni(pyr)]{sub 2}U.pyr were also isolated, as well as the compounds in which the paramagnetic ions have been exchanged by the diamagnetic ions Zn{sup II}, Zr{sup IV} and Th{sup IV}': [L{sup 6}Zn(pyr)]{sub 2}U, [L{sup 6}Cu]{sub 2}Zr and [L{sup 6}Cu(pyr)]Th[L{sup 6}Cu].2pyr. These complexes are the first which involve three metallic centres assembling by the means of a hexa-dentate Schiff base. The crystalline structures show, for all these complexes, the outstanding orthogonal arrangement of the two fragments L{sup 6}M around the central atom which is in a dodecahedral environment of eight oxygen atoms of two Schiff bases. The syntheses of the isostructural complexes Cu2{sup II} and Zn{sub 2}U in which the uranium (IV) ion is close, in the first one, to the paramagnetic ion Cu{sup II} and, in the second one, to the diamagnetic ion Zn{sup II}, has allowed the use of the empiric method to determine the nature of the magnetic interaction between an f element and a transition metal. The comparison of the magnetic behaviour of two complexes Cu{sub 2}U and Zn{sub 2}U, expressed by the variation of {chi}T vs T, reveals the ferromagnetic interaction in the heart of the triad Cu-U-Cu. The magnetic behaviour of the complexes Cu{sub 2}Th et Cu{sub 2}Zr which does not

  7. Recycled Uranium Mass Balance Project Y-12 National Security Complex Site Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This report has been prepared to summarize the findings of the Y-12 National Security Complex (Y-12 Complex) Mass Balance Project and to support preparation of associated U. S. Department of Energy (DOE) site reports. The project was conducted in support of DOE efforts to assess the potential for health and environmental issues resulting from the presence of transuranic (TRU) elements and fission products in recycled uranium (RU) processed by DOE and its predecessor agencies. The United States government used uranium in fission reactors to produce plutonium and tritium for nuclear weapons production. Because uranium was considered scarce relative to demand when these operations began almost 50 years ago, the spent fuel from U.S. fission reactors was processed to recover uranium for recycling. The estimated mass balance for highly enriched RU, which is of most concern for worker exposure and is the primary focus of this project, is summarized in a table. A discrepancy in the mass balance between receipts and shipments (plus inventory and waste) reflects an inability to precisely distinguish between RU and non-RU shipments and receipts involving the Y-12 Complex and Savannah River. Shipments of fresh fuel (non-RU) and sweetener (also non-RU) were made from the Y-12 Complex to Savannah River along with RU shipments. The only way to distinguish between these RU and non-RU streams using available records is by enrichment level. Shipments of {le}90% enrichment were assumed to be RU. Shipments of >90% enrichment were assumed to be non-RU fresh fuel or sweetener. This methodology using enrichment level to distinguish between RU and non-RU results in good estimates of RU flows that are reasonably consistent with Savannah River estimates. Although this is the best available means of distinguishing RU streams, this method does leave a difference of approximately 17.3 MTU between receipts and shipments. Slightly depleted RU streams received by the Y-12 Complex from ORGDP and

  8. Uranium (VI) complexing by macrocyclic or chelating ligands in aqueous solutions stability, formation kinetics, polarographic properties

    International Nuclear Information System (INIS)

    Stability of chelates (with EDTA,N,N ethylenediamine diacetic acid EDDA nitrilotriacetic acid NTA and iminodiacetic acid) of UO22+ and UO4 species of uranium VI is studied in aqueous solution (NaClO4 3M at 25 deg celcius). Structure in solution are proposed and discussed for mononuclear species. Only complexing kinetics (formation and acid hydrolysis) of UO4 with EDDA and NTA are studied by spectrophotometry (other reactions are too fast). Besides UO22+ complexes are formed with crown ethers I5C5 and I8C6 in aqueous solution (TEA ClO4 M/10 at 25 deg celcius. Complexes are probably stabilized by solvation. Results are confirmed by voltametry and reduction mechanisms of UO22+ and its complexes on mercury drop are proposed. 143 refs

  9. The U=C Double Bond: Synthesis and Study of Uranium Nucleophilic Carbene Complexes

    International Nuclear Information System (INIS)

    Treatment of U(BH4)4 with 1 or 3 equiv of Li2(SCS). 1.5Et2O, 1, afforded the actinide carbene complexes U(μ-SCS)3[U(BH4)3]2 (4) and U(μ-SCS)3[Li(Et2O)]2 (6), respectively [SCS = (Ph2P = S)2C]. In THF, complex 4 was transformed into the mononuclear derivative (SCS)U(BH4)2(THF)2 (5). The multiple bond character of the uranium-carbon bond was first revealed by the X-ray crystal structures of the three complexes. The U=C bond in these complexes present a nucleophilic character, as shown by their reaction with a carbonyl derivative. Finally, DFT calculations prove the involvement of both 5f and 6d orbitals in both the σ and the π U-C bonds. (authors)

  10. Uranium (VI)Bis(imido) chalcogenate complexes:synthesis and density functional theory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Liam P [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Boncella, James M [Los Alamos National Laboratory; Yang, Ping [Los Alamos National Laboratory; Scott, Brian L [Los Alamos National Laboratory

    2009-01-01

    Bis(imido) uranium(VI) trans- and cis-dichalcogenate complexes with the general formula U(NtBu)2(EAr)2(OPPh3)2 (EAr = O-2-tBuC6H4, SPh, SePh, TePh) and U(NtBu)2(EAr)2(R2bpy) (EAr = SPh, SePh, TePh) (R2bpy = 4,4'-disubstituted-2,2'-bipyridyl, R = Me, tBu) have been prepared. This family of complexes includes the first reported monodentate selenolate and tellurolate complexes of uranium(VI). Density functional theory calculations show that covalent interactions in the U-E bond increase in the trans-dichalcogenate series U(NtBu)2(EAr)2(OPPh3)2 as the size of the chalcogenate donor increases and that both 5f and 6d orbital participation is important in the M-E bonds of U-S, U-Se, and U-Te complexes.

  11. Uranium (VI)Bis(imido) chalcogenate complexes:synthesis and density functional theory analysis

    International Nuclear Information System (INIS)

    Bis(imido) uranium(VI) trans- and cis-dichalcogenate complexes with the general formula U(NtBu)2(EAr)2(OPPh3)2 (EAr = O-2-tBuC6H4, SPh, SePh, TePh) and U(NtBu)2(EAr)2(R2bpy) (EAr = SPh, SePh, TePh) (R2bpy = 4,4'-disubstituted-2,2'-bipyridyl, R = Me, tBu) have been prepared. This family of complexes includes the first reported monodentate selenolate and tellurolate complexes of uranium(VI). Density functional theory calculations show that covalent interactions in the U-E bond increase in the trans-dichalcogenate series U(NtBu)2(EAr)2(OPPh3)2 as the size of the chalcogenate donor increases and that both 5f and 6d orbital participation is important in the M-E bonds of U-S, U-Se, and U-Te complexes.

  12. Strongly coupled binuclear uranium-oxo complexes from uranyl oxo rearrangement and reductive silylation

    Science.gov (United States)

    Arnold, Polly L.; Jones, Guy M.; Odoh, Samuel O.; Schreckenbach, Georg; Magnani, Nicola; Love, Jason B.

    2012-03-01

    The most common motif in uranium chemistry is the d0f0 uranyl ion [UO2]2+ in which the oxo groups are rigorously linear and inert. Alternative geometries, such as the cis-uranyl, have been identified theoretically and implicated in oxo-atom transfer reactions that are relevant to environmental speciation and nuclear waste remediation. Single electron reduction is now known to impart greater oxo-group reactivity, but with retention of the linear OUO motif, and reactions of the oxo groups to form new covalent bonds remain rare. Here, we describe the synthesis, structure, reactivity and magnetic properties of a binuclear uranium-oxo complex. Formed through a combination of reduction and oxo-silylation and migration from a trans to a cis position, the new butterfly-shaped Si-OUO2UO-Si molecule shows remarkably strong UV-UV coupling and chemical inertness, suggesting that this rearranged uranium oxo motif might exist for other actinide species in the environment, and have relevance to the aggregation of actinide oxide clusters.

  13. Effects of aqueous complexation on reductive precipitation of uranium by Shewanella putrefaciens

    Directory of Open Access Journals (Sweden)

    Northup Abraham

    2004-10-01

    Full Text Available We have examined the effects of aqueous complexation on rates of dissimilatory reductive precipitation of uranium by Shewanella putrefaciens. Uranium(VI was supplied as sole terminal electron acceptor to Shewanella putrefaciens (strain 200R in defined laboratory media under strictly anaerobic conditions. Media were amended with different multidentate organic acids, and experiments were performed at different U(VI and ligand concentrations. Organic acids used as complexing agents were oxalic, malonic, succinic, glutaric, adipic, pimelic, maleic, citric, and nitrilotriacetic acids, tiron, EDTA, and Aldrich humic acid. Reductive precipitation of U(VI, resulting in removal of insoluble amorphous UO2 from solution, was measured as a function of time by determination of total dissolved U. Reductive precipitation was measured, rather than net U(VI reduction to U(IV, to assess overall U removal rates from solution, which may be used to gauge the influence of chelation on microbial U mineralization. Initial linear rates of U reductive precipitation were found to correlate with stability constants of 1:1 aqueous U(VI:ligand and U(IV:ligand complexes. In the presence of strongly complexing ligands (e.g., NTA, Tiron, EDTA, UO2 precipitation did not occur. Our results are consistent with ligand-retarded precipitation of UO2, which is analogous to ligand-assisted solid phase dissolution but in reverse: ligand exchange with the U4+ aquo cation acts as a rate-limiting reaction moderating coordination of water molecules with U4+, which is a necessary step in UO2 precipitation. Ligand exchange kinetics governing dissociation rates of ligands from U(VI-organic complexes may also influence overall UO2 production rates, although the magnitude of this effect is unclear relative to the effects of U(IV-organic complexation. Our results indicate that natural microbial-aqueous systems containing abundant organic matter can inhibit the formation of biogenic amorphous UO2.

  14. Osmium, ruthenium, iridium and uranium in silicates and chromite from the eastern Bushveld Complex, South Africa

    Science.gov (United States)

    Gijbels, R.h.; Millard, H.T., Jr.; Desborough, G.A.; Bartel, A.J.

    1974-01-01

    Osmium, ruthenium, iridium and uranium contents were determined in eight ortho pyroxene, seven plagioclase, and three chromite mineral separates from the eastern Bushveld Complex. Neutron activation analysis was used to measure the platinum metals, and uranium was determined by a fission track technique. The platinum metals were found to be present within each mine??ral in the proportions Os:Ru:Ir = 1:7:1, while the concentrations of these metals in the minerals are in the ratios orthopyroxene:plagioclase:chromite = 1:16:700. The concentration of uranium was found to range from 11 to 66 ppb (parts per billion) and not to vary significantly from mineral to mineral. The data for the platinum metals are consistent with a model in which the eastern Bushveld Complex was formed by the fractional crystallization of two separately injected magmas. A computer fit of this model to these data indicates that the initial concentrations of Os, Ru and Ir in the first magma were 0.24, 2.0 and 0.21 ppb and in the second magma were 0.16, 1.1 and 0.18 ppb, respectively. The fit also yields the distribution coefficients for the partitioning between the liquid and cumulus orthopyroxene, cumulus plagioclase and cumulus chromite. These coefficients (mineral/liquid) for osmium are 4.5, 66 and 2700; for ruthenium, they are 5, 65 and 2700; and for iridium, they are 4, 60 and 1600. To make this fit, it was necessary to hypothesize the existence of two types of chromite: one type with a large distribution coefficient, presumably formed as a cumulus phase at high temperature, and another, more prevalent type with a smaller distribution coefficient, which may have been formed by postcumulus growth at a lower temperature. This hypothesis is supported by data for coexisting chromite-silicate pairs, which indicate that the chromite grains expelled these platinum metals as they cooled. ?? 1974.

  15. Removal of Uranium (VI from aqueous solution by Uranium Benzamide Complex using AC_Fe3O4 Nanocomposite

    Directory of Open Access Journals (Sweden)

    Z Akbari Jonoush

    2014-07-01

    Conclusion: The removal of U(VI on AC_Fe3O4 nanocomposite with the aid of benzamide is a rapid and highly pH depended process. The maximum sorption capacity (15/87 mg/g of AC_Fe3O4 nanocomposite shows that this method is a suitable method for Uranium removal.

  16. 1. Mono([8]annulene)Uranium(4) half-sandwich complexes, 2. Novel syntheses of symmetrically substituted cyclooctatetetraenes

    Energy Technology Data Exchange (ETDEWEB)

    Boussie, T.R.

    1991-10-01

    A reproducible, high-yield synthesis of mono([8]annulene)uranium(4)dichloride (1) is reported, along with the X-ray crystal structural of the bis(pyridine) adduct. Metathesis reactions of the half-sandwich complex 1 with a variety of simple alkyl and alkoxy reagents failed to generate any isolable mono-ring complexes. Reactions of 1 with polydentate, delocalized anions did produce stable derivatives, including mono([8]annulene)uranium(4)bis(acetylacetonate) (4). An X-ray crystal structure of 4 is reported.

  17. 1. Mono((8)annulene)Uranium(4) half-sandwich complexes, 2. Novel syntheses of symmetrically substituted cyclooctatetetraenes

    Energy Technology Data Exchange (ETDEWEB)

    Boussie, T.R.

    1991-10-01

    A reproducible, high-yield synthesis of mono((8)annulene)uranium(4)dichloride (1) is reported, along with the X-ray crystal structural of the bis(pyridine) adduct. Metathesis reactions of the half-sandwich complex 1 with a variety of simple alkyl and alkoxy reagents failed to generate any isolable mono-ring complexes. Reactions of 1 with polydentate, delocalized anions did produce stable derivatives, including mono((8)annulene)uranium(4)bis(acetylacetonate) (4). An X-ray crystal structure of 4 is reported.

  18. Extraction of uranium and lead from mixed waste debris using a variety of metal/ligand complexes

    International Nuclear Information System (INIS)

    To ensure the safety of our Nation's nuclear stockpile, Los Alamos National Laboratory is in the process of constructing the DARHT (Dual Axis Radiographic Hydrodynamic Test) facility. DARHT will examine the effects of aging and the stability of our stockpile. Contained testing will be phased in to reduce the impact of these tests, which contain depleted uranium, on our environment. The main focus of this research is to develop a treatment scheme for the recovery of depleted uranium and lead from shot debris that will result from these tests. The goals of this research are to optimize the conditions on a bench scale using a commercially available water soluble polymer to bind the lead and a variety of metal/ligand complexes such as 4,5-dihydroxy-1,3-benzene-disulfonic acid, dithionite, sodium carbonate/bicarbonate, and sodium hypochlorite to bind the uranium. Studies were conducted on a mixture of debris, such as wood, cable, paper towels, and tubing that contained both uranium and lead ranging in concentration from 10-1000's of ppm of contaminants. Experiments were done varying combinations and successions of extractant solutions as well as a number of sequential extractions. Studies show that a mixture of sodium hypochlorite and carbonate removed 90+% of both uranium and lead. We then focused on a separation scheme for the lead and uranium

  19. Thermodynamics of the Complexation of Uranium(VI) by oxalate in aqueous solution at 10-70oC

    Energy Technology Data Exchange (ETDEWEB)

    Di Bernardo, Plinio; Zanonato, Pier Luigi; Tian, Guoxin; Tolazzi, Marilena; Rao, Linfeng

    2009-03-31

    The protonation reactions of oxalate (ox) and the complex formation of uranium(VI) with oxalate in 1.05 mol kg{sup -1} NaClO{sub 4} were studied at variable temperatures (10-70 C). Three U(VI)/ox complexes (UO{sub 2}ox{sub j}{sup (2-2j){sup +}} with j = 1, 2, 3) were identified in this temperature range. The formation constants and the molar enthalpies of complexation were determined by spectrophotometry and calorimetry. The complexation of uranium(VI) with oxalate ion is exothermic at lower temperatures (10-40 C) and becomes endothermic at higher temperatures (55-70 C). In spite of this, the free energy of complexation becomes more negative at higher temperatures due to increasingly more positive entropy of complexation that exceeds the increase of the enthalpy of complexation. The thermodynamic parameters at different temperatures, in conjunction with the literature data for other dicarboxylic acids, provide insight into the relative strength of U(VI) complexes with a series of dicarboxylic acids (oxalic, malonic and oxydiacetic) and rationalization for the highest stability of U(VI)/oxalate complexes in the series. The data reported in this study are of importance in predicting the migration of uranium(VI) in geological environments in the case of failure of the engineering barriers which protect waste repositories.

  20. Tetra- and hexavalent uranium forms bidentate-mononuclear complexes with particulate organic matter in a naturally uranium-enriched peatland

    DEFF Research Database (Denmark)

    Mikutta, Christian; Langner, Peggy; Bargar, John R.;

    2016-01-01

    % organic C, 4.1-58.6 g/kg Fe, and up to 335 mg/kg geogenic U. Uranium was found to be heterogeneously distributed at the micrometer scale and enriched as both U(IV) and U(VI) on fibrous and woody plant debris (48 ± 10% U(IV), x̅ ± σ, n = 22). Bulk U X-ray absorption near edge structure (XANES) spectroscopy...

  1. Solvent extraction of the lanthanide elements, scandium, uranium and thorium using tetracycline as complexing agent

    International Nuclear Information System (INIS)

    The scope of the work is to extend the study of the solvent extraction behaviour to all the 15 lanthanide elements as well as to uranium and thorium and to study the application of the system tetracycline-benzyl alcohol for the separation of the mentioned elements. pH dependence of the extraction have been determined. The effect of the presence of a supporting electrolyte (NaCl) on the extraction as well as the effect of ageing of the extractant solution on its extractant properties were studied. The variation of distribution ratio with metal concentration was examined in order to verify whether or not polynuclear complexes were present in the conditions under which the work was performed. In the first case discontinuous counter-current technique was used. In the second case a single step solvent extraction procedure was applied. (T.G.)

  2. Geochemical Characteristics of Rare Earth Elements of Guidong Granitic Complex and Relationship with Uranium Mineralization

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhanshi; Hua Renmin; Liu Xiaodong; Deng Ping; Wu Lieqin

    2007-01-01

    Guidong granitic complex is constituted by Luxi intrusion, Xiazhuang intrusion, Maofeng intrusion, Sundong intrusion, Aizi intrusion and Siqian intrusion, which emplaced in Indosinian and early Yanshanian Periods. These intrusions varied from each other not only in major element content, aluminium saturation index, but also in values of ΣREE, δEu, and LREE/HREE, (La/Yb)N, (La/Sm)N and (Gd/Yb)N. The Maofeng intrusion, which has the closest relationship with uranium mineralization, belongs to strong peraluminous granites. Having undergone much intense fluid-rock interaction, it is characterized by typical M-type tetrad effects and lowest values of ΣREE, δEu, LREE/HREE, (La/Yb)N, (La/Sm)N and (Gd/Yb)N ratios than other studied intrusions.

  3. Complexation of uranium with 1, 3, 5-trimethoxy 2, 4, 6-tricarboxymethoxy-P-tert-butyl calix(6) arene

    International Nuclear Information System (INIS)

    Complexation behaviour of UO22+ with 1,3,5-trimethoxy 2,4,6-tricarboxymethoxy-p-tert-butyl calix[6]arene under varying conditions of pH and acetate ion concentration has been studied. These studies indicate that extraction mechanism of uranium is influenced by the presence of Na+ ion. (author)

  4. Detection and characterization of uranium-humic complexes during 1D transport studies

    Energy Technology Data Exchange (ETDEWEB)

    Lesher, Emily K. [Colorado School of Mines, Golden, CO (United States). Civil and Environmental Engineering; Honeyman, Bruce D. [Colorado School of Mines, Golden, CO (United States). Civil and Environmental Engineering; Ranville, James F. [Colorado School of Mines, Golden, CO (United States). Dept. of Chemistry and Geochemistry

    2013-05-01

    The speciation and transport of uranium (VI) through porous media is highly dependent on solution conditions, the presence of complexing ligands, and the nature of the porous media. The dependency on many variables makes prediction of U transport in bench-scale experiments and in the field difficult. In particular, the identification of colloidal U phases poses a technical challenge. Transport of U in the presence and absence of natural organic matter (Suwannee River humic acid, SRHA) through silica sand and hematite coated silica sand was tested at pH 4 and 5 using static columns, where flow is controlled by gravity and residence time between advective pore volume exchanges can be strictly controlled. The column effluents were characterized by traditional techniques including ICPMS quantification of total [U] and [Fe], TOC analysis of [DOC], and pH analysis, and also by non-traditional techniques: flow field flow fractionation with online ICPMS detection (FlFFF-ICPMS) and specific UV absorbance (SUVA) characterization of effluent fractions. Key results include that the transport of U through the columns was enhanced by pre-equilibration with SRHA, and previously deposited U was remobilized by the addition of SRHA. The advanced techniques yielded important insights on the mechanisms of transport: FlFFF-ICPMS identified a U-SRHA complex as the mobile U species and directly quantified relative amounts of the complex, while specific UV absorbance (SUVA) measurements indicated a composition-based fractionation onto the porous media.

  5. Synthesis and characterization of thorium(IV) and uranium(IV) corrole complexes.

    Science.gov (United States)

    Ward, Ashleigh L; Buckley, Heather L; Lukens, Wayne W; Arnold, John

    2013-09-18

    The first examples of actinide complexes incorporating corrole ligands are presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesized via salt metathesis with the corresponding lithium corrole in remarkably high yields (93% and 83%, respectively). Characterization by single-crystal X-ray diffraction revealed both complexes to be dimeric, having two metal centers bridged via bis(μ-chlorido) linkages. In each case, the corrole ring showed a large distortion from planarity, with the Th(IV) and U(IV) ions residing unusually far (1.403 and 1.330 Å, respectively) from the N4 plane of the ligand. (1)H NMR spectroscopy of both the Th and U dimers revealed dynamic solution behavior. In the case of the diamagnetic thorium corrole, variable-temperature, DOSY (diffusion-ordered) and EXSY (exhange) (1)H NMR spectroscopy was employed and supported that this behavior was due to an intrinsic pseudorotational mode of the corrole ring about the M-M axis. Additionally, the electronic structure of the actinide corroles was assessed using UV-vis spectroscopy, cyclic voltammetry, and variable-temperature magnetic susceptibility. This novel class of macrocyclic complexes provides a rich platform in an underdeveloped area for the study of nonaqueous actinide bonding and reactivity.

  6. Method of preparation of uranium nitride

    Science.gov (United States)

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  7. Complexing with tetracycline in the separation of some elements interfering with the activation analysys of uranium

    International Nuclear Information System (INIS)

    In this work, an analytical method for uranium separation from Th, Zn, Na, Ta, Fe, W, Mo, Ag and lanthanides was studied. These elements form interfering radioisotopes in the gamma ray spectrum of 239 Np and some fission products formed by uranium activation with thermal neutrons. The adequate conditions for separation were studied using solvent extraction technique and tetracycline as an extracting agent. Separation of uranium from Na, Ag and Zn was achieved by controlling pH. Diethlenetriaminepentaacetic acid was used as masking agent for the uranium separation from Fe, Th and lanthanides. For other elements the separation was partial, meaning that about 11% of W, 32% of Mo and 5% of T a were extracted together with uranium into the organic phase. Chemical separation uranium by means of extraction with tetracycline prior to irradiation presented a recovery of 97% for uranium. The method was applied to the determination of uranium and the ratio235 U/238U in ores of monazite, pechblende S-7, provided by the International Atomic Energy Agency and an ore denominated 'goianite' natural of the state of Goias. (Author)

  8. Environmental management plan of the mining and industrial uranium complex in Brazil

    International Nuclear Information System (INIS)

    The Mining and Industrial Complex of the Pocos de Caldas Plateau (CIPC) is located at Caldas, county in the southwest of Minas Gerais state. It is a plant of the Industrias Nucleares do Brazil S.A. -INB, the only installation in Brazil for the production of uranium concentrate (yellow-cake) as ammonium diuranate (Adu). The Environmental protection and control program in practice assures the environmental management plan, in operation, maintaining the Complex within technology standards required by updated environmental concepts. The mine is an open pit operation with a surface diameter of 1000 m and an actual average depth of 120 m. Some 44 x 106 m3 of the overburden material were used in embankments structures to civil engineering works in the implantation of several installations in CIPC, and the other portion of the removed material was deposited in two pre-selected areas having both an upper area of about 2,0 x 106 m2. The annual average volume of waters transported to chemical treatment is about 9,0 x 105 m3. The mill, in its full operation, processes 2500 t of ore per day and the solid and liquid tailings are directed to a waste pond system where are contained approximately 2,0 x 106 m3 (2,2 x 106 t) of solid wastes with an estimation of further 70 x 105 m3 to be disposed. The upper surface of tailings pond is about 2,0 x 105 m2. Nowadays, the environmental protection and control program aims to the development of potential pollutant areas stabilization reintegrating them into their original features or adjusting them to other forms of laudable restoration. (authors). 1 fig

  9. Interest of uranium complexes for the mechanism study of the McMurry reaction; Interet des complexes de l`uranium pour l`etude du mecanisme de la reaction de McMurry

    Energy Technology Data Exchange (ETDEWEB)

    Maury, O

    1997-07-04

    The reducing coupling reactions of ketones in diols and olefins are generally carried out with titanium or samarium compounds. In this work uranium complexes have been used. They have allowed to study the chemical reaction mechanism. This thesis is divided into three parts: 1) the reduction mechanism of uranium tetrachloride by cyclic voltametry has been studied at first. It has been shown that this reduction is followed by a transfer reaction of chlorides between the reduced specie of the higher electronic density and UCl . 2) In the second part is described: the synthesis, the crystal structure, the reactivity of the chemical agents, the stereochemistry of diols and alkenes formation and the pinacolisation reaction catalysis. 3) In the last part, the limits of the McMurry reaction are given by the study of the aromatic ketones pinacolisation reaction by-products. The obtained results show that the complexes of the metals which present a high reducing and oxo-philic (Ti, Sm, U..) character react in a similar way with the carbonyl compounds. If the uranium compounds are less used than those of the titanium in the field of the organic synthesis applications, they are precious auxiliaries and excellent models for reactions mechanisms study and for the synthesis methods optimization. (O.M.). 284 refs.

  10. Uranium management activities

    International Nuclear Information System (INIS)

    One of the missions of the Department of Energy's (DOE) Oak Ridge Office (ORO) has been the management of the Department's uranium materials. This mission has been accomplished through successful integration of ORO's uranium activities with the rest of the DOE complex. Beginning in the 1980's, several of the facilities in that complex have been shut down and are in the decommissioning process. With the end of the Cold War, the shutdown of many other facilities is planned. As a result, inventories of uranium need to be removed from the Department facilities. These inventories include highly enriched uranium (HEU), low enriched uranium (LEU), normal uranium (NU), and depleted uranium (DU). The uranium materials exist in different chemical forms, including metals, oxides, solutions, and gases. Much of the uranium in these inventories is not needed to support national priorities and programs. (author)

  11. The Extraction of Uranium as Uranyl Nitrate Complex in The Nitrate Acid Solution by Liquid Membrane Emulsion Technique

    International Nuclear Information System (INIS)

    The extraction of uranium as uranyl nitrate complex in the nitrate acid solution has been carried out using a liquid membrane emulsion technique. The liquid membrane phase is in form of emulsion that consists of kerosene as the solvent, sorbitan monooleat (span-80) as the surfactant, di-2 ethyl phosphoric acids (D2EHPA) as the carrier agent, and phosphoric acids as the internal phase. The optimum conditions for the extraction of uranium as uranyl nitrate complex have been obtained as the following: the organic phase (O) and the water or internal liquid phase (W) ratio in the liquid membrane phase (O/W) was 1, the concentration of nitric acid in the external phase was 3M, the D2EHPH concentration was 10% (v/v), the extraction time was 5 minutes and the agitation speed to achieve a membrane emulsion was 7500 rpm. At this condition the extraction efficiency obtained was 94.24%. The experiments also showed that the amount of extracted uranium by the liquid. membrane emulsion was limited

  12. Dissolved organic carbon reduces uranium bioavailability and toxicity. 1. Characterization of an aquatic fulvic acid and its complexation with uranium[VI].

    Science.gov (United States)

    Trenfield, Melanie A; McDonald, Suzanne; Kovacs, Krisztina; Lesher, Emily K; Pringle, Jennifer M; Markich, Scott J; Ng, Jack C; Noller, Barry; Brown, Paul L; van Dam, Rick A

    2011-04-01

    Fulvic acid (FA) from a tropical Australian billabong (lagoon) was isolated with XAD-8 resin and characterized using size exclusion chromatography, solid state cross-polarization magic angle spinning, 13C nuclear magnetic resonance spectroscopy, elemental analysis, and potentiometric acid-base titration. Physicochemical characteristics of the billabong FA were comparable with those of the Suwannee River Fulvic Acid (SRFA) standard. The greater negative charge density of the billabong FA suggested it contained protons that were more weakly bound than those of SRFA, with the potential for billabong water to complex less metal contaminants, such as uranium (U). This may subsequently influence the toxicity of metal contaminants to resident freshwater organisms. The complexation of U with dissolved organic carbon (DOC) (10 mg L(-1)) in billabong water was calculated using the HARPHRQ geochemical speciation model and also measured using flow field-flow fractionation combined with inductively coupled plasma mass-spectroscopy. Agreement between both methods was very good (within 4% as U-DOC). The results suggest that in billabong water at pH 6.0, containing an average DOC of 10 mg L(-1) and a U concentration of 90 μg L(-1), around 10% of U is complexed with DOC. PMID:21351802

  13. Uranium and thorium hydride complexes as multielectron reductants: a combined neutron diffraction and quantum chemical study.

    Science.gov (United States)

    Grant, Daniel J; Stewart, Timothy J; Bau, Robert; Miller, Kevin A; Mason, Sax A; Gutmann, Matthias; McIntyre, Garry J; Gagliardi, Laura; Evans, William J

    2012-03-19

    The unusual uranium reaction system in which uranium(4+) and uranium(3+) hydrides interconvert by formal bimetallic reductive elimination and oxidative addition reactions, [(C(5)Me(5))(2)UH(2)](2) (1) ⇌ [(C(5)Me(5))(2)UH](2) (2) + H(2), was studied by employing multiconfigurational quantum chemical and density functional theory methods. 1 can act as a formal four-electron reductant, releasing H(2) gas as the byproduct of four H(2)/H(-) redox couples. The calculated structures for both reactants and products are in good agreement with the X-ray diffraction data on 2 and 1 and the neutron diffraction data on 1 obtained under H(2) pressure as part of this study. The interconversion of the uranium(4+) and uranium(3+) hydride species was calculated to be near thermoneutral (~-2 kcal/mol). Comparison with the unknown thorium analogue, [(C(5)Me(5))(2)ThH](2), shows that the thorium(4+) to thorium(3+) hydride interconversion reaction is endothermic by 26 kcal/mol.

  14. Differential pulse polarographic determination of uranium(VI) in complex materials after adsorption of its trifluoroethylxanthate cetyltrimethylammonium ion-associated complex on naphthalene adsorbent

    International Nuclear Information System (INIS)

    Uranium(VI) is adsorbed as a uranium trifluoroethylxanthate (TFEX)-cetyltrimethylammonium (CTMA) ion-pair complex on microcrystalline naphthalene quantitatively in the pH range 4.2 - 7.0. Without cetyltrimethylammonium as the counter ion, the adsorption is hardly 70%. The metal has been desorbed with HCl and determined with a differential pulse polarograph. Uranium can alternatively be quantitatively adsorbed on TFEX-CTMA-naphthalene adsorbent packed in a column at a flow rate of 1 - 5 ml/min and determined similarly. A well-defined peak has been obtained in this medium at -0.20 V versus a saturated calomel electrode. Cyclic voltammetry, differential pulse polarography and D.C. polarography studies indicate that uranium has been reduced irreversibly under these conditions. The detection limit is 0.30 μg/ml at the minimum instrumental settings (signal-to-noise ratio of 2) (with a preconcentration factor of 10, the detection limit would be 30 ng/ml for uranium when the volume in the cell is 15 ml). However if the volume in the cell is 5 ml, it would have been 10 ng/ml with a preconcentration factor of 30. Linearity is maintained in a concentration range of 0.5 - 19.0 μg/ml (2.1 - 79.83 x 10-9 M) with a correlation factor of 0.9994 and a relative standard deviation of ±1.1% (in this case 7.5 μg may be concentrated from 150 ml of the aqueous sample where its concentration is as low as 50 ng/ml). Various parameters, such as the effect of the pH, volume of the aqueous phase, flow rate and the interference of a large number of metal ions and anions on the determination of uranium, have been studied in detail to optimize the conditions for its trace determination in various complex materials, like alloys, coal fly ash, biological, synthetic, and waste-water samples. (author)

  15. Project development for mining-metallurgical complexes for production of uranium concentrates - an analysis and a methodology

    International Nuclear Information System (INIS)

    Activities comprising the development of a project for a mining-metallurgical complex for production of uranium concentrates, from sampling and evaluation of an orebody until plant start-up, are analyzed. The analysis of the orebody, characterization of the ore, bench scale and pilot plant metallurgical studies, environmental studies and economic analyses of the project are described. The mining project and mine preparation and engineering and construction of the plant are reviewed in less detail. The estimated time lapse for the development of a typical project under ideal conditions is 66 months. A bar diagram is included showing an approximate timetable for each activity. (author)

  16. Synthesis, Characterization, and Density Functional Theory Analysis of Uranium and Thorium Complexes Containing Nitrogen-Rich 5-Methyltetrazolate Ligands.

    Science.gov (United States)

    Browne, Kevin P; Maerzke, Katie A; Travia, Nicholas E; Morris, David E; Scott, Brian L; Henson, Neil J; Yang, Ping; Kiplinger, Jaqueline L; Veauthier, Jacqueline M

    2016-05-16

    Two nitrogen-rich, isostructural complexes of uranium and thorium, (C5Me5)2U[η(2)-(N,N')-tetrazolate]2 (7) and (C5Me5)2Th[η(2)-(N,N')-tetrazolate]2 (8), containing 5-methyltetrazolate, have been synthesized and structurally characterized by single-crystal X-ray diffraction, electrochemical methods, UV-visible-near-IR spectroscopy, and variable-temperature (1)H NMR spectroscopy. Density functional theory (DFT) calculations yield favorable free energies of formation (approximately -375 kJ/mol) and optimized structures in good agreement with the experimental crystal structures. Additionally, calculated NMR chemical shifts of 7 and 8 are in good agreement with the variable-temperature (1)H NMR experiments. Time-dependent DFT calculations of both complexes yield UV-visible spectroscopic features that are consistent with experiment and provide assignments of the corresponding electronic transitions. The electronic transitions in the UV-visible spectroscopic region are attributed to C5Me5 ligand-to-metal charge transfer. The low-lying molecular orbitals of the tetrazolate ligands (∼2 eV below the HOMO) do not contribute appreciably to experimentally observed electronic transitions. The combined experimental and theoretical analysis of these new nitrogen-rich uranium and thorium complexes indicates the tetrazolate ligand behaves primarily as a σ-donor.

  17. Synthesis, Characterization, and Density Functional Theory Analysis of Uranium and Thorium Complexes Containing Nitrogen-Rich 5-Methyltetrazolate Ligands.

    Science.gov (United States)

    Browne, Kevin P; Maerzke, Katie A; Travia, Nicholas E; Morris, David E; Scott, Brian L; Henson, Neil J; Yang, Ping; Kiplinger, Jaqueline L; Veauthier, Jacqueline M

    2016-05-16

    Two nitrogen-rich, isostructural complexes of uranium and thorium, (C5Me5)2U[η(2)-(N,N')-tetrazolate]2 (7) and (C5Me5)2Th[η(2)-(N,N')-tetrazolate]2 (8), containing 5-methyltetrazolate, have been synthesized and structurally characterized by single-crystal X-ray diffraction, electrochemical methods, UV-visible-near-IR spectroscopy, and variable-temperature (1)H NMR spectroscopy. Density functional theory (DFT) calculations yield favorable free energies of formation (approximately -375 kJ/mol) and optimized structures in good agreement with the experimental crystal structures. Additionally, calculated NMR chemical shifts of 7 and 8 are in good agreement with the variable-temperature (1)H NMR experiments. Time-dependent DFT calculations of both complexes yield UV-visible spectroscopic features that are consistent with experiment and provide assignments of the corresponding electronic transitions. The electronic transitions in the UV-visible spectroscopic region are attributed to C5Me5 ligand-to-metal charge transfer. The low-lying molecular orbitals of the tetrazolate ligands (∼2 eV below the HOMO) do not contribute appreciably to experimentally observed electronic transitions. The combined experimental and theoretical analysis of these new nitrogen-rich uranium and thorium complexes indicates the tetrazolate ligand behaves primarily as a σ-donor. PMID:27110650

  18. Study of uranium +4 stabilization by the formation of a complex with a heteropolyanion ligand, for its off-lines analysis

    International Nuclear Information System (INIS)

    The study of the behaviour of uranium in oxidation state +4, during uranium/plutonium separation step of the PUREX process for reprocessing nuclear fuels, requires the availability of an efficient analytical method allowing the stabilization and off-line analysis of sample of aqueous and organic solutions containing this reagent. It was accordingly decided to develop a stabilization method using the heteropolyanion P2W17O6110-(PWO') as a selective ligand. Besides the stabilization effect, the complexation of uranium +4 results in the appearance of an intense and specific band on the visible absorption spectrum of the formed U(PWO)216-complex. This property made it possible to consider the sensitive spectrophotometric analysis of the sample. The work presented first helped to determine, in the presence of PWO, the characteristic thermodynamic data of the reaction involving uranium +4 and +6, plutonium +3 and +4, nitrous and nitric acids, and hydrazine. In the light of these results, it was possible to plan the development of the stabilisation method. The use of PWO thus helped (1) to design a method capable of stopping any reaction involving the uranium +4 / uranium +6 pair, and (2) to perform the simple analysis of uranium +4. The study presented in the second part uses the example of the U4+ cation to understand the reasons for the selectivity of the complexation of actinides +4 by PWO. Owing to the remarkable spectroscopic and magnetic properties of this cation, ti was possible to acquire data concerning the structure of the U(PWO)216- complex, both in solution and in the solid state. It was thus demonstrated that the geometry of the environment of U4+ (eight oxygen forming a cubic anti-prism), which is perfectly complementary to that of the 5f electron wave functions of the actinide, helps to explain the selectivity of the complexation of actinides +4. (author). refs., 46 figs., 40 tabs

  19. Analysis of complex seepage problems with the disposal of uranium tailings: selected case studies

    International Nuclear Information System (INIS)

    Evaluations of seepage effects from existing uranium tailings impoundments, as well as those planned for the future operations, form the subject matter of this paper. The method of evaluation is not restricted to uranium tailings alone, but may be applied to the disposal of other kinds of tailings and slurry wastes as well. The application of an integrated program involving field measurements, laboratory measurements, and mathematical modeling is reported. The paper deals with saturated and unsaturated fluid flows in subsurface media as well as with the associated geochemical interactions. The influence of impoundment liners, native soil, and rock types, as well as groundwater are discussed. Selected case studies of applications are reported and discussed

  20. Chemical analysis of uranium-niobium alloys by wavelength dispersive spectroscopy at the sigma complex

    Energy Technology Data Exchange (ETDEWEB)

    Papin, Pallas A.

    2012-06-01

    Uranium-niobium alloys play an important role in the nation's nuclear stockpile. It is possible to chemically quantify this alloy at a micron scale by using a technique know as wavelength dispersive spectroscopy. This report documents how this technique was used and how it is possible to reproduce measurements of this type. Discussion regarding the accuracy and precision of the measurements, the development of standards, and the comparison of different ways to model the matrices are all presented.

  1. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Orozco, A. Flores; Williams, K.H.; Long, P.E.; Hubbard, S.S.; Kemna, A.

    2011-04-01

    Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  2. Strongly coupled binuclear uranium-oxo complexes from uranyl oxo rearrangement and reductive silylation

    OpenAIRE

    Arnold, Polly L.; Jones, Guy M.; Odoh, Samuel O.; Schreckenbach, Georg; Magnani, Nicola; Love, Jason B.

    2012-01-01

    The most common motif in uranium chemistry is the d(0)f(0) uranyl ion [UO(2)](2+) in which the oxo groups are rigorously linear and inert. Alternative geometries, such as the cis-uranyl, have been identified theoretically and implicated in oxo-atom transfer reactions that are relevant to environmental speciation and nuclear waste remediation. Single electron reduction is now known to impart greater oxo-group reactivity, but with retention of the linear OUO motif, and reactions of the oxo grou...

  3. Study of new complexes of uranium and comba radical. II-Complexes formed in the presence of OH-, CO3H, CH3-COO-, and B4O7

    International Nuclear Information System (INIS)

    Several complexes extracted with CDMBAC organic solutions from uranium aqueous solutions, in presence of sodium and ammonium hydroxides, are studied. These complexes fit to the general formula: U02(OH)n(C[DMBA)n-2 . The uranium extraction in presence of an excess of sodium bicarbonate is also studied. From aqueous solutions of uranyl acetate we have isolated the complex U02(CH3-C00)n (CDMBA)n-2. In presence of boric acid and sodium tetraborate an U-CDMBA compound containing boron in its molecule has being obtained by precipitation and liquid-liquid extraction. (Author) 5 refs

  4. Study of new complexes of uranium and comba radical. I.- Complexes defective in sodium carbonate; Estudio de nuevos complejos entre el uranio y el radical CDMBA. I. Complejos con defectos de carbonato sodico

    Energy Technology Data Exchange (ETDEWEB)

    Vera Palomino, J.; Galiano Sedano, J. A.; Parellada Bellod, R.; Bellido Gonzalez, A.

    1975-07-01

    Some complexes formed in presence of defect of sodium carbonate with respect to the stoichiometric ratio (U): (C0{sub 3}) = 1:3 are studied. This ratio corresponds to the main complex which is responsible for the uranium extraction with CDMBAC organic solutions and from U(VI) aqueous solutions with an excess of sodium carbonate. (Author) 10 refs.

  5. Solvation of uranium hexachloro complexes in room-temperature ionic liquids. A molecular dynamics investigation in two liquids.

    Science.gov (United States)

    Schurhammer, Rachel; Wipff, Georges

    2007-05-10

    We report a molecular dynamics study of the solvation of UCl(6)(-), UCl(6)(2-), and UCl(6)(3-) complexes in the [BMI][Tf(2)N] and [MeBu(3)N][Tf(2)N] ionic liquid cations based on the same anion (bis(trifluoromethylsulfonyl)imide (Tf(2)N-)) and the butyl-3-methyl-imidazolium+ (BMI+) or methyl-tri-n-butyl-ammonium (MeBu(3)N+) cation, respectively. The comparison of two electrostatic models of the complexes (ionic model with -1 charged halides versus quantum mechanically derived charges) yields similar solvation features of a given solute. In the two liquids, the first solvation shell of the complexes is positively charged and evolves from purely cationic in the case of UCl(6)(3-) to a mixture of cations and anions in the case of UCl(6)(-). UCl(6)(3-) is exclusively "coordinated" to BMI+ or MeBu(3)N+ solvent cations that mainly interact via their CH aromatic protons or their N-Me group, respectively. Around the less charged UCl(6)(-) complex, the cations interact via the less polar moieties (butyl chains of BMI+ or MeBu(3)N+) and the anions display nonspecific interactions. In no case does the uranium atom further coordinate solvent ions. According to an energy components analysis, UCl(6)(3-) interacts more attractively with the [BMI][Tf(2)N] liquid than with [MeBu(3)N][Tf(2)N], while UCl(6)(-) does not show any preference, suggesting a significant solvation effect of the redox properties of uranium, also supported by free energy perturbation simulations. The effect of ionic liquid (IL) humidity is investigated by simulating the three complexes in 1:8 water/IL mixtures. In contrast to the case of "naked" ions (e.g., lanthanide(3+), UO2(2+), alkali, or halides), water has little influence on the solvation of the UCl(6)(n-) complexes in the two simulated ILs, as indicated by structural and energy analysis. This is in full agreement with the experimental observations (Nikitenko, S. I.; et al. Inorg. Chem. 2005, 44, 9497).

  6. [U(TpMe2)2(bipy)]+: A cationic uranium(III) complex with single molecule magnet behavior

    International Nuclear Information System (INIS)

    The addition of 2,2'-bipyridine to [U(TpMe2)2I] (1) results in the displacement of the iodide and the formation of the cationic uranium(III) complex [U(TpMe2)2(bipy)]I (2). This compound was isolated as a dark-green solid in good yield and characterized by IR and NMR spectroscopies, and its molecular structure was determined by single-crystal X-ray diffraction. Studies of its magnetic properties revealed a frequency dependence of magnetization with a blocking temperature of 4.5 K and, at lower temperatures, a slow relaxation of magnetization with an energy barrier of 18.2 cm-1, characteristic of single-molecule-magnet behavior. (authors)

  7. Effect of denaturants on the speciation of dicarboxylic acids: uranium(VI) complexes of oxalic acid in micellar media

    International Nuclear Information System (INIS)

    A computer assisted pH-metric investigation has been carried out on the effect of micelles on the complexes of uranium(VI) with oxalic acid. Approximate formation constants have been calculated with the computer program SCPHD utilizing the experimental data obtained by monitoring H+ ion concentration. The formation constants thus obtained are refined with the computer program MINIQUAD75. Selection of the best-fit chemical model is based on the statistical parameters and residual analysis. The major complexes formed are [UO2(C2O4)2]2-, UO2(C2O4) and [UO2(C2O4)2OH]3-. The distribution patterns of the different species with pH show that [UO2(C2O4)2]2- is the predominant species. Influence of the micelles on the speciation is discussed based on the distribution of the various species in the Stern layer and in bulk solvent. The probable structures of the complexes are also given. (author)

  8. Uranium triamidoamine chemistry.

    Science.gov (United States)

    Gardner, Benedict M; Liddle, Stephen T

    2015-07-01

    Triamidoamine (Tren) complexes of the p- and d-block elements have been well-studied, and they display a diverse array of chemistry of academic, industrial and biological significance. Such in-depth investigations are not as widespread for Tren complexes of uranium, despite the general drive to better understand the chemical behaviour of uranium by virtue of its fundamental position within the nuclear sector. However, the chemistry of Tren-uranium complexes is characterised by the ability to stabilise otherwise reactive, multiply bonded main group donor atom ligands, construct uranium-metal bonds, promote small molecule activation, and support single molecule magnetism, all of which exploit the steric, electronic, thermodynamic and kinetic features of the Tren ligand system. This Feature Article presents a current account of the chemistry of Tren-uranium complexes.

  9. Macrocyclic ligands for uranium complexation. Final report, August 1, 1986--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Potts, K.T.

    1993-12-31

    Macrocycles, designed for complexation of the uranyl ion by computer modeling studies and utilizing six ligating atoms in the equatorial plane of the uranyl ions, have been prepared and their complexation of the uranyl ions evaluated. The ligating atoms, either oxygen or sulfur, were part of acylurea, biuret or thiobiuret subunits with alkane chains or pyridine units completing the macrocyclic periphery. These macrocycles with only partial preorganization formed uranyl complexes in solution but no crystalline complexes were isolated. Refinement of the cavity diameter by variation of the peripheral functional groups is currently studied to achieve an optimized cavity diameter of 4.7--5.2 {angstrom}. Acyclic ligands containing the same ligating atoms in equivalent functional entities were found to form a crystalline 1:1 uranyl-ligand complex (stability constant log K = 10.7) whose structure was established by X-ray data. This complex underwent a facile, DMSO-induced rearrangement to a 2:1 uranyl-ligand complex whose structure was also established by X-ray data. The intermediates to the macrocycles all behaved as excellent ligands for the complexation of transition metals. Acylthiourea complexes of copper and nickel as well as intermolecular, binuclear copper and nickel complexes of bidentate carbonyl thioureas formed readily and their structures were established in several representative instances by X-ray structural determinations. Tetradentate bis(carbonylthioureas) were found to be very efficient selective reagents for the complexation of copper in the presence of nickel ions. Several preorganized macrocycles were also prepared but in most instances these macrocycles underwent ring-opening under complexation conditions.

  10. Interaction between uranium and humic acid (II): complexation, precipitation and migration behavior of U(VI) in the presence of humic substances

    International Nuclear Information System (INIS)

    The complexation, precipitation, and migration behavior of uranium in the presence of humic acid (HA) or fulvic acid (FA) were investigated by cation exchange, ultrafiltration and dynamic experiment, respectively. The results showed that (i) complex equilibrium between the uranium and humic substances was achieved at approximately 72 h, (ii) the coordination number varied from 1:1 to 1:2 (U(VI): humic acid) as pH increased from 3 to 6; and (iii), while the complex stability constant decreased when temperature increased, but increased with pH value. We found that the precipitation of uranyl could only be observed in presence of HA, and the precipitation was influenced by conditions, such as pH, uranium concentration, temperature, and the HA concentration. The maximum precipitation proportion up to 60% could be achieved in the condition of 40 mg/L HA solution at pH 6. We further observed that the migration behavior of uranium in soil in the presence of humic acid (HA) or fulvic acid (FA) was different from that in the presence of inorganic colloid, and the effect of humic substances (HS) was limited. (authors)

  11. The uranium behaviour during rock-water interaction in the granites from the Itu complex (Sao Paulo, Brazil): a laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Helen S.B. da; Marques, Leila S.; Kawauchi, Roberto K., E-mail: leila@iag.usp.br, E-mail: keiji@iag.usp.br [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas. Universidade de Sao Paulo (USP), SP (Brazil)

    2011-07-01

    In order to elucidate the mechanisms involved in the process of uranium leaching due to the rock-water interaction in the granitic rocks from Itu Complex (Sao Paulo, Brazil), an experimental arrangement was developed and built. About 2.5kg of crushed rock fragments from Cabreuva and Indaiatuba Intrusions were maintained at room temperature within a glass flask filled with circulating water. The percolating water was removed periodically (from 10 to 30 days) for uranium analysis and then replaced by an equal volume of fresh water. Alpha spectrometry was used to determine the activity concentrations of {sup 234}U and {sup 238}U, and {sup 234}U/{sup 238}U activity ratios, of the waters as well as of the granites. The results for both samples showed that most of the uranium is leached in the first days after the contact between rock and water. The {sup 234}U/{sup 238}U activity ratios were significantly greater than unity, indicating radioactive disequilibrium between those isotopes, probably due to alpha recoil. Although the uranium activity concentrations in the water samples diminished with the increasing of time, it was not observed considerable variations of the {sup 234}U/{sup 238}U activity ratios. It was also noticed that, the amount of leached uranium as well as the {sup 234}U/{sup 238}U activity ratios are characteristics of each sample submitted to leaching, reflecting the differences of the granite facies mineralogy.(author)

  12. Multielectron redox reactions involving C-C coupling and cleavage in uranium Schiff base complexes

    International Nuclear Information System (INIS)

    The reaction of U(III) with Schiff base ligands and the reduction of U(IV) Schiff base complexes both promote C-C bond formation to afford dinuclear or mononuclear U(IV) amido complexes, which can release up to four electrons to substrates through the oxidative cleavage of the C-C bond. (authors)

  13. Spectroscopic investigations on sorption of uranium onto suspended bentonite. Effects of pH, ionic strength and complexing anions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Parveen Kumar; Pathak, Priyanath; Mohapatra, Manoj; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Yadav, Ashok Kumar; Jha, Sambhunath; Bhattacharyya, Dibyendu [Bhabha Atomic Research Centre, Mumbai (India). Atomic and Molecular Physics Div.

    2015-06-01

    Batch sorption experiments were carried out under aerobic conditions to understand the sorption behavior of U(VI) onto bentonite clay under varying pH (2-8) and ionic strength (I = 0.01 - 1 M (NaClO{sub 4})) conditions. The influences of different complexing anions (1 x 10{sup -4} M) such as oxalic acid (ox), carbonate (CO{sub 3}{sup 2-}), citric acid (cit), and humic acid (HA, 10 mg/L) on the sorption behavior were also investigated. The sorption of U(VI) increased with increasing pH up to pH 6 beyond which a decrease was attributed to the formation of anionic carbonate species. Marginal influence of the change in the ionic strength of the medium on the sorption profile of uranium suggested inner-sphere complexation onto the bentonite surface. The presence of humic acid showed interesting sorption profile with varying pH. Initially, there was an enhancement in the sorption with increased pH followed by a plateau and finally a decrease thereafter due to the formation of aqueous U(VI)-humate complexes. Spectroscopic studies such as UV spectrophotometry, luminescence and extended X-ray absorption fine structure (EXAFS) measurements were also performed to understand the changes in aqueous speciation of U(VI) ion. The luminescence yields of different aqueous U(VI) species followed the order: U(VI){sub Hydroxy} > U(VI){sub HumicAcid} > U(VI){sub carbonate} > U(VI){sub citrate}. The lower luminescence yield of U(VI)carbonate complex can be attributed to the strong dynamic quenching by carbonate at room temperature. The U(VI) samples shows two distinct life-time suggesting the presence of the different luminescent U(VI) species. Similar trend was observed for U(VI)-bentonite suspension in presence/absence of the complexing ligands. There was luminescence quenching for the sorbed U(VI) due to surface complexation. These observations were further supported by spectrophotometric measurements. EXAFS spectra of U(VI) samples were recorded in luminescence mode at the U L{sub 3

  14. Spectroscopic investigations on sorption of uranium onto suspended bentonite. Effects of pH, ionic strength and complexing anions

    International Nuclear Information System (INIS)

    Batch sorption experiments were carried out under aerobic conditions to understand the sorption behavior of U(VI) onto bentonite clay under varying pH (2-8) and ionic strength (I = 0.01 - 1 M (NaClO4)) conditions. The influences of different complexing anions (1 x 10-4 M) such as oxalic acid (ox), carbonate (CO32-), citric acid (cit), and humic acid (HA, 10 mg/L) on the sorption behavior were also investigated. The sorption of U(VI) increased with increasing pH up to pH 6 beyond which a decrease was attributed to the formation of anionic carbonate species. Marginal influence of the change in the ionic strength of the medium on the sorption profile of uranium suggested inner-sphere complexation onto the bentonite surface. The presence of humic acid showed interesting sorption profile with varying pH. Initially, there was an enhancement in the sorption with increased pH followed by a plateau and finally a decrease thereafter due to the formation of aqueous U(VI)-humate complexes. Spectroscopic studies such as UV spectrophotometry, luminescence and extended X-ray absorption fine structure (EXAFS) measurements were also performed to understand the changes in aqueous speciation of U(VI) ion. The luminescence yields of different aqueous U(VI) species followed the order: U(VI)Hydroxy > U(VI)HumicAcid > U(VI)carbonate > U(VI)citrate. The lower luminescence yield of U(VI)carbonate complex can be attributed to the strong dynamic quenching by carbonate at room temperature. The U(VI) samples shows two distinct life-time suggesting the presence of the different luminescent U(VI) species. Similar trend was observed for U(VI)-bentonite suspension in presence/absence of the complexing ligands. There was luminescence quenching for the sorbed U(VI) due to surface complexation. These observations were further supported by spectrophotometric measurements. EXAFS spectra of U(VI) samples were recorded in luminescence mode at the U L3 edge. There was shift in the absorbance edge which

  15. A comparative study of the complexation of uranium(VI) withoxydiacetic acid and its amide derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Linfeng; Tian, Guoxin

    2005-05-01

    There has been significant interest in recent years in the studies of alkyl-substituted amides as extractants for actinide separation because the products of radiolytic and hydrolytic degradation of amides are less detrimental to separation processes than those of organophosphorus compounds traditionally used in actinide separations. Stripping of actinides from the amide-containing organic solvents is relatively easy. In addition, the amide ligands are completely incinerable so that the amount of secondary wastes generated in nuclear waste treatment could be significantly reduced. One group of alkyl-substituted oxa-diamides have been shown to be promising in the separation of actinides from nuclear wastes. For example, tetraoctyl-3-oxa-glutaramide and tetraisobutyl-oxa-glutaramide form actinide complexes that can be effectively extracted from nitric acid solutions. To understand the thermodynamic principles governing the complexation of actinides with oxa-diamides, we have studied the complexation of U(VI) with dimethyl-3-oxa-glutaramic acid (DMOGA) and tetramethyl-3-oxa-glutaramide (TMOGA) in aqueous solutions, in comparison with oxydiacetic acid (ODA) (Figure 1). Previous studies have indicated that the complexation of U(VI) with ODA is strong and entropy-driven. Comparing the results for DMOGA and TMOGA with those for ODA could provide insight into the energetics of amide complexation with U(VI) and the relationship between the thermodynamic properties and the ligand structure.

  16. Isolation and structural characterization of uranium and other f block complexes with tridentate Schiff bases

    International Nuclear Information System (INIS)

    Two Schiff base ligands, isatin semicarbazone(ISC) and o-vanillin salicyloylhydrazone(o-VSH) have been prepared and their complexes with U, La, Ce, Pr are synthesized and characterized by IR spectra, diffuse reflectance spectra, elemental analysis and other physico-chemical techniques. (author). 4 refs

  17. Complexation of Gluconate with Uranium(VI) in Acidic Solutions: Thermodynamic Study with Structural Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhicheng; Helms, G.; Clark, S. B.; Tian, Guoxin; Zanonato, PierLuigi; Rao, Linfeng

    2009-01-05

    Within the pC{sub H} range of 2.5 to 4.2, gluconate forms three uranyl complexes UO{sub 2}(GH{sub 4}){sup +}, UO{sub 2}(GH{sub 3})(aq), and UO{sub 2}(GH{sub 3})(GH{sub 4}){sup -}, through the following reactions: (1) UO{sub 2}{sup 2+} + GH{sub 4}{sup -} = UO{sub 2}(GH{sub 4}){sup +}, (2) UO{sub 2}{sup 2+} + GH{sub 4}{sup -} = UO{sub 2}(GH{sub 3})(aq) + H{sup +}, and (3) UO{sub 2}{sup 2+} + 2GH{sub 4}{sup -} = UO{sub 2}(GH{sub 3})(GH{sub 4}){sup -} + H{sup +}. Complexes were inferred from potentiometric, calorimetric, NMR, and EXAFS studies. Correspondingly, the stability constants and enthalpies were determined to be log {Beta}{sub 1} = 2.2 {+-} 0.3 and {Delta}H{sub 1} = 7.5 {+-} 1.3 kJ mol{sup -1} for reaction (1), log {Beta}{sub 2} = -(0.38 {+-} 0.05) and {Delta}H{sub 2} = 15.4 {+-} 0.3 kJ mol{sup -1} for reaction (2), and log {Beta}{sub 3} = 1.3 {+-} 0.2 and {Delta}H{sub 3} = 14.6 {+-} 0.3 kJ mol{sup -1} for reaction (3), at I = 1.0 M NaClO{sub 4} and t = 25 C. The UO{sub 2}(GH{sub 4}){sup +} complex forms through the bidentate carboxylate binding to U(VI). In the UO{sub 2}(GH{sub 3})(aq) complex, hydroxyl-deprotonated gluconate (GH{sub 3}{sup 2-}) coordinates to U(VI) through the five-membered ring chelation. For the UO{sub 2}(GH{sub 3})(GH{sub 4}){sup -} complex, multiple coordination modes are suggested. These results are discussed in the context of trivalent and pentavalent actinide complexation by gluconate.

  18. Surface complexation modeling of the effects of phosphate on uranium(VI) adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Gonzalez, M.R.; Cheng, T.; Barnett, M.O. [Auburn Univ., AL (United States). Dept. of Civil Engeneering; Roden, E.E. [Wisconsin Univ., Madison, WI (United States). Dept. of Geology and Geophysics

    2007-07-01

    Previous published data for the adsorption of U(VI) and/or phosphate onto amorphous Fe(III) oxides (hydrous ferric oxide, HFO) and crystalline Fe(III) oxides (goethite) was examined. These data were then used to test the ability of a commonly-used surface complexation model (SCM) to describe the adsorption of U(VI) and phosphate onto pure amorphous and crystalline Fe(III) oxides and synthetic goethite-coated sand, a surrogate for a natural Fe(III)-coated material, using the component additivity (CA) approach. Our modeling results show that this model was able to describe U(VI) adsorption onto both amorphous and crystalline Fe(III) oxides and also goethite-coated sand quite well in the absence of phosphate. However, because phosphate adsorption exhibits a stronger dependence on Fe(III) oxide type than U(VI) adsorption, we could not use this model to consistently describe phosphate adsorption onto both amorphous and crystalline Fe(III) oxides and goethite-coated sand. However, the effects of phosphate on U(VI) adsorption could be incorporated into the model to describe U(VI) adsorption to both amorphous and crystalline Fe(III) oxides and goethite-coated sand, at least for an initial approximation. These results illustrate both the potential and limitations of using surface complexation models developed from pure systems to describe metal/radionuclide adsorption under more complex conditions. (orig.)

  19. Systematic investigation of thorium(IV)- and uranium(IV)-ligand bonding in dithiophosphonate, thioselenophosphinate, and diselenophosphonate complexes.

    Science.gov (United States)

    Behrle, Andrew C; Barnes, Charles L; Kaltsoyannis, Nikolas; Walensky, Justin R

    2013-09-16

    Homoleptic soft-donor actinide complexes of the general form An[E2PROR']4 were synthesized from salt metathesis between ThCl4(DME)2 or UI4(1,4-dioxane)2 and M[E2PROR'], M = Na, K, to yield 2 (An = Th, E = S, R = 4-MeOC6H4, R' = Me), 3 (An = Th, E = S, R = 4-MeOC6H4, R' = (t)Bu), 4 (An = U, E = S, R = 4-MeOC6H4, R' = Me), 5 (An = Th, E = Se, R = C6H5, R' = Me), and 6 (An = U, E = Se, R = C6H5, R' = Me). In addition thorium and uranium thioselenophosphinate complexes 7 and 8 were produced from the reaction of ThCl4(DME)2 and UI4(1,4-dioxane)2 and Na[SSePPh2], respectively. All compounds were characterized using elemental analysis, (1)H and (31)P NMR, and IR spectroscopy, and the U(IV) compounds were also examined with UV-vis spectroscopy. The (77)Se NMR spectrum of 5 reveals the first reported resonance with a Th-Se bond. The solid-state structures of 2, 5, 7, and 8 were determined by X-ray crystallography. The actinide-ligand bonding was examined using density functional theory calculations in conjunction with quantum theory of atoms-in-molecules analysis and shows slightly increased covalency in actinide-selenium bonds than actinide-sulfur.

  20. 300 AREA URANIUM CONTAMINATION

    International Nuclear Information System (INIS)

    (smbullet) Uranium fuel production (smbullet) Test reactor and separations experiments (smbullet) Animal and radiobiology experiments conducted at the. 331 Laboratory Complex (smbullet) .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

  1. Uranium determination in zirconium

    International Nuclear Information System (INIS)

    The method used for the spectrometric uranium determination with 2-(2-thiolase)-5-diethylaminophenol was modified for its application in the zirconium samples analysis with an uranium content of the 0.1% order. The samples, previously dissolved in nitric acid, were submitted to a separative stage of liquid-liquid extraction, with a trioctylphosphine (TOPO) oxide diluted in cyclohexane. A sodium fluoride aqueous solution was necessary to be aggregated in the spectrometric determination so as to complex the zirconium vestiges, which could be present, originated by the Zr/U high relation of the initial sample. Under the established working conditions, different spectrometric assays, dyes absorption spectra and its uranium complex, complex stability, PH influence determination of the dyes-uranium relation, calculation of the complex's apparent formation constant and its molar absorption, were performed. (Author)

  2. Surface Complexation Modeling of Uranium(Vi) Sorbed Onto Zirconium Oxophosphate Versus Temperature: Thermodynamic And Structural Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Almazan-Torres, M.G.; Drot, R.; Mercier-Bion, F.; Catalette, H.; Auwer, C.Den; Simoni, E.

    2009-05-11

    This work presents an investigation of the interaction mechanisms between uranyl ions and a solid phosphate, the zirconium oxophosphate: Zr{sub 2}O(PO{sub 4}){sub 2}. Both thermodynamic and structural points of view are developed. Indeed, prior to any simulation of the retention data, it is necessary to precisely characterize the system under study in order to gain information at a molecular scale. First, the intrinsic surface properties of this synthetic compound have been investigated for different temperatures ranging from 25 to 90 C. Mass and potentiometric titrations show that the surface site density remains constant between 25 and 90 C, while the experimental point of zero charge slightly decreases from 4.8 to 4.5 with an increasing temperature. The potentiometric titration data are simulated, for each temperature, using the constant capacitance model and taking into account two surface sites ({triple_bond}Zr{_}O and {triple_bond}P{_}O) with a total surface site density equal to 7.0 sites nm{sup -2}. For both reactive sites, the intrinsic protonation constants do not change with the temperature, while the deprotonation ones increase. These results led to the determination of the associated enthalpy and entropy changes according to the van't Hoff relation. Second, the speciation of U(VI) at the solid/solution interface has been studied using two complementary spectroscopic techniques probing the sorbed uranyl ions: time-resolved laser-induced fluorescence spectroscopy (TRLFS) and X-ray absorption spectroscopy (EXAFS). The substrate presents two different reactive surface sites against uranium retention, which are constituted by the oxygen atoms of the surface PO{sub 4} groups and the oxygen atoms linked to the zirconium atoms. Two inner-sphere complexes are thus present on the substrate, their relative proportion depending on the pH value of the suspension. The effects of the temperature (25-90 C) on the surrounding uranium were checked using the TRLFS

  3. Thiocyanate complexes of uranium in multiple oxidation states: a combined structural, magnetic, spectroscopic, spectroelectrochemical, and theoretical study.

    Science.gov (United States)

    Hashem, Emtithal; Platts, James A; Hartl, František; Lorusso, Giulia; Evangelisti, Marco; Schulzke, Carola; Baker, Robert J

    2014-08-18

    A comprehensive study of the complexes A4[U(NCS)8] (A = Cs, Et4N, (n)Bu4N) and A3[UO2(NCS)5] (A = Cs, Et4N) is described, with the crystal structures of [(n)Bu4N]4[U(NCS)8]·2MeCN and Cs3[UO2(NCS)5]·O0.5 reported. The magnetic properties of square antiprismatic Cs4[U(NCS)8] and cubic [Et4N]4[U(NCS)8] have been probed by SQUID magnetometry. The geometry has an important impact on the low-temperature magnetic moments: at 2 K, μeff = 1.21 μB and 0.53 μB, respectively. Electronic absorption and photoluminescence spectra of the uranium(IV) compounds have been measured. The redox chemistry of [Et4N]4[U(NCS)8] has been explored using IR and UV-vis spectroelectrochemical methods. Reversible 1-electron oxidation of one of the coordinated thiocyanate ligands occurs at +0.22 V vs Fc/Fc(+), followed by an irreversible oxidation to form dithiocyanogen (NCS)2 which upon back reduction regenerates thiocyanate anions coordinating to UO2(2+). NBO calculations agree with the experimental spectra, suggesting that the initial electron loss of [U(NCS)8](4-) is delocalized over all NCS(-) ligands. Reduction of the uranyl(VI) complex [Et4N]3[UO2(NCS)5] to uranyl(V) is accompanied by immediate disproportionation and has only been studied by DFT methods. The bonding in [An(NCS)8](4-) (An = Th, U) and [UO2(NCS)5](3-) has been explored by a combination of DFT and QTAIM analysis, and the U-N bonds are predominantly ionic, with the uranyl(V) species more ionic that the uranyl(VI) ion. Additionally, the U(IV)-NCS ion is more ionic than what was found for U(IV)-Cl complexes. PMID:25072532

  4. Selective separation of uranium

    International Nuclear Information System (INIS)

    A process for the selective separation of uranium from elements accompanying it in a uranium-containing ore is claimed. It comprises preparing a uranium-containing solution; adding hydrochloric acid in an amount sufficient to form complex anions of the type (UO2Clsub(n))sup(2-n) where n is 3 or 4, or sulfuric acid in an amount sufficient to form complex anions of the type UO2(SO4)sub(m)sup(2-2m) where m is 2 or 3; adding a cationic surface active agent which forms a difficultly soluble precipitate with the complex anion; subjecting the solution to a gas flotation step to produce a foam fraction containing the pecipitate and a liquid fraction; separating the two fractions; and recovering uranium from the foam fraction

  5. Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity.

    Science.gov (United States)

    Behrle, Andrew C; Kerridge, Andrew; Walensky, Justin R

    2015-12-21

    We report a comparison of the molecular and electronic structures of dithio- and diselenophosphinate, (E2PR2)(1-) (E = S, Se; R = (i)Pr, (t)Bu), with thorium(IV) and uranium(IV) complexes. For the thorium dithiophosphinate complexes, reaction of ThCl4(DME)2 with 4 equiv of KS2PR2 (R = (i)Pr, (t)Bu) produced the homoleptic complexes, Th(S2P(i)Pr2)4 (1S-Th-(i)Pr) and Th(S2P(t)Bu2)4 (2S-Th-(t)Bu). The diselenophosphinate complexes were synthesized in a similar manner using KSe2PR2 to produce Th(Se2P(i)Pr2)4 (1Se-Th-(i)Pr) and Th(Se2P(t)Bu2)4 (2Se-Th-(t)Bu). U(S2P(i)Pr2)4, 1S-U-(i)Pr, could be made directly from UCl4 and 4 equiv of KS2P(i)Pr2. With (Se2P(i)Pr2)(1-), using UCl4 and 3 or 4 equiv of KSe2P(i)Pr2 yielded the monochloride product U(Se2P(i)Pr2)3Cl (3Se-U(iPr)-Cl), but using UI4(1,4-dioxane)2 produced the homoleptic U(Se2P(i)Pr2)4 (1Se-U-(i)Pr). Similarly, the reaction of UCl4 with 4 equiv of KS2P(t)Bu2 yielded U(S2P(t)Bu2)4 (2S-U-(t)Bu), whereas the reaction with KSe2P(t)Bu2 resulted in the formation of U(Se2P(t)Bu2)3Cl (4Se-U(tBu)-Cl). Using UI4(1,4-dioxane)2 and 4 equiv of KSe2P(t)Bu2 with UCl4 in acetonitrile yielded U(Se2P(t)Bu2)4 (2Se-U-(t)Bu). Transmetalation reactions were investigated with complex 2Se-U-(t)Bu and various CuX (X = Br, I) salts to yield U(Se2P(t)Bu2)3X (6Se-U(tBu)-Br and 7Se-U(tBu)-I) and 0.25 equiv of [Cu(Se2P(t)Bu2)]4 (8Se-Cu-(t)Bu). Additionally, 2Se-U-(t)Bu underwent transmetalation reactions with Hg2F2 and ZnCl2 to yield U(Se2P(t)Bu2)3F (6) and U(Se2P(t)Bu2)3Cl (4Se-U(tBu)-Cl), respectively. The molecular structures were analyzed using (1)H, (13)C, (31)P, and (77)Se NMR and IR spectroscopy and structurally characterized using X-ray crystallography. Using the QTAIM approach, the electronic structure of all homoleptic complexes was probed, showing slightly more covalent bonding character in actinide-selenium bonds over actinide-sulfur bonds.

  6. Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity.

    Science.gov (United States)

    Behrle, Andrew C; Kerridge, Andrew; Walensky, Justin R

    2015-12-21

    We report a comparison of the molecular and electronic structures of dithio- and diselenophosphinate, (E2PR2)(1-) (E = S, Se; R = (i)Pr, (t)Bu), with thorium(IV) and uranium(IV) complexes. For the thorium dithiophosphinate complexes, reaction of ThCl4(DME)2 with 4 equiv of KS2PR2 (R = (i)Pr, (t)Bu) produced the homoleptic complexes, Th(S2P(i)Pr2)4 (1S-Th-(i)Pr) and Th(S2P(t)Bu2)4 (2S-Th-(t)Bu). The diselenophosphinate complexes were synthesized in a similar manner using KSe2PR2 to produce Th(Se2P(i)Pr2)4 (1Se-Th-(i)Pr) and Th(Se2P(t)Bu2)4 (2Se-Th-(t)Bu). U(S2P(i)Pr2)4, 1S-U-(i)Pr, could be made directly from UCl4 and 4 equiv of KS2P(i)Pr2. With (Se2P(i)Pr2)(1-), using UCl4 and 3 or 4 equiv of KSe2P(i)Pr2 yielded the monochloride product U(Se2P(i)Pr2)3Cl (3Se-U(iPr)-Cl), but using UI4(1,4-dioxane)2 produced the homoleptic U(Se2P(i)Pr2)4 (1Se-U-(i)Pr). Similarly, the reaction of UCl4 with 4 equiv of KS2P(t)Bu2 yielded U(S2P(t)Bu2)4 (2S-U-(t)Bu), whereas the reaction with KSe2P(t)Bu2 resulted in the formation of U(Se2P(t)Bu2)3Cl (4Se-U(tBu)-Cl). Using UI4(1,4-dioxane)2 and 4 equiv of KSe2P(t)Bu2 with UCl4 in acetonitrile yielded U(Se2P(t)Bu2)4 (2Se-U-(t)Bu). Transmetalation reactions were investigated with complex 2Se-U-(t)Bu and various CuX (X = Br, I) salts to yield U(Se2P(t)Bu2)3X (6Se-U(tBu)-Br and 7Se-U(tBu)-I) and 0.25 equiv of [Cu(Se2P(t)Bu2)]4 (8Se-Cu-(t)Bu). Additionally, 2Se-U-(t)Bu underwent transmetalation reactions with Hg2F2 and ZnCl2 to yield U(Se2P(t)Bu2)3F (6) and U(Se2P(t)Bu2)3Cl (4Se-U(tBu)-Cl), respectively. The molecular structures were analyzed using (1)H, (13)C, (31)P, and (77)Se NMR and IR spectroscopy and structurally characterized using X-ray crystallography. Using the QTAIM approach, the electronic structure of all homoleptic complexes was probed, showing slightly more covalent bonding character in actinide-selenium bonds over actinide-sulfur bonds. PMID:26636609

  7. Comparison of the reactivity of 2-Li-C6H4CH2NMe2 with MCl4 (M=Th, U): isolation of a thorium aryl complex or a uranium benzyne complex.

    Science.gov (United States)

    Seaman, Lani A; Pedrick, Elizabeth A; Tsuchiya, Takashi; Wu, Guang; Jakubikova, Elena; Hayton, Trevor W

    2013-09-27

    Why do U react like that? Reaction of 2-Li-C6H4CH2NMe2 with [MCl4(DME)n] (M=Th, n=2; M=U, n=0) results in the formation of a thorium aryl complex, [Th(2-C6H4CH2NMe2)4] or a uranium benzyne complex, [Li][U(2,3-C6H3CH2NMe2)(2-C6H4CH2NMe2)3]. A DFT analysis suggests that the formation of a benzyne complex with U but not with Th is a kinetic and not thermodynamic effect.

  8. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Ashleigh; Lukens, Wayne; Lu, Connie; Arnold, John

    2014-04-01

    A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium and cobalt. Complexes incorporating the binucleating ligand N[-(NHCH2PiPr2)C6H4]3 and Th(IV) (4) or U(IV) (5) with a carbonyl bridged [Co(CO)4]- unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively rare class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl is accompanied by coordination of a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) and 3.0319(7) for the thorium and uranium complexes, respectively, were observed. The solution state behavior of the thorium complexes was evaluated using 1H, 1H-1H COSY, 31P and variable-temperature NMR spectroscopy. IR, UV-Vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.

  9. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes.

    Science.gov (United States)

    Ward, Ashleigh L; Lukens, Wayne W; Lu, Connie C; Arnold, John

    2014-03-01

    A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium, and cobalt. Complexes incorporating the binucleating ligand N[ο-(NHCH2P(i)Pr2)C6H4]3 with either Th(IV) (4) or U(IV) (5) and a carbonyl bridged [Co(CO)4](-) unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the resulting isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively unusual class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl and formation of the metal-metal bond is accompanied by coordination of a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) Å and 3.0319(7) Å for the thorium and uranium complexes, respectively, were observed. The solution-state behavior of the thorium complexes was evaluated using (1)H, (1)H-(1)H COSY, (31)P, and variable-temperature NMR spectroscopy. IR, UV-vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.

  10. Surface complexation modeling of uranium(VI) sorbed onto zirconium oxo-phosphate versus temperature: Thermodynamic and structural approaches

    Energy Technology Data Exchange (ETDEWEB)

    Almazan-Torres, M. G.; Drot, R.; Mercier-Bion, F.; Simoni, E. [Univ Paris 11, CNRS/IN2P3/UMR8608, Inst Phys Nucl, F-91406 Orsay, (France); Catalette, H. [EDF R et D, Dept Mat et Mecan Composants, F-77818 Moret Sur Loing, (France); Den Auwer, C. [CEA Marcoule DEN/DRCP/SCPS, F-30207 Bagnols Sur Ceze, (France)

    2008-07-01

    This work presents an investigation of the interaction mechanisms between uranyl ions and a solid phosphate, the zirconium oxo-phosphate: Zr{sub 2}O(PO{sub 4}){sub 2}. Both thermodynamic and structural points of view are developed. Indeed, prior to any simulation of the retention data, it is necessary to precisely characterize the system under study in order to gain information at a molecular scale. First, the intrinsic surface properties of this synthetic compound have been investigated for different temperatures ranging from 25 to 90 degrees C. Mass and potentiometric titrations show that the surface site density remains constant between 25 and 90 degrees C, while the experimental point of zero charge slightly decreases from 4.8 to 4.5 with an increasing temperature. The potentiometric titration data are simulated, for each temperature, using the constant capacitance model and taking into account two surface sites ( (triple bond)Zr-O and (triple bond)P-O) with a total surface site density equal to 7.0 sites nm{sup -2}. For both reactive sites, the intrinsic protonation constants do not change with the temperature, while the deprotonation ones increase. These results led to the determination of the associated enthalpy and entropy changes according to the Van't Hoff relation. Second, the speciation of U(VI) at the solid/solution interface has been studied using two complementary spectroscopic techniques probing the sorbed uranyl ions: time-resolved laser-induced fluorescence spectroscopy (TRUS) and X-ray absorption spectroscopy (EXAFS). The substrate presents two different reactive surface sites against titanium retention, which are constituted by the oxygen atoms of the surface PO{sub 4} groups and the oxygen atoms linked to the zirconium atoms. Two inner-sphere complexes are thus present on the substrate, their relative proportion depending on the pH value of the suspension. The effects of the temperature (25-90 degrees C) on the surrounding uranium were

  11. Discovery of uranium mineralizations in the rhyolite-granite complex in the Jabal Eghei area of southern Libya

    Directory of Open Access Journals (Sweden)

    Kovačević Jovan

    2013-01-01

    Full Text Available During investigation of the Jabal Eghei area in southern Libya and the production of geological maps at a scale of 1:250 000 (Tibesti sector, sheet Wadi Eghei NF 34-1 and NF 34-2, regional prospecting for mineral raw materials was performed. Radiometric survey of observed targets at the sites indicated two significant uranium mineralizations in rhyolites, and some smaller ones in granites that are in close contact with rhyolites. Rhyolites are located in the central part of the investigated region. They cut through granite rocks. The first mineralization is in the central part of the rhyolite region, which is mostly composed of silificated rhyolites. The second one was discovered near the granite-rhyolite contact zone, characterized by the presence of silicified breccia rocks. These findings were confirmed by laboratory measurements of more than seventy samples collected in the area, using high resolution gamma-ray spectrometry. The concentrations of uranium in these mineralizations were found to range from approx. 50 mg kg-1 to more than 600 mg kg-1. The latter value is about 240 times above the Earth’s average. Besides uranium, these measurements have also given concentrations of thorium and potassium. Additional geochemical analysis was performed on samples taken from locations where uranium anomalies were discovered using ICP-MS technique, in which concentrations of more than forty elements were determined. Uranium mineralizations are accompained by increased contents of silver (up to 17 times, arsenic (up to 8 times, molybdenum (up to 50 times, mercury (up to 9 times, and lead (up to 14 times, in regard to the Clark’s values. These results warrant a continued investigation of this region because of potential interest in the discovery of nuclear mineral raw materials.

  12. Determination of uranium, iron, copper, and nickel from ore samples by MEKC using N,N'-ethylene bis(salicylaldimine) as complexing reagent.

    Science.gov (United States)

    Mirza, Muhammed Aslam; Khuhawar, Muhammad Yar; Arain, Rafee

    2008-02-01

    An analytical procedure has been developed for the separation of dioxouranium(VI), iron(III), copper(II), nickel(II), cobalt(II), cobalt(III), palladium(II), and thorium(IV) by MEKC using N,N'-ethylene bis(salicylaldimine) (H(2)SA(2)en) as a complexing reagent with total runtime uranium ore samples indicating its presence within 103-1789 microg/g with RSD within 0.79-1.87%. Likewise copper, nickel, and iron in their combined matrix were also simultaneously determined with RSD 0.4-1.6% (n = 6). PMID:18186535

  13. Update on uranium-molybdenum fuel foil fabrication development activities at the Y-12 National Security Complex in 2007

    International Nuclear Information System (INIS)

    In support of the RERTR Program, efforts are underway at Y-12 to develop and validate a production oriented, monolithic uranium molybdenum (U-Mo) foil fabrication process adaptable for potential implementation in a manufacturing environment. These efforts include providing full-scale prototype depleted and enriched U-Mo foils in support of fuel qualification testing. The work has three areas of focus; develop and demonstrate a feasible foil fabrication process utilizing depleted uranium-molybdenum (DU-Mo) source material, transition these production techniques to enriched uranium (EU-Mo) source material, and evaluate full-scale implementation of the developed production techniques. In 2006, Y-12 demonstrated successful fabrication of full-size DU-10Mo foils. In 2007, Y-12 activities were expanded to include continued DU-Mo foil fabrication with a focus on process refinement, source material impurity effects (specifically carbon), and the feasibility of physical vapor deposition (PVD) on DU-10Mo mini-foils. FY2007 activities also included a transition to EU-Mo and fabrication of full-size enriched foils. The purpose of this report is to update the RERTR audience on Y-12 efforts in 2007 that support the overall RERTR Program goals. (author)

  14. New chemistry from an old reagent: mono- and dinuclear macrocyclic uranium(III) complexes from [U(BH4)3(THF)2].

    Science.gov (United States)

    Arnold, Polly L; Stevens, Charlotte J; Farnaby, Joy H; Gardiner, Michael G; Nichol, Gary S; Love, Jason B

    2014-07-23

    A new robust and high-yielding synthesis of the valuable U(III) synthon [U(BH4)3(THF)2] is reported. Reactivity in ligand exchange reactions is found to contrast significantly to that of uranium triiodide. This is exemplified by the synthesis and characterization of azamacrocyclic U(III) complexes, including mononuclear [U(BH4)(L)] and dinuclear [Li(THF)4][{U(BH4)}2(μ-BH4)(L(Me))] and [Na(THF)4][{U(BH4)}2(μ-BH4)(L(A))(THF)2]. The structures of all complexes have been determined by single-crystal X-ray diffraction and display two new U(III)2(BH4)3 motifs.

  15. A Heterobimetallic Complex With an Unsupported Uranium(III)-Aluminum(I) Bond: (CpSiMe3)3U-AlCp* (Cp* = C5Me5)

    Energy Technology Data Exchange (ETDEWEB)

    Minasian, Stefan; Krinsky Ph.D., Jamin; Williams, Valerie; Arnold Ph.D., John

    2008-07-23

    The discovery of molecular metal-metal bonds has been of fundamental importance to the understanding of chemical bonding. For the actinides, examples of unsupported metal-metal bonds are relatively uncommon, consisting of Cp{sub 3}U-SnPh{sub 3}, and several actinide-transition metal complexes. Traditionally, bonding in the f-elements has been described as electrostatic; however, elucidating the degree of covalency is a subject of recent research. In carbon monoxide complexes of the trivalent uranium metallocenes, decreased {nu}{sub CO} values relative to free CO suggest that the U(III) atom acts as a {pi}-donor. Ephritikhine and coworkers have demonstrated that {pi}-accepting ligands can differentiate trivalent lanthanide and actinide ions, an effect that renders this chemistry of interest in the context of nuclear waste separation technology.

  16. The application of iterative transformation factor analysis to resolve multi-component EXAFS spectra of uranium(6) complexes with acetic acid as a function of pH

    International Nuclear Information System (INIS)

    Synchrotron-based EXAFS spectroscopy is a powerful technique to obtain structural information on radionuclide complexes in solution. Depending on the chemical conditions of the samples several radionuclide species can coexist in the solution as is often the case for environmentally related samples. All radionuclide species, which may have different near-neighbour environments, contribute to the measured EXAFS signal. In order to isolate the EXAFS spectra of the individual species (pure spectral components), it is necessary, in a first step, to measure a series of samples where their composition is changed by variation of one physico-chemical parameter (e.g. pH, concentration, etc.). For the spectral decomposition it is necessary that the EXAFS signal change as a function of the chosen physico-chemical parameter. In a second step, the series of EXAFS spectra is analysed with Eigen analysis and Iterative Transformation Factor Analysis (ITFA). As a result of the ITFA one obtains: a) for each sample the relative concentration of the structural distinguishable species and b) their corresponding pure spectral components. From the information obtained in a), one can construct a speciation diagram. The pure spectral components contain the structural information of the individual species, which can be extracted by conventional EXAFS analysis. To evaluate our ITFA algorithm for EXAFS analysis of mixtures, we prepared a series of eight solution samples of 0.05 M uranium(VI) and 1 M acetate (Ac) in the pH range of 0.1 to 4.5. From thermodynamic constants it is known that under these conditions up to four species can occur: uranyl hydrate, and the 1:1, 1:2 and 1:3 complexes of uranyl acetate. The uranium LIII-edge EXAFS spectra were measured at room temperature in transmission mode at the Rossendorf Beamline (ROBL) at the ESRF. The average bond length between uranium and the equatorial oxygen atoms (Oeq) increases from 2.40 to 2.46 angstrom with increasing pH. This increase of

  17. Inherently safe in situ uranium recovery

    Science.gov (United States)

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  18. Sensitive Determination of Uranium in Natural Waters Using UV-Vis Spectrometry After Preconcentration by Ion-Imprinted Polymer-Ternary Complexes.

    Science.gov (United States)

    Bicim, Tulin; Yaman, Mehmet

    2016-07-01

    The main purpose of this study was to achieve a substantial increase in the sensitivity of the uranium determination using UV-Vis spectrometry. To achieve this goal, ion-imprinted polymers were prepared for the uranyl (imprint) ion by the formation of a ternary (salicylaldoxime and 4-vinylpyridine) complex in 2-methoxy ethanol (porogen) following copolymerization with methacrylic acid. The synthesized polymers were characterized by FTIR analysis and thermogravimetric analysis. In the preconcentration step, the optimal pH was determined to be between values of 3.5 and 6.5. The adsorbed UO2(2+) was completely eluted by 10 mL of 3.0 mol L(-1) HClO4. The developed method was applied to uranium (VI) determination in natural water samples. By using the initial volume of 500 mL and final volume of 5 mL, a concentration of 1 μg L(-1) can be determined by applying the developed method in this study.

  19. Uranium enrichment

    International Nuclear Information System (INIS)

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  20. Peroxo complexes of uranium(VI) with N-benzoyl urea and related ligands: synthesis, characterization and antifungal activity

    International Nuclear Information System (INIS)

    The peroxouranium(VI) complexes containing N-benzoyl urea and related ligands having composition (UO(O2)L-L(NO3)2).H2O (where L-L=N-benzoyl urea (NBU), N-benzoyl thiourea (NBT). N-benzoyl hydrazine (NBHz) and N-benzoyl hydroxylamine (NBHA)) are reported. The synthesized complexes have been characterized by various physico-chemical techniques, viz, elemental analysis, molar conductivity, magnetic susceptibility measurements, infra red, electronic, mass spectral and TGA/DTA studies. These studies revealed that the synthesized complexes are non-electrolytic and diamagnetic in nature. The ligands are bound to metal in a bidentate mode. Thermal analysis results provide conclusive evidence for the presence of water molecule in the complexes. Mass spectra confirm the molecular mass of the complexes. Antifungal activity of complexes revealed enhanced activity of complexes as compared to corresponding ligands. (author)

  1. A new diamantane functionalized tris(aryloxide) ligand system for small molecule activation chemistry at reactive uranium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, O.P.; Heinemann, F.W.; Meyer, K. [Department of Chemistry and Pharmacy, Inorganic Chemistry, University Erlangen-Nuremberg, Erlangen (Germany); Lam, O.P. [University of California, San Diego, Department of Chemistry and Biochemistry, La Jolla, CA (United States)

    2010-06-15

    The diamantane functionalized triazacyclononane ligand ({sup Dia}ArOH){sub 3}tacn (L{sub 3}) has been synthesized and the reactivity of its U(III) metallated product [(({sup Dia}ArO){sub 3}tacn)U] (1) has been explored. Complex 1 promotes dichloromethane and azido-trimethyl-silane activation to generate U(IV) complex [(({sup Dia}ArO){sub 3}tacn)U(Cl)] (2) and U(V) complex [(({sup Dia}ArO){sub 3}tacn)U(NTMS)] (3), respectively. Spectroscopic investigations of complexes 1, 2, and 3 will be discussed, along with molecular structures where possible. (authors)

  2. A new diamantane functionalized tris(aryloxide) ligand system for small molecule activation chemistry at reactive uranium complexes

    International Nuclear Information System (INIS)

    The diamantane functionalized triazacyclononane ligand (DiaArOH)3tacn (L3) has been synthesized and the reactivity of its U(III) metallated product [((DiaArO)3tacn)U] (1) has been explored. Complex 1 promotes dichloromethane and azido-trimethyl-silane activation to generate U(IV) complex [((DiaArO)3tacn)U(Cl)] (2) and U(V) complex [((DiaArO)3tacn)U(NTMS)] (3), respectively. Spectroscopic investigations of complexes 1, 2, and 3 will be discussed, along with molecular structures where possible. (authors)

  3. Tramp uranium

    International Nuclear Information System (INIS)

    Many utilities have implemented a no leaker philosophy for fuel performance and actively pursue removing leaking fuel assemblies from their reactor cores whenever a leaking fuel assembly is detected. Therefore, the only source for fission product activity in the RCS when there are no leaking fuel assemblies is tramp uranium. A technique has been developed that strips uranium impurities from ZrCl4. Unless efforts are made to remove natural uranium impurities from reactor materials, the utilities will not be able to reduce the RCS specific 131I activity in PWRs to below the lower limit of ∼1.0 x 10-4 μCi/g

  4. New french uranium mineral species; Nouvelles especes uraniferes francaises

    Energy Technology Data Exchange (ETDEWEB)

    Branche, G.; Chervet, J.; Guillemin, C. [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    In this work, the authors study the french new uranium minerals: parsonsite and renardite, hydrated phosphates of lead and uranium; kasolite: silicate hydrated of uranium and lead uranopilite: sulphate of uranium hydrated; bayleyite: carbonate of uranium and of hydrated magnesium; {beta} uranolite: silicate of uranium and of calcium hydrated. For all these minerals, the authors give the crystallographic, optic characters, and the quantitative chemical analyses. On the other hand, the following species, very rare in the french lodgings, didn't permit to do quantitative analyses. These are: the lanthinite: hydrated uranate oxide; the {alpha} uranotile: silicate of uranium and of calcium hydrated; the bassetite: uranium phosphate and of hydrated iron; the hosphuranylite: hydrated uranium phosphate; the becquerelite: hydrated uranium oxide; the curite: oxide of uranium and lead hydrated. Finally, the authors present at the end of this survey a primary mineral: the brannerite, complex of uranium titanate. (author) [French] Dans ce travail, les auteurs etudient les nouveaux mineraux uraniferes francais: parsonsite et renardite, phosphates hydrates de plomb et d'uranium; kasolite: silicate hydrate d'uranium et de plomb uranopilite: sulfate d'uranium hydrate; bayleyite: carbonate d'uranium et de magnesium hydrate; {beta} uranolite: silicate d'uranium et de calcium hydrate. Pour tous ces mineraux, les auteurs donnent les caracteres cristallographiques, optiques, et les analyses chimiques quantitatives. Par contre, les especes suivantes, tres rares dans les gites francais, n'ont pas permis d'effectuer d'analyses quantitatives. Ce sont: l'ianthinite: oxyde uraneux hydrate; l'{alpha} uranotile: silicate d'uranium et de calcium hydrate; le bassetite: phosphate d'uranium et de fer hydrate; la hosphuranylite: phosphate duranium hydrate; la becquerelite: oxyde d'uranium hydrate; la curite: oxyde d'uranium

  5. Kinetics of Uranium Extraction from Uranium Tailings by Oxidative Leaching

    Science.gov (United States)

    Zhang, Biao; Li, Mi; Zhang, Xiaowen; Huang, Jing

    2016-07-01

    Extraction of uranium from uranium tailings by oxidative leaching with hydrogen peroxide (H2O2) was studied. The effects of various extraction factors were investigated to optimize the dissolution conditions, as well as to determine the leaching kinetic parameters. The behavior of H2O2 in the leaching process was determined through scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and x-ray diffraction analysis of leaching residues. Results suggest that H2O2 can significantly improve uranium extraction by decomposing the complex gangue structures in uranium tailings and by enhancing the reaction rate between uranium phases and the leaching agent. The extraction kinetics expression was changed from 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)-0.14903(S/L)-1.80435( R o)0.20023 e -1670.93/T t ( t ≥ 5) to 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)0.01382(S/L)-1.83275( R o)0.25763 e -1654.59/T t ( t ≥ 5) by the addition of H2O2 in the leaching process. The use of H2O2 in uranium leaching may help in extracting uranium more efficiently and rapidly from low-uranium-containing ores or tailings.

  6. Kinetics of Uranium Extraction from Uranium Tailings by Oxidative Leaching

    Science.gov (United States)

    Zhang, Biao; Li, Mi; Zhang, Xiaowen; Huang, Jing

    2016-05-01

    Extraction of uranium from uranium tailings by oxidative leaching with hydrogen peroxide (H2O2) was studied. The effects of various extraction factors were investigated to optimize the dissolution conditions, as well as to determine the leaching kinetic parameters. The behavior of H2O2 in the leaching process was determined through scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and x-ray diffraction analysis of leaching residues. Results suggest that H2O2 can significantly improve uranium extraction by decomposing the complex gangue structures in uranium tailings and by enhancing the reaction rate between uranium phases and the leaching agent. The extraction kinetics expression was changed from 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)-0.14903(S/L)-1.80435(R o)0.20023 e -1670.93/T t (t ≥ 5) to 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)0.01382(S/L)-1.83275(R o)0.25763 e -1654.59/T t (t ≥ 5) by the addition of H2O2 in the leaching process. The use of H2O2 in uranium leaching may help in extracting uranium more efficiently and rapidly from low-uranium-containing ores or tailings.

  7. 77 FR 51579 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-08-24

    ... COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public... kilograms For the export of Canada. Complex, July 30, 2012, August Uranium (93.35%). uranium-235 high-enriched 1, 2012, XSNM3726, 11006037. contained in 7.5 uranium in the kilograms uranium. form of...

  8. Uranium Market

    International Nuclear Information System (INIS)

    The main fuel component for commercial nuclear power reactors is Uranium. When compared to fossil fuels, it has a competitive edge due to factors such as economics and environmental conditions and in particular due to its international market availability. Uranium world demand reached to 67 320 tU in 2004, which was covered with additional sources. To project the uranium markets behavior requires to know and to accept some conditions tied to the demand, such as the electrical world consumption, the greenhouse effect; water desalination, production of hydrogen, industrial heat, the innovative development of nuclear reactors, and the average time of 10 years between the beginning of exploration programs and definition of deposits, which it owes mainly to the difficulty of achieving the legal, environmental and local community authorizations, to open new mining centers. Uranium market future projections, made by IAEA experts in 2001, that considered middle and high demand scenarios, concluded that cumulatively to year 2050, with regard to demand it will be required 5.4 and 7.6 million tons of uranium respectively, and with regard to the uranium price, it should present a sustained increase. In the last years the situation of the uranium market has changed dramatically. In August 2006 the price of uranium reached to USD 106/kgU in the spot market, surpassing all the made projections. The increase in price that has stayed in rise in the last five years is reactivating the prospection and exploration efforts anywhere in the world, and competition between prospective areas of potential resources mainly in less explored territories

  9. Solubility measurement of uranium in uranium-contaminated soils

    International Nuclear Information System (INIS)

    A short-term equilibration study involving two uranium-contaminated soils at the Fernald site was conducted as part of the In Situ Remediation Integrated Program. The goal of this study is to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the equilibration study to predict the on-site uranium leaching and transport processes. The soluble levels of total uranium, calcium, magnesium, and carbonate increased continually for the first four weeks. After the first four weeks, these components either reached a steady-state equilibrium or continued linearity throughout the study. Aluminum, potassium, and iron, reached a steady-state concentration within three days. Silica levels approximated the predicted solubility of quartz throughout the study. A much higher level of dissolved uranium was observed in the soil contaminated from spillage of uranium-laden solvents and process effluents than in the soil contaminated from settling of airborne uranium particles ejected from the nearby incinerator. The high levels observed for soluble calcium, magnesium, and bicarbonate are probably the result of magnesium and/or calcium carbonate minerals dissolving in these soils. Geochemical modeling confirms that the uranyl-carbonate complexes are the most stable and dominant in these solutions. The use of carbonate minerals on these soils for erosion control and road construction activities contributes to the leaching of uranium from contaminated soil particles. Dissolved carbonates promote uranium solubility, forming highly mobile anionic species. Mobile uranium species are contaminating the groundwater underlying these soils. The development of a site-specific remediation technology is urgently needed for the FEMP site

  10. Quantum chemistry study of uranium(VI), neptunium(V), and plutonium(IV,VI) complexes with preorganized tetradentate phenanthrolineamide ligands.

    Science.gov (United States)

    Xiao, Cheng-Liang; Wu, Qun-Yan; Wang, Cong-Zhi; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun

    2014-10-20

    The preorganized tetradentate 2,9-diamido-1,10-phenanthroline ligand with hard-soft donors combined in the same molecule has been found to possess high selectivity toward actinides in an acidic aqueous solution. In this work, density functional theory (DFT) coupled with the quasi-relativistic small-core pseudopotential method was used to investigate the structures, bonding nature, and thermodynamic behavior of uranium(VI), neptunium(V), and plutonium(IV,VI) with phenanthrolineamides. Theoretical optimization shows that Et-Tol-DAPhen and Et-Et-DAPhen ligands are both coordinated with actinides in a tetradentate chelating mode through two N donors of the phenanthroline moiety and two O donors of the amide moieties. It is found that [AnO2L(NO3)](n+) (An = U(VI), Np(V), Pu(VI); n = 0, 1) and PuL(NO3)4 are the main 1:1 complexes. With respect to 1:2 complexes, the reaction [Pu(H2O)9](4+)(aq) + 2L(org) + 2NO3(-)(aq) → [PuL2(NO3)2](2+)(org) + 9H2O(aq) might be another probable extraction mechanism for Pu(IV). From the viewpoint of energy, the phenanthrolineamides extract actinides in the order of Pu(IV) > U(VI) > Pu(VI) > Np(V), which agrees well with the experimental results. Additionally, all of the thermodynamic reactions are more energetically favorable for the Et-Tol-DAPhen ligand than the Et-Et-DAPhen ligand, indicating that substitution of one ethyl group with one tolyl group can enhance the complexation abilities toward actinide cations (anomalous aryl strengthening).

  11. Coordination chemistry of actinide elements: preparation of new uranium complexes with schiff bases and their characterization (Preprint No. CT-31)

    International Nuclear Information System (INIS)

    The Schiff bases, o-vanillin semicarbazone (oVSC) and 2-pyridine carboxaldehyde isonicotinoyl hydrazone (PCINH) have been prepared and their novel complexes with dioxouranium(VI) have been synthesized and characterized by IR spectra, elemental analysis and other physico-chemical techniques. (author)

  12. Uranium enrichment

    International Nuclear Information System (INIS)

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  13. Effect of successive alkylation of N,N-dialkyl amides on the complexation behavior of uranium and thorium: solvent extraction, small angle neutron scattering, and computational studies.

    Science.gov (United States)

    Verma, Parveen Kumar; Pathak, Priyanath N; Kumari, Neelam; Sadhu, Biswajit; Sundararajan, Mahesh; Aswal, Vinod Kumar; Mohapatra, Prasanta Kumar

    2014-12-11

    The effect of successive alkylation of the Cα atom adjacent to the carbonyl group in N,N-dialkyl amides (i.e., di(2-ethylhexyl)acetamide (D2EHAA), di(2-ethylhexyl)propionamide (D2EHPRA), di(2-ethylhexyl)isobutyramide (D2EHIBA), and di(2-ethylhexyl)pivalamide (D2EHPVA)) on the extraction behavior of hexavalent uranium (U(VI)) and tetravalent thorium (Th(IV)) ions has been investigated. These studies show that the extraction of Th(IV) is significantly suppressed compared to that of U(VI) with increased branching at the Cα atom adjacent to the carbonyl group. Small angle neutron scattering (SANS) studies showed an increased aggregation tendency in the presence of nitric acid and metal ions. D2EHAA showed more aggregation compared to its branched homologues, which explains its capacity for higher extraction of metal ions. These experimental observations were further supported by density function theory calculations, which provided structural evidence of differential binding affinities of these extractants for uranyl cations. The complexation process is primarily controlled by steric and electronic effects. Quantum chemical calculations showed that local hardness and polarizability can be extremely useful inputs for designing novel extractants relevant to a nuclear fuel cycle.

  14. Effect of successive alkylation of N,N-dialkyl amides on the complexation behavior of uranium and thorium: solvent extraction, small angle neutron scattering, and computational studies.

    Science.gov (United States)

    Verma, Parveen Kumar; Pathak, Priyanath N; Kumari, Neelam; Sadhu, Biswajit; Sundararajan, Mahesh; Aswal, Vinod Kumar; Mohapatra, Prasanta Kumar

    2014-12-11

    The effect of successive alkylation of the Cα atom adjacent to the carbonyl group in N,N-dialkyl amides (i.e., di(2-ethylhexyl)acetamide (D2EHAA), di(2-ethylhexyl)propionamide (D2EHPRA), di(2-ethylhexyl)isobutyramide (D2EHIBA), and di(2-ethylhexyl)pivalamide (D2EHPVA)) on the extraction behavior of hexavalent uranium (U(VI)) and tetravalent thorium (Th(IV)) ions has been investigated. These studies show that the extraction of Th(IV) is significantly suppressed compared to that of U(VI) with increased branching at the Cα atom adjacent to the carbonyl group. Small angle neutron scattering (SANS) studies showed an increased aggregation tendency in the presence of nitric acid and metal ions. D2EHAA showed more aggregation compared to its branched homologues, which explains its capacity for higher extraction of metal ions. These experimental observations were further supported by density function theory calculations, which provided structural evidence of differential binding affinities of these extractants for uranyl cations. The complexation process is primarily controlled by steric and electronic effects. Quantum chemical calculations showed that local hardness and polarizability can be extremely useful inputs for designing novel extractants relevant to a nuclear fuel cycle. PMID:25422857

  15. Tetrapositive plutonium, neptunium, uranium, and thorium coordination complexes: chemistry revealed by electron transfer and collision induced dissociation.

    Science.gov (United States)

    Gong, Yu; Tian, Guoxin; Rao, Linfeng; Gibson, John K

    2014-04-17

    The Pu(4+), Np(4+), and U(4+) ions, which have large electron affinities of ∼34.6, ∼33.6, and ∼32.6 eV, respectively, were stabilized from solution to the gas phase upon coordination by three neutral tetramethyl-3-oxa-glutaramide ligands (TMOGA). Both collision induced dissociation (CID) and electron transfer dissociation (ETD) of Pu(TMOGA)3(4+) reveal the propensity for reduction of Pu(IV) to Pu(III), by loss of TMOGA(+) in CID and by simple electron transfer in ETD. The reduction of Pu(IV) is in distinct contrast to retention of Th(IV) in both CID and ETD of Th(TMOGA)3(4+), where only the C-Oether bond cleavage product was observed. U(TMOGA)3(4+) behaves similarly to Th(TMOGA)3(4+) upon CID and ETD, while the fragmentation patterns of Np(TMOGA)3(4+) lie between those of Pu(TMOGA)3(4+) and U(TMOGA)3(4+). It is notable that the gas-phase fragmentation behaviors of these exceptional tetrapositive complexes parallel fundamental differences in condensed phase chemistry within the actinide series, specifically the tendency for reduction from the IV to III oxidation states.

  16. Tetrapositive plutonium, neptunium, uranium, and thorium coordination complexes: chemistry revealed by electron transfer and collision induced dissociation.

    Science.gov (United States)

    Gong, Yu; Tian, Guoxin; Rao, Linfeng; Gibson, John K

    2014-04-17

    The Pu(4+), Np(4+), and U(4+) ions, which have large electron affinities of ∼34.6, ∼33.6, and ∼32.6 eV, respectively, were stabilized from solution to the gas phase upon coordination by three neutral tetramethyl-3-oxa-glutaramide ligands (TMOGA). Both collision induced dissociation (CID) and electron transfer dissociation (ETD) of Pu(TMOGA)3(4+) reveal the propensity for reduction of Pu(IV) to Pu(III), by loss of TMOGA(+) in CID and by simple electron transfer in ETD. The reduction of Pu(IV) is in distinct contrast to retention of Th(IV) in both CID and ETD of Th(TMOGA)3(4+), where only the C-Oether bond cleavage product was observed. U(TMOGA)3(4+) behaves similarly to Th(TMOGA)3(4+) upon CID and ETD, while the fragmentation patterns of Np(TMOGA)3(4+) lie between those of Pu(TMOGA)3(4+) and U(TMOGA)3(4+). It is notable that the gas-phase fragmentation behaviors of these exceptional tetrapositive complexes parallel fundamental differences in condensed phase chemistry within the actinide series, specifically the tendency for reduction from the IV to III oxidation states. PMID:24660979

  17. Uranium industry annual 1996

    International Nuclear Information System (INIS)

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs

  18. Uranium industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  19. Uranium industry annual, 1991

    International Nuclear Information System (INIS)

    In the Uranium Industry Annual 1991, data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2. A feature article entitled ''The Uranium Industry of the Commonwealth of Independent States'' is included in this report

  20. Uranium(Ⅵ) Complex Based on a Fluoroquinolone Ligand with Green Fluorescent Emission%具有绿色荧光发射效应的氟喹诺酮-铀(Ⅵ)配合物

    Institute of Scientific and Technical Information of China (English)

    瞿志荣

    2008-01-01

    A uranium(Ⅵ) complex [UO2(1-ethyl-6,8-difluoro-7-(3-methyl-piperazinium-1-yl)-4-oxo-1,4-dihydro-quinwater at 80 ℃ in Pyrex tube. The crystal belongs to monoclinic system, space group P21/c, with a=1.430(3) nm, b=1.032 1(18) nm, c=1.729(3) nm,β=106.67(3)° V=2.458(6) nm3, Z=4. This complex is a good green fluorescent material in solid state at room temperature. CCDC: 660959.

  1. Investigations on the molecular structure of water dissolved and hematite-sorbed uranium(VI) complexes with aliphatic (hydroxo-) carboxylic acids. Combination of several spectroscopic techniques with factor analysis and quantum chemical calculations; Untersuchungen zur Struktur von wassergeloesten und an Haematit sorbierten Uran(VI)-Komplexen mit aliphatischen (Hydroxy-) Carbonsaeuren. Kombination verschiedener spektroskopischer Methoden mit Faktorenanalyse und quantenchemischen Berechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Lucks, Christian

    2013-04-23

    This study is focussed on throwing light on the structures of uranium(VI) complexes with aliphatic (hydroxy-) carboxylic acids and on the structures of the sorption complexes on the iron mineral hematite in presence and absence of organic acids. The ternary system of hematite, uranium(VI), and organic ligand is very complicated, thus it is necessary to decompose it in binary systems. The results within these binary systems are used to better understand the complicated ternary system. Based on the comprehensive investigations on the aqueous uranium(VI) complexes, it is now possible to draw inferences from the structure of the carboxylic acid about the structure of the formed uranium(VI) complex in dependence of the pH. At first it has to be mentioned that uranium(VI) commonly gives pentagonal bipyramidal complexes. The pentaaquauranylion is formed by two axial oxygen atoms (O{sub ax}) at a distance of 1.76 Aa and five equatorial oxygen atoms (O{sub eq}) at 2.40 Aa stemming from coordinated water molecules. Due to complexation with organic ligands water is replaced by the ligand, thus the interatomic distances change. The results gained during all these investigations can help to better understand the interaction of uranium(VI) and carboxylic acids, and beyond that the sorption of uranium(VI) on hematite in the presence of carboxylic acids. Structures of the aqueous and sorption complexes are proposed. All these findings support the ongoing research on the transport behaviour of radioactive matter and may lead to more reliable risk assessment in connection with the permanent disposal of nuclear waste and the residues of uranium mining.

  2. Evaluation of the uranium immobilization potential of vetiver plants grown on processed solid waste of uranium industry of Jaduguda, India

    International Nuclear Information System (INIS)

    Remediation of contaminated sites using specific plant or plant groups may offer a cheap, renewable and promising technique to minimize the long-term ecological adverse impact of the waste disposal. The major components of process waste of uranium industry are uranium series radionuclides, heavy metals inherently present in the ore, chemical additives and residual uranium. Among the radionuclides quantitative content of residual uranium is highest in the disposed process waste of uranium mill. In view of this fact experiments were conducted to study the uranium immobilization potential of a phytoremediator that can grow and survive in the complex tailings (fine solid process waste) environment. Vetiver grass (Chrysopogon zizanioides (L.) Nash) was selected for translocation and immobilization studies of uranium. The grass was planted in uranium mill tailing ponds at Jaduguda, Jharkhand, India and periodic sampling was carried out to investigate the extent of uranium uptake. The acid aliquot of dry or wet ash samples of plant and soil were subjected to solvent extraction followed by UV-Fluorimetry for uranium estimation. It has been observed that the grass could immobilize up to 8 ppm uranium within 6 months after planting. Uranium is preferably immobilized at the root and translocation of uranium to upper plant parts (shoot) is low compared to roots. The uranium uptake got saturated after a particular concentration range. The increased level of uranium in the soil covering of tailings needs further investigation. (author)

  3. Synthesis and crystal structure of a new uranium complex [Usub(IV)(SCN)4, 4H2O]1 [18-crown-6]sub(1,5), 3H2O, 1 methyl isobutyl ketone

    International Nuclear Information System (INIS)

    The synthesis and crystal structure of the title compound are reported. This uranium complex crystallizes in the P bar 1 triclinic space group with: a = 10.63A; b = 14.60A; c = 15.95A; α = 75030; β = 88040; γ =82.20. The structure was solved by Patterson and successive Fourier difference syntheses methods to a final R value: 0.047. The uranium atom is eight-coordinated to four N-C-S groups and four oxygen atoms from water molecules, in a distorted square antiprism polyhedron. The crown-ether molecules have not the same configuration as uncomplexed ether molecules. They are connected to neutral [U(SCN)4, 4H2O] units by hydrogen bonding via water molecules. The cohesion of the structure is given by hydrogen bonds. (author)

  4. Uranium enrichment

    International Nuclear Information System (INIS)

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector

  5. Studies of Uranium Recovery from Tunisian Wet Process Phosphoric Acid

    OpenAIRE

    Naima Khleifia; Ahmed Hannachi; Noureddine Abbes

    2013-01-01

    The growing worldwide energy demand associated with several inter related complex environmental as well as economical issues are driving the increase of the share of uranium in energy mix. Subsequently, over the last few years, the interest for uranium extraction and recovery from unconventional resources has gained considerable importance. Phosphate rock has been the most suitable alternative source for the uranium recovery because of its uranium content. Solvent extraction has been found to...

  6. Extractive Electrospray Ionization Mass Spectrometry for Uranium Chemistry Studies

    OpenAIRE

    Chen, Huanwen; Luo, Mingbiao; Xiao, Saijin; OUYANG Yongzhong; Zhou, Yafei; Zhang, Xinglei

    2013-01-01

    Uranium chemistry is of sustainable interest. Breakthroughs in uranium studies make serious impacts in many fields including chemistry, physics, energy and biology, because uranium plays fundamentally important roles in these fields. Substantial progress in uranium studies normally requires development of novel analytical tools. Extractive electrospray ionization mass spectrometry (EESI-MS) is a sensitive technique for trace detection of various analytes in complex matrices without sample pre...

  7. Uranium industry annual, 1986

    International Nuclear Information System (INIS)

    Uranium industry data collected in the EIA-858 survey provide a comprehensive statistical characterization of annual activities of the industry and include some information about industry plans over the next several years. This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities utility market requirements and related topics

  8. 77 FR 73055 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-12-07

    ... COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public... kilograms To fabricate targets The Netherlands. Security Complex. Uranium uranium-235 at CERCA AREVA October... XSNM3730 uranium. targets at the HFR 11006054 Research Reactor in the Netherlands, the BR-2 Reactor...

  9. The peraluminous leucogranitic complex of St Sylvestre (France, Massif Central NW). Evolution of the crystallochemistry of mineral phases and of the geochemistry of major and trace elements. Polygenetism characterization in peraluminous granites. Implication on uranium metallogeny

    International Nuclear Information System (INIS)

    The main purpose of this study is to improve the knowledge of the behaviour of uranium during magmatic and late magmatic processes. In France and other part of the world the close association of uranium (Sn-W) deposits and showings with this type of granite justifies the metallogenic interest of this study. At the scale of the whole granitic complex two distinct petrological groups are redefined: the facies of Brame and St Sylvestre. Mineral paragenesis closely follow the geochemical differentiation. Abundance of uraninite and scarcity of monazite and zircon, are additional features of these samples. The opposite behaviour of monazite (typical of the less evolved facies) and uraninite (whose abundance is directly related to the degree of differentiation) suggests two conclusions. Abundance in uranium is directly related to the magmatic differentiation processes. The early crystallization of monazite and zircon and their high abundance in poorly evolved facies imply a compatible behaviour for Th, Zr and light rare earths. More detailed geochemical studies evidence heterogeneities at on hectometric and locally at a metric scale. Differentiation processes, which appear to be continuous at a kilometric scale in the St Sylvestre facies, are discontinuous at the hectometric and metric scale. Such petrogeochemical discontinuities, implying petrogenitic heterogeneities are expressed in the concept of polygenetism

  10. Uranium Industry Annual, 1992

    International Nuclear Information System (INIS)

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ''Decommissioning of US Conventional Uranium Production Centers,'' is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2

  11. Uranium Industry Annual, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  12. Study of new complexes of uranium and comba radical. II-Complexes formed in the presence of OH{sup -}, CO{sub 3}H{sup -}, CH{sub 3}-COO{sup -}, and B{sub 4}={sub 7}; Estudio de nuevos complejos entre uranio y el radical CADMBA. II. Complejos formados en presencia de OH{sup -}, CO{sub 3}H, CH{sub 3}-COO{sup -} y B{sub 4}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Vera Palomino, V.; Galiano Sedano, J. A.; Parellada Bellod, R.; Bellido Gonzalez, A.

    1975-07-01

    Several complexes extracted with CDMBAC organic solutions from uranium aqueous solutions, in presence of sodium and ammonium hydroxides, are studied. These complexes fit to the general formula: U0{sub 2}(OH){sub n}(CDMBA){sub n}-2 . The uranium extraction in presence of an excess of sodium bicarbonate is also studied. From aqueous solutions of uranyl acetate we have isolated the complex U0{sub 2}(CH{sub 3}-C00){sub n} (CDMBA){sub n}-2. In presence of boric acid and sodium tetraborate an U-CDMBA compound containing boron in its molecule has being obtained by precipitation and liquid-liquid extraction. (Author) 5 refs.

  13. Uranium processing and properties

    CERN Document Server

    2013-01-01

    Covers a broad spectrum of topics and applications that deal with uranium processing and the properties of uranium Offers extensive coverage of both new and established practices for dealing with uranium supplies in nuclear engineering Promotes the documentation of the state-of-the-art processing techniques utilized for uranium and other specialty metals

  14. Issues in uranium availability

    International Nuclear Information System (INIS)

    The purpose of this publication is to show the process by which information about uranium reserves and resources is developed, evaluated and used. The following three papers in this volume have been abstracted and indexed for the Energy Data Base: (1) uranium reserve and resource assessment; (2) exploration for uranium in the United States; (3) nuclear power, the uranium industry, and resource development

  15. Australian uranium and the election

    International Nuclear Information System (INIS)

    The international and national complexities of the situation in Australia over the question of mining of the country's large and rich uranium deposits are explored with especial reference to the pending general election. The present position is ironical since access to low cost uranium would give a welcome boost to the nuclear industry which is enthusiastically supported by the Australian prime minister and his colleagues yet the Australian government is unable to promote mining as rapidly as it would like because of the international commitments it has made to provide a justification for its policy. (U.K.)

  16. Uranium industry annual 1985

    International Nuclear Information System (INIS)

    This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities, utility market requirements, and related topics. A glossary and appendices are included to assist the reader in interpreting the substantial array of statistical data in this report and to provide background information about the survey

  17. Depleted Uranium Management

    International Nuclear Information System (INIS)

    The paper considers radiological and toxic impact of the depleted uranium on the human health. Radiological influence of depleted uranium is less for 60 % than natural uranium due to the decreasing of short-lived isotopes uranium-234 and uranium-235 after enrichment. The formation of radioactive aerosols and their impact on the human are mentioned. Use of the depleted uranium weapons has also a chemical effect on intake due to possible carcinogenic influence on kidney. Uranium-236 in the substance of the depleted uranium is determined. The fact of beta-radiation formation in the uranium-238 decay is regarded. This effect practically is the same for both depleted and natural uranium. Importance of toxicity of depleted uranium, as the heavier chemical substance, has a considerable contribution to the population health. The paper analyzes risks regarding the use of the depleted uranium weapons. There is international opposition against using weapons with depleted uranium. Resolution on effects of the use of armaments and ammunitions containing depleted uranium was five times supported by the United Nations (USA, United Kingdom, France and Israel did not support). The decision for banning of depleted uranium weapons was supported by the European Parliament

  18. Morphology Characterization of Uranium Particles From Laser Ablated Uranium Materials

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In the study, metallic uranium and uranium dioxide material were ablated by laser beam in order to simulate the process of forming the uranium particles in pyrochemical process. The morphology characteristic of uranium particles and the surface of

  19. Uranium resources, production and fuel fabrication

    International Nuclear Information System (INIS)

    Almost all the known disseminated and vein-type uranium deposits in India are located in the Precambrian igneous and metamorphic complexes in the Peninsular Shield; the most significant reserves occur in the Singhbhum Thrust Belt of Bihar. Adequate resources of uranium to meet the country's fuel requirements for the nuclear power programme have been established. The Uranium Corporation of India has been operating commercially an underground uranium mine and a mill at Jaduguda (Bihar) since 1968. The uranium ore body is mined by the cut-and-fill method. The present mine workings, 530 m below ground level, comprise many innovative features, namely, a tower-mounted Koepe winder system, skip-loading with an underground crushing system, concrete headframe, etc. Surveillance, control and monitoring systems, especially required in the mining of low grade uranium ores, have been successfully introduced. The uranium mill adjacent to the mine uses the acid leach and ion-exchange processes of recovery. The effluents are suitably treated in a specially designed tailings pond. Other accessory economic minerals, namely chalcopyrite, molybdenite and magnetite, are profitably recovered as by-products. Fuel fabrication commenced in India with the manufacture of aluminium-clad metallic uranium fuel for the CIR reactor. Power reactor oxide fuel manufacture has been carried out initially at Trombay for the Rajasthan Power Reactor I (RAPP-I). For transferring the technology developed, industrial-scale plants have been set up in the Nuclear Fuel Complex (NFC) at Hyderabad for the manufacture of zirconium-clad natural uranium fuel for PHWRs and low enrichment uranium fuel for the BWR Tarapur Power Station

  20. Redox reactivity and coordination chemistry of uranium

    International Nuclear Information System (INIS)

    The study and the understanding of actinides chemistry have important implications in the nuclear field both for the development of new actinides materials and the retreatment of the nuclear wastes. One of the major issues in that chemistry is that the actinides elements are known to undergo redox reaction and to form assemblies of different size and different topologies. In that context uranium can be a good model of the heavier radioelement because it is much less radioactive. So, this work concerns the synthesis and the study of the spectroscopy and the magnetic properties of several uranium based polymetallic assemblies synthesized by taking advantage of the redox properties and the coordination chemistry of uranium. The hydrolysis reactivity of trivalent uranium has been studied in absence of sterically hindered ligands and led to the synthesis of oxo/hydroxo uranium assemblies with different sizes by changing the starting complex or the reaction conditions. By following the same strategy, the controlled oxidation of trivalent uranium complexes led to an original azido/nitrido uranium complex. The coordination chemistry of the pentavalent uranyl polymer {[UO2py5][KI2py3]}n has also been studied with different ligand and in different conditions and led to several cation-cation complexes for which the stability is sufficient for studying there dismutation by proton NMR. By changing the ancillary ligands stable monomeric complexes of pentavalent uranyl complexes were also obtained. The magnetic properties of all the complexes, monomers and polymetallic complexes were studied and an antiferromagnetic coupling was observed for the cation-cation pentavalent uranyl dimer [UO2(dbm)2(K18C6)]2. (author)

  1. Uranium Management - Preservation of a National Asset

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J. D.; Stroud, J. C.

    2002-02-27

    The Uranium Management Group (UMG) was established at the Department of Energy's (DOE's) Oak Ridge Operations in 1999 as a mechanism to expedite the de-inventory of surplus uranium from the Fernald Environmental Management Project site. This successful initial venture has broadened into providing uranium material de-inventory and consolidation support to the Hanford site as well as retrieving uranium materials that the Department had previously provided to universities under the loan/lease program. As of December 31, 2001, {approx} 4,300 metric tons of uranium (MTU) have been consolidated into a more cost effective interim storage location at the Portsmouth site near Piketon, OH. The UMG continues to uphold its corporate support mission by promoting the Nuclear Materials Stewardship Initiative (NMSI) and the twenty-five (25) action items of the Integrated Nuclear Materials Management Plan (1). Before additional consolidation efforts may commence to remove excess inventory from Environmental Management closure sites and universities, a Programmatic Environmental Assessment (PEA) must be completed. Two (2) noteworthy efforts currently being pursued involve the investigation of re-use opportunities for surplus uranium materials and the recovery of usable uranium from the shutdown Portsmouth cascade. In summary, the UMG is available as a DOE complex-wide technical resource to promote the responsible management of surplus uranium.

  2. Uranium Provinces in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Three uranium provinces are recognized in China, the Southeast China uranium province, the Northeast China-lnner Mongolia uranium province and the Northwest China (Xinjiang) uranium province. The latter two promise good potential for uranium resources and are major exploration target areas in recent years. There are two major types of uranium deposits: the Phanerozoic hydrothermal type (vein type) and the Meso-Cenozoic sandstone type in different proportions in the three uranium provinces. The most important reason or prerequisite for the formation of these uranium provinces is that Precambrian uranium-enriched old basement or its broken parts (median massifs) exists or once existed in these regions, and underwent strong tectonomagmatic activation during Phanerozoic time. Uranium was mobilized from the old basement and migrated upwards to the upper structural level together with the acidic magma originating from anatexis and the primary fluids, which were then mixed with meteoric water and resulted in the formation of Phanerozoic hydrothermal uranium deposits under extensional tectonic environments. Erosion of uraniferous rocks and pre-existing uranium deposits during the Meso-Cenozoic brought about the removal of uranium into young sedimentary basins. When those basins were uplifted and slightly deformed by later tectonic activity, roll-type uranium deposits were formed as a result of redox in permeable sandstone strata.

  3. Uranium industry annual 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  4. Uranium industry annual 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  5. Uranium industry annual 1994

    International Nuclear Information System (INIS)

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data collected on the ''Uranium Industry Annual Survey'' (UIAS) provide a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ''Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,'' is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2

  6. Synthesis, characterization, crystal structure, DNA and BSA binding, molecular docking and in vitro anticancer activities of a mononuclear dioxido-uranium(VI) complex derived from a tridentate ONO aroylhydrazone.

    Science.gov (United States)

    Mohamadi, Maryam; Ebrahimipour, S Yousef; Castro, Jesus; Torkzadeh-Mahani, Masoud

    2016-05-01

    A mononuclear dioxido-uranium(IV) complex [UO2(L)(DMSO)2], was prepared from the reaction of (2-hydroxy-3-methoxybenzylidene)benzohydrazide [HL] with UO2(OAc)2·2H2O in DMSO. The obtained complex was fully characterized. Single crystal X-ray diffraction analysis of [UO2(L)(DMSO)2] revealed that U(VI) ion has been coordinated by ONO donor atoms of the dianionic ligand (L(2-)), oxo groups and two DMSO molecules in a pentagonal bipyramid geometry. In addition, interactions of the complex with salmon sperm DNA and bovine serum albumin (BSA) were thoroughly investigated using UV-vis absorption, voltammetry and molecular docking methods. The experimental studies showed an intercalative mode of interaction between the complex and DNA. Experiments on BSA interaction indicated a change in the polarity of the environment surrounded the complex as a result of the interaction between BSA and [UO2(L)(DMSO)2]. Finally, MTT assays indicated that the U(VI) complex had excellent cytotoxicity against human carcinoma cell lines of MCF-7, HPG-2, and HT-29, with IC50 values of 8.4, 10.6 and 10.0μM, respectively.

  7. Extractive electrospray ionization mass spectrometry for uranium chemistry studies.

    Science.gov (United States)

    Chen, Huanwen; Luo, Mingbiao; Xiao, Saijin; Ouyang, Yongzhong; Zhou, Yafei; Zhang, Xinglei

    2013-01-01

    Uranium chemistry is of sustainable interest. Breakthroughs in uranium studies make serious impacts in many fields including chemistry, physics, energy and biology, because uranium plays fundamentally important roles in these fields. Substantial progress in uranium studies normally requires development of novel analytical tools. Extractive electrospray ionization mass spectrometry (EESI-MS) is a sensitive technique for trace detection of various analytes in complex matrices without sample pretreatment. EESI-MS shows excellent performance for monitoring uranium species in various samples at trace levels since it tolerates extremely complex matrices. Therefore, EESI-MS is an alternative choice for studying uranium chemistry, especially when it combines ion trap mass spectrometry. In this presentation, three examples of EESI-MS for uranium chemistry studies will be given, illustrating the potential applications of EESI-MS in synthesis chemistry, physical chemistry, and analytical chemistry of uranium. More specifically, case studies on EESI-MS for synthesis and characterization of novel uranium species, and for rapid detection of uranium and its isotope ratios in various samples will be presented. Novel methods based on EESI-MS for screening uranium ores and radioactive iodine-129 will be presented. PMID:24349940

  8. Uranium: one utility's outlook

    International Nuclear Information System (INIS)

    The perspective of the Arizona Public Service Company (APS) on the uncertainty of uranium as a fuel supply is discussed. After summarizing the history of nuclear power and the uranium industries, a projection is made for the future uranium market. An uncrtain uranium market is attributed to various determining factors that include international politics, production costs, non-commercial government regulation, production-company stability, and questionable levels of uranium sales. APS offers its solutions regarding type of contract, choice of uranium producers, pricing mechanisms, and aids to the industry as a whole. 5 references, 10 figures, 1 table

  9. Uranium health physics

    International Nuclear Information System (INIS)

    This report contains the papers delivered at the Summer School on Uranium Health Physics held in Pretoria on the 14 and 15 April 1980. The following topics were discussed: uranium producton in South Africa; radiation physics; internal dosimetry and radiotoxicity of long-lived uranium isotopes; uranium monitoring; operational experience on uranium monitoring; dosimetry and radiotoxicity of inhaled radon daughters; occupational limits for inhalation of radon-222, radon-220 and their short-lived daughters; radon monitoring techniques; radon daughter dosimeters; operational experience on radon monitoring; and uranium mill tailings management

  10. Uranium: myths and realities the depleted uranium

    International Nuclear Information System (INIS)

    Uranium is an element whose name causes worry. The uranium properties are very unknown for people. However the element plays an important roll in the Earth as responsible of numerous natural phenomena, which are vital for life evolution. An example of the low knowledge about uranium has been the Balkan syndrome. A relation between cancers and the use of depleted uranium in ammunition in the Balkan War has been pretended to be established. From the beginning, this hypothesis could have been discarded as it has been confirmed and stated in recent reports of UNEP Commissions who have studied this matter. (Author)

  11. Bioremediation of uranium contaminated Fernald soils

    International Nuclear Information System (INIS)

    This study investigated the use of microbial bioleaching for removal of uranium from contaminated soils. The ability of bacteria to assist in oxidation and solubilization of uranium was compared to the ability of fungi to produce complexing compounds which have the same effect. Biosorption of uranium by fungi was also measured. Soil samples were examined for changes in mineralogical properties due to these processes. On the basis of these laboratory scale studies a generalized flow sheet is proposed for bioremediation of contaminated Fernald soils

  12. DEPLETED URANIUM TECHNICAL WORK

    Science.gov (United States)

    The Depleted Uranium Technical Work is designed to convey available information and knowledge about depleted uranium to EPA Remedial Project Managers, On-Scene Coordinators, contractors, and other Agency managers involved with the remediation of sites contaminated with this mater...

  13. Governing uranium in China

    OpenAIRE

    Patton Schell, Tamara

    2014-01-01

    Nuclear power is playing an increasingly prominent role in China's long-term strategic energy calculus. In response, China is responding by producing more uranium domestically, buying more uranium on the international market, and investing heavily in overseas uranium properties. At the same time, China has been updating its nuclear regulations over the last three decades, resulting in a myriad of regulatory agencies with widely varying responsibilities related to implementing uranium regulati...

  14. Uranium industry annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  15. Uranium resources, 1983

    International Nuclear Information System (INIS)

    The specific character of uranium as energy resources, the history of development of uranium resources, the production and reserve of uranium in the world, the prospect regarding the demand and supply of uranium, Japanese activity of exploring uranium resources in foreign countries and the state of development of uranium resources in various countries are reported. The formation of uranium deposits, the classification of uranium deposits and the reserve quantity of each type are described. As the geological environment of uranium deposits, there are six types, that is, quartz medium gravel conglomerate deposit, the deposit related to the unconformity in Proterozoic era, the dissemination type magma deposit, pegmatite deposit and contact deposit in igneaus rocks and metamorphic rocks, vein deposit, sandstone type deposit and the other types of deposit. The main features of respective types are explained. The most important uranium resources in Japan are those in the Tertiary formations, and most of the found reserve belongs to this type. The geological features, the state of yield and the scale of the deposits in Ningyotoge, Tono and Kanmon Mesozoic formation are reported. Uranium minerals, the promising districts in the world, and the matters related to the exploration and mining of uranium are described. (Kako, I.)

  16. Uranium and thorium

    International Nuclear Information System (INIS)

    Present article is devoted to uranium and thorium content in fluorite. In order to obtain the comprehensive view on uranium and thorium distribution in fluorite 100 fluorite samples of various geologic deposits and ores of Kazakhstan, Uzbekistan, Tajikistan and some geologic deposits of Russia were studied. The uranium and thorium content in fluorite of geologic deposits of various mineralogical and genetic type was defined.

  17. Spectrophotometric determination of uranium with benzohydroxamic acid in aqueous medium

    International Nuclear Information System (INIS)

    A spectrophotometric method has been developed for the determination of uranium with benzohydroxamic acid (BHA). Uranium in the hexavalent state forms a yellowish orange colored chelate with BHA. The absorbance of the complex is maximum at pH 6.0, excluding pH7 and complex is stable for more than 72 hours. The maximum absorbance at 304 nm is considered for quantification of uranium. The present method is validated and good agreement with spectrophotometric determination of uranium with thiocyanate. Uranium in the range 1-10 μg/ml has been determined with good precision. The described method is simple, precised and accurate. It can be applied for the determination of uranium in raffinates of Purex process, without producing the nuclear waste in organic phase

  18. Spectrophotometric determination of uranium using quercetin

    International Nuclear Information System (INIS)

    A spectrophotometric method for quantitative determination of uranium, using a flavone (quercetin) as complexing agent, is described. The method is based on the reaction between uranyl ion and alcoholic solution of quercetin with a complex formation of intense yellow color. (M.C.L.)

  19. Interactions of uranium (VI) with biofilms

    International Nuclear Information System (INIS)

    In this study a detailed investigation was made of natural biofilms from two uranium-contaminated sites, namely the former uranium mine in Koenigstein (Saxony) and the ground surface of the former Grassenhalde tailing heap in Thuringia. A predominance of uranyl sulphate (UO2SO4), a highly mobile, solute uranium species, was found in the mine waters of both sites. In this study an investigation was made of the capacity of Euglena mutabilis cells for bioaccumulation of uranium in a pH range of 3 to 6 using living cells and sodium perchlorate (9 g/l) or sodium sulphate (3.48 g/l) as background media. At acidic pH values in the range from 3 to 4 it was possible to remove more than 90% of the original uranium content from the test solution regardless of the medium being used. The speciation of the uranium accumulated in the Euglena cells was investigated by laser-induced fluorescence spectroscopy (LIFS). It was found that a new uranium species of low variability forms on the cells independent of the background medium, state of life of the cells and pH value. By comparing the data from the LIFS measurements with reference values it was possible to narrow down the identity of the uranium species to one bonded to (organo) phosphate and/or carboxylic functional groups. Using time-resolved FT-IR spectroscopy it was possible to demonstrate carboxylic bonding of uranium to dead cells. However it was not possible to exclude (organo) complexation with this method. An investigation of the specific location of the uranium on or in the cells using combined CLSM/LIFS technology yielded first indications of intracellular accumulation of uranium in the living cells. Supplementary TEM/EDX measurements confirmed the intracellular uptake, showing it to occur in round to oval cell organelles which are thought to be vacuoles or vacuole-like vesicles. It was not possible to detect uranium on dead cells using these methods. This points to passive, homogeneously distributed biosorption of

  20. Speciation of uranium in environmental relevant compartments

    International Nuclear Information System (INIS)

    In the past, the chemistry of uranium was focused on its mining and milling for production of high pure uranium compounds as initial matter of reactor fuel elements for energy production and breeding of plutonium for weapons production. In this sense, the recovery of uranium and plutonium from the used reactor fuel elements was also technical realized. The increasing input of uranium into bio-sphere by mining and milling and industrial processes like production of cement, fossil fuels, and fertilizers has led to the realization of the importance of uranium environmental chemistry. For a better assessment of radiotoxicity and transport along the food chain knowledge about the chemistry of uranium is needed in all involved compartments. Starting from uranium content in geo- and bio-systems, about the determination of chemical behavior - the speciation of uranium - is reported in selected environmental compartments like seepage waters coming from mine tailings, different kinds of bacteria living in uranium contaminated soils, and relevant forage plants growing on these soils. For uranium speciation determination direct non-invasive methods are used like various laser spectroscopic methods, and X-ray absorption spectroscopy with synchrotron radiation source, The results obtained by spectroscopic methods showed that the speciation of uranium is dominated in surface waters by uranyl-carbonate complexes in opposite to the speciation in bacteria and plants. In these compartments the speciation is dominated by binding of uranium on carboxylic and phosphorous containing functional groups. It was shown, that in the investigated systems the speciation strongly depends on different physical chemical parameters like ionic strength, kind and amount of ligands, pH, Eh e.g. In experiments with living organisms it is necessary to characterize the state of the bio-system in dependence of the used parameters to compare the obtained results (ratio of dead or living cells of bacteria

  1. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed....

  2. Technical Basis for Assessing Uranium Bioremediation Performance

    Energy Technology Data Exchange (ETDEWEB)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  3. Technical Basis for Assessing Uranium Bioremediation Performance

    International Nuclear Information System (INIS)

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation

  4. Observation of the inverse trans influence (ITI) in a uranium(V) imide coordination complex: an experimental study and theoretical evaluation.

    Science.gov (United States)

    Lam, Oanh P; Franke, Sebastian M; Nakai, Hidetaka; Heinemann, Frank W; Hieringer, Wolfgang; Meyer, Karsten

    2012-06-01

    An inverse trans influence has been observed in a high-valent U(V) imide complex, [(((Ad)ArO)(3)N)U(NMes)]. A thorough theoretical evaluation has been employed in order to corroborate the ITI in this unusual complex. Computations on the target complex, [(((Ad)ArO)(3)N)U(NMes)], and the model complexes [(((Me)ArO)(3)N)U(NMes)] and [(NMe(3))(OMe(2))(OMe)(3)U(NPh)] are discussed along with synthetic details and supporting spectroscopic data. Additionally, the syntheses and full characterization data of the related U(V) trimethylsilylimide complex [(((Ad)ArO)(3)N)U(NTMS)] and U(IV) azide complex [(((Ad)ArO)(3)N)U(N(3))] are also presented for comparison.

  5. Uranium hexafluoride public risk

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

    1994-08-01

    The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

  6. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  7. On the reasons for bombarding uranium with slow neutrons

    International Nuclear Information System (INIS)

    Form the concepts of slow neutrons, the binding energy and the excitation energy of complex nuclei, and the activation energy in nuclear fission, the four reasons for bombarding uranium with slow neutrons are summed up. Not only the reasons for uranium fission are brought in light, but also the micromechanism is dealt with

  8. Assessing the environmental availability of uranium in soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, J.E.; Holdren, G.R. Jr.; Krupa, K.M.; Lindenmeier, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1994-06-01

    Soils and sediments contaminated with uranium pose certain environmental and ecological risks. At low to moderate levels of contamination, the magnitude of these risks depends not only on the absolute concentrations of uranium in the material but also on the availability of the uranium to drinking water supplies, plants, or higher organisms. Rational approaches for regulating the clean-up of sites contaminated with uranium, therefore, should consider the value of assessing the environmental availability of uranium at the site before making decisions regarding remediation. The purpose of this work is to review existing approaches and procedures to determine their potential applicability for assessing the environmental availability of uranium in bulk soils or sediments. In addition to making the recommendations regarding methodology, the authors have tabulated data from the literature on the aqueous complexes of uranium and major uranium minerals, examined the possibility of predicting environmental availability of uranium based on thermodynamic solubility data, and compiled a representative list of analytical laboratories capable of performing environmental analyses of uranium in soils and sediments.

  9. Assessing the environmental availability of uranium in soils and sediments

    International Nuclear Information System (INIS)

    Soils and sediments contaminated with uranium pose certain environmental and ecological risks. At low to moderate levels of contamination, the magnitude of these risks depends not only on the absolute concentrations of uranium in the material but also on the availability of the uranium to drinking water supplies, plants, or higher organisms. Rational approaches for regulating the clean-up of sites contaminated with uranium, therefore, should consider the value of assessing the environmental availability of uranium at the site before making decisions regarding remediation. The purpose of this work is to review existing approaches and procedures to determine their potential applicability for assessing the environmental availability of uranium in bulk soils or sediments. In addition to making the recommendations regarding methodology, the authors have tabulated data from the literature on the aqueous complexes of uranium and major uranium minerals, examined the possibility of predicting environmental availability of uranium based on thermodynamic solubility data, and compiled a representative list of analytical laboratories capable of performing environmental analyses of uranium in soils and sediments

  10. Depleted uranium disposal options evaluation

    International Nuclear Information System (INIS)

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ''waste,'' but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity

  11. 75 FR 7525 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-02-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public... fuel France; Belgium. Security Complex, February 2, Uranium (93.35%). uranium (87.3 elements in...

  12. 75 FR 6223 - Application For a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-02-08

    ... FR 49139 (Aug. 28, 2007). Information about filing electronically is available on timely electronic... COMMISSION Application For a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public... fabricate Canada. Complex December 21, 2009, Uranium (93.35%). uranium (16.3 targets for December 28,...

  13. 75 FR 15743 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-03-30

    ... FR 49139 (Aug. 28, 2007). Information about filing electronically is available on the NRC's public... COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public... fabricate fuel France. Complex, March 3, 2010. Uranium (93.35%). uranium (149.36 elements in March 9,...

  14. 77 FR 73056 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-12-07

    ... August 2007, 72 FR 49139 (Aug. 28, 2007). Information about filing electronically is available on the NRC... COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public... targets Belgium. Security Complex. Uranium (93.2%). uranium-235 at CERCA AREVA Romans October 10,...

  15. 78 FR 33448 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-06-04

    ... August 2007, 72 FR 49139 (Aug. 28, 2007). Information about filing electronically is available on the NRC... COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public... targets Canada. Security Complex, May 13, Uranium (93.35%). uranium-235 at the National 2013, May 21,...

  16. 77 FR 1956 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-01-12

    ... August 2007, 72 FR 49139 (Aug. 28, 2007). Information about filing electronically is available on the NRC... COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(b) ``Public... Netherlands. Security Complex. Uranium uranium (9.3 targets at December 21, 2011 (93.35%). kilograms U-...

  17. Adsorption and thermodynamic behavior of uranium on natural zeolite

    International Nuclear Information System (INIS)

    Adsorptive behavior of natural clinoptilolite-rich zeolite from Balikesir deposites in Turkey was assessed for the removal of uranium from aqueous solutions. The uranium uptake and cation exchange capacities of zeolite were determined. The effect of initial uranium concentrations in solution was studied in detail at the optimum conditions determined before (pH 2.0, contact time: 60 minutes, temperature: 20 deg C). The uptake equilibrium is best described by Langmuir adsorption isotherm. Some thermodynamic parameters (ΔH deg, ΔS deg, ΔG deg) of the adsorption system were also determined. Application to fixation of uranium to zeolite was performed. The uptake of uranium complex on zeolite followed Langmuir adsorption isotherm for the initial concentration (25 to 100 μg/ml). Thermodynamic values of ΔG deg, ΔS deg and ΔH deg found show the spontaneous and exothermic nature of the process of uranium ions uptake by natural zeolite. (author)

  18. Reductive dissolution approaches to removal of uranium from contaminated soils

    International Nuclear Information System (INIS)

    Traditional approaches to uranium recovery from ores have employed oxidation of U(IV) minerals to form the uranyl cation which is subsequently complexed by carbonate or maintained in solution by strong acids. Reductive approaches for uranium decontamination have been limited to removing soluble uranium from solutions by formation of U4+ which readily hydrolyses and precipitates. As part of the Uranium in Soils Integrated Demonstration, we have developed a reductive approach to solubilization of uranium from contaminated soils which employs reduction to destabilize U(VI) solid and sorbed species, and strong chelators for U(IV) to prevent hydrolysis and solubilize the reduced from. This strategy has particular application to sites where the uranium is present primarily as intractable U(VI) phases and where high fractions of the contamination must be removed to meet regulatory requirements

  19. Uranium enrichment. Principles

    International Nuclear Information System (INIS)

    Uranium enrichment industry is a more than 60 years old history and has developed without practically no cost, efficiency or profit constraints. However, remarkable improvements have been accomplished since the Second World War and have led to the development of various competing processes which reflect the diversity of uranium compositions and of uranium needs. Content: 1 - general considerations: uranium isotopes, problem of uranium enrichment, first realizations (USA, Russia, Europe, Asia, other countries), present day situation, future needs and market evolution; 2 - principles of isotopic separation: processes classification (high or low enrichment), low elementary enrichment processes, equilibrium time, cascade star-up and monitoring, multi-isotopes case, uranium reprocessing; 3 - enrichment and proliferation. (J.S.)

  20. Uses of depleted uranium

    International Nuclear Information System (INIS)

    The depleted uranium is that in which percentage of uranium-235 fission executable is less than 0.2% or 0.3%. It is usually caused by the process of reprocessing the nuclear fuel burning, and also mixed with some other radioactive elements such as uranium 236, 238 and plutonium 239. The good features of the depleted uranium are its high density, low price and easily mined. So, the specifications for depleted uranium make it one of the best materials in case you need to have objects small in size, but quite heavy regarding its size. Uses of deplet ed uranium were relatively increased in domestic industrial uses as well as some uses in nuclear industry in the last few years. So it has increased uses in many areas of military and peaceful means such as: in balancing the giant air crafts, ships and missiles and in the manufacture of some types of concrete with severe hardness. (author)

  1. Uranium Newsletter. No. 1

    International Nuclear Information System (INIS)

    The new Uranium Newsletter is presented as an IAEA annual newsletter. The organization of the IAEA and its involvement with uranium since its founding in 1957 is described. The ''Red Book'' (Uranium Resources, Production and Demand) is mentioned. The Technical Assistance Programme of the IAEA in this field is also briefly mentioned. The contents also include information on the following meetings: The Technical Committee Meeting on Uranium Deposits in Magmatic and Metamorphic Rocks, Advisory Group Meeting on the Use of Airborne Radiometric Data, and the Technical Committee Meeting on Metallogenesis. Recent publications are listed. Current research contracts in uranium exploration are mentioned. IAEA publications on uranium (in press) are listed also. Country reports from the following countries are included: Australia, Brazil, Canada, China (People's Republic of), Denmark, Finland, Germany (Federal Republic of), Malaysia, Philippines, Portugal, South Africa (Republic of), Spain, Syrian Arab Republic, United Kingdom, United States of America, Zambia, and Greece. There is also a report from the Commission of European Communities

  2. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    This Technical Report is designed mainly to introduce the methods and techniques of uranium geochemical exploration to exploration geologists who may not have had experience with geochemical exploration methods in their uranium programmes. The methods presented have been widely used in the uranium exploration industry for more than two decades. The intention has not been to produce an exhaustive, detailed manual, although detailed instructions are given for a field and laboratory data recording scheme and a satisfactory analytical method for the geochemical determination of uranium. Rather, the intention has been to introduce the concepts and methods of uranium exploration geochemistry in sufficient detail to guide the user in their effective use. Readers are advised to consult general references on geochemical exploration to increase their understanding of geochemical techniques for uranium

  3. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Farawila, Anne F.; O' Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used

  4. Uranium industry annual, 1988

    International Nuclear Information System (INIS)

    This report presents data on US uranium raw materials and marketing activities of the domestic uranium industry. It contains aggregated data reported by US companies on the ''Uranium Industry Annual Survey'' (1988), Form EIA-858, and historical data from prior data collections and other pertinent sources. The report was prepared by the Energy Information Administration (EIA), the independent agency for data collection and analysis with the US Department of Energy

  5. Simulating distinguish enriched uranium from depleted uranium by activation method

    International Nuclear Information System (INIS)

    Detecting uranium material is an important work in arms control Active detection is an efficient method for uranium material. The paper focuses on the feasibility that can distinguish the enriched uranium and the depleted uranium by MCNP program. It can distinguish the enriched uranium and the depleted uranium by the curve of relationship between fission rate of uranium material and thickness of moderator.Advantages of 252Cf and 14 MeV neutron sources are discussed in detecting uranium material through calculation. The results show that 252Cf neutron source is better than 14 MeV one. Delayed neutrons are more easily detected than delayed gamma ray at measurement aspect. (authors)

  6. CHEMICAL TOXICITY OF URANIUM

    OpenAIRE

    2007-01-01

    Uranium, occurs naturally in the earth’s crust, is an alpha emitter radioactive element from the actinide group. For this reason, U-235 and U-238, are uranium isotopes with long half lives, have got radiological toxicity. But, for natural-isotopic-composition uranium (NatU), there is greater risk from chemical toxicity than radiological toxicity. When uranium is get into the body with anyway, also its chemical toxicity must be thought. [TAF Prev Med Bull 2007; 6(3.000): 215-220

  7. CHEMICAL TOXICITY OF URANIUM

    Directory of Open Access Journals (Sweden)

    Sermin Cam

    2007-06-01

    Full Text Available Uranium, occurs naturally in the earth’s crust, is an alpha emitter radioactive element from the actinide group. For this reason, U-235 and U-238, are uranium isotopes with long half lives, have got radiological toxicity. But, for natural-isotopic-composition uranium (NatU, there is greater risk from chemical toxicity than radiological toxicity. When uranium is get into the body with anyway, also its chemical toxicity must be thought. [TAF Prev Med Bull 2007; 6(3.000: 215-220

  8. International trade in uranium

    International Nuclear Information System (INIS)

    Two reports are presented; one has been prepared by the Uranium Institute and is submitted by the United Kingdom delegation, the other by the United States delegation. The report of the Uranium Institute deals with the influence of the government on international trade in uranium. This influence becomes apparent predominantly by export and import restrictions, as well as by price controls. The contribution submitted by the United States is a uranium market trend analysis, with pricing methods and contracting modes as well as the effect of government policies being investigated in the light of recent developments

  9. PRODUCTION OF URANIUM

    Science.gov (United States)

    Ruehle, A.E.; Stevenson, J.W.

    1957-11-12

    An improved process is described for the magnesium reduction of UF/sub 4/ to produce uranium metal. In the past, there have been undesirable premature reactions between the Mg and the bomb liner or the UF/sub 4/ before the actual ignition of the bomb reaction. Since these premature reactions impair the yield of uranium metal, they have been inhibited by forming a protective film upon the particles of Mg by reacting it with hydrated uranium tetrafluoride, sodium bifluoride, uranyl fluoride, or uranium trioxide. This may be accomplished by adding about 0.5 to 2% of the additive to the bomb charge.

  10. Heating uranium alloy billets

    International Nuclear Information System (INIS)

    Data were obtained for the surface heat transfer coefficient of uranium and the alloys of uranium-0.75 wt percent titanium, uranium-6 wt percent niobium, and uranium-7.5 wt percent niobium-2.5 wt percent zirconium. Samples were heated to 8500C in both a molten salt bath and an argon-purged air furnace, then the samples were cooled in air. Surface heat transfer coefficients were calculated from the experimental data for both heating and cooling of the metals. 4 fig, 4 tables

  11. [Biosorption of Radionuclide Uranium by Deinococcus radiodurans].

    Science.gov (United States)

    Yang, Jie; Dong, Fa-qin; Dai, Qun-wei; Liu, Ming-xue; Nie, Xiao-qin; Zhang, Dong; Ma, Jia-lin; Zhou, Xian

    2015-04-01

    As a biological adsorbent, Living Deinococcus radiodurans was used for removing radionuclide uranium in the aqueous solution. The effect factors on biosorption of radionuclide uranium were researched in the present paper, including solution pH values and initial uranium concentration. Meanwhile, the biosorption mechanism was researched by the method of FTIR and SEM/EDS. The results show that the optimum conditions for biosorption are as follows: pH = 5, co = 100 mg · L(-1) and the maximum biosorption capacity is up to 240 mgU · g(-1). According to the SEM results and EDXS analysis, it is indicated that the cell surface is attached by lots of sheet uranium crystals, and the main biosorpiton way of uranium is the ion exchange or surface complexation. Comparing FTIR spectra and FTIR fitting spectra before and after biosorption, we can find that the whole spectra has a certain change, particularly active groups (such as amide groups of the protein, hydroxy, carboxyl and phosphate group) are involved in the biosorption process. Then, there is a new peak at 906 cm(-1) and it is a stretching vibration peak of UO2(2+). Obviously, it is possible that as an anti radiation microorganism, Deinococcus radiodurans could be used for removing radionuclide uranium in radiation environment.

  12. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore

    International Nuclear Information System (INIS)

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze depleted uranium and thorium oxide powders and uranium ore as a potential rapid in situ analysis technique in nuclear production facilities, environmental sampling, and in-field forensic applications. Material such as pressed pellets and metals, has been extensively studied using LIBS due to the high density of the material and more stable laser-induced plasma formation. Powders, on the other hand, are difficult to analyze using LIBS since ejection and removal of the powder occur in the laser interaction region. The capability of analyzing powders is important in allowing for rapid analysis of suspicious materials, environmental samples, or trace contamination on surfaces since it most closely represents field samples (soil, small particles, debris etc.). The rapid, in situ analysis of samples, including nuclear materials, also reduces costs in sample collection, transportation, sample preparation, and analysis time. Here we demonstrate the detection of actinides in oxide powders and within a uranium ore sample as both pressed pellets and powders on carbon adhesive discs for spectral comparison. The acquired LIBS spectra for both forms of the samples differ in overall intensity but yield a similar distribution of atomic emission spectral lines. - Highlights: • LIBS analysis of mixed actinide samples: depleted uranium oxide and thorium oxide • LIBS analysis of actinide samples in powder form on carbon adhesive discs • Detection of uranium in a complex matrix (uranium ore) as a precursor to analyzing uranium in environmental samples

  13. Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls.

    Directory of Open Access Journals (Sweden)

    Laure Mondani

    Full Text Available This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil.

  14. Uranium industry annual 1993

    International Nuclear Information System (INIS)

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U3O8 (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U3O8 (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world's largest producer in 1993 with an output of 23.9 million pounds U3O8 (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market

  15. Uranium industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  16. Thorium and uranium redox-active ligand complexes; reversible intramolecular electron transfer in U(dpp-BIAN)2/ U(dpp-BIAN)2(THE)

    Energy Technology Data Exchange (ETDEWEB)

    Schelter, Eric John [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Scott, Brian L [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Morris, David E [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2008-01-01

    Actinide complexes of the redox-active ligand dpp-BIAN{sup 2-} (dpp-BIAN = bis(2,6-diisopropylphenyl)acenaphthylene), An(dpp-BIAN){sub 2}(THF){sub n} (An = Th, n = 1; An = U, n = 0, 1) have been prepared. Solid-state magnetic and single-crystal X-ray data for U(dpp-BIAN){sub 2}(THF){sub n} show when n = 0, the complex exists in an f{sup 2}-{pi}*{sup 4} configuration; whereas an intramolecular electron transfer occurs for n = 1, resulting in an f{sup 3}-{pi}*{sup 3} ground configuration. The magnetic data also indicate that interconversion between the two forms of the complex is possible, limited only by the ability of THF vapor to penetrate the solid on cooling of the sample. Spectroscopic data indicate the complex exists solely in the f{sup 2}-{pi}*{sup 4} form in solution, evidenced by the appearance of only small changes in the electronic absorption spectra of the U(dpp-BIAN){sub 2} complex on titration with THF and by measurement of the solution magnetic moment m d{sub 8}-tetrahydrofuran using Evans method. Electrochemistry of the complexes is reported, with small differences observed in wave potentials between metals and in the presence of THF. These data represent the first example of a well-defined, reversible intramolecular electron transfer in an f-element complex and the second example of oxidation state change through dative interaction with a metal ion.

  17. Involvement of 5f-orbitals in the bonding and reactivity of organoactinide compounds: thorium(IV) and uranium(IV) bis (hydrazonato) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cantat, Thibault [Los Alamos National Laboratory; Graves, Christopher R [Los Alamos National Laboratory; Morris, David E [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2008-01-01

    Migratory insertion of diphenyldiazomethane into both metal-carbon bonds of the bis(alkyl) and bis(aryl) complexes (C5Me5)2AnR2 yields the first f-element bis(hydrazonato) complexes (C5Me5)2An[2-(N,N')-R-N-NCPh2]2 [An = Th, R = CH3 (18), PhCH2 (15), Ph (16); An = U, R = CH3 (17), PhCH2 (14)], which have been characterized by a combination of spectroscopy, electrochemistry, and X-ray crystallography. The two hydrazonato ligands adopt an 2-coordination mode leading to 20-electron (for Th) and 22-electron (for U) complexes that have no transition-metal analogues. In fact, reaction of (C5H5)2Zr(CH3)2 or (C5Me5)2Hf(CH3)2 with diphenyldiazomethane is limited to the formation of the corresponding mono(hydrazonato) complex (C5R5)2M[2-(N,N')-CH3-N-NCPh2](CH3) (M = Zr, R = H or M = Hf, R = CH3). The difference in the reactivities of the group 4 metal complexes and the actinides was used as a unique platform for investigating in depth the role of 5f orbitals on the reactivity and bonding in actinide organometallic complexes. The electronic structure of the (C5H5)2M[2-(N,N')-CH3-N-NCH2]2 (M = Zr, Th, U) model complexes was studied using density functional theory (DFT) calculations and compared to experimental structural, electrochemical, and spectroscopic results. Whereas transition-metal bis(cyclopentadienyl) complexes are known to stabilize three ligands in the metallocene girdle to form saturated (C5H5)2ML3 species, in a bis(hydrazonato) system, a fourth ligand is coordinated to the metal center to give (C5H5)2ML4. DFT calculations have shown that 5f orbitals in the actinide complexes play a crucial role in stabilizing this fourth ligand by stabilizing both the s and p electrons of the two 2-coordinated hydrazonato ligands. In contrast, the stabilization of the hydrazonato ligands was found to be significantly less effective for the putative bis(hydrazonato) zirconium(IV) complex, yielding a higher energy structure. However, the difference in the reactivities

  18. Electrolytic extraction of uranium from Egyptian phosphorites

    Energy Technology Data Exchange (ETDEWEB)

    Madkour, L.H. [Dept. of Chemistry, Faculty of Science, Tanta Univ. (Egypt)

    1995-02-01

    Nile Valley phosphate deposits (East Luxor locality), considered in Egypt as a rather rich source of uranium, is subjected to mineralogical, chemical, spectral and infrared spectrometric analyses. A process is proposed for the hydrometallurgical treatment of the phosphate rock for the recovery of uranium and the production of phosphatic fertilizers, without polluting the environment with radioactive materials. A uraniferous iron phosphate concentrate (2.5% U) which is produced as a by-product, is separately processed in an alkaline leaching step using a high concentration of both Na{sub 2}CO{sub 3} and NaHCO{sub 3} under oxidizing conditions. The product, sodium uranyl tricarbonate complex Na{sub 4}UO{sub 2}(CO{sub 3}){sub 3} liquor, is converted into the conventional uranium concentrate of sodium diuranate Na{sub 2}U{sub 2}O{sub 7} through sodic decomposition treatment. Uranium metal is cathodically deposited from a number of solutions containing the ore metal concentrate liquor, and a complexing agent at controlled pH. The effects of various factors on the deposition of uranium are discussed. The results of spectrophotometric and chemical analyses revealed that the purity of the deposited metal is > 99%. (orig.)

  19. Depleted uranium in Japan

    International Nuclear Information System (INIS)

    In Japan, depleted uranium ammunition is regarded as nuclear weapons and meets with fierce opposition. The fact that US Marines mistakenly fired bullets containing depleted uranium on an island off Okinawa during training exercises in December 1995 and January 1996, also contributes. The overall situation in this area in Japan is outlined. (P.A.)

  20. Uranium Measurements and Attributes

    International Nuclear Information System (INIS)

    It may be necessary to find the means to determine unclassified attributes of uranium in nuclear weapons or their components for future transparency initiatives. We briefly describe the desired characteristics of attribute measurement systems for transparency. The determination of uranium attributes; in particular, by passive gamma-ray detection is a formidable challenge

  1. Uranium: abundance or shortage?

    Energy Technology Data Exchange (ETDEWEB)

    Steyn, J. [Energy Resources International, Inc., Washington, DC (United States)

    1997-09-01

    With large uranium stockpiles, particularly in the form of HEU, continuing to be the dominant factor in the world uranium market, buyers should be able to enter into attractive long-term commitments for the future. Nevertheless, producers are now able to see forward with some degree of certainty and are expected to meet their planned levels of production and demand. (author).

  2. EPR of uranium ions

    International Nuclear Information System (INIS)

    A review of the electron paramagnetic resonance data on the uranium ions is given. After a general account of the electronic structure of the uranium free atoms and ions, the influence of the external fields (magnetic field, crystal fields) is discussed. The main information obtained from EPR studies on the uranium ions in crystals are emphasized: identification of the valence and of the ground electronic state, determination of the structure of the centers, crystal field effects, role of the intermediate coupling and of the J-mixing, role of the covalency, determination of the nuclear spin, maqnetic dipole moment and electric quadrupole moment of the odd isotopes of uranium. These data emphasize the fact that the actinide group has its own identity and this is accutely manifested at the beginning of the 5fsup(n) series encompassed by the uranium ions. (authors)

  3. Management of depleted uranium

    International Nuclear Information System (INIS)

    Large stocks of depleted uranium have arisen as a result of enrichment operations, especially in the United States and the Russian Federation. Countries with depleted uranium stocks are interested in assessing strategies for the use and management of depleted uranium. The choice of strategy depends on several factors, including government and business policy, alternative uses available, the economic value of the material, regulatory aspects and disposal options, and international market developments in the nuclear fuel cycle. This report presents the results of a depleted uranium study conducted by an expert group organised jointly by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It contains information on current inventories of depleted uranium, potential future arisings, long term management alternatives, peaceful use options and country programmes. In addition, it explores ideas for international collaboration and identifies key issues for governments and policy makers to consider. (authors)

  4. Uranium dioxide electrolysis

    Science.gov (United States)

    Willit, James L.; Ackerman, John P.; Williamson, Mark A.

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  5. Uranium deposit research, 1983

    International Nuclear Information System (INIS)

    Research on uranium deposits in Canada, conducted as a prerequisite for assessment of the Estimated Additional Resources of uranium, revealed that (a) the uranium-gold association in rudites of the Huronian Supergroup preferably occurs in the carbon layers; (b) chloritized ore at the Panel mine, Elliot Lake, Ontario, occurs locally in tectonically disturbed areas in the vicinity of diabase dykes; (c) mineralization in the Black Sturgeon Lake area, Ontario, formed from solutions in structural and lithological traps; (d) the Cigar Lake deposit, Saskatchewan, has two phases of mineralization: monomineralic and polymetallic; (e) mineralization of the JEB (Canoxy Ltd.) deposit is similar to that at McClean Lake; (f) the uranium-carbon assemblage was identified in the Claude deposit, Carswell Structure; and (g) the Otish Mountains area, Quebec, should be considered as a significant uranium-polymetallic metallogenic province

  6. Foreign uranium supply

    International Nuclear Information System (INIS)

    Known foreign uranium resources are concentrated in a few countries. The resources of many countries are largely unassessed, but the known uranium countries appear to have the best potential for future expansion. Availability of supply from known resources will depend on resolution of national policies regarding uranium production, ownership and export, and actions of the mining industry. Foreign uranium demand projections have decreased markedly in the last few years, and currently planned and attainable production should be adequate through the 1980's. Longer term resources and supply outlook are still a major concern to both those planning electric supply systems based on converter reactors and those considering reprocessing and recycle of uranium and plutonium and development of breeder reactors. Work continues to clarify long-term supply in several countries and internationally, but more effort, and time, will be needed to clarify these issues

  7. The South Greenland uranium exploration programme

    International Nuclear Information System (INIS)

    This is the final report of the reconnaissance phase of the SYDURAN Project which was initiated in 1st. December 1978 to outline areas of increased uranium potential where more detailed prospection would be warranted. Districts and smaller zones in South Greenland which have the potential for containing economically exploitable uranium occurrences were defined using airborne gamma-spectroscopic, reconnaissance geochemical and geological methods. Other districts and areas have been shown to have no uranium potential and can be eliminated. The three promising districts are: 1. a 2000 square kilometre sub-circular district surrounding Ilimaussaq complex in which there are small high grade pitchblende occurences in faults and fractures in the surrounding granite. 2. the eastern area of the Motzfeldt Centre where large parts of the centre is mineralised and may give rise to exploitable, large tonnage, low grade uranium ore with associated niobium and rare earth elements in extractable quantities. 3. uraniferous rich districts or zones associated with the migmatitic supracrustal units in the area between Kap Farvel and Lindenows Fjord. The areas which were eliminated from having any uranium potential include: the Ketilidian supracrustal unit. the Nunarssuit alkaline complex. The uranium mineralisation in South Greenland is confined to two Proterozoic episodes: a) a late phase of granitisation and migmatisation with the formation of disseminated uraninite in the Migmatite Complex in the south of the project area between 1700-1800 m.y. and, b) hydrothermal activity associated with Gardar magmatic events between 1090-1170 m.y. in the central Granite Zone. Future work should be directed towards the definition and location of drilling targets. (EG)

  8. International training course on uranium exploration

    International Nuclear Information System (INIS)

    Full text: As part of its Technical Assistance Programme for developing countries, the IAEA has conducted a series of training courses in prospecting for nuclear raw materials for example, in 1974 a regional course on uranium and thorium prospecting was held in India, and an interregional training course on uranium geochemical prospecting methods was held in Austria in 1975. In September 1977, another interregional training course on uranium geochemical prospecting methods was held at Skofja Loka, Slovenia, Yugoslavia. Twenty-four delegates from Afghanistan, Algeria, Argentina, Bolivia, Chile, Colombia, Czechoslovakia, India, Indonesia, Malaysia, Philippines, Portugal, Sri Lanka, Turkey, Venezuela and Yugoslavia participated in the four-week training course. The Federal Republic of Yugoslavia acted as host for the course. The Skofja Loka area was selected because it contains sedimentary rocks with known uranium mineralization, and presented ideal conditions (soil, drainage and topography) for Uranium geochemical surveys. In addition, the participants could benefit from a technical visit to a very interesting type of uranium mineralization near the town of Gorenje Vaz. Several well-known geologists, such as Dr. A. Grimbert (France) and Prof. Ian Nichol (Canada) were present as guest lecturers. In the first week the lectures dealt with the basic concepts of geochemical exploration for uranium, as well as preparing the participants for the field work. In addition to specific topics on geochemistry and uranium behaviour in the natural environment, the lectures also covered other topics of interest, such as world uranium resources and demand, types of uranium deposits and technical advances in exploration equipment. A visit to the Zirovski Vrh uranium mine was made, where the participants saw different techniques for mining ore bodies with complex structure and rapid change in grade concentration. At the end of the mine tour, there was a lengthy discussion of

  9. Uranium deposits in Africa

    International Nuclear Information System (INIS)

    Africa is not only known for its spectacular diamond, gold, copper, chromium, platinum and phosphorus deposits but also for its uranium deposits. At least two uranium provinces can be distinguished - the southern, with the equatorial sub-province; and the south Saharan province. Uranium deposits are distributed either in cratons or in mobile belts, the first of sandstone and quartz-pebble conglomerate type, while those located in mobile belts are predominantly of vein and similar (disseminated) type. Uranium deposits occur within Precambrian rocks or in younger platform sediments, but close to the exposed Precambrian basement. The Proterozoic host rocks consist of sediments, metamorphics or granitoids. In contrast to Phanerozoic continental uranium-bearing sediments, those in the Precambrian are in marginal marine facies but they do contain organic material. The geology of Africa is briefly reviewed with the emphasis on those features which might control the distribution of uranium. The evolution of the African Platform is considered as a progressive reduction of its craton area which has been affected by three major Precambrian tectonic events. A short survey on the geology of known uranium deposits is made. However, some deposits and occurrences for which little published material is available are treated in more detail. (author)

  10. Uranium resource assessments

    International Nuclear Information System (INIS)

    The objective of this investigation is to examine what is generally known about uranium resources, what is subject to conjecture, how well do the explorers themselves understand the occurrence of uranium, and who are the various participants in the exploration process. From this we hope to reach a better understanding of the quality of uranium resource estimates as well as the nature of the exploration process. The underlying questions will remain unanswered. But given an inability to estimate precisely our uranium resources, how much do we really need to know. To answer this latter question, the various Department of Energy needs for uranium resource estimates are examined. This allows consideration of whether or not given the absence of more complete long-term supply data and the associated problems of uranium deliverability for the electric utility industry, we are now threatened with nuclear power plants eventually standing idle due to an unanticipated lack of fuel for their reactors. Obviously this is of some consequence to the government and energy consuming public. The report is organized into four parts. Section I evaluates the uranium resource data base and the various methodologies of resource assessment. Part II describes the manner in which a private company goes about exploring for uranium and the nature of its internal need for resource information. Part III examines the structure of the industry for the purpose of determining the character of the industry with respect to resource development. Part IV arrives at conclusions about the emerging pattern of industrial behavior with respect to uranium supply and the implications this has for coping with national energy issues

  11. Recovery of uranium by tannin immobilized on matrices which have amino group

    International Nuclear Information System (INIS)

    Tannin, which contains polyhydroxy groups, has a high affinity for uranium. Various tannin-protein complexes were prepared to develop new adsorbents for uranium recovery from seawater. Albumin tannate has a high ability to adsorb uranium from seawater. Tannin was immobilized on matrices which have multiple active amino groups, such as aminopolystyrene and poly(vinyl-4,6-diamino-s-triazine)-poly VT. Of these complexes, tannin immobilized on poly VT adsorbed uranium most efficiently from seawater and highly selectively from a solution containing various heavy metals: the uranium adsorption was very rapid and was pH dependent. This adsorbent therefore appears to have potential for use in a commercial process for uranium recovery from seawater or from uranium-containing waste water. (author)

  12. A spectroscopic study of the effect of ligand complexation on the reduction of uranium(VI) by anthraquinone-2,6-disulfonate (AH{sub 2}DS)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Wagnon, K.B.; Ainsworth, C.C.; Liu, C.; Rosso, K.M.; Fredrickson, J.K. [Pacific Northwest National Lab., Richland, WA (United States)

    2008-07-01

    In this paper, the reduction rate of uranyl complexes with hydroxide, carbonate, EDTA, and desferriferrioxamine B (DFB) by anthraquinone-2,6-disulfonate (AH{sub 2}DS) is studied by stopped-flow kinetic technique under anoxic atmosphere. The apparent reaction rates varied with ligand type, solution pH, and U(VI) concentration. For each ligand, a single largest pseudo-1{sup st} order reaction rate constant, k{sub obs}, within the studied pH range was observed, suggesting the influence of pH-dependent speciation on the U(VI) reduction rate. The maximum reaction rate found in each case followed the order of OH{sup -} > CO{sub 3}{sup 2-} > EDTA > DFB, in reverse order of the trend of the thermodynamic stability of the uranyl complexes and ionic sizes of the ligands. The pH-dependent rates were modeled using a second-order rate expression that was assumed to be dependent on a single U(VI) complex and an AH{sub 2}DS species. By quantitatively comparing the calculated and measured apparent rate constants as a function of pH, species AHDS{sup 3-} was suggested as the primary reductant in all cases examined. Species UO{sub 2}CO{sub 3}(aq), UO{sub 2}HEDTA{sup -}, and (UO{sub 2}){sub 2}(OH){sub 2}{sup 2+} were suggested as the principal electron acceptors among the U(VI) species mixture in each of the carbonate, EDTA, and hydroxyl systems, respectively. (orig.)

  13. Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS

    Science.gov (United States)

    Reguir, Ekaterina P.; Camacho, Alfredo; Yang, Panseok; Chakhmouradian, Anton R.; Kamenetsky, Vadim S.; Halden, Norman M.

    2010-11-01

    The U-Pb geochronology of perovskite is a powerful tool in constraining the emplacement age of silica-undersaturated rocks. The trace-element and U-Pb isotopic compositions of perovskite from clinopyroxenite and silicocarbonatite from the Afrikanda plutonic complex (Kola, Russia) were determined by laser-ablation inductively-coupled mass-spectrometry (LA-ICP-MS). In addition, the Sr isotopic composition of perovskite was measured by isotope-dilution mass-spectrometry to better constrain the relations between its host rocks. Perovskite from the two rock types shows a different degree of enrichment in Na, Mg, Mn, Pb, Fe, Al, V, rare-earth elements, Zr, Hf, Th, U and Ta. The perovskite 87Sr/86Sr values are within analytical uncertainty of one another and fall within the range of mantle values. The 206Pb/238U ages (corrected for common lead using 207Pb-method) of perovskite from silicocarbonatite statistically yield a single population with a weighted mean of 371 ± 8 Ma (2σ; MSWD = 0.071). This age is indistinguishable, within uncertainty, to the clinopyroxenite weighted mean 206Pb/238U age of 374 ± 10 Ma (2σ; MSWD = 0.18). Our data are in good agreement with the previous geochronological study of the Afrikanda complex. The observed variations in trace-element composition of perovskite from silicocarbonatite and clinopyroxenite indicate that these rocks are not related by crystal fractionation. The Sr isotopic ratios and the fact that the two rocks are coeval suggest that they were either produced from a single parental melt by liquid immiscibility, or from two separate magmas derived at different degrees of partial melting from an isotopically equilibrated, but modally complex mantle source.

  14. Uranium mining and milling

    International Nuclear Information System (INIS)

    In this report uranium mining and milling are reviewed. The fuel cycle, different types of uranium geological deposits, blending of ores, open cast and underground mining, the mining cost and radiation protection in mines are treated in the first part of this report. In the second part, the milling of uranium ores is treated, including process technology, acid and alkaline leaching, process design for physical and chemical treatment of the ores, and the cost. Each chapter is clarified by added figures, diagrams, tables, and flowsheets. (HK)

  15. Production of uranium peroxide

    International Nuclear Information System (INIS)

    The invention provides a process for recovering uranium values as uranium peroxide from an aqueous uranyl solution containing dissolved vanadium and sodium impurities. It consists of treating the uranyl solution with hydrogen peroxide in an amount equal to at least 0.5 part H2O2 per part of vanadium (V2O5) in solution in excess of the stoichiometric (1.26 parts/part U3O8) amount required to form the uranium peroxide. The hydrogen peroxide treatment is carried out in three phases. (auth)

  16. Aqueous complexation of thorium(IV), uranium(IV), neptunium(IV), plutonium(III/IV), and cerium(III/IV) with DTPA.

    Science.gov (United States)

    Brown, M Alex; Paulenova, Alena; Gelis, Artem V

    2012-07-16

    Aqueous complexation of Th(IV), U(IV), Np(IV), Pu(III/IV), and Ce(III/IV) with DTPA was studied by potentiometry, absorption spectrophotometry, and cyclic voltammetry at 1 M ionic strength and 25 °C. The stability constants for the 1:1 complex of each trivalent and tetravalent metal were calculated. From the potentiometric data, we report stability constant values for Ce(III)DTPA, Ce(III)HDTPA, and Th(IV)DTPA of log β(101) = 20.01 ± 0.02, log β(111) = 22.0 ± 0.2, and log β(101) = 29.6 ± 1, respectively. From the absorption spectrophotometry data, we report stability constant values for U(IV)DTPA, Np(IV)DTPA, and Pu(IV)DTPA of log β(101) = 31.8 ± 0.1, 32.3 ± 0.1, and 33.67 ± 0.02, respectively. From the cyclic voltammetry data, we report stability constant values for Ce(IV) and Pu(III) of log β(101) = 34.04 ± 0.04 and 20.58 ± 0.04, respectively. The values obtained in this work are compared and discussed with respect to the ionic radius of each cationic metal.

  17. Regulatory impacts on the Canadian uranium industry

    International Nuclear Information System (INIS)

    The development of environmental and safety regulation in Canada is described and the impacts of these developments on various phases of the uranium industry are examined. In the past 25 years, seven new uranium mining projects, major expansions to four projects, and five uranium refining/conversion projects have undergone environmental assessment in Canada. As regulations and the processes for applying them have developed, the size, complexity and cost of obtaining operating approvals for uranium projects have increased exponentially. Uranium projects are subject to a level of scrutiny that goes far beyond what can be justified by their potential for environmental damage, based primarily on a perceived degree of public concern, rather than any objective measure of environmental risk. The author believes that it is time to re-examine our priorities, to establish some balance between the risks of a project and the assessment effort required. Otherwise, we shall soon find ourselves in the position where smaller projects will never be developed because they cannot cover the regulatory costs. (author)

  18. Uranium in granites

    International Nuclear Information System (INIS)

    Recent research activities of the Canadian Uranium in Granites Study are presented in 18 papers and 3 abstracts. 'Granites' is used as a generic term for granitoids, granitic rocks, and plutonic rocks

  19. Ontario's uranium mining industry

    International Nuclear Information System (INIS)

    This report traces the Ontario uranium mining industry from the first discovery of uranium north of Sault Ste. Marie through the uranium boom of the 1950's when Elliot Lake and Bancroft were developed, the cutbacks of the 1960s, the renewed enthusiasm in exploration and development of the 1970s to the current position when continued production for the domestic market is assured. Ontario, with developed mines and operational expertise, will be in a position to compete for export markets as they reopen. The low level of expenditures for uranium exploration and the lack of new discoveries are noted. The report also reviews and places in perspective the development of policies and regulations governing the industry and the jurisdictional relationships of the Federal and Provincial governments

  20. Uranium Location Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — A GIS compiled locational database in Microsoft Access of ~15,000 mines with uranium occurrence or production, primarily in the western United States. The metadata...

  1. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  2. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  3. Uranium in Canada

    International Nuclear Information System (INIS)

    In 1988 Canada's five uranium producers reported output of concentrate containing a record 12,470 metric tons of uranium (tU), or about one third of total Western world production. Shipments exceeded 13,200 tU, valued at $Cdn 1.1 billion. Most of Canada's uranium output is available for export for peaceful purposes, as domestic requirements represent about 15 percent of production. The six uranium marketers signed new sales contracts for over 11,000 tU, mostly destined for the United States. Annual exports peaked in 1987 at 12,790 tU, falling back to 10,430 tU in 1988. Forward domestic and export contract commitments were more than 70,000 tU and 60,000 tU, respectively, as of early 1989. The uranium industry in Canada was restructured and consolidated by merger and acquisition, including the formation of Cameco. Three uranium projects were also advanced. The Athabasca Basin is the primary target for the discovery of high-grade low-cost uranium deposits. Discovery of new reserves in 1987 and 1988 did not fully replace the record output over the two-year period. The estimate of overall resources as of January 1989 was down by 4 percent from January 1987 to a total (measured, indicated and inferred) of 544,000 tU. Exploration expenditures reached $Cdn 37 million in 1987 and $59 million in 1988, due largely to the test mining programs at the Cigar Lake and Midwest projects in Saskatchewan. Spot market prices fell to all-time lows from 1987 to mid-1989, and there is little sign of relief. Canadian uranium production capability could fall below 12,000 tU before the late 1990s; however, should market conditions warrant output could be increased beyond 15,000 tU. Canada's known uranium resources are more than sufficient to meet the 30-year fuel requirements of those reactors in Canada that are now or are expected to be in service by the late 1990s. There is significant potential for discovering additional uranium resources. Canada's uranium production is equivalent, in

  4. Ranger uranium environmental enquiry

    International Nuclear Information System (INIS)

    The submission is divided into three sections. Section A considers the international implications of the development of uranium resources including economic and resource aspects and environmental and social aspects. Section B outlines the government's position on export controls over uranium and its effect on the introduction of nuclear power in Australia. Section C describes the licensing and regulatory functions that would be needed to monitor the environmental and health aspects of the Ranger project. (R.L.)

  5. Uranium leads political stakes

    International Nuclear Information System (INIS)

    Until the announcement by the federal Environment Minister Peter Garrett that the government would permit uranium mining at Beverly Four Mile, South Australia, there had been little news flow from the sector over the past year. Uranium was the first to turn down, even before the United States sub-prime mortgage crisis began to cause shock waves through the global economy, a report by BGF Equities analyst Warwick Grigor shows.

  6. Uranium determination in water

    International Nuclear Information System (INIS)

    In our laboratory, a procedure has been assessed to determine uranium content of water in normal situations. The method proposed without sample pre-treatment, is simple and rapid. Uranium mass is measured by fluorimetry. For calculation of detection limit (Ld) and quantification level (Lq) we used blank samples and the results were analyzed for different statistical test. The calculation of total propagated uncertainty and sources contribution on real samples are presented. (author)

  7. Uranium project. Geochemistry prospection

    International Nuclear Information System (INIS)

    Geochemistry studies the distribution of the chemicals elements in the terrestrial crust and its ways to migrate. The terminology used in this report is the following one: 1) Principles of the prospection geochemistry 2) Stages of the prospection geochemistry 3)utility of the prospection geochemistry 4) geochemistry of uranium 5) procedures used within the framework of uranium project 6) Average available 7) Selection of the zones of prospection geochemistry 8) Stages of the prospection, Sample preparation and analisis 9) Presentation of the results

  8. Uranium tailings bibliography

    International Nuclear Information System (INIS)

    A bibliography containing 1,212 references is presented with its focus on the general problem of reducing human exposure to the radionuclides contained in the tailings from the milling of uranium ore. The references are divided into seven broad categories: uranium tailings pile (problems and perspectives), standards and philosophy, etiology of radiation effects, internal dosimetry and metabolism, environmental transport, background sources of tailings radionuclides, and large-area decontamination

  9. Production of sized particles of uranium oxides and uranium oxyfluorides

    International Nuclear Information System (INIS)

    A process for converting uranium hexafluoride to uranium dioxide of a relatively large particle size in a fluidized bed reactor by mixing uranium hexafluoride with a mixture of steam and hydrogen to form a mixture of uranium oxide and uranium oxyfluoride seed particles of varying sizes, separating the larger particles from the smaller particles in a cyclone separator, recycling the smaller seed particles through the ejector to increase their size, and introducing the larger seed particles from the cyclone separator into a fluidized bed reactor where the seed particles serve as nuclei on which coarser particles of uranium dioxide are formed. (Patent Office Record)

  10. Production of uranium peroxide

    International Nuclear Information System (INIS)

    The process of recovering uranium values as uranium peroxide from an aqueous uranyl solution containing dissolved vanadium and sodium impurities, characterized by treating the uranyl solution with hydrogen peroxide in an amount sufficient to have an excess of at least 0.5 parts H2O2 per part vanadium (V2O5) above the stoichio-metric amount required to form the uranium peroxide, the hydrogen peroxide treatment being carried out in three sequential phases consisting of: 1) a precipitation phase in which the hydrogen peroxide is added to the uranyl solution to precipitate the uranium peroxide and the pH of the reaction media maintained in the range of 3.0 to 7.0 for a period of 5 to 180 60 minutes after the hydrogen peroxide addition; 2) a digestion phase in which the pH of the reaction medium is maintained in the range of 3.0 to 7.0 for a period of 5 to 180 minutes and 3) a final phase in which the pH of the reaction media is maintained in the range of 4.0 to 7.0 for a period of 1 to 60 minutes during which time the uranium peroxide is separated from the reaction solution containing the dissolved vanadium and sodium impurities, the excess hydrogen peroxide aforesaid being maintained until the uranium peroxide is separated from the reaction mixture

  11. Kvanefjeld uranium project

    International Nuclear Information System (INIS)

    The purpose of the Kvanefjeld uranium project is to evaluate the possibility of a uranium production from the deposit at Narssaq, South Greenland. The project comprises investigations in the fields of geology, mining, process chemistry and technology, economy and environment protection. The predominant uraniferous rock is a nepheline syenite called lujavrite in which the main uranium mineral is steenstrupine. The deposit can be mined in an open pit. Calculations have shown a resource of 56 million tonnes of ore with an average grade of 365 ppm corresponding to 20,400 tonnes of uranium. The uranium is extracted by a sodium carbonate solution at 260degC in an autoclave. A pilot plant has been established including ball mill, continuous pipe autoclave and a belt filter for separation of leach liquor and residue. The uranium is finally precipitated as UO2 by reduction in an autoclave at 260degC. With the existing ore sample, recoveries of more than 80% have been obtained. The carbonate leaching causes a low solubility of most contaminants in the tailings. A draft project has been prepared for an industrial plant in Greenland. The total investments have been calculated at 3 x 109 Dkr. Electrical energy is assumed to be supplied by a hydropower plant at Johan Dahl Land. The mine and mill are expected to employ 500-600 persons. (author)

  12. Origin and Superposition Metallogenic Model of the Sandstone-type Uranium Deposit in the Northeastern Ordos Basin, China

    Institute of Scientific and Technical Information of China (English)

    LI Ziying; CHEN Anping; FANG Xiheng; OU Guangxi; XIA Yuliang; SUN Ye

    2008-01-01

    This paper deals with the metallogenic model of the sandstone type uranium deposit in thenortheastern Ordos Basin from aspects of uranium source, migration and deposition. A superpositionmetallogenie model has been established due to complex uranium mineralization processes withsuperposition of oil-gas reduction and thermal reformation.

  13. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste

    International Nuclear Information System (INIS)

    Uranium biomineralization by a metal-resistant Pseudomonas aeruginosa strain isolated from uranium mine waste was characterized for its potential in bioremediation. Uranium resistance, its cellular localization and chemical nature of uranium-bacteria interaction were elucidated. Survival and uranium biomineralization from mine water were investigated using microcosm experiments. The selected bacterium showed U resistance and accumulation (maximum of 275 mg U g-1 cell dry wt.) following incubation in 100 mg U L-1, pH 4.0, for 6 h. Transmission electron microscopy and X-ray diffraction analyses revealed that bioaccumulated uranium was deposited within the cell envelope as needle shaped U-phosphate compounds that attain crystallinity only at pH 4.0. A synergistic involvement of deprotonated phosphate and carboxyl moieties in facilitating bioprecipitation of uranium was evident from FTIR analysis. Based on these findings we attribute the localized U sequestration by this bacterium as innocuous complex to its possible mechanism of uranium resistance. Microcosm data confirmed that the strain can remove soluble uranium (99%) and sequester it as U oxide and phosphate minerals while maintaining its viability. The study showed that indigenous bacteria from contaminated site that can survive uranium and other heavy metal toxicity and sequester soluble uranium as biominerals could play important role in uranium bioremediation.

  14. Extraction of uranium from soil using selective chelators with secondary concentration using water soluble polymers

    International Nuclear Information System (INIS)

    Studies have investigated the extraction and recovery of uranium from contaminated soil containing both sorbed and metallic uranium. Our goal was to selectively bind and recover uranium from this soil and minimize secondary waste generation. Our approach was to determine optimal chelators for uranium extraction using contaminated soil taken from an area at LANL where open air testing of explosives containing depleted uranium was conducted. Uranium concentrations range in the soil from 1000-5000ppm. We have found that equimolar carbonate/bicarbonate solution in conjunction with an oxidant, sodium hypochlorite, is an excellent extractant for uranium from this soil, removing 90+% of the uranium. Our present focus is on the recovery and concentration of uranium from the extractant solution using a large water soluble polymer (>10,000 MW) as a secondary chelator for complexing the extracted uranium:carbonate complex. Using ultrafiltration, the volume of waste can be reduced 100+ fold. These commercially available polymers can then be regenerated and re-used. Using this approach, we are able to recover 90+% of the uranium in a minimal volume

  15. Study of uranium plating measurement

    International Nuclear Information System (INIS)

    In neutron physics experiments, the measurement for plate-thickness of uranium can directly affect uncertainties of experiment results. To measure the plate-thickness of transform target (enriched uranium plating and depleted uranium plating), the back to back ionization chamber, small solid angle device and Au-Si surface barrier semi-conductor, were used in the experiment study. Also, the uncertainties in the experiment were analyzed. Because the inhomo-geneous of uranium lay of plate can quantitively affect the result, the homogeneity of uranium lay is checked, the experiment result reflects the homogeneity of uranium lay is good. (authors)

  16. Geology of the Alligator Rivers Uranium Field

    International Nuclear Information System (INIS)

    The uranium deposits of Ranger 1, Koongarra, Jabiluka One and Two, and Nabarlek are in the Alligator Rivers Uranium Field, the northeastern part of the Pine Creek Geosyncline. Lower Proterozoic metasediments, which were metamorphosed mainly to amphibolite-grade and multiply isoclinally folded at about 1800 Ma, host much of the uranium and overlie or grade into the Archaean to Lower Proterozoic granitoid Nanambu Complex. In the northeast of the Field the metasediments grade into schist and gneiss forming the outer parts of the Lower Proterozoic Nimbuwah Complex; the inner parts of this Complex contain granodioritic and tonalitic migmatite and granitoid rocks which were emplaced before the 1800 Ma event. The metasediments are intruded by pre-orogenic and post-orogenic tholeiitic dolerite, by synorogenic granite, and by later minor phonolite and dolerite dykes. All but the minor dykes are overlain with marked unconformity by Carpentarian (Middle Proterozoic) sandstone with basalt flows, which conceals older rocks over most of the southeastern half of the area. The pre-Carpentarian (pre-Middle Proterozoic) rocks are deeply weathered and lateritised and are covered extensively by Mesozoic and Cainozoic sediment. The uranium is mainly contained in the lower member of the Cahill Formation, comprising mica quartz schist, magnesite and carbonaceous schist, which is chloritised around the uranium occurrences and along faults, shears and some stratigraphic breaks. The ore zones are located in breccia. The stratabound nature of the ore suggests that it has formed partly syngenetically; however, epigenetic processes appear essential for the development of such high-grade deposits. (author)

  17. The South Greenland regional uranium exploration programme

    International Nuclear Information System (INIS)

    This report describes the work and results of the last two field seasons (1080 and 1982) of the Syduran Project. The field work was concentrated in the Motzfeldt Centre and the Granite zone with a short reconnaissance of five uranium anomalies in the Migmatite Complex. The results from the Motzfeldt Centre show that it is composed of at least 6 syenite units which can be divided into two major phases of igneous activity. The radioactive mineralisation has been mapped by gamma-spectrometer and has proved to be very extensive. Uranium mineral occurrences found in the Granite Zone occur in the many faults and fractures, which dissect the area. A study of the fractures and fault movements in the zone makes it possible to suggest an overall structural framework in which to place the uranium occurrences in the zone. Field work on the Igaliko peninsula was confined to a small area known as Puissagtag where four pitchblende veins have been discovered. Numerous uraniferous showings, associated with fractures, have been located in the Vatnaverfi peninsula south of the Igaliko Fjord. Mineralogical studies have shown that 12 of these showings contain pitchblende, that 7 of them contain coffinite and that most of them contain brannerite. The most interesting find during the 1982 field season was in the Migmatite Complex. Five anomalously high uranium areas in the complex were explored briefly with the helicopter-borne scintillometer. Near a place called Igdlorssuit, where a particlarly high gamma-spectrometer anomaly was found during the reconnaissance gamma-spectrometer survey, a large raft of meta-sediments in rapakivi granite was found, in which radioactive mineralisation occurred. This proved to be due to fine disseminated uraninite which occurs over some 150 m of strike length with a width of 1-2 m. The results confirm that there is a good possibility of finding exploitable uranium mineral occurrences in South Greenland. (author)

  18. I. Synthesis and characterization of volatile uranium(V) and uranium(VI) alkoxides. II. Isotope selective infrared photochemistry of uranium(VI) hexamethoxide

    International Nuclear Information System (INIS)

    I. A number of uranium(V) and uranium(VI) alkoxides were prepared and characterized, with particular attention to volatility and vibrational spectroscopy. Volatility data and x-ray crystallography implied the uranium(V) complexes to be associated as dimers or higher polymers. The uranium(VI) alkoxides were determined to be monomeric through similar considerations. A detailed discussion of uranium hexamethoxide vibrational data is given, with regard to its suitability for infrared laser photolysis with a CO2-TEA laser. II. Infrared laser photolysis of uranium hexamethoxide was shown to selectively dissociate the 238U containing species, when irradiated with a CO2-TEA laser. Wavelength and fluence dependencies were measured, yielding an optimum 235U enrichment factor (for the unreacted material) of 1.0335 on the P(38)/10.6 μ laser transition at 3.2 J/cm2. A selectivity of 1.5 was calculated from dissociation yield experiments. The photolysis products were analyzed, and the initial reaction was determined to be methoxy radical elimination. Secondary reaction products, in the form of polymethoxy ethers, appear to be the result of intramolecuar reactions (on the uranium substrate) initiated by collisional processes. Several mechanisms are proposed

  19. Determination of low concentration of uranium in uranium amalgam

    International Nuclear Information System (INIS)

    Because of the strong interference in the determination of low concentrations of uranium in uranium amalgam by spectrophotometry, a new and rapid method has been developed for the removal of the interference of mercury(II) ion in the range of low uranium concentration by reducing Hg(II) to Hg in the sample dissolved in nitric acid with ascorbic acid. The separated uranium in the solution is determined by spectrophotometry in the concentration range of 0.25 approximately 5 mg/g uranium amalgam. The average error is about 2%. Very low concentrations of uranium (approximately 0.25 mg/g) in the uranium amalgam can be determined directly by fluorometric method. No interference effect has been observed at the mercury to uranium ratio up to 105; the average error is about 10%. (author)

  20. The Chemistry Study Of Uranium And Transition Elements In Mixture Of Nitric Acid And Sulfuric Acid Were Done

    International Nuclear Information System (INIS)

    The uranium and transition elements were contained in the waste of technetium-99 generator productions to be formed by irradiated uranium. This waste medium is low concentration of nitric acid and sulfuric acid. The tendency of uranium in this medium to form uranyl sulfate complex, the compound of uranyl sulfate belong to heteropoly compounds and is an acid. The transition elements in mixture of nitric acid and sulfuric acid solutions have tendency to form cation complex compound According to difference of the chemical properties of uranium and transition elements, the base reagent can be used for recovery of uranium from this solution

  1. Improved fluorimetric measurement of uranium uptake and distribution in spring wheat (Triticum aestivum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Borcia, Catalin [' ' Alexandru Ioan Cuza' ' Univ., Iasi (Romania). Dept. of Physics; Popa, Karin; Cecal, Alexandru [' ' Alexandru Ioan Cuza' ' Univ., Iasi (Romania). Dept. of Chemistry; Murariu, Manuela [' ' Petru Poni' ' Institute of Macromolecular Chemistry, Iasi (Romania)

    2016-08-01

    Uranium uptake and (radio)toxicity was tested on spring wheat (Triticum aestivum L.) in a laboratory study using differently concentrated uranium nitrate solutions. Within these experiments, two analytical assays of uranium were comparatively tested: a fast and improved fluorimetric assay and the classical colorimetric (U(IV)-arsenazo(III) complexation) one. During the germination, the wheat seeds and plantlets supported well the uranium solutions of treatment within the entire concentration range (1 x 10{sup -4} -5 x 10{sup -3} M). Uranium proved to be non (radio)toxic to wheat as compared with other natural and anthropogenic radiocations, probably because its uptake by spring wheat during the germination is low. Indeed, only a small fraction of uranium administered was located within the roots, whereas the uranium content of the stems was negligible. A high correlation between the results obtained by two analytical methods was found. However, the fluorimetric assay proved to be more reliable and fast, and accurate.

  2. Uranium chemistry in blood and aqueous media. Techniques of studies

    International Nuclear Information System (INIS)

    The object of this report in a first step, is to understand the chemistry of uranium in aqueous phase by specifying the behavior of this element in function of several parameters such PH, concentration of present species, temperature, ionic force. In a second step, investigation techniques are reviewed: X rays diffraction, potentiometric titrations, polarography, spectrophotometry, NMR of 13C, 31P, 17O, capillary electrophoresis, laser detection. The third part brings elements to understand the uranium complexation in blood medium

  3. Uranium-mediated electrocatalytic dihydrogen production from water

    Science.gov (United States)

    Halter, Dominik P.; Heinemann, Frank W.; Bachmann, Julien; Meyer, Karsten

    2016-02-01

    Depleted uranium is a mildly radioactive waste product that is stockpiled worldwide. The chemical reactivity of uranium complexes is well documented, including the stoichiometric activation of small molecules of biological and industrial interest such as H2O, CO2, CO, or N2 (refs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), but catalytic transformations with actinides remain underexplored in comparison to transition-metal catalysis. For reduction of water to H2, complexes of low-valent uranium show the highest potential, but are known to react violently and uncontrollably forming stable bridging oxo or uranyl species. As a result, only a few oxidations of uranium with water have been reported so far; all stoichiometric. Catalytic H2 production, however, requires the reductive recovery of the catalyst via a challenging cleavage of the uranium-bound oxygen-containing ligand. Here we report the electrocatalytic water reduction observed with a trisaryloxide U(III) complex [((Ad,MeArO)3mes)U] (refs 18 and 19)—the first homogeneous uranium catalyst for H2 production from H2O. The catalytic cycle involves rare terminal U(IV)-OH and U(V)=O complexes, which have been isolated, characterized, and proven to be integral parts of the catalytic mechanism. The recognition of uranium compounds as potentially useful catalysts suggests new applications for such light actinides. The development of uranium-based catalysts provides new perspectives on nuclear waste management strategies, by suggesting that mildly radioactive depleted uranium—an abundant waste product of the nuclear power industry—could be a valuable resource.

  4. Uranium hexafluoride handling

    International Nuclear Information System (INIS)

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF6 from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride

  5. Uranium hexafluoride handling. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  6. Uranium markets after the hangover

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, H. (Hugh Douglas and Co. Ltd., San Francisco, CA (USA))

    1982-07-01

    A report is given on the current depressed state of the world's uranium markets and on the prospects for recovery. The impact on the uranium industry of low prices and reduced demand are outlined.

  7. Innovative Elution Processes for Recovering Uranium from Seawater

    International Nuclear Information System (INIS)

    Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium

  8. Innovative Elution Processes for Recovering Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Wai, Chien [Univ. of Idaho, Moscow, ID (United States); Tian, Guoxin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Janke, Christopher [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-05-29

    Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium

  9. Uranium mineral base of the Republic of Uzbekistan

    International Nuclear Information System (INIS)

    The main uranium estimated and inferred resources making up the mineral base of Republic of Uzbekistan are located in the Central Kyzylkum uranium ore province. Uranium deposits of the province belong to two types: sandstone and black-shale ones. Twenty-two deposits of the sandstone type have been identified in the Central Kyzylkum province and 5 deposits of the black-shale type have been discovered in the province. 114.7 Kt of uranium of the sandstone type from 138.8 Kt can be extracted by underground leaching with operation costs not more than $40/kg of uranium, 24.2 Kt will cost up to $130/kg due to complex geo-technical conditions. 36.0 Kt of uranium from 47.0 Kt of the black-shale type are open pittable with subsequent heap leaching with operation cost not more than $40/kg of uranium. 11.0 Kt located deeper can be mined out with operation costs up to $130/kg. As for 1 January 1999, inferred traditional resources (EAR-II+SP or P1+P2) are 242.7 Kt of uranium, including 188.8 Kt of the sandstone type and 53.9 Kt of black-shale type. Small, 3%, reduction of the inferred resources compared with 1 January 1997 occurred because part of these resources was provided up to EAR-I category after further exploration. Navoi Hydro-Metallurgical Plant (NHMP) deals with uranium operation on the territory of Uzbekistan since 1956. The NHMP comprises following mining operations: Severnoe operation in Uchkuduk, operation in Zafarabad and Yuzhnoe operation in Nurabad. Five modern towns with total population about 500 000 have been constructed on the base of the uranium mining industry. Background radioactivity of territory of Uzbekistan is defined by radionuclides (mainly uranium and thorium) dispersed in rocks and soils. Technogenic radionuclide pollution of territory of Uzbekistan occurs due to mining operation activity in general. Environmental conditions in underground waters on areas of mineral deposits are unfavorable even before mining. The underground waters are highly

  10. Uranium resources, production and demand

    International Nuclear Information System (INIS)

    Nuclear power-generating capacity will continue to expand, albeit at a slower pace than during the past fifteen years. This expansion must be matched by an adequately increasing supply of uranium. This report compares uranium supply and demand data in free market countries with the nuclear industry's natural uranium requirements up to the year 2000. It also reviews the status of uranium exploration, resources and production in 46 countries

  11. The Toxicity of Depleted Uranium

    OpenAIRE

    Wayne Briner

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a c...

  12. Radiation damage of metal uranium

    International Nuclear Information System (INIS)

    This report is concerned with the role of dispersion second phase in uranium and burnup rate. The role of dispersion phases in radiation stability of metal uranium was studies by three methods: variation of electric conductivity dependent on the neutron flux and temperature of pure uranium for different states of dispersion second phase; influence of dispersion phase on the radiation creep; transmission electron microscopy of fresh and irradiated uranium

  13. Uranium extraction technology

    International Nuclear Information System (INIS)

    In 1983 the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA) and the IAEA jointly published a book on Uranium Extraction Technology. A primary objective of this report was to document the significant technological developments that took place during the 1970s. The purpose of this present publication is to update and expand the original book. It includes background information about the principle of the unit operations used in uranium ore processing and summarizes the current state of the art. The publication also seeks to preserve the technology and the operating 'know-how' developed over the past ten years. This publication is one of a series of Technical Reports on uranium ore processing that have been prepared by the Division of Nuclear Fuel Cycle and Waste Management at the IAEA. A complete list of these reports is included as an addendum. Refs, figs and tabs

  14. The Kintyre uranium project

    International Nuclear Information System (INIS)

    The Kintyre Uranium Project is being developed by Canning Resources Pty Ltd, a subsidiary of Rio Tinto (formerly CRA). The work on the project includes the planning and management of a number of background environmental studies. The company has also commissioned studies by external consultants into process technologies, mining strategies and techniques for extracting the uranium ore from the waste rock. In addition, Canning Resources has made a detailed assessment of the worldwide market potential for Australian uranium in the late 1990s and into the 21st century. The most significant factor affecting the future of this project is the current product price. This price is insufficient to justify the necessary investment to bring this project into production

  15. Therapy of uranium contaminations

    International Nuclear Information System (INIS)

    Renal risks associated with the use of chelating agent as a treatment for acute uranium contamination were investigated. Rats were given a single intramuscular injection of uranyl nitrate solution. The percentage of renal uptake of uranyl nitrate as a function of the quantity injected was measured. Then the effect of a single DTPA intraperitoneal injection and the effect of a single bicarbonate injection on renal uptake of uranyl nitrate were studied. The preliminary results were as follows: constancy of renal uptake of uranyl nitrate (13 to 20% of the quantity injected); harmlessness of DTPA as a treatment for uranium contamination (DTPA does not increase uranium renal burden); inefficacy of bicarbonates on uranyl renal uptake

  16. Sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    World-class sandstone-type uranium deposits are defined as epigenetic concentrations of uranium minerals occurring as uneven impregnations and minor massive replacements primarily in fluvial, lacustrine, and deltaic sandstone formations. The main purpose of this introductory paper is to define, classify, and introduce to the general geologic setting for sandstone-type uranium deposits

  17. Uranium resources, demand and production

    International Nuclear Information System (INIS)

    Estimations of the demand and production of principal uranium resource categories are presented. The estimations based on data analysis made by a joint 'NEA/IAEA Working Party on Uranium Resources' and the corresponding results are published by the OECD (Organization for Economic Co-operation and Development) in the 'Uranium Resources, Production and Demand' Known as 'Red Book'. (M.C.K.)

  18. CPE OF URANIUM (VI USING IONIC LIQUID

    Directory of Open Access Journals (Sweden)

    SANAA NAÏT-TAHAR

    2016-07-01

    Full Text Available Cloud point extraction (CPE was used to extract uranium (VI from an aqueous solution in acetate media. The methodology used is based on the formation of uranyl-ionic liquid (I complexes and uranyl-D2EHPA soluble in a micellar phase of non-ionic surfactant (Triton X-100. The uranium (VI complexes are then extracted into the surfactant-rich phase at ambient temperature. The ionic liquid (IL used as a chelating agent was synthesized and characterized in this study. It is composed of N-butyl N’-triethoxy methyl imidazolium cation and diethylhexylphosphate (D2EHPA-H as anion. The effect of the IL on the extraction efficiency was studied in presence and in absence of IL’s cation in acetate medium.

  19. The uranium International trade

    International Nuclear Information System (INIS)

    The aim of this thesis is the understanding of how the present dynamic of uranium International trade is developed, the variables which fall into, the factors that are affecting and conditioning it, in order to clarify which are going to be the outlook in the future of this important resource in front of the present ecological situation and the energetic panorama of XXI Century. For this purpose, as starting point, the uranium is considered as a strategic material which importance take root in its energetic potential as alternate energy source, and for this reason in Chapter I, the general problem of raw materials, its classification and present situation in the global market is presented. In Chapter II, by means of a historical review, is explain what uranium is, how it was discovered, and how since the end of the past Century and during the last three decades of present, uranium pass of practically unknown element, to the position of a strategic raw material, which by degrees, generate an International market, owing to its utilization as a basic resource in the generation of energy. Chapter III, introduce us in the roll played by uranium, since its warlike applications until its utilization in nuclear reactors for the generation of electricity. Also is explain the reason for this change in the perception at global level. Finally, in Chapter IV we enter upon specifically in the present conditions of the International market of this mineral throughout the trends of supply and demand, the main producers, users, price dynamics, and the correlation among these economical variables and other factors of political, social and ecological nature. All of these with the purpose to found out, if there exist, a meaning of the puzzle that seems to be the uranium International trade

  20. Chemwes Uranium Plant

    International Nuclear Information System (INIS)

    The Chemwes Uranium Plant is located in an area which is underlain to a major extent by pinnacled dolomite. It was decided to adopt a replacement fill for support of light structures in preference to alternatives such as the installation of piles or 'bridging' between pinnacles. The 3 m thick soil 'raft' resulting from the fill replacement technique made it possible to support all but a very small number of foundations upon shallow spread footings or raft slabs. This article describes a replacement fill for support of light structures at the Chemwes Uranium Plant

  1. Corrosion-resistant uranium

    Science.gov (United States)

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  2. Bio-/Photo-Chemical Separation and Recovery of Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Francis,A.J.; Dodge, C.J.

    2008-03-12

    Citric acid forms bidentate, tridentate, binuclear or polynuclear species with transition metals and actinides. Biodegradation of metal citrate complexes is influenced by the type of complex formed with metal ions. While bidentate complexes are readily biodegraded, tridentate, binuclear and polynuclear species are recalcitrant. Likewise certain transition metals and actinides are photochemically active in the presence of organic acids. Although the uranyl citrate complex is not biodegraded, in the presence of visible light it undergoes photochemical oxidation/reduction reactions which result in the precipitation of uranium as UO{sub 3} {center_dot} H{sub 2}O. Consequently, we developed a process where uranium is extracted from contaminated soils and wastes by citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, whereas uranyl citrate which is recalcitrant remains in solution. Photochemical degradation of the uranium citrate complex resulted in the precipitation of uranium. Thus the toxic metals and uranium in mixed waste are recovered in separate fractions for recycling or for disposal. The use of naturally-occurring compounds and the combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in cost.

  3. 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

    2009-06-30

    amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..

  4. Reactivity of ceramic coating materials with uranium and uranium trichlorid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Cho, Choon Ho; Lee, Yoon Sang; Lee, Han Soo; Kim, Jeong Guk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Uranium and uranium alloys are typically induction melted in graphite crucibles under a vacuum. The graphite crucible is used for the manufacturing of uranium ingots in the casting equipment. But, due to the chemical reactivity of uranium and most alloying elements with carbon, a protective ceramic coating is generally applied to the crucibles. In this study, to investigate the most suitable ceramic coating material applied to graphite melting crucibles and ingot moldsused in the melting and casting of uranium in the casting equipment, firstly, the thermodynamic analysis was performed by using HSC software to investigate the reactivity between uranium and several ceramic materials and the experiments on the reaction of ceramic coated crucibles in molten uranium were carried out at 1300 .deg. C

  5. Uranium occurence in California near Bucaramanga (Columbia)

    International Nuclear Information System (INIS)

    The mining district of California, Bucaramanga, is on the west side of the Cordillera Oriental in the Santander massif region. The oldest rocks of the area form a complex of metamorphites and migmatites of the predevonic age. Amphibolite various types of paragneiss and orthogneiss are represented. Several stages of metamorphism can be documented in some rocks, as well as double anatexis. Triassic to jurassic quarz diorites and leukogranites show wide distribution. Porphyric rocks of granodioritic to granitic composition, to which the uranium mineralization is mainly bonded, intruded into the sediments of the lower cretaceous. Atomic absorption spectral analyses were carried out for the elements Cu, Zn and Li, as well as the uranium contents of some samples using fluorimetry. Uranium is primarily bonded to pitch blende and coffinite. The latter mostly occur in fine distribution grown in quarz and belong to the most recent mineralization phase. Autunite, meta-autunite, torbernite, meta-torbernite, zeunerite, meta-zeunerite and meta uranocircite detected as secondary uranium minerals. (orig./HP)

  6. Current status of uranium exploration in Sri Lanka

    International Nuclear Information System (INIS)

    Apart from the few occurrences of Gondwana (Jurassic), Miocene and later sediments, most of Sri Lanka consists of Precambrian rocks of Archaean age. These rocks underwent metamorphism under amphibolite and granulite facies conditions about 200 Ma ago. Nine anomalous areas for uranium mineralization were identified after a preliminary geochemical survey of the whole island, except for the northwestern Miocene belt. Consistent low contents of uranium in stream sediment samples suggested that solution or hydromorphic dispersion of uranium is not a prominent mechanism and that most of the uranium dispersion is rather mechanical in nature in most of the country. Six of the above areas lie either within or close to the boundary between the Highland Series and the Vijayan Complex. The latter mainly consists of granitic gneisses, hornblende biotite gneisses, granitoids and migmatites formed under amphibolite facies conditions. Denser sampling (one sample per 1 km2) in Phase II of the programme in two areas, namely Maha Cya and Mala Oya, indicated that further exploration work would be worthwhile. A number of samples from these areas had uranium values greater than 500 ppm. Further, the composition of the amphiboles and pyroxenes from rocks of the Maha Cya area are comparable to those in rocks from known areas of uranium mineralization such as the Mary Kathleen uranium deposit in Australia. (author). 6 refs, 6 figs

  7. Uranium release from boom clay in bicarbonate media

    International Nuclear Information System (INIS)

    The release of natural uranium from Boom Clay was studied to better understand the mechanisms governing the solid-liquid partitioning of uranium. Batch leaching experiments suggested that the portion of natural uranium released from clay is associated with colloids at a low bicarbonate concentration prevailing in Boom Clay. At increased bicarbonate concentrations, uranium was present predominantly as dissolved species indicating a formation of uranium carbonate complexes. The in situ aqueous uranium concentration, i.e., the concentration in the pore waters collected by piezometers was found to be 2 to 3 orders of magnitudes lower than the one measured by the batch techniques. These results illustrated that the batch techniques may cause a remobilization of uranium containing colloids from clay surfaces into solution when clay is suspended, agitated, and mechanically perturbed. These colloids are attributed to artefacts and are not considered to exist in situ because of the high compaction of Boom Clay. Due to the presence of colloids, a laboratory derived solid-liquid partitioning coefficient is not equivalent to and cannot simply be converted to the distribution coefficient Kd currently used in performance assessment calculations. (orig.)

  8. Uranium (VI) solubility in carbonate-free ERDA-6 brine

    Energy Technology Data Exchange (ETDEWEB)

    Lucchini, Jean-francois [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory

    2010-01-01

    When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

  9. Atomic-scale studies of uranium oxidation and corrosion by water vapour

    OpenAIRE

    Martin, TL; Coe, C.; Bagot, PAJ; Morrall, P; Smith, GDW; Scott, T.; Moody, MP

    2016-01-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacia...

  10. Determination of traces of uranium in sea water after separation by froth flotation

    International Nuclear Information System (INIS)

    Uranium in sea water is separated by froth flotation of the uranium (VI)-Arsenazo III-Zephiramine ion-adduct and then determined by neutron activation or spectrophotometric method using the uranium(IV)-Arsenazo III complex. Results of the analysis of Pacific coastal samples by the two methods are in good agreement; an average value of 3.0μg U/per liter was obtained. (author)

  11. Ecological problems related to uranium mining and uranium reprocessing industry in Ukraine and restoration strategy concept

    International Nuclear Information System (INIS)

    waste disposal sites located in Dnieprodzerzhinsk town and also from the mining water to the rivers near Zhevti Wody town. The actual Radiological Risks for individual estimated for population leaving in the vicinity of theses areas are low. However potential Radiological Risks for Population due to extra-ordinary situation and extreme hydrometeorological condition can be expected as significant. For instance, the former Pridneprovskiy Chemical Plant (PCP) is located alongside the Dnieper river on a large industrial complex with other industries such as coke and other metallurgical plants. During operation of the PCP nine tailings dumps were created containing about 42 million tones of radioactive wastes with a total activity of about 4 x 1015 Bq (≅100,000 Ci). The impact of tailing 'D' observes at the distance about 100 km from the release points. In particular relatively high Uranium concentration observes in the bottom sediment and in the aquatic biota of Dnieprovskoe reservoir. The high concentration of uranium in the water (up to 1,0-2,5 Bq l-1 ) time to time occurring in the Zheltaya River downstream of waste water released from Mines in Zhevti Wody. Some conclusions on Dose Assessment derived from prior studies by authors are the following: - The highest levels of human exposure are received by inhabitants of settlements located on the banks of Zheltaya and Konoplyanka rivers. - The annual dose estimates are about at the level (0.1 mSv per year) recommended by WHO (2003) as the maximum permissible for drinking water. - However, these streams are relatively small and known to be highly polluted with various contaminants; therefore, this water use are not for drinking, food preparation or other domestic needs. - For uranium, the chemical toxicity needs also to be considered. In the addendum to the WHO Guidelines (1998), a health-based guideline concentration of 0.002 mg U/litre was established, which is well below the limit based on radiological considerations

  12. Uranium sorption by tannin resins

    International Nuclear Information System (INIS)

    The sorption of uranium by immobilised Eucalyptus Saligna Sm. and Lysiloma latisiliqua L tannins was investigated. Immobilization condition were analyzed. These resins resulted suitable adsorbent for the concentration of uranium from aqueous systems. The sorption of uranium is pH dependent. At pH 5.5 maximum in sorption capacity is registered. The presence of appreciable amount of sodium chloride do not have any effect on uranium removal. Carbonate and calcium ions in concentrations similar to these that could be found in sea water and other natural water do not decrease the uranium uptake. Tannin resins can be used several times without an appreciable decay of their sorption capacity

  13. Uranium mineralization in fluviatile facies

    International Nuclear Information System (INIS)

    Over half the world's known uranium reserves occur in fluviatile rocks. These deposits include Archean quartz-pebble conglomerates of alluvial fan facies and arkosic braided and meandering fluviatile sandstone facies. Uranium-bearing quartz-pebble conglomerates are described. Approximately 40% of the world's uranium reserves have been found in epigenetic sandstone deposits. Deposits of uranium in braided or meandering fluviatile sandstones can be grouped into peneconcordant and roll-front types. Uranium deposits are widely distributed through central, northern and western Australia but only a very small proportion of the reserves occur in fluviatile sequences

  14. Spectroscopic studies of uranium species for environmental decontamination applications

    Science.gov (United States)

    Eng, Charlotte

    After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by

  15. Diffusion of uranium hexafluoride

    Science.gov (United States)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of uranium hexafluoride

  16. Hydrolysis of uranium hexafluoride

    International Nuclear Information System (INIS)

    A literature survey is presented of uranium hexafluoride hydrolysis methods as the first step in UF6 conversion to UO2. Reviewed are early methods of hydrolysis, the hydrolysis by dry water vapour, the fluidized-bed method, and the liquid phase hydrolysis of UF6 gas. (J.P.)

  17. Uranium recovery process

    International Nuclear Information System (INIS)

    A process of recovering uranium from an aqueous medium containing both it and sulfuric acid which comprises contacting the medium with an anion exchange resin having tertiary amine groups, said resin being the product of (a) the reaction of polyethyleneimine and a dihaloalkane and (b) the subsequent reductive alkylation of the product of (a)

  18. The neurotoxicology of uranium.

    Science.gov (United States)

    Dinocourt, Céline; Legrand, Marie; Dublineau, Isabelle; Lestaevel, Philippe

    2015-11-01

    The brain is a target of environmental toxic pollutants that impair cerebral functions. Uranium is present in the environment as a result of natural deposits and release by human applications. The first part of this review describes the passage of uranium into the brain, and its effects on neurological functions and cognitive abilities. Very few human studies have looked at its cognitive effects. Experimental studies show that after exposure, uranium can reach the brain and lead to neurobehavioral impairments, including increased locomotor activity, perturbation of the sleep-wake cycle, decreased memory, and increased anxiety. The mechanisms underlying these neurobehavioral disturbances are not clearly understood. It is evident that there must be more than one toxic mechanism and that it might include different targets in the brain. In the second part, we therefore review the principal mechanisms that have been investigated in experimental models: imbalance of the anti/pro-oxidant system and neurochemical and neurophysiological pathways. Uranium effects are clearly specific according to brain area, dose, and time. Nonetheless, this review demonstrates the paucity of data about its effects on developmental processes and the need for more attention to the consequences of exposure during development.

  19. Uranium prospection in Venezuela

    International Nuclear Information System (INIS)

    Full text: The worldwide increase of energy consumption and high fossil fuels costs generates the necessity of alternative energy sources. At present, nuclear energy is substituting the use of hydrocarbons, due to its high performance and contribution to environmental preservation, since it avoids the emission of greenhouse gases. Uranium consumer countries will continue to increase its demand, and even, is expected the incorporation of new reactors in countries with emerging economies. Base in the statement considered above, investment in new mineral deposit is justified. At present, some countries are motivated to start or continue the uranium exploration because of the evolution of the nuclear energy industry. Venezuela started exploration in the mid of 1970s, and stopped at 1980s. Our purpose is to evaluate uranium resources potential in the country, both for own use or export. In order to locate potential areas for exploration, in this initial phase all data from previous period is being compiled, incorporating information from oil exploration (seismic data, wells profiles, etc.). This information is been digitalized to generate a database into a geographical information system. Preliminary results show three areas of interest, where new geological, geochemical and geophysical surveys are propose. At this time, we do not have specific information about ore reserves, but we have anomalous areas that have been established as starting points to continue the uranium exploration in the country. (author)

  20. Uranium: The recalcitrant commodity

    International Nuclear Information System (INIS)

    The uranium is analysed as a special market commodity and compared with other metals like copper. The supply-demand balance, production costs and the special form of pricing are discussed. The likely evaluation of inventories and the future capacity utilization are also discussed and commented. (author). 2 refs, 8 figs

  1. Uranium and nuclear issues

    International Nuclear Information System (INIS)

    This seminar focussed on the major issues affecting the future of the entire nuclear fuel cycle. In particular it covered issues bearing on the formation of public policy in relation to the use of uranium as an energy source: economic risk, industrial risks, health effects, site selection, environmental issues, and public acceptance

  2. Swelling of Uranium

    International Nuclear Information System (INIS)

    An understanding of the mechanism of swelling in irradiated uranium has been handicapped by lack of data from experiments in which the parameters are accurately known. The present- concepts of swelling are based largely on data of this nature. In this study, uranium specimens with less than 0,01% impurity were irradiated below 300°C, and the swelling was induced by subsequent heat treatment outside the reactor where careful control of the temperature was possible. The results obtained by this technique were self'consistent but in considerable disagreement with rhe results of the in-pile investigations. The density and porosity of irradiated uranium specimens were determined following pulse annealing in the alpha, beta and gamma phases« Both the light microscope and the electron microscope were used to study porosity. The results may be summarized as follows: (1) Uranium specimens irradiated to 0.30%bum-up and heat-treated 75 h at temperatures less than 550°C in the α-phase swelled less than 1%. (2) Uranium specimens (0.30% bum-up) heat-treated 75 h at temperatures between 550°C and 650°C in the α- phase swelled up to 18%. This swelling was due to bubbles with diameters up to 15/μm. These results were diametrically opposed to recent data. (3) Uranium specimens (0.30% bum-up) heat-treated 75 h at temperatures in the ß-phase decreased their density by 4- 5%. This decrease in density is apparently the result of grain-boundary cracking rather than bubble formation, as there is evidence to suggest that fission gas is retained in the matrix of the γ-phase. These results suggest that a modification of the role of pressure and surface tension is required in the current theories of swelling. (4) A uranium specimen (0.30% bum- up) heat-treated for 15 h in the γ-phase at 820°C swelled 20%. In this case the swelling was primarily due to the formation of bubbles in the vicinity of and on grain boundaries. The explanation of these experimental results requires

  3. Radon in Uranium Mining. Proceedings of a Panel

    International Nuclear Information System (INIS)

    main effect of radiological and waste management legislative controls is on prices and reserves, there are many important contributory factors which require study, such as the future impact on uranium exploration activity, uranium demand, present sales contracts, future sales contracts and the sociological effects on mining communities. An examination was made of what limit of severity the industry could tolerate in regard to further tightening of radiation exposure standards without severe consequences to uranium supplies, with the resulting serious implications for future nuclear power planning. It is probable that in future much of the new uranium supplies will have to come from new mines opened not only in the existing uranium-producing countries but also extensively in developing countries over the next decades. The Agency wishes to be able to advise future uranium producers, particularly in developing countries, of the requisite radiation exposure standards necessary to avoid harm to workers in the industry and of what the effect of these standards will be on economics, mine planning and production. One particularly useful and practical aspect of such assistance will be to provide advice on the design and engineering of good ventilation systems in new mines. Ventilation was, therefore, the theme of the second session of the Panel; it covered technical problems of mine ventilation specifically related to the elimination of radon gas from underground and deep open-pit uranium mines. The subject of the third session of the Panel was the phenomenon of radon emanation and the mode of radon release, which is a complex function of U3O8 content, type of uranium mineralogy, host rock character, porosity, etc. This study is obviously basic and fundamental to the main subject.

  4. Kvanefjeld uranium project

    International Nuclear Information System (INIS)

    The draft uranium project ''Kvanefjeld'' describes the establishment and operation of an industrial plant for exploiting the uranium deposit at Kvanefjeld. The draft project is part of the overall pre-feasibility project and is based on its results. The draft project includes two alternative locations for the processing plant and the tailings deposit plant. The ore reserve is estimated at 56 million tons with an average content of 365 PPM. The mine will be established as an open pit, with a slope angle of 55deg. Conventional techniques are used in drilling, blasting and handling the ore. Waste rock with no uranium content will be disposed of in two ponds near the mine. The waste rock volume is estimated at 80 million tons. A processing plant for extracting uranium from the ore will be established. The technical layout of the plant is based on the extraction experiments performed at Risoe from 1981-83. Yearly capacity is 4.2 million tons of ore. Electrical energy will be supplied from a hydroelectric station to be built at Johan Dahl Land. Thermal energy (steam/heat) will be supplied from a coal-fired district heating plant to be built in connection with the processing plant. Expected power consumption is estimated at 225 GWh/year. Heat consumption is of the same order. In the third year the plant is expected to operate at full capacity. Operating costs will be Dkr. 121/ton of ore from years 1 through 7. Consumption of chemicals will be reduced from the 7th year, and operating costs will consequently drop to Dkr. 115/ton of ore. Calculations show that industrial extraction of the uranium deposit in Kvanefjeld is economically advantageous. In addition, the economy of the project is expected to improve by extracting byproducts from the ore. (EG)

  5. Uranium from seawater

    International Nuclear Information System (INIS)

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 105, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 103 in seawater instead of the reported values of 105. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 105 in fresh water. However, the system was not tested in seawater

  6. Uranium from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, D.; Folkendt, M.

    1982-09-21

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.

  7. Uranium in South Africa: 1983 assessment of resources and production

    International Nuclear Information System (INIS)

    NUCOR assesses South Africa's uranium resource and production capabilities on an ongoing basis. Assessments are carried out in close co-operation with the mining companies and the Government Mining Engineer. In carrying out this evaluation, the classification recommended by the NEA/IAEA Working Party on Uranium Resources is followed. In order to preserve company confidentiality, the details of the findings are released in summary form only. Within South Africa, uranium occurrences are found in Precambrian quartz-pebble conglomerates, Precambrian alkaline complexes, Cambrian to Precambrian granite gneisses, Permo-Triassic sandstones and coal, and Recent to Tertiary surficial formations. South Africa's uranium resources were reassessed during 1983 and the total recoverable resources in the Reasonably Assured and Estimated Additional Resource categories recoverable at less than $130/kg U were estimated to be 460 000 t U. This represents a decrease of 13,4% when compared with the 1981 assessment. South Africa's uranium production for 1983 amounted to 6 060 t U, a 4,21 % increase over the 1982 production of 5 816 t U. Ninety-seven percent of the production is derived from the Witwatersrand quartz-pebble conglomerates, the rest being produced as a by-product of copper mining at Palabora. South Africa maintained its position as a major low-cost uranium producer, holding 14% of the WOCA uranium resources, and during 1982 it produced 14% of WOCA's uranium. In making future production capability projections it may be safely concluded that South Africa would be able to produce uranium at substantial levels well into the next century

  8. Recovery of uranium from uranium refining waste water by using immobilized persimmon tannin

    International Nuclear Information System (INIS)

    Some attempts were made to examine the practical conditions for uranium recovery from uranium refining waste water. The adsorbent was highly effective in recovering uranium. The uranium adsorption was affected by pH, temperature, and uranium concentration of the uranium refining waste water. The adsorbent also recovered uranium effectively in column system. It aquires better mechanical properties and can be used repeatedly in the uranium adsorption-desorption cycles. (author)

  9. Enhancement of Extraction of Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sheikhly, Mohamad [Univ. of Maryland, College Park, MD (United States); Dietz, Travis [Univ. of Maryland, College Park, MD (United States); Tsinas, Zois [Univ. of Maryland, College Park, MD (United States); Tomaszewski, Claire [Univ. of Maryland, College Park, MD (United States); Pazos, Ileana M. [Univ. of Maryland, College Park, MD (United States); Nigliazzo, Olga [The Catholic Univ. of America, Washington, DC (United States); Li, Weixing [The Catholic Univ. of America, Washington, DC (United States); Adel-Hadadi, Mohamad [Univ. of Maryland, College Park, MD (United States); Barkatt, Aaron [Univ. of Palermo (Italy)

    2016-04-01

    Even at a concentration of 3 μg/L, the world’s oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand which was originally discovered and promoted by Japanese studies in the late 1980s. Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method’s complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence and will extend the quantity of

  10. 31 CFR 540.309 - Natural uranium.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found...

  11. Uranium Potential and Regional Metallogeny in China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jindai; LI Ziying

    2008-01-01

    This paper is briefly involved in distributions of China's uranium metallogenic types,provinces, regions and belts. Eight target regions have been pointed out to be worthy of prospectingfor uranium resources. The regional uranium metallogeny is discussed and great uranium potentialpointed out from many aspects. Generally speaking, there are favorable conditions for uraniummineralization and good perspective to explore for uranium resources.

  12. Uranium: War, Energy and the Rock That Shaped the World; Uranium: la biographie

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, T.

    2009-07-01

    Having traveled extensively through the savannah of Africa, the mountains of Eastern Europe, and the deserts of Utah, the author delves into the complex science, politics and history of uranium, which presents the best and worst of mankind: the capacity for scientific progress and political genius; the capacity for nihilism, exploitation, and terror. Because the author covers so much ground, from the discovery of radioactivity, through the development of the atomic bomb, he does not go into great depth on any one topic. Nonetheless, he paints vivid pictures of uranium's impact, including forced labor in Soviet mines and lucky prospectors who struck it rich in harsh environments, the spread of uranium smuggling, as well as an explanation of why it was absurd to claim that Saddam Hussein was attempting to purchase significant quantities of uranium from Niger. The only shortcoming is the author's omission of the issue of radioactive wastes generated by nuclear power. The author knows well what uranium looks like, why peril pulses in its every atom, and how scientists exploit its nuclear volatility. The drama is found in the weaponry uranium has spawned as demonstrated at Hiroshima and Nagasaki. In pursuit of this raw power, the U.S. let Navajos die extracting needed ore and let southwestern cities sicken beneath clouds from reckless testing. The Soviet Union sentenced tens of thousands to lethal gulag mines. Israel diverted ore through deception on the high seas. Pakistan stole European refining technology. Alive with devious personalities, the author's narrative ultimately exposes the frightening vulnerability of a world with too many sources of a dangerous substance and too little wisdom to control it

  13. Webinar on the Removal of Uranium from Drinking Water by Small System Treatment Technology

    Science.gov (United States)

    Abstract: Radionuclides, such as uranium (U), occur naturally as trace elements in rocks and soils and thus can be found in dissolved forms in ground waters. Uranium has four oxidation states (+3, +4, +5, and +6) and is a very reactive element forming a variety of stable complexe...

  14. Extractive separation and ICP-AES determination of uranium in zircon minerals

    International Nuclear Information System (INIS)

    In the present study, solvent extraction separation of microgram levels of uranium was carried out from milligram amounts of zirconium in presence of oxalic acid as the complexing agent which keeps the zirconium completely in the aqueous phase. To prevent the inhibition of the uranium extraction, aluminium nitrate was used to generate the uranyl nitrate species

  15. Modified anion-exchange method for determination of thorium in uranium based materials

    International Nuclear Information System (INIS)

    This paper details a modified anion-exchange method for estimation of thorium in uranium based samples like uranium dioxide powders, pellets and uranyl nitrate solutions. The method involves separation of thorium from uranium from 3M commercial grade HCl containing 15% NaCl through an anion-exchange resin. The uranium free effluent containing the analyte(thorium) is determined spectrophotometrically by exploiting absorption of the thorium-arsenazo III complex at 660 nm. The method has a precision of about ±2% at 50 ppm level. (author). 3 refs., 1 tab

  16. Preparation of Uranium Powder having Reactive Shape using Uranium Hydridation

    International Nuclear Information System (INIS)

    The accident tolerance of the LWR fuel has become a primary matter of concern. So, it is indispensable to develop the innovative nuclear fuel material concepts and technologies which can overcome degradation of fuel safety and integrity. Uranium nitride fuel has been proposed as a potential fuel material for advanced nuclear reactors because nitride fuel has the advantages of both metallic and oxide fuels. That is, the high melting point, high uranium density, and high thermal conductivity are the representative merits of nitride fuel. Nitride fuel is also considered as a fuel material for the accident tolerant fuel of current LWRs to compensate for the decrease in fissile fuel material caused by adopting a thickened cladding such as SiC composites. However, nitride fuel has a critical disadvantage of a serious reaction with water at a typical LWR condition. Bulk uranium nitride is known to be dissolved in water at a temperature above 230 .deg. C. Uranium nitride powder is more unstable and reacts with water at about 150 .deg. C. Therefore, the water-proof nitride fuel must be developed to apply to current LWRs. Several strategies to prevent or reduce the reaction of nitride fuel with water have been suggested. KAERI is developing uranium nitride-oxide composite fuel pellet that is expected to have higher fuel performance and lower water reactivity. In the development of the fabrication technologies of uranium based composite fuel pellet, uranium nitride powder should be prepared, first. We have considered a simple reaction method to fabricate uranium nitride powders directly from metal uranium powders. Also, to create reactive uranium powder with nitrogen, it is applied that the uranium powder is pretreated in the hydrogen atmosphere. In this study, to investigate the behavior of the uranium powder hydriding process, thermal analysis tests were performed

  17. Extraction of uranium from seawater: a few facts

    Directory of Open Access Journals (Sweden)

    Guidez Joel

    2016-01-01

    Full Text Available Although uranium concentration in seawater is only about 3 micrograms per liter, the quantity of uranium dissolved in the world's oceans is estimated to amount to 4.5 billion tonnes of uranium metal (tU. In contrast, the current conventional terrestrial resource is estimated to amount to about 17 million tU. However, for a number of reasons the extraction of significant amounts of uranium from seawater remains today more a dream than a reality. Firstly, pumping the seawater to extract this uranium would need more energy than what could be produced with the recuperated uranium. Then if trying to use existing industrial flow rates, as for example on a nuclear power plant, it appears that the annual possible quantity remains very low. In fact huge quantities of water must be treated. To produce the annual world uranium consumption (around 65,000 tU, it would need at least to extract all uranium of 2 × 1013 tonnes of seawater, the volume equivalent of the entire North Sea. In fact only the great ocean currents are providing without pumping these huge quantities, and the idea is to try to extract even very partially this uranium. For example Japan, which used before the Fukushima accident about 8,000 tU by year, sees about 5.2 million tU passing every year, in the ocean current Kuro Shio in which it lies. A lot of research works have been published on the studies of adsorbents immersed in these currents. Then, after submersion, these adsorbents are chemically treated to recuperate the uranium. Final quantities remain very low in comparison of the complex and costly operations to be done in sea. One kilogram of adsorbent, after one month of submersion, yields about 2 g of uranium and the adsorbent can only be used six times due to decreasing efficiency. The industrial extrapolation exercise made for the extraction of 1,200 tU/year give with these values a very costly installation installed on more than 1000 km2 of sea with a

  18. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.

    Science.gov (United States)

    Saunders, James A; Pivetz, Bruce E; Voorhies, Nathan; Wilkin, Richard T

    2016-12-01

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program. PMID:27576149

  19. Uranium and thorium deposits of Northern Ontario

    International Nuclear Information System (INIS)

    This, the second edition of the uranium-thorium deposit inventory, describes briefly the deposits of uranium and/or thorium in northern Ontario, which for the purposes of this circular is defined as that part of Ontario lying north and west of the Grenville Front. The most significant of the deposits described are fossil placers lying at or near the base of the Middle Precambrian Huronian Supergroup. These include the producing and past-producing mines of the Elliot Lake - Agnew Lake area. Also included are the pitchblende veins spatially associated with Late Precambrian (Keweenawan) diabase dikes of the Theano Point - Montreal River area. Miscellaneous Early Precambrian pegmatite, pitchblende-coffinite-sulphide occurrences near the Middle-Early Precambrian unconformity fringing the Lake Superior basin, and disseminations in diabase, granitic rocks, alkalic complexes and breccias scattered throughout northern Ontario make up the rest of the occurrences

  20. Alkaline lixiviation of uranium in granitic pegmatite

    International Nuclear Information System (INIS)

    The work described herein concerns the determination of the experimental optimum conditions for the alkaline lixiviation of uranium based on the following parameters: time, pH, temperature, density and grane size. The samples were obtained from the Supamo complex, near the Currupia river in the Piar District of the Bolivar State in Venezuela. They have a granitic composition and graphitic texture. The uranium was found in them as a secondary oxidized mineral of green-yellow colour localized in fractures fissures, intergranular spaces and also in the mica as. Secondary uranitite. The lixiviation process was carried out using Na2CO3/NaHCO3 buffer solution and for 100 gr. samples the best values for an efficient process were found by using 170 mesh grane size and 500 ml of pH buffer at 700C for a 24 hour time period. (author)

  1. Plasma hydrogen reduction of uranium from depleted uranium hexafluoride

    International Nuclear Information System (INIS)

    Process scheme of plasma hydrogen reduction of waste by 235U uranium hexafluoride, preparation of metal uranium and anhydrous hydrogen fluoride is proposed. Results of the experimental investigations into the basic stages of this process scheme: production of the U - F - H-plasma, production and separation of uranium melt and anhydrous of hydrogen fluoride are treated. Level of plasma and high frequency technique for the realization of the plasma hydrogen process of conversion of waste UF6 for metal uranium and anhydrous HF was analyzed

  2. Recovery of uranium from the Syrian phosphate by solid-liquid method using alkaline solutions

    International Nuclear Information System (INIS)

    Uranium concentrations were analyzed in the Syrian phosphate deposits. Mean concentrations were found between 50 and 110 ppm. As a consequence, an average phosphate dressing of 22 kg/ha phosphate would charge the soil with 5-20 g/ha uranium when added as a mineral fertilizer. Fine grinding phosphate produced at the Syrian mines was used for uranium recovery by carbonate leaching. The formation of the soluble uranyl tricarbonate anion UO2(CO3)34- permits use of alkali solutions of sodium carbonate and sodium bicarbonate salts for the nearly selective dissolution of uranium from phosphate. Separation of iron, aluminum, titanium, etc., from the uranium during leaching was carried out. Formation of some small amounts of molybdates, vanadates, phosphates, aluminates, and some complexes metal was investigated. This process could be used before the manufacture of TSP fertilizer, and the final products would contain smaller uranium quantities. (author)

  3. Riddle of depleted uranium

    International Nuclear Information System (INIS)

    Depleted Uranium (DU) is the waste product of uranium enrichment from the manufacturing of fuel rods for nuclear reactors in nuclear power plants and nuclear power ships. DU may also results from the reprocessing of spent nuclear reactor fuel. Potentially DU has both chemical and radiological toxicity with two important targets organs being the kidney and the lungs. DU is made into a metal and, due to its availability, low price, high specific weight, density and melting point as well as its pyrophoricity; it has a wide range of civilian and military applications. Due to the use of DU over the recent years, there appeared in some press on health hazards that are alleged to be due to DU. In these paper properties, applications, potential environmental and health effects of DU are briefly reviewed

  4. Depleted uranium: Metabolic disruptor?

    International Nuclear Information System (INIS)

    The presence of uranium in the environment can lead to long-term contamination of the food chain and of water intended for human consumption and thus raises many questions about the scientific and societal consequences of this exposure on population health. Although the biological effects of chronic low-level exposure are poorly understood, results of various recent studies show that contamination by depleted uranium (DU) induces subtle but significant biological effects at the molecular level in organs including the brain, liver, kidneys and testicles. For the first time, it has been demonstrated that DU induces effects on several metabolic pathways, including those metabolizing vitamin D, cholesterol, steroid hormones, acetylcholine and xenobiotics. This evidence strongly suggests that DU might well interfere with many metabolic pathways. It might thus contribute, together with other man-made substances in the environment, to increased health risks in some regions. (authors)

  5. Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism

    International Nuclear Information System (INIS)

    In this paper, the biosorption mechanisms of uranium on an aerobic Bacillus sp. dwc-2, isolated from a potential disposal site for (ultra-) low uraniferous radioactive waste in Southwest China, was explored by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, FT-IR spectroscopy, proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). The biosorption experiments for uranium were carried out at a low pH (pH 3.0), where the uranium solution speciation is dominated by highly mobile uranyl ions. The bioaccumulation was found to be the potential mechanism involved in uranium biosorption by Bacillus sp. dwc-2, and the bioaccumulated uranium was deposited in the cell interior as needle shaped particles at pH 3.0, as revealed by TEM analysis as well as EDX spectra. FTIR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of bacterial cells. Additionally, PIXE and EPBS results confirmed that ion-exchange also contributed to the adsorption process of uranium. All the results implied that the biosorption mechanism of uranium on Bacillus sp. is complicated and at least involves bioaccumulation, ion exchange and complexation process. - Highlights: • We examined U (VI) biosorption by a bacterial strain isolated from Southwest China. • We studied the involved mechanisms between uranium and this bacterium. • U (VI) was intracellularly bioaccumulated as needlelike granules by this bacterium. • The biosorption mechanisms involved ion exchange, complexation and bioccumulation

  6. Recovery of uranium from lignites

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, F.J.

    1980-01-01

    Uranium in raw lignite is associated with the organic matter and is readily soluble in acid (and carbonate) solutions. However, beneficiation techniques were not successful for concentrating the uranium or removing part of the reagent-consuming materials. Once the lignite was heated, the uranium became much less soluble in both acid and carbonate solutions, and complete removal of carbon was required to convert it back to a soluble form. Proper burning improves acid-leaching efficiency; that is, it reduces the reagent consumption and concentrates the uranium, thereby reducing plant size for comparable uranium throughput, and it eliminates organic fouling of leach liquors. Restrictions are necessary during burning to prevent the uranium from becoming refractory. The most encouraging results were obtained by flash-burning lignite at 1200 to 1300/sup 0/C and utilizing the released SO/sub 2/ to supplement the acid requirement. The major acid consumers were aluminum and iron.

  7. National Uranium Resource Evaluation: Okanogan Quadrangle, Washington

    International Nuclear Information System (INIS)

    The Okanogan Quadrangle, Washington, was evaluated to identify and delineate areas containing environments favorable for the occurrence of uranium deposits using criteria developed for the National Uranium Resource Evaluation program. Reconnaissance and detailed surface studies were augmented by aerial radiometric surveys and hydrogeochemical and stream-sediment reconnaissance studies. The results of the investigations indicate six environments favorable for uranium deposits. They are unclassified, anatectic, allogenic, and contact-metasomatic deposits in Late Precambrian and (or) Early Paleozoic mantling metamorphic core-complex rocks of the Kettle gneiss dome; magmatic-hydrothermal deposits in the Gold Creek pluton, the Magee Creek pluton, the Wellington Peak pluton, and the Midnite Mine pluton, all located in the southeast quadrant of the quadrangle; magmatic-hydrothermal allogenic deposits in Late Paleozoic and (or) Early Mesozoic black shales in the Castle Mountain area; allogenic deposits in Early Paleozoic metasedimentary rocks in the Harvey Creek area and in Late Precambrian metasedimentary rocks in the Blue Mountain area; and sandstone deposits in Eocene sedimentary rocks possibly present in the Enterprise Valley. Seven geologic units are considered unfavorable for uranium deposits. They are all the remaining metamorphic core-complex rocks, Precambrian metasedimentary rocks,Tertiary sedimentary and volcanic rocks, and all Pleistocene and Recent deposits; and, excluding those rocks in the unevaluated areas, include all the remaining plutonic rocks, Paleozoic miogeoclinical rocks, and Upper Paleozoic and Mesozoic eugeosynclinal rocks. Three areas, the Cobey Creek-Frosty Creek area, the Oregon City Ridge-Wilmont Creek area, and the area underlain by the Middle Cambrian Metaline Formation and its stratigraphic equivalents may possibly be favorable but are unevaluated due to lack of data

  8. Radiochemistry of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Gindler, J.E.

    1962-03-01

    This volume which deals with the radiochemistry of uranium is one of a series of monographs on radiochemistry of the elements. There is included a review of the nuclear and chemical features of particular interest to the radiochemist, a discussion of problems of dissolution of a sample and counting technique, and finally, a collection of radiochemical procedures for the element as found in the literature.

  9. Uranium in Mongolia

    International Nuclear Information System (INIS)

    Full text: Mongolian electricity is produced from fossil fuels (about 98%, mainly coal). Rapid growth in demand has given rise to power shortages, and the reliance on fossil fuels has led to much air pollution. Mongolia does not have nuclear reactor and thus is not a beneficiary of nuclear technology. In April 2008 Russia and Mongolia signed a high-level agreement to cooperate in identifying and developing Mongolia's uranium resources. Russia is also examining the feasibility of building nuclear power plants in Mongolia In our government need to create the environment for investment in nuclear power, including professional regulatory regime, policies on nuclear waste management and decommissioning, and involvement with international non-proliferation and insurance arrangements. Some 46 million kilowatt-hours of electricity are produced from one tones of natural uranium. The production of this amount of electrical power from fossil fuels would require the burning of over 20 000 tonnes of black coal or 8.5 million cubic meters of gas. Mongolia has a long history of uranium exploration commencing with joint Russian and Mongolian endeavors to 1957. Today the Canada-based Khan Resources owns a 69% share in the Dornod project through its subsidiary Central Asian Uranium Co. Ltd and Russia's Priargunsky Mining and Chemical Enterprise owns a further share. In 2007 Khan published NI 43-101 compliant indicated resource figure of 25 000 tU for the project, including probable reserves of 7 000 tU. A bankable feasibility study is now being undertaken, with capital cost estimate being US$283 million and first production in 2011. Khan has applied for a mining licence from the Mineral Resources and Petroleum Authority of Mongolia (MRPAM). (author)

  10. Uranium in western Europe

    International Nuclear Information System (INIS)

    Uranium has been in use in Europe since the Middle Ages, and working of uraniferous minerals on an industrial scale for the production of radium began in Portugal and Czechoslovakai in 1904. Mining began soon after World War II for the production of fissile material. Western Europe's uranium resources represent about a tenth of the world's resources, of 486 950 tonnes recoverable at $130 per kg or less. Production in 1978 was 2 513 tonnes of uranium. The principal producing countries were the Federal Republic of Germany, Spain, France, and Portugal. Uraniferous vein deposits occur in the Moldanubian granites, the Iberian Meseta, the Armorican massif, the Massif Central, and the Black Forest. Deposits associated with sedimentary rocks occur in the Cambrian shales of Ranstad, the Permian lutites and silts of Lodeve, and in grits and sandstones elsewhere. Volcanic deposits are present in Alpine areas. The current rate of exploration must be maintained if the energy needs of Europe predicted for the year 2000 are to be met. (L.L.)

  11. Uranium in situ leaching

    International Nuclear Information System (INIS)

    Despite the depressed situation that has affected the uranium industry during the past years, the second Technical Committee Meeting on Uranium In Situ Leaching, organized by the International Atomic Energy Agency and held in Vienna from 5 to 8 October 1992, has attracted a relatively large number of participants. A notable development since the first meeting was that the majority of the contributions came from the actual operators of in situ leaching uranium production. At the present meeting, presentations on operations in the USA were balanced by those of the eastern European and Asian countries. Contributions from Bulgaria, China, Czechoslovakia, Germany (from the operation in the former German Democratic Republic), the Russian Federation and Uzbekistan represent new information not commonly available. In situ leach mining is defined in one of the paper presented as a ''mining method where the ore mineral is preferentially leached from the host rock in place, or in situ, by the use of leach solutions, and the mineral value is recovered. Refs, figs and tabs

  12. COGEMA's UMF [Uranium Management Facility

    International Nuclear Information System (INIS)

    The French government-owned corporation, COGEMA, is responsible for the nuclear fuel cycle. This paper describes the activities at COGEMA's Pierrelatte facility, especially its Uranium Management Facility. UF6 handling and storage is described for natural, enriched, depleted, and reprocessed uranium. UF6 quality control specifications, sampling, and analysis (halocarbon and volatile fluorides, isotopic analysis, uranium assay, and impurities) are described. In addition, the paper discusses the filling and cleaning of containers and security at UMF

  13. Uranium Critical Point Location Problem

    CERN Document Server

    Iosilevskiy, Igor

    2013-01-01

    Significant uncertainty of our present knowledge for uranium critical point parameters is under consideration. Present paper is devoted to comparative analysis of possible resolutions for the problem of uranium critical point location, as well as to discussion of plausible scheme of decisive experiment, which could resolve existing uncertainty. New calculations of gas-liquid coexistence in uranium by modern thermodynamic code are included in the analysis.

  14. Uranium-Based Cermet Alloys

    International Nuclear Information System (INIS)

    The paper describes certain features of dispersion-hardened uranium-based cermets. As possible hardening materials, consideration was given to UO2, UC, Al2O3, MgO and UBe13. Data were obtained on the behaviour of uranium alloys containing the above-mentioned admixtures during creep tests, short-term strength tests and cyclic thermal treatment. The corrosion resistance o f UBe13-based uranium alloys was also studied. )author)

  15. Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide

    Science.gov (United States)

    Goyal, Anuj; Phillpot, Simon R.; Subramanian, Gopinath; Andersson, David A.; Stanek, Chris R.; Uberuaga, Blas P.

    2015-03-01

    We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect to the minimum is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 800-1800 K for both vacancy types. Homogeneous strains as small as 2 % have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results suggest that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate.

  16. Translocation of uranium from water to foodstuff while cooking

    Energy Technology Data Exchange (ETDEWEB)

    Krishnapriya, K.C.; Baksi, Ananya; Chaudhari, Swathi; Gupta, Soujit Sen; Pradeep, T.

    2015-10-30

    Highlights: • Rice can efficiently uptake uranium from water contaminated with uranyl nitrate hexahydrate (UO{sub 2}(NO{sub 3}) 2.6 H{sub 2}O), while cooking. • Unusual uranium uptake to the extent of about 1000 ppm is observed when rice is cooked in highly concentrated uranium contaminated water (1240 ppm). • Nature of interaction of uranium with carbohydrates is probed using small monosaccharides like glucose and mannose. • Electrospray ionization mass spectrometry showed UO{sub 2}{sup 2+} to be the most stable species in water in such solutions which can form complexes with sugars. • The species (UO{sub 2}{sup 2+}) is also observed in the case of water exposed to the common mineral, uranium oxide (UO{sub 2}) and similar type of complexation is observed with sugars. - Abstract: The present work report the unusual uranium uptake by foodstuff, especially those rich in carbohydrates like rice when they are cooked in water, contaminated with uranium. The major staple diet in South Asia, rice, was chosen to study its interaction with UO{sub 2}{sup 2+}, the active uranium species in water, using inductively coupled plasma mass spectrometry. Highest uptake limit was checked by cooking rice at very high uranium concentration and it was found to be good scavenger of uranium. To gain insight into the mechanism of uptake, direct interaction of UO{sub 2}{sup 2+} with monosaccharides was also studied, using electrospray ionization mass spectrometry taking mannose as a model. The studies have been done with dissolved uranium salt, uranyl nitrate hexahydrate (UO{sub 2}(NO{sub 3}){sub 2}·6H{sub 2}O), as well as the leachate of a stable oxide of uranium, UO{sub 2}(s), both of which exist as UO{sub 2}{sup 2+} in water. Among the eight different rice varieties investigated, Karnataka Ponni showed the maximum uranium uptake whereas unpolished Basmati rice showed the minimum. Interaction with other foodstuffs (potato, carrot, peas, kidney beans and lentils) with and

  17. Migration and fixation of Uranium in the surficial environment. Case histories and applications to geochemical exploration

    International Nuclear Information System (INIS)

    Uranium geochemistry is studied in three different test areas: surface waters, sediments, and isohumic soils. Using data from the WATEQ-type thermodynamic model the state of uranium in sampled waters is examined. Uranium is present in the oxidized state U6, as uranyl ion UO2++, complexed by the HPO4-- ion and CO3 ion. Estimated residual uranium values, have shown the very probable existence of a non mineral support for uranium in solution, probably uranyl-fulvates. Uranium in stream-sediments is preferentially located in the fine-grained fractions. The bearing phases of the geochemical uranium, identified in the fine-grained fractions, are mainly composed by amorphous or cryptocrystallized iron oxi-hydroxide, and accessorily by fulvic (and humic) acids. Ferric phases support 60 to 75% of the total uranium. In the isohumic soils, the uranium mobility depends on the existence of highly reactive and poorly evoluted organic compounds, and amorphous or cryptocristallised ferric phases located in the first centimeters of the upper horizon. The recognition of the factors governing uranium behavior in the superficial media requires the preliminary definition of the uranium expression in waters, and that of its bearing phases in soils and stream-sediments. High uranium content in waters are not significant if related to high HCO3- and/or PO43- content, and doubtlessly to high dissolved organic carbon content. The interest of residual uranium mapping in stream-sediment geochemistry is underlined. Data are computed by difference between natural value and the corresponding estimated value, calculated by regression taking in account the adsorbant phases content of each sample

  18. The Toxicity of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Wayne Briner

    2010-01-01

    Full Text Available Depleted uranium (DU is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.

  19. Uranium exploration in Ethiopia

    International Nuclear Information System (INIS)

    Full text: Radioactive exploration dates back to 1955 and since then little progress has been made. Few pits and trenches in some places show radioactive anomalies.The Wadera radioactive anomaly occurs within the lower part of Wadera series, Southern Ethiopia. As observed from a trench the anomalous bed has a thickness of 0.9-1.2 m and is made of reddish-grey thin bedded sandstones.The presence of Xenotime in arkosic sandstone points to the sedimentary origin of mineralization. It was noticed that the sandstone in the lower part of Wadera series has at places a radioactivity 2-3 times higher than adjacent gneisses. The presence of a placer of such a type in the Wadera series is probably a clue for the existence of larger deposits in the area. In 2007 geological, geochemical and geophysical surveys were conducted to identify and delineate Uranium mineralization in three localities(Kuro, Kalido and Gueti) of Werri area, southern Ethiopia. Kaolinization, silicification, epidotization and chloritization are the main types of alteration associated with different units in the area. Uranium-bearing grains which are hosted in pegmatite veins and associated with magnetite/or ilmenite were observed in the three localities. Geochemical exploration accompanied by geological mapping and radiometric survey was done by employing heavy mineral concentrate, soil, chip and trench channel sampling. Radiometric readings of total count, U,Th and K were taken using GAD-6.Soil and trench geochemical samples of the localities analyzed by ICP-MS have shown 0.1 to 3.8 ppm and 3.9 to 147 ppm Uranium and 3.5 to 104.7 ppm and 3.9 to 147ppm Thorium respectively. Radiometric reading is higher in pegmatite veins that host Uranium-bearing minerals and some course grained pegmatoidal granite varieties. The areas recognized for Uranium associations need further investigations using state-of-the-art to discover economic deposits for development and utilization of the resource. (author)

  20. METHOD FOR RECOVERING URANIUM FROM OILS

    Science.gov (United States)

    Gooch, L.H.

    1959-07-14

    A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.

  1. Topical and working papers on uranium resources and availability

    International Nuclear Information System (INIS)

    Basic topics relative to world-wide resources and availability of uranium resources; potential for recovery of uranium from mill tailings in Canada; uranium from seawater; depleted uranium as an energy source; world uranium requirements in perspective

  2. Evolution of uranium and thorium minerals

    Science.gov (United States)

    Hazen, R. M.; Ewing, R. C.; Sverjensky, D. A.

    2009-12-01

    The origins and near-surface distributions of the approximately 250 known uranium and/or thorium minerals elucidate principles of mineral evolution. This history can be divided into four phases. The first, from ~4.5 to 3.5 Ga, involved successive concentrations of uranium and thorium from their initial uniform trace distribution into magmatic-related fluids from which the first U4+ and Th4+ minerals, uraninite (UO2), thorianite (ThO2) and coffinite (USiO4), precipitated in the crust. The second period, from ~3.5 to 2.2 Ga, saw the formation of large low-grade concentrations of detrital uraninite (containing several weight percent Th) in the Witwatersrand-type quartz-pebble conglomerates deposited in a highly anoxic fluvial environment. Abiotic alteration of uraninite and coffinite, including radiolysis and auto-oxidation caused by radioactive decay and the formation of helium from alpha particles, may have resulted in the formation of a limited suite of uranyl oxide-hydroxides. Earth’s third phase of uranium mineral evolution, during which most known U minerals first precipitated from reactions of soluble uranyl (U6+O2)2+ complexes, followed the Great Oxidation Event (GOE) at ~2.2 Ga and thus was mediated indirectly by biologic activity. Most uraninite deposited during this phase was low in Th and precipitated from saline and oxidizing hydrothermal solutions (100 to 300°C) transporting (UO2)2+-chloride complexes. Examples include the unconformity- and vein-type U deposits (Australia and Canada) and the unique Oklo natural nuclear reactors in Gabon. The onset of hydrothermal transport of (UO2)2+ complexes in the upper crust may reflect the availability of CaSO4-bearing evaporites after the GOE. During this phase, most uranyl minerals would have been able to form in the O2-bearing near-surface environment for the first time through weathering processes. The fourth phase of uranium mineralization began approximately 400 million years ago, as the rise of land plants

  3. A Uranium Bioremediation Reactive Transport Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin

    2015-06-01

    A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introduces acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.

  4. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    International Nuclear Information System (INIS)

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl4) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO2) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl4-UO2 shows a reaction to form uranium oxychloride (UOCl2) that has a good solubility in molten UCl4. This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl4, ZrCl4, SiCl4, ThCl4) by reaction of oxides with chlorine (Cl2) and carbon has application to the preparation of UCl4

  5. Uranium Stewardship - The unifying foundation

    International Nuclear Information System (INIS)

    Full text: Uranium Stewardship is a WNA programme of action seeking to define, and achieve worldwide industry adherence to, principles and practices designed to ensure that uranium and its by-products are managed in ways that are safe, environmentally responsible, and economically and socially acceptable. Through this programme WNA will engage all industry sectors involved with the uranium life cycle, as well as relevant stakeholders, with the objective of first encouraging best practice, then sustaining an ongoing industry effort to continually improve it. In pursuing this objective WNA has identified key Principles of Uranium Stewardship and will aim to obtain, from all relevant enterprises, formal commitment to a Code of Practice that translates these principles into worldwide industry performance. The WNA sets forth these Principles of Uranium Stewardship as the basis for a Code of Practice, to which relevant enterprises are invited to commit and adhere: 1. Support the safe and peaceful use of nuclear technology. 2. Act responsibly in all areas we manage and control. 3. Operate ethically with sound corporate governance. 4. Uphold and respect fundamental human rights. 5. Contribute to the social and economic development of regions where we operate. 6. Provide for responsible sourcing, use and disposition of uranium and its by-products. 7. Support best practice and responsible behaviour throughout the nuclear fuel cycle. 8. Improve continually in all areas of our performance. 9. Communicate regularly on progress. 10. Review and update. The Australian Uranium Association's Uranium Stewardship Principles reflect and are consistent with the global principles being developed under the auspices of the World Nuclear Association. The Association's Principles are additional to the broader Australian minerals industry's commitment to sustainable development as outlined in the Minerals Council of Australia's Enduring Value; and to the Australian Uranium Association

  6. Challenges in the front end of the uranium fuel cycle

    International Nuclear Information System (INIS)

    back by, among other factors, technical complexities and infrastructure constraints. More recently, price volatility along with global financial turmoil have given rise to the shelving of projects or planned production being reduced. There are however signs that additional capacity is being developed. Many of the large uranium operations are adopting a broad view of today's uranium market and are continuing to advance expansions and new mining projects. This paper will look at factors influencing the uranium market over the last 60 years, and describe how those factors have affected the evolution of uranium production

  7. Contribution to the study of uranium migration and some trace elements in solution from Pocos de Caldas uranium mining

    International Nuclear Information System (INIS)

    It was studied the chemical composition of ground water from four boreholes as a contribution to the hydrogeochemical studies in the Pocos de Caldas uranium mining. Methods for water analyses were selected and optimized in order to determine the main anions, specially the ones which form stable complexes with uranium ions. Fluoride and chloride were determined by potentiometry; phosphate, nitrate and silicate by spectrophotometry. Cations were determined by atomic absorption spectrophotometry flame emission and argon plasma emission excited by continuous current arch (DCP). Uranium was determined by fluorimetry with a concentration range from 3 to 7 ppb and its distribution calculated among the different species into solution through the measures of pH, Eh, anion amounts and stability of their respective complexes. (author)

  8. Meeting of the French geological society - Uranium: geology, geophysics, chemistry. Book of abstracts; Reunion de la Societe Geologique de France - Uranium: geologie, geophysique, chimie. Recueil des resumes

    Energy Technology Data Exchange (ETDEWEB)

    Zakari, A.A.; Mima, S.; Bidaud, A.; Criqui, P.; Menanteau, P.; David, S.; Pagel, M.; Chagnes, A.; Cote, G.; Courtaud, B.; Thiry, J.; Miehe, J.M.; Gilbert, F.; Cuney, M.; Bruneton, P.; Ewington, D.; Vautrin-Ul, C.; Cannizzo, C.; Betelu, S.; Chausse, A.; Ly, J.; Bourgeois, D.; Maynadie, J.; Meyer, D.; Clavier, N.; Costin, D.T.; Cretaz, F.; Szenknect, S.; Ravaux, J.; Poinssot, C.; Dacheux, N.; Durupt, N.; Blanvillain, J.J.; Geffroy, F.; Aparicio, B.; Dubessy, J.; Nguyen-Trung, C.; Robert, P.; Uri, F.; Beaufort, D.; Lescuyer, J.L.; Morichon, E.; Allard, T.; Milesi, J.P.; Richard, A.; Rozsypal, C.; Mercadier, J.; Banks, D.A.; Boiron, M.C.; Cathelineau, M.; Dardel, J.; Billon, S.; Patrier, P.; Wattinne, A.; Vanderhaeghe, O.; Fabre, C.; Castillo, M.; Salvi, S.; Beziat, D.; Williams-Jones, A.E.; Trap, P.; Durand, C.; Goncalves, P.; Marquer, D.; Feybesse, J.L.; Richard, Y.; Orberger, B.; Hofmann, A.; Megneng, M.; Orberger, B.; Bouttemy, M.; Vigneron, J.; Etcheberry, A.; Perdicakis, M.; Prignon, N.; Toe, W.; Andre-Mayer, A.S.; Eglinger, A.; Jordaan, T.; Hocquet, S.; Ledru, P.; Selezneva, V.; Vendryes, G.; Lach, P.; Cuney, M.; Mercadier, J.; Brouand, M.; Duran, C.; Seydoux-Guillaume, A.M.; Bingen, B.; Parseval, P. de; Guillaume, D.; Bosse, V.; Paquette, J.L.; Ingrin, J.; Montel, J.M.; Giot, R.; Maucotel, F.; Hubert, S.; Gautheron, C.; Tassan-Got, L.; Pagel, M.; Barbarand, J.; Cuney, M.; Lach, P.; Bonhoure, J.; Leisen, M.; Kister, P.; Salaun, A.; Villemant, B.; Gerard, M.; Komorowski, J.C.; Michel, A.; Riegler, T.; Tartese, R.; Boulvais, P.; Poujols, M.; Gloaguen, E.; Mazzanti, M.; Mougel, V.; Nocton, G.; Biswas, B.; Pecaut, J.; Othmane, G.; Menguy, N.; Vercouter, T.; Morin, G.; Galoisy, L.; Calas, G.; Fayek, M.

    2010-11-15

    This document brings together the abstracts of the 39 presentations given at this meeting days on uranium, organized by the French geological society, and dealing with: 1 - Prospective study of the electronuclear technological transition; 2 - The front-end of the nuclear cycle: from the molecule to the process; 3 - Geophysics: recent changes; 4 - Use of well logging in uranium exploration; 5 - Genetical classification of thorium deposits; 6 - Genetical nomenclature of uranium sources; 7 - Uranium deposits linked to a Proterozoic discordance - retrospective; 8 - The use of spectral analysis techniques in uranium exploration: real-time mapping of clay alteration features; 9 - Development of functionalized silk-screened carbon electrodes for the analysis of uranium trace amounts; 10 - Study of the actinides solvation sphere in organic environment; 11 - Thermodynamic of uraniferous phases of interest for the nuclear cycle; 12 - Heap leaching of marginal minerals at Somair: from lab studies to the production of 700 t of uranium/year; 13 - Agglomeration phenomenology and role of iron in uranium heap leaching; 14 - Chloride uranyl complexes up to 300 deg. C along the saturation vapour curve: Raman spectroscopy analysis and metallogenic consequences; 15 - Weathering systems in the Shea Creek deposit (Athabasca, Canada): vertical variability of argillaceous weathering; 16 - Weathering systems in the Shea Creek deposit (Athabasca, Canada): contribution of irradiation defects in clays to the tracing of past uranium migrations; 17 - Uranium concentrations in mineralizing fluids of the Athabasca basin: analytical and experimental approach; 18 - Paleo-surfaces and metallic rooting: the autochthonous uranium of pre-Athabasca paleo-alterites, Canada; 19 - Distribution of argillaceous parageneses in the Imouraren deposit - Niger; 20 - Heat flux and radioelements concentration (U, Th, K) of precambrian basements: implications in terms of crust growth mechanisms, paleo

  9. Validation of the WATEQ4 geochemical model for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite (UO/sub 2/(OH)/sub 2/ . H/sub 2/O), UO/sub 2/(OH)/sub 2/, and rutherfordine ((UO/sub 2/CO/sub 3/) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions.

  10. Uranium project DINAMIGE-BRGM

    International Nuclear Information System (INIS)

    This Uranium review was carried out in the frame work of Uranium prospecting programme between (DINAMIGE-BRGM) from February to June 1982. It was included radimetric cutting in sedimentaries and crystallines ground (gondwanic basin of the NE).The task was developed (1.300.000 scale) in Cunapiru, Carrillada, Vichadero, Minas de Corrales, Paso Mazangano and Yaguari zones.

  11. Fossile fuel and uranium resources

    International Nuclear Information System (INIS)

    The world's resources of coal, lignite, oil, natural gas, shale oil and uranium are reviewed. These quantities depend on the prices which make new resources exploitable. Uranium resources are given exclusively for the USSR, Eastern Europe and China. Their value in terms of energy depends heavily on the reactor type used. All figures given are estimated to be conservative

  12. SOLVENT EXTRACTION OF URANIUM VALUES

    Science.gov (United States)

    Feder, H.M.; Ader, M.; Ross, L.E.

    1959-02-01

    A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.

  13. Recrystallization of pressed technical uranium

    International Nuclear Information System (INIS)

    The objective of this task was to study changes originating from heat treatment of uranium by metallographic methods and by measuring the hardness. Correlation of previously determined textures with the present study would improve the knowledge on the recrystallization process of pressed uranium

  14. Advanced uranium enrichment processes

    International Nuclear Information System (INIS)

    Three advanced Uranium enrichment processes are dealt with in the report: AVLIS (Atomic Vapour LASER Isotope Separation), MLIS (Molecular LASER Isotope Separation) and PSP (Plasma Separation Process). The description of the physical and technical features of the processes constitutes a major part of the report. If further presents comparisons with existing industrially used enrichment technologies, gives information on actual development programmes and budgets and ends with a chapter on perspectives and conclusions. An extensive bibliography of the relevant open literature is added to the different subjects discussed. The report was drawn up by the nuclear research Centre (CEA) Saclay on behalf of the Commission of the European Communities

  15. Uranium in soils and water; Uran in Boden und Wasser

    Energy Technology Data Exchange (ETDEWEB)

    Dienemann, Claudia; Utermann, Jens

    2012-07-15

    The report of the Umweltbundesamt (Federal Environmental Agency) on uranium in soils and water covers the following chapters: (1) Introduction. (2) Deposits and properties: Use of uranium; toxic effects on human beings, uranium in ground water and drinking water, uranium in surface waters, uranium in soils, uranium in the air. (3) Legal regulations. (4) Uranium deposits, uranium mining, polluted area recultivation. (5) Diffuse uranium entry in soils and water: uranium insertion due to fertilizers, uranium insertion due to atmospheric precipitation, uranium insertion from the air. (6) Diffuse uranium release from soils and transfer in to the food chain. (7) Conclusions and recommendations.

  16. Kinetic study of nitric dissolution of uranium oxide

    International Nuclear Information System (INIS)

    The kinetic study of uranium oxide dissolution efficiency was determined at the following temperatures: 20, 40, 60 and 80 C. The rate constant and activation energy could not be calculated by logarithmic and integral methods. This shows the complexity of the reaction mechanism of dissolution

  17. Uranium-Series Constraints on Subrepository Water Flow at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    L.A. Neymark; J.B. Paces; S.J. Chipera; D.T. Vaniman

    2006-03-10

    Mineral abundances and whole-rock chemical and uranium-series isotopic compositions were measured in unfractured and rubble core samples from borehole USWSD-9 in the same layers of variably zeolitized tuffs that underlie the proposed nuclear waste repository at Yucca Mountain, Nevada. Uranium concentrations and isotopic compositions also were measured in pore water from core samples from the same rock units and rock leachates representing loosely bound U adsorbed on mineral surfaces or contained in readily soluble secondary minerals. The chemical and isotopic data were used to evaluate differences in water-rock interaction between fractured and unfractured rock and between fracture surfaces and rock matrix. Samples of unfractured and rubble fragments (about 1 centimeter) core and material from fracture surfaces show similar amounts of uranium-series disequilibrium, recording a complex history of sorption and loss of uranium over the past 1 million years. The data indicate that fractures in zeolitized tuffs may not have had greater amounts of water-rock interaction than the rock matrix. The data also show that rock matrix from subrepository units is capable of scavenging uranium with elevated uranium-234/uranium-238 from percolating water and that retardation of radionuclides and dose reduction may be greater than currently credited to this aspect of the natural barrier. Uranium concentrations of pore water and the rock leachates are used to estimate long-term in situ uranium partition coefficient values greater than 7 milliliters per gram.

  18. Influence of attrition scrubbing, ultrasonic treatment, and oxidant additions on uranium removal from contaminated soils

    International Nuclear Information System (INIS)

    As part of the Uranium in Soils Integrated Demonstration Project being conducted by the US Department of Energy, bench-scale investigations of selective leaching of uranium from soils at the Fernald Environmental Management Project site in Ohio were conducted at Oak Ridge National Laboratory. Two soils (storage pad soil and incinerator soil), representing the major contaminant sources at the site, were extracted using carbonate- and citric acid-based lixiviants. Physical and chemical processes were used in combination with the two extractants to increase the rate of uranium release from these soils. Attrition scrubbing and ultrasonic dispersion were the two physical processes utilized. Potassium permanganate was used as an oxidizing agent to transform tetravalent uranium to the hexavalent state. Hexavalent uranium is easily complexed in solution by the carbonate radical. Attrition scrubbing increased the rate of uranium release from both soils when compared with rotary shaking. At equivalent extraction times and solids loadings, however, attrition scrubbing proved effective only on the incinerator soil. Ultrasonic treatments on the incinerator soil removed 71% of the uranium contamination in a single extraction. Multiple extractions of the same sample removed up to 90% of the uranium. Additions of potassium permanganate to the carbonate extractant resulted in significant changes in the extractability of uranium from the incinerator soil but had no effect on the storage pad soil

  19. Uranium resources in South Africa: a review of geology and economics

    International Nuclear Information System (INIS)

    South African uranium resources are hosted dominantly by quartz-pebble conglomerates with associated gold mineralisation, with the rest being found in sandstones and coal in the Karoo Supergroup. South Africa's known uranium resources, as at 1 January 1993, stands at 297 900 tonnes U, but in terms of economic viability in the current market situation they are substantially lower. Uranium production in South Africa is at present inextricably linked to the gold mining industry, which is in a parlous state, with many mines facing closure if a sustained rise in the gold price does not come about in the near future. Gold production is falling steadily because of the state of the gold market, and uranium is an inevitable casualty. The dependence of the uranium industry on the unpredictable and volatile gold market is unsatisfactory, and alternative sources of uranium are being sought. Attention has been focussed on the Karoo Supergroup which is the only other potentially viable source of uranium outside the Witwatersrand Basin. Factors which were re-examined are the influence of stratigraphy, source areas, tectonics and volcanism on the distribution of uranium. Uranium mineralisation in the Namaqualand Metamorphic Complex, which has associated monazite ores, is briefly mentioned. (author). 16 refs., 4 tabs., 4 figs

  20. Uranium(VI) speciation: modelling, uncertainty and relevance to bioavailability models. Application to uranium uptake by the gills of a freshwater bivalve; Speciation de l'uranium(6), modelisation, incertitude et implication pour les modeles de biodisponibilite. Application a l'accumulation dans les branchies d'un bivalve d'eau douce

    Energy Technology Data Exchange (ETDEWEB)

    Denison, F.H

    2004-07-01

    The effects of varying solution composition on the interactions between uranium(VI) and excised gills of the freshwater bivalve Corbicula fluminea have been investigated in well defined solution media. A significant reduction in the uptake of uranium was observed on increasing the concentrations of the uranium complexing ligands citrate and carbonate. Saturation kinetics as a function of uranium concentration at a pH value of 5.0 were observed, indicating that the uptake of uranium is a facilitated process, probably involving one or several trans-membrane transport systems. A relatively small change in the uptake of uranium was found as a function of pH (factor of ca. 2), despite the extremely large changes to the solution speciation of uranium within the range of pH investigated (5.0 - 7.5). A comprehensive review of the thermodynamic data relevant to the solution composition domain employed for this study was performed. Estimates of the uncertainties for the formation constants of aqueous uranium(VI) species were integrated into a thermodynamic database. A computer program was written to predict the equilibrium distribution of uranium(VI) in simple aqueous systems, using thermodynamic parameter mean-values. The program was extended to perform Monte Carlo and Quasi Monte Carlo uncertainty analyses, incorporating the thermodynamic database uncertainty estimates, to quantitatively predict the uncertainties inherent in predicting the solution speciation of uranium. The use of thermodynamic equilibrium modelling as a tool for interpreting the bioavailability of uranium(VI) was investigated. Observed uranium(VI) uptake behaviour was interpreted as a function of the predicted changes to the solution speciation of uranium. Different steady-state or pre-equilibrium approaches to modelling uranium uptake were tested. Alternative modelling approaches were also tested, considering the potential changes to membrane transport system activity or sorption characteristics on

  1. Uranium association with halophilic and non-halophilic bacteria and archaea

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.J.; Gillow, J.B.; Dodge, C.J. [Brookhaven National Lab., Upton, NY (United States); Harris, R.; Beveridge, T.J. [Univ. of Guelph, ON (Canada); Papenguth, H.W. [Sandia National Labs., Albuquerque, NM (United States)

    2004-07-01

    We determined the association of uranium with bacteria isolated from the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico, and compared this with known strains of halophilic and non-halophilic bacteria and archaea. Examination of the cultures by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) showed uranium accumulation extracellularly and/or intracellularly to a varying degree. In Pseudomonas fluorescens and Bacillus subtilis uranium was associated with the cell surface and in the latter it was present as irregularly shaped grains. In Halobacterium halobium, the only archeon studied here, uranium was present as dense deposits and with Haloanaerobium praevalens as spikey deposits. Halomonas sp. isolated from the WIPP site accumulated uranium both extracellularly on the cell surface and intracellularly as electron-dense discrete granules. Extended X-ray absorption fine structure (EXAFS) analysis of uranium with the halophilic and non-halophilic bacteria and archaea showed that the uranium present in whole cells was bonded to an average of 2.4 {+-} 0.7 phosphoryl groups at a distance of 3.65 {+-} 0.03 Aa. Comparison of whole cells of Halomonas sp. with the cell wall fragments of lysed cells showed the presence of a uranium bidentate complex at 2.91 {+-} 0.03 Aa with the carboxylate group on the cell wall, and uranyl hydroxide with U-U interaction at 3.71 {+-} 0.03 Aa due to adsorption or precipitation reactions; no U-P interaction was observed. Addition of uranium to the cell lysate of Halomonas sp. resulted in the precipitation of uranium due to the inorganic phosphate produced by the cells. These results show that the phosphates released from bacteria bind a significant amount of uranium. However, the bacterially immobilized uranium was readily solubilized by bicarbonate with concurrent release of phosphate into solution. (orig.)

  2. Synthesis of Uranium nitride powders using metal uranium powders

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N{sup 15} gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work.

  3. Uranium distribution in Brazilian granitic rocks. Identification of uranium provinces

    International Nuclear Information System (INIS)

    The research characterized and described uranium enriched granitoids in Brazil. They occur in a variety of tectonic environments and are represented by a variety granite types of distinct ages. It may be deduced that in general they have been generated by partial melting process of continental crust. However, some of them, those with tonality composition, indicate a contribution from mantle derived materials, thus suggesting primary uranium enrichment from the upper mantle. Through this study, the identification and characterization of uranium enriched granite or uranium provinces in Brazil can be made. This may also help identify areas with potential for uranium mineralization although it has been note that uranium mineralization in Brazil are not related to the uranium enrichment process. In general the U-anomalous granitoids are composed of granites with alkaline composition and granite ''sensu strictu'' which comprise mainly of syenites, quartz-syenites and biotite-hornblende granites, with ages between 1,800 - 1,300 M.a. The U-anomalous belongings to this period present high Sr initial ratios values, above 0.706, and high Rb contents. Most of the U-enriched granitoids occur within ancient cratonic areas, or within Early to Mid-Proterozoic mobile belts, but after their cratonization. Generally, these granitoids are related to the border zones of the mobile belts or deep crustal discontinuity. Refs, 12 figs, 3 tabs

  4. Uranium recovery from seawater

    International Nuclear Information System (INIS)

    The present publication describes the development work of a process to recover uranium from seawater and the proposition of a commercial demonstration plant. The essential components of this process are verified in the laboratory scale as well as in some field tests. A detailed engineering design for a model plant in a semi-technical scale to allow field tests in the marine environment is also presented. These field tests are expected to produce more realistic data on the technical and economical feasibility of the proposed technology. Production cost estimates based on state-of-the-art technology lie around 250 Dollar/1b U3O8. However, the effect of a corresponding uranium price increase on electricity costs are comparable to cost increases in coal operated power plants caused by the desulfurisation of coal. Further reductions of the production costs in the range below 150 Dollar/1b U3O8 seem possible through special research efforts in the area of sorber development and concept design. (orig.)

  5. Uranium in river water

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, M.R. (Univ. of Bristol (United Kingdom)); Edmond, J.M. (Massachusetts Inst. of Technology, Cambridge, MA (United States))

    1993-10-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains do not represent a significant source of U in river waters. In addition, the authors have determined dissolved U levels in forty rivers from around the world and coupled these data with previous measurements to obtain an estimate for the global flux of dissolved U to the oceans. The average concentration of U in river waters is 1.3 nmol/kg, but this value is biased by very high levels observed in the Ganges-Brahmaputra and Yellow rivers. When these river systems are excluded from the budget, the global average falls to 0.78 nmol/kg. The global riverine U flux lies in the range of 3-6 [times] 10[sup 7] mol/yr. The major uncertainty that restricts the accuracy of this estimate (and that of all other dissolved riverine fluxes) is the difficulty in obtaining representative samples from rivers which show large seasonal and annual variations in runoff and dissolved load.

  6. Uranium: inexhaustible energy source

    International Nuclear Information System (INIS)

    There exist two social worries in reference with the use of energy, to know, the first is the availability of energy resources for the near future, in terms that the main energy sources at the present, petroleum has a foreseeable limit, and the other, the possible negative effects that the use of fossil fuels, coal among them could have on the environment, the ecology and the life conditions for the human being in general. This two worries take us to consider the availability of uranium, as an alternate energy source for the future of the mankind, considering its lesser ecological impact, since it can be controlled. in this study, the results of several investigations concerning to the abundance, energetic content, extraction costs and the appropiate use of the uranium existing in the earth crust determining the period of time that this fuel can be used as energy source to satisfy the demand of a growing population of human beings on the eart, are re-examined. It is concluded that the utilization of this fuel in the so caled breeder reactors, could satisfy the energy demand for the whole humanity for a long period of time comparable to the life of the sunas a yellow star. (Author)

  7. Sedimentary rocks Uranium in Cerro Largo Province

    International Nuclear Information System (INIS)

    With the aim of the uranium minerals exploration has been carried out several studies by UTE technicians in Cerro Largo Province from 1968 to 1969. In uranium concentration has been found pyrite, phosphate, iron oxides and manganese in uranium. Furthermore in La Divisa Ore were studied concentration Uranium enrichment has been studied in La Divisa ore

  8. Investigations on uranium sorption on bentonite and montmorillonite, respectively, and uranium in environmental samples; Untersuchungen zur Uransorption an Bentonit bzw. Montmorillonit sowie von Uran in Umweltproben

    Energy Technology Data Exchange (ETDEWEB)

    Azeroual, Mohamed

    2010-09-22

    The geotechnical barrier is an important component of a geological repository and consists of compacted bentonite surrounding radioactive waste containers. Its most important functions are, to retard the radionuclide migration into the biosphere and to prevent groundwater contact with containers. lt is therefore of central importance to investigate the bentonite material on its capacity to sorb radionuclides under near-natural chemical and physical conditions. The purpose of this work was to study the adsorption of uranium(VI) on bentonit and on montmorillonite-standards at high uranium concentrations. Thereby, a special account was given to the calcium-uranyl-carbonate complexation, which leads to the formation of very stable and mobile uncharged Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} complex. Results of batch experiments showed that the dicalcium-uranyl-tricarbonate complexation lowers the uranium(VI) sorption on natural clay (bentonite) by a factor of up to 3. After 21 days of contact time, about 40 % and 20 % of the initial uranium(VI)concentration were sorbed on Na-bentonite and ea-bentonite, respectively, from a solution with Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} dominating the uranium(VI) speciation. On the contrary, about 55 % of the initial uranium(VI)-concentration were sorbed on thes clays from the solution, in which (UO{sub 2}){sub 2}CO{sub 3}(OH){sub 3}{sup -} complex dominated the uranium(VI) speciation. Thus uranium(VI) sorption is more strongly influenced by the solution composition than by bentonite type. Na-bentonite should be used instead of ea-bentonite as a geotechnical barrier, since calcium-uranyl-carbonate complexation may be a realistic scenario. Further SEM-EDX and HREM-EDX studies showed that uranium(VI) sorption occurred predominantly on montmorillonite, which is the main component of bentonite. Uranium(VI) sorption on bentonite's accessory Minerals (pyrite, calcite, mica, and feldspar) was not observed. Investigation of uranium

  9. Polynuclear compounds of uranium: structure, reactivity and properties

    International Nuclear Information System (INIS)

    The study and comprehension of actinide's fundamental chemistry have important implications both for the development of new nuclear fuel and for the nuclear fuel reprocessing. One of the major issues in these processes is the ease of uranium to undergo redox reactions and to form polynuclear assemblies, which largely perturb these processes. However, despite their relevance, only few synthetic routes towards polynuclear uranium assemblies are described in the literature, and most of the polynuclear complexes reported are formed by serendipity rather than by rational design. Moreover, polynuclear uranium compounds are highly promising for the design of magnetic materials with improved properties and for reactivity studies. The aim of this work is the synthesis of polynuclear uranium complexes and the study of their reactivity and coordination properties. New synthetic routes to uranium polynuclear assemblies were developed and the study of their physico-chemical properties was carried out. The first approach investigated was based on pentavalent uranyl chemistry. Uranyl(V) is known to form aggregates via an interaction between uranyl moieties often named cation-cation interaction, but the isolation of uranyl(V) complexes had been largely limited by its ease of disproportionation. We isolated the first stable uranyl(V) polynuclear assembly using Salen-type Schiff base ligand. Based on this result, a fine tuning of the ligand and counter-ion properties resulted in the isolation of a large family of uranyl(V) polynuclear assemblies and in a better understanding of the parameters ruling their stability. Moreover, rare examples of clear antiferromagnetic couplings were observed with these complexes. In addition, this synthetic path was used to build the first 5f-3d cluster presenting single molecule magnet properties. The second approach used in this thesis consisted in the synthesis of oxo/hydroxo uranium clusters. The controlled hydrolysis of trivalent uranium in

  10. Paragenesis and Geochronology of the Nopal I Uranium Deposit, Mexico

    International Nuclear Information System (INIS)

    Uranium deposits can, by analogy, provide important information on the long-term performance of radioactive waste forms and radioactive waste repositories. Their complex mineralogy and variable elemental and isotopic compositions can provide important information, provided that analyses are obtained on the scale of several micrometers. Here, we present a structural model of the Nopal I deposit as well as petrography at the nanoscale coupled with preliminary U-Th-Pb ages and O isotopic compositions of uranium-rich minerals obtained by Secondary Ion Mass Spectrometry (SIMS). This multi-technique approach promises to provide ''natural system'' data on the corrosion rate of uraninite, the natural analogue of spent nuclear fuel

  11. OXYGEN ISOTOPE FRACTION ATION IN URANIUM OXIDES

    Institute of Scientific and Technical Information of China (English)

    郑永飞

    1995-01-01

    Thermodynamic oxygen isotope factors for uranium oxides have been calculated by means of the modified increment method.The sequence of 18O-enrichment in the uranium oxides with respect to the common rock-forming minerals is predicted as follows:spineluranium blacks≤coffiniteuranium oxides and water and between the uranium oxides and the other minerals have been obtained for 0-1200℃.The theoretical results are applicable to the isotopic geothermometry of uranium ores when pairing with other gangue minerals in hydrothermal uranium deposits.

  12. Uranium accumulation by Pseudomonas sp. EPS-5028

    International Nuclear Information System (INIS)

    Pseudomonas sp. EPS-5028 was examined for the ability to accumulate uranium from solutions. The uptake of uranium by this microorganism is very rapid and is affected by pH but not by temperature, metabolic inhibitors, culture time and the presence of various cations and anions. The amount of uranium absorbed by the cells increased as the uranium concentration of the solution increased up to 55 mg uranium/g cell dry weight. Electron microscopy indicated that uranium accumulated intracellularly as needle-like fibrils. Uranium could be removed chemically from the cells, which could then be reused a a biosorbent. (orig.)

  13. Groundwater calculations for depleted uranium disposed of as uranium tetrafluoride (UF4)

    International Nuclear Information System (INIS)

    This report discusses calculations performed to estimate the impacts on groundwater from the long-term disposal of depleted uranium in the form of uranium tetrafluoride (UF4) in a trench, vault, and mined cavity. The calculations were done for a deep groundwater system, typical of conditions in the western United States. They were performed for two initial inventories of UF4: 500,000 and 630,000 metric tons. Disposal was in either 30- or 50-gal drums. All of the contaminant and radioactivity concentrations at the water table are predicted to be very low, even for a fairly mobile compound. In general, concentrations after 1,000 years at the water table would be about an order of magnitude greater for disposal in a deep mine than for disposal in a trench or vault. The largest activity concentration at the water table after 1,000 years would be derived from a failed mine that releases a fairly mobile and very soluble uranium complex; it would be about 8.6 x 10-6 pCi/L for 500,000 metric tons of UF4 disposed of in 30-gal drums. The smallest activity concentrations at the water table after 1,000 years would, in general, be derived from a failed trench (1.2 x 10-9 pCi/L), if the contaminant reached the water table as schoepite. Although all the activity concentrations at the water table after 1,000 years are predicted to be small, maximum activity concentrations could still be large, even after dilution. Maximum activity concentrations of uranium would exceed 900 pCi/L for a failed disposal facility if a very soluble and mobile uranium complex formed. If the solubility of the uranium compound was small (2.4 x 10-3 g/L), the resulting activity concentrations would be small, less than 2.5 pCi/L. The estimated time for these maximum concentrations would range from 65,000 to 2,000,000 years

  14. Study and Elimination of the Interference of Aluminium on the Voltammetric Determination of Uranium with Chloranilic Acid. Application to the Determination of Uranium in Waters and Geological Samples

    International Nuclear Information System (INIS)

    The interference of aluminium during the voltammetric determination of uranium with 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid) has been investigated. The presence of aluminium originates a voltammetric signal due to its chloranilic acid complex at the same potential range as the uranium analytical signal appears. The interference of aluminium can be overcome by addition of an appropriate amount of sodium fluoride as complexing reagent. The determination of uranium by adsorptive stripping voltammetry (AdSV) can be carried out at concentration levels as low as 1 μg/L in the presence of 100 μg/L aluminium after the addition of 100μL of 0.1 mol/L NaF. The method can be applied to the determination of uranium in aluminium-containing waters and geological samples containing high aluminium levels. (Author) 19 refs

  15. Reduction of uranium in disposal conditions of spent nuclear fuel

    International Nuclear Information System (INIS)

    This literature study is a summary of publications, in which the reduction of uranium by iron has been investigated in anaerobic groundwater conditions or in aqueous solution in general. The basics of the reduction phenomena and the oxidation states, complexes and solubilities of uranium and iron in groundwaters are discussed as an introduction to the subject, as well as, the Finnish disposal concept of spent nuclear fuel. The spent fuel itself mainly (∼96 %) consists of a sparingly soluble uranium(IV) dioxide, UO2(s), which is stable phase in the anticipated reducing disposal conditions. If spent fuel gets in contact with groundwater, oxidizing conditions might be induced by the radiolysis of water, or by the intrusion of oxidizing glacial melting water. Under these conditions, the oxidation and dissolution of uranium dioxide to more soluble U(VI) species could occur. This could lead to the mobilization of uranium and other components of spent fuel matrix including fission products and transuranium elements. The reduction of uranium back to oxidation state U(IV) can be considered as a favourable immobilization mechanism in a long-term, leading to precipitation due to the low solubility of U(IV) species. The cast iron insert of the disposal canister and its anaerobic corrosion products are the most important reductants under disposal conditions, but dissolved ferrous iron may also function as reductant. Other iron sources in the buffer or near-field rock, are also considered as possible reductants. The reduction of uranium is a very challenging phenomenon to investigate. The experimental studies need e.g. well-controlled anoxic conditions and measurements of oxidation states. Reduction and other simultaneous phenomena are difficult to distinghuish. The groundwater conditions (pH, Eh and ions) influence on the prevailing complexes of U and Fe and on forming corrosion products of iron and, thus they determine also the redox chemistry. The partial reduction of

  16. The Uranium Institute: the first ten years

    International Nuclear Information System (INIS)

    As noted in its Memorandum of Association, the Uranium Institute was founded: to promote the use of uranium for peaceful purposes; to conduct research into uranium requirements, uranium resources and uranium production; to consult for these purposes with governments and other bodies; and to provide a forum for the exchange of information on these matters. A brief account of Institute organisation and activities during the period 1975-1985 is given. (author)

  17. Governing uranium in the United Kingdom

    OpenAIRE

    Berkemeier, Molly; Bowen, Wyn Q.; Hobbs, Christopher; Moran, Matthew

    2014-01-01

    This country report is the first study of uranium governance in the United Kingdom. It explores the UK's approach to regulating natural uranium and provides a historical overview of uranium procurement and usage. The report documents British and Euratom nuclear legislation, regulation and implementation, including export/import and transportation regulations. This case study is part of the large 'Governing Uranium' project on uranium governance, led by DIIS, the Danish Institute for Internati...

  18. Biosorption isotherm for uranium recovery

    International Nuclear Information System (INIS)

    An analysis of the biological sorption of uranium on mycelia of Penicillium C-1 is provided. From an isotherm test, a rough estimate of the biomass, required for removal of uranium to a certain level can be attained. The process presents a new approach towards water pollution control and resource recovery. The biosorption method may find its greatest application in solutions of low uranium concentration (100 ppM to 300 ppM) such as in waste mine water or very lean leach solutions

  19. Uranium project GEO 2 attachment: cronostratigraphy aplied to Uranium research

    International Nuclear Information System (INIS)

    In the article, different sources of information about Uranium stratigraphy from Uruguay have been reviewed. Some results have been presented in Upper Cambrian period and Precambrian era, specially Devonian, Carboniferous and Silurian period

  20. Uranium chemistry in blood and aqueous media. Techniques of studies; Chimie de l`uranium en milieux aqueux et sanguin. Techniques d`etudes

    Energy Technology Data Exchange (ETDEWEB)

    Scapolan, St.

    1996-11-01

    The object of this report in a first step, is to understand the chemistry of uranium in aqueous phase by specifying the behavior of this element in function of several parameters such PH, concentration of present species, temperature, ionic force. In a second step, investigation techniques are reviewed: X rays diffraction, potentiometric titrations, polarography, spectrophotometry, NMR of {sup 13}C, {sup 31}P, {sup 17}O, capillary electrophoresis, laser detection. The third part brings elements to understand the uranium complexation in blood medium.

  1. Meeting of the French geological society - Uranium: geology, geophysics, chemistry. Book of abstracts

    International Nuclear Information System (INIS)

    This document brings together the abstracts of the 39 presentations given at this meeting days on uranium, organized by the French geological society, and dealing with: 1 - Prospective study of the electronuclear technological transition; 2 - The front-end of the nuclear cycle: from the molecule to the process; 3 - Geophysics: recent changes; 4 - Use of well logging in uranium exploration; 5 - Genetical classification of thorium deposits; 6 - Genetical nomenclature of uranium sources; 7 - Uranium deposits linked to a Proterozoic discordance - retrospective; 8 - The use of spectral analysis techniques in uranium exploration: real-time mapping of clay alteration features; 9 - Development of functionalized silk-screened carbon electrodes for the analysis of uranium trace amounts; 10 - Study of the actinides solvation sphere in organic environment; 11 - Thermodynamic of uraniferous phases of interest for the nuclear cycle; 12 - Heap leaching of marginal minerals at Somair: from lab studies to the production of 700 t of uranium/year; 13 - Agglomeration phenomenology and role of iron in uranium heap leaching; 14 - Chloride uranyl complexes up to 300 deg. C along the saturation vapour curve: Raman spectroscopy analysis and metallogenic consequences; 15 - Weathering systems in the Shea Creek deposit (Athabasca, Canada): vertical variability of argillaceous weathering; 16 - Weathering systems in the Shea Creek deposit (Athabasca, Canada): contribution of irradiation defects in clays to the tracing of past uranium migrations; 17 - Uranium concentrations in mineralizing fluids of the Athabasca basin: analytical and experimental approach; 18 - Paleo-surfaces and metallic rooting: the autochthonous uranium of pre-Athabasca paleo-alterites, Canada; 19 - Distribution of argillaceous parageneses in the Imouraren deposit - Niger; 20 - Heat flux and radioelements concentration (U, Th, K) of precambrian basements: implications in terms of crust growth mechanisms, paleo

  2. 2-Hydroxy-1-naphthaldehyde-P-hydroxybenzoichydrazone: A New Chromogenic Reagent for the Determination of Thorium(IV) and Uranium(VI)

    OpenAIRE

    V. S. Anasuya Devi; V. Krishna Reddy

    2013-01-01

    Simple, sensitive, selective, direct, derivative, and simultaneous spectrophotometric methods are developed for the determination of uranium and thorium individually and simultaneously. The methods are based on the reaction of 2-hydroxy-1-naphthaldehyde-p-hydroxybenzoichydrazone (HNAHBH) with thorium(IV) and uranium(VI). HNAHBH reacts with thorium and uranium at pH 6.0 forming stable yellow and reddish brown coloured complexes, respectively. [Th(IV)-HNAHBH] complex shows maximum absorbance at...

  3. Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms

    International Nuclear Information System (INIS)

    An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth

  4. Uranium plutonium oxide fuels

    International Nuclear Information System (INIS)

    Uranium plutonium oxide is the principal fuel material for liquid metal fast breeder reactors (LMFBR's) throughout the world. Development of this material has been a reasonably straightforward evolution from the UO2 used routinely in the light water reactor (LWR's); but, because of the lower neutron capture cross sections and much lower coolant pressures in the sodium cooled LMFBR's, the fuel is operated to much higher discharge exposures than that of a LWR. A typical LMFBR fuel assembly is shown. Depending on the required power output and the configuration of the reactor, some 70 to 400 such fuel assemblies are clustered to form the core. There is a wide variation in cross section and length of the assemblies where the increasing size reflects a chronological increase in plant size and power output as well as considerations of decreasing the net fuel cycle cost. Design and performance characteristics are described

  5. Uranium hexafluoride bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, S.L.

    1988-01-01

    This bibliography is a compilation of reports written about the transportation, handling, safety, and processing of uranium hexafluoride. An on-line literature search was executed using the DOE Energy files and the Nuclear Science Abstracts file to identify pertinent reports. The DOE Energy files contain unclassified information that is processed at the Office of Scientific and Technical Information of the US Department of Energy. The reports selected from these files were published between 1974 and 1983. Nuclear Science Abstracts contains unclassified international nuclear science and technology literature published from 1948 to 1976. In addition, scientific and technical reports published by the US Atomic Energy Commission and the US Energy Research and Development Administration, as well as those published by other agencies, universities, and industrial and research organizations, are included in the Nuclear Science Abstracts file. An alphabetical listing of the acronyms used to denote the corporate sponsors follows the bibliography.

  6. Spectrophotometric determination of uranium in sea water with thiocyanate and rhodamine B

    International Nuclear Information System (INIS)

    In the presence of a large excess of thiocyanate uranium(VI) forms a violet colour with Rhodamine B. The complex can be stabilized by addition of poly(vinyl alcohol). The calibration graph for measurement at 600 nm is linear in the range 0.5-10 μg of uranium per 25 ml, the molar absorptivity being 3.56 x 105l x mole-1 x cm-1. The effect of foreign ions has been studied and the method can be applied to the determination of uranium in sea-water, with reliable results. Uranium is preconcentrated from sea-water by a flotation procedure with toluene in presence of benzoate and Safranine T, with nitrilotriacetic acid as masking agent. The method is highly selective for uranium, with a recovery of 97.9-99.2%. (Author)

  7. The uranium cycle

    International Nuclear Information System (INIS)

    In identifying uranium provinces, and, more importantly, mineralized zones within these provinces, it is of paramount importance to attempt to trace the geochemical behaviour of an element through all stages of Earth's evolution. Aspects that need to be addressed in this regard include solar abundance levels and fractionation processes during accretion, changing patterns of crustal evolution, effects of an evolving atmosphere, and the weathering cycle. Abundance patterns and partition coefficients of some of the siderophile elements in mantle rocks lend support to a multistage accretionary process. Lack of a terrestrial record in the first 500 Ma necessitates that lunar models be invoked, which suggests that early fractionation of a mafic/ultramafic magma resulted in an anorthositic crust. Fractionation of the mantle and transfer of materials to the upper levels must be central to any model invoked for development of the crust. Given high heat flow conditions in the early Archaean it would seem inescapable that the process of sea floor spreading and plate tectonics was an ongoing process. If the plate tectonic model is taken back to 3500 Ma, and assuming current speading rates, then about half of the mantle has passed through the irreversible differentiation cycle. Arguments in support of recycled material must be balanced against mantle metasomatism effects. With the associated advent of partial melting of the mantle material a partitioning of minor and trace elements into the melt fraction would take place. The early primitive mafic and ultramafic komatiites exemplify this feature by concentrating U and Th by a factor of 5 compared to chondritic abundances. It is of tantamount importance to understand the generation of the magmas in order to predict which are the 'fertile' bodies in terms of radioelement concentrations. In that the granitoid magmas image their source compositions, the association of high radioelements will primarily be source-dependent. Uranium

  8. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    The processes and types of dispersion that produce anomalies in stream water, stream sediment, and ground water, and the factors that must be considered in planning and interpreting geochemical surveys are reviewed. Examples of surveys near known deposits show the types of results to be expected. Background values depend mainly on the content of U in rocks of the drainage area. In igneous rocks, U tends to increase with potassium from ultramafic rocks (0.01 ppM) to granitic rocks (1 to 5 ppM). Some alkalic rocks have unusually high contents of U (15 to 100 ppM). Uranium-rich provinces marked by igneous rocks unusually rich in U are recognized in several areas and appear to have a deep crustal or mantle origin. In western U.S., many tertiary tuffaceous rocks have a high U content. Sandstones, limestones, and many shales approximate the crustal abundance at 0.5 to 4 ppM, but black shales, phosphates, and some organic materials are notably enriched in U. Uranium is very soluble in most oxidizing waters at the earth's surface, but is precipitated by reducing agents (organic matter, H2S) and adsorbed by organic material and some Fe oxides. In most surface and ground waters, U correlates approximately with the total dissolved solids, conductivity, and bicarbonate concentration of the water, and with the U content of rocks it comes into contact with. Most surveys of stream water near known districts show distinct anomalies extending a few km to tens of km downstream. A complication with water is the large variability with time, up to x 50, as a result of changes in the ratio of ground water to direct runoff, and changes in rate of oxidation and leaching. Collection and analysis of water samples also pose some difficulties

  9. In situ leaching of uranium

    International Nuclear Information System (INIS)

    A process is described for the in-situ leaching of uranium-containing ores employing an acidic leach liquor containing peroxymonosulphuric acid. Preferably, additionally, sulphuric acid is present in the leach liquor. (author)

  10. An artificially constructed Syngonium podophyllum-Aspergillus niger combinate system for removal of uranium from wastewater.

    Science.gov (United States)

    He, Jia-dong; Wang, Yong-dong; Hu, Nan; Ding, Dexin; Sun, Jing; Deng, Qin-wen; Li, Chang-wu; Xu, Fei

    2015-12-01

    Aspergillus niger was inoculated to the roots of five plants, and the Syngonium podophyllum-A. niger combinate system (SPANCS) was found to be the most effective in removing uranium from hydroponic liquid with initial uranium concentration of 5 mg L(-1). Furthermore, the hydroponic experiments on the removal of uranium from the hydroponic liquids with initial uranium concentrations of 0.5, 1.0, and 3.0 mg L(-1) by the SPANCS were conducted, the inhibitory effect of A. niger on the growth of S. podophyllum in the SPANCS was studied, the accumulation characteristics of uranium by S. podophyllum in the SPANCS were analyzed, and the Fourier transform infrared (FT-IR) and extended X-ray absorption fine structure (EXAFS) spectra were measured. The results show that the removal of uranium by the SPANCS from the hydroponic liquids with initial uranium concentrations of 0.5, 1.0, and 3.0 mg L(-1) reached 98.20, 97.90, and 98.50%, respectively, after 37 days of accumulation of uranium; that the uranium concentrations in the hydroponic liquids decreased to 0.009, 0.021, and 0.045 mg L(-1), respectively, which are lower than the stipulated concentration for discharge of 0.050 mg L(-1) by the People's Republic of China; that A. niger helped to generate more groups in the root of S. podophyllum which can improve the complexing capability of S. podophyllum for uranium; and that the uranium accumulated in the root of S. podophyllum was in the form of phosphate uranyl and carboxylic uranyl.

  11. Interview regarding Uzbekistan Uranium Reserves

    International Nuclear Information System (INIS)

    In his first extensive interview, Nicolay I. Kuchersky, President of Kyzylkumredmetzoloto and General Director of the Novoi Mining and Metallurgy Combine, discusses the business of mining uranium in Uzbekistan. This is a companion article following one that took an in-depth look at this newly independent country's activities in uranium mining. The president of the responsible organization discusses plans, wages, and interactions with the western world

  12. Uranium glass in museum collections

    OpenAIRE

    Lopes, Filipa

    2008-01-01

    The presence of uranium glass objects in museum and private collections has raised radiation protection concerns resulting from possible exposure to ionizing radiation emitted by this type of object. Fourteen glass objects with different uranium contents were studied. Dose rates (β + γ radiation) were measured with a beta/gamma probe at several distances from the glass objects. In general the determined dose rates did not raise any concern as long as some precautions were taken. Rado...

  13. Inhalation hazards to uranium miners

    International Nuclear Information System (INIS)

    This project is investigating levels of uranium mine air contaminants, using both large and small experimental animals to model human respiratory system disease. Lung cancer and deaths by degenerative lung disease have reached epidemic proportions among uranium miners, but the cause-effect relationships for these diseases are based on inadequate epidemiological data. This project identifies agents or combinations of agents (both chemical and radiological) and their exposure levels that produce respiratory tract lesions, including respiratory epithelial carcinoma, pneumonconiosis and emphysema

  14. The Espinharas uranium occurrence, Brazil

    International Nuclear Information System (INIS)

    Nuclam has been exploring for uranium in Brazil since 1976. During this period one uranium ore body has been found in the vicinity of Espinharas, a village in Paraiba State, northeast Brazil. According to present knowledge, the mineralized ore body is caused by metasomatic action. The history of discovery and the exploration work until the end of 1979 is given, showing the conceptual change with increasing knowledge of the mineralized zone. (author)

  15. Overview of Canada's uranium industry

    International Nuclear Information System (INIS)

    This paper places Canada's uranium industry in its international context. Most uranium, except that produced in the United States, is traded internationally. A brief history of the industry worldwide is given to show how the principal producing areas have fared to date. The industry is young, highly cyclical, and still far from achieving stability. Uranium is a single end-use commodity, entirely dependent on the generation of electricity in nuclear stations, and is without price elasticity: lowering the price does not increase demand. The typical nuclear fuel processing chain has not encouraged or led to much vertical integration. Uranium is subject to more governmental control than any other commodity. The principal market is located in the industrial countries of western Europe, the United States, Canada, and the far east. The uranium supply-demand situation is reviewed, including the current and near-term oversupply and the longer term outlook to 1995. The major negative impact of reactor cancellations and deferments in the United States is discussed. Because of the difficulty in getting reactors on line, it has become easier to forecast the demand for uranium over the next 10 years. It is more difficult to predict how that demand will be met from the more than ample competing sources. Canada's potential for supplying a significant portion of this demand is considered in relation to producers and potential new producers in other countries

  16. Uranium - resources development and availability

    International Nuclear Information System (INIS)

    Australia possesses a major portion of the world's low cost uranium and it is confidently expected that further exploration will delineate yet more reserves. The level of such exploration and the rate of development of new production will remain critically dependent on world market developments. For the foreseeable future all development will be dedicated to supplying the export market. Australian government policies for uranium take account of both domestic and international concerns. With Australia, the policies act to protect the interests of the Aboriginal people affected by uranium production. In response to national interests and concerns, foreign investment in uranium production ventures is regulated in a manner which requires Australian control but allows a measure of foreign equity. Environmental concerns are recognized and projects may only be approved after comprehensive environmental protection procedures have been complied with. Without these policies public acceptability, which provides the foundations for long-term stability of the industry, would be prejudiced. On the world scene, Australia's safeguards policy serves to support international nuclear safeguards and, in particular, to honour its obligations under the Nuclear Non-Proliferation Treaty. Export policy requires that reasonable sales contract conditions apply and that fair negotiated market prices are obtained for Australia's uranium. Australia's recent re-emergence as a major producer and exporter of uranium is convincing testimony to the success of these policies. (author)

  17. Uranium exploration planning and practice

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency has long had an interest in providing manuals and guidebooks to assist workers in the most effective use of uranium exploration methods and techniques. These have been widely used by the mineral industry around the world. Little has been done, however, to guide and assist senior levels of management of national Atomic Energy Commissions or Geological Surveys in planning for and managing their uranium exploration had development programmes. The nature of uranium, and its potential military use makes it a commodity requiring special consideration. On the other hand, the fact that it is a mineral fuel commodity that is explored for and mined like other mineral commodities presents management with problems of mineral economics unlike those normally faced by government scientific organizations. In order to address these questions, the IAEA convened a Advisory Group meeting in December 1988, to discuss the requirements for uranium exploration planning and practice, from the point of view of national policy and strategy. The six advisors, three observers and four Agency staff members brought to the discussions a wealth of experience in government and in the minerals industry dealing with uranium. The present document, comprising 8 papers as well as transcribed discussions on each, should be of interest and value to senior government planners charged with the task of regulating and controlling their country's uranium development. Refs, figs and tabs

  18. Uranium retrieval support, storage, and marketing

    International Nuclear Information System (INIS)

    The United States Department of Energy is implementing a stewardship approach to management of uranium assets. This life-cycle approach to managing uranium addresses current needs in the context of a long-term strategy. In June 1998, the United States Department of Energy established the Uranium Management Group. The mission of the UMG is to safely collect and store commercially viable uranium from various DOE facilities at a central location. The Oak Ridge Operations Office, in Oak Ridge, Tennessee, was given the task to establish a facility for the storage of these uranium materials. Materials collected are non-waste uranium and packaged to allow transport and long-term storage. Coordination of uranium management under the Uranium Management Group offers significant opportunities for sayings through improved planning and efficiency and creates an environmentally sound approach for the storage and reuse of excess uranium. (author)

  19. Behaviour of uranium during mixing in the Delaware and Chesapeake estuaries

    International Nuclear Information System (INIS)

    Unequivocal evidence is presented for the removal of uranium in two major estuarine systems of the north-eastern United States: the Delaware and Chesapeake Bays. In both the estuaries, during all seasons but mostly in summer, dissolved uranium shows distinctly non-conservative behaviour at salinities ≤ 5. At salinities above 5, there are no deviations from the ideal dilution line. In these two estuaries as much as 22% of dissolved uranium is removed at low salinities, around salinity 2. This pronounced removal of uranium observed at low salinities has been investigated in terms of other chemical properties measured in the Delaware Estuary. In the zone of uranium removal, dissolved oxygen is significantly depleted and pH goes through a minimum down to 6.8. In the same low salinity regime, total alkalinity shows negative deviation from the linear dilution line and phosphate is removed. Humic acids, dissolved iron and manganese are also rapidly removed during estuarine mixing in this low salinity region. Thus, it appears that removal of uranium is most likely related to those properties of alkalinity and acid-base system of the upper estuary that may destabilize the uranium-carbonate complex. Under these conditions, uranium may associate strongly with phosphates or humic substances and be removed onto particulate phases and deposited within upper estuarine sediments. (author)

  20. The uranium industry: long-term planning for short-term competition

    International Nuclear Information System (INIS)

    Long term planning for short term competition Today, uranium producers face new challenges in terms of both production (new regulatory, environmental and social constraints) and market conditions (new sources of uranium supply, very low prices and tough competition). In such a context, long-term planning is not just a prerequisite to survive in the nuclear fuel cycle industry. In fact, it also contributes to sustaining nuclear electricity generation facing fierce competition from other energy sources in increasingly deregulated markets. Firstly, the risk of investing in new mining projects in western countries is growing because, on the one hand, of very erratic market conditions and, on the other hand, of increasingly lengthy, complex and unpredictable regulatory conditions. Secondly, the supply of other sources of uranium (uranium derived from nuclear weapons, uranium produced in CIS countries, ...) involve other risks, mainly related to politics and commercial restrictions. Consequently, competitive uranium supply requires not only technical competence but also financial strength and good marketing capabilities in order to anticipate long-term market trends, in terms of both demand and supply. It also requires taking into account new parameters such as politics, environment, regulations, etc. Today, a supplier dedicated to the sustainable production of nuclear electricity must manage a broad range of long-term risks inherent to the procurement of uranium. Taking into account all these parameters in a context of short-term, fast-changing market is a great challenge for the future generation. World Uranium Civilian Supply and Demand. (authors)

  1. Predictive geochemical modeling of uranium and other contaminants in laboratory columns in relatively oxidizing, carbonate-rich solutions

    International Nuclear Information System (INIS)

    Carbonate heap leaching of uranium-contaminated soils and sediments represents a viable, cost-effective remediation technology. Column experiments have been conducted using 0.1, 0.25, and 0.5 M Na2CO3/NaHCO3 solutions for leaching uranium from soils located adjacent to an incinerator at the Fernald Environmental Management Project (FEMP) site. Results from column experiments and geochemical modeling are used to quantitatively evaluate the effectiveness of heap leaching. Leach efficiencies of up to 72 wt.% of total uranium in CaO-agglomerated soil result from dissolution of uranium (U(VI)-dominated) minerals, formation of the soluble complex UO2(CO3)34-, and uranium desorption from clay minerals, ferric hydroxides, and humic acids. Parameters that control the extent of uranium extraction include pH, Eh, temperature, carbonate concentration, lixiviant-flow rate, pore-solution chemistry, solid phases, and soil texture

  2. Uranium separations using extraction chromatography

    International Nuclear Information System (INIS)

    In the analysis of environmental samples for uranium and thorium pollutants and at natural levels for the dating of geological samples there was felt a need to develop better uranium and thorium, separation procedures to replace the established anion exchange method used at AEA Technology plc. This was the first aim of the PhD research. Separation of uranium from thorium prior to measurement of the isotopes by alpha spectrometry was necessary due to the similar alpha energies of 234U and 230Th. TRU and UTEVA extraction chromatography resins (EIChroM Industries) were investigated as potential replacements to the anion exchange separation method. The resins are claimed by EIChroM to offer the advantage of providing an actinide specific separation while reducing the separation time from 2 to 0.5 days; the volume of acidic waste produced by a factor of 3, therefore, the cost of analysis was reduced. A uranium and thorium separation procedure using the UTEVA extraction chromatography resin was developed. The uranium and thorium were sorbed by the UTEVA resin from 2M nitric acid. The thorium was then eluted from the resin with 5M hydrochloric acid and the uranium with 0.02M hydrochloric acid. The separation procedure was then evaluated using uraninite ore, coral, granite and lake sediment reference materials. The uranium and thorium concentrations and the 234U/238U and 230Th/234U activity ratio values determined for the reference material were in good agreement with certified values. The presence of plutonium was found to interfere with the measurement of uranium and thorium by alpha spectrometry. This was due to the similar alpha energies of uranium, thorium and plutonium. The co-elution of plutonium with uranium and thorium from the UTEVA resin was prevented by the inclusion of a reduction step using iron (II) sulphamate. The resulting plutonium (III) was not retained by the UTEVA column. The chemical recoveries for the procedure were similar to those for anion

  3. Uranium speciation in the environment: study of opals from Nopal I (Mexico) and mill tailings from Gunnar (Canada)

    International Nuclear Information System (INIS)

    Understanding the processes of uranium migration and sequestration is an important issue for the prediction of radionuclide retardation in the vicinity of uranium mine tailings sites or for the safety assessment of potential high-level nuclear waste repositories. Uranium speciation, controlled by biotic and abiotic factors, represents a key parameter for the control of uranium transfer in the environment. This study firstly deals with uranium speciation in opals from the Nopal I uranium deposit (Mexico). Microscopic observations of opals at the nano-scale revealed the occurrence of vorlanite, cubic CaUO4. This was the first time this rare calcium uranate has been found displaying a cubic morphology, in agreement with its crystal structure. Nopal I opals have been further investigated through time-resolved laser fluorescence spectroscopy. The opals spectra and their comparison with those of experimentally produced standards indicate occurrence of mono- or polymeric uranyl complexes (associated or not with calcium or phosphate) sorbed onto internal surface of opal around pH 7-8. Finally, the speciation of uranium was studied in mill tailings from Gunnar (Canada). In the first tailings site, uranium primarily occurs as monomeric, inner-sphere uranyl complexes sharing edges with Fe(O,OH)6 octahedral sites of iron-oxy-hydroxides and chlorite. Our results suggested that U(VI) co-precipitates with iron (oxy-hydr)oxides predominate in the second tailings sites. Therefore uranium mobility in Gunnar is governed by sorption/desorption and dissolution/(co)precipitation processes. (author)

  4. Uranium uptake by hydroponically cultivated crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Soudek, Petr; Petrova, Sarka [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Benesova, Dagmar [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Faculty of Environment Technology, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Dvorakova, Marcela [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Vanek, Tomas, E-mail: vanek@ueb.cas.cz [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic)

    2011-06-15

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC{sub 50} value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC{sub 50} = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. - Highlights: > The uranium accumulation in twenty different plant species varied from 0.160 to 0.011 mg/g DW. > Uranium is mainly localized in the root system. > Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba. > The phosphates deficiency increase the uranium uptake.

  5. Study of the impact of environmental bacteria ob uranium speciation in order to engage bioremediation process

    International Nuclear Information System (INIS)

    Uranium is both a radiological and a chemical toxic. Its concentration in the environment is low except when human activities have caused pollution. Uranium is a heavy reactive element, and thus it is easily complexed with soil component like minerals or organic molecules. These different complexes can be more or less bioavailable for microorganisms and plants, and then get in the human food chain. The knowledge and the understanding of transfer mechanisms and also the fate of toxic elements in the biosphere are a key issue to estimate health and ecological hazards. The knowledge of the speciation is very important for bioremediation processes. Here, we focused on the microorganisms effects onto uranium speciation in environment. Bacteria can accumulate and/or transform uranium depending on the initial form of the element. Thus, its bioavailability could be changed. The species used in this work are Cupriavidus metallidurans CH34, which is an environmental bacteria with a high resistance to heavy metal, Deinococcus radiodurans R1, which is known for his radiological resistance, and Rhodopseudomonas palustris, which is a purple photo-trophic bacteria capable of degrading aromatic compounds. Two forms of uranium were used with these bacteria, a mineral one, uranyl carbonate, and an organic one, uranyl citrate. In a first step, the growth media were modified in order to stabilize uranium complexes thanks to a simulation program. Then, the capacity of the bacteria to accumulate or transform uranium was studied. We saw a difference between minimal inhibition concentrations of these two speciation which is due to a difference between phosphate bioavailability. No accumulation was observed with environmental pH but uranium precipitation was observed with acidic pH (pH 1). Uranium speciation seemed to be well controlled in the growth media and the precipitates were uranyl phosphate. (author)

  6. Proterozoic strata-bound uranium deposits of Zambia and Zaire

    International Nuclear Information System (INIS)

    The Katanga System, host to uranium and copper mineralisation, is several thousands of metres thick and rests unconformably on an older complex of crystalline rocks and metasediments and is locally covered by Karoo sandstones or Kalahari sands. The deposition of the Katanga System took place during the Late Proterozoic in a wide complex basin extending from Shaba province in Zaire through a large part of Zambia and into eastern Angola. The sediments were affected by different grades of metamorphism, tectonic events, and by thermal events associated with post-tectonic metamorphism. At the base of Katanga system there are 84 known copper deposits and 42 uranium occurrences. It is suggested that all the known uranium and copper occurrences are of an essentially syngenetic sedimentary origin. The mineralisation is found in the Lower Roan Formation near the base of the Katanga System occurring in rocks produced in similar environmental conditions and thus being stratigraphic controlled, however, their areal distribution is localised producing a regional metal zonation. Many of the uranium occurrences have a typical vein aspect. These transgressive relationships are not inconsistent with a syngenetic origin as evidenced by the vein morphology. (author)

  7. Sequential extraction of uranium metal contamination

    International Nuclear Information System (INIS)

    Samples of uranium contaminated dirt collected from the dirt floor of an abandoned metal rolling mill were analyzed for uranium using a sequential extraction protocol involving a series of five increasingly aggressive solvents. The quantity of uranium extracted from the contaminated dirt by each reagent can aid in predicting the fate and transport of the uranium contamination in the environment. Uranium was separated from each fraction using anion exchange, electrodeposition and analyzed by alpha spectroscopy analysis. Results demonstrate that approximately 77 % of the uranium was extracted using NH4Ac in 25 % acetic acid. (author)

  8. Survey of United States uranium marketing activity

    International Nuclear Information System (INIS)

    Results from a survey of US uranium marketing and procurement in 1978 are presented. Information for the present survey was received from 61 utilities with nuclear reactor projects, 35 present or potential uranium producers, and 5 reactor manufacturers. The survey requested data on domestic uranium purchase commitments, uranium imports and exports, unfilled requirements, U3O8 available for sale by producers, inventories of domestic- and foreign-origin uranium, inventory policies, and prices under existing contracts between domestic primary producers and domestic buyers. Information on actual and planned capital expenditures for uranium production facilities, also gathered in the survey, will be presented in a separate report

  9. Uranium accumulation by aquatic macrophyte, Pistia stratiotes

    International Nuclear Information System (INIS)

    Uranium accumulation by aquatic macrophyte, Pistia stratiotes from aqueous solution was investigated in laboratory condition. The objective was to evaluate the uranium accumulation potential and adopt the plant in uranium containing medium to improve its uptake capacity. The plant was found to tolerate and grow in the pH range of 3-7. Accumulation of uranium improved with increasing pH and the plant could remove 70% uranium from the medium (20 mg/L) within 24 hours of incubation at pH 5-6. Uptake of uranium on either side of this pH range decreased

  10. Microbial accumulation of uranium, radium, and cesium

    International Nuclear Information System (INIS)

    Diverse microbial species varied considerably in their ability to accumulate uranium, cesium, and radium. Mechanistic differences in uranium uptake by Saccharomyces cerevisiae and Pseudomonas aeruginosa were indicated. S. serevisiae exhibited a slow (hours) surface accumulation of uranium which was subject to environmental factors, while P. aeruginosa accumulated uranium rapidly (minutes) as dense intracellular deposits and did not appear to be affected by environmental parameters. Metabolism was not required for uranium uptake by either organism. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several species tested

  11. Long-term management and use of depleted uranium

    International Nuclear Information System (INIS)

    The products resulting from the process of enrichment of natural uranium, or reprocessed uranium, are enriched uranium products as the light fraction and depleted uranium (uranium tails) as the heavy fraction. If the source material is natural uranium, the mass ratios of uranium products and uranium tails can be derived relatively easily from the required enrichment level of the uranium product (product assay (% of U-235)) and the selected depletion level of the uranium tails (tails assay (% of U-235)). The paper discusses among other aspects the dependence of the tails mass on the required enrichment level of the relevant uranium product, for various tails assays. (orig./CB)

  12. Chapter 1. General information about uranium. 1.2. Propagation in nature

    International Nuclear Information System (INIS)

    Full text: Uranium is a typical element in the granitic layer and sedimentation shell of Earth crust. The average uranium propagation in Earth crust is (clarke) 2.5•10-4 % according to the mass, in acid igneous rocks 3.5•10-4 %, in clays and shales 3.2•10-4 %, in basic rocks 5•10-5 %, in ultra-basic rocks of mantle 3•10-7 %. Uranium energetically migrates in cold, hot, neutral and alkaline waters as both simple and complex ions, especially as carbonated complexes. Oxidation-reduction reactions play an important role in uranium geo-chemistry, since uranium compounds, as a rule, are very soluble in waters with oxidizing medium and poorly soluble in waters with reducing medium (for example, hydrogen sulfide). In the course of geological history, the uranium propagation in the Earth's crust decreased due to radioactive decay; Pb atoms accumulation in the Earth crust relates to this process. Radioactive decay of uranium plays an important role in total Earth crust energy, being an essential source of depth heat. (author)

  13. Chemical aspects of the precise and accurate determination of uranium and plutonium from nuclear fuel solutions

    International Nuclear Information System (INIS)

    A method for the simultaneous or separate determination of uranium and plutonium has been developed. The method is based on the sorption of uranium and plutonium as their chloro complexes on Dowex 1x10 column. When separate uranium and plutonium fractions are desired, plutonium ions are reduced to Pu (III) and eluted, after which the uranium ions are eluted with dilute HCl. Simultaneous stripping of a mass ratio U/Pu approximately 1 fraction for mass spectrometric measurements is achieved by proper choice of eluant HC1 concentration. Special attention was paid to the obtaining of americium free plutonium fractions. The distribution coefficient measurements showed that at 12.5-M HCl at least 30 % of americium ions formed anionic chloro complexes. The chemical aspects of isotopic fractionation in a multiple filament thermal ionization source were also investigated. Samples of uranium were loaded as nitrates, chlorides, and sulphates and the dependence of the measured uranium isotopic ratios on the chemical form of the loading solution as well as on the filament material was studied. Likewise the dependence of the formation of uranium and its oxide ions on various chemical and instrumental conditions was investigated using tungsten and rhenium filaments. Systematic errors arising from the chemical conditions are compared with errors arising from the automatic evaluation of of spectra. (author)

  14. Developing and Stabilizing Analytical Method for the Determination of Uranium in Water Systems using Voltammeters

    International Nuclear Information System (INIS)

    Uranium is a precious metal found in all over the world in trace amounts. The water flowing over the surface dissolves the uranium from surface and rocks coming in contact with it. To determine the uranium concentration in water we emphasized for the development of an analytical method. The development of technique for the uranium determination in water is based on Chloranilic acid (CAA) and Hanging Mercury Drop Electrode (HMDE). CAA is a water soluble compound forms a complex with uranium, which was collected by the physical adsorption of the complex on the electrode. The standard uranium solution was used for calibration. Below pH 2 and above pH 3, the standard deviation exceeded 1 micro g/L. So, the pH for the samples was maintained between 2.3 and 3. The accuracy of the method was established by recovery studies in control samples. Then the developed technique was applied for uranium determination in sea water. Different surfactants were used to minimize the effects of interfering radicals. The effects of potential variation were also examined. The best results were obtained for Sodium Dodecyl Sulfate (SDS). Some problems still existing can be eliminated by the use of inert anti foaming agent. (author)

  15. A modern depleted uranium manufacturing facility

    Energy Technology Data Exchange (ETDEWEB)

    Zagula, T.A.

    1995-07-01

    The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.

  16. Influence of biofilms on migration of uranium, americium and europium in the environment

    International Nuclear Information System (INIS)

    The report on the influence of biofilms on migration of uranium, americium and europium in the environment deals with the contamination problems of uranium mines such as SDAG WISMUT in Saxonia and Thuringia. In mine waters microorganisms form a complex microbiological biocoenosis in spite of low pH values and high heavy metal concentrations including high uranium concentrations. The analyses used microbiological methods like confocal laser scanning microscopy and molecular-biological techniques. The interactions of microorganism with fluorescent radioactive heavy metal ions were performed with TRLFS (time resolved laser-induced fluorescence spectroscopy).

  17. Uranium Metal to Oxide Conversion by Air Oxidation –Process Development

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, A

    2001-12-31

    Published technical information for the process of metal-to-oxide conversion of uranium components has been reviewed and summarized for the purpose of supporting critical decisions for new processes and facilities for the Y-12 National Security Complex. The science of uranium oxidation under low, intermediate, and high temperature conditions is reviewed. A process and system concept is outlined and process parameters identified for uranium oxide production rates. Recommendations for additional investigations to support a conceptual design of a new facility are outlined.

  18. Uranium in South Africa: 1987

    International Nuclear Information System (INIS)

    South Africa's participation in the nuclear industry was limited to the production of uranium and research, with minor commercial activities. The commissioning of the Koeberg Nuclear power station in 1984 placed South Africa firmly on the path of commercial nuclear power generation. A unique locally developed uranium enrichment process wil enable South Africa to be self-sufficient in its nuclear-fuel needs. Uranium has always been of secondary importance to gold as a target commodity in the exploration of the quartz-pebble conglomerates. In the Witwatersrand Basin it is estimated that in excess of R300 million was spend on exploration during 1987. This was spend primarily in the search for gold but as many of the gold reefs are uraniferous, new uranium resources are being discovered concurrently with those of gold. Uranium mineralization is present in rocks which encompass almost the whole of the geological history of South Africa. Significant mineralization is restricted to five fairly well-defined time periods. Each period is characterized by a distinct type or combination of types of mineralization. Resource estimates are divided into separate categories that reflect different levels of confidence in the quantities reported. The resource categories are further separated into levels of exploitability based on the estimated cost of their exploitation. A major part (87%) of South Africa's uranium resources is present as a by-product of gold in the quartz-pebble conglomerates of the Witwatersrand Basin. The uranium resources in the RAR and EAR-I categories were 536 500 t u. Production during 1987 was 3963 t u. Although a production peaking at over 1100 t U/a is theoretically attainable, it is considered, from market projections, that a production ceiling of 10 000 t U/a would be more realistic

  19. Uranium in South Africa: 1985

    International Nuclear Information System (INIS)

    South Africa's participation in the nuclear industry was limited to the production of uranium and research, with minor commercial activities. The commissioning of the Koeberg Nuclear power station in 1984 placed South Africa firmly on the path of commercial nuclear power generation. A unique, locally developed uranium enrichment process will enable South Africa to be self-sufficient in its nuclear-fuel needs. Uranium has always been of secondary importance to gold as a target commodity in the exploration of the quartz-pebble conglomerates. In the Witwatersrand Basin it is estimated that in excess of R100 million was spent on exploration during 1985. This was spent primarily in the search for gold but as many of the gold reefs are uraniferous, new uranium resources are being discovered concurrently with those of gold. Uranium mineralization is present in rocks which encompass almost the whole of the geological history of South Africa. Significant mineralization is restricted to five fairly well-defined time periods. Each period is characterized by a distinct type or combination of types of mineralization. Resource estimates are divided into separate categories that reflect different levels of confidence in the quantities reported. The resource categories are further separated into levels of exploitability based on the estimated cost of their exploitation. A major part (87%) of South Africa's uranium resources is present as a by-product of gold in the quartz-pebble conglomerates of the Witwatersrand Basin. The uranium resources in the reasonably assured resources (RAR) and estimated additional resources - category I (EAR-I) catogories were 483 300 t U. Production during 1985 was 4880 t U. Although a production peaking at over 1200 t U/a is theoretically attainable, it is considered, from market projections, that a production ceilling of 10 000 t U/a would be more realistic

  20. Uranium speciation in Fernald soils

    International Nuclear Information System (INIS)

    This report details progress made from January 1 to May 31, 1992 in this analytical support task to determine the speciation of uranium in contaminated soil samples from the Fernald Environmental Management Project site under the auspices of the Uranium in Soils Integrated Demonstration funded through the US DOE's Office of Technology Development. The authors' efforts have focused on characterization of soil samples collected by S.Y. Lee (Oak Ridge National Laboratory) from five locales at the Fernald site. These were chosen to sample a broad range of uranium source terms. On the basis of x-ray absorption spectroscopy data, they have determined that the majority of uranium (> 80--90%) exists in the hexavalent oxidation state for all samples examined. This is a beneficial finding from the perspective of remediation, because U(VI) species are more soluble in general than uranium species in other oxidation states. Optical luminescence data from many of the samples show the characteristic structured yellow-green emission from the uranyl (UO22+) moiety. The luminescence data also suggest that much of the uranium in these soils is present as well-crystallized UO22+ species. Some clear spectroscopic distinctions have been noted for several samples that illustrate significant differences in the speciation (1) from site to site, (2) within different horizons at the same site, and (3) within different size fractions of the soils in the same horizon at the same site. This marked heterogeneity in uranyl speciation suggests that several soil washing strategies may be necessary to reduce the total uranium concentrations within these soils to regulatory limits

  1. Uranium series, volcanic rocks

    Science.gov (United States)

    Vazquez, Jorge A.

    2014-01-01

    Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).

  2. Kvanefjeld uranium project

    International Nuclear Information System (INIS)

    This report contains a description and an investment estimate for the infrastructure connected with establishing uranium mining activities at Narssaq. The infrastructure comprises dwellings for employess, etc., personnel and cargo transport, incl. harbours, primary storage facilities and supply routes. The report does not cover the production plant, ore and tailings transport systems, energy supply, nor workshop and administration buildings. The report assumes that the Greenland mining enterprise will employ approx. 280 persons in mining and administration, and approx. 300 persons in processing plants, etc. An increased population will also provide increased demand for shops, institutions and facilities for leisure activities. It is expected that areas will be reserved for local shops, and one or two day-care institutions for children will be built. The increase in cargo transport to and from production plants and in connection with population growth will necessitate the construction of new harbours and/or extension of the existing harbour in Narssaq. The annual volumes of coal and chemical products in bulk for the processing plant will amount to approx. 160,000 t. Approx. 8,000 tons a year will be needed to satisfy the requirements of both mining and the increased population. The present volume passing through the harbour in Narssaq is approx. 7,000 t. (EG)

  3. Liquefaction of uranium tailings

    International Nuclear Information System (INIS)

    Numerical methods for assessing the liquefaction potential of soils are reviewed with a view to their application to uranium tailings. The method can be divided into two categories: total stress analysis, where changes in pore pressure are not considered in the soil model, and effective stress analysis, where changes in pore pressure are included in the soil model. Effective stress analysis is more realistic, but few computer programs exist for such analysis in two or three dimensions. A simple linearized, two-dimensional, finite element effective stress analysis which incorporates volumetric compaction due to shear motion is described and implemented. The new program is applied to the assessment of liquefaction potential of tailings in the Quirke Mine tailings area near Elliot Lake, Ontario. The results are compared with those of a total stress analysis. Both analyses indicate liquefaction would occur if a magnitude 6.0 earthquake were to occur near the area. However, the extent of liquefaction predicted by the effective stress analysis is much less than that predicted by the total stress analysis. The results of both methods are sensitive to assumed material properties and to the method used to determine the cyclic shear strength of the tailings. Further analysis, incorporating more in situ and/or laboratory data, is recommended before conclusions can be made concerning the dynamic stability of these tailings

  4. The uranium in Kvanefjeld

    International Nuclear Information System (INIS)

    The report is a final thesis at the study of biology at the University of Copenhagen. It examines on a theoretical basis a number of possible environmental effects from a uranium mining and milling project under consideration at the Kvanefjeld site near Narssaq in South Greenland. An introductory description and discussion of the advantages and limitations of ecological baseline studies and dose committment assessments as a tool for planning and decision making is given. The leaching and atmospheric dispersion of particles, heavy metals, radionuclides and other elements from future waste rock and ore piles as well as from mill tailings at the Kvanefjeld site are analysed and discussed. Also, the mobility, transport and accumulation of potentially toxic elements in local terrestrial and aquatic ecosystems and food chains are examined. The resulting human burden are discussed with special attention given to the impact on the local population from eating lamb and seafood. A special quantitative analysis of the dispersion and biological uptake of fluoride, which is found in high concentrations in the ore, is given, focusing on the possible human intake of fluoride-polluted arctic char (Salvelinus alpinus) caught in Narrssaq River. The report at the end gives consideration to the long term problems of controlling mill tailings, discussing among other things the long term human exposure to radon and thoron daughters. (author)

  5. Kvanefjeld uranium project

    International Nuclear Information System (INIS)

    Overall investments connected with project start constitute approx. Dkr. 3.500 million for the uranium mine, approx. Dkr. 1,100 milion for the hydroelectric station, and approx. Dkr. 400 million for the social infrastructure, adding up to approx. Dkr. 5 billion. This corresponds to Greenlands's gross domestic product over two years or total exports over three years. The effect on employment in the construction phase is assumed to be 650 jobs on average, of which 25%, or approx. 150 jobs, can be filled by Greenland labour. The value of the project on Greenland's economy has been calculated according to its contribution to both the GDP and GNP. The GDP denotes the added value created in a community through production of goods and services in all trades, including public services. The GNP denotes that part of the DGP accruing to the citizens of a country, in this case Greenlanders. Large capital expenditures will be applied towards payment of interest and depreciation. These amounts consitute approx. 70 % of project earnings, measured as its contribution to GDP. The contribution to GNP amounts to approx. Dkr. 170 million per year i the construction phase. However, lack of official data for Greenland's economy makes it difficult to relate these results to other business activities or to assess their size exactly in relation to Greenland's economy. The underlying trend of the calculations is clear nevertheless. The project will have a significant, favourable effect on national accounts and will provide a large number of job openings for Greenland workers. (EG)

  6. Distribution of uranium, thorium, and isotopic composition of uranium in soil samples of south Serbia: Evidence of depleted uranium

    OpenAIRE

    Sahoo Sarata Kumar; Fujimoto Kenzo; Čeliković Igor; Ujić Predrag; Žunić Zora S.

    2004-01-01

    Inductively coupled plasma mass spectrometry and thermal ionization mass spectrom - etry were used to measure concentration of uranium and thorium as well as isotopic composition of uranium respectively in soil samples collected around south Serbia. An analytical method was established for a routine sample preparation procedure for uranium and thorium. Uranium was chemically separated and purified from soil samples by anion exchange resin and UTEVA extraction chromatography and its isotopic c...

  7. Investigations on uranium sorption on bentonite and montmorillonite, respectively, and uranium in environmental samples; Untersuchungen zur Uransorption an Bentonit bzw. Montmorillonit sowie von Uran in Umweltproben

    Energy Technology Data Exchange (ETDEWEB)

    Azeroual, Mohamed

    2010-09-22

    The geotechnical barrier is an important component of a geological repository and consists of compacted bentonite surrounding radioactive waste containers. Its most important functions are, to retard the radionuclide migration into the biosphere and to prevent groundwater contact with containers. lt is therefore of central importance to investigate the bentonite material on its capacity to sorb radionuclides under near-natural chemical and physical conditions. The purpose of this work was to study the adsorption of uranium(VI) on bentonit and on montmorillonite-standards at high uranium concentrations. Thereby, a special account was given to the calcium-uranyl-carbonate complexation, which leads to the formation of very stable and mobile uncharged Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} complex. Results of batch experiments showed that the dicalcium-uranyl-tricarbonate complexation lowers the uranium(VI) sorption on natural clay (bentonite) by a factor of up to 3. After 21 days of contact time, about 40 % and 20 % of the initial uranium(VI)concentration were sorbed on Na-bentonite and ea-bentonite, respectively, from a solution with Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} dominating the uranium(VI) speciation. On the contrary, about 55 % of the initial uranium(VI)-concentration were sorbed on thes clays from the solution, in which (UO{sub 2}){sub 2}CO{sub 3}(OH){sub 3}{sup -} complex dominated the uranium(VI) speciation. Thus uranium(VI) sorption is more strongly influenced by the solution composition than by bentonite type. Na-bentonite should be used instead of ea-bentonite as a geotechnical barrier, since calcium-uranyl-carbonate complexation may be a realistic scenario. Further SEM-EDX and HREM-EDX studies showed that uranium(VI) sorption occurred predominantly on montmorillonite, which is the main component of bentonite. Uranium(VI) sorption on bentonite's accessory Minerals (pyrite, calcite, mica, and feldspar) was not observed. Investigation of uranium

  8. Uranium briquettes for irradiation target

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Garcia, Rafael Henrique Lazzari; Martins, Ilson Carlos; Carvalho, Elita Fontenele Urano de; Durazzo, Michelangelo, E-mail: saliba@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Direct irradiation on targets inside nuclear research or multiple purpose reactors is a common route to produce {sup 99}Mo-{sup 99m}Tc radioisotopes. Nevertheless, since the imposed limits to use LEU uranium to prevent nuclear armament production, the amount of uranium loaded in target meats has physically increased and new processes have been proposed for production. Routes using metallic uranium thin film and UAl{sub x} dispersion have been used for this purpose. Both routes have their own issues, either by bringing difficulties to disassemble the aluminum case inside hot cells or by generating great amount of alkaline radioactive liquid rejects. A potential route might be the dispersion of powders of LEU metallic uranium and nickel, which are pressed as a blend inside a die and followed by pulse electroplating of nickel. The electroplating provides more strength to the briquettes and creates a barrier for gas evolution during neutronic disintegration of {sup 235}U. A target briquette platted with nickel encapsulated in an aluminum case to be irradiated may be an alternative possibility to replace other proposed targets. This work uses pulse Ni-electroplating over iron powder briquette to simulate the covering of uranium by nickel. The following parameters were applied 10 times for each sample: 900Hz, -0.84A/square centimeters with duty cycle of 0.1 in Watts Bath. It also presented the optical microscopy analysis of plated microstructure section. (author)

  9. Uranium mining sites - Thematic sheets

    International Nuclear Information System (INIS)

    A first sheet proposes comments, data and key numbers about uranium extraction in France: general overview of uranium mining sites, status of waste rock and tailings after exploitation, site rehabilitation. The second sheet addresses the sources of exposure to ionizing radiations due to ancient uranium mining sites: discussion on the identification of these sources associated with these sites, properly due to mining activities or to tailings, or due to the transfer of radioactive substances towards water and to the contamination of sediments, description of the practice and assessment of radiological control of mining sites. A third sheet addresses the radiological exposure of public to waste rocks, and the dose assessment according to exposure scenarios: main exposure ways to be considered, studied exposure scenarios (passage on backfilled path and grounds, stay in buildings built on waste rocks, keeping mineralogical samples at home). The fourth sheet addresses research programmes of the IRSN on uranium and radon: epidemiological studies (performed on mine workers; on French and on European cohorts, French and European studies on the risk of lung cancer associated with radon in housing), study of the biological effects of chronic exposures. The last sheet addresses studies and expertises performed by the IRSN on ancient uranium mining sites in France: studies commissioned by public authorities, radioactivity control studies performed by the IRSN about mining sites, participation of the IRSN to actions to promote openness to civil society

  10. Reducing emissions from uranium dissolving

    International Nuclear Information System (INIS)

    This study was designed to assess the feasibility of decreasing NOx emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NOx fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NOx emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO2 which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered

  11. The End of Cheap Uranium

    CERN Document Server

    Dittmar, Michael

    2011-01-01

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a world...

  12. Uranium exploration and mining in Australia

    International Nuclear Information System (INIS)

    Uranium minerals were discovered in Australia in the years 1850 to 1900 already, but most of them were not recognised as such. It was not until 1894 that the first significant uranium find was made in Carcoar, west of Sydney. At that time, the uranium output of the world, which only amounted to a few hundred cwts, was for the most part obtained from mining areas close to the border between Saxony and Bohemia. In South Australia, uranium ore was mined experimentally for the production of radium at Radium Hill from 1906 onwards and at Mt. Painter from 1910 onwards. It was not until World War II, however, that uranium gained importance as a valuable raw material that could also be used for military purposes. The second phase of uranium mining in Australia commenced in 1944. Within ten years Australia's presumed uranium potential was confirmed by extensive exploration. The development of uranium mining in Australia is described in the present paper. (orig.)

  13. Uranium resources, production and demand 1993

    International Nuclear Information System (INIS)

    This book is the Japanese edition of 'Uranium Resources, Production and Demand, 1993' published by OECD/NEA-IAEA in 1994. It contains data on uranium exploration activities, resources and production for about 50 countries. (K.I.)

  14. Past and future of uranium production

    International Nuclear Information System (INIS)

    Changes in world politics over the last few years have directly affected supplies and price levels in the front-end nuclear industry. Limited by the advance of CIS and East European uranium and nuclear fuel services into the west, the trend towards a declining uranium industry continued until 1994. The expected introduction of military uranium from Russian and American warheads into the civil nuclear fuel cycle creates additional unknowns in the nuclear fuel market. However, the long lasting recession in the uranium industry may already be coming to an end: The uranium inventories still in existence and uranium from the conversion of nuclear warheads will not last long enough to close the existing gap between uranium demand and supply. Additional uranium production will be required as a result. (orig.)

  15. The economics of uranium 1991. 3. ed

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The new Roskill report on the economics of uranium, 1991, gives essential facts and figures on five main topics; background, supply and demand; prices and uranium and nuclear activities by country and company. (author).

  16. Uranium Determination by Delayed Neutron Counting

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Uranium is a very important resource in nuclear industry, especially in the exploiture of nuclear energy. Determination of uranium using delayed neutron counting (DNC) is simple, non-destructive, and

  17. Uranium 2007 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2008-01-01

    Based on official information received from 40 countries, Uranium 2007 provides a comprehensive review of world uranium supply and demand as of 1st January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. It finds that with rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of underinvestment.

  18. Occurrences of Uranium and Radon-222 in Groundwaters from Various Geological Environments in the Hoengseong Area

    Science.gov (United States)

    Jeong, Chan Ho; Lee, Yu Jin; Lee, Young Cheon; Choi, Hyeon Young; Yang, Jae Ha

    2016-04-01

    Groundwaters in granite, gneiss, and two-mica granite formations, including faults, in the Hoengseong area are examined to determine the relationship between their uranium and radon-222 contents and rock types. The chemical compositions of 38 groundwater samples and four surface water samples collected in the study area were analyzed. Sixteen of the samples showing high uranium and radon-222 contents were repeatedly analyzed. Surface radioactivities were measured at 30 points. The uranium and radon-222 concentrations in the groundwater samples were in the ranges of 0.02-49.3 μg/L and 20-906 Bq/L, respectively. Four samples for uranium and 35 samples for radon had concentrations exceeding the alternative maximum contaminant level of the US EPA. The chemical compositions of groundwaters indicated Ca(Na)-HCO3 and Ca(Na)-NO3(HCO3+Cl) types. The pH values ranged from 5.71 to 8.66. High uranium and radon-222 contents in the groundwaters occurred mainly at the boundary between granite and gneiss, and in the granite area. The occurrence of uranium did not show any distinct relationship to that of radon-222. The radon-222, an inert gas, appeared to be dissolved in the groundwater of the aquifer after wide diffusion along rock fractures, having been derived from the decay of uranium in underground rocks. The results in this study indicate that groundwater of neutral or weakly alkaline pH, under oxidizing conditions and with a high bicarbonate content is favorable for the dissolution of uranium and uranium complexes such as uranyl or uranyl-carbonate. Key word: uranium, radon-222, geological boundary, groundwater, chemical characteristics, surface radioactivity

  19. Radiological modeling software for underground uranium mines

    International Nuclear Information System (INIS)

    The Canadian Institute for Radiation Safety (CAIRS) has developed computer simulation software for modeling radiological parameters in underground uranium mines. The computer program, called 3d RAD, allows radiation protection professionals and mine ventilation engineers to quickly simulate radon and radon progeny activity concentrations and potential alpha energy concentrations in complex mine networks. The simulation component of 3d RAD, called RSOLVER, is an adaptation of an existing modeling program called VENTRAD, originally developed at Queen's University, Ontario. Based on user defined radiation source terms and network physical properties, radiological parameters in the network are calculated iteratively by solving Bateman's Equations in differential form. The 3d RAD user interface was designed in cooperation with the Canada Centre for Mineral and Energy Technology (CANMET) to improve program functionality and to make 3d RAD compatible with the CANMET ventilation simulation program, 3d CANVENT. The 3d RAD program was tested using physical data collected in Canadian uranium mines. 3d RAD predictions were found to agree well with theoretical calculations and simulation results obtained from other modeling programs such as VENTRAD. Agreement with measured radon and radon progeny levels was also observed. However, the level of agreement was found to depend heavily on the precision of source term data, and on the measurement protocol used to collect radon and radon progeny levels for comparison with the simulation results. The design and development of 3d RAD was carried out under contract with the Saskatchewan government

  20. Active interrogation of highly enriched uranium

    Science.gov (United States)

    Fairrow, Nannette Lea

    Safeguarding special nuclear material (SNM) in the Department of Energy Complex is vital to the national security of the United States. Active and passive nondestructive assays are used to confirm the presence of SNM in various configurations ranging from waste to nuclear weapons. Confirmation measurements for nuclear weapons are more challenging because the design complicates the detection of a distinct signal for highly enriched uranium. The emphasis of this dissertation was to investigate a new nondestructive assay technique that provides an independent and distinct signal to confirm the presence of highly enriched uranium (HEU). Once completed and tested this assay method could be applied to confirmation measurements of nuclear weapons. The new system uses a 14-MeV neutron source for interrogation and records the arrival time of neutrons between the pulses with a high efficiency detection system. The data is then analyzed by the Feynman reduced variance method. The analysis determined the amount of correlation in the data and provided a unique signature of correlated fission neutrons. Measurements of HEU spheres were conducted at Los Alamos with the new system. Then, Monte Carlo calculations were performed to verify hypothesis made about the behavior of the neutrons in the experiment. Comparisons of calculated counting rates by the Monte Carlo N-Particle Transport Code (MCNP) were made with the experimental data to confirm that the measured response reflected the desired behavior of neutron interactions in the highly enriched uranium. In addition, MCNP calculations of the delayed neutron build-up were compared with the measured data. Based on the results obtained from this dissertation, this measurement method has the potential to be expanded to include mass determinations of highly enriched uranium. Although many safeguards techniques exist for measuring special nuclear material, the number of assays that can be used to confirm HEU in shielded systems is

  1. Concentrations of Uranium Isotopes in Uranium Millers' and Miners' Tissues

    OpenAIRE

    United States Nuclear Regulatory Commission

    1985-01-01

    The alpha-emitting isotopes of uranium and thorium were determined in the lungs of 14 former uranium miners and in soft tissues and bones of three miners and two millers. These radionuclides were also determined in soft tissues and bones of seven normal controls. The average concentrations in pCi/kg wet weight in 17 former miners' lungs are as follows: U-238, 75; U-234, 80; Th-230, 79. Concentrations of each nuclide ranged from 2 to 325 pCi/kg. The average ratio of U-238/U-234 ws 0.92, r...

  2. 40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.

    Science.gov (United States)

    2010-07-01

    ... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities....

  3. Study of the Utah uranium-milling industry. Volume II. Utah energy resources: uranium

    International Nuclear Information System (INIS)

    This report is a general overview of the uranium mining and milling industry and its history and present status with particular reference to Utah. This volume serves two purposes: (1) it serves as a companion volume to Volume I, which is a policy analysis; and (2) it serves as one of a set of energy resource assessment studies previously performed by the authors. The following topics are covered: development of the uranium industry on the Colorado Plateau with emphasis on Utah; geology of uranium; uranium reserves; uranium exploration in Utah; uranium ore production and mining operation in Utah; uranium milling operations in Utah; utilization of uranium; uranium mill tailings; and future outlook. Appendices on pricing of uranium and incentives for production since World War II are also presented

  4. Statistical data of the uranium industry

    International Nuclear Information System (INIS)

    Data are presented on US uranium reserves, potential resources, exploration, mining, drilling, milling, and other activities of the uranium industry through 1980. The compendium reflects the basic programs of the Grand Junction Office. Statistics are based primarily on information provided by the uranium exploration, mining, and milling companies. Data on commercial U3O8 sales and purchases are included. Data on non-US uranium production and resources are presented in the appendix

  5. Uranium 2003 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2004-01-01

    Uranium 2003: Resources, Production and Demand paints a detailed statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Eastern Europe and North America and for the first time, a report for Turkmenistan. Also included are international expert analyses and projections of nuclear generating capacity and reactor-related uranium requirements through 2020.

  6. Studies on new complexes of dioxo uranium(VI) and thorium(IV) with some schiff bases derived from trimethoprime salicyldehyde and o-vanillin (Paper No. AL-50)

    International Nuclear Information System (INIS)

    Dioxouranium(VI) and thorium(IV) form 1:1(Metal:Ligands) complexes with some schiff bases. The complexes have been characterized through elemental analyses, electronic and IR spectral, conductance and magnetic susceptibility measurements. They are considered dimeric or polymeric hexa or octa-coordinated arrangement around metal ion moiety. Force constants and U-O bond lengths have been calculated. (author). 1 tab

  7. Rehabilitation of uranium tailings impoundments

    International Nuclear Information System (INIS)

    Under Australian environmental controls relating to the management of uranium tailings, it is no longer acceptable practice to search for a rehabilitation strategy at the end of production when the generation of tailings has ceased. The uranium projects currently in production and those being proposed are tightly regulated by the authorities. The waste management plans must consider site specific factors and must include selection of appropriate disposal sites and design for long term containment. The final encapsulation in engineered facilities must take into account the probable routes to the environment of the tailings. Rehabilitation shoud be undertaken by the mining and milling operators to standards approved by appropriate authorities. Appropriate administrative arrangements are required, by way of technical committees and financial bonds to ensure that agreed standards of rehabilitation may be achieved. Past and present experience with the rehabilitation of uranium tailings impoundments in Australia is discussed

  8. Uranium extraction from phosphoric acid

    International Nuclear Information System (INIS)

    A study has been carried out for the extraction of uranium from phosphoric acid produced in Algeria. First of all, the Algerian phosphoric acid produced in Algeria by SONATRACH has been characterised. This study helped us to synthesize a phosphoric acid that enabled us to pass from laboratory tests to pilot scale tests. We have then examined extraction and stripping parameters: diluent, DZEPHA/TOPO ratio and oxidising agent. The laboratory experiments enabled us to set the optimum condition for the choice of diluent, extractant concentration, ratio of the synergic mixture, oxidant concentration, redox potential. The equilibrium isotherms lead to the determination of the number of theoretical stages for the uranium extraction and stripping of uranium, then the extraction from phosphoric acid has been verified on a pilot scale (using a mixer-settler)

  9. Y-12 Uranium Exposure Study

    Energy Technology Data Exchange (ETDEWEB)

    Eckerman, K.F.; Kerr, G.D.

    1999-08-05

    Following the recent restart of operations at the Y-12 Plant, the Radiological Control Organization (RCO) observed that the enriched uranium exposures appeared to involve insoluble rather than soluble uranium that presumably characterized most earlier Y-12 operations. These observations necessitated changes in the bioassay program, particularly the need for routine fecal sampling. In addition, it was not reasonable to interpret the bioassay data using metabolic parameter values established during earlier Y-12 operations. Thus, the recent urinary and fecal bioassay data were interpreted using the default guidance in Publication 54 of the International Commission on Radiological Protection (ICRP); that is, inhalation of Class Y uranium with an activity median aerodynamic diameter (AMAD) of 1 {micro}m. Faced with apparently new workplace conditions, these actions were appropriate and ensured a cautionary approach to worker protection. As additional bioassay data were accumulated, it became apparent that the data were not consistent with Publication 54. Therefore, this study was undertaken to examine the situation.

  10. Contribution to the study of uranium dioxide aqueous corrosion mechanisms

    International Nuclear Information System (INIS)

    The corrosion of uranium dioxide by a synthetical ground water has been studied in order to understand the behaviour of nuclear fuels in the hypothesis of a direct storage. An original leaching unit has been carried out in order to control the parameters occurring in the oxidation-dissolution of the uranium dioxide and to condition the leachate (in particular the temperature and the partial pressure of the carbon dioxide). A ground water in equilibrium with the geological enveloping site has been reconstituted from data acquired on the site. The influence of two parameters has been followed: the carbon dioxide carbon pressure and the redox potential. Each experiment has been carried out at 96 C during one month and the time-history of the solutions and of the solids has been studied. In oxidizing conditions, the uranium concentration in solution has been controlled by an U(VI) complex (one oxide, one hydroxide or a carbonate). The possibility of a control by an U(IV) complex (as coffinite, uraninite or uraninite B) has been confirmed in the case of reducing leaching. An original interpretation of the Rutherford backscattering spectra has allowed to describe the decomposition of the samples in a succession of layers of different densities. A very good agreement between the analyses of the solids and those of the solutions has been obtained in the experiments occurring in reducing conditions. Complementary leaching involving solutions containing stable isotopes (deuterium, O18) have revealed the formation of an hydrated layer and the contribution of grain boundaries to the corrosion phenomenon of uranium dioxide. The results of the current hydro-geochemistry study on the uranium Oklo deposit prove the realism of the experiments that have been carried out in the laboratory. (O.M.)

  11. Redox transformation of uranium accompanying microbial iron reduction

    Energy Technology Data Exchange (ETDEWEB)

    Behrends, T.; Van Cappellen, P. [Department of Earth Sciences - Geochemistry, Faculty of Geosciences, University of Utrecht, P.O. box 80021, NL-3508 TA Utrecht (Netherlands)

    2005-07-01

    Full text of publication follows: Dissimilatory iron reduction results in the accumulation of Fe(II). This accumulation of Fe(II) can result in the formation of secondary iron minerals such as siderite or magnetite. In our research we focused on the role of microbial induced magnetite formation on the mobility of U(VI). In particular, we investigated the transformation of nano-particulate hematite into magnetite in incubation experiments with the facultative anaerobic bacterium Shewanella putrefaciens. It turned out that addition of bicarbonate was required for inducing magnetite formation while no significant magnetite formation was found in experiments without bicarbonate amendment. Formation of biogenic magnetite was accompanied by fixation of U(VI) at the solid phase. Sequential extractions indicated that the fixation of U(VI) was accompanied by the reduction of U(VI) into U(IV). In control experiments it was observed that addition of bicarbonate slowed down direct enzymatic reduction of U(VI) by the bacteria. Also the surface-catalyzed reduction of U(VI) by Fe(II) as described by [1] was inhibited by bicarbonate addition. These observations led us to the conclusion that formation of aqueous uranyl carbonate complexes interfere with direct microbial reduction of U(VI) and the abiotic, surface-catalyzed reduction of U(VI) by Fe(II). This implies that fixation of uranium by biogenic magnetite formation might be important for immobilizing uranium in sub-oxic environments in which aqueous uranyl-carbonate complexes dominate the speciation of dissolved uranium [2]. [1] Liger E., Charlet L., and Van Cappellen P. (1999) Surface catalysis of uranium (VI) reduction by iron(II). Geochim. Cosmochim. Acta 63, 2939-2955; [2] Behrends T. and Van Cappellen P. (2005) Competition between enzymatic and abiotic reduction of uranium(VI) under iron reducing conditions. Chemical Geology (accepted). (authors)

  12. Removal and Recovery of Uranium using Microorganisms Isolated from North American Uranium Deposits

    OpenAIRE

    Takehiko Tsuruta

    2007-01-01

    Some attempts were made to remove and recover uranium that may be present in nuclear fuel effluents and mine tailings using microorganisms isolated from North American uranium deposits. To establish which microorganisms accumulate the most uranium, hundreds strains of microorganisms were screened. Of these strains of microorganisms tested, extremely high uranium accumulating ability was found in some bacteria isolated from North American uranium deposits. These bacterial strains, such as Arth...

  13. 77 FR 14837 - Bioassay at Uranium Mills

    Science.gov (United States)

    2012-03-13

    ... COMMISSION Bioassay at Uranium Mills AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... for public comment draft regulatory guide (DG), DG-8051, ``Bioassay at Uranium Mills.'' This guide describes a bioassay program acceptable to the NRC staff for uranium mills and applicable portions...

  14. Biotechnology for uranium extraction and environmental control

    International Nuclear Information System (INIS)

    India is looking forward to augmenting mining and extraction of uranium mineral for its nuclear energy needs. Being a radio-active mineral, mining and processing of uranium ore deposits need be carried out in an environmentally acceptable fashion. In this respect, a biotechnological approach holds great promise since it is environment-friendly, cost-effective and energy-efficient. There are several types of microorganisms which inhabit uranium ore bodies and biogenesis plays an important role in the mineralisation and transport of uranium-bearing minerals under the earth's crust. Uranium occurrences in India are only meagre and it becomes essential to tap effectively all the available resources. Uraninite and pitchblende occurring along with sulfide mineralisation such as pyrite are ideal candidates for bioleaching. Acidithiobacillus ferrooxidans present ubiquitously in the ore deposits can be isolated, cultured and utilised to bring about efficient acidic dissolution of uranium. Many such commercial attempts to extract uranium from even lean ores using acidophilic autotrophic bacteria have been made in different parts of the world. Anaerobes such a Geobacter and Sulfate Reducing Bacteria (SRB) can be effectively used in uranium mining for environmental control. Radioactive uranium mined wastes and tailing dumps can be cleaned and protected using microorganisms. In this lecture use of biotechnology in uranium extraction and bioremediation is illustrated with practical examples. Applicability of environment-friendly biotechnology for mining and extraction of uranium from Indian deposits is outlined. Commercial potentials for bioremediation in uranium-containing wastes are emphasised. (author)

  15. The Chemistry and Toxicology of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Sidney A. Katz

    2014-03-01

    Full Text Available Natural uranium is comprised of three radioactive isotopes: 238U, 235U, and 234U. Depleted uranium (DU is a byproduct of the processes for the enrichment of the naturally occurring 235U isotope. The world wide stock pile contains some 1½ million tons of depleted uranium. Some of it has been used to dilute weapons grade uranium (~90% 235U down to reactor grade uranium (~5% 235U, and some of it has been used for heavy tank armor and for the fabrication of armor-piercing bullets and missiles. Such weapons were used by the military in the Persian Gulf, the Balkans and elsewhere. The testing of depleted uranium weapons and their use in combat has resulted in environmental contamination and human exposure. Although the chemical and the toxicological behaviors of depleted uranium are essentially the same as those of natural uranium, the respective chemical forms and isotopic compositions in which they usually occur are different. The chemical and radiological toxicity of depleted uranium can injure biological systems. Normal functioning of the kidney, liver, lung, and heart can be adversely affected by depleted uranium intoxication. The focus of this review is on the chemical and toxicological properties of depleted and natural uranium and some of the possible consequences from long term, low dose exposure to depleted uranium in the environment.

  16. Mining-metallurgical projects for the production of uranium concentrates

    International Nuclear Information System (INIS)

    This report presents an overall view of a complete project for a mining-metallurgical complex for the production of uranium concentrates. Relevant aspects of each important topic are discussed as parts of an integrated methodology. The principal project activities are analyzed and the relationships among the various factors affecting the design are indicated. A list of 96 principal activities is proposed as an example. These activities are distributed in eight groups: initial evaluations preliminary feasibility studies, project engineering, construction, industrial operation, decommissioning and post-decommissioning activities. The environmental impact and the radiological risks due to the construction and operation of the mining metallurgical complex are analyzed. The principles of radiological protection and the regulations, standards and recommendations for radiological protection in uranium mines and mills are discussed. This report is also a guide to the specialized literature: a bibliography with 765 references is included. (author)

  17. Uranium, resources, production and demand

    International Nuclear Information System (INIS)

    The thirteenth edition of the report looks at recent developments and their impact on the short term (i.e. to the year 2005) and presents a longer term (to 2030) analysis of supply possibilities in the context of a range of requirement scenarios. It presents results of a 1989 review of uranium supply and demand in the World Outside Centrally Planned Economies Areas. It contains updated information on uranium exploration activities, resources and production for over 40 countries including a few CPEs, covering the period 1987 and 1988

  18. Australia's uranium policy: an examination

    International Nuclear Information System (INIS)

    The mining and export of Australian Uranium poses problems for the safety of the world that any responsible government is bound to consider. The following note lists the major problems, attempts to assess their importance, and to suggest what lines may be relevant to Australia for their solution. These problems were examined because of the concern about the appropriateness of attempting to fulfill projected world energy needs by any means; and their fulfillment, by using nuclear fuels carries special problems of biological, social and political hazards. Any development of Australia's uranium resources should be considered in this light. (author)

  19. Uranium mill tailings and radon

    International Nuclear Information System (INIS)

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the United States may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100

  20. Uranium mill tailings and radon

    International Nuclear Information System (INIS)

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100

  1. Disposition Options for Uranium-233

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) Fissile Materials Disposition Program (MD), in support of the U.S. arms-control and nonproliferation policies, has initiated a program to disposition surplus weapons-usable fissile material by making it inaccessible and unattractive for use in nuclear weapons. Weapons-usable fissile materials include plutonium, high-enriched uranium (HEU), and uranium-233 (sup 233)U. In support of this program, Oak Ridge National Laboratory led DOE's contractor efforts to identify and characterize options for the long-term storage and disposal of excess (sup 233)U. Five storage and 17 disposal options were identified and are described herein

  2. Quantification of Kinetic Rate Law Parameters of Uranium Release from Sodium Autunite as a Function of Aqueous Bicarbonate Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.; Lagos, Leonel; Tansel, Berrin

    2013-09-05

    ABSTRACT: Hydrogen carbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, hydrogen carbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous hydrogen carbonate solutions to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate solutions (0.0005-0.003 M) under the pH range of 6-11 and temperatures of 5-60oC. Consistent with the results of previous investigation, the rate of uranium release from sodium autunite exhibited minimal dependency on temperature; but were strongly dependent on pH and increasing concentrations of bicarbonate solutions. Most notably at pH 7, the rate of uranium release exhibited 370 fold increases relative to the rate of uranium release in the absence of bicarbonate. However, the effect of increasing concentrations of bicarbonate solutions on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release. Results indicate the activation energies were unaffected by temperature and bicarbonate concentration variations, but were strongly dependent on pH conditions. As pH increased from 6 to 11, activation energy values were observed to decrease from 29.94 kJ mol-1 to 13.07 kJ mol-1. The calculated activation energies suggest a surface controlled dissolution mechanism.

  3. Can reprocessed uranium become the most natural substitute to uranium?

    International Nuclear Information System (INIS)

    This paper performs a value-in-use assessment of reprocessed uranium (RepU) by applying the ‘Customer Value Management’ methodology. This represents a progressive and practical approach which formalizes in a stepwise manner the customer’s requirements and preferences, and what values are relevant to him in the supplier’s offering. (author)

  4. Improvement of uranium extraction during uranium concentrate purification

    Energy Technology Data Exchange (ETDEWEB)

    Aurelian, F.; Georgescu, D.P.; Serban, N.; Panturu, E. [R and D Institute for Rare and Radioactive Metals, Bucharest (Romania)

    2000-07-01

    The majority of solvent extraction operations in the mining industry have the problem of forming a stable emulsion and the eventual formation of crud. The major causes of crud formation in the solvent extraction circuits are suspended solids, colloidal silica and organic constituents, such as humic acids. During the refining of Uranium concentrates sodium or ammonium diuranate are treated with a solvent extraction process. The formation of an emulsion or crud affects the purification process and generates losses of valuable uranium during solid liquid separation. The technology proposed, in a first stage, use dissolution of uranium concentrates under temperature and agitation, in a nitric acid media. This operation partially removes organic impurities. After the dissolution, the solution is kept with the aim to remove silica by settling. Part of the organic impurities are removed by filtration together with silica and other entrained impurities (suspended solids). The liquid phase is carbonated until inorganic impurities are precipitated. From the clear solutions the sodium diuranate is precipitated with sodium hydroxide solution. The uranium purification is controlled by the aqueous phase acidity level. The mechanism of crud formation and prevention are also explained in this paper. (author)

  5. Reactive polymers: part I - Novel polystyrene-anchored copper (II), nickel (II), cobalt (II), iron (III), zinc (II), cadmium (II), molybdenum (VI) and uranium (VI) complexes of the chelating resin containing thiosemicarbazone

    International Nuclear Information System (INIS)

    A new chelating resin containing thiosemicarbazone has been synthesized by the reaction of aldehydopolystyrene and thiosemicarbazide. The polystyrene bound thiosemicarbazone reacts with salicylaldehyde leading to the formation of a new Schiff base chelating resin which reacts with sodium monochloroacetate and gives the polymer bound S-acetatothiosemicarbazone. The new chelating resin forms complexes of the types PS-LCuX·S, PS-LNiX·3S, PS-LHNi(acac)2, PS-LCoX·3S, PS-LFeX2·2S, PS-LZnX·S, PS-LCdX·S, PS-LMoO2(acac) and PS-LUO2X·S (where PS-LH = polymeranchored ligand; S = DMF or CH3OH; X=Cl or CH3COO- and acacH = acetylacetone). The chelating resins and complexes have been characterized by elemental analysis, IR and electronic spectra and magnetic measurements. The Cu(II), Ni(II), Co(II), and Fe(III) complexes are paramagnetic while the Zn(II), Cd(II), Mo(VI) and U(VI) complexes are diamagnetic. The IR data indicate the thioenolization of the ligand in the complexes (except in PS-LHNi(acac)2 where it behaves as a neutral bidentate ligand). (author). 24 refs., 2 tabs

  6. Rejuvenation processes applied to 'poisoned' anion exchangers in uranium processing

    International Nuclear Information System (INIS)

    The removal of 'poisons' from anion exchangers in uranium processing of Canadian radioactive ores is commonly called rejuvenation or regeneration. The cost of the ion exchange recovery of uranium is adversely affected by a decrease in the capacity and efficiency of the anion exchangers, due to their being 'poisoned' by silica, elemental sulphur, molybdenum and tetrathionates. These 'poisons' have a high affinity for the anion exchangers, are adsorbed in preference to the uranyl complex, and do not desorb with the reagents used normally in the uranyl desorption phase. The frequency of rejuvenation and the reagents required for rejuvenation are determined by the severity of the 'poisoning' accumulated by the exchanger in contact with the uranium leach liquor. Caustic soda (NaOH) at approximately equal to 18 cents/lb is commonly used to remove uranium anion exchangers of tetrathionate ((S406)/-/-) 'poisons'. A potential saving in operating cost would be of consequence if other reagents, e.g. sodium carbonate (Na2CO3) at approximately equal to 3.6 cents/lb or calcium hydroxide (Ca(OH)2) at approximately equal to 1.9 cents/lb, were effective in removing (S406)/-/-) from a 'poisoned' exchanger. A rejuvenation process for a test program was adopted after a perusal of the literature

  7. Geology and mining development of the C-09 uranium deposit

    International Nuclear Information System (INIS)

    The uranium deposit at Campo do Cercado is the first one in Brazil to reach the stage of mining operations. Located in the alkaline volcanic complex of Pocos de Caldas, the deposit is divided into three ore bodies which lie at the edge of a secondary crater in the caldera. Uranium ore occurs in the primary form in association with volcanic breccia belts (body A), as well as a result of hydrothermal action (body B); it is also present in the secondary form (body E) as a product of the leaching of the breccia belts by the oxidation front, followed by concentration and deposition in a reduction zone. The mineralization takes the form of black uranium oxides (UO2/UO3), and, more rarely, coffinite. Pyrite, galena and fluorite are almost always present. Molybdenum is also found in close association with the uranium ore in quantities considered economically viable. The ore reserves of the Pocos de Caldas plateau are estimated at 26,800 t. (author)

  8. Sedimentary uranium deposits in France and French Union

    International Nuclear Information System (INIS)

    The author gives the actual state of our knowledge on uranium deposits found in recent years. Till now in precambrian formations only one important deposit has been found, at Mounana (Gabon) in a series of conglomeratic sandstones belonging to the 'Francevillien'. The observed mineralization is of the uranium-vanadium type. To the carboniferous formations corresponds in France a series of deposits, among which the most important ones are located at Saint-Hippolyte. Uranium as carburans, organic-bound complexes, is contained in lacustrine schists of Westphalian or lower Stephanian formations. A number of occurrences are also known in permo-triassic formations, particularly in the Vanoise Alps, in the Maritime Alps and in the Herault, where important occurrences have recently been found not far from Lodeve. The cretaceous and tertiary systems contain uranium deposits in phosphate rocks (Morocco, Senegal, Togo, Middle-Congo). Two sedimentary oligocene deposits are known in France. Lastly, the Vinaninkarena deposit in Madagascar, known for a long time, is the only important one reported in the quaternary series. (author)

  9. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

    2012-11-01

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

  10. Reactivity of the uranium(IV) carbene complex [U(BIPM(TMS))(Cl)(μ-Cl)₂Li(THF)₂] (BIPM(TMS) = {C(PPh₂NSiMe₃)₂}) towards carbonyl and heteroallene substrates: metallo-Wittig, adduct formation, C-F bond activation, and [2 + 2]-cycloaddition reactions.

    Science.gov (United States)

    Cooper, Oliver J; Mills, David P; Lewis, William; Blake, Alexander J; Liddle, Stephen T

    2014-10-14

    The reactivity of the uranium(IV) carbene complex [U(BIPM(TMS))(Cl)(μ-Cl)2Li(THF)2] (1, BIPM(TMS) = {C(PPh2NSiMe3)2}) towards carbonyl and heteroallene substrates is reported. Reaction of 1 with benzophenone proceeds to give the metallo-Wittig terminal alkene product Ph2C=C(PPh2NSiMe3)2 (2); the likely "UOCl2" byproduct could not be isolated. Addition of the bulky ketone PhCOBu(t) to 1 resulted in loss of LiCl, coordination of the ketone, and dimerisation to give [U(BIPM(TMS))(Cl)(μ-Cl){OC(Ph)(Bu(t))}]2 (3). The reaction of 1 with coumarin resulted in ring opening of the cyclic ester and a metallo-Wittig-type reaction to afford [U{BIPM(TMS)[C(O)(CHCHC6H4O-2)]-κ(3)-N,O,O'}(Cl)2(THF)] (4) where the enolate product remains coordinated to uranium. The reaction of PhCOF with 1 resulted in C-F bond activation and oxidation resulting in isolation of [U(O)2(Cl)2(μ-Cl)2{(μ-LiDME)OC(Ph)=C(PPh2NSiMe3)(PPh2NHSiMe3)}2] (5) along with [U(Cl)2(F)2(py)4] (6). The reactions of 1 with tert-butylisocyanate or dicyclohexylcarbodiimide resulted in the isolation of the [2 + 2]-cycloaddition products [U{BIPM(TMS)[C(NBu(t)){OLi(THF)2(μ-Cl)Li(THF)3}]-κ(4)-C,N,N',N''}(Cl)3] (7) and [U{BIPM(TMS)[C(NCy)2]-κ(4)-C,N,N',N''}(Cl)(μ-Cl)2Li(THF)2] (8). Complexes 2-8 have been variously characterised by single crystal X-ray diffraction, multi-nuclear NMR and FTIR spectroscopies, Evans method solution magnetic moments, variable temperature SQUID magnetometry, and elemental analyses.

  11. NUSIMEP-7: uranium isotope amount ratios in uranium particles.

    Science.gov (United States)

    Truyens, J; Stefaniak, E A; Aregbe, Y

    2013-11-01

    The Institute for Reference Materials and Measurements (IRMM) has extensive experience in the development of isotopic reference materials and the organization of interlaboratory comparisons (ILC) for nuclear measurements in compliance with the respective international guidelines (ISO Guide 34:2009 and ISO/IEC 17043:2010). The IRMM Nuclear Signatures Interlaboratory Measurement Evaluation Program (NUSIMEP) is an external quality control program with the objective of providing materials for measurements of trace amounts of nuclear materials in environmental matrices. Measurements of the isotopic ratios of the elements uranium and plutonium in small amounts, typical of those found in environmental samples, are required for nuclear safeguards and security, for the control of environmental contamination and for the detection of nuclear proliferation. The measurement results of participants in NUSIMEP are evaluated according to international guidelines in comparison to independent external certified reference values with demonstrated metrological traceability and uncertainty. NUSIMEP-7 focused on measurements of uranium isotope amount ratios in uranium particles aiming to support European Safeguards Directorate General for Energy (DG ENER), the International Atomic Energy Agency's (IAEA) network of analytical laboratories for environmental sampling (NWAL) and laboratories in the field of particle analysis. Each participant was provided two certified test samples: one with single and one with double isotopic enrichment. These NUSIMEP test samples were prepared by controlled hydrolysis of certified uranium hexafluoride in a specially designed aerosol deposition chamber at IRMM. Laboratories participating in NUSIMEP-7 received the test samples of uranium particles on two graphite disks with undisclosed isotopic ratio values n((234)U)/n((238)U), n((235)U)/n((238)U) and n((236)U)/n((238)U). The uranium isotope ratios had to be measured using their routine analytical

  12. Multisource geological data mining and its utilization of uranium resources exploration

    Science.gov (United States)

    Zhang, Jie-lin

    2009-10-01

    Nuclear energy as one of clear energy sources takes important role in economic development in CHINA, and according to the national long term development strategy, many more nuclear powers will be built in next few years, so it is a great challenge for uranium resources exploration. Research and practice on mineral exploration demonstrates that utilizing the modern Earth Observe System (EOS) technology and developing new multi-source geological data mining methods are effective approaches to uranium deposits prospecting. Based on data mining and knowledge discovery technology, this paper uses multi-source geological data to character electromagnetic spectral, geophysical and spatial information of uranium mineralization factors, and provides the technical support for uranium prospecting integrating with field remote sensing geological survey. Multi-source geological data used in this paper include satellite hyperspectral image (Hyperion), high spatial resolution remote sensing data, uranium geological information, airborne radiometric data, aeromagnetic and gravity data, and related data mining methods have been developed, such as data fusion of optical data and Radarsat image, information integration of remote sensing and geophysical data, and so on. Based on above approaches, the multi-geoscience information of uranium mineralization factors including complex polystage rock mass, mineralization controlling faults and hydrothermal alterations have been identified, the metallogenic potential of uranium has been evaluated, and some predicting areas have been located.

  13. Modified sodium diuranate process for the recovery of uranium from uranium hexafluoride transport cylinder wash solution

    Science.gov (United States)

    Meredith, Austin Dean

    Uranium hexafluoride (UF6) containment cylinders must be emptied and washed every five years in order to undergo recertification, according to ANSI standards. During the emptying of the UF6 from the cylinders, a thin residue, or heel, of UF6 is left behind. This heel must be removed in order for recertification to take place. To remove it, the inside of the containment cylinder is washed with acid and the resulting solution generally contains three or four kilograms of uranium. Thus, before the liquid solution can be disposed of, the uranium must be separated. A modified sodium diuranate (SDU) uranium recovery process was studied to support development of a commercial process. This process was sought to ensure complete uranium recovery, at high purity, in order that it might be reused in the nuclear fuel cycle. An experimental procedure was designed and carried out in order to verify the effectiveness of the commercial process in a laboratory setting. The experiments involved a small quantity of dried UO2F2 powder that was dosed with 3wt% FeF3 and was dissolved in water to simulate the cylinder wash solution. Each experiment series started with a measured amount of this powder mixture which was dissolved in enough water to make a solution containing about 120 gmU/liter. The experiments involved validating the modified SDU extraction process. A potassium diuranate (KDU) process was also attempted. Very little information exists regarding such a process, so the task was undertaken to evaluate its efficacy and determine whether a potassium process yields any significant differences or advantages as compared to a sodium process. However, the KDU process ultimately proved ineffective and was abandoned. Each of the experiments was organized into a series of procedures that started with the UO2F2 powder being dissolved in water, and proceeded through the steps needed to first convert the uranium to a diuranate precipitate, then to a carbonate complex solution, and finally

  14. The Uranium Institute

    International Nuclear Information System (INIS)

    Full text: The Uranium Institute has run a World Wide Web site since July 1995 and has seen user sessions reach around 5600 per week. The site comprises some 700 pages of news and information and has attracted a good deal of favourable comment. The site is intended as an information resource to augment the service provided by the UI Information Service and is aimed at both industry and non-industry web users. The actual user community includes UI members and others from the industry, mining and financial analysts, lots of students and school children, journalists and a large number of unknown individuals. Hopefully the workshop can be used to examine user reactions to industry sites and get some idea of the extent to which we are talking to ourselves over the net rather than talking to our 'publics'. Although the Ul was quite early on the web scene by nuclear standards, development of the UI site has proceeded fairly slowly and the accent has always been on good quality information. With 170,000 visitors per year site use indicates that there is a demand for nuclear information while responses indicate that there is a substantial body of quiet nuclear support which welcomes the opportunity to communicate with the industry. Does the web help to pull the industry and its supporters together? The WWW has often been portrayed as a vehicle which allows good news and information to be communicated direct to the 'public' but attempts to realise this opportunity have not always met with success. The UI has had a generally positive experience with its web site but this is not universally the case. I would like to explore the background to this both in my presentation and in the subsequent discussion. My general theme is to ask the question 'What do users want from a nuclear related web site and are we providing it?'. Conversely it is pertinent to ask the question, 'does what the users seem to want coincide with what we wish to supply?'. I will seek to address these

  15. Exploring the uranyl organometallic chemistry: from single to double uranium carbon bonds

    International Nuclear Information System (INIS)

    Uranyl organometallic complexes featuring uranium(VI) carbon single and double bonds have been obtained from uranyl UO2X2 precursors by avoiding reduction of the metal center. X-ray diffraction and density functional theory analyses of these complexes showed that the UC and UdC bonds are polarized toward the nucleophilic carbon. (authors)

  16. The Chemistry and Toxicology of Depleted Uranium

    OpenAIRE

    Katz, Sidney A.

    2014-01-01

    Natural uranium is comprised of three radioactive isotopes: 238U, 235U, and 234U. Depleted uranium (DU) is a byproduct of the processes for the enrichment of the naturally occurring 235U isotope. The world wide stock pile contains some 1½ million tons of depleted uranium. Some of it has been used to dilute weapons grade uranium (~90% 235U) down to reactor grade uranium (~5% 235U), and some of it has been used for heavy tank armor and for the fabrication of armor-piercing bullets and missiles....

  17. The migration of uranium through sandstone

    International Nuclear Information System (INIS)

    Three column experiments are described in which the migration of uranium through Clashach Sandstone was studied. A priori predictions of uranium migration in the experiments were made using an equilibrium chemical transport model. The experimental results showed that, even under oxidising conditions, the migration of uranium is strongly retarded owing to the affinity of uranium for mineral surfaces. For the relatively simple chemical system investigated, the chemical transport model was successful in predicting the migration of uranium and its distribution along the column. (author)

  18. Process for alloying uranium and niobium

    Science.gov (United States)

    Holcombe, Cressie E.; Northcutt, Jr., Walter G.; Masters, David R.; Chapman, Lloyd R.

    1991-01-01

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  19. URANIUM 1991 resources, production and demand

    International Nuclear Information System (INIS)

    The uranium supply aspects of the nuclear fuel cycle have undergone considerable change during the last few years. Nuclear power generating capacity can continue to expand only if there is confidence in the final supply of uranium. This report presents governmental compilations of uranium resource and production data, as established in 1991. It also presents short-term projections of the nuclear industry future natural uranium requirements and reviews the status of uranium exploration, resources and production throughout the world. 10 refs., 14 figs., 15 tabs., 6 appendices

  20. Determination of uranium and thorium in basalts and uranium in aqueous solution by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Methods are described for the simultaneous determination of uranium and thorium in basaltic rocks at concentrations from mg kg-1 (ppm) to μg kg-1 (ppb) levels and for uranium in solution at femtogram levels. The technique for basalts does not require preconcentration and samples are taken into solution using a conventional rapid acid digestion method. The results obtained agree, in general, within 10% of published values for eight basalt reference materials. In addition, optimum conditions with respect to acidic media and storage vessel were ascertained as 5% HNO3 and high-density polyethylene respectively. The method is applicable to a wide range of silicate rocks and other geological materials. For the determination of uranium at sub-ng ml-1 concentrations, such as occur in natural waters, sample introduction by electrothermal vaporization was investigated using several matrices. Complexation of uranium with ethylenediaminetetraacetic acid (EDTA) prior to analysis proved successful at levels down to 0.5 fg ml-1. Routine determination of such low concentrations is thus feasible. (author)

  1. A Mine-Based Uranium Market Clearing Model

    OpenAIRE

    Aris Auzans; Erich A. Schneider; Robert Flanagan; Tkaczyk, Alan H.

    2014-01-01

    Economic analysis and market simulation tools are used to evaluate uranium (U) supply shocks, sale or purchase of uranium stockpiles, or market effects of new uranium mines or enrichment technologies. This work expands on an existing U market model that couples the market for primary U from uranium mines with those of secondary uranium, e.g., depleted uranium (DU) upgrading or highly enriched uranium (HEU) down blending, and enrichment services. This model accounts for the interdependence bet...

  2. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Herlory, Olivier, E-mail: olivier.herlory@gmail.com [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Bonzom, Jean-Marc, E-mail: jean-marc.bonzom@irsn.fr [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Gilbin, Rodolphe, E-mail: rodolphe.gilbin@irsn.fr [IRSN-Laboratoire de Biogéochimie, Biodisponibilité et Transferts des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France)

    2013-09-15

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F{sub 0}/F{sub v}. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F{sup ′}{sub q}/F{sup ′}{sub m}, EC{sub 50} = 303 ± 64 μg U L{sup −1} after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC{sub 50} = 142 ± 98 μg U L{sup −1} after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown

  3. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    International Nuclear Information System (INIS)

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F′q/F′m, EC50 = 303 ± 64 μg U L−1 after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50 = 142 ± 98 μg U L−1 after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction

  4. Interactions of uranium (VI) with biofilms; Wechselwirkung von Uran(VI) mit Biofilmen

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, Sina; Arnold, Thuro; Bernhard, Gert

    2013-07-01

    In this study a detailed investigation was made of natural biofilms from two uranium-contaminated sites, namely the former uranium mine in Koenigstein (Saxony) and the ground surface of the former Grassenhalde tailing heap in Thuringia. A predominance of uranyl sulphate (UO{sub 2}SO{sub 4}), a highly mobile, solute uranium species, was found in the mine waters of both sites. In this study an investigation was made of the capacity of Euglena mutabilis cells for bioaccumulation of uranium in a pH range of 3 to 6 using living cells and sodium perchlorate (9 g/l) or sodium sulphate (3.48 g/l) as background media. At acidic pH values in the range from 3 to 4 it was possible to remove more than 90% of the original uranium content from the test solution regardless of the medium being used. The speciation of the uranium accumulated in the Euglena cells was investigated by laser-induced fluorescence spectroscopy (LIFS). It was found that a new uranium species of low variability forms on the cells independent of the background medium, state of life of the cells and pH value. By comparing the data from the LIFS measurements with reference values it was possible to narrow down the identity of the uranium species to one bonded to (organo) phosphate and/or carboxylic functional groups. Using time-resolved FT-IR spectroscopy it was possible to demonstrate carboxylic bonding of uranium to dead cells. However it was not possible to exclude (organo) complexation with this method. An investigation of the specific location of the uranium on or in the cells using combined CLSM/LIFS technology yielded first indications of intracellular accumulation of uranium in the living cells. Supplementary TEM/EDX measurements confirmed the intracellular uptake, showing it to occur in round to oval cell organelles which are thought to be vacuoles or vacuole-like vesicles. It was not possible to detect uranium on dead cells using these methods. This points to passive, homogeneously distributed

  5. Domestic utility attitudes toward foreign uranium supply

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    The current embargo on the enrichment of foreign-origin uranium for use in domestic utilization facilities is scheduled to be removed in 1984. The pending removal of this embargo, complicated by a depressed worldwide market for uranium, has prompted consideration of a new or extended embargo within the US Government. As part of its on-going data collection activities, Nuclear Resources International (NRI) has surveyed 50 domestic utility/utility holding companies (representing 60 lead operator-utilities) on their foreign uranium purchase strategies and intentions. The most recent survey was conducted in early May 1981. A number of qualitative observations were made during the course of the survey. The major observations are: domestic utility views toward foreign uranium purchase are dynamic; all but three utilities had some considered foreign purchase strategy; some utilities have problems with buying foreign uranium from particular countries; an inducement is often required by some utilities to buy foreign uranium; opinions varied among utilities concerning the viability of the domestic uranium industry; and many utilities could have foreign uranium fed through their domestic uranium contracts (indirect purchases). The above observations are expanded in the final section of the report. However, it should be noted that two of the observations are particularly important and should be seriously considered in formulation of foreign uranium import restrictions. These important observations are the dynamic nature of the subject matter and the potentially large and imbalanced effect the indirect purchases could have on utility foreign uranium procurement.

  6. Uranium 2011 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2012-01-01

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24th edition of the “Red Book”, a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countri...

  7. Uranium 2014 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  8. Uranium 2005 Resources, Production and Demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris. Nuclear Energy Agency

    2006-01-01

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  9. Recent developments in uranium exploration, production and environmental issues. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    production companies have initiated uranium exploration to increase resources associated with current operations and to confirm the potential of other known deposits and regional exploration trends. Niger exports all of its uranium so market price and project economics are important factors to its uranium industry. By contrast, all of India's uranium production is dedicated to its domestic nuclear power programme. Though uranium production is less sensitive to production economics, India is nevertheless emphasizing exploration in geologic environments that have the potential to host large, high-grade deposits with the potential for lower production costs. To ensure self-sufficiency in the near term, India is also developing new production capability in a variety of geologic environments with well-established resources, but with lower grades and capacity potential. The recent market price increase has made projected production costs for two of Argentina's uranium projects more competitive in the marketplace. Before re-starting existing projects or developing new projects, however, Argentina's production company, CNEA, must acquire a number of mining permits and licenses. To ensure that its projects gain public and regulatory approval, CNEA has implemented programmes that emphasize technology that will ensure that its proposed operations meet regulatory requirements. It has also initiated a public relations programme to demonstrate the environmental compatibility of its projects to affected communities. Uranium mining and processing and site rehabilitation in the Czech Republic are closely monitored by the State Office for Nuclear Safety (SUJB). The oversight responsibilities of SUJB and the body of law that ensures its authority are presented in paper that may be useful to countries with emerging nuclear industries. Approximately 80% of China's uranium resource base is hosted in hard rock geologic environments, mainly in vein deposits in granites and volcanic complexes. These

  10. Resonance ionisation spectroscopy of uranium

    International Nuclear Information System (INIS)

    Resonance ionization mass spectrometry has made tremendous strides in its potential and the diversity of applications. A particularly important application of interest is sensitive and selective detection/trace analysis of various long-lived radio-active isotopes. Investigations on three-color photoionization studies of uranium are reported here

  11. Jabiluka gold-uranium project

    International Nuclear Information System (INIS)

    The Jabiluka gold-uranium deposit, 230km east of Darwin in the Alligator Rivers Region of the Northern Territory, was discovered by Pancontinental Mining Limited in 1971. Jabiluka, with reserves in excess of 200,000 tonnes of contained U3O8 in two deposits 500 metres apart, is the world's largest high grade uranium deposit and also contains nearly 12 tonnes of gold. It is proposed that only the larger deposit, Jabiluka II will be mined - by underground extraction methods, and that 275,000 tonnes of ore per year will be mined and processed to produce 1,500 tonnes of U3O8 and up to 30,000 oz of gold. The revenue from the uranium sales is estimated to be of the order of A$100 million per year at A$30/lb. By the end of 1982 all necessary mining and environmental approvals had been obtained and significant marketing progress made. With the Australian Labor Party winning Commonwealth Government in the 1983 election, Pancontinental's permission to seek sales contracts was withdrawn and development of the Jabiluka deposit ceased. Jabiluka remains undeveloped - awaiting a change in Australian Government policy on uranium. figs., maps

  12. Uranium leaching by fungal metabolite

    International Nuclear Information System (INIS)

    To explore new means of bioleaching, one strain of high-yielding fungi-Aspergillus niger which could produce organic acids was separated and purified from soil samples of uranium mine. The influence of cultural temperature, initial pH value, inoculum sizes on its growth characteristics were carried out. And the tests of uranium leaching of metabolin of Aspergillus niger were operated. On these tests, the effects of metabolin of Aspergillus niger with different pH value produced in the diverse culture temperature on uranium leaching were investigated. The results show that this strain of Aspergillus niger can grow best under the following conditions: the temperature is 37℃, the initial pH value is 7.0, the inoculum sizes is 2% (the OD value of the spores solution is 0.06). The uranium extraction effects relative to the final pH value of the cultures. and the maximum leaching rates is 83.05% when the pH value is 2.3. (authors)

  13. Environmental Development Plan: uranium enrichment

    International Nuclear Information System (INIS)

    This Environmental Development Plan identifies and examines the environmental, health, safety, and socioeconomic concerns and corresponding requirements associated with the DOE research, development, demonstration, and operation of the Uranium Enrichment program, including the gaseous diffusion process, the centrifuge process, centrifuge rotor fabrication, and related research and development activities

  14. Thermal conductivity of uranium dioxide

    International Nuclear Information System (INIS)

    The thermal conductivity of uranium dioxide of composition UO2.015 was measured from 300 to 1400 K. The phonon component of the conductivity is found to be quantitatively accounted for by the theoretical expression of Slack derived by modifying the Leibfried-Schlomann equation. (orig.)

  15. Foreign uranium supply. Final report

    International Nuclear Information System (INIS)

    This report presents an assessment of the extent to which foreign uranium may be available to United States utilities in the short term (through 1980), the intermediate term (1981--1985), and the long term (1986--95). All free world foreign uranium producers and prospects are included, with particular emphasis on Australia, Canada, southern Africa, France, and French-speaking Africa. The assessment includes reserves, resources, exploration and prospects; firm and potential production capacity and prospects; national policies and relevant political and economic conditions; foreign uranium demand; etc. Conclusions are: Foreign supply capability is greater than foreign demand in the near term. The current availability of uncommitted future Australian production presents an unusual opportunity for establishing commercial relations with very substantial producers. Foreign uranium contracts represent an increase in diversity of supply and access to resources but have less assurance of supply than do domestic contracts. However, uncertainties can frequently be accommodated within an overall procurement program, thereby retaining the diversity and price advantages of foreign procurement. The practice of market pricing of contracts reduces the incentives for foreign contracting

  16. Mining inventory of Uruguay : Uranium

    International Nuclear Information System (INIS)

    With the aim of Uruguay Uranium prospecting in this document has been summarized the following items: lithostratigraphy, background, economics aspects, radiation measuring, geochemistry, geophysics in Yerba Sola, Magnolia, Paso Amarillo, La Mercedes, Puntas de Abrojal, Las Chircas, La Divisa, Chuy, Apretado and Frayle Muerto

  17. Uranium: Prices, rise, then fall

    International Nuclear Information System (INIS)

    Uranium prices hit eight-year highs in both market tiers, $16.60/lb U3O8 for non-former Soviet Union (FSU) origin and $15.50 for FSU origin during mid 1996. However, they declined to $14.70 and $13.90, respectively, by the end of the year. Increased uranium prices continue to encourage new production and restarts of production facilities presently on standby. Australia scrapped its open-quotes three-mineclose quotes policy following the ouster of the Labor party in a March election. The move opens the way for increasing competition with Canada's low-cost producers. Other events in the industry during 1996 that have current or potential impacts on the market include: approval of legislation outlining the ground rules for privatization of the US Enrichment Corp. (USEC) and the subsequent sales of converted Russian highly enriched uranium (HEU) from its nuclear weapons program, announcement of sales plans for converted US HEU and other surplus material through either the Department of Energy or USEC, and continuation of quotas for uranium from the FSU in the United States and Europe. In Canada, permitting activities continued on the Cigar Lake and McArthur River projects; and construction commenced on the McClean Lake mill

  18. Synthesis of uranium fluorides from uranium dioxide with ammonium bifluoride and ammonolysis of uranium fluorides to uranium nitrides

    Science.gov (United States)

    Yeamans, Charles Burnett

    This work presents the chemical conversion of uranium oxides to uranium fluorides, and their subsequent conversion to uranium nitrides. Uranium dioxide reacts with ammonium bifluoride at 20°C to form compound in the ammonium-uranium fluoride chemical system. This reaction occurs between solid uranium dioxide at the surface of the particles and ammonium fluoride vapor. A shrinking-sphere model demonstrated surface reaction kinetics, not mass transport by diffusion through the product layer, limit the reaction rate when the starting material consists of 100 mum uranium dioxide particles. Powder x-ray diffraction showed the reaction to be complete within 8 hours, with (NH4) 4UF8 the reaction product. High-resolution electron microcopy revealed the product is largely amorphous on a micrometer-scale, but contains well-formed crystal domains on the order of 10x10 nm. X-ray diffraction showed the reaction progresses though beta-NH4UF5, delta-(NH 4)2UF6, and gamma-(NH4)2UF6 intermediate phases before finally forming (NH4)4UF 8. Modeling the system as a series of first-order reaction suggested a fourth intermediate, possibly UF4, is likely to occur. The reaction of (NH4)4UF8 with ammonia gas at 800°C forms alpha-U2N3/UN2 solid solution products with a composition of UN1.83. The x-ray powder diffraction pattern of this product is the fcc pattern commonly referenced as that of UN2 and the lattice parameter was 0.53050 nm. Surface area increased by a factor of ten during ammonolysis, consistent with the action of a hydriding agent. The alpha-U2N 3/UN2 solid solution system formed contained 1 wt% UO 2 as an impurity. Upon subsequent heating to 1150°C for 4.5 hours under argon, the nitride sample formed UN with a UO2 impurity of 9 wt%. Based on the HRTEM images, oxidation in the UN product appears to be limited to within 20 nm of particle surfaces and grain boundaries.

  19. Role of uranium speciation on its bioaccumulation, transfer and toxicity in plants. Application to phyto-remediation

    International Nuclear Information System (INIS)

    Uranium is both a radiological and a chemical toxic, which naturally occurs in the environment as a trace element. Metal accumulation and distribution in plants is modulated by speciation. The aim of this PhD work was thus to assay uranium accumulation, intra planta repartition and toxicity according to its speciation in solution. Acquired knowledge will be applied in phyto-remediation technologies. We exposed three plant species (sunflower, oilseed rape and wheat) to a panel of hydroponic media containing one or two predominant uranium chemical forms. After exposition in these various contaminated media, we evaluated uranium content in plant organs by ICP-MS. In order to investigate uranium repartition and localization at organ/tissue and cellular scales, we carried out four complementary imaging techniques. The uranium repartition within soluble and membrane fractions in roots and shoot was assayed after fractionation and separation through a chromatography column. In parallel, we used X-ray absorption spectroscopy to determine the molecular-level structure of chemical species formed by uranium in exposure media and plant samples. Finally, we explored toxic effects of uranium on plant growth and metabolism. Our results revealed three schema of accumulation according to the uranium speciation in the exposure medium: when exposed to UO22+ free ion, root accumulation is high, but uranium transfer to the shoots is limited. Uranium is immobilized by adsorption on root surface and precipitation on root cell walls, associated with phosphorus and calcium. The existence of uranium-binding proteins is also suggested. When complexed with phosphate, root accumulation is considerably reduced and translocation becomes negligible. Uranium is precipitated as described above. Conversely, complexation with carbonate or citrate reduces root accumulation but drastically increases translocation to the shoots. If some uranyl phosphate precipitates are still found in root and shoot, a

  20. Uranium Immobilization in Wetland Soils

    Science.gov (United States)

    Jaffe, Peter R.; Koster van Groos, Paul G.; Li, Dien; Chang, Hyun-Shik; Seaman, John C.; Kaplan, Daniel I.; Peacock, Aaron D.; Scheckel, Kirk

    2014-05-01

    In wetlands, which are a major feature at the groundwater-surface water interface, plants deliver oxygen to the subsurface to keep root tissue aerobic. Some of this oxygen leaches into the rhizosphere where it will oxidize iron that typically precipitates on or near roots. Furthermore, plans provide carbon via root exudates and turnover, which in the presence of the iron oxides drives the activity of heterotrophic iron reducers in wetland soils. Oxidized iron is an important electron acceptor for many microbially-driven transformations, which can affect the fate and transport of several pollutants. It has been shown that heterotrophic iron reducing organisms, such as Geobacter sp., can reduce water soluble U(VI) to insoluble U(IV). The goal of this study was to determine if and how iron cycling in the wetland rhizosphere affects uranium dynamics. For this purpose, we operated a series of small-scale wetland mesocosms in a greenhouse to simulate the discharge of uranium-contaminated groundwater to surface waters. The mesocosms were operated with two different Fe(II) loading rates, two plant types, and unplanted controls. The mesocosms contained zones of root exclusion to differentiate between the direct presence and absence of roots in the planted mesocosms. The mesocosms were operated for several month to get fully established, after which a U(VI) solution was fed for 80 days. The mesocosms were then sacrificed and analyzed for solid-associated chemical species, microbiological characterization, micro-X-ray florescence (µ-XRF) mapping of Fe and U on the root surface, and U speciation via X-ray Absorption Near Edge Structure (XANES). Results showed that bacterial numbers including Geobacter sp., Fe(III), as well as total uranium, were highest on roots, followed by sediments near roots, and lowest in zones without much root influence. Results from the µ-XRF mapping on root surfaces indicated a strong spatial correlation between Fe and U. This correlation was