WorldWideScience

Sample records for aqueous polar aromatic

  1. Aromatic donor-acceptor interactions in non-polar environments.

    Science.gov (United States)

    Prentice, Giles M; Pascu, Sofia I; Filip, Sorin V; West, Kevin R; Pantoş, G Dan

    2015-05-14

    We have evaluated the strength of aromatic donor-acceptor interactions between dialkyl naphthalenediimide and dialkoxynaphthalene in non-polar environments. (1)H NMR, UV-vis spectroscopy and isothermal titration calorimetry were used to characterise this interaction. We concluded that the strength of donor-acceptor interactions in heptane is sufficient to drive supramolecular assemblies in this and other aliphatic solvents. PMID:25875729

  2. THz polarization difference imaging of aqueous targets

    Science.gov (United States)

    Sung, Shijun; Bajwa, Neha; Ramirez, Lucia; Grundfest, Warren; Taylor, Zachary

    2015-08-01

    This paper describes the basic design, implementation, and testing of a polarization difference imaging system for use on aqueous targets. The ultimate performance limitation of THz imaging in many active areas of research is clutter from surface geometry. While the signal to nose ratio (SNR) of standard THz imaging systems is quite large, the signal to clutter ratio (SCR) often faced in an imaging application is orders of magnitude lower and, in many cases, lower than the contrast to noise (CNR) resulting in imagery where the contrast mechanism of interest does not significantly contribute to the overall observed contrast. To overcome these limitations we develop a system that uses a circularly polarized source and linearly polarized detectors to acquire images of transverse electric (TE) and transverse magnetic (TM) reflectivities of the target over the same field of view. Geletin based tissue mimicking phantoms are fabricated with spatially varying water content and modified with a range of surface topologies and surface roughness. TE and TM images are combined to yield self-calibrated clutter-suppressed images. The resulting image indicates that the imaging field clutter affected both polarization channels nearly equally allowing the system to resolve differences in phantom water content. This design is a step toward windowless THz imaging capability critical for clinical translation where patient imaging is dominated by clutter.

  3. Fibrous adsorbent for removal of aqueous aromatic hydrocarbons.

    Science.gov (United States)

    Jung, Yong-Jun; Kiso, Yoshiaki; Oguchi, Tatsuo; Yamada, Toshiro; Takagi, Hiroo; Nishimura, Kazuyuki

    2007-01-01

    Bundles of a strongly hydrophobic fibrous material (p-phenylene-2,6-benzobisoxazole; PBO; Zylon) were employed as an adsorbent for the removal of aqueous aromatic compounds, because the PBO fibers are too rigid to be woven and did not entrap suspended solids. The removal performance for nine kinds of polyaromatic hydrocarbons (PAHs) and di-(2-ethylhexyl) phthalate (DEHP) was evaluated. PAHs and DEHP at initial concentrations of 50 microg L(-1) were removed at 72.5-99.9% and ca. 95%, respectively, although the removal efficiencies were affected by the phase ratio (fiber weight/solution volume). The logarithm of the partition coefficient (log K) for planar PAHs was linearly correlated with the logarithm of the n-octanol/water partition coefficient (log P), but nonplanar PAHs, such as cis-stilbene, p-terphenyl, and o-terphenyl, showed significantly lower adsorption performance. The adsorbed PAHs were not desorbed effectively with CH3CN, CH2Cl2, and toluene. On the other hand, DEHP was effectively desorbed with methanol. PMID:17585293

  4. Oxidative aromatization of Hantzsch 1,4-dihydropyridines by aqueous hydrogen peroxide-acetic acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simple method for the oxidative aromatization of Hantzsch 1,4-dihydropyridines to the corresponding pyridines is achieved by using hydrogen peroxide as green oxidant and acetic acid as catalyst in aqueous solution.

  5. Polarization charge: Theory and applications to aqueous interfaces

    Science.gov (United States)

    Shi, Bobo; Agnihotri, Mithila V.; Chen, Si-Han; Black, Richie; Singer, Sherwin J.

    2016-04-01

    When an electric field is applied across an interface, a dielectric will acquire a polarization charge layer, assumed infinitely thin in the theory of macroscopic dielectrics and also in most treatments of electrokinetic phenomena in nanoscale structures. In this work we explore the polarization charge layer in molecular detail. Various formal relations and a linear response theory for the polarization charge are presented. Properties of the polarization charge layer are studied for three aqueous interfaces: air-water, a crystalline silica surface with water, and an amorphous silica surface with water. The polarization charge is calculated from equilibrium simulations via linear response theory and from non-equilibrium simulations, and the results are within statistical error. The polarization charge is found to be distributed within a region whose width is on the order of a nanometer.

  6. Polarization charge: Theory and applications to aqueous interfaces.

    Science.gov (United States)

    Shi, Bobo; Agnihotri, Mithila V; Chen, Si-Han; Black, Richie; Singer, Sherwin J

    2016-04-28

    When an electric field is applied across an interface, a dielectric will acquire a polarization charge layer, assumed infinitely thin in the theory of macroscopic dielectrics and also in most treatments of electrokinetic phenomena in nanoscale structures. In this work we explore the polarization charge layer in molecular detail. Various formal relations and a linear response theory for the polarization charge are presented. Properties of the polarization charge layer are studied for three aqueous interfaces: air-water, a crystalline silica surface with water, and an amorphous silica surface with water. The polarization charge is calculated from equilibrium simulations via linear response theory and from non-equilibrium simulations, and the results are within statistical error. The polarization charge is found to be distributed within a region whose width is on the order of a nanometer. PMID:27131558

  7. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen

    NARCIS (Netherlands)

    Zakzeski, J.; Weckhuysen, B.M.

    2011-01-01

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model compo

  8. A combined chemical + enzymatic method to remove selected aromatics from aqueous streams

    International Nuclear Information System (INIS)

    Aromatics are major pollutants found in aqueous environments and in sediments. While there are many chemical and biochemical processes to remove and/or destroy these contaminants, they have to be considered in light of the economics and the time-scales for treatment. We describe our initial work on a hybrid chemical + enzymatic technique to remove aromatics from aqueous stream. The aromatic is first converted to the corresponding phenol through classical Fenton type chemistry involving catalysis by Fe(II). The phenol is subsequently polymerized through an enzymatic mechanism, using horseradish peroxidase as the oxidative enzyme. The polymer is insoluble in water and can be easily recovered. In addition, such phenolic polymers are useful products with varied applications in coatings and resin technologies. Thus, the pollutants can be eventually converted to useful products

  9. Enhanced aqueous solubility and photodimerization of polycyclic aromatics mediated by γ-Cyclodextrin derivatives

    OpenAIRE

    Wang, Hai Ming

    2012-01-01

    A series of hydrophilic γ-cyclodextrin (CD) thioethers were synthesized and selected as hosts. They were able to solubilize polycyclic aromatic guests in water to much higher extents than native CDs. The results of experimental (phase-solubility method and fluorescence spectroscopy) and theoretical (quantum mechanical and space-filling calculations) investigations confirmed the formation of 1:2 CD-guest complexes in aqueous solution. True molecular solutions of C60 were obtained by dissolving...

  10. Adsorption of polar, nonpolar, and substituted aromatics to colloidal graphene oxide nanoparticles

    International Nuclear Information System (INIS)

    We conducted batch adsorption experiments to understand the adsorptive properties of colloidal graphene oxide nanoparticles (GONPs) for a range of environmentally relevant aromatics and substituted aromatics, including model nonpolar compounds (pyrene, phenanthrene, naphthalene, and 1,3-dichlorobenzene) and model polar compounds (1-naphthol, 1-naphthylamine, 2,4-dichlorophenol, and 2,4-dinitrotoluene). GONPs exhibited strong adsorption affinities for all the test compounds, with distribution coefficients on the order of 103–106 L/kg. Adsorption to GONPs is much more linear than to carbon nanotubes (CNTs) and C60, likely because GO nanoflakes are essentially individually dispersed (rendering adsorption sites of similar adsorption energy) whereas CNT/C60 are prone to bundling/aggregation. For a given compound GONPs and CNTs often exhibit different adsorption affinities, which is attributable to the differences in both the morphology and surface chemistry between the two nanomaterials. Particularly, the high surface O-content of GONPs enables strong H-bonding and Lewis acid–base interactions with hydroxyl- and amino-substituted aromatics. -- Highlights: • Graphene oxide nanoparticles (GONPs) exhibit strong adsorption for aromatics. • GONPs show distinctly different adsorption properties than other carbon particles. • Unique surface chemistry and morphology control adsorption properties of GONPs. • Adsorption is relatively linear because GO nanoflakes are individually dispersed. • High surface O-content enables strong H-bonding and Lewis acid–base interactions. -- Colloidal graphene oxide nanoparticles exhibit strong adsorption affinities and characteristic adsorption properties for environmentally relevant aromatics and substituted aromatics

  11. Selective reduction of aromatic ketones in aqueous medium mediated by Ti(III)/Mn: a revised mechanism.

    Science.gov (United States)

    Rosales, Antonio; Muñoz-Bascón, Juan; Roldan-Molina, Esther; Castañeda, Mayra A; Padial, Natalia M; Gansäuer, Andreas; Rodríguez-García, Ignacio; Oltra, J Enrique

    2014-08-15

    An experimental study on the role played by each of the reagents involved in the selective reduction of aromatic ketones in aqueous medium is reported. In this reaction, the reduction of aromatic ketones is mediated by Cp2TiCl. Moreover, the presence of Mn in the reaction medium is mandatory. To account for these findings, a substantially revised mechanism is proposed. PMID:25019224

  12. Adsorption of polar aromatic hydrocarbons on synthetic calcite

    DEFF Research Database (Denmark)

    Madsen, Lene; Grahl-Madsen, Laila; Grøn, Christian;

    1996-01-01

    The wettability of hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. A model system of synthetic call cite, cyclohexane and the three probe molecules: benzoic acid, benzyl alcohol and benzylamine, have been...... studied by adsorption experiments. The results clearly demonstrate the differences in the adsorption behaviour between probes with different functional groups of varying polarity and acidity. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. The order of...... magnitude of Delta G degrees for the adsorption process implies the formation of a strong bond between the calcite surface and the adsorbate molecules. Copyright (C) 1996 Elsevier Science Ltd....

  13. Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions

    Science.gov (United States)

    Li, Jianguo; Garg, Manju; Shah, Dhawal; Rajagopalan, Raj

    2010-08-01

    Experiments hold intriguing, circumstantial clues to the mechanisms behind arginine-mediated solubilization of small organic drugs and suppression of protein aggregation driven by hydrophobic or aromatic associations, but how exactly arginine's molecular structure and interactions contribute to its function remains unclear since attention has focused so far on the thermodynamics of the preferential exclusion or binding of arginine. Here, we examine, through molecular dynamics simulations, how arginine solubilizes nanoscale particles with hydrophobic surfaces or aromatic-ring-type surface interactions. We show that preferential, hydrophobic, and dispersion interactions of arginine's guanidinium group with the particles lead to a surfactant-like behavior of arginine around the particles and to a solvation layer with a protective polar mask creating a hydrophilic shell. Additionally, arginine-arginine association around the solvation layer further prevents aggregative contacts. The results shed some light on the mechanistic basis of arginine's function as a suppressant of protein aggregation, although the complex energy landscapes and kinetic pathways of aggregation are protein-dependent and pose formidable challenges to developing comprehensive mechanistic pictures. Our results suggest arginine's mode of interaction with hydrophobic patches and aromatic residues could reduce aggregation-prone intermediate states of proteins and shield protein-protein aggregative contacts. The approach used here offers a systematic way of exploring implications of other amino acid/excipient interactions by studying interactions of the excipient with particles grafted with amino acids.

  14. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Chen Baoliang, E-mail: blchen@zju.edu.cn [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Yuan Miaoxin; Liu Hao [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China)

    2011-04-15

    Graphical abstract: The structure-effect relationship provides a reference to select and modify plant residues as a biosorbent with high efficiency to tackle organic pollutants. Research highlights: {yields} Polycyclic aromatic hydrocarbons are effectively removed by plant residues. {yields} Biosorption mechanism of plant residues to abate PAHs is a partitioning process. {yields} Partition coefficients are negatively related with sugar contents of biosorbent. {yields} The aromatic component and K{sub ow} exhibit positive effects on biosorption. {yields} The structure-effect relationship guides plant residue using as a biosorbent. - Abstract: To elucidate biosorption mechanism and removal efficiency of plant residues as a biosorbent to abate polycyclic aromatic hydrocarbons (PAHs) in wastewater, sorption of PAHs onto wood chips (WC), ryegrass roots (RR), orange peels (OP), bamboo leaves (BL), and pine needles (PN) were investigated. The structural characterization of the biosorbents was analyzed by elemental composition, BET-N{sub 2} surface area, and Fourier transform infrared spectroscopy. PAHs sorption to the selected biosorbents were compared and correlated with their structures. Biosorption isotherms fit well with Freundlich equation and the mechanism was dominated by partition process. The magnitude of phenanthrene partition coefficients (K{sub d}) followed the order of PN > BL > OP > RR > WC, ranged from 2484 {+-} 24.24 to 5306 {+-} 92.49 L/kg. Except the WC sample, the K{sub d} values were negatively correlated with sugar content, polar index [(N + O)/C] of the biosorbents, while the aromatic component exhibited positive effects. For a given biosorbent of bamboo leaves, the carbon-normalized partition coefficients (K{sub oc}) were linearly correlated with octanol-water partition coefficients (K{sub ow}) of PAHs, i.e., log K{sub oc} = 1.16 log K{sub ow} - 1.21. The structure-effect relationship provides a reference to select and modify plant residues as a

  15. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent

    International Nuclear Information System (INIS)

    Graphical abstract: The structure-effect relationship provides a reference to select and modify plant residues as a biosorbent with high efficiency to tackle organic pollutants. Research highlights: → Polycyclic aromatic hydrocarbons are effectively removed by plant residues. → Biosorption mechanism of plant residues to abate PAHs is a partitioning process. → Partition coefficients are negatively related with sugar contents of biosorbent. → The aromatic component and Kow exhibit positive effects on biosorption. → The structure-effect relationship guides plant residue using as a biosorbent. - Abstract: To elucidate biosorption mechanism and removal efficiency of plant residues as a biosorbent to abate polycyclic aromatic hydrocarbons (PAHs) in wastewater, sorption of PAHs onto wood chips (WC), ryegrass roots (RR), orange peels (OP), bamboo leaves (BL), and pine needles (PN) were investigated. The structural characterization of the biosorbents was analyzed by elemental composition, BET-N2 surface area, and Fourier transform infrared spectroscopy. PAHs sorption to the selected biosorbents were compared and correlated with their structures. Biosorption isotherms fit well with Freundlich equation and the mechanism was dominated by partition process. The magnitude of phenanthrene partition coefficients (Kd) followed the order of PN > BL > OP > RR > WC, ranged from 2484 ± 24.24 to 5306 ± 92.49 L/kg. Except the WC sample, the Kd values were negatively correlated with sugar content, polar index [(N + O)/C] of the biosorbents, while the aromatic component exhibited positive effects. For a given biosorbent of bamboo leaves, the carbon-normalized partition coefficients (Koc) were linearly correlated with octanol-water partition coefficients (Kow) of PAHs, i.e., log Koc = 1.16 log Kow - 1.21. The structure-effect relationship provides a reference to select and modify plant residues as a biosorbent with high efficiency to tackle organic pollutants.

  16. Aromatic quinoxaline as corrosion inhibitor for bronze in aqueous chloride solution

    Indian Academy of Sciences (India)

    N Saoudi; A Bellaouchou; A Guenbour; A Ben Bachir; E M Essassi; M El Achouri

    2010-06-01

    A new corrosion inhibitor, viz. 3-ethyl-6-méthyl-quinoxalin-2-one, 1-benzyl-6-methyl-quinoxalin- 2-one, 2-benzyloxy-3,6-dimethyl-quinoxaline, 1-benzyl-3-methyl-quinoxalin-2-one, were synthesized in the laboratory. Their influence on the inhibition on corrosion of bronze in aqueous chloride solution (3% NaCl) was studied by electrochemical polarization methods and weight-loss measurements. The impact of temperature on the effectiveness of the substances mentioned above has been determined between 20 and 60°C. The results showed that the corrosion resistance was greatly enhanced in the presence of inhibitor and that the effectiveness depends on some physicochemical properties of the molecule, related to its functional groups. These compounds act through the formation of a protective film on the surface of the alloy.

  17. Correlation of the solubility of several aromatics and terpenes in aqueous hydroxypropyl-beta-cyclodextrin with steric and hydrophobicity parameters.

    Science.gov (United States)

    Demian, B A

    2000-10-01

    The solubility isotherms of nineteen aromatics and terpenes in aqueous hydroxypropyl-beta-cyclodextrin were determined to be straight lines. This is explained by the host-guest complexation which is characteristic for the whole class of cyclodextrins and derivatives. The slopes of the solubility isotherms correlate with Sterimol L and log P(ow) as descriptors of the steric fit and hydrophobicity match, in accord with the qualitative representation of the phenomenon. PMID:11093722

  18. Polar aromatic biomarkers in the Miocene Maritza-East lignite, Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Stefanova, M.; Oros, D.R.; Otto, A.; Simoneit, B.R.T.

    2002-07-01

    Aromatic and polar compounds of lignite lithotype bitumens (Maritza-East) were analyzed. Diterpenoid phenols and ketophenols, (mainly ferruginol, sugiol, hinokione, and products of their diagenetic transformations) were identified as the dominant biomarkers. A variety of sesquiterpenoids was also present. These compounds provided evidence for the assumption that members of the Cupressaceae s. l. are the coal precursors. Polar triterpenoids, i.e., lupeol, lupenone, adiantone and hopanones were present in subordinate quantities in the humoclarain sample. These biomarkers support an input of deciduous (angiosperm) vegetation to the peat swamp source matter. Three diagenetic transformation schemes for the diterpenoid phenols/ketophenols are proposed: (1) ferruginol and/or sugiol alteration through dehydrogenation,. demethylation and ring-B-cleavage; (2) hinokione aromatization to simonellite; and (3) 7-ketototarol change through 7-ketototar-5-enol to 20-nor-3-oxo-totara-5(10),6-dienol. The diterpenoids demonstrated the presence of Gymnospermae in the coal forming community. The phenolic diterpenoids indicated a specific input of organic matter from conifers of the Cupressaceae/Taxodiaceae or Podocarpaceae as the most abundant trees in the coal forming swamp.

  19. A DFT-based toxicity QSAR study of aromatic hydrocarbons to Vibrio fischeri: Consideration of aqueous freely dissolved concentration.

    Science.gov (United States)

    Wang, Ying; Yang, Xianhai; Wang, Juying; Cong, Yi; Mu, Jingli; Jin, Fei

    2016-05-01

    In the present study, quantitative structure-activity relationship (QSAR) techniques based on toxicity mechanism and density functional theory (DFT) descriptors were adopted to develop predictive models for the toxicity of alkylated and parent aromatic hydrocarbons to Vibrio fischeri. The acute toxicity data of 17 aromatic hydrocarbons from both literature and our experimental results were used to construct QSAR models by partial least squares (PLS) analysis. With consideration of the toxicity process, the partition of aromatic hydrocarbons between water phase and lipid phase and their interaction with the target biomolecule, the optimal QSAR model was obtained by introducing aqueous freely dissolved concentration. The high statistical values of R(2) (0.956) and Q(CUM)(2) (0.942) indicated that the model has good goodness-of-fit, robustness and internal predictive power. The average molecular polarizability (α) and several selected thermodynamic parameters reflecting the intermolecular interactions played important roles in the partition of aromatic hydrocarbons between the water phase and biomembrane. Energy of the highest occupied molecular orbital (E(HOMO)) was the most influential descriptor which dominated the toxicity of aromatic hydrocarbons through the electron-transfer reaction with biomolecules. The results demonstrated that the adoption of freely dissolved concentration instead of nominal concentration was a beneficial attempt for toxicity QSAR modeling of hydrophobic organic chemicals. PMID:26812082

  20. Investigation of extraction of polycyclic aromatic hydrocarbons by cyclodextrins in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Tabash, S.P.; Kozin, I.S.; Brown, R.S. (Queen' s Univ., Kingston, ON (Canada) Dept. of Chemistry and School of Environmental Studies)

    1999-01-01

    Because there is a problem with the water solubility of polycyclic aromatic hydrocarbons (PAHs) as a barrier to the remediation of contaminated soils and sediments, methods to increase the solubility have been developed. These include addition of miscible organic solvents and surfactants, and a more recent approach is the use of cyclodexrins (CDs), which are cyclic polysaccharides with six to eight glucose subunits as alternate solubilizing agents. The structure of CDs provides a hydrophobic pocket which can form inclusion complexes with non-polar molecules, where the complex is water soluble. A challenge to characterizing cyclodextrin extraction performance is determination of the complexation (inclusion) constants for CD:PAH interactions, which determines the extraction efficiency. A scheme was developed for determining these constants based on an equilibrium partition of PAHs between water and a poly(dimethylsiloxane) film analogous to films used on solid-phase microextraction. Additions of CDs to the water causes a shift in the film/water partition, resulting in a decrease in the apparent film/solution partition constant. An expression was derived quantitatively for relating this decrease to the inclusion constant. Typical values are cited. Abstract no. 861.

  1. Investigation of extraction of polycyclic aromatic hydrocarbons by cyclodextrins in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Tabash, S.P.; Kozin, I.S.; Brown, R.S. [Queen`s Univ., Kingston, ON (Canada) Dept. of Chemistry and School of Environmental Studies

    1999-11-01

    Because there is a problem with the water solubility of polycyclic aromatic hydrocarbons (PAHs) as a barrier to the remediation of contaminated soils and sediments, methods to increase the solubility have been developed. These include addition of miscible organic solvents and surfactants, and a more recent approach is the use of cyclodexrins (CDs), which are cyclic polysaccharides with six to eight glucose subunits as alternate solubilizing agents. The structure of CDs provides a hydrophobic pocket which can form inclusion complexes with non-polar molecules, where the complex is water soluble. A challenge to characterizing cyclodextrin extraction performance is determination of the complexation (inclusion) constants for CD:PAH interactions, which determines the extraction efficiency. A scheme was developed for determining these constants based on an equilibrium partition of PAHs between water and a poly(dimethylsiloxane) film analogous to films used on solid-phase microextraction. Additions of CDs to the water causes a shift in the film/water partition, resulting in a decrease in the apparent film/solution partition constant. An expression was derived quantitatively for relating this decrease to the inclusion constant. Typical values are cited. Abstract no. 861.

  2. Polyimidazoles via aromatic nucleophilic displacement

    Science.gov (United States)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor)

    1992-01-01

    Polyimidazoles (PI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethyl acetamide, sulfolane, N-methylpyrrolidinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl) imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxphenyl) imidazole monomer. This synthetic route has provided high molecular weight PI of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.

  3. Determination of aromatic amines in aqueous extracts of polyurethane foam using hydrophilic interaction liquid chromatography and mass spectrometry

    International Nuclear Information System (INIS)

    A method is presented for the determination of aromatic amines in aqueous extracts of polyurethane (PUR) foam. The method is based on the extraction of PUR foam using aqueous acetic acid (0.1%, w/v) followed by determination of extracted aromatic amines using hydrophilic interaction liquid chromatography (HILIC) and tandem mass spectrometry (MS/MS) with positive electrospray ionisation. The injections of volumes up to 5 μL of aqueous solutions were made possible by on-column focusing with partially filled loop injections. The fragmentation patterns for 2,4- and 2,6-toluene diamine (TDA) and 4,4'-methylene dianiline (MDA) were clarified by performing a hydrogen-deuterium exchange study. TDA and MDA were determined using trideuterated 2,4- and 2,6-TDA and dideuterated 4,4'-MDA as internal standards. Linear calibration graphs were obtained over the range 0.025-0.5 μg mL-1 with correlation coefficients >0.996 and the instrumental detection limit for each compound was <50 fmol. The stability of the amines was influenced by the matrix, so their concentrations decreased over time. Agreement was observed between the results of analyses of PUR foam extracts by HILIC-MS/MS and results obtained by ethyl chloroformate derivatisation and reversed phase (RP) liquid chromatography-mass spectrometry (LC-MS/MS). TDA was observed to be unstable in extracts of foam but not in pure solutions.

  4. THERMODYNAMIC STUDY ON ADSORPTION OF AROMATIC SULFONIC ACIDS ONTO MACROPOROUS WEAK BASE ANION EXCHANGER FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    Chao Long; Quan-xing Zhang; Ai-min Li; Jin-long Chen

    2004-01-01

    The adsorption equilibrium isotherms of three aromatic sulfonic acid compounds, 2-naphthalenesulfonic acid, ptoluenesulfonic acid and p-chlorobenzenesulfonic acid, from aqueous solutions by macroporous weak base anion exchanger within the temperature range of 293 K-313 K were obtained. Several isotherm equations were correlated with the equilibrium data, and the experimental data was found to fit the three-parameter Redlich-Peterson equation best within the entire range of concentrations. The study showed that the hydrophobicity of solute has distinct influence on adsorption capacity of the anion exchanger for the aromatic sulfonic acid. Moreover, estimations of the isosteric enthalpy, free energy,and entropy change of adsorption were also reported. The positive isosteric enthalpy and entropy change for adsorption indicate an endothermic and entropy driven process in the present study.

  5. Adsorption of polar, nonpolar, and substituted aromatics to colloidal graphene oxide nanoparticles

    NARCIS (Netherlands)

    Wang, Fang; Haftka, Joris J H; Sinnige, Theo L.; Hermens, Joop L M; Chen, Wei

    2014-01-01

    We conducted batch adsorption experiments to understand the adsorptive properties of colloidal graphene oxide nanoparticles (GONPs) for a range of environmentally relevant aromatics and substituted aromatics, including model nonpolar compounds (pyrene, phenanthrene, naphthalene, and 1,3-dichlorobenz

  6. Effects of solution P H on the adsorption of aromatic compounds from aqueous solutions by activated carbon

    International Nuclear Information System (INIS)

    Absorption of p-Cresol, Benzoic acid and Nitro Benzene by activated carbon from dilute aqueous solutions was carried out under controlled ph conditions at 310 k. In acidic conditions, well below the pKa of all solutes, it was observed that the adsorbate solubility and the electron density of its aromatic ring were the influencing factors on the extent of the adsorption by affecting the extent of London dispersion forces. In higher solution ph conditions, on the other hand, it was found that the electrostatic forces played a significant role on the extent of adsorption. The Effect of ph must be considered from its combined effects on the carbon surface and on the solute molecules. It was found that the uptake of the molecular forms of the aromatic solutes was dependent on the substituents of the aromatic ring. Adsorption of the solutes in higher P H values was found to be dependent on the concentration of anionic form of the solutes. All isotherms were fitted into Freundlich Isotherm Equations

  7. Ultrafast adsorption and selective desorption of aqueous aromatic dyes by graphene sheets modified by graphene quantum dots.

    Science.gov (United States)

    Ying, Yulong; He, Peng; Ding, Guqiao; Peng, Xinsheng

    2016-06-17

    Graphene modified by graphene quantum dots (GQDs) has been employed to remove toxic organic dyes. An excellent removal capacity (497 mg g(-1)) and record-breaking adsorption rate (475 mg g(-1) min(-1) at 20 °C) were demonstrated for Rhodamine B. The enhancement in performance by nearly a factor of three compared to that of graphene was ascribed to the greatly increased accessible surface area of graphene in aqueous solution as well as the increase in surface charges with the modification with GQDs. Besides, this unique adsorption behavior of the modified graphene was expanded to other typical toxic aqueous aromatic dyes such as Evans Blue, Methyl Orange, Malachite Green and Rose Bengal. What is more, a unique desorption behavior of dyes was first observed when employing different solvents, which enabled the GQD-modified graphene to be exploited for selective extraction of dyes and recycling of the adsorbent. The adsorption and desorption mechanism were further investigated. Combining high removal capacity, rapid adsorption kinetics, good recyclability and unique selective desorption, GQD-modified graphene has potential applications in both water purification and separation of aromatic dyes. PMID:27158875

  8. Ultrafast adsorption and selective desorption of aqueous aromatic dyes by graphene sheets modified by graphene quantum dots

    Science.gov (United States)

    Ying, Yulong; He, Peng; Ding, Guqiao; Peng, Xinsheng

    2016-06-01

    Graphene modified by graphene quantum dots (GQDs) has been employed to remove toxic organic dyes. An excellent removal capacity (497 mg g‑1) and record-breaking adsorption rate (475 mg g‑1 min‑1 at 20 °C) were demonstrated for Rhodamine B. The enhancement in performance by nearly a factor of three compared to that of graphene was ascribed to the greatly increased accessible surface area of graphene in aqueous solution as well as the increase in surface charges with the modification with GQDs. Besides, this unique adsorption behavior of the modified graphene was expanded to other typical toxic aqueous aromatic dyes such as Evans Blue, Methyl Orange, Malachite Green and Rose Bengal. What is more, a unique desorption behavior of dyes was first observed when employing different solvents, which enabled the GQD-modified graphene to be exploited for selective extraction of dyes and recycling of the adsorbent. The adsorption and desorption mechanism were further investigated. Combining high removal capacity, rapid adsorption kinetics, good recyclability and unique selective desorption, GQD-modified graphene has potential applications in both water purification and separation of aromatic dyes.

  9. Comparison of photoconductivity and optical spectra of the trapped electron in polar aqueous and alcoholic glasses

    International Nuclear Information System (INIS)

    The photoconductivity spectra of polar aqueous and alcoholic matrices at 85 K containing trapped electrons are reported and are of two principal types. Type A systems (aqueous 10 M NaOH, 7 M MaCIO4, and 7.5 M CH3COOK) show a similar wavelength dependence between the photoconductivity and optical absorption spectra, which implies dominance of bound-continuum transitions. Type B systems (aqueous 2.35 M sucrose, aqueous 10 M LiCl, methanol, equivolume ethylene glycol--water, glycerol, and possibly aqueous 7.2 M sodium formate) display photoconductivity spectra of the trapped electron which are significantly blue shifted from the optical absorption spectra, indicating dominance of bound--bound transitions in the main part of the optical spectra and a bound--continuum contribution in the high energy tail of the optical spectra. Also trapped electrons in aqueous 5 M K2CO3 show some correspondence of the photoconductivity and optical spectra at long wavelengths while at short wavelengths the photoconductivity spectra are blue shifted. Thus, both bound--bound and bound--continuum transitions may exist, but closely overlap. For aqueous 10 M NaOH glasses no photocurrent emitted into vacuum could be observed above the noise level which was approximately 10-2 of the photocurrent

  10. Impact of ground- and excited-state aromaticity on cyclopentadiene and silole excitation energies and excited-state polarities.

    Science.gov (United States)

    Jorner, Kjell; Emanuelsson, Rikard; Dahlstrand, Christian; Tong, Hui; Denisova, Aleksandra V; Ottosson, Henrik

    2014-07-21

    A new qualitative model for estimating the properties of substituted cyclopentadienes and siloles in their lowest ππ* excited states is introduced and confirmed through quantum chemical calculations, and then applied to explain earlier reported experimental excitation energies. According to our model, which is based on excited-state aromaticity and antiaromaticity, siloles and cyclopentadienes are cross-hyperconjugated "aromatic chameleons" that adapt their electronic structures to conform to the various aromaticity rules in different electronic states (Hückel's rule in the π(2) electronic ground state (S0) and Baird's rule in the lowest ππ* excited singlet and triplet states (S1 and T1)). By using pen-and-paper arguments, one can explain polarity changes upon excitation of substituted cyclopentadienes and siloles, and one can tune their lowest excitation energies by combined considerations of ground- and excited-state aromaticity/antiaromaticity effects. Finally, the "aromatic chameleon" model can be extended to other monocyclic compound classes of potential use in organic electronics, thereby providing a unified view of the S0, T1, and S1 states of a range of different cyclic cross-π-conjugated and cross-hyperconjugated compound classes. PMID:25043523

  11. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework.

    Science.gov (United States)

    Demir, Selvan; Brune, Nicholas K; Van Humbeck, Jeffrey F; Mason, Jarad A; Plakhova, Tatiana V; Wang, Shuao; Tian, Guoxin; Minasian, Stefan G; Tyliszczak, Tolek; Yaita, Tsuyoshi; Kobayashi, Tohru; Kalmykov, Stepan N; Shiwaku, Hideaki; Shuh, David K; Long, Jeffrey R

    2016-04-27

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr(2+), Fe(3+), Nd(3+), and Am(3+), from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  12. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework

    Science.gov (United States)

    2016-01-01

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr2+, Fe3+, Nd3+, and Am3+, from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  13. Lipase in aqueous-polar organic solvents: Activity, structure, and stability

    OpenAIRE

    Kamal, Md Zahid; Yedavalli, Poornima; Deshmukh, Mandar V; Rao, Nalam Madhusudhana

    2013-01-01

    Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ∼20% v/v) ...

  14. Hydration dynamics of aqueous glucose probed with polarization-resolved fs-IR spectroscopy

    Science.gov (United States)

    Groot, C. C. M.; Bakker, H. J.

    2014-06-01

    The dynamics of water in aqueous solutions of glucose have been investigated using polarization-resolved femtosecond infrared spectroscopy of the hydroxyl stretch vibrations of water and glucose. Using reference measurements on solutions of glucose in dimethylsulfoxide and a spectral decomposition model, we are able to distinguish the reorientation dynamics of the glucose and water hydroxyl groups. We find that the water reorientation dynamics strongly slow down in the presence of glucose.

  15. Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions

    DEFF Research Database (Denmark)

    Mayer, Philipp; Fernqvist, M.M.; Christensen, P.S.; Karlson, U.; Trapp, Stefan

    2007-01-01

    solutions, humic acid solutions, aqueous soil and horse manure extracts, digestive fluid of a deposit-feeding worm, and root exudates from willow plants. In most cases the diffusive mass transfer of PAHs was much higher through the tested media than through water, and the enhancement factors increased with...

  16. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall

    Science.gov (United States)

    Warshavsky, Vadim; Marucho, Marcelo

    2016-04-01

    A precise description of the structural and dielectric properties of liquid water is critical to understanding the physicochemical properties of solutes in electrolyte solutions. In this article, a mixture of ionic and dipolar hard spheres is considered to account for water crowding and polarization effects on ionic electrical double layers near a uniformly charged hard wall. As a unique feature, solvent hard spheres carrying a dipole at their centers were used to model water molecules at experimentally known concentration, molecule size, and dipolar moment. The equilibrium ionic and dipole density profiles of this electrolyte aqueous model were calculated using a polar-solvation classical density-functional theory (PSCDFT). These profiles were used to calculate the charge density distribution, water polarization, dielectric permittivity function, and mean electric potential profiles as well as differential capacitance, excess adsorptions, and wall-fluid surface tension. These results were compared with those corresponding to the pure dipolar model and unpolar primitive solvent model of electrolyte aqueous solutions to understand the role that water crowding and polarization effects play on the structural and thermodynamic properties of these systems. Overall, PSCDFT predictions are in agreement with available experimental data.

  17. Aqueous oxidation of sulfonamide antibiotics: aromatic nucleophilic substitution of an aniline radical cation.

    Science.gov (United States)

    Tentscher, Peter R; Eustis, Soren N; McNeill, Kristopher; Arey, J Samuel

    2013-08-19

    Sulfonamide antibiotics are an important class of organic micropollutants in the aquatic environment. For several, sulfur dioxide extrusion products have been previously reported upon photochemical or dark oxidation. Using quantum chemical modeling calculations and transient absorption spectroscopy, it is shown that single-electron oxidation from sulfadiazine produces the corresponding aniline radical cation. Density functional theory calculations indicate that this intermediate can exist in four protonation states. One species exhibits a low barrier for an intramolecular nucleophilic attack at the para position of the oxidized aniline ring, in which a pyrimidine nitrogen acts as a nucleophile. This attack can lead to a rearranged structure, which exhibits the same connectivity as the SO2 -extruded oxidation product that was previously observed in the aquatic environment and characterized by NMR spectroscopy. We report a detailed reaction mechanism for this intramolecular aromatic nucleophilic substitution, and we discuss the possibility of this reaction pathway for other sulfonamide drugs. PMID:23828254

  18. Effect of condensed organic matter on solvent extraction and aqueous leaching of polycyclic aromatic hydrocarbons in soils and sediments

    International Nuclear Information System (INIS)

    The contents of nonhydrolyzable organic matter (NHC) and black carbon (BC) were measured in soils and sediments from the Pearl River Delta, South China. Polycyclic aromatic hydrocarbons (PAHs) were extracted respectively by Soxhlet and an accelerated solvent extraction device (ASE) using different solvents. In addition, sequential aqueous leaching at different temperatures was carried out. The PAH content extracted with the sequential three solvent ASE is two times higher than that using the Soxhlet extraction method. The relationship of the PAH content with the NHC content is very significant. The PAH concentrations measured at various temperature steps fit well to the Van't Hoff equation and the enthalpy was estimated. The investigation indicates that condensed organic matter such as kerogen carbon, aged organic matter, and BC is relevant for the extraction and distribution of native PAHs in the investigated field soils and sediments. - Kerogen carbon and aged organic matter is important for the extraction and distribution of native PAHs in the soils and sediments

  19. Enhanced aqueous solubility of polycyclic aromatic hydrocarbons by green diester-linked cationic gemini surfactants and their binary solutions

    Science.gov (United States)

    Panda, Manorama; Fatma, Nazish; Kabir-ud-Din

    2016-07-01

    Three homologues of a novel biodegradable diester-linked cationic gemini surfactant series, CmH2m+1 (CH3)2N+(CH2COOCH2)2N+(CH3)2CmH2m+1.2Cl- (m-E2-m; m = 12, 14, 16), were used for investigation of the solubilization of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, anthracene and pyrene in single as well as binary surfactant solutions. Physicochemical parameters of the pure/mixed systems were derived by conductivity and surface tension measurements. Dissolution capacity of the equimolar binary surfactant solutions towards the PAHs was studied from the molar solubilization ratio (MSR), micelle-water partition coefficient (Km) and free energy of solubilization (ΔGs0) of the solubilizates. Influence of hydrophobic chain length of the dimeric surfactants on solubilization was characterized. Aqueous solubility of the PAHs was enhanced linearly with concentration of the surfactant in all the pure and mixed gemini-gemini surfactant systems.

  20. Basicity comparison for di-substituted 4-nitropyridine derivatives in polar non-aqueous media

    International Nuclear Information System (INIS)

    Acid dissociation, as well as cationic homoconjugation equilibria have been studied potentiometrically in systems involving four di-substituted 4-nitropyridines and conjugate cationic acids in the polar non-aqueous solvents - aprotic protophobic acetonitrile (AN) and propylene carbonate (PC), the amphiprotic methanol (MeOH), and in the aprotic protophilic dimethyl sulfoxide (DMSO). The influence of solvent effect on the obtained acidity constants has been discussed. The acidity constants (expressed as pKa values) were compared with those previously determined in another polar protophobic aprotic solvent - acetone (AC), and obtained for the unsubstituted pyridine (Py). A comparison of the acid dissociation constants determined in all media studied has proved that the strength of the cationic acids increases on going from acetonitrile through propylene carbonate, acetone, and methanol to dimethyl sulfoxide. Furthermore, the values of acidity constants in the non-aqueous media have shown that in all the solvents studied they change according to the substituent effects. It has been also found that substituted 4-nitropyridine derivatives studied exhibit no tendency towards cationic homoconjugation in acetonitrile, propylene carbonate, and methanol and dimethyl sulfoxide. Moreover, it has been demonstrated that the acid dissociation constants determined by potentiometric titration method in all the solutions investigated correlate well with the calculated energy parameters of the protonation reactions in the gaseous phase

  1. Polar metabolites of polycyclic aromatic compounds from fungi are potential soil and groundwater contaminants

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Johnsen, Anders R.; Christensen, Jan H.

    2015-01-01

    This study investigated the sorption to soil of water-soluble metabolites from polycyclic aromatic compounds (PACs). The soil fungus Cunninghamella elegans was used to produce PAC metabolites from two un-substituted PACs (phenanthrene, pyrene), three alkyl-substituted PACs (2-methylnaphthalene, 1...... calculated for fourteen representative metabolites. Sulfate conjugated metabolites displayed Kd's below 70 whereas the metabolites with both a sulfate and a carboxylic acid group had Kd's below 2.8. The low Kd's of water-soluble PAC metabolites indicate high mobility in soil and a potential for leaching to...

  2. Circularly Polarized Persistent Room-Temperature Phosphorescence from Metal-Free Chiral Aromatics in Air.

    Science.gov (United States)

    Hirata, Shuzo; Vacha, Martin

    2016-04-21

    Circularly polarized room-temperature phosphorescence (RTP) with persistent emission characteristics was observed from metal-free chiral binaphthyl structures. Enantiomers of the binaphthyl compounds doped into an amorphous hydroxylated steroid matrix produced blue fluorescence and yellow persistent RTP in air. The lifetime and quantum yield of the yellow persistent RTP were 0.67 s and 2.3%, respectively. The dissymmetry factors of circular dichroism (CD) in the first absorption band, circularly polarized fluorescence (CPF), and circularly polarized persistent RTP were |1.1 × 10(-3)|, |4.5 × 10(-4)|, and |2.3 × 10(-3)|, respectively. A comparison between the experimental data and calculations by time-dependent density functional theory for transient CD spectra confirmed that the binaphthyl conformations in the lowest singlet excited state (S1) and the lowest triplet state (T1) were different. The large difference in the dissymmetry factors for the CPF and the circularly polarized persistent RTP was likely caused by this conformational change between S1 and T1. PMID:27058743

  3. Polar aromatic biomarkers of Miocene-aged Chukurovo resinite and correlation with a progenitor macrofossil

    Energy Technology Data Exchange (ETDEWEB)

    Stefanova, Maya [Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Simoneit, Bernd R.T. [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2008-08-05

    Functionalised aromatic constituents of Chukurovo resinite are compared here with the chemical composition of a macrofossil assigned paleobotanically as Taxodium dubium (Sternb.) Heer. Terpenoids and lipids of fossil wood tissue embedded in a clay sediment were extracted and analyzed for comparison. The information was interpreted in relation to the biomarker compositions of different conifer families, as well as to the effects of contamination by inward migration of organic matter from the adjacent sediments. Many of identified geolipids, i.e., alkanes, alkanols, alkan-2-ones, and steranes/triterpanes have no chemosystematic value because they are ubiquitous in the plant kingdom. Ferruginol, sugiol, and products of their diagenetic transformations were identified as the dominant specific biomarkers in the resinite. Ferruginol and its analogues were the most abundant diterpenoids in Taxodium dubium sample. Thus, the biomarker composition of the extractable matter of the resinite strongly suggests that species of Cupressaceae contributed significantly to the Chukurovo paleoenvironment. (author)

  4. Polarized Emission of Wholly Aromatic Bio-Based Copolyesters of a Liquid Crystalline Nature

    Directory of Open Access Journals (Sweden)

    Daisaku Kaneko

    2011-05-01

    Full Text Available A novel thermotropic liquid crystalline polymers poly{3-benzylidene amino-4-hydroxybenzoic acid (3,4-BAHBA-co-trans-4-hydroxycinnamic acid (4HCA: trans-coumaric acid} (Poly(3,4-BAHBA-co-4HCA, was synthesized by the thermal polycondensation of 4HCA and 3,4-BAHBA, which was synthesized by a reaction of 3-amino-4-hydroxybenzoic acid (3,4-AHBA with benzaldehyde. When the 4HCA compositions of Poly(3,4-BAHBA-co-4HCAs were above 55 mol%, the copolymers showed a nematic, liquid crystalline phase. Differential scanning calorimetry (DSC measurements of the copolymers showed a high glass transition temperature of more than 100 °C, sufficient for use in engineering plastics. Furthermore, the copolymers showed photoluminescence in an N-methylpyrrolidone (NMP solution under ultraviolet (UV light with a wavelength of 365 nm. Oriented film of Poly(3,4-BAHBA-co-4HCA with a 4HCA composition of 75 mol% emitted polarized light, which was confirmed by fluorescent spectroscopy equipped with parallel and crossed polarizers.

  5. Aqueous and Tissue Residue-Based Interspecies Correlation Estimation Models Provide Conservative Hazard Estimates for Aromatic Compounds

    Science.gov (United States)

    Interspecies correlation estimation (ICE) models were developed for 30 nonpolar aromatic compounds to allow comparison of prediction accuracy between 2 data compilation approaches. Type 1 models used data combined across studies, and type 2 models used data combined only within s...

  6. Forecasting of thermodynamic properties of solution for non-polar molecules in aqueous salt solutions and in aqueous organic solutions

    International Nuclear Information System (INIS)

    The scaled particle theory has been used rather successfully to predict the values of thermodynamic properties of solution for non-polar molecules. Two very important parameters has been used in the equations of the scaled particle theory: the hard sphere diameter of the solute and the closeness of the solvent (closeness in which the diameters of the hard sphere particles forming the solvent are taken into account). With non-polar solutes, a correlation exists between calculated and experimental values of: free enthalpy of solution - enthalpy of solution - molar heat capacity change for the solution process. The fit between calculated and experimental values is only more qualitative than quantitative. However the variation of thermodynamic properties with the temperature and the modality is consistent with the variation calculated according to the scaled particle theory. (author)

  7. Effect of Surface Chemistry and Physical Properties of Carbon Nanotubes on the Adsorption of Polycyclic Aromatic Hydrocarbons in Aqueous Solutions

    OpenAIRE

    Ramzan, Muhammad

    2013-01-01

    Adsorption behavior of seven different carbon nanotubes (CNTs) towards polycyclic aromatic hydrocarbons (PAHs) was studied in moderately hard reconstituted water (MHRW) with and without dissolved natural organic matter (NOM). At one concentration, adsorption of phenanthrene towards these CNTs was determined using negligible depletion solid phase micro extraction (nd-SPME) followed by GC-MS analysis. The single walled carbon nanotubes (SWCNTs) showed much higher adsorption than all other CNTs....

  8. Self-Assembled Templates of Aromatic Pentapeptides for Synthesis of CdS Quantum-Dots to Detect the Trace Amounts of Hg(2+) in Aqueous Solutions.

    Science.gov (United States)

    Meng, Min; Dou, Yingying; Xu, Wenlong; Hao, Jingcheng

    2016-05-01

    Molecular self-assembly has become a popular tool to prepare nanomaterials with potential applications, such as ion-responsive detection of Hg(2+) in aqueous solutions. In this study, FFACD aromatic pentapeptides, whose N-terminuses were protected by carboxyl (Ac-FFACD) or a 9-fluorenylmethoxycarbonyl group (Fmoc-FFACD), were chosen as building blocks to produce nanostructures in solutions. Based on the preliminary determination of the critical aggregation concentration (CAC) of Ac-FFACD and Fmoc-FFACD aromatic pentapeptides in water, the order of magnitude of which is 10(-5) mol·L(-1), self-assembled spiral and networked nanowires can be easily obtained over a range of concentrations. These nanowires were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The self-assembled spiral and networked nanowires were designed to be used as templates for preparing CdS quantum dots (QDs) in-situ at room temperature. The peptide-functionalized, nanowire-encapsulated CdS QDs can be used for rapid, sensitive, and selective detection of trace amounts of mercuric ions (Hg(2+)) in aqueous solutions. This method enables rapid, linear detection (the linear correlation coefficients are 0.9972 of ΔF = 257.09 + 3.58 cHg(2+) for Ac-FFACD and 0.9994 of ΔF = 48.13 + 32.96 cHg(2+) for Fmoc-FFACD) with the Hg(2+) limit of detection at 300.85 ng·L(-1) and 32.09 ng·L(-1) for Ac-FFACD and Fmoc-FFACD, respectively. The supramolecular, self-assembled nanowires, fabricated from the two aromatic pentapeptides and having encapsulated QDs, exhibit superior properties attributable to the large loading capacity and the coordination sites of these peptides with Hg(2+). These structures can serve as novel Hg(2+) sensors and have possible applications for detection of various targets in scientific and engineering systems. PMID:27086999

  9. Aldol condensation of aromatic aldehyde and aromatic ketone promoted by ionic liquid-aqueous system%离子液体/水体系促进芳醛与芳酮Aldol缩合反应

    Institute of Scientific and Technical Information of China (English)

    郑惠榕; 林棋

    2012-01-01

    研究1-甲基-3-丁基咪唑对甲苯磺酸盐([bmim][p-CH3C6H4SO3])离子液体/水体系促进室温下碱催化芳醛与芳酮Aldol缩合反应.实验结果显示,在室温下,离子液体体积分数为25%,离子液体/水体系对苯甲醛与苯乙酮间Aldol缩合反应具有更明显的加速作用,缩合产物收率达到81%以上;该方法具有条件温和、操作简单、反应时间短、产率高等特点.%The paper reported that the aldol reaction of aromatic aldehyde and aromatic ketone at room temperature could be efficiently promoted by the use of mixed solvent of ionic liquid 3-butyl-1-methylimidazolium p-toluenesulfonate([p-CH3C6H4SO3]) and water.The results show the ionic liquid/aqueous mixture could efficiently accelerate the reaction of the aldol condensation and the yield could reach up to 81% at room temperature in the presence of 25% volume ionic liquid.The present protocol may offer several advantages including mild reaction conditions,simple work-up procedure,short reaction time and high yields.

  10. A highly sensitive monoclonal antibody based biosensor for quantifying 3–5 ring polycyclic aromatic hydrocarbons (PAHs in aqueous environmental samples

    Directory of Open Access Journals (Sweden)

    Xin Li

    2016-03-01

    Full Text Available Immunoassays based on monoclonal antibodies (mAbs are highly sensitive for the detection of polycyclic aromatic hydrocarbons (PAHs and can be employed to determine concentrations in near real-time. A sensitive generic mAb against PAHs, named as 2G8, was developed by a three-step screening procedure. It exhibited nearly uniformly high sensitivity against 3-ring to 5-ring unsubstituted PAHs and their common environmental methylated PAHs, with IC50 values between 1.68 and 31 μg/L (ppb. 2G8 has been successfully applied on the KinExA Inline Biosensor system for quantifying 3–5 ring PAHs in aqueous environmental samples. PAHs were detected at a concentration as low as 0.2 μg/L. Furthermore, the analyses only required 10 min for each sample. To evaluate the accuracy of the 2G8-based biosensor, the total PAH concentrations in a series of environmental samples analyzed by biosensor and GC–MS were compared. In most cases, the results yielded a good correlation between methods. This indicates that generic antibody 2G8 based biosensor possesses significant promise for a low cost, rapid method for PAH determination in aqueous samples.

  11. Tailoring of Polarizing Agents in the bTurea Series for Cross-Effect Dynamic Nuclear Polarization in Aqueous Media.

    Science.gov (United States)

    Sauvée, Claire; Casano, Gilles; Abel, Sébastien; Rockenbauer, Antal; Akhmetzyanov, Dimitry; Karoui, Hakim; Siri, Didier; Aussenac, Fabien; Maas, Werner; Weber, Ralph T; Prisner, Thomas; Rosay, Mélanie; Tordo, Paul; Ouari, Olivier

    2016-04-11

    A series of 18 nitroxide biradicals derived from bTurea has been prepared, and their enhancement factors ɛ ((1) H) in cross-effect dynamic nuclear polarization (CE DNP) NMR experiments at 9.4 and 14.1 T and 100 K in a DNP-optimized glycerol/water matrix ("DNP juice") have been studied. We observe that ɛ ((1) H) is strongly correlated with the substituents on the polarizing agents, and its trend is discussed in terms of different molecular parameters: solubility, average e-e distance, relative orientation of the nitroxide moieties, and electron spin relaxation times. We show that too short an e-e distance or too long a T1e can dramatically limit ɛ ((1) H). Our study also shows that the molecular structure of AMUPol is not optimal and its ɛ ((1) H) could be further improved through stronger interaction with the glassy matrix and a better orientation of the TEMPO moieties. A new AMUPol derivative introduced here provides a better ɛ ((1) H) than AMUPol itself (by a factor of ca. 1.2). PMID:26992052

  12. Estimating aqueous releases of polycyclic aromatic hydrocarbons from coal tar contaminated soils at manufactured gas plant sites. Final report

    International Nuclear Information System (INIS)

    One component of EPRI research on the Environmental Behavior of Organic Substances is to develop methods to estimate releases of monocyclic and polycyclic aromatic hydrocarbons (MAHs and PAHs) to groundwater from coal tars and contaminated soils at manufactured gas plant (MGP) sites. This report contains results on the release of PAHs from contaminated soils at five MGP sites. Several methods exist for estimating the concentration of PAH in the groundwater in contact with these soils. These include: (a) pure compound solubility; (b) direct measurement of the interstitial water, and (c) the use of partition coefficients. The objective of this research was to evaluate laboratory procedures that can be used for such estimation. In addition to serving as a reliable analytical tool, a well defined protocol can help ensure consistency in results from different sites and for different conditions. In this research, the partition coefficients between the soil and water phases were determined for 16 PAH compounds utilizing five soils from MGP sites. A table lists the properties of the 16 PAH compounds examined in this project. The partition coefficients were determined by two approaches and the coefficients were used to estimate the concentrations of PAH in the soil pore-water

  13. Partitioning and accumulation rates of polycyclic aromatic hydrocarbons into polydimethylsiloxane thin films and black worms from aqueous samples

    International Nuclear Information System (INIS)

    Partition equilibriums and extraction rates of polycyclic aromatic hydrocarbons (PAHs) were examined for live biomonitoring with oligochaetes (black worms, Lumbriculus variegatus) and for high surface area chemical passive samplers constructed from polydimethylsiloxane thin film. The goals were to better understand the principles of bioconcentration by aquatic organisms and to aid in the design of a convenient and simple chemical monitoring tool to replace the use of live animals. The worms and films were exposed simultaneously to the contaminated water stream. In the initial extraction stage, similar extracted amount per surface area indicated that thin-film samplers could mimic the behavior of worms for passive sampling. Equilibrium was reached faster by the thin films than by the worms. A good linear relationship between the bioconcentration factors and the film-water partition coefficients of PAHs was found, which demonstrated the feasibility of thin-film sampler for determining the bioavailability of PAHs in water. Compared to the lengthy and inconvenient process of liquid-liquid extraction in worm treatment, thin-film technique simplifies the sample pretreatment procedure by integrating sampling and sample preparation.

  14. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    The adsorption of 1-naphthylamine, 1-naphthol and phenol on as-prepared and oxidized multiwalled carbon nanotubes (MWCNTs) has been investigated. The results illustrated that both as-prepared and oxidized MWCNTs showed high adsorption capacity for the three ionizable aromatic compounds (IACs) studied. Oxidation of MWCNTs increased the surface area and the pore volume, and introduced oxygen-containing functional groups to the surfaces of MWCNTs, which depressed the adsorption of IACs on MWCNTs. Both Langmuir and Freundlich models described the adsorption isotherms very well and the adsorption thermodynamic parameters (ΔGo, ΔHo and ΔSo) were measured. The adsorption for 1-naphthylamine, 1-naphthol and phenol is general spontaneous and thermodynamically favorable. The adsorption of phenol is an exothermic process, whereas the adsorption of 1-naphthylamine and 1-naphthol is an endothermic process. Results of this work are of great significance for the environmental application of MWCNTs for the removal of IACs from large volume of aqueous solutions.

  15. Aggregation behavior of 1-dodecyl-3-methylimidazolium bromide in aqueous solution: effect of ionic liquids with aromatic anions.

    Science.gov (United States)

    Gu, Yingqiu; Shi, Lijuan; Cheng, Xiyuan; Lu, Fei; Zheng, Liqiang

    2013-05-28

    The effects of ionic liquids (ILs), 1-butyl-3-methylimidazolium methylsulfonate (bmimMsa), 1-butyl-3-methylimidazolium benzenesulfonate (bmimBsa), and 1-butyl-3-methylimidazolium 2-naphthalenesulfonate (bmimNsa), on the aggregation behavior of 1-dodecyl-3-methylimidazolium bromide (C12mimBr) in aqueous solution were investigated by surface tension, dynamic light scattering measurements, and (1)H NMR spectroscopy. The ability to promote the surfactant aggregation is in the order bmimNsa > bmimBsa > bmimMsa. Nevertheless, only bmimNsa distinctly reduces both the CMC value and the surface tension at CMC. Due to the penetration of C10H7SO3(-)anions into the surfactant aggregate, bmimNsa is found to induce a phase transition from micelles to vesicles, whereas the other ILs only slightly increase the sizes of micelles. The combined effect of intermolecular interactions, such as hydrophobic effect, electrostatic attractions, and π-π stacking interactions, is supposed to be responsible for this structural transformation, in which π-π stacking plays an important role. PMID:23642150

  16. Long-Term Charge/Discharge Cycling Stability of MnO2 Aqueous Supercapacitor under Positive Polarization

    KAUST Repository

    Ataherian, Fatemeh

    2011-01-01

    The long-term charge/discharge cycling stability of MnO 2 electrode under positive polarization in aqueous KCl electrolyte has been studied over different potential windows spanning from the open circuit potential to varied higher-end potential limited by O 2 evolution. Cycling up to 1.2 V (vs Ag/AgCl (aq)) causes partial (35) capacitance fading to a plateau value within the initial cycles, accompanied by morphological reconstruction, reduction of surface Mn ions and oxygen evolution. The surface Mn-ion reduction has been attributed to a two-step oxidation-reduction mechanism involving OH oxidation in electrolyte, based on electrochemical analysis. When cycling potential extends to 1.4 V, extensive oxygen evolution takes place. The combination of surface passivation of current collector and extensive gas bubbling, which deteriorates electrical contact among the constituent particles within the electrode, results in further monotonic capacitance reduction. © 2011 The Electrochemical Society.

  17. Conformation dynamics and polarization effect of α,α-trehalose in a vacuum and in aqueous and salt solutions.

    Science.gov (United States)

    Kan, Zigui; Yan, Xiufen; Ma, Jing

    2015-03-01

    Conformational changes of α,α-trehalose in a vacuum, water, and 0-20 wt % NaCl solutions were investigated by means of molecular dynamics (MD) simulations at different levels of density function theory (DFT) and with fixed-charge nonpolarizable and variable-charge force fields (FFs), respectively. The relative thermodynamic stability of trehalose is enhanced by the formation of intercycle and/or intracycle hydrogen bonds, but some thermodynamically unfavorable structures can be sampled in the DFT-based ab initio MD simulation. The polarization effects of polar trehalose molecule in aqueous and NaCl solutions were studied by a series of MD simulations with both the conventional nonpolarizable and polarizable force field models. In the polarizable model, the partial charges of trehalose were updated every 2 ps using DFT calculations and fused with the other FF parameters for the energy calculation and MD simulation. Around the trehalose, water molecules located in an asymmetry model and trehalose have a stronger tendency to bind with water molecules than Na(+) and Cl(-) ions. When the trehalose concentration is increased from 3.26 to 6.31 wt % in salt aqueous solution, the two trehalose molecules periodically approach each other in a nearly anhydrate state and leave a way to keep the favorable hydration structure with the mean trehalose-trehalose distance of 8.6 Å. The similarity between the solvated dimer packing styles (shoulder-by-shoulder or head-to-head) and crystal stacking can be used to make an extrapolation to higher sugar concentrations and to rationalize the bioprotection function of trehalose in high salt concentration. PMID:25506668

  18. Chemometric-based determination of polycyclic aromatic hydrocarbons in aqueous samples using ultrasound-assisted emulsification microextraction combined to gas chromatography-mass spectrometry.

    Science.gov (United States)

    Ahmadvand, Mohammad; Sereshti, Hassan; Parastar, Hadi

    2015-09-25

    In the present research, ultrasonic-assisted emulsification-microextraction (USAEME) coupled with gas chromatography-mass spectrometry (GC-MS) has been proposed for analysis of thirteen environmental protection agency (EPA) polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Tetrachloroethylene was selected as extraction solvent. The main parameters of USAEME affecting the efficiency of the method were modeled and optimized using a central composite design (CCD). Under the optimum conditions (9μL for extraction solvent, 1.15% (w/v) NaCl (salt concentration) and 10min for ultrasonication time), preconcentration factor (PF) of the PAHs was in the range of 500-950. In order to have a comprehensive analysis, multivariate curve resolution-alternating least squares (MCR-ALS) as a second-order calibration algorithm was used for resolution, identification and quantification of the target PAHs in the presence of uncalibrated interferences. The regression coefficients and relative errors (REs, %) of calibration curves of the PAHs were in the satisfactory range of 0.9971-0.9999 and 1.17-6.59%, respectively. Furthermore, analytical figures of merit (AFOM) for univariate and second-order calibrations were obtained and compared. As an instance, the limit of detections (LODs) of target PAHs were in the range of 1.87-18.9 and 0.89-6.49ngmL(-1) for univariate and second-order calibration, respectively. Finally, the proposed strategy was used for determination of target PAHs in real water samples (tap and hookah waters). The relative recoveries (RR) and the relative standard deviations (RSDs) were 68.4-109.80% and 2.15-6.93%, respectively. It was concluded that combination of multivariate chemometric methods with USAEME-GC-MS can be considered as a new insight for the analysis of target analytes in complex sample matrices. PMID:26319375

  19. Determination of octanol-water partition coefficients of polar polycyclic aromatic compounds (N-PAC) by high performance liquid chromatography

    DEFF Research Database (Denmark)

    Helweg, C.; Nielsen, T.; Hansen, P.E.

    1997-01-01

    Prediction of 1-octanol water partition coefficients for a range of polar N-PAC from HPLC capacity coefficients has been investigated. Two commercially available columns, an ODS column and a Diol column were tested with water-methanol eluents. The best prediction of log K-ow for N-PAC was achieve...

  20. AROMATIC ACTIVE COMPONENTS IN AQUEOUS KIWI ESSENCE AND KIWI FRUIT PUREE BY GC-MS AND MULTIDIMENSIONAL GC-GC/O

    Science.gov (United States)

    Gas chromatography-mass spectrometry (GC-MS) and multidimensional gas chromatography olfactometry (GC/GC/O) were utilized to study the aromatic profile and the aroma active components of commercial kiwi essence and the initial fresh fruit puree. A total of 29 and 33 components were identified and q...

  1. Specific determination of 20 primary aromatic amines in aqueous food simulants by liquid chromatography-electrospray ionization-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Mortensen, Sarah Kelly; Trier, Xenia Thorsager; Foverskov, Annie;

    2005-01-01

    A multi-analyte method without any pre-treatment steps using reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was developed and applied for the determination of 20 primary aromatic amines (PAA) associated with polyurethane (PUR) products or azo...

  2. Hidden Components in Aqueous "Gold-144" Fractionated by PAGE: High-Resolution Orbitrap ESI-MS Identifies the Gold-102 and Higher All-Aromatic Au-pMBA Cluster Compounds.

    Science.gov (United States)

    Alvarez, Marcos M; Chen, Jenny; Plascencia-Villa, Germán; Black, David M; Griffith, Wendell P; Garzón, Ignacio L; José-Yacamán, Miguel; Demeler, Borries; Whetten, Robert L

    2016-07-01

    Experimental and theoretical evidence reveals the resilience and stability of the larger aqueous gold clusters protected with p-mercaptobenzoic acid ligands (pMBA) of composition Aun(pMBA)p or (n, p). The Au144(pMBA)60, (144, 60), or gold-144 aqueous gold cluster is considered special because of its high symmetry, abundance, and icosahedral structure as well as its many potential uses in material and biological sciences. Yet, to this date, direct confirmation of its precise composition and total structure remains elusive. Results presented here from characterization via high-resolution electrospray ionization mass spectrometry on an Orbitrap instrument confirm Au102(pMBA)44 at isotopic resolution. Further, what usually appears as a single band for (144, 60) in electrophoresis (PAGE) is shown to also contain the (130, 50), recently determined to have a truncated-decahedral structure, and a (137, 56) component in addition to the dominant (144, 60) compound of chiral-icosahedral structure. This finding is significant in that it reveals the existence of structures never before observed in all-aromatic water-soluble species while pointing out the path toward elucidation of the thermodynamic control of protected gold nanocrystal formation. PMID:27275518

  3. Aromatic-Aromatic Interactions in Biological System: Structure Activity Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, Appavu; Deepa, Mohan [Molecular Biophysics Unit, Indian Institute of Sciences-Bangalore, Karnataka (India); Govindaraju, Munisamy [Bio-Spatial Technology Research Unit, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu (India)

    2016-02-26

    While, intramolecular hydrogen bonds have attracted the greatest attention in studies of peptide conformations, the recognition that several other weakly polar interactions may be important determinants of folded structure has been growing. Burley and Petsko provided a comprehensive overview of the importance of weakly polar interactions, in shaping protein structures. The interactions between aromatic rings, which are spatially approximate, have attracted special attention. A survey of the proximal aromatic residue pairs in proteins, allowed Burley and Petsko to suggest that, “phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 Å, and dihedral angles approximately 90° are most common”.

  4. Aromatic-Aromatic Interactions in Biological System: Structure Activity Relationships

    International Nuclear Information System (INIS)

    While, intramolecular hydrogen bonds have attracted the greatest attention in studies of peptide conformations, the recognition that several other weakly polar interactions may be important determinants of folded structure has been growing. Burley and Petsko provided a comprehensive overview of the importance of weakly polar interactions, in shaping protein structures. The interactions between aromatic rings, which are spatially approximate, have attracted special attention. A survey of the proximal aromatic residue pairs in proteins, allowed Burley and Petsko to suggest that, “phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 Å, and dihedral angles approximately 90° are most common”

  5. Aromatic-Aromatic Interactions in Biological System: Structure Activity Relationships

    Directory of Open Access Journals (Sweden)

    Rajagopal Appavu

    2016-03-01

    Full Text Available While, intramolecular hydrogen bonds have attracted the greatest attention in studies of peptide conformations, the recognition that several other weakly polar interactions may be important determinants of folded structure has been growing. Burley and Petsko provided a comprehensive overview of the importance of weakly polar interactions, in shaping protein structures. The interactions between aromatic rings, which are spatially approximate, have attracted special attention. A survey of the proximal aromatic residue pairs in proteins, allowed Burley and Petsko to suggest that, “phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 Å, and dihedral angles approximately 90° are most common”.

  6. Influence of non-aqueous phase liquid configuration on induced polarization parameters: Conceptual models applied to a time-domain field case study

    Science.gov (United States)

    Johansson, Sara; Fiandaca, Gianluca; Dahlin, Torleif

    2015-12-01

    Resistivity and induced polarization (IP) measurements on soil contaminated with non-aqueous phase liquids (NAPLs) show a great variety in results in previous research. Several laboratory studies have suggested that the presence of NAPLs in soil samples generally decrease the magnitude of the IP-effect, while others have indicated the opposite. A number of conceptual models have been proposed suggesting that NAPLs can alter the pore space in different ways, e.g. by coating the grain surfaces and thus inhibiting grain polarization, or by changing the pore throat size and thus affecting the membrane polarization mechanism. The main aim of this paper is to review previously published conceptual models and to introduce some new concepts of possible residual NAPL configurations in the pore space. Time domain induced polarization measurements were performed at a NAPL contaminated field site, and the data were inverted using the Constant Phase Angle (CPA) model and the Cole-Cole model respectively. No significant phase anomalies were observed in the source area of the contamination when the CPA inverted profiles were compared with soil sampling results of free-phase contaminant concentrations. However, relatively strong phase and normalized phase anomalies appeared next to the source area, where residual free-phase presence could be expected according to the chemical data. We conclude that depending on the NAPL configuration, different spectral IP responses can be expected. In previous research, the NAPL configurations in different samples or field sites are often unknown, and this may to some extent explain why different results have been achieved by different authors. In our field case, we believe that the NAPL forms a more or less continuous phase in the pore space of the source zone leading to an absence of IP anomalies. The increase in phase and normalized phase angle observed next to the source zone is interpreted as a degradation zone. The ongoing biodegradation

  7. Conversion electron Moessbauer study of low carbon steel polarized in aqueous sulfate solution containing sulfite in low concentration

    International Nuclear Information System (INIS)

    The passivation of low carbon steel was studied in aqueous solution of 0.5 M Na2SO4+0.001 M NaHSO3 at pH=3.5 and 6.5. The found major components at pH=3.5 were: γ-FeOOH and Fe3C, and also FeSO4.H2O could be identified on the surface of the low carbon steel as a minor component. At pH=6.5, the passive film contained only amorphous iron(III)-oxide or oxyhydroxide. (orig.)

  8. Polybenzimidazoles Via Aromatic Nucleophilic Displacement

    Science.gov (United States)

    Connell, John W. (Inventor); Hergerrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1997-01-01

    Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenylbenzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl)benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl)benzimidazoles are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  9. Aromatic graphene

    Science.gov (United States)

    Das, D. K.; Sahoo, S.

    2016-04-01

    In recent years graphene attracts the scientific and engineering communities due to its outstanding electronic, thermal, mechanical and optical properties and many potential applications. Recently, Popov et al. [1] have studied the properties of graphene and proved that it is aromatic but without fragrance. In this paper, we present a theory to prepare graphene with fragrance. This can be used as scented pencils, perfumes, room and car fresheners, cosmetics and many other useful household substances.

  10. Polar modified post-cross-linked resin and its adsorption toward salicylic acid from aqueous solution: Equilibrium, kinetics and breakthrough studies.

    Science.gov (United States)

    Fu, Zhenyu; He, Chunlian; Huang, Jianhan; Liu, You-Nian

    2015-08-01

    A novel polar modified post-cross-linked resin PDMPA was synthesized, characterized and evaluated for adsorption of salicylic acid from aqueous solution. PDMPA was prepared by a suspension polymerization of methyl acrylate (MA) and divinylbenzene (DVB), a Friedel-Crafts reaction and an amination reaction. After characterization of the chemical and pore structure of PDMPA, the adsorption behaviors of salicylic acid on PDMPA were determined in comparison with the precursor resins. The equilibrium adsorption capacity of salicylic acid on PDMPA was much larger than the precursor resins and the equilibrium data were correlated by both of the Langmuir and Freundlich models. The pseudo-second-order rate equation fitted the kinetic data better than the pseudo-first-order rate equation, and the micropore diffusion model could characterize the kinetic data very well. The dynamic experimental results showed that the breakthrough point and saturated point of salicylic acid on PDMPA were 40.3 and 92.4BV (1BV=10mL) at a feed concentration of 995.8mg/L and a flow rate of 1.4mL/min, and the resin column could be regenerated by 16.0BV of a mixture desorption solvent containing 0.01mol/L of NaOH (w/v) and 50% of ethanol (v/v). PMID:25863446

  11. Aromaticity influencing the thermostability of micellar dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.A.; Kunzman, W.J.

    1971-05-11

    A hydrocarbon, having sufficient aromaticity to obtain a stable micellar dispersion at the temperature of the formation, is mixed with a surfactant and aqueous medium for injection into the formation to recover crude oil. Higher reservoir temperatures require a greater degree of aromaticity in the hydrocarbon component of the micellar dispersion. This patent is a continuation of U.S. Patent Number 3,495,660 (item No. 118).

  12. Aromaticity influencing the thermostability of micellar dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.A.; Kunzman, W.J.

    1970-02-17

    The thermostability of a micellar dispersion is shifted to higher temperature ranges by increasing the aromaticity of the hydrocarbon within the dispersion. The micellar solution is composed of kerosene and light catalytic cycle oil (hydrocarbons), water, sodium or ammonium alkyl aryl naphthenic sulfonates (petroleum sulfonate surfactant), isopropanol (cosurfactant), and sodium sulfate (electrolyte). The aromatic content of the light catalytic cycle oil is higher than the aromatic content of the kerosene. By increasing the concentration of cycle oil to kerosene, stable micellar solutions at temperatures from ambient to 200/sup 0/F can be obtained. The aqueous medium can be soft, brackish, or a brine.

  13. Retention of polyphenyls and substituted polycyclic aromatic hydrocarbons in the system hydroxylated silica - n-hexane

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Y.S.; Lanin, S.N. [Dept. of Chemistry, M.V. Lomonosov State Univ. of Moscow (Russian Federation); Al-Ahmed, A. [University of Aleppo (Syrian Arab Republic)

    1997-12-31

    The regularity of retention of unsubstituted and methyl-substituted polyphenyls and condensed polycyclic aromatic hydrocarbons in normal-phase (NP) HPLC with a non-polar mobile phase (n-hexane) on hydroxylated silica has been studied. It was shown that chromatographic retention of aromatic hydrocarbons depends not only on number of aromatic rings and methyl groups in a molecule, but also on a nature of the bond between the aromatic rings of polyphenyls and condensed polycyclic aromatic hydrocarbons. A structure - retention relationship has been proposed for description of the retention regularity of the aromatic hydrocarbons studied. (orig.)

  14. Does toxicity of aromatic pollutants increase under remote atmospheric conditions?

    OpenAIRE

    Ana Kroflič; Miha Grilc; Irena Grgić

    2015-01-01

    Aromatic compounds contribute significantly to the budget of atmospheric pollutants and represent considerable hazard to living organisms. However, they are only rarely included into atmospheric models which deviate substantially from field measurements. A powerful experimental-simulation tool for the assessment of the impact of low- and semi-volatile aromatic pollutants on the environment due to their atmospheric aqueous phase aging has been developed and introduced for the first time. The c...

  15. Analysis of heterocyclic aromatic amines.

    Science.gov (United States)

    Murkovic, M

    2007-09-01

    Heterocyclic aromatic amines are formed in protein and amino acid-rich foods at temperatures above 150 degrees C. Of more than twenty heterocyclic aromatic amines identified ten have been shown to have carcinogenic potential. As nutritional hazards, their reliable determination in prepared food, their uptake and elimination in living organisms, including humans, and assessment of associated risks are important food-safety issues. The concentration in foods is normally in the low ng g(-1) range, which poses a challenge to the analytical chemist. Because of the complex nature of food matrixes, clean-up and enrichment of the extracts are also complex, usually involving both cation-exchange (propylsulfonic acid silica gel, PRS) and reversed-phase purification. The application of novel solid-phase extraction cartridges with a wettable apolar phase combined with cation-exchange characteristics simplified this process--both the polar and apolar heterocyclic aromatic amines were recovered in one fraction. Copper phthalocyanine trisulfonate bonded to cotton ("blue cotton") or rayon, and molecular imprinted polymers have also been successfully used for one-step sample clean-up. For analysis of the heterocyclic aromatic amines, liquid chromatography with base-deactivated reversed-phase columns has been used, and, recently, semi-micro and capillary columns have been introduced. The photometric, fluorimetric, or electrochemical detectors used previously have been replaced by mass spectrometers. Increased specificity and sub-ppb sensitivities have been achieved by the use of the selected-reaction-monitoring mode of detection of advanced MS instrumentation, for example the triple quadrupole and Q-TOF instrument combination. Gas chromatography, also with mass-selective detection, has been used for specific applications; the extra derivatization step needed for volatilization has been balanced by the higher chromatographic resolution. PMID:17546447

  16. Thermodynamic equilibrium analyses of the uptake of aromatic compounds from an aqueous solution by magnesium-aluminum (Mg-Al) layered double hydroxide intercalated with 1-naphthol-3,8-disulfonate

    Science.gov (United States)

    Kameda, Tomohito; Uchiyama, Tomomi; Yoshioka, Toshiaki

    2013-06-01

    Magnesium-aluminum layered double hydroxide (Mg-Al LDH) intercalated with 1-naphthol-3,8-disulfonate (1-N-3,8-DS2-) was prepared by coprecipitation. Thermodynamically, the prepared Mg-Al LDH showed greater preferential uptake of 1,3-dinitrobenzene (DNB) than of 1,2-dimethoxybenzene (DMB). This preferential uptake of aromatic compounds, which is adequately expressed by the Dubinin-Radushkevich adsorption isotherm, was attributed to the π-π stacking interactions between the benzene ring of the aromatic compounds and the naphthalene core of 1-N-3,8-DS2- intercalated in the interlayer spaces of Mg-Al LDH. Negative values of ΔG for DNB and DMB indicate that the adsorption process is spontaneous at all temperatures. The value of ΔS for DNB was much lower than that for DMB. This implies that DNB was far more strongly adsorbed to 1-N-3,8-DS2- than was DMB, resulting in a lower degree of freedom for and higher uptake of DNB than those in the case DMB. The absolute values of |ΔH| for DNB and DMB were less than 20 kJ mol-1, indicating that the uptake of DNB or DMB by 1-N-3,8-DS·Mg-Al LDH can be considered a physical adsorption process caused by π-π stacking interactions.

  17. Photoinduced electron transfer and fluorescence mechanisms in covalently linked polynuclear aromatic-nucleotide complexes

    Science.gov (United States)

    Geacintov, Nicholas E.; Mao, Bing; France, Luisa L.; Zhao, Rushen; Chen, Junxin; Liu, Tong M.; Ya, Nai-Qi; Margulis, Leonid A.; Sutherland, John C.

    1992-04-01

    The fluorescence of polycyclic aromatic hydrocarbon-nucleic acid complexes is quenched by photoinduced electron transfer mechanisms in aqueous solutions at ambient temperatures. These effects are illustrated with the biologically important compound benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), a mutagenic and carcinogenic metabolite of the environmental pollutant benzo[a]pyrene, which forms covalent mutagenic lesions with 2'-deoxyguanosine (dG) residues in DNA. The dependence of the fluorescence yield and fluorescence decay times of the covalent model adduct (+)-trans- BPDE-N2-dG as a function of temperature and methanol/water composition are described. Because of the sensitivity of the fluorescence of the pyrenyl residue to the polarity of the microenvironment, the magnitude of the fluorescence yield can be used to distinguish between highly hydrophobic (e.g., intercalation) and other more solvent-exposed BPDE- nucleic acid binding sites.

  18. Aromatic fluorine compounds. VII. Replacement of aromatic -Cl and -NO2 groups by -F

    Science.gov (United States)

    Finger, G.C.; Kruse, C.W.

    1956-01-01

    Replacement of -Cl by -F in aryl chlorides with potassium fluoride has been extended from 2,4-dinitrochlorobenzene to less activated halides by the use of non-aqueous solvents, especially dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). Also replacement of -NO2 by -F in substituted nitrobenzenes was studied in DMF. As a direct result of this study, many aromatic fluorine compounds can now be obtained by a relatively simple synthetic route.

  19. Study of different HILIC, mixed-mode, and other aqueous normal-phase approaches for the liquid chromatography/mass spectrometry-based determination of challenging polar pesticides.

    Science.gov (United States)

    Vass, Andrea; Robles-Molina, José; Pérez-Ortega, Patricia; Gilbert-López, Bienvenida; Dernovics, Mihaly; Molina-Díaz, Antonio; García-Reyes, Juan F

    2016-07-01

    The aim of the study was to evaluate the performance of different chromatographic approaches for the liquid chromatography/mass spectrometry (LC-MS(/MS)) determination of 24 highly polar pesticides. The studied compounds, which are in most cases unsuitable for conventional LC-MS(/MS) multiresidue methods were tested with nine different chromatographic conditions, including two different hydrophilic interaction liquid chromatography (HILIC) columns, two zwitterionic-type mixed-mode columns, three normal-phase columns operated in HILIC-mode (bare silica and two silica-based chemically bonded columns (cyano and amino)), and two standard reversed-phase C18 columns. Different sets of chromatographic parameters in positive (for 17 analytes) and negative ionization modes (for nine analytes) were examined. In order to compare the different approaches, a semi-quantitative classification was proposed, calculated as the percentage of an empirical performance value, which consisted of three main features: (i) capacity factor (k) to characterize analyte separation from the void, (ii) relative response factor, and (iii) peak shape based on analytes' peak width. While no single method was able to provide appropriate detection of all the 24 studied species in a single run, the best suited approach for the compounds ionized in positive mode was based on a UHPLC HILIC column with 1.8 μm particle size, providing appropriate results for 22 out of the 24 species tested. In contrast, the detection of glyphosate and aminomethylphosphonic acid could only be achieved with a zwitterionic-type mixed-mode column, which proved to be suitable only for the pesticides detected in negative ion mode. Finally, the selected approach (UHPLC HILIC) was found to be useful for the determination of multiple pesticides in oranges using HILIC-ESI-MS/MS, with limits of quantitation in the low microgram per kilogram in most cases. Graphical Abstract HILIC improves separation of multiclass polar pesticides

  20. Superconductivity in aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (Kxpicene, five benzene rings). Its superconducting transition temperatures (Tc’s) were 7 and 18 K. Recently, we found a new superconducting Kxpicene phase with a Tc as high as 14 K, so we now know that Kxpicene possesses multiple superconducting phases. Besides Kxpicene, we discovered new superconductors such as Rbxpicene and Caxpicene. A most serious problem is that the shielding fraction is ⩽15% for Kxpicene and Rbxpicene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of Tc that is clearly observed in some phases of aromatic hydrocarbon superconductors

  1. 有机硅表面活性剂对水体中多环芳烃的浊点萃取研究%Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons in Aqueous Solution with Silicone Surfactants

    Institute of Scientific and Technical Information of China (English)

    姚炳佳; 杨立; 胡琼; Shigendo Akita

    2007-01-01

    Cloud point extraction (CPE) processes with two silicone suffactants, Dow Corning DC-190 and DC-193, were studied as preconcentration and treatment for the water polluted by three trace polycyclic aromatic hydrocarbons (PAHs): anthracene, phenanthrene and pyrene. For all cases, the volumes of suffactant-rich phase obtained by two silicone suffactants were very small, i.e. a lower water content in the surfactant-rich phase was obtained. For example, less than 3% of the initial solution was obtained in a 1% (by mass) surfactant solution, which was much smaller than that of TX-114 in the same surfactant concentration. And TX-114 is known as a high compact surfactant-rich phase among most nonionic surfactants, thus the comparison showed that an excellent enrichment was ensured in the analysis application by the CPE process with the silicone surfactants, and the lower water content obtained in the surfactant-rich phase is also important in the large scale water treatment. The influences of additives and phase separation methodology on the recovery of PAHs were discussed. Comparing with DC-193,DC-190 has a lower cloud point and a higher recovery (near 100%) of all the three PAHs in same surfactant concentration, which was required for application as a preconcentration process prior to HPLC system. However the DC-190 solution is hard to be phase separated only by heating, whereas DC-193 has a relative higher phase separating speed by heating, but a high cloud point (around 360K) limits its application. Due to the phase separation by heating is the only method of CPE suitable to the large scale water treatment, the mixtures of two silicone surfacrants solutions were investigated in this study. A solution containing 1% of mixed DC-190 and DC-193 (in the ratio of 90∶10) removed anthracene, phenanthrene and pyrene near 100% with a relative low cloud point and quick phase separating speed.

  2. Solvent-assisted stir bar sorptive extraction by using swollen polydimethylsiloxane for enhanced recovery of polar solutes in aqueous samples: Application to aroma compounds in beer and pesticides in wine.

    Science.gov (United States)

    Ochiai, Nobuo; Sasamoto, Kikuo; David, Frank; Sandra, Pat

    2016-07-15

    A novel solvent-assisted stir bar sorptive extraction (SA-SBSE) technique was developed for enhanced recovery of polar solutes in aqueous samples. A conventional PDMS stir bar was swollen in several solvents with log Kow ranging from 1.0 to 3.5 while stirring for 30min prior to extraction. After extraction, thermal desorption - gas chromatography - (tandem) mass spectrometry (TD-GC-(MS/)MS) or liquid desorption - large volume injection (LD-LVI)-GC-MS were performed. An initial study involved investigation of potential solvents for SA-SBSE by weighing of the residual solvent in the swollen PDMS stir bar before and after extraction. Compared to conventional SBSE, SA-SBSE using diethyl ether, methyl isobutyl ketone, dichloromethane, diisopropyl ether and toluene provided higher recoveries from water samples for test solutes with log Kow2.5. The performance of the SA-SBSE method using dichloromethane, diisopropyl ether, and cyclohexane is illustrated with analyses of aroma compounds in beer and of pesticides in wine. PMID:27289502

  3. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  4. Interfacial forces in aqueous media

    CERN Document Server

    van Oss, Carel J

    2006-01-01

    Thoroughly revised and reorganized, the second edition of Interfacial Forces in Aqueous Media examines the role of polar interfacial and noncovalent interactions among biological and nonbiological macromolecules as well as biopolymers, particles, surfaces, cells, and both polar and apolar polymers. The book encompasses Lifshitz-van der Waals and electrical double layer interactions, as well as Lewis acid-base interactions between colloidal entities in polar liquids such as water. New in this Edition: Four previously unpublished chapters comprising a new section on interfacial propertie

  5. Polar Lipid Extraction

    OpenAIRE

    sprotocols

    2014-01-01

    Author: Biotechniques Polar lipids are generally extracted from dry cell material using chloroform:methanol:0.3% NaCl (1:2:0.8 v/v/v). This may be carried out by adding 9.5 ml of this mixture to 100 mg of freeze dried cells, or by adding a suitable amount of chloroform, methanol and 0.3% NaCl to the cell material, or to the aqueous methanolic phase remaining from the lipoquinone extraction. 1. The aqueous methanolic phase (4 ml total volume), together with the cell material from the ...

  6. Solubilities of solid polycyclic aromatic hydrocarbons and polycyclic aromatic heterocycles in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Planeta, Josef; Roth, Michal

    Boulder, CO: National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA, 2006 - (Friend, D.; Frenkel, M.; Muzny, C.; Hardin, G.). s. 641-642 [International Conference on Chemical Thermodynamics /19./. THERMO International 2006. 30.07.2006-04.08.2006, Boulder, CO] R&D Projects: GA AV ČR IAA4031301; GA AV ČR KJB400310504; GA ČR GA203/05/2106 Keywords : aqueous solubility * pressurized hot water * polycyclic aromatic compounds Subject RIV: CF - Physical ; Theoretical Chemistry

  7. An efficient and versatile synthesis of aromatic nitriles from aldehydes

    Institute of Scientific and Technical Information of China (English)

    Maryam Hajjami; Arash Ghorbani-Choghamarani; Mohammad Ali Zolfigol; Fatemeh Gholamian

    2012-01-01

    A simple and direct method has been developed for synthesis of nitriles based on one-pot reaction of aromatic aldehydes with three different kind of reagents:CeCl3·7H2O/KI/H2O2,CeCl3·7H2O/KI/UHP and (NH4)2Ce(NO3)6/KI/H2O2 in aqueous ammonia.

  8. Flexible and Patterned Thin Film Polarizer: Photopolymerization of Perylene-based Lyotropic Chromonic Reactive Mesogens.

    Science.gov (United States)

    Im, Pureun; Kang, Dong-Gue; Kim, Dae-Yoon; Choi, Yu-Jin; Yoon, Won-Jin; Lee, Myong-Hoon; Lee, In-Hwan; Lee, Cheul-Ro; Jeong, Kwang-Un

    2016-01-13

    A perylene-based reactive mesogen (DAPDI) forming a lyotropic chromonic liquid crystal (LCLC) phase was newly designed and synthesized for the fabrication of macroscopically oriented and patterned thin film polarizer (TFP) on the flexible polymer substrates. The anisotropic optical property and molecular self-assembly of DAPDI were investigated by the combination of microscopic, scattering and spectroscopic techniques. The main driving forces of molecular self-assembly were the face-to-face π-π intermolecular interaction among aromatic cores and the nanophase separation between hydrophilic ionic groups and hydrophobic aromatic cores. Degree of polarization for the macroscopically oriented and photopolymerized DAPDI TFP was estimated to be 99.81% at the λmax = 491 nm. After mechanically shearing the DAPDI LCLC aqueous solution on the flexible polymer substrates, we successfully fabricated the patterned DAPDI TFP by etching the unpolymerized regions selectively blocked by a photomask during the photopolymerization process. Chemical and mechanical stabilities were confirmed by the solvent and pencil hardness tests, and its surface morphology was further investigated by optical microscopy, atomic force microscopy, and three-dimensional surface nanoprofiler. The flexible and patterned DAPDI TFP with robust chemical and mechanical stabilities can be a stepping stone for the advanced flexible optoelectronic devices. PMID:26616135

  9. Non-Aqueous Capillary Electrophoresis

    Science.gov (United States)

    Szumski, Michał; Buszewski, Bogusław

    Non-aqueous capillary electrophoresis and capillary electrochromatography are special variants of these techniques. Here, organic solvents or their mixtures with or without dissolved electrolytes are used as separation buffer or mobile phase, respectively. The most important features of non-aqueous systems are: better solubility of more hydrophobic ionic substances (many natural products) than in water, much less current and Joule heating allows for using highly concentrated buffers and/or larger capillary internal diameters, polar interactions are enhanced in organic solvents which is often highly advantageous in chiral separation systems. This chapter presents most frequently used solvents, their properties, as well as shows pH* scale which is often used in non-aqueous systems.

  10. Aromatic molecules as spintronic devices

    International Nuclear Information System (INIS)

    In this paper, we study the spin-dependent electron transport through aromatic molecular chains attached to two semi-infinite leads. We model this system taking into account different geometrical configurations which are all characterized by a tight binding Hamiltonian. Based on the Green's function approach with a Landauer formalism, we find spin-dependent transport in short aromatic molecules by applying external magnetic fields. Additionally, we find that the magnetoresistance of aromatic molecules can reach different values, which are dependent on the variations in the applied magnetic field, length of the molecules, and the interactions between the contacts and the aromatic molecule

  11. Poly(N-arylenebenzimidazole)s via aromatic nucleophilic displacement

    Science.gov (United States)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Jr., Joseph G. (Inventor)

    1996-01-01

    Novel poly(N-arylenebenzimidazole)s (PNABls) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl-N-arylene benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl-N-arylenebenzimidazole) monomers are synthesized by reacting phenyl-4-hydroxybenzoate with bis(2-aminoanilino)arylenes in diphenylsulfone. Moderate molecular weight PNABIs of new chemical structures were prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyI-N-arylenebenzimidazole)s permits a more economical and easier way to prepare PNABIs than previous routes.

  12. Poly(N-arylenbenzimidazoles) via aromatic nucleophilic displacement

    Science.gov (United States)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1995-01-01

    Novel poly(N-arylenebenzimidazole)s (PNABIs) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl-N-arylene benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl N-arylenebenzimidazole) monomers are synthesized by reacting phenyl 4-hydroxybenzoate with bis(2-aminoanilino) arylenes in diphenylsulfone. Moderate molecular weight PNABIs of new chemical structures were prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyl N-arylenebenzimidazole)s permits a more economical and easier way to prepare PNABIs than previous routes.

  13. Muonium addition reactions to aromatic solutes

    International Nuclear Information System (INIS)

    Reaction rate constants of 0.3 to 1.1 x 10sup(10) Msup(-1) ssup(-1) were determined for the reaction of muonium (μsup(+)esup(-),Mu) with seven aromatic solutes in dilute aqueous solution at approximately 295K. The reaction was deduced to be that of addition to the benzene ring to form cyclohexadienyl radicals. On comparison with the analogous H-atom reactions, the kinetic isotope effects were generally about three, equal to the mean thermal velocity ratio of Mu/H. When analyzed through the Hammett equation there were serious discontinuities but a rho value of +0.6 was deduced, not inconsistent with attack by a mildly electron-donating neutral atom forming only free radical intermediates

  14. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars

    Science.gov (United States)

    Yang, Gang; Wu, Lin; Xian, Qiming; Shen, Fei; Wu, Jun; Zhang, Yanzong

    2016-01-01

    Biochars, produced by pyrolyzing vermicompost at 300, 500, and 700°C were characterized and their ability to adsorb the dyes Congo red (CR) and Methylene blue (MB) in an aqueous solution was investigated. The physical and chemical properties of biochars varied significantly based on the pyrolysis temperatures. Analysis of the data revealed that the aromaticity, polarity, specific surface area, pH, and ash content of the biochars increased gradually with the increase in pyrolysis temperature, while the cation exchange capacity, and carbon, hydrogen, nitrogen and oxygen contents decreased. The adsorption kinetics of CR and MB were described by pseudo-second-order kinetic models. Both of Langmuir and Temkin model could be employed to describe the adsorption behaviors of CR and MB by these biochars. The biochars generated at higher pyrolysis temperature displayed higher CR adsorption capacities and lower MB adsorption capacities than those compared with the biochars generated at lower pyrolysis temperatures. The biochar generated at the higher pyrolytic temperature displayed the higher ability to adsorb CR owing to its promoted aromaticity, and the cation exchange is the key factor that positively affects adsorption of MB. PMID:27144922

  15. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars.

    Science.gov (United States)

    Yang, Gang; Wu, Lin; Xian, Qiming; Shen, Fei; Wu, Jun; Zhang, Yanzong

    2016-01-01

    Biochars, produced by pyrolyzing vermicompost at 300, 500, and 700°C were characterized and their ability to adsorb the dyes Congo red (CR) and Methylene blue (MB) in an aqueous solution was investigated. The physical and chemical properties of biochars varied significantly based on the pyrolysis temperatures. Analysis of the data revealed that the aromaticity, polarity, specific surface area, pH, and ash content of the biochars increased gradually with the increase in pyrolysis temperature, while the cation exchange capacity, and carbon, hydrogen, nitrogen and oxygen contents decreased. The adsorption kinetics of CR and MB were described by pseudo-second-order kinetic models. Both of Langmuir and Temkin model could be employed to describe the adsorption behaviors of CR and MB by these biochars. The biochars generated at higher pyrolysis temperature displayed higher CR adsorption capacities and lower MB adsorption capacities than those compared with the biochars generated at lower pyrolysis temperatures. The biochar generated at the higher pyrolytic temperature displayed the higher ability to adsorb CR owing to its promoted aromaticity, and the cation exchange is the key factor that positively affects adsorption of MB. PMID:27144922

  16. "Carbo-aromaticity" and novel carbo-aromatic compounds.

    Science.gov (United States)

    Cocq, Kévin; Lepetit, Christine; Maraval, Valérie; Chauvin, Remi

    2015-09-21

    While the concept of aromaticity is being more and more precisely delineated, the category of "aromatic compounds" is being more and more expanded. This is illustrated by an introductory highlight of the various types of "aromaticity" previously invoked, and by a focus on the recently proposed "aromatic character" of the "two-membered rings" of the acetylene and butatriene molecules. This serves as a general foundation for the definition of "carbo-aromaticity", the relevance of which is surveyed through recent results in the synthetic, physical, and theoretical chemistry of carbo-mers and in particular macrocyclic-polycyclic representatives constituting a natural family of "novel aromatic compounds". With respect to their parent molecules, carbo-mers are constitutionally defined as "carbon-enriched", and can also be functionally regarded as "π-electron-enriched". This is exemplified by recent experimental and theoretical results on functional, aromatic, rigid, σ,π-macrocyclic carbo-benzene archetypes of various substitution patterns, with emphasis on the quadrupolar pattern. For the purpose of comparison, several types of non-aromatic references of carbo-benzenes are then considered, i.e. freely rotating σ,π-acyclic carbo-n-butadienes and flexible σ-cyclic, π-acyclic carbo-cyclohexadienes, and to "pro-aromatic" congeners, i.e. rigid σ,π-macrocyclic carbo-quinoids. It is shown that functional carbo-mers are entering the field of "molecular materials" for properties such as linear or nonlinear optical properties (e.g. dichromism and two-photon absorption) and single molecule conductivity. Since total or partial carbo-mers of aromatic carbon-allotropes of infinite size such as graphene (graphynes and graphdiynes) and graphite ("graphitynes") have long been addressed at the theoretical or conceptual level, recent predictive advances on the electrical, optical and mechanical properties of such carbo-materials are surveyed. Very preliminary experimental results

  17. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  18. Flow of Aqueous Humor

    Science.gov (United States)

    ... Facebook Twitter Google Plus Email Print this page Flow of Aqueous Humor Most, but not all, forms ... aqueous humor) produced by the eye's ciliary body flows out freely (follow blue arrow). Aqueous humor flows ...

  19. Graphene oxide based chiral diamine rhodium catalyst for asymmetric transfer hydrogenation of aromatic ketones

    Directory of Open Access Journals (Sweden)

    LIU Ketang

    2013-02-01

    Full Text Available Functional graphite oxide materials were synthesized through the Hummers chemical oxidation of graphite.Heterogeneous catalyst was prepared via direct grafting diamine-based chiral ligand to graphite oxide followed by the complexation with organorhodium complex.Such a chiral rhodium catalyst exhibited high catalytic activity and enantioselectivity in asymmetric transfer hydrogenation of aromatic ketones in aqueous medium under mild condition.

  20. Interactions of aromatic amino acids with heterocyclic ligand: An IR spectroscopic study

    Science.gov (United States)

    Tyunina, E. Yu.; Badelin, V. G.; Tarasova, G. N.

    2015-09-01

    The interactions of L-phenylalanine and L-tryptophan with nicotinic acid and uracyl in an aqueous buffer solution at pH 7.35 were studied by IR spectroscopy. The contributions of various functional groups to the complexation of aromatic amino acids with heterocyclic ligands were determined from the IR spectra of the starting substances and their mixtures.

  1. Aromatic hydrocarbons of mineral oil origin in foods: method for determining the total concentration and first results.

    Science.gov (United States)

    Biedermann, Maurus; Fiselier, Katell; Grob, Koni

    2009-10-14

    An online normal phase high-performance liquid chromatography (HPLC)-gas chromatography (GC)-flame ionization detection (FID) method was developed for the determination of the total concentration of the aromatic hydrocarbons of mineral oil origin with up to at least five rings in edible oils and other foods. For some samples, the olefins in the food matrix were epoxidized to increase their polarity and remove them from the fraction of the aromatic hydrocarbons. This reaction was carefully optimized, because also some aromatics tend to react. To reach a detection limit of around 1 mg kg(-1) in edible oils, an off-line enrichment was introduced. Some foods contained elevated concentrations of white paraffin oils (free of aromatics), but the majority of the mineral oils detected in foods were of technical grade with 20-30% aromatic hydrocarbons. Many foods contained mineral aromatic hydrocarbons in excess of 1 mg kg(-1). PMID:19728727

  2. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  3. Micropropagation of different aromatic plants

    OpenAIRE

    Koleva Gudeva, Liljana; Iljovska Tusev, Jasmina; Trajkova, Fidanka

    2014-01-01

    Aromatic plants have been used for centuries as species, natural flavor, raw material for essential-oil industry and other purposes. Micropropagation has advantage over conventional propagation because of high multiplication rate, but it depends on the performance of the starting material, media composition, phytohormones and environmental factors. In this study, aromatic plants as peppermint (Menta piperita L.) and Menta sp., rosemary (Rosmarinus sp.), rocket (Eruca sativa Mill.), coriand...

  4. Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes.

    Science.gov (United States)

    Wu, Wenhao; Yang, Kun; Chen, Wei; Wang, Wendi; Zhang, Jie; Lin, Daohui; Xing, Baoshan

    2016-01-01

    Adsorption of 22 nonpolar and polar aromatic compounds on 10 carbon nanotubes (CNTs) with various diameters, lengths and surface oxygen-containing group contents was investigated to develop predictive correlations for adsorption, using the isotherm fitting of Polanyi theory-based Dubinin-Ashtakhov (DA) model. Adsorption capacity of aromatic compounds on CNTs is negatively correlated with melting points of aromatic compounds, and surface oxygen-containing group contents and surface area ratios of mesopores to total pores of CNTs, but positively correlated with total surface area of CNTs. Adsorption affinity is positively correlated with solvatochromic parameters of aromatic compounds, independent of tube lengths and surface oxygen-containing group contents of CNTs, but negatively correlated with surface area ratios of mesopores to total pores of CNTs. The correlations of adsorption capacity and adsorption affinity with properties of both aromatic compounds and CNTs clearly have physical significance, can be used successfully with DA model to predict adsorption of aromatic compounds on CNTs from the well-known physiochemical properties of aromatic compounds (i.e., solvatochromic parameters, melting points) and CNTs (i.e., surface area and total acidic group contents), and thus can facilitate the environmental application of CNTs as sorbents and environmental risk assessment of both aromatic contaminants and CNTs. PMID:26521219

  5. The role of polar aromatics in residuum hydrocracking

    International Nuclear Information System (INIS)

    The CANMET hydrocracking process was developed to convert the heavy pitch fraction in bitumen into salable products. Some of the defining features of the CANMET technology were described. A 5000 BPD demonstration unit was built for Petro-Canada's Montreal Refinery in 1985. The CANMET slurry hydrocracking process uses a solid additive to inhibit coke formation and is capable of 975+ degrees F conversion levels in excess of 90 per cent. The process can be used for a wide range of refinery residues including conventional crudes and residues from refinery conversion units. The CANMET process has the capability of upgrading FCCU slurry, visbreaker vacuum tower bottoms, deasphalter bottoms residue, and poor quality gas oils from cokers and visbreakers. The current practices of the Petro-Canada commercial operation were discussed in the context of adapting the process to handle higher levels of asphaltenes. Pilot plant projects are being considered for ROSER deasphalter bottoms. 10 refs., 5 tabs., 21 figs

  6. Adsorption of polar aromatic hydrocarbons on synthetic calcite

    DEFF Research Database (Denmark)

    Madsen, Lene; Grahl-Madsen, Laila; Grøn, Christian; Lind, Ida; Engell, John

    1996-01-01

    The wettability of hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. A model system of synthetic call cite, cyclohexane and the three probe molecules: benzoic acid, benzyl alcohol and benzylamine, have been...

  7. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  8. Enhanced Adsorption of Hydroxyl- and Amino-Substituted Aromatic Chemicals to Nitrogen-Doped Multiwall Carbon Nanotubes: A Combined Batch and Theoretical Calculation Study.

    Science.gov (United States)

    Zuo, Linzi; Guo, Yong; Li, Xiao; Fu, Heyun; Qu, Xiaolei; Zheng, Shourong; Gu, Cheng; Zhu, Dongqiang; Alvarez, Pedro J J

    2016-01-19

    A large effort is being made to develop nanosorbents with tunable surface chemistry for enhanced adsorption affinity and selectivity toward target organic contaminants. Heteroatom N-doped multiwall carbon nanotubes (N-MCNT) were synthesized by chemical vapor deposition of pyridine and were further investigated for the adsorptive removal of several aromatic chemicals varying in electronic donor and acceptor ability from aqueous solutions using a batch technique. Compared with commercial nondoped multiwall carbon nanotubes (MCNT), N-MCNT had similar specific surface area, morphology, and pore-size distribution but more hydrophilic surfaces and more surface defects due to the doping of graphitic and pyridinic N atoms. N-MCNT exhibited enhanced adsorption (2-10 folds) for the π-donor chemicals (2-naphthol and 1-naphthalmine) at pH ∼6 but similar adsorption for the weak π-donor chemical (naphthalene) and even lower adsorption (up to a 2-fold change) for the π-acceptor chemical (1,3-dinitrobenzene). The enhanced adsorption of 2-naphthol and 1-naphthalmine to N-MCNT was mainly attributed to the favored π-π electron-donor-acceptor (EDA) interaction between the π-donor adsorbate molecule and the polarized N-heterocyclic aromatic ring (π-acceptor) on N-MCNT. The proposed adsorption enhancement mechanisms were further tested through the pH effects on adsorption and the density function theory (DFT) calculation. The results show for the first time that the adsorptive interaction of π-donor aromatic compounds with carbon nanomaterials can be facilitated by N-doping. PMID:26669961

  9. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  10. Photochemical degradation of hydroxy PAHs in ice: Implications for the polar areas.

    Science.gov (United States)

    Ge, Linke; Li, Jun; Na, Guangshui; Chen, Chang-Er; Huo, Cheng; Zhang, Peng; Yao, Ziwei

    2016-07-01

    Hydroxyl polycyclic aromatic hydrocarbons (OH-PAHs) are derived from hydroxylated PAHs as contaminants of emerging concern. They are ubiquitous in the aqueous and atmospheric environments and may exist in the polar snow and ice, which urges new insights into their environmental transformation, especially in ice. In present study the simulated-solar (λ > 290 nm) photodegradation kinetics, products and pathways of four OH-PAHs (9-Hydroxyfluorene, 2-Hydroxyfluorene, 1-Hydroxypyrene and 9-Hydroxyphenanthrene) in ice were investigated, and the corresponding implications for the polar areas were explored. It was found that the kinetics followed the pseudo-first-order kinetics with the photolysis quantum yields (Φs) ranging from 7.48 × 10(-3) (1-Hydroxypyrene) to 4.16 × 10(-2) (2-Hydroxyfluorene). These 4 OH-PAHs were proposed to undergo photoinduced hydroxylation, resulting in multiple hydroxylated intermediates, particularly for 9-Hydroxyfluorene. Extrapolation of the lab data to the real environment is expected to provide a reasonable estimate of OH-PAH photolytic half-lives (t1/2,E) in mid-summer of the polar areas. The estimated t1/2,E values ranged from 0.08 h for 1-OHPyr in the Arctic to 54.27 h for 9-OHFl in the Antarctic. In consideration of the lower temperature and less microorganisms in polar areas, the photodegradation can be a key factor in determining the fate of OH-PAHs in sunlit surface snow/ice. To the best of our knowledge, this is the first report on the photodegradation of OH-PAHs in polar areas. PMID:27135699

  11. Advances towards aromatic oligoamide foldamers

    DEFF Research Database (Denmark)

    Hjelmgaard, Thomas; Plesner, Malene; Dissing, Mette Marie; Andersen, Jeanette Marker; Frydenvang, Karla Andrea; Nielsen, John

    2014-01-01

    We have efficiently synthesized 36 arylopeptoid dimers with ortho-, meta-, and para-substituted aromatic backbones and tert-butyl or phenyl side chains. The dimers were synthesized by using a "submonomer method" on solid phase, by applying a simplified common set of reaction conditions. X......-ray crystallographic analysis of two of these dimers disclosed that the tert-butyl side chain invokes a cis amide conformation with a comparatively more closely packed structure of the surrounding aromatic backbone while the phenyl side chain results in a trans amide conformation with a more open, extended structure...... conformation with a more open, extended structure of the surrounding aromatic backbone. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  12. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication and...... characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  13. A feasibility study on identification of Basmati (aromatic) rice using SAR data

    Indian Academy of Sciences (India)

    Varunika Jain; C Patnaik; S Panigrahy

    2014-12-01

    Rice areas in India are being mapped for acreage estimation using Synthetic Aperture Radar (SAR) data under forecasting agricultural output using space, agrometeorology and land-based observations (FASAL) program for over a decade now. Under this study, an attempt was made to segregate rice areas based on variety in parts of Punjab state. Data acquisition was done at critical stages of rice growth. The shift in transplantation in temporal domain and difference in canopy volume formed the basis of characterization of rice crop into two different varieties namely aromatic and non-aromatic. Multitemporal HH polarization data along with rate of change of cross polarization ratio (HH/HV) from July to September 2011 was used. The aromatic rice could be separated from normal rice with 91% accuracy.

  14. The Effects of Embedded Dipoles in Aromatic Self-Assembled Monolayers

    NARCIS (Netherlands)

    Abu-Husein, Tarek; Schuster, Swen; Egger, David A.; Kind, Martin; Santowski, Tobias; Wiesner, Adrian; Chiechi, Ryan; Zojer, Egbert; Terfort, Andreas; Zharnikov, Michael

    2015-01-01

    Using a representative model system, here electronic and structural properties of aromatic self-assembled monolayers (SAMs) are described that contain an embedded, dipolar group. As polar unit, pyrimidine is used, with its orientation in the molecular backbone and, consequently, the direction of the

  15. High-resolution gas chromatographic analysis of polycyclic aromatic hydrocarbons and aliphatic hydrocarbons

    International Nuclear Information System (INIS)

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons and aliphatic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column in two different polar stationary phases OV-1 and SE-54. The limitation and the advantages of the procedure are discussed in terms of separation, sensitivity and precision. (Author) 20 refs

  16. Polarized electroproduction

    International Nuclear Information System (INIS)

    A new type of information on proton structure, its internal spin structure, has recently become available from a new type of experiment, polarized electroproduction. The scattering of longitudinally polarized electrons was measured by longitudinally polarized protons. The quantity measured was the asymmetry A, the normalized difference between the differential scattering cross sections for the antiparallel and parallel spin configurations. Data have been obtained for elastic, deep inelastic, and reasonance region scattering. Polarized electrons were obtained by the photoionization of polarized Li atomic beam with pulsed UV light. The important characteristics of the polarized electron beam are the intensity of 109 e-/1.5 μs pulse at repetition rate of 120 pps, and polarization of 0.85 +- 0.08. A number of data on deep inelastic scattering, preliminary asymmetry in the resonance region and others are described and illustrated in several graphs. There are several implications in these data; 1) test of Bjorken sum rule, 2) scaling, and 3) models of proton structure, which are mentioned hereinafter. The Bjorken sum rule predicts equality in the scaling limit between an integral over ω of the product of spin-averaged nucleon structure function W2 and spin dependent function A, and the ratio of axial vector to vector weak coupling constants of beta decay. Data on the asymmetries in deep inelastic and resonance region scattering will make possible the evaluation of a famous old problem -- the effect of proton polarizability on the hyperfine structure interval in hydrogen. (Wakatsuki, Y.)

  17. Survey of Recent Innovations in Aromatic Rice

    OpenAIRE

    Napasintuwong, Orachos

    2012-01-01

    This paper provides situations of aromatic rice demand, and international standards. The history and recent developments of traditional and evolved aromatic rice varieties, namely Basmati rice and Jasmine rice, are reviewed. The emerging aromatic rice innovations from developed countries such as the U.S. and other Asian countries generate a threat to these traditional aromatic rice producers such as India, Pakistan, and Thailand. Under WTO Trade Related Aspects of Intellectual Property Rights...

  18. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    Directory of Open Access Journals (Sweden)

    L. Yu

    2015-10-01

    Full Text Available Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl (3C* and hydroxyl radical (•OH. Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC are monitored using an online aerosol mass spectrometer (AMS. Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ∼ 2 h irradiation under midday, winter solstice sunlight in northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule and fragmentation (i.e., breaking of covalent bonds become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated open-ring molecules with carbon numbers (nC below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures C* of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C* values is

  19. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; George, Kathryn; Anastasio, Cort N.; Laskin, Julia; Dillner, Ann M.; Zhang, Qi

    2016-04-13

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and aerosol particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosol particles and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ~ 2 hours irradiation under midday, winter solstice sunlight in northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated open-ring molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures (C*) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C* values is observed, varying from

  20. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    Science.gov (United States)

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; George, Katheryn M.; Anastasio, Cort; Laskin, Julia; Dillner, Ann M.; Zhang, Qi

    2016-04-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C∗) and hydroxyl radical (•OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ˜ 2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures (C∗) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C∗ values is observed, varying

  1. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  2. An ab initio molecular dynamics study of the liquid-vapor interface of an aqueous NaCl solution: inhomogeneous density, polarity, hydrogen bonds, and frequency fluctuations of interfacial molecules.

    Science.gov (United States)

    Choudhuri, Jyoti Roy; Chandra, Amalendu

    2014-11-21

    We have presented a first principles simulation study of the structural and dynamical properties of a liquid-vapor interfacial system of a concentrated (5.3 M) aqueous NaCl solution. We have used ab initio molecular dynamics to examine the structural and dynamical properties of the bulk and interfacial regions. The structural aspects of the system that have been considered here include the inhomogeneous density profiles of ions and water molecules, hydrogen bond distributions, orientational profiles, and also vibrational frequency distributions in the bulk and interfacial regions. It is found that the sodium ions are mostly located in the interior, while the chloride anions occupy a significant portion of the interface of the slab. The water dipoles at the interface prefer to orient parallel to the surface. The dynamical aspects of the interfaces are investigated in terms of diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational spectral diffusion. The results of the interfacial dynamics are compared with those of the corresponding bulk region. It is observed that the interfacial molecules exhibit faster diffusion and orientational relaxation with respect to the bulk. However, the interfacial molecules are found to have longer hydrogen bond lifetimes than those of the bulk. We have also investigated the correlations of hydrogen bond relaxation with the vibrational frequency fluctuations of interfacial water molecules. PMID:25416903

  3. Nucleophilic fluorination of aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Satyamurthy, Nagichettiar; Barrio, Jorge R

    2014-03-18

    Iodylbenzene derivatives substituted with electron donating as well as electron withdrawing groups on the aromatic ring are used as precursors in aromatic nucleophilic substitution reactions. The iodyl group (IO.sub.2) is regiospecifically substituted by nucleophilic fluoride to provide the corresponding fluoroaryl derivatives. No-carrier-added [F-18]fluoride ion derived from anhydrous [F-18](F/Kryptofix, [F-18]CsF or a quaternary ammonium fluoride (e.g., Me.sub.4NF, Et.sub.4NF, n-Bu.sub.4NF, (PhCH.sub.2).sub.4NF) exclusively substitutes the iodyl moiety in these derivatives and provides high specific activity F-18 labeled fluoroaryl analogs. Iodyl derivatives of a benzothiazole analog and 6-iodyl-L-dopa derivatives have been synthesized as precursors and have been used in the preparation of no-carrier-added [F-18]fluorobenzothiazole as well as 6-[F-18]fluoro-L-dopa.

  4. Biodegradation of Polycyclic Aromatic Hydrocarbons

    OpenAIRE

    DEMİR, İsmail; DEMİRBAĞ, Zihni

    1999-01-01

    Polycylic aromatic hydrocarbons (PAHs), such as petroleum and petroleum derivatives, are widespread organic pollutants entering the environment, chiefly, through oil spills and incomplete combustion of fossil fuels. Since most PAHs are persist in the environment for a long period of time and bioaccumulate, they cause environmental pollution and effect biological equilibrium dramatically. Biodegradation of some PAHs by microorganisms has been biochemically and genetically investigated. Ge...

  5. Kinetics of Acetylcholinesterase Inhibition by an Aqueous Extract of Mentha longifolia Leaves

    OpenAIRE

    Chandra Shekhar; Suresh Kumar

    2014-01-01

    Cholinesterase inhibitors are the class of compounds which inhibit cholinesterase enzyme. These are used as drugs for symptomatic treatment of Alzheimer’s disease (AD). The present study, evaluate anti-cholinesterase property of an aqueous extract of Mentha longifolia leaves, which is an aromatic plant traditionally used for several medicinal properties. Ellman’s method was used to determine the acetylcholinesterase (AChE) enzyme inhibitory activity of an aqueous extracts of Mentha longifolia...

  6. Deuterated polycyclic aromatic hydrocarbons: Revisited

    CERN Document Server

    Doney, Kirstin D; Mori, Tamami; Onaka, Takashi; Tielens, A G G M

    2016-01-01

    The amount of deuterium locked up in polycyclic aromatic hydrocarbons (PAHs) has to date been an uncertain value. We present a near-infrared (NIR) spectroscopic survey of HII regions in the Milky Way, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) obtained with AKARI, which aims to search for features indicative of deuterated PAHs (PAD or Dn-PAH) to better constrain the D/H ratio of PAHs. Fifty-three HII regions were observed in the NIR (2.5-5 {\\mu}m), using the Infrared Camera (IRC) on board the AKARI satellite. Through comparison of the observed spectra with a theoretical model of deuterated PAH vibrational modes, the aromatic and (a)symmetric aliphatic C-D stretch modes were identified. We see emission features between 4.4-4.8 {\\mu}m, which could be unambiguously attributed to deuterated PAHs in only six of the observed sources, all of which are located in the Milky Way. In all cases, the aromatic C-D stretching feature is weaker than the aliphatic C-D stretching feature, and, in the case o...

  7. The direct aromatization of methane

    Energy Technology Data Exchange (ETDEWEB)

    Marcelin, G.; Oukaci, R.; Migone, R.A.; Kazi, A.M. [Altamira Instruments, Pittsburgh, PA (United States)

    1995-12-31

    The thermal decomposition of methane shows significant potential as a process for the production of higher unsaturated and aromatic hydrocarbons when the extent of the reaction is limited. Thermodynamic calculations have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that cooling the product and reacting gases as the reaction proceeds can significantly reduce or eliminate the formation of solid carbon and heavier (C{sub 10+}) materials. Much work remains to be done in optimizing the quenching process and this is one of the goals of this program. Means to lower the temperature of the reaction are being studied as this result in a more feasible commercial process due to savings realized in energy and material of construction costs. The use of free-radical generators and catalysts will be investigated as a means of lowering the reaction temperature thus allowing faster quenching. It is highly likely that such studies will lead to a successful direct methane to higher hydrocarbon process.

  8. Study on the polarity, solubility, and stacking characteristics of asphaltenes

    KAUST Repository

    Zhang, Long-li

    2014-07-01

    The structure and transformation of fused aromatic ring system in asphaltenes play an important role in the character of asphaltenes, and in step affect the properties of heavy oils. Polarity, solubility and structural characteristics of asphaltenes derived from Tahe atmospheric residue (THAR) and Tuo-826 heavy crude oil (Tuo-826) were analyzed for study of their internal relationship. A fractionation method was used to separate the asphaltenes into four sub-fractions, based on their solubility in the mixed solvent, for the study of different structural and physical-chemical properties, such as polarity, solubility, morphology, stacking characteristics, and mean structural parameters. Transmission electron microscope (TEM) observation can present the intuitive morphology of asphaltene molecules, and shows that the structure of asphaltenes is in local order as well as long range disorder. The analysis results showed that n-heptane asphaltenes of THAR and Tuo-826 had larger dipole moment values, larger fused aromatic ring systems, larger mean number of stacking layers, and less interlayer spacing between stacking layers than the corresponding n-pentane asphaltenes. The sub-fractions that were inclined to precipitate from the mixture of n-heptane and tetrahydrofuran had larger polarity and less solubility. From the first sub-fraction to the fourth sub-fraction, polarity, mean stacking numbers, and average layer size from the TEM images follow a gradual decrease. The structural parameters derived from TEM images could reflect the largest fused aromatic ring system in asphaltene molecule, yet the parameters derived from 1H NMR data reflected the mean message of poly-aromatic ring systems. The structural parameters derived from TEM images were more consistent with the polarity variation of sub-fractions than those derived from 1H NMR data, which indicates that the largest fused aromatic ring system will play a more important role in the stacking characteristics of

  9. Carotamine, a Unique Aromatic Amide from Daucus Carota L. Var Biossieri (Apiaceae

    Directory of Open Access Journals (Sweden)

    Mohamed M. El-Azizi

    2002-06-01

    Full Text Available The unique aromatic peptide 4-(p-aminobenzoylamino-2-aminobenzoic acid, carotamine, together with 2,4-diaminobenzoic acid, isolated for the first time from a plant source, were identified from the aqueous alcoholic extract of the aerial parts of Daucus carota L. var. boissieri (Apiaceae. The structures were determined through conventional methods of analysis and confirmed by LC-ESI/MS and NMR spectral analysis.

  10. Cyclophanes Or Cyclodextrins: What Is The Best Host For Aromatic Volatile Organic Compounds ?

    OpenAIRE

    Ionut Dron, Paul; Fourmentin, Sophie; Cazier, Francine; Landy, David; Surpateanu, Gheorghe

    2008-01-01

    Abstract The first results of the complexing ability of cyclobis(paraquat-p-phenylene) as supramolecular host with different aromatic volatile organic compounds are presented. The formation constants of cyclobis(paraquat-p-phenylene) with toluene and halogenobenzenes were determinated in aqueous solution by static headspace associated with gas chromatography and compared with the ones obtained by cyclodextrins. The data indicated the formation of 1:1 inclusion compounds in both ca...

  11. Uptake and Active Efflux of Polycyclic Aromatic Hydrocarbons by Pseudomonas fluorescens LP6a

    OpenAIRE

    Bugg, Trevor; Foght, Julia M.; Pickard, Michael A.; Gray, Murray R.

    2000-01-01

    The mechanism of transport of polycyclic aromatic hydrocarbons (PAHs) by Pseudomonas fluorescens LP6a, a PAH-degrading bacterium, was studied by inhibiting membrane transport and measuring the resulting change in cellular uptake. Three cultures were used: wild-type LP6a which carried a plasmid for PAH degradation, a transposon mutant lacking the first enzyme in the pathway for PAH degradation, and a cured strain without the plasmid. Washed cells were mixed with aqueous solutions of radiolabel...

  12. π-Electron rotations in chiral aromatic molecules induced by ultashort laser pulses

    International Nuclear Information System (INIS)

    π Electron play an important role in formation of the molecular structures and reactivity of aromatic molecules. In recent years, research fields of electron dynamics in atoms and molecules have attracted considerable attention with rapid progress in laser science and technology in femtosecond to attosecond time regimes [1]. This is a new branch of femtosecond chemistry. In this talk, we present the results of our recent works on control of π-electron rotation in photo-induced chiral aromatic molecules [2-4]. Control of π-electron rotation has potential utility to next-generation ultrafast switching devices. After a short introduction, the principle of generation of unidirectional π-electron rotation in aromatic molecules induced by a linearly polarized UV laser pulse is described. Next, the results of control simulations of π-electron rotations and those of the π- electron ring currents are presented for two representative chiral aromatic molecules; one is 2,5-dichlor[n] (3,6) pyrazinophane with one aromatic pyrzine ring [2], and the other is (P)-2,2’-biphenol with two aromatic rings [3,4]. Finally, the summary of the π-electron rotations and perspectives of ultrashort quantum switching investigations are described. (author)

  13. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review.

    Science.gov (United States)

    Lamichhane, Shanti; Bal Krishna, K C; Sarukkalige, Ranjan

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are organic micro pollutants which are persistent compounds in the environment due to their hydrophobic nature. Concerns over their adverse effects in human health and environment have resulted in extensive studies on various types of PAHs removal methods. Sorption is one of the widely used methods as PAHs possess a great sorptive ability into the solid media and their low aqueous solubility property. Several adsorbent media such as activated carbon, biochar, modified clay minerals have been largely used to remove PAHs from aqueous solution and to immobilise PAHs in the contaminated soils. According to the past studies, very high removal efficiency could be achieved using the adsorbents such as removal efficiency of activated carbon, biochar and modified clay mineral were 100%, 98.6% and >99%, respectively. PAHs removal efficiency or adsorption/absorption capacity largely depends on several parameters such as particle size of the adsorbent, pH, temperature, solubility, salinity including the production process of adsorbents. Although many studies have been carried out to remove PAHs using the sorption process, the findings have not been consolidated which potentially hinder to get the correct information for future study and to design the sorption method to remove PAHs. Therefore, this paper summarized the adsorbent media which have been used to remove PAHs especially from aqueous solutions including the factor affecting the sorption process reported in 142 literature published between 1934 and 2015. PMID:26820781

  14. Noncomparative scaling of aromaticity through electron itinerancy

    International Nuclear Information System (INIS)

    Aromaticity is a multidimensional concept and not a directly observable. These facts have always stood in the way of developing an appropriate theoretical framework for scaling of aromaticity. In the present work, a quantitative account of aromaticity is developed on the basis of cyclic delocalization of π-electrons, which is the phenomenon leading to unique features of aromatic molecules. The stabilization in molecular energy, caused by delocalization of π-electrons is obtained as a second order perturbation energy for archetypal aromatic systems. The final expression parameterizes the aromatic stabilization energy in terms of atom to atom charge transfer integral, onsite repulsion energy and the population of spin orbitals at each site in the delocalized π-electrons. An appropriate computational platform is framed to compute each and individual parameter in the derived equation. The numerical values of aromatic stabilization energies obtained for various aromatic molecules are found to be in close agreement with available theoretical and experimental reports. Thus the reliable estimate of aromaticity through the proposed formalism renders it as a useful tool for the direct assessment of aromaticity, which has been a long standing problem in chemistry

  15. Polar cod effects from petroleum exposure (Polar cod, lipid metabolism and disruption by polycyclic aromatic hydrocarbons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project will combine advanced methodologies from several fields of science to attain the most complete understanding of the uptake and potential effects of...

  16. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  17. Partition of polycyclic aromatic hydrocarbons on organobentonites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of organobentonites synthesized by exchanging organiccation such as dodecyltri-methylammonium (DTMA),benzyldimethyltetradecylammonium (BDTDA), cetyltrimethyl-ammonium (CTMA), octodeyltrimethylammonium (OTMA) on bentonite. The optimal condition, properties and mechanisms for the organobentonites to sorb phenanthrene, anthracene, naphthalene, acenaphthene in water were investigated in detail. The partition behavior was determined for four polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, anthracene and acenaphthene, from water to a series of organobentonites. The interlayer spacings and organic carbon contents of organobentonites, removal rate and sorption capacities for organobentonites to treat phenanthrene,anthracene, naphthalene, acenaphthene were correlated to the length of alkyl chains and the amounts of cation surfactant exchanged on Foundation item: the bentonite. Phenanthrene, anthracene, naphthalene, and acenaphthene sorption to organobentonites were characterized by linear isotherms, indicating solute partition between water and the organic phase composed of the large alkyl functional groups of quaternary ammonium cations. PAHs distribution coefficients (Kd)between organobentonites and water were proportional to the organic carbon contents of organobentonites. However, the partition coefficients (Koc) were nearly constants for PAHs in the system of organobentonite-water. The Koc of phenanthrene, anthracene,naphthalene, acenaphthene were 2.621x105, 2.106x105, 2.247x104,5.085x104, respectively. The means Koc values on the organobentonites are about ten to twenty times larger than the values on the soils/sediments, what is significant prerequisite for organobentonite to apply to remediation of pollution soil and groundwater. The sorption mechanism was also evaluated from octanol-water partition coefficients and aqueous solubility of PAHs. The correlations between lgKoc and 1gkow, 1gKoc and 1gS for PAHs in the system of water

  18. Calcined eggshell (CES): An efficient natural catalyst for Knoevenagel condensation under aqueous condition

    Indian Academy of Sciences (India)

    Suresh Patil; Swati D Jadhav; M B Deshmukh

    2013-07-01

    A convenient, eco-friendly and economic method for Knoevenagel condensation of aromatic aldehydes with active methylene compounds using calcined eggshell (CES) as an efficient natural catalyst in aqueous medium has been reported. CES is a new, ecologically safe and inexpensive green catalyst obtained from renewable resources.

  19. Quantum transport through aromatic molecules

    International Nuclear Information System (INIS)

    In this paper, we study the electronic transport properties through aromatic molecules connected to two semi-infinite leads. The molecules are in different geometrical configurations including arrays. Using a nearest neighbor tight-binding approach, the transport properties are analyzed into a Green's function technique within a real-space renormalization scheme. We calculate the transmission probability and the Current-Voltage characteristics as a function of a molecule-leads coupling parameter. Our results show different transport regimes for these systems, exhibiting metal-semiconductor-insulator transitions and the possibility to employ them in molecular devices

  20. Substrate specific hydrolysis of aromatic and aromatic-aliphatic esters in orchid tissue cultures

    OpenAIRE

    Agnieszka Mironowicz; Krystyna Kukułczanka; Antoni Siewiński

    2014-01-01

    We found that tissue cultures of higher plants were able, similarly as microorganisms, to transform low-molecular-weight chemical compounds. In tissue cultures of orchids (Cymbidium 'Saint Pierre' and Dendrobium phalaenopsis) acetates of phenols and aromatic-aliphatic alcohols were hydrolyzed, whereas methyl esters of aromatic and aromatic-aliphatic acids did not undergo this reaction. Acetates of racemic aromatic-aliphatic alcohols were hydrolyzed with distinct enantiospecificity.

  1. Tritium exchange reactions in imidazole in aqueous and organic solutions

    International Nuclear Information System (INIS)

    Tritium exchange reactions were studied in aqueous and organic solutions of imidazole and methylimidazole. For the exchange in an aqueous solution the mechanism through ylide intermediate formation postulated by VAUGHAN et al. was modified in this study. The rate constant obtained by MASLOVA et al. was found to be too small compared to ours. For the exchange reaction of methylimidazole in an aqueous solution the rate decreased due to the effect of a methyl group attached to the aromatic ring. The C-2 tritiation of imidazole was studied in chloroform, acetone and dioxane for the first time. It was dependent on polymer properties. An intramolecular exchange mechanism was applicable to the trimer while an intermolecular exchange mechanism was applicable to the dimer. The rate constants of the exchange reactions in organic solutions were obtained for both mechanisms. (orig.)

  2. Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms of aquatic ecosystems--A review.

    Science.gov (United States)

    Boncel, Sławomir; Kyzioł-Komosińska, Joanna; Krzyżewska, Iwona; Czupioł, Justyna

    2015-10-01

    Due to their unique molecular architecture translating into numerous every-day applications, carbon nanotubes (CNTs) will be ultimately an increasingly significant environmental contaminant. This work reviews qualitative/quantitative analyses of interactions of various types of CNTs and their chemically modified analogues with aqueous/aquatic media containing organic and inorganic contaminants and selected organisms of aquatic ecosystems. A special emphasis was placed on physicochemical interactions between CNTs as adsorbents of heavy metal cations and aromatic compounds (dyes) with its environmental consequences. The studies revealed CNTs as more powerful adsorbents of aromatic compounds (an order of magnitude higher adsorption capacity) than metal cations. Depending on the presence of natural organic matter (NOM) and/or co-contaminants, CNTs may act as Trojan horse while passing through biological membranes (in the absence of NOM coordinating metal ions). Nanotubes, depending on flow conditions and their morphology/surface chemistry, may travel with natural waters or sediment with immobilized PAHs or metals and/or increase cyto- and ecotoxicity of PAHs/metal ions by their release via competitive complexation, or cause synergic ecotoxicity while adsorbing nutrients. Additionally, toxicity of CNTs against exemplary aquatic microorganisms was reviewed. It was found for Daphnia magna that longer exposures to CNTs led to higher ecotoxicity with a prolonged CNTs excretion. SWCNTs were more toxic than MWCNTs, while hydrophilization of CNTs via oxidation or anchoring thereto polar/positively charged polymer chains enhanced stability of nanotubes dispersion in aqueous media. On the other hand, bioavailability of functionalized CNTs was improved leading to more complex both mechanisms of uptake and cytotoxic effects. PMID:26022284

  3. Polycyclic aromatic hydrocarbons in insular and coastal soils of the Russian Arctic

    Science.gov (United States)

    Abakumov, E. V.; Tomashunas, V. M.; Lodygin, E. D.; Gabov, D. N.; Sokolov, V. T.; Krylenkov, V. A.; Kirtsideli, I. Yu.

    2015-12-01

    The content and individual component compositions of polycyclic aromatic hydrocarbons in polar soils of the Russian Arctic sector have been studied. The contamination of soils near research stations is identified from the expansion of the range of individual polycyclic aromatic hydrocarbons, the abrupt increase in the content of heavy fractions, and the accumulation of benzo[ a]pyrene. Along with heavy hydrocarbons, light hydrocarbons (which are not only natural compounds, but also components of organic pollutants) are also accumulated in the contaminated soils. Heavy polycyclic aromatic hydrocarbons are usually of technogenic origin and can serve as markers of anthropogenic impact in such areas as Cape Sterligov, Cape Chelyuskin, and the Izvestii TsIK Islands. The content of benzo[ a]pyrene, the most hazardous organic toxicant, appreciably increases in soils around the stations, especially compared to the control; however, the level of MPC is exceeded only for the soils of Cape Chelyuskin.

  4. Modeling the fate of polynuclear aromatic hydrocarbons in the rhizosphere

    International Nuclear Information System (INIS)

    Polynuclear aromatic hydrocarbons (PAHs) are major contaminants associated with wastes from manufactured gas plants, wood treating operations, and petroleum refining; they are potentially carcinogenic and mutagenic. It has been known that vegetation can enhance the rate and extent of degradation of PAHs in contaminated soil. Plant roots release exudates capable of supplying carbon and energy to microflora for degrading PAHs. It has also been well established that the population of microorganisms in the rhizosphere is significantly greater than that in the non-vegetated soil; these microorganisms are apparently responsible for the enhanced biodegradation of PAHs. A model has been derived for describing the rate of disappearance of a non-aqueous phase contaminant in the rhizosphere, which takes into account dissolution, adsorption, desorption and biodegradation of the contaminant, without neglecting the size distribution of the organic-phase droplets; the rate of biodegradation is expressed in terms of the Monod kinetics. The model is validated with the available experimental data for pyrene

  5. Beyond organic chemistry: aromaticity in atomic clusters.

    Science.gov (United States)

    Boldyrev, Alexander I; Wang, Lai-Sheng

    2016-04-28

    We describe joint experimental and theoretical studies carried out collaboratively in the authors' labs for understanding the structures and chemical bonding of novel atomic clusters, which exhibit aromaticity. The concept of aromaticity was first discovered to be useful in understanding the square-planar unit of Al4 in a series of MAl4(-) bimetallic clusters that led to discoveries of aromaticity in many metal cluster systems, including transition metals and similar cluster motifs in solid compounds. The concept of aromaticity has been found to be particularly powerful in understanding the stability and bonding in planar boron clusters, many of which have been shown to be analogous to polycyclic aromatic hydrocarbons in their π bonding. Stimulated by the multiple aromaticity in planar boron clusters, a design principle has been proposed for stable metal-cerntered aromatic molecular wheels of the general formula, M@Bn(k-). A series of such borometallic aromatic wheel complexes have been produced in supersonic cluster beams and characterized experimentally and theoretically, including Ta@B10(-) and Nb@B10(-), which exhibit the highest coordination number in two dimensions. PMID:26864511

  6. Polycyclic aromatic hydrocarbons with SPICA

    CERN Document Server

    Berne, O; Mulas, G; Tielens, A G G M; Goicoechea, J R

    2009-01-01

    Thanks to high sensitivity and angular resolution and broad spectral coverage, SPICA will offer a unique opportunity to better characterize the nature of polycyclic aromatic hydrocarbons (PAHs) and very small grains (VSGs), to better use them as probes of astrophysical environments. The angular resolution will enable to probe the chemical frontiers in the evolution process from VSGs to neutral PAHs, to ionized PAHs and to "Grand-PAHs" in photodissotiation regions and HII regions, as a function of G$_0$/n (UV radiation field / density). High sensitivity will favor the detection of the far-IR skeletal emission bands of PAHs, which provide specific fingerprints and could lead to the identification of individual PAHs. This overall characterization will allow to use PAH and VSG populations as tracers of physical conditions in spatially resolved protoplanetary disks and nearby galaxies (using mid-IR instruments), and in high redshift galaxies (using the far-IR instrument), thanks to the broad spectral coverage SPIC...

  7. Helically assembled π-conjugated polymers with circularly polarized luminescence

    International Nuclear Information System (INIS)

    We review the recent progress in the field of helically assembled π-conjugated polymers, focusing on aromatic conjugated polymers with interchain helical π-stacking that exhibit circularly polarized luminescence (CPL). In Part 1, we discuss optically active polymers with white-colored CPL and the amplification of the circular polarization through liquid crystallinity. In Part 2, we focus on the stimuli-responsive CPL that results from changes in the conformation and aggregation state of π-conjugated molecules and polymers. In Part 3, we discuss the self-assembly of achiral cationic π-conjugated polymers into circularly polarized luminescent supramolecular nanostructures with the aid of other chiral molecules. (review)

  8. Ultra resolution chemical fingerprinting of dense non-aqueous phase liquids from manufactured gas plants by reversed phase comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    McGregor, Laura A; Gauchotte-Lindsay, Caroline; Daéid, Niamh Nic; Thomas, Russell; Daly, Paddy; Kalin, Robert M

    2011-07-22

    Ultra resolution chemical fingerprinting of dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plants (FMGPs) was investigated using comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC×GC TOFMS). Reversed phase GC×GC (i.e. a polar primary column coupled to a non-polar secondary column) was found to significantly improve the separation of polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues. Sample extraction and cleanup was performed simultaneously using accelerated solvent extraction (ASE), with recovery rates between 76% and 97%, allowing fast, efficient extraction with minimal solvent consumption. Principal component analysis (PCA) of the GC×GC data was performed in an attempt to differentiate between twelve DNAPLs based on their chemical composition. Correlations were discovered between DNAPL composition and historic manufacturing processes used at different FMGP sites. Traditional chemical fingerprinting methods generally follow a tiered approach with sample analysis on several different instruments. We propose ultra resolution chemical fingerprinting as a fast, accurate and precise method of obtaining more chemical information than traditional tiered approaches while using only a single analytical technique. PMID:21652041

  9. Translation of an aromatic field image

    Science.gov (United States)

    Yastrebov, Anatoliy S.; Makarov, Leonid M.; Protasenya, Sergey V.; Vereshak, Evgeniy V.

    2005-04-01

    As is known, for a person there are possibilities of perception of audio, video, and aromatic information messages by means of touch systems available to him. Such packages of the messages are accepted remotely without direct contact to a message source. Now the direction bound with creation of devices capable to playback aromatic information images is actively developed. Such systems switched on in special transmission channels of information provide adequate perception of information highways describing actual event which happen in the enclosing world. One can present the aromatic-field image through a series of control codes for an aromatic field synthesizer, thereupon it is possible to transmit the image on telecommunication networks. For odor oscillators installation problems in compartments of automobiles, buses as well as of airplanes are widely discussed. In this work we deal with a device for synthesis of an image of an aromatic field which works under the control of a personal computer with an express program. In the given operation, the possibility of remote handle of an image of an aromatic field and, as a corollary, organization of a new tansmission channel for the information on the aromatic-field image through an existing synthesizer is considered.

  10. Conservation of medicinal and aromatic plants

    Directory of Open Access Journals (Sweden)

    Šveistytė, Laima

    2016-07-01

    Full Text Available The conservation of medicinal and aromatic plants includes ex situ and in situ methods. The genetic recourses of medicinal and aromatic plants are stored, studied and constantly maintained in the field collections of the Institute of Botany of Nature Research Centre, Kaunas Botanical Garden of Vytautas Magnus University and Aleksandras Stulginskis University of Agriculture. Presently seeds of 214 accessions representing 38 species of medicinal and aromatic plants are stored in a long-term storage in the Plant Gene Bank. The data about national genetic resources are collected and stored in the Central Database of the Plant Gene Bank.

  11. Hexacoordinate bonding and aromaticity in silicon phthalocyanine.

    Science.gov (United States)

    Yang, Yang

    2010-12-23

    Si-E bondings in hexacoordinate silicon phthalocyanine were analyzed using bond order (BO), energy partition, atoms in molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL). Bond models were proposed to explain differences between hexacoordinate and tetracoordinate Si-E bondings. Aromaticity of silicon phthalocyanine was investigated using nucleus-independent chemical shift (NICS), harmonic oscillator model of aromaticity (HOMA), conceptual density functional theory (DFT), ring critical point (RCP) descriptors, and delocalization index (DI). Structure, energy, bonding, and aromaticity of tetracoordinate silicon phthalocyanine were studied and compared with hexacoordinate one. PMID:21105726

  12. From aromaticity to self-organized criticality in graphene.

    Science.gov (United States)

    Zubarev, Dmitry Yu; Frenklach, Michael; Lester, William A

    2012-09-21

    The unique properties of graphene are rooted in its peculiar electronic structure where effects of electron delocalization are pivotal. We show that the traditional view of delocalization as formation of a local or global aromatic bonding framework has to be expanded in this case. A modification of the π-electron system of a finite-size graphene substrate results in a scale-invariant response in the relaxation of interatomic distances and reveals self-organized criticality as a mode of delocalized bonding. Graphene is shown to belong to a diverse class of finite-size extended systems with simple local interactions where complexity emerges spontaneously under very general conditions that can be a critical factor controlling observable properties such as chemical activity, electron transport, and spin-polarization. PMID:22872129

  13. Sorption of polycyclic aromatic hydrocarbons on particulate organic matters

    International Nuclear Information System (INIS)

    Particulate organic matter (POM) is a key organic matter fraction which can influence soil fertility. Its interactions with hydrophobic organic pollutants (HOCs) have not been characterized and the mechanisms of retention of HOCs by POM remain unclear. In the present study, sorption behaviors of polycyclic aromatic hydrocarbons (PAHs) naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by POMs separated from different soils were examined and the POMs were characterized by elemental analysis, solid state 13C NMR, and Fourier transform infrared spectroscopy (FT-IR). The results indicated that POMs were mainly composed of aliphatic components with high polarity. The different original POMs showed similar chemical composition and configuration. Sorption behaviors of PAHs indicated that there was no significant difference in sorption capacity among the POMs. Sorption of NAP and PHE by POMs displayed a nonlinear isotherm, while sorption of PYR yielded a linear isotherm. No significant hysteresis and ionic strength effect were observed for PAH desorption from the POMs.

  14. Proton nuclear magnetic resonance characterization of the aromatic residues in the variant-3 neurotoxin from Centruroides sculpturatus Ewing

    International Nuclear Information System (INIS)

    The amino acid sequence for the variant-3 (CsE-v3) toxin from the venom of the scorpion Centruroides sculpturatus Ewing contains eight aromatic residues. By use of 2D NMR spectroscopic methods, the resonances from the individual protons (NH, CalphaH, CbetaH', H double prime, and the ring) for each of the individual aromatic residues have been completely assigned. The spatial arrangement of the aromatic ring systems with respect to each other has been qualitatively analyzed by 2D-NOESY techniques. The results show that Trp-47, Tyr-4, and Tyr-42 are in close spatial proximity to each other. The NOESY contacts and the ring current induced shifts in the resonances of the individual protons of Tyr-4 and Trp-47 suggest that the aromatic ring planes of these residues are in an orthogonal arrangement. A comparison with the published crystal structure suggests that there is a minor rearrangement of the aromatic rings in the solution phase. No 2D-NOESY contacts involving Phe-44 and Tyr-14 to any other aromatic ring protons have been observed. The pH dependence of the aromatic ring proton chemical shifts has also been studied. These results suggest that the Tyr-58 phenolic group is experiencing a hydrogen-bonding interaction with a positively charged group, while Tyr-4, -14, -38, and -40 are experiencing through-space interactions with proximal negatively charged groups. These studies define the microenvironment of the aromatic residues in the variant-3 neurotoxin in aqueous solution

  15. Aqueous CO2 vs. aqueous extraction of soils as a preparative procedure for acute toxicity testing

    International Nuclear Information System (INIS)

    This study was to determine if contaminated soils extracted with supercritical CO2 (SFE) would yield different results from soils extracted with an aqueous media. Soil samples from an abandoned oil refinery were subjected to aqueous and SFE extraction. Uncontaminated control sites were compared with contaminated sites. Each extract was analyzed for 48 hour acute Ceriodaphnia LC50s and Microtox reg-sign EC50s. Comparisons were then made between the aqueous extracts and the SFE extracts. An additional study was made with HPLC chromatographs of the SFE contaminated site extracts to determine if there was a correlation between LC50 results and peak area of different sections of the chromatograph. The 48 hour Ceriodaphnia LC50 of one contaminated site showed a significant increase in toxicity with the supercritical extract compared to the aqueous extract. All contaminated sites gave toxic responses with the supercritical procedure. The Microtox reg-sign assay showed a toxic response with 2 of the 3 contaminated sites for both aqueous and SFE extracts. Results indicate that the Ceriodaphnia assays were more sensitive than Microtox reg-sign to contaminants found in the refinery soil. SFE controls did not show adverse effects with the Ceriodaphnia, but did have a slight effect with Microtox reg-sign. The best correlation (r2 > 0.90) between the Ceriodaphnia LC50s and the peak areas of the chromatographs was obtained for sections with an estimated log Kow of 1 to 5. SFE extraction provided a fast, efficient and inexpensive method of collecting and testing moderately non-polar to strongly non-polar organic contaminants from contaminated soils

  16. Pulse shape discrimination in non-aromatic plastics

    International Nuclear Information System (INIS)

    Recently it has been demonstrated that plastic scintillators have the ability to distinguish neutrons from gamma rays by way of pulse shape discrimination (PSD). This discovery has lead to new materials and new capabilities. Here we report our work with the effects of aromatic, non-aromatic, and mixed aromatic/non-aromatic matrices have on the performance of PSD plastic scintillators

  17. Highly Conductive Aromatic Functionalized Multi-Walled Carbon Nanotube for Inkjet Printable High Performance Supercapacitor Electrodes.

    Directory of Open Access Journals (Sweden)

    Sanjeev K Ujjain

    Full Text Available We report the functionalization of multiwalled carbon nanotubes (MWCNT via the 1,3-dipolar [3+2] cycloaddition of aromatic azides, which resulted in a detangled CNT as shown by transmission electron microscopy (TEM. Carboxylic moieties (-COOH on aromatic azide result in highly stable aqueous dispersion (max. conc. ~ 10 mg/mL H2O, making the suitable for inkjet printing. Printed patterns on polyethylene terephthalate (PET flexible substrate exhibit low sheet resistivity ~65 Ω. cm, which is attributed to enhanced conductivity. Fabricated Supercapacitors (SC assembled using these printed substrates exhibit good electrochemical performance in organic as well as aqueous electrolytes. High energy and power density (57.8 Wh/kg and 0.85 kW/kg in 1M H2SO4 aqueous electrolyte demonstrate the excellent performance of the proposed supercapacitor. Capacitive retention varies from ~85-94% with columbic efficiency ~95% after 1000 charge/discharge cycles in different electrolytes, demonstrating the excellent potential of the device for futuristic power applications.

  18. Volatilisation of aromatic hydrocarbons from soil

    DEFF Research Database (Denmark)

    Lindhardt, B.; Christensen, T.H.

    1996-01-01

    The non-steady-state fluxes of aromatic hydrocarbons were measured in the laboratory from the surface of soils contaminated with coal tar Four soil samples from a former gasworks site were used for the experiments. The fluxes were quantified for 11 selected compounds, 4 mono- and 7 polycyclic...... aromatic hydrocarbons, for a period of up to 8 or 16 days. The concentrations of the selected compounds in the soils were between 0.2 and 3,100 mu g/g. The study included the experimental determination of the distribution coefficient of the aromatic hydrocarbons between the sorbed phase and the water under...... saturated conditions. The determined distribution coefficients showed that the aromatic hydrocarbons were more strongly sorbed to the total organic carbon including the coal tar pitch - by a factor of 8 to 25 - than expected for natural organic matter. The fluxes were also estimated using an analytical...

  19. Graphite Oxide and Aromatic Amines : Size Matters

    NARCIS (Netherlands)

    Spyrou, Konstantinos; Calvaresi, Matteo; Diamanti, Evmorfi A. K.; Tsoufis, Theodoros; Gournis, Dimitrios; Rudolf, Petra; Zerbetto, Francesco

    2015-01-01

    Experimental and theoretical studies are performed in order to illuminate, for first time, the intercalation mechanism of polycyclic aromatic molecules into graphite oxide. Two representative molecules of this family, aniline and naphthalene amine are investigated. After intercalation, aniline molec

  20. International congress on aromatic and medicinal plants

    International Nuclear Information System (INIS)

    Full Text : In Morocco, medicinal and aromatic plants occupy an important place in the traditional care system of a large number of local people. They are also economically strong potential, but unfortunately they are not valued enough. Indeed, Morocco by its privileged geographical position in the Mediterranean basin and its floristic diversity (with a total of over 4,200 species and subspecies of which over 500 are recognized as medicinal and aromatic plants), is a leading provider of traditional global market. In this context and given the back label of the natural global, group research and studies on Aromatic and Medicinal Plants (GREPAM), the Faculty of Semlalia and University Cadi Ayyad, organize: the International Congress on Medicinal and Aromatic Plants CIPAM 2009. The organization of this conference is part of scientific research developed by the GREPAM.

  1. Activity relationships for aromatic crown ethers

    CERN Document Server

    Wilson, M J

    1998-01-01

    This thesis involves an investigation of aromatic crown ethers and a study of their binding constants for alkali metals. The study was motivated by the current needs of the semiconductor industry to improve the scavenging of mobile ions from fabricated circuits. A number of aromatic crown ethers have been sulphonated in an attempt to improve their water solubility and cation binding activity. These materials have been extensively studied and their binding activity determined. In collaboration with a molecular modelling study, the effect of ionisable sulphonate groups on the macrocycles' behaviour has been investigated. The broader issue of the effect of substituents in aromatic crown ethers has also been studied with the preparation of a wide range of substituted crown ethers. The cation binding activity of these materials has been found to bear a simple relationship to the electron withdrawing nature of the aromatic substituents. This relationship can be accurately monitored using electronic charge densities...

  2. Comments on Coulomb pairing in aromatic hydrocarbons

    CERN Document Server

    Huber, D L

    2013-01-01

    Recently reported anomalies in the double-photonionization spectra of aromatic molecules such as benzene, naphthalene, anthracene and coronene are attributed to Coulomb-pair resonances of pi electrons.

  3. PROTONATED POLYCYCLIC AROMATIC HYDROCARBONS REVISITED

    International Nuclear Information System (INIS)

    We reconsider the contribution that singly protonated polycyclic aromatic hydrocarbons (PAHs; HPAH+s) might make to the Class A component of the 6.2 μm interstellar emission feature in light of the recent experimental measurements of protonated naphthalene and coronene. Our calculations on the small HPAH+s have a band near 6.2 μm, as found in experiment. While the larger HPAH+s still have emission near 6.2 μm, the much larger intensity of the band near 6.3 μm overwhelms the weaker band at 6.2 μm, so that the 6.2 μm band is barely visible. Since the large PAHs are more representative of those in the interstellar medium, our work suggests that large HPAH+s cannot be major contributors to the observed emission at 6.2 μm (i.e., Class A species). Saturating large PAH cations with hydrogen atoms retains the 6.2 μm Class A band position, but the rest of the spectrum is inconsistent with observed spectra.

  4. Dehydrogenative Aromatization of Saturated Aromatic Compounds by Graphite Oxide and Molecular Sieves

    Institute of Scientific and Technical Information of China (English)

    张轩; 徐亮; 王希涛; 马宁; 孙菲菲

    2012-01-01

    Graphite oxide (GO) has attracted much attention of material and catalysis chemists recently. Here we describe a combination of GO and molecular sieves for the dehydrogenative aromatization. GO prepared through improved Hummers method showed high oxidative activity in this reaction. Partially or fully saturated aromatic compounds were converted to their corresponding dehydrogenated aromatic products with fair to excellent conversions and selectivities. As both GO and molecular sieves are easily available, cheap, lowly toxic and have good tolerance to various functional groups, this reaction provides a facile approach toward aromatic compounds from their saturated precursors

  5. Aromatic amines sources, environmental impact and remediation

    OpenAIRE

    Pereira, Luciana; Mondal, P. K.; Alves, M. M.

    2015-01-01

    Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these comp...

  6. Nonchemical weeding of medicinal and aromatic plants

    OpenAIRE

    Carrubba, Alessandra; Militello, Marcello

    2013-01-01

    Medicinal and aromatic plants are major crops of domestic and industrial interest. Medicinal and aromatic plants are increasingly organically grown to enhance profitability. However, the presence of weeds may lead to a decrease in both yield and quality. Therefore, nonchemical methods of weed control are needed. In this study, mechanical weeding, flaming, stale seedbed, and biodegradable mulch were tested from 2003/2004 to 2006/2007 on coriander, fennel, and psyllium. Biomass and seed yield w...

  7. Chemotaxis of Azospirillum Species to Aromatic Compounds

    OpenAIRE

    Lopez-de-Victoria, Geralyne; Lovell, Charles R.

    1993-01-01

    Chemotaxis of Azospirillum lipoferum Sp 59b and Azospirillum brasilense Sp 7 and Sp CD to malate and to the aromatic substrates benzoate, protocatechuate, 4-hydroxybenzoate, and catechol was assayed by the capillary method and direct cell counts. A. lipoferum required induction by growth on 4-hydroxybenzoate for positive chemotaxis to this compound. Chemotaxis of Azospirillum spp. to all other substrates did not require induction. Maximum chemotactic responses for most aromatic compounds occu...

  8. Structural and thermodynamic analysis of the hetero-association of theophylline with aromatic drug molecules

    Science.gov (United States)

    Andrejuk, D. D.; Hernandez Santiago, A. A.; Khomich, V. V.; Voronov, V. K.; Davies, D. B.; Evstigneev, M. P.

    2008-10-01

    The hetero-association of theophylline (THP) with other biologically-active aromatic molecules ( e.g. the anti-cancer drugs daunomycin and novantrone, the antibiotic norfloxacin, the vitamin flavin-mononucleotide and two mutagens ethidium bromide and proflavine) has been studied by NMR in aqueous-salt solution (0.1 M Na-phosphate buffer, p D 7.1). It was found that THP shows an essentially similar hetero-association ability as caffeine (CAF) towards aromatic drugs, except for novantrone (NOV), which has much less affinity to THP than CAF as a result of energetically unfavourable orthogonal orientation of the chromophores of THP and NOV in the hetero-complex.

  9. Oxidation of aqueous pharmaceuticals by pulsed corona discharge.

    Science.gov (United States)

    Panorel, Iris; Preis, Sergei; Kornev, Iakov; Hatakka, Henry; Louhi-Kultanen, Marjatta

    2013-01-01

    Oxidation of aromatic compounds of phenolic (paracetamol, beta-oestradiol and salicylic acid) and carboxylic (indomethacin and ibuprofen) structure used in pharmaceutics was studied. Aqueous solutions were treated with pulsed corona discharge (PCD) as a means for advanced oxidation. Pulse repetition frequency, delivered energy dose and oxidation media were the main parameters studied for their influence on the process energy efficiency. The PCD treatment appeared to be effective in oxidation of the target compounds: complete degradation of pollutant together with partial mineralization was achieved at moderate energy consumption; oxidation proceeds faster in alkaline media. Low-molecular carboxylic acids were identified as ultimate oxidation by-products formed in the reaction. PMID:23837343

  10. Polynuclear aromatic hydrocarbons for fullerene synthesis in flames

    Science.gov (United States)

    Alford, J. Michael; Diener, Michael D.

    2006-12-19

    This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

  11. Retention behavior of alkylated polycyclic aromatic sulfur heterocycles on immobilized ionic liquid stationary phases.

    Science.gov (United States)

    Antle, Patrick; Zeigler, Christian; Robbat, Albert

    2014-09-26

    Polycyclic aromatic sulfur heterocycles (PASH) are prevalent components of fossil fuel-based pollutants, and their accurate analysis is of critical importance in risk assessment and hazardous waste site remediation. PASH, however, have a wide range of volatilities and polarities and, as such, often coelute with one another and other sample components on the non-polar gas chromatography (GC) columns commonly used in their analysis. Immobilized ionic liquid (IL)-based stationary phases have been shown to provide better separation of polar compounds than non-polar columns, while withstanding higher temperatures than typical polar columns. In this way, they offer the opportunity of improved performance in the analysis of PASH in complex environmental samples and as the "more polar" column in GC×GC/MS analyses. In this study, the retention behavior of 119 PASH on four commercially-available IL stationary phases is reported and compared to behavior on three polydimethylsiloxane-based columns of varying polarities (DB-5, DB-17, and DB-200). Additionally, the utility of IL columns in GC×GC analyses of PASH-containing coal tar samples is examined. PMID:25155062

  12. Aqueous polyethylene oxide solutions

    International Nuclear Information System (INIS)

    A number of aspects concerning the reorientation of polymer, water and ion hydration complexes have been studied in aqueous solution of polyethylene oxide (PEO). The polymer dynamics are investigated by 1H-PEO and 13C-PEO nuclear relaxation experiments. 162 refs.; 30 figs.; 19 tabs

  13. An overview of the AROMAT campaigns

    Science.gov (United States)

    Merlaud, Alexis; Dekemper, Emmanuel; Van Roozendael, Michel; Constantin, Daniel; Georgescu, Lucian; Meier, Andreas; Richter, Andreas; Den Hoed, Mirjam; Allaart, Marc; Boscornea, Andreea; Vajaiac, Sorin; Bellegante, Livio; Nemuc, Anca; Nicolae, Doina; Shaifangar, Reza; Dörner, Steffen; Wagner, Thomas; Stebel, Kerstin; Schuettemeyer, Dirk

    2016-04-01

    The Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign and its follow-up AROMAT-2 were held in September 2014 and August 2015, respectively. Both campaigns focused on two geophysical targets: the city of Bucharest and the large power plants of the Jiu Valley, which are located in a rural area 170 km West of Bucharest. These two areas are complementary in terms of emitted chemical species and their spatial distributions. The objectives of the AROMAT campaigns were (i) to test recently developed airborne observation systems dedicated to air quality satellite validation studies such as the AirMAP imaging DOAS system (University of Bremen), the NO2 sonde (KNMI), and the compact SWING whiskbroom imager (BIRA), and (ii) to prepare the validation programme of the future Atmospheric Sentinels, starting with Sentinel-5 Precursor (S5P) to be launched in early summer 2016. We present results from the different airborne instrumentations and from coincident ground-based measurements (lidar, in-situ, and mobile DOAS systems) performed during both campaigns. The AROMAT dataset addresses several of the mandatory products of TROPOMI/S5P, in particular NO2 and SO2 (horizontal distribution and profile from aircraft, plume image with ground-based SO2 and NO2 cameras, transects with mobile DOAS, in-situ), H2CO (mobile MAX-DOAS), and aerosols (lidar, airborne FUBISS-ASA2 sun-photometer, and aircraft in-situ). We investigate the information content of the AROMAT dataset for satellite validation studies based on co-located OMI and GOME-2 data, and simulations of TROPOMI measurements. The experience gained during AROMAT and AROMAT-2 will be used in support of a large-scale TROPOMI/S5P validation campaign in Romania scheduled for summer 2017.

  14. Penta prism laser polarizer.

    Science.gov (United States)

    Lotem, H; Rabinovitch, K

    1993-04-20

    A novel type of laser prism polarizer is proposed. The polarizer is characterized by a high transmission efficiency, a high optical damage threshold, and a high extinction ratio. The polarizer is shaped like a regular penta prism and, thus, it is a constant deviation angle device. Polarization effects occur upon the two internal cascade reflections in the prism. Anisotropic and Isotropic types of the polarizer are discussed. The isotropic polarizer is a prism made of a high refractive-index glass coated by multilayer polarization-type dielectric coatings. Efficient s-state polarization is obtained because of p-state leakage upon the two internal cascade reflections. The anisotropic polarizer is made of a birefringent crystal in which angular polarization splitting is obtained by the bireflectance (double-reflection) effect. Fanning of a laser beam into up to eight polarized beams is possible in a prism made of a biaxial crystal. PMID:20820335

  15. Polarization at metal–biomolecular interfaces in solution

    OpenAIRE

    Heinz, Hendrik; Kshitij C. Jha; Luettmer-Strathmann, Jutta; Farmer, Barry L.; Naik, Rajesh R.

    2010-01-01

    Metal surfaces in contact with water, surfactants and biopolymers experience attractive polarization owing to induced charges. This fundamental physical interaction complements stronger epitaxial and covalent surface interactions and remains difficult to measure experimentally. We present a first step to quantify polarization on even gold (Au) surfaces in contact with water and with aqueous solutions of peptides of different charge state (A3 and Flg-Na3) by molecular dynamics simulation in al...

  16. Inclusion of poly-aromatic hydrocarbon (PAH) molecules in a functionalized layered double hydroxide

    Indian Academy of Sciences (India)

    L Mohanambe; S Vasudevan

    2006-01-01

    The internal surface of an Mg-Al layered double hydroxide has been functionalized by anchoring carboxy-methyl derivatized -cyclodextrin cavities to the gallery walls. Neutral polyaromatic hydrocarbon (PAH) molecules have been included within the functionalized solid by driving the hydrophobic aromatic molecules from a polar solvent into the less polar interior of the anchored cyclodextrin cavities by a partitioning process. The optical (absorption and emission) properties of the PAH molecules included within the functionalized Mg-Al layered double hydroxide solid are similar to that of dilute solutions of the PAH in non-polar solvents. The unique feature of these hybrid materials is that they are thermally stable over a wide temperature range with their emission properties practically unaltered.

  17. Reactive Extraction of Alcohols from Apolar Hydrocarbons with Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The aqueous solutions are evaluated as sustainable reactive extraction solvents for the recovery of monohydroxyl alcohols (benzyl alcohol, 1-hexanol, cyclohexanol) present in few-percent concentrations in apolar hydrocarbons (toluene, n-hexane, and cyclohexane) by considering two approaches. An aqueous solution containing a reactive extractant, like borate salts, borate complexes, a monosalt of dicarboxylic acid,hydroxypropyl-cyclodextrins, and silver nitrate, shows limited potential to be used. Another approach, in which the alcohol is chemically modified prior to the extraction into an easy-extractable form, in this case a monoesterlcarboxylic acid, shows much more potential. An environmentally benign aqueous solution of sodium hydrogen carbonate can provide a distribution ratio of benzyl alcohol up to 200, leaving the solubility of the organic solvent in the aqueous solution unchanged relative to pure water and therefore increasing the selectivity with two orders of magnitude. The modification of aromatic, cyclo-aliphatic, and linear aliphatic alcohols can be performed efficiently in the apolar organic solvent without need for a catalyst. The recovery of the modified alcohol can be performed by back-extraction in combination with a spontaneous hydrolysis.

  18. Aromatic proteinaceous surfactants stabilize long-lived gas microbubbles from natural sources

    Science.gov (United States)

    Darrigo, J. S.

    1981-01-01

    Three different types of protein-specific chemical tests were performed on long-lived gas microbubbles derived from aqueous solutions of agarose powder and from filtered aqueous extracts of Hawaiian forest soil. The separate protein-specific tests involved use of either 0.3% (w/v) ninhydrin, 100 microM methylene blue dye, or 0.7-1.0 M 2-hydroxy-5-nitrobenzyl bromide. The chemical test results obtained with each of the two natural substances, i.e., agarose powder and Hawaiian forest soil, were very similar and indicate that the biological surfactants which surround and stabilize long-lived gas microbubbles are proteinaceous compounds that contain, and whose surface activity depends upon, aromatic amino acid residues, particularly tryptophan.

  19. Cyclodextrin-promoted Diels Alder reactions of a polycyclic aromatic hydrocarbon under mild reaction conditions

    Science.gov (United States)

    Chaudhuri, Sauradip; Phelan, Tyler; Levine, Mindy

    2015-01-01

    Reported herein is the effect of cyclodextrins on the rates of aqueous Diels Alder reactions of 9-anthracenemethanol with a variety of N-substituted maleimides. These reactions occurred under mild reaction conditions (aqueous solvent, 40 °C), and were most efficient for the reaction of N-cyclohexylmaleimide with a methyl-β-cyclodextrin additive (94% conversion in 24 hours). These results can be explained on the basis of a model wherein the cyclodextrins bind the hydrophobic substituents on the maleimides and activate the dienophile via electronic modulation of the maleimide double bond. The results reported herein represent a new mechanism for cyclodextrin-promoted Diels Alder reactions, and have significant potential applications in the development of other cyclodextrin-promoted organic transformations. Moreover, the ability to deplanarize polycyclic aromatic hydrocarbons (PAHs) under mild conditions, as demonstrated herein, has significant applications for PAH detoxification. PMID:26692588

  20. Aqueous citric acid as green reaction media for the synthesis of octahydroxanthenes

    Directory of Open Access Journals (Sweden)

    Camilo A. Navarro D.

    2013-08-01

    Full Text Available A simple, convenient and environmentally friendly one-pot procedure for the synthesis of 1,8-dioxo-octahydroxanthenes by the reaction of dimedone and aromatic aldehydes in aqueous citric acid is described. In this green synthetic protocol promoted by the reaction media, the use of any other catalysts and hazardous organic solvents are avoided, making the work up procedure greener and easier. The isolation of the products, obtained in good yields, is readily performed by filtration and crystallization from ethanol when required and the aqueous acidic media can be easily recycled and reused several times without significant loss of catalytic activity.

  1. Nondiffracting transversally polarized beam.

    Science.gov (United States)

    Yuan, G H; Wei, S B; Yuan, X-C

    2011-09-01

    Generation of a nondiffracting transversally polarized beam by means of transmitting an azimuthally polarized beam through a multibelt spiral phase hologram and then highly focusing by a high-NA lens is presented. A relatively long depth of focus (∼4.84λ) of the electric field with only radial and azimuthal components is achieved. The polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the polarization is spatially varying and entirely transversally polarized, and the polarization singularity disappears at the beam center, which makes the central bright channel possible. PMID:21886250

  2. Aqueous chemistry of iodine

    International Nuclear Information System (INIS)

    The chemistry of iodine has been examined in aqueous solutions of pH 6 to 10 containing 2500 ppM boron as H3BO3 at temperatures up to 1500C using absorption spectrophotometry to identify and monitor the iodine species present. Kinetic rate constants for the disproportionation of the HOI intermediate, 3HOI= IO3- + 2I- + 3H+, have been measured as a function of pH even though no direct spectral evidence for HOI itself has been observed. An HOI partition coefficient >104 has been estimated; results of ionic strength tests are consistent with HOI being present as an uncharged triatomic species in solution. Redox and radiation effects on the aqueous iodine chemistry have also been described. 11 refs., 2 figs., 3 tabs

  3. Silicone elastomers with aromatic voltage stabilizers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Skov, Anne Ladegaard

    insulation cables.3–5 As an alternative to utilise additives as voltage stabilizers, grafting aromatic compounds to silicone backbones may overcome the common problem of insolubility of the aromatic voltage stabilizer in the silicone elastomers due to phase separation. Preventing phase separation during...... via hydrosilylation by a vinyl-functional crosslinker. The mechanism of electron-trapping by aromatic compounds grafted to silicone backbones in a crosslinked PDMS is illustrated in Fig. 1. The electrical breakdown strength, the storage modulus and the loss modulus of the elastomer were investigated...... attached to the silicone backbone. The dielectric relative permittivity of PDMS-PPMS copolymers remained between 2 to 3 with low conductivity and low dielectric loss as well as high storage moduli with low viscous loss, thereby maintaining the electro-mechanical integrity of the elastomer....

  4. Chemotaxis of Azospirillum species to aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-de-Victoria, G.; Lovell, C.R. (Univ. of South Carolina, Columbia, SC (United States))

    1993-09-01

    Azospirillum sspeciesare free-living nitrogen fixing bacteria commonly found in soils and in association with plant roots, including important agricultural crops. Rhizosphere colonization my Azospirillum species has been shown to stimulate growth of a variety of plant species. Chemotaxis is one of the properties which may contribute to survival, rhizosphere colonization and the initiation of mutualistic interactions by Azospirillum species. This study evaluates the chemotactic responses of three Azospirillum stains to a variety of aromatic compounds:benzoate, catechol, 4-HB, and PCA. Results indicate that the same aromatic substance can elicit different chemotactic responses from different Azospirillum species, and that Azospirillum can detect aromatic substrates at concentrations similar to those they encounter naturally. 36 refs., 1 fig., 6 tabs.

  5. Spinning dust emission from ultrasmall silicates: emissivity and polarization spectrum

    OpenAIRE

    Hoang, Thiem; Vinh, Nguyen Anh; Lan, Nguyen Quynh

    2016-01-01

    Anomalous microwave emission (AME) is an important Galactic foreground of Cosmic Microwave Background (CMB) radiation. It is believed that the AME arises from rotational emission by spinning polycyclic aromatic hydrocarbons (PAHs) in the interstellar medium (ISM). In this paper, we assume that a population of ultrasmall silicate grains may exist in the ISM, and quantify rotational emissivity from these tiny particles and its polarization spectrum. We found that spinning silicate nanoparticles...

  6. Polar non-hydrocarbon contaminants in reservoir core extracts

    OpenAIRE

    Bennett B; Larter SR

    2000-01-01

    A geochemical investigation of oils in sandstone core plugs and drill stem test oils was carried out on samples from a North Sea reservoir. A sample of diesel used as a constituent of the drilling fluids was also analysed. The aliphatic and aromatic hydrocarbons and polar non-hydrocarbons were isolated using solid phase extraction methods. GC analysis of the hydrocarbon fraction of the core extract indicated that contamination may be diesel derived. From analysis of diesel some compound clas...

  7. Polarization-balanced beamsplitter

    Science.gov (United States)

    Decker, D.E.

    1998-02-17

    A beamsplitter assembly is disclosed that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting. 10 figs.

  8. Characterization of polar organics in airborne particulate matter

    Science.gov (United States)

    Yokouchi, Y.; Ambe, Y.

    The methanol-extractable highly polar organics in atmospheric aerosol were characterized using GC-MS. Dicarboxylic acids having 2-16 carbon numbers were detected with a total concentration of 172 ng m -3. Azelaic acid ( C9) was the most abundant diacid and it possibly originated from the ozonolysis of unsaturated carboxylic acids such as oleic acid and linoleic acid, which mainly originate from terrestrial plants. A compound, which was tentatively identified as tetrahydrofuroic acid, contributed to about 10% of the highly polar organics. Other polyfunctional compounds found in the samples included some ketocarboxylic acids and aromatic acids such as phthalic acids, anisic acid and vanillic acid.

  9. Aqueous citric acid as green reaction media for the synthesis of octahydroxanthenes

    OpenAIRE

    Camilo A. Navarro D.; Cesar A. Sierra; Cristian Ochoa-Puentes

    2013-01-01

    A simple, convenient and environmentally friendly one-pot procedure for the synthesis of 1,8-dioxo-octahydroxanthenes by the reaction of dimedone and aromatic aldehydes in aqueous citric acid is described. In this green synthetic protocol promoted by the reaction media, the use of any other catalysts and hazardous organic solvents are avoided, making the work up procedure greener and easier. The isolation of the products, obtained in good yields, is readily performed by filtration and crystal...

  10. Production of aromatics from di- and polyoxygenates

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Taylor; Blank, Brian; Jones, Casey; Woods, Elizabeth; Cortright, Randy

    2016-08-02

    Methods, catalysts, and reactor systems for producing in high yield aromatic chemicals and liquid fuels from a mixture of oxygenates comprising di- and polyoxygenates are disclosed. Also disclosed are methods, catalysts, and reactor systems for producing aromatic chemicals and liquid fuels from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like; and methods, catalysts, and reactor systems for producing the mixture of oxygenates from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like. The disclosed catalysts for preparing the mixture of oxygenates comprise a Ni.sub.nSn.sub.m alloy and a crystalline alumina support.

  11. Global aromatics supply. Today and tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M. [BASF SE, Ludwigshafen (Germany)

    2013-11-01

    Aromatics are the essential building blocks for some of the largest petrochemical products in today's use. To the vast majority they are consumed to produce intermediates for polymer products and, hence, contribute to our modern lifestyle. Their growth rates are expected to be in line with GDP growth in future. This contrasts the significantly lower growth rates of the primary sources for aromatics - fuel processing and steam cracking of naphtha fractions. A supply gap can be expected to open up in future for which creative solutions will be required. (orig.)

  12. Electron beam irradiation effects on aromatic polymers

    International Nuclear Information System (INIS)

    Electron irradiation effects on aromatic polymers having various molecular structures were studied to elucidate the following subjects; (1) relation between radiation stability and molecular structure of repeating units, (2) mechanism of deterioration and (3) adaptability to matrix resin for radiation resistant FRP. Results are summarized as follows: (1) An order of radiation stability of units is; imide ring > diphenyl ether, diphenyl ketone > aromatic amide >> bis-phenol A > diphenyl sulphone. (2) Poly (ether-ether-ketone) and most polyimide are crosslinkable but polysulphones and polyarylate are chain degradation type polymers. (3) Newly developed thermoplastic polyimides have possibilities for use as matrix materials in radiation resistant FRP. (author)

  13. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  14. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, Robert E.; Dolbeare, Frank A.

    1979-01-01

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  15. Liquid-liquid extraction and separation of VIII group elements, especially ruthenium, by synergic combinations or aromatic polyimines and micellar cationic exchangers

    International Nuclear Information System (INIS)

    This thesis aims to characterize and to quantify the chemical equilibria involved in d-elements liquid-liquid extraction systems, especially elements belonging to the VIII group (Fe, Ni, Co, Ru, Rh, Pd, Pt). These systems are composed of synergic combination of aromatic polyimines and micellar cationic exchangers. Substitutions are first performed in aqueous acidic media by aromatic polyimines; then extractions are operated using micellic canionic exchangers. Chemical equilibria, selectivity effects, especially those due to ion-pair formations, kinetics, extractant behaviour are analysed and quantified

  16. Antiscalant properties of Spergularia rubra and Parietaria officinalis aqueous solutions

    Science.gov (United States)

    Cheap-Charpentier, Hélène; Gelus, Dominique; Pécoul, Nathalie; Perrot, Hubert; Lédion, Jean; Horner, Olivier; Sadoun, Jonathan; Cachet, Xavier; Litaudon, Marc; Roussi, Fanny

    2016-06-01

    The formation of calcium carbonate in water has important implications in industry. Chemical antiscalant is usually used to control scale depositions. Plant extracts have been recently used as new green antiscalant agents, as they can be easily prepared and are environmentally friendly. In this study, stock aqueous solutions of Spergularia rubra and Parietaria officinalis, two plants used in traditional medicine to treat or prevent urolithiasis, were obtained by infusion. The antiscaling properties of these extracts towards CaCO3 formation were tested by using chronoamperometry and Fast Controlled Precipitation methods. The aqueous solution of S. rubra was further fractionated to isolate compounds of lower polarity. Their efficiency towards CaCO3 precipitation was characterized by Fast Controlled Precipitation method. The inhibiting efficiency of this fractionated solution was greater than that of the stock aqueous solution.

  17. Liquid crystalline phases in concentrated aqueous solutions of Na+ DNA.

    OpenAIRE

    Rill, R L

    1986-01-01

    Concentrated aqueous saline solutions of short (146-base-pair) DNA fragments suddenly become turbid and iridescent when the DNA concentration is slightly increased or the temperature is decreased. Microscopic examination through crossed polarizing filters shows that turbidity and iridescence is due to formation of a liquid crystalline DNA phase similar to cholesteric liquid crystals formed by other semirigid, but nonelectrolyte, chiral polymers. Several distinct textures of the liquid crystal...

  18. Polarized targets and beams

    International Nuclear Information System (INIS)

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  19. Fluorescent aromatic sensors and their methods of use

    Science.gov (United States)

    Meador, Michael A. (Inventor); Tyson, Daniel S. (Inventor); Ilan, Ulvi F. (Inventor)

    2012-01-01

    Aromatic molecules that can be used as sensors are described. The aromatic sensors include a polycyclic aromatic hydrocarbon core with a five-membered imide rings fused to the core and at least two pendant aryl groups. The aromatic sensor molecules can detect target analytes or molecular strain as a result of changes in their fluorescence, in many cases with on-off behavior. Aromatic molecules that fluoresce at various frequencies can be prepared by altering the structure of the aromatic core or the substituents attached to it. The aromatic molecules can be used as sensors for various applications such as, for example, the detection of dangerous chemicals, biomedical diagnosis, and the detection of damage or strain in composite materials. Methods of preparing aromatic sensor molecules are also described.

  20. Uptake of polycyclic aromatic hydrocarbons by maize plants

    International Nuclear Information System (INIS)

    Roots and above-ground parts (tops) of maize plants, comprising cuticles, leaves and stems, have been exposed separately to polycyclic aromatic hydrocarbons (PAHs) by means of air-tight bicameral exposure devices. Maize roots and tops of plants directly accumulate PAHs from aqueous solutions and from air in proportion to exposure levels. Root and leaf concentration factors (log RCF and log LCF) are log-linear functions of log-based octanol-water partition coefficient (log Kow) and log-based octanol-air partition coefficient (log Koa). The PAHs' concentrations among cuticles, leaves and stems display good correlations with each other. PAH concentrations in each part of the plant tested correlated positively with atmospheric PAHs' concentrations. Comparisons between PAHs' concentrations of root epidermis and root tissue showed similar correlations. Bulk concentrations of contaminants in various plant tissues differed greatly, but these differences disappeared after normalization to lipid contents suggesting lipid-based partitioning of PAHs among maize tissues. - PAHs can enter maize plants directly from both air and soil environment

  1. Solubilization and biodegradation of polycyclic aromatic hydrocarbons in microemulsions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, J.W.C.; Zhao, Z.Y.; Yang, J.; Wong, S.Y. [Hong Kong Baptist Univ., Hong Kong (China). Sino-Forest Applied Research Centre for Pearl River Delta Environment, Dept. of Biology

    2009-07-01

    This study investigated the feasibility of using microemulsions to enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs). Microemulsions are commonly used in soil washing as a means of enhancing the solubility of hydrophobic pollutants. The microemulsions were composed of Tween-80, 1-pentanol and linseed oil. Phenanthrene (PHE) was dissolved in dichloromethane and added to a glass vial. Microemulsions were added separately to the vials. A high performance liquid chromatograph (HPLC) was used to determine PHE concentrations. The vials were inoculated with an isolated PAH degradative bacterium Bacillus subtilis B-UM. Soil collected from abandoned shipyards in Hong Kong were then spiked with the mixtures and aged for 3 months. One way analysis of variance (ANOVA) analyses were conducted. Results of the study showed that a microemulsion composed of 0.4 Tween-80, 0.1 per cent 1-pentanol, and 0.05 linseed oil effectively enhanced the biodegradation of PHE in the aqueous phase. It was concluded that microemulsions can be used to remediate soils contaminated by PAHs. 26 refs., 2 tabs., 4 figs.

  2. Electrochemical degradation of aromatic amines on BDD electrodes

    International Nuclear Information System (INIS)

    The electrochemical oxidation of four aromatic amines, with different substituent groups, 3-amino-4-hydroxy-5-nitrobenzenesulfonic acid (A1), 5-amino-2-methoxybenzenesulfonic acid (A2), 2,4-dihydroxyaniline hydrochloride (A3) and benzene-1,4-diamine (A4), was performed using as anode a boron-doped diamond electrode, commercially available at Adamant Technologies. Tests were run at room temperature with model solutions of the different amines, with concentrations of 200 ppm, using as electrolyte 0.035 M Na2SO4 aqueous solutions, in a batch cell with recirculation, at different current densities (200 and 300 A m-2). The following analyses were performed with the samples collected during the assays: UV-Vis spectrophotometry, chemical oxygen demand (COD), total organic carbon (TOC), total Kjeldahl nitrogen, ammonia nitrogen, nitrates and HPLC. Results have shown a good electrodegradation of all the amines tested, with COD removals, after 6 h assays, higher than 90% and TOC removals between 60 and 80%. Combustion efficiency (ηC), which measures the tendency to convert organic carbon to CO2, was also determined for all the amines, being ηCA1 CA2 CA3 CA4 = 0.99.

  3. Polycyclic Aromatic Hydrocarbons as Plausible Prebiotic Membrane Components

    OpenAIRE

    Groen, Joost; Deamer, David W.; Kros, Alexander; Ehrenfreund, Pascale

    2012-01-01

    Aromatic molecules delivered to the young Earth during the heavy bombardment phase in the early history of our solar system were likely to be among the most abundant and stable organic compounds available. The Aromatic World hypothesis suggests that aromatic molecules might function as container elements, energy transduction elements and templating genetic components for early life forms. To investigate the possible role of aromatic molecules as container elements, we incorporated different p...

  4. Electronic Aromaticity Index for Large Rings

    CERN Document Server

    Matito, Eduard

    2015-01-01

    We introduce a new electronic aromaticity index, AV1245, consisting in the average of the 4-center MCI values along the ring that keep a positional relationship of 1,2,4,5. AV1245 measures the extent of transferability of the delocalized electrons between bonds 1-2 and 4-5, which is expected to be large in conjugated circuits and, therefore, in aromatic molecules. A new algorithm for the calculation of MCI for large rings is also introduced and used to produce the data for the calibration of the new aromaticity index. AV1245 does not rely on reference values, does not suffer from large numerical precision errors, and it does not present any limitation on the nature of atoms, the molecular geometry or the level of calculation. It is a size-extensive measure with a small computational cost that grows linearly with the number of ring members. Therefore, it is specially suitable to study the aromaticity of large molecular rings as those occurring in belt-shaped M\\"obius structures or porphyrins.

  5. Extremely long aromatics: Diastereomerically pure [19]helicene

    Czech Academy of Sciences Publication Activity Database

    Nejedlý, Jindřich; Rybáček, Jiří; Stará, Irena G.; Starý, Ivo

    Praha: Czech Chemical Society, 2015. s. 119. [Liblice 2015. Advances in Organic , Bioorganic and Pharmaceutical Chemistry /50./. 06.11.2015-08.11.2015, Olomouc] R&D Projects: GA ČR(CZ) GA14-29667S Institutional support: RVO:61388963 Keywords : helically chiral aromatics * helicenes * [2+2+2] cycloisomerisation Subject RIV: CC - Organic Chemistry

  6. Aromatic cytokinins in micropropagated potato plants

    Czech Academy of Sciences Publication Activity Database

    Baroja, F. E.; Aguirreolea, J.; Martínková, Hana; Hanuš, Jan; Strnad, Miroslav

    2002-01-01

    Roč. 40, č. 3 (2002), s. 217-224. ISSN 0981-9428 R&D Projects: GA MŠk OC 844.10; GA ČR GA301/02/0475 Institutional research plan: CEZ:AV0Z5038910 Keywords : Acclimatization * Aromatic cytokinins * Micropropagation Subject RIV: CE - Biochemistry Impact factor: 1.582, year: 2002

  7. Discovering Chemical Aromaticity Using Fragrant Plants

    Science.gov (United States)

    Schneider, Tanya L.

    2010-01-01

    Introductory organic chemistry is often perceived as inaccessible by students. This article describes a method used to link organic chemistry to everyday experience, asking students to explore whether fragrant molecules are also aromatic in the chemical sense. Students were engaged in this activity, excited about their results, and performed well…

  8. Thermoset/Thermoplastic Aromatic Polyamides for Composites

    Science.gov (United States)

    St. Clair, T. L.; St. Clair, A. K.; Barrick, J. D.; Wolfe, J. F.; Greenwood, T. D.

    1983-01-01

    Aromatic polyamides are processed at relatively low temperature, then heat-treated to attain high softening temperature required when polyamides are used as matrix resins in structural composites. New polyamides are compatable with organic fibers often used as reinforcing agents in such composites Pendent propargyl groups serve as latent cross-linking agents in new series of polyamide resins.

  9. An electronic aromaticity index for large rings.

    Science.gov (United States)

    Matito, Eduard

    2016-04-28

    We introduce a new electronic aromaticity index, AV1245, consisting of an average of the 4-center multicenter indices (MCI) along the ring that keeps a positional relationship of 1, 2, 4, 5. AV1245 measures the extent of transferability of the delocalized electrons between bonds 1-2 and 4-5, which is expected to be large in conjugated circuits and, therefore, in aromatic molecules. A new algorithm for the calculation of MCI for large rings is also introduced and used to produce the data for the calibration of the new aromaticity index. AV1245 does not rely on reference values, does not suffer from large numerical precision errors, and it does not present any limitation on the nature of atoms, the molecular geometry or the level of calculation. It is a size-extensive measure with low computational cost that grows linearly with the number of ring members. Therefore, it is especially suitable to study the aromaticity of large molecular rings such as those occurring in belt-shaped Möbius structures or porphyrins. The analysis of AV1245 in free-base and bis-metalated Pd [32]octaphyrins(1,0,1,0,1,0,1,0) completes this study. PMID:26878146

  10. Fused aromatic thienopyrazines: structure, properties and function

    KAUST Repository

    Mondal, Rajib

    2010-01-01

    Recent development of a fused aromatic thieno[3.4-b]pyrazine system and their application in optoelectronic devices are reviewed. Introduction of a fused aromatic unit followed by side chain engineering, dramatically enhanced the charge carrier mobility in thin film transistor devices and mobilities up to 0.2 cm2/Vs were achieved. The optoelectronic properties of these fused aromatic thienopyrazine polymers (Eg = 1.3 to 1.6 eV, HOMO = -4.9 to -5.2 V) were tuned by introduction of various fused aromatic rings within thienopyrazine. By balancing the fundamental properties of these polymers, both high charge carrier mobilities and moderate PCEs in solar cells were achieved. Further, effects of copolymerizing units are discussed. Low band gap semiconducting polymer (Eg ∼ 1 eV) with high field effect mobility (0.044 cm2/Vs) was obtained using cyclopentadithiophene as copolymerizing unit. Finally, a molecular design approach to enhance the absorption coefficients is discussed, which resulted in improved power conversion efficiency in bulk heterojunction solar cells. © 2010 The Royal Society of Chemistry.

  11. Silicone elastomers with aromatic voltage stabilizers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Skov, Anne Ladegaard

    enhanced electrical breakdown strength due to delocalized pi-electrons of aromatic rings attached to the silicone backbone. The dielectric relative permittivity of PDMS-PPMS copolymers remained between 2 to3 with low conductivity and low dielectric loss as well as high storage moduli with low viscousloss...

  12. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  13. Aromatic oligoamides with a rare ortho-connectivity

    DEFF Research Database (Denmark)

    Hjelmgaard, T.; Nielsen, John

    2013-01-01

    Even though aromatic oligoamides composed of aromatic amino acids in a "one-way sequence" attract ever increasing research interest, backbones connected through ortho-linked aromatics remain rare. Herein, we present the first synthesis and study of N-alkylated ortho-aminomethyl- benzamides termed...

  14. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  15. 40 CFR 721.2673 - Aromatic epoxide resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic epoxide resin (generic). 721... Substances § 721.2673 Aromatic epoxide resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic epoxide resin (PMN...

  16. Plasmids and aromatic degradation in Sphingomonas for bioremediation : Aromatic ring cleavage genes in soil and rhizosphere

    OpenAIRE

    SipilÀ, Timo

    2009-01-01

    Microbial degradation pathways play a key role in the detoxification and the mineralization of polyaromatic hydrocarbons (PAHs), which are widespread pollutants in soil and constituents of petroleum hydrocarbons. In microbiology the aromatic degradation pathways are traditionally studied from single bacterial strains with capacity to degrade certain pollutant. In soil the degradation of aromatics is performed by a diverse community of micro-organisms. The aim of this thesis was to study biode...

  17. Reaction Pathway and Free Energy Barrier for Urea Elimination in Aqueous Solution

    OpenAIRE

    Yao, Min; Chen, Xi; Zhan, Chang-Guo

    2015-01-01

    To accurately predict the free energy barrier for urea elimination in aqueous solution, we examined the reaction coordinates for the direct and water-assisted elimination pathways, and evaluated the corresponding free energy barriers by using the surface and volume polarization for electrostatics (SVPE) model-based first-principles electronic-structure calculations. Based on the computational results, the water-assisted elimination pathway is dominant for urea elimination in aqueous solution,...

  18. NESDIS VIIRS Polar Winds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains the Level 3 Polar Winds Northern and Southern Hemisphere datasets. The Level 3 Polar Winds data from VIIRS for the Arctic and Antarctic from...

  19. Radiolysis of paracetamol in dilute aqueous solution

    International Nuclear Information System (INIS)

    Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2–3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily. - Highlights: ► Paracetamol is easily degraded in aqueous solution by low dose irradiation. ► Main degradation products are hydroxylated molecules, acetamide and hydroquinone. ► Toxicity of solutions goes through a maximum as a function of dose.

  20. Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines

    Directory of Open Access Journals (Sweden)

    Simona Bettini

    2015-11-01

    Full Text Available Cu,H2-bis-porphyrin (Cu,H2-Por2, in which copper porphyrin and free-base porphyrin are linked together by an ethano-bridge, was dissolved in chloroform and spread at the air/liquid subphase interface of a Langmuir trough. The bis-porphyrin derivative, floating film was characterized by reflection spectroscopy and the surface pressure of the floating film was studied as a function of the mean area per molecule. When aromatic amines are dissolved in the subphase, an evident interaction between the bis-porphyrin host and the aromatic amine guest is observed. A clear-cut variation of the profile of surface pressure vs area per molecule curve is observed. Reflection spectroscopy highlights that the aromatic amines dissolved in the subphase are able to induce the syn-to-anti conformational switching in the bis-porphyrin derivative. The Langmuir–Schaefer technique has been used to transfer the floating bis-porphyrin film (when using pure water as a subphase to a surface plasmon resonance (SPR substrate and the resulting device was able to detect the presence of aniline at concentrations as low as 1 nM in aqueous solution. The high selectivity of the SPR sensing device has been verified by checking the spectral response of the active layer towards other analytes dissolved in the aqueous solutions.

  1. Aqueous accelerated solvent extraction of native polycyclic aromatic hydrocarbons (PAHs) from carbonaceous river floodplain soils

    International Nuclear Information System (INIS)

    In this study, three river floodplain soils with different compositions of carbonaceous materials and a reference coal sample were extracted with water using the accelerated solvent extraction (ASE) method. The desorption enthalpy values for 2-ring PAHs were highest in the coal sample, with values in the soil samples decreasing with decrease in coal content. The values for the higher condensed PAHs showed that the highest desorption enthalpies were from the samples with the largest amount of coal-derived particles. Elevated desorption enthalpies indicated a strong bonding between PAHs and geosorbents. Moreover, with the application of ASE this study was able to conclude that the PAHs in the samples were preferentially adsorbed to carbonaceous materials with high surface areas. - Native PAHs in river floodplain soils were preferentially bound to coal and coal-derived particles with a strong sorption affinity.

  2. Aqueous accelerated solvent extraction of native polycyclic aromatic hydrocarbons (PAHs) from carbonaceous river floodplain soils.

    Science.gov (United States)

    Yang, Yi; Hofmann, Thilo

    2009-10-01

    In this study, three river floodplain soils with different compositions of carbonaceous materials and a reference coal sample were extracted with water using the accelerated solvent extraction (ASE) method. The desorption enthalpy values for 2-ring PAHs were highest in the coal sample, with values in the soil samples decreasing with decrease in coal content. The values for the higher condensed PAHs showed that the highest desorption enthalpies were from the samples with the largest amount of coal-derived particles. Elevated desorption enthalpies indicated a strong bonding between PAHs and geosorbents. Moreover, with the application of ASE this study was able to conclude that the PAHs in the samples were preferentially adsorbed to carbonaceous materials with high surface areas. PMID:19524343

  3. Stabilisation of 2,6-diarylpyridinium cation by through-space polar-π interactions.

    Science.gov (United States)

    Padial, Joan Simó; de Gelder, René; Fonseca Guerra, Célia; Bickelhaupt, F Matthias; Mecinović, Jasmin

    2014-05-19

    The through-space polar-π interactions between pyridinium ion and the adjacent aromatic rings in 2,6-diarylpyridines affect the pKa values. Hammett analysis illustrates that the basicity of pyridines correlates well with the sigma values of the substituents at the para position of the flanking aryl rings. PMID:24737605

  4. Bumblebees Learn Polarization Patterns

    OpenAIRE

    Foster, James J.; Sharkey, Camilla R.; Gaworska, Alicia V.A.; Roberts, Nicholas W.; Whitney, Heather M.; Partridge, Julian C.

    2014-01-01

    Summary Foraging insect pollinators such as bees must find and identify flowers in a complex visual environment. Bees use skylight polarization patterns for navigation [1–3], a capacity mediated by the polarization-sensitive dorsal rim area (DRA) of their eye [4, 5]. While other insects use polarization sensitivity to identify appropriate habitats [6], oviposition sites, and food sources [7], to date no nonnavigational functions of polarization vision have been identified in bees. Here we inv...

  5. Efficient and Selective Reduction of Aromatic Nitro Compounds to Aromatic Amines by NbCl{sub 5}/Indium System

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Woo; Kim, Duckil; Kim, Hyung Min; Kang, Sung Ho [Korea Univ., Seoul (Korea, Republic of)

    2012-09-15

    -selective reduction of aromatic nitro compounds in the presence of the above-mentioned functional groups. After screening the reaction conditions, THF has been found to be the most suitable solvent for the reaction in terms of reaction time and yield. We investigated that the use of NbCl{sub 5}/Zn in place of NbCl{sub 5}/In is also equally effective but require slight longer reaction time and lower yield as compared to NbCl{sub 5}/In (Table 1). Thus, we have been able to demonstrate the utility of easily accessible NbCl{sub 5}/In system as a convenient reagent for effecting chemo-selective reduction of aromatic nitro compounds. Although the role of niobium(V) chloride is still not clarified, it is assumed that reduction of niobium(V) chloride with indium provides low-valent niobium species, which are involved in complexation with the substrates. The reduction probably proceeds by a reductive cleavage of polarized N.O bonds through a single electron transfer from indium metal to the niobium-substrate complex due to the high oxophilic nature of the niobium species. The reducing property exhibited by metal-metal salt combinations proceeds through transfer of one electron from the metal surface to the substrate. We believe that the present procedure using NbCl{sub 5}/In system proceeds through a SET (single electron transfer) process. The notable advantages of this methodology are mild reaction condition, simple manipulation, high yield, and tolerance of various functional groups. In conclusion, we have demonstrated that the NbCl{sub 5}/In system mediates an efficient and mild reduction of aromatic nitro compounds to the corresponding amines. Although the scope and limitations were not fully established, the present method could be a practical alternative to the conventional method. Further work on the application of the NbCl{sub 5}/In system is currently in progress.

  6. Polarized triplet production by circularly polarized photons

    CERN Document Server

    Bytev, V V; Galynsky, M V; Potylitsin, A P

    2002-01-01

    A process of the pair production by a circularly polarized photon in the field of unpolarized atomic electron has been considered in the Weizaecker-Williams approximation. The degree of longitudinal polarization of positron and electron has been calculated. An exclusive cross-section as well as a spectral distribution are obtained. We estimate the accuracy of our calculations at the level of a few percent. We show the identity of the positron polarization for considered process and for process of pair production in the screened Coulomb field of nucleus.

  7. Aromatic Structure in Simulates Titan Aerosol

    Science.gov (United States)

    Trainer, Melissa G.; Loeffler, M. J.; Anderson, C. M.; Hudson, R. L.; Samuelson, R. E.; Moore, M. A.

    2011-01-01

    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are

  8. The influence of non-polar lipids on tear film dynamics

    KAUST Repository

    Bruna, M.

    2014-04-04

    © 2014 Cambridge University Press. In this paper we examine the effect that physiological non-polar lipids, residing on the surface of an aqueous tear film, have on the film evolution. In our model we track the evolution of the thickness of the non-polar lipid layer, the thickness of the aqueous layer and the concentration of polar lipids which reside at the interface between the two. We also utilise a force balance in the non-polar lipid layer in order to determine its velocity. We show how to obtain previous models in the literature from our model by making particular choices of the parameters. We see the formation of boundary layers in some of these submodels, across which the concentration of polar lipid and the non-polar lipid velocity and film thickness vary. We solve our model numerically for physically realistic parameter values, and we find that the evolution of the aqueous layer and the polar lipid layer are similar to that described by previous authors. However, there are interesting dynamics for the non-polar lipid layer. The effects of altering the key parameters are highlighted and discussed. In particular, we see that the Marangoni number plays a key role in determining how far over the eye the non-polar lipid spreads.

  9. Structural description of aromatic core in residue fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.C.; Sun, W.F.; Fang, X.C.; Guan, M.H. [Fushun Research Inst. of Petroleum and Petrochemicals, Fushun, Liaoning (China)

    2008-07-01

    The chemical structures of a polycyclic aromatic core in Oman residue fractions was examined using proton nuclear magnetic resonance spectroscopy (1H-NMR), synchronous fluorescence spectrometry (SFS) and ruthenium ions catalyzed oxidation (RICO). It was important to understand the aromatic core structure in heavy oil fractions, including aromatic rings system size and condensed type. The types and content of benzenepolycarboxylic acids disclosed the condensed types of aromatic rings in core. Biphenyl fraction (BIPH), cata-condensed fraction (CATA), peri-condensed fraction (PERI) and condensed index (BCI) were calculated by benzenepolycarboxylic acids. The results from 1H-NMR showed that about 3.2 aromatic rings were in the aromatics core, 5.6 rings were in the resins unit, and 8.2 rings were in the asphaltenes unit. This paper also described the aromatic rings distribution of residue fractions as determined by SFS. The type and content of benzenepolycarboxylic acids from RICO of residue fractions suggested the condensed mode of rings in the aromatic core. The most cata-condensed type aromatic structures were in aromatics, the whole peri-condensed type were in asphaltenes, while the dominant peri-condensed type, as well as some quantity of cata-condensed type structures existed together in resins. Aromatics, resins and asphaltenes were given likely structural models based on results from this study. 8 refs., 3 tabs., 7 figs.

  10. Fluidic Dielectrophoresis of Aqueous Electrical Interfaces

    Science.gov (United States)

    Gagnon, Zachary

    2014-11-01

    To date, alternating current (AC) electric fields have been exploited to dielectrophoretically manipulate bubbles, liquid drops, particles, biomolecules and cells. Research and applications in this area, however, has been primarily limited to the interfaces formed between two immiscible metal-liquid, particle-liquid, or gas-liquid surfaces on particles. The influence of AC electric fields across aqueous liquid-liquid interfaces remains relatively unexplored. Fundamentally, many electrokinetic phenomena arise from discontinuities in ionic flux and charge accumulation at electrical interfaces, and here I explore the influence of AC electric fields on the electrical interface created between two aqueous liquids with disparaging electrical properties Using a microfluidic channel with embedded electrodes, two fluid streams - one with a greater electrical conductivity, the other a greater dielectric constant - were made to flow side-by-side. An AC electric field was applied across the flow channel and fluid was observed to displace across the phase interface. The displacement direction is AC frequency dependent, and is attributed to the Maxwell-Wagner interfacial polarization at the liquid-liquid electrical interface. At low AC frequency, below the interfacial charge relaxation time, the high conductive stream is observed to displace into the high dielectric stream. Above this frequency, the direction of liquid injection reverses, and the high dielectric stream injects into the high conductivity stream. An analytical model is presented for this liquid crossover frequency, and applied towards biosensing applications.

  11. Acceleration of polarized particles

    International Nuclear Information System (INIS)

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  12. The Physics of Polarization

    Science.gov (United States)

    Degl'Innocenti, Egidio Landi

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  13. Polarization effects. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.

    1981-01-01

    The use of polarized proton beams in ISABELLE is important for several general reasons: (1) With a single longitudinally polarized proton beam, effects involving parity violation can be identified and hence processes involving weak interactions can be separated from those involving strong and electromagnetic interactions. (2) Spin effects are important in the strong interactions and can be useful for testing QCD. The technique for obtaining polarized proton beams in ISABELLE appears promising, particularly in view of the present development of a polarized proton beam for the AGS. Projections for the luminosity in ISABELLE for collisions of polarized protons - one or both beams polarized with longitudinal or transverse polarization - range from 1/100 to 1 times the luminosity for unpolarized protons.

  14. Radiation chemistry of aromatic dimer radical cations

    International Nuclear Information System (INIS)

    π-π Interactions of aromatic molecules are paid attention much in many fields, especially biology, chemistry, and applied physics, represented as protein, DNA, electron donor-accepter complexes, charge transfers, and self assembly molecules. Aromatic molecules including benzene rings are the simplest case to study the π-π interactions. To interpret the charge resonance (CR) structure in the dimer radical cations, spectroscopic and ESR methods have been carried out. The spectroscopic study on the dimer radical ion of molecules with two chromophores would be profitable to identify the electronic and configurational properties. In this article, dynamics of the dimer radical cation of benzenes, polystyrenes, and resist polymers is described on the basis of direct observation of CR band by the nanosecond pulse radiolysis and low temperature γ-radiolysis methods. (author)

  15. Starlike aluminum-carbon aromatic species.

    Science.gov (United States)

    Wu, Yan-Bo; Jiang, Jin-Liang; Lu, Hai-Gang; Wang, Zhi-Xiang; Perez-Peralta, Nancy; Islas, Rafael; Contreras, Maryel; Merino, Gabriel; Wu, Judy I-Chia; Schleyer, Paul von Ragué

    2011-01-10

    Is it possible to achieve molecules with starlike structures by replacing the H atoms in (CH)(n)(q) aromatic hydrocarbons with aluminum atoms in bridging positions? Although D(4h) C(4)Al(4)(2-) and D(2) C(6)Al(6) are not good prospects for experimental realization, a very extensive computational survey of fifty C(5)Al(5)(-) isomers identified the starlike D(5h) global minimum with five planar tetracoordinate carbon atoms to be a promising candidate for detection by photoelectron detachment spectroscopy. BOMD (Born-Oppenheimer molecular dynamics) simulations and high-level theoretical computations verified this conclusion. The combination of favorable electronic and geometric structural features (including aromaticity and optimum C-Al-C bridge bonding) stabilizes the C(5)Al(5)(-) star preferentially. PMID:21207593

  16. Synthesis of aromatic cytokinins for plant biotechnology.

    Science.gov (United States)

    Plíhalová, Lucie; Vylíčilová, Hana; Doležal, Karel; Zahajská, Lenka; Zatloukal, Marek; Strnad, Miroslav

    2016-09-25

    Cytokinins represent an important group of plant growth regulators that can modulate several biotechnological processes owing to their ability to influence almost all stages of plant development and growth. In addition, the use of purine based cytokinins with aromatic substituent in C6 position of the purine moiety in tissue culture techniques is currently experiencing a surge in interest, made possible by the ongoing systematic synthesis and study of these compounds. This review article outlines progress in the synthesis of aromatic cytokinins, the in vitro and in vivo effects of these substances and insights gleaned from their synthesis. As the purine moiety in these compounds can be substituted at several positions, we examine each of the substitution possibilities in relation to the derivatives prepared so far. The discussion highlights the gradual simplification of their preparation in relation to their application in practice and summarizes the relevant organic chemistry literature and published patents. PMID:26703810

  17. Hydrophobic contribution to the free energy of complexation of aromatic ligands with DNA

    Directory of Open Access Journals (Sweden)

    Evstigneev M. P.

    2009-04-01

    Full Text Available The hydrophobic component of complexation energy of double-stranded DNA with biologically active aromatic compounds was calculated using two semi-empirical methods – correlations of hydrophobic energy with changes of a heat capacity (DCp and solvent-accessible surface area (SASA. These surface areas were calculated for free ligands and DNA oligomers, unwound DNA duplexes and DNA-ligand complexes. The changes of polar and non-polar SASAs of molecules upon binding ligands to DNA were found. The hydrophobic contribution at both complexation stages were calculated. It was shown that the calculation of hydrophobic energy by SASA method is more correct than (DCp method for DNA-binding ligands.

  18. Constraint on the Polarization of Electric Dipole Emission from Spinning Dust

    CERN Document Server

    Hoang, Thiem; Martin, P G

    2013-01-01

    Planck results have revealed that the electric dipole emission from polycyclic aromatic hydrocarbons (PAHs) is the most likely explanation for anomalous microwave emission that interferes with cosmic microwave background (CMB) radiation experiments. The emerging question is to what extent this emission component contaminates to the polarized CMB radiation. We present constraints on polarized dust emission for the model of grain size distribution and grain alignment that best fits to observed extinction and polarization data. Two stars with a prominent polarization excess at 2175 Angstrom, HD 197770 and HD 147933-4, are chosen for our study. For HD 197770, we find that the model with aligned silicate grains plus weakly aligned PAHs can reproduce the 2175 Angstrom polarization feature; whereas, for HD 147933-4, we find that the alignment by silicate grains only can account for that feature. The alignment function of PAHs for the best fit model to the HD 197770 data is employed to constrain polarized spinning du...

  19. Carcinogenic potential of hydrotreated petroleum aromatic extracts.

    OpenAIRE

    Doak, S. M.; Hend, R W; van der Wiel, A; Hunt, P F

    1985-01-01

    Five experimental petroleum extracts were produced from luboil distillates derived from Middle East paraffinic crude by solvent extraction and severe hydrotreatment. The polycyclic aromatic content (PCA) of the extracts was determined by dimethyl sulphoxide extraction and ranged from 3.7-9.2% w/w. The five extracts were evaluated for their potential to induce cutaneous and systemic neoplasia in female mice derived from Carworth Farm No 1 strain (CF1). The test substances were applied undilute...

  20. Aromatic compounds from three Brazilian Lauraceae species

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Andrea Nastri de Luca; Batista Junior, Joao Marcos; Lopez, Silvia Noeli; Furlan, Maysa; Cavalheiro, Alberto Jose; Silva, Dulce Helena Siqueira; Bolzani, Vanderlan da Silva [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica; Nunomura, Sergio Massayoshi [Instituto Nacional de Pesquisa da Amazonia (INPA), Manaus, AM (Brazil). Dept. de Produtos Naturais; Yoshida, Massayoshi [Centro de Biotecnologia da Amazonia, Manaus, AM (Brazil)

    2010-07-01

    Phytochemical investigations on three Brazilian Lauraceae species from the Cerrado region of Sao Paulo State, Ocotea corymbosa (Meins) Mez., O. elegans Mez. and Persea pyrifolia Nees and Mart. ex Nees resulted in the isolation of flavonoids, an ester of the 4-O-E-caffeoylquinic acid, an aromatic sesquiterpene besides furofuran lignans. This is the first chemical study on the leaves of Ocotea elegans and O. corymbosa as well as the first report of non-volatile compounds from Persea pyrifolia. (author)

  1. Aromatic compounds from three Brazilian Lauraceae species

    International Nuclear Information System (INIS)

    Phytochemical investigations on three Brazilian Lauraceae species from the Cerrado region of Sao Paulo State, Ocotea corymbosa (Meins) Mez., O. elegans Mez. and Persea pyrifolia Nees and Mart. ex Nees resulted in the isolation of flavonoids, an ester of the 4-O-E-caffeoylquinic acid, an aromatic sesquiterpene besides furofuran lignans. This is the first chemical study on the leaves of Ocotea elegans and O. corymbosa as well as the first report of non-volatile compounds from Persea pyrifolia. (author)

  2. Decarboxylative and direct functionalisations of aromatic compounds

    OpenAIRE

    Seo, Sangwon

    2014-01-01

    Aromatic rings are privileged structures found in a diverse range of natural and synthetic compounds, thus synthetic methods for their functionalisations are important in organic synthesis. Despite significant advancements made, especially in the field of transition metal catalysis, work still continues for the development of milder, more efficient, and more atom economical reactions. We describe here our efforts towards the development of decarboxylative/direct C(aryl)–N and C(aryl)–C bond f...

  3. AN AROMATIC COMPOUND from CENTAUREA PTOSIMOPAPPOIDES

    OpenAIRE

    A. ULUBELEN, S. ÖKSÜZ

    2015-01-01

    Centaurea ptosimopappoides was previously investigated by our groupand the presence of two new triterpenes were reported. The rare occurrence ofthis type compounds in the plants prompted us to further investigation of Centaureaptosimopappoides. In this work we report the isolation and structure determinationof an aromatic glycoside which was found in the genus Centaureafor the first time. The structure of the compound was determined by spectralmethods.Key words: Centaurea ptosimopappoides; Co...

  4. Synthetic fuel aromaticity and staged combustion

    Energy Technology Data Exchange (ETDEWEB)

    Longanbach, J. R.; Chan, L. K.; Levy, A.

    1982-11-15

    Samples of middle and heavy SRC-II distillates were distilled into 50 C boiling point range fractions. These were characterized by measurements of their molecular weight, elemental analysis and basic nitrogen content and calculation of average molecular structures. The structures typically consisted of 1 to 3 aromatic rings fused to alicyclic rings with short, 1 to 3 carbon aliphatic side chains. The lower boiling fractions contained significant amounts (1 atom/molecule) of oxygen while the heavier fractions contained so few heteroatoms that they were essentially hydrocarbons. Laboratory scale oxidative-pyrolysis experiments were carried out at pyrolysis temperatures of 500 to 1100 C and oxygen concentrations from 0 to 100 percent of stoichiometry. Analysis of liquid products, collected in condensers cooled with liquid nitrogen showed that aromatization is a major reaction in the absence of oxygen. The oxygen-containing materials (phenolics) seem to be more resistant to thermal pyrolysis than unsubstituted aromatics. Nitrogen converts from basic to nonbasic forms at about 500 C. The nonbasic nitrogen is more stable and survives up to 700 C after which it is slowly removed. A recently constructed 50,000 Btu/hr staged combustor was used to study the chemistry of the nitrogen and aromatics. SRC II combustion was studied under fuel-rich, first-stage conditions at air/fuel ratios from 0.6 to 1.0 times stoichiometric. The chemistry of the fuel during combustion calls for further investigation in order to examine the mechanism by which HCN is evolved as a common intermediate for the formation of the nitrogen-containing gaseous combustion products. 25 references, 45 figures, 25 tables.

  5. Transformations of aromatic hydrocarbons over zeolites

    Czech Academy of Sciences Publication Activity Database

    Voláková, Martina; Žilková, Naděžda; Čejka, Jiří

    2008-01-01

    Roč. 34, 5-7 (2008), s. 439-454. ISSN 0922-6168 R&D Projects: GA ČR GA203/05/0197; GA AV ČR 1QS400400560; GA AV ČR KJB4040402 Institutional research plan: CEZ:AV0Z40400503 Keywords : aromatic hydrocarbons * zeolites * alkylation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.514, year: 2008

  6. ANTIEMETIC ACTIVITY OF SOME AROMATIC PLANTS

    OpenAIRE

    Hasan MuhammadMohtasheemul; Ahmed Salman; Ahmed Ziauddin; Azhar Iqbal

    2012-01-01

    Current study was conducted to explore the antiemetic activity of ten aromatic medicinal plants viz., Carissa carandus L. (fruits), Chichorium intybus L (flowers), Cinnamum tamala L (leaves), Curcuma caesia Roxb (rhizomes), Lallemantia royleana Benth (leaves), Matricaria chamomila L (flowers), Piper longum L (fruits), Piper methysticum G. Forst (fruits), Piper nigrum Linn. (fruits) and Syzygium aromaticum (Linn.) Merr. & Perry (flowering buds) was studied using chick emetic model. The ethan...

  7. Spectroscopic Characterisation of Novel Polycyclic Aromatic Polymers

    OpenAIRE

    O'Neill, Luke; Lynch, Patrick; McNamara, Mary; Byrne, Hugh

    2007-01-01

    A series of novel polyphenylenevinylene (PPV) derivative polymers were studied by absorption and photoluminescence spectroscopies. The effect of the sequential introduction of polycyclic aromatic ring substituents into the delocalized backbone was examined with relation to hypsochromatic and bathochromatic shifting. While the replacement of the phenyl units by naphthyl units results in a substantial hypsochromic shift of both the absorption and emission spectra, their subsequent substitution ...

  8. Aromatics Oxidation and Soot Formation in Flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. B.; Richter, H.

    2005-03-29

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and the growth process to polycyclic aromatic hydrocarbons (PAH) of increasing size, soot and fullerenes formation in flames. The overall objective of the experimental aromatics oxidation work is to extend the set of available data by measuring concentration profiles for decomposition intermediates such as phenyl, cyclopentadienyl, phenoxy or indenyl radicals which could not be measured with molecular-beam mass spectrometry to permit further refinement and testing of benzene oxidation mechanisms. The focus includes PAH radicals which are thought to play a major role in the soot formation process while their concentrations are in many cases too low to permit measurement with conventional mass spectrometry. The radical species measurements are used in critical testing and improvement of a kinetic model describing benzene oxidation and PAH growth. Thermodynamic property data of selected species are determined computationally, for instance using density functional theory (DFT). Potential energy surfaces are explored in order to identify additional reaction pathways. The ultimate goal is to understand the conversion of high molecular weight compounds to nascent soot particles, to assess the roles of planar and curved PAH and relationships between soot and fullerenes formation. The specific aims are to characterize both the high molecular weight compounds involved in the nucleation of soot particles and the structure of soot including internal nanoscale features indicative of contributions of planar and/or curved PAH to particle inception.

  9. Evaluation of Extraction Protocols for Simultaneous Polar and Non-Polar Yeast Metabolite Analysis Using Multivariate Projection Methods

    Directory of Open Access Journals (Sweden)

    Nicolas P. Tambellini

    2013-07-01

    Full Text Available Metabolomic and lipidomic approaches aim to measure metabolites or lipids in the cell. Metabolite extraction is a key step in obtaining useful and reliable data for successful metabolite studies. Significant efforts have been made to identify the optimal extraction protocol for various platforms and biological systems, for both polar and non-polar metabolites. Here we report an approach utilizing chemoinformatics for systematic comparison of protocols to extract both from a single sample of the model yeast organism Saccharomyces cerevisiae. Three chloroform/methanol/water partitioning based extraction protocols found in literature were evaluated for their effectiveness at reproducibly extracting both polar and non-polar metabolites. Fatty acid methyl esters and methoxyamine/trimethylsilyl derivatized aqueous compounds were analyzed by gas chromatography mass spectrometry to evaluate non-polar or polar metabolite analysis. The comparative breadth and amount of recovered metabolites was evaluated using multivariate projection methods. This approach identified an optimal protocol consisting of 64 identified polar metabolites from 105 ion hits and 12 fatty acids recovered, and will potentially attenuate the error and variation associated with combining metabolite profiles from different samples for untargeted analysis with both polar and non-polar analytes. It also confirmed the value of using multivariate projection methods to compare established extraction protocols.

  10. Hydrogen Bonded Supramolecular Polymers in Both Apolar and Aqueous Media: Self-Assembly and Reversible Conversion of Vesicles and Gels%Hydrogen Bonded Supramolecular Polymers in Both Apolar and Aqueous Media: Self-Assembly and Reversible Conversion of Vesicles and Gels

    Institute of Scientific and Technical Information of China (English)

    杜平; 孔军; 王贵涛; 赵新; 李光玉; 蒋锡夔; 黎占亭

    2011-01-01

    In a preliminary letter (Tetrahedron Lett. 2010, 51, 188), we reported two new hydrazide-based quadruple hydrogen-bonding motifs, this is, two monopodal (la and lb) and five dipodal (2a, 2b and 3a--3c) aromatic hydrazide derivatives, and the formation of supramolecular polymers and vesicles from the dipodal motifs in hydrocarbons. In this paper, we present a full picture on the properties of these hydrogen-bonding motifs with an emphasis on their self-assembling behaviors in aqueous media. SEM, AFM, TEM and fluorescent micrographs indicate that all the dipodal compounds also form vesicles in polar methanol and water-methanol (up to 50% of water) mixtures. Control experiments show that lb does not form vesicles in same media. Addition of lb to the solution of the dipodal compounds inhibits the latter's capacity of forming vesicles. At high concentrations, 3b and 3c also gelate discrete solvents, including hydrocarbons, esters, methanol, and methanol-water mixture. Concentration-dependent SEM investigations reveal that the vesicles of 3b and 3c fuse to form gels and the gel of 3c can de-aggregate to form the vesicles reversibly.

  11. Device For Viewing Polarized Light

    Science.gov (United States)

    Noever, David A.

    1995-01-01

    Technique for detection of polarized light based on observation of scene through two stacked polarizing disks. No need to rotate polarizers to create flicker indicative of polarization. Implemented by relatively simple, lightweight apparatus. Polarization seen as bow-tie rainbow pattern. Advantageous for detecting polarization in variety of meteorological, geological, astronomical, and related applications.

  12. Polar non-hydrocarbon contaminants in reservoir core extracts

    Directory of Open Access Journals (Sweden)

    Bennett B

    2000-08-01

    Full Text Available A geochemical investigation of oils in sandstone core plugs and drill stem test oils was carried out on samples from a North Sea reservoir. A sample of diesel used as a constituent of the drilling fluids was also analysed. The aliphatic and aromatic hydrocarbons and polar non-hydrocarbons were isolated using solid phase extraction methods. GC analysis of the hydrocarbon fraction of the core extract indicated that contamination may be diesel derived. From analysis of diesel some compound classes are less likely to be affected by contamination from diesel itself including: steranes, hopanes, aromatic steroid hydrocarbons, benzocarbazoles and C0–C3-alkylphenols. Large quantities of sterols (ca. 30 mg g-1 total soluble extract were identified in the polar non-hydrocarbon fractions of the core extract petroleum, presumably resulting from contamination. The origin of sterols is likely to be due to an additive introduced into the drilling fluid. Sterols are surface active compounds and in significant quantities may affect engineering core property measurements including wettability determinations. In addition, bulk petroleum composition screening methods, such as Iatroscan, used for determining saturated and aromatic hydrocarbons, resins and asphaltenes (SARA content of core extract petroleum may also be affected.

  13. The generation of stationary π-electron rotations in chiral aromatic ring molecules possessing non-degenerate excited states.

    Science.gov (United States)

    Yamaki, Masahiro; Teranishi, Yoshiaki; Nakamura, Hiroki; Lin, Sheng Hsien; Fujimura, Yuichi

    2016-01-21

    The electron angular momentum is a fundamental quantity of high-symmetry aromatic ring molecules and finds many applications in chemistry such as molecular spectroscopy. The stationary angular momentum or unidirectional rotation of π electrons is generated by the excitation of a degenerated electronic excited state by a circularly-polarized photon. For low-symmetry aromatic ring molecules having non-degenerate states, such as chiral aromatic ring molecules, on the other hand, whether stationary angular momentum can be generated or not is uncertain and has not been clarified so far. We have found by both theoretical treatments and quantum optimal control (QOC) simulations that a stationary angular momentum can be generated even from a low-symmetry aromatic ring molecule. The generation mechanism can be explained in terms of the creation of a dressed-state, and the maximum angular momentum is generated by the dressed state with an equal contribution from the relevant two excited states in a simple three-electronic state model. The dressed state is formed by inducing selective nonresonant transitions between the ground and each excited state by two lasers with the same frequency but having different polarization directions. The selective excitation can be carried out by arranging each photon-polarization vector orthogonal to the electronic transition moment of the other transition. We have successfully analyzed the results of the QOC simulations of (P)-2,2'-biphenol of axial chirality in terms of the analytically determined optimal laser fields. The present findings may open up new types of chemical dynamics and spectroscopy by utilizing strong stationary ring currents and current-induced magnetic fields, which are created at a local site of large compounds such as biomolecules. PMID:26670839

  14. Spinning dust emission from ultrasmall silicates: emissivity and polarization spectrum

    CERN Document Server

    Hoang, Thiem; Lan, Nguyen Quynh

    2016-01-01

    Anomalous microwave emission (AME) is an important Galactic foreground of Cosmic Microwave Background (CMB) radiation. It is believed that the AME arises from rotational emission by spinning polycyclic aromatic hydrocarbons (PAHs) in the interstellar medium (ISM). In this paper, we assume that a population of ultrasmall silicate grains may exist in the ISM, and quantify rotational emissivity from these tiny particles and its polarization spectrum. We found that spinning silicate nanoparticles can produce strong rotational emission when those small grains follow a log-normal size distribution. The polarization fraction of spinning dust emission from tiny silicates increases with decreasing the dipole moment per atom ($\\beta$) and can reach $P\\sim 20\\%$ for $\\beta\\sim 0.1$D at grain temperature of 60 K. We identify a parameter space $(\\beta,Y_{Si})$ for silicate nanoparticles in which its rotational emission can adequately reproduce both the observed AME and the polarization of the AME, without violating the ob...

  15. Estimating release of polycyclic aromatic hydrocarbons from coal tar at manufactured-gas plant sites

    International Nuclear Information System (INIS)

    One component of the EPRI's research on Envirorunental Behavior of Organic Substances (EBOS) consists of developing information and models to predict releases of monocyclic and polycyclic aromatic hydrocarbons (MAHs and PAHs) to groundwater from coal tars and contaminated soils at MGP sites. The results of this report focus primarily on release of PAHs from coal tars. There are at least two approaches to predicting the release of organic chemicals from coal tar to water. The simplest method to estimate aqueous concentrations is to assume that water solubility of a PAH compound released from the tar can be defined by equilibrium precipitation-dissolution reactions. Application of Raoult's law is another method to predict aqueous concentrations, which requires the assumption of ''ideal'' behavior for partitioning of PAHs between the tar and water phases. To evaluate the applicability of these two methods for predicting PAH releases, laboratory experiments were conducted with eight coal tar samples from former MGP sites across the country. Migration of chemicals in the environment and resulting contaminant plumes in groundwater are determined by leachate concentrations of the chemicals. The use of equilibrium precipitation-dissolution reactions will usually result in an overestimation of PAH concentrations in the leachate from a coal tar source, and thus the resulting PAH concentrations in groundwater. Raoult's law appears to be a more accurate approach to predicting the release of several PAHs from coal tars. Furthermore, if nonequilibrium conditions prevail, aqueous-phase PAH concentrations will be even lower than those predicted using Raoult's law

  16. Biodegradation Of Polycyclic Aromatic Hydrocarbons In Petroleum Oil Contaminating The Environment

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in urban atmospheres (Chen et al., 2013). PAHs enter the environment via incomplete combustion of fossil fuels and accidental leakage of petroleum products, and as components of products such as creosote (Muckian et al., 2009). Due to PAHs carcinogenic activity, they have been included in the European Union (EU) and the Environmental Protection Agency (EPA) priority pollutant lists. Human exposure to PAHs occurs in three ways, inhalation, dermal contact and consumption of contaminated foods, which account for 88-98% of such contamination; in other words, diet is the major source of human exposure to these contaminants (Rey-Salgueiro et al., 2008). Both the World Health Organization and the UK Expert Panel on Air Quality Standards (EPAQS) have considered benzo(a)pyrene (BaP) as a marker of the carcinogenic potency of the polycyclic aromatic hydrocarbons (PAH) mixture (Delgado-Saborit et al., 2011). Polycyclic aromatic and heavier aliphatic hydrocarbons, which have a stable recalcitrant molecular structure, exhibit high hydrophobicity and low aqueous solubility, are not readily removed from soil through leaching and volatilization (Brassington et al., 2007). The hydrophobicity of PAHs limits desorption to the aqueous phase (Donlon et al., 2002). Six main ways of dissipation, i.e. disappearance, are recognized in the environment: volatilization, photooxidation, Aim of the Work chemical oxidation, sorption, leaching and biodegradation. Microbial degradation is considered to be the main process involved in the dissipation of PAH (Yuan et al., 2002). Thus, more and more research interests are turning to the biodegradation of PAHs. Some microorganisms can utilize PAHs as a source of carbon and energy so that PAHs can be degraded to carbon dioxide and water, or transformed to other nontoxic or low-toxic substances (Perelo, 2010). Compared with other physical and chemical methods such as combustion

  17. Decay of Polarized Delta

    OpenAIRE

    Ramachandran, G.; Venkataraya; Vidya, M. S.; Balasubramanyam, J.; Padmanabha, G.

    2009-01-01

    The resonance $\\Delta(1232)$ with spin-parity ${3 \\over 2}^+$, which contributes dominantly to the reactions like $\\gamma N \\to \\pi N$ and $NN \\to NN\\pi$ at intermediate energies, may be expected to be produced in characteristically different polarized spin states. As such an analysis of the decay of polarized delta is presented, which may be utilized to probe empirically the production mechanism. It is shown that measurements of the angular distributions of the pion and the polarization of t...

  18. Polarized negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

  19. Polarization at SLC

    International Nuclear Information System (INIS)

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  20. Polarized negative ions

    International Nuclear Information System (INIS)

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H- and D- beams in excess of 10 μA can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 μA, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized 3He- ions is followed by some concluding remarks

  1. Evidence of primary migration of condensate by molecular solution in aqueous phase in Yacheng Field, offshore South China

    Science.gov (United States)

    Quanxing, Zhang; Qiming, Zhang

    The composition of Yacheng condensate provides possible evidences of primary migration of petroleum by molecular solution in the aqueous phase. Aromatic hydrocarbons (HCs), especially benzene and toluene, make up a high percentage of the condensate. The abundance of each hydrocarbon (HC) in the condensate is mainly controlled by compound type and carbon number. The distribution of normal alkanes is discontinuous at C 16. Aromatic hydrocarbons are 3.8‰ isotopically heavier than the saturated hydrocarbons. The isoprenoid hydrocarbons are very abundant, especially pristane. The specific gravity of the Yacheng condensate is 0.85530 g cm -3, which is much higher than the average for condensates. These features are in good agreement with the HC solubilities in aqueous solution.

  2. Development of a screening method for the determination of total polynuclear aromatic hydrocarbons (PAH) in water and wastewater

    International Nuclear Information System (INIS)

    Polynuclear aromatic hydrocarbons (PAHs) represent an important class of organic compounds from an environmental standpoint, due to known human carcinogenicity of some members. Consequently, there is a great need for monitoring the PAH concentration of a variety of media, including water and industrial wastewater. Recently, the United States Environmental Protection Agency (U.S. EPA) developed a sensitive analytical method, designated Test Method 610, for the determination of priority pollutant PAHs in aqueous industrial discharges. This method employs reversed phase high performance liquid chromatography (HPLC) with ultraviolet (UV) and fluorescence detection to determine all sixteen priority pollutant PAHs in a single chromatographic separation

  3. Novel application of cyclolipopeptide amphisin: feasibility study as additive to remediate polycyclic aromatic hydrocarbon (PAH) contaminated sediments.

    Science.gov (United States)

    Groboillot, Anne; Portet-Koltalo, Florence; Le Derf, Franck; Feuilloley, Marc J G; Orange, Nicole; Poc, Cécile Duclairoir

    2011-01-01

    To decontaminate dredged harbor sediments by bioremediation or electromigration processes, adding biosurfactants could enhance the bioavailability or mobility of contaminants in an aqueous phase. Pure amphisin from Pseudomonas fluorescens DSS73 displays increased effectiveness in releasing polycyclic aromatic hydrocarbons (PAHs) strongly adsorbed to sediments when compared to a synthetic anionic surfactant. Amphisin production by the bacteria in the natural environment was also considered. DSS73's growth is weakened by three model PAHs above saturation, but amphisin is still produced. Estuarine water feeding the dredged material disposal site of a Norman harbor (France) allows both P. fluorescens DSS73 growth and amphisin production. PMID:21673923

  4. Novel Application of Cyclolipopeptide Amphisin: Feasibility Study as Additive to Remediate Polycyclic Aromatic Hydrocarbon (PAH Contaminated Sediments

    Directory of Open Access Journals (Sweden)

    Anne Groboillot

    2011-03-01

    Full Text Available To decontaminate dredged harbor sediments by bioremediation or electromigration processes, adding biosurfactants could enhance the bioavailability or mobility of contaminants in an aqueous phase. Pure amphisin from Pseudomonas fluorescens DSS73 displays increased effectiveness in releasing polycyclic aromatic hydrocarbons (PAHs strongly adsorbed to sediments when compared to a synthetic anionic surfactant. Amphisin production by the bacteria in the natural environment was also considered. DSS73’s growth is weakened by three model PAHs above saturation, but amphisin is still produced. Estuarine water feeding the dredged material disposal site of a Norman harbor (France allows both P. fluorescens DSS73 growth and amphisin production.

  5. Sensor Arrays Based on Polycyclic Aromatic Hydrocarbons: Chemiresistors versus Quartz-Crystal Microbalance.

    Science.gov (United States)

    Bachar, Nadav; Liberman, Lucy; Muallem, Fairouz; Feng, Xinliang; Müllen, Klaus; Haick, Hossam

    2013-11-27

    Arrays of broadly cross-reactive sensors are key elements of smart, self-training sensing systems. Chemically sensitive resistors and quartz-crystal microbalance (QCM) sensors are attractive for sensing applications that involve detection and classification of volatile organic compounds (VOCs) in the gas phase. Polycyclic aromatic hydrocarbon (PAH) derivatives as sensing materials can provide good sensitivity and robust selectivity towards different polar and nonpolar VOCs, while being quite tolerant to large humidity variations. Here, we present a comparative study of chemiresistor and QCM arrays based on a set of custom-designed PAH derivatives having either purely nonpolar coronas or alternating nonpolar and strongly polar side chain termination. The arrays were exposed to various concentrations of representative polar and nonpolar VOCs under extremely varying humidity conditions (5-80% RH). The sensor arrays' classification ability of VOC polarity, chemical class and compound separation was explained in terms of the sensing characteristics of the constituent sensors and their interaction with the VOCs. The results presented here contribute to the development of novel versatile and cost-effective real-world VOC sensing platforms. PMID:24147727

  6. Activity-Based Approach for Teaching Aqueous Solubility, Energy, and Entropy

    Science.gov (United States)

    Eisen, Laura; Marano, Nadia; Glazier, Samantha

    2014-01-01

    We describe an activity-based approach for teaching aqueous solubility to introductory chemistry students that provides a more balanced presentation of the roles of energy and entropy in dissolution than is found in most general chemistry textbooks. In the first few activities, students observe that polar substances dissolve in water, whereas…

  7. Charges at aqueous interfaces: Development of computational approaches in direct contact with experiment

    Czech Academy of Sciences Publication Activity Database

    Vácha, R.; Uhlig, Frank; Jungwirth, Pavel

    Vol. 155. Hoboken : Wiley, 2014 - (Rice, S.; Dinner, A.), s. 69-95 ISBN 978-1-118-75577-8 Institutional support: RVO:61388963 Keywords : aqueous interfaces * computational approaches * electronic structure approach * ionic charges * polarization Subject RIV: CF - Physical ; Theoretical Chemistry

  8. Solvent-free functionalization of fullerene C60 and pristine multi-walled carbon nanotubes with aromatic amines

    Science.gov (United States)

    Ramírez-Calera, Itzel J.; Meza-Laguna, Victor; Gromovoy, Taras Yu.; Chávez-Uribe, Ma. Isabel; Basiuk, Vladimir A.; Basiuk, Elena V.

    2015-02-01

    We employed a direct one-step solvent-free covalent functionalization of solid fullerene C60 and pristine multi-walled carbon nanotubes (MWCNTs) with aromatic amines 1-aminopyrene (AP), 2-aminofluorene (AF) and 1,5-diaminonaphthalene (DAN). The reactions were carried out under moderate vacuum, in a wide temperature range of 180-250 °C, during relatively short time of about 2 h. To confirm successful amine attachment, a large number of analytical techniques were used (depending on the nanomaterial functionalized) such as Fourier transform infrared, Raman, X-ray photoelectron, 13C cross-polarization magic angle spinning NMR spectroscopy, thermogravimetric analysis, laser-desorption ionization time-of-flight mass spectrometry, temperature-programmed desorption with mass spectrometric detection, as well as scanning and transmission electron microscopy. The nucleophilic addition of the aromatic amines to C60 molecule was studied theoretically by using density functional theory (PBE GGA functional with Grimme dispersion correction in conjunction with the DNP basis set). In the case of crystalline C60, the solvent-free technique has a limited applicability due to poor diffusion of vaporous aromatic amines into the bulk. Nevertheless, the approach proposed allows for a facile preparation of aromatic amine-functionalized pristine MWCNTs without contamination with other chemical reagents, detergents and solvents, which is especially important for a vast variety of nanotube applications spanning from nanoelectronics to nanomedicine.

  9. Bioavailability and biodegradation of polycyclic aromatic hydrocarbons.

    NARCIS (Netherlands)

    Volkering, F.

    1996-01-01

    One of the main problems in biological soil remediation is the slow or incomplete degradation of hydrophobic organic pollutants. The principal reason for this problem is the fact that these compounds bind strongly to the soil matrix or occur as a separate non- aqueous phase in the soil. As most micr

  10. Determination of aromatic amines in hair dye and henna samples by ion-pair extraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Akyüz, Mehmet; Ata, Sevket

    2008-05-12

    A gas chromatography-mass spectrometry (GC-MS) method has been proposed for the determination of carcinogenic and toxic aromatic amines in hair dye, henna and dyed hair samples. The method includes ion-pair extraction of aromatic amines from aqueous samples with bis-2-ethylhexylphosphate (BEHPA) released after solving the samples in acidic solution followed by sonication, derivatisation of compounds with isobutyl chloroformate (IBCF) and their GC-MS analysis in both electron impact (EI) and positive and negative ion chemical ionisation (PNICI) mode as their isobutyloxycarbonyl (isoBOC) derivatives. The obtained recoveries of aromatic amines ranged from 92.2 to 98.4% and the precision of this method, as indicated by the relative standard deviations (RSDs) was within the range of 0.7-4.2%. The detection limits obtained from calculations by using GC-MS results based on signal-to-noise ratio (S/N)=3 were within the range from 0.02 to 0.20 ng/g. In the present study, the commercially available 54 permanent hair dye, 35 modified or natural henna and 15 dyed hair samples were analysed for the aromatic amines by the proposed method and the method was shown to be suitable to determine the aromatic amine ingredients and metabolites of these commercial products. PMID:18280687

  11. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mars Aqueous Processing System (MAPS) is an innovative method to produce useful building materials from Martian regolith. Acids and bases produced from the regolith...

  12. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Aqueous Processing System (MAPS) is a novel technology for recovering oxygen, iron, and other constituents from lunar and Mars soils. The closed-loop...

  13. Therapeutic Potential of Polar and Non-Polar Extracts of Cyanthillium cinereum In Vitro

    Directory of Open Access Journals (Sweden)

    Gunjan Guha

    2011-01-01

    Full Text Available Cyanthillium cinereum (Less. H. Rob. (Asteraceae has been traditionally known for its medicinal properties, all aspects of which are yet to be exploited. This study was aimed at investigating the therapeutic potential of polar (methanolic and aqueous and nonpolar (hexane and chloroform crude extracts of the whole plant. Several parameters including free-radical (DPPH•, ABTS•+, H2O2 and •OH scavenging, reducing power, protection of DNA against oxidative damage, cytotoxicity, inhibition of oxidative hemolysis in erythrocytes, total phenolic content and inhibition of lipid peroxidation were examined. All the free-radical generating assay models demonstrated positive scavenging efficiency with differential but considerable magnitudes for the four extracts. However, only the hexane extract showed significant H2O2 scavenging effect. Lipid peroxidation was estimated by thiobarbituric acid-malondialdehyde (MDA reaction, and a high degree of inhibition was shown by all the extracts. Reducing power of the polar extracts was higher than the non-polar ones. All extracts showed a concentration-dependent increase in phenolic contents. Oxidative damage to erythrocytes was hindered by all extracts in diverse degrees. XTT assay showed that all extracts have mild cytotoxic property. The aqueous extract evidently demonstrated protective effect on pBR322 plasmid DNA against oxidative breakdown. These results suggested the potential of C. cinereum as medicine against free-radical-associated oxidative damage and related degenerative diseases involving metabolic stress, genotoxicity and cytotoxicity.

  14. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  15. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha-1 for Cd, 660 g ha-1 for Pb, 180 g ha-1 for Cu, 350 g ha-1 for Mn, and 205 g ha-1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  16. Biosynthesis of the Aromatic Amino Acids.

    Science.gov (United States)

    Pittard, James; Yang, Ji

    2008-09-01

    This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon. PMID:26443741

  17. A Simple One-pot Synthesis of 3,5-Dicyano-1,2-dihydropyrid-2-ones in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    ZHUANG, Qi-Ya; XU, Jia-Ning; TU, Shu-Jiang; JIA, Run-Hong; ZHANG, Jun-Yong; LI, Chun-Mei; ZHOU, Dian-Xiang

    2007-01-01

    A simple and clean synthesis of 3,5-dicyano-1,2-dihydropyrid-2-ones by a one-pot three-component reaction of malononitrile, aromatic aldehydes and 2-cyanoacetamide or 2-cyanothioacetamide has been achieved in an aqueous solution with potassium carbonate as a base under microwave irradiation without a phase transfer reagent. This protocol has the advantages of short reaction time (5-8 min) and convenient work-up.

  18. Removal of Reactive Dyes (Green, Orange, and Yellow) from Aqueous Solutions by Peanut Shell Powder as a Natural Adsorbent

    OpenAIRE

    Hosein Nadi; Mostafa Alizadeh; Morteza Ahmadabadi; Ahmad Reza Yari; Sara Hashemi

    2012-01-01

    Please cite this article as: Nadi H, Alizadeh M, Ahmadabadi M, Yari AR, Hashemi S. Removal of Reactive Dyes (Green, Orange, and Yellow) from Aqueous Solutions by Peanut Shell Powder as a Natural Adsorbent. Arch Hyg Sci 2012;1(2):41-7. Abstract: Background & Aims of the Study: Textile dyes generally are made of synthetic, organic, and aromatic compounds that may be contain of some heavy metals in their structure. Complex structure and presence of these metals cause toxicity and may be ...

  19. Aqueous solubility data for pressurized hot water extraction for solid heterocyclic analogs of anthracene, phenanthrene and fluorene

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Planeta, Josef; Roth, Michal

    2007-01-01

    Roč. 1140, 1-2 (2007), s. 195-204. ISSN 0021-9673 R&D Projects: GA ČR GA203/05/2106; GA ČR GA203/07/0886; GA AV ČR IAA4031301; GA AV ČR KJB400310504 Institutional research plan: CEZ:AV0Z40310501 Keywords : aqueous solubility * pressurized hot water * aromatic heterocycle Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.641, year: 2007

  20. Biodegradation Rates of Aromatic Contaminants in Biofilm Reactors

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1995-01-01

    This study has shown that microorganisms can adapt to degrade mixtures of aromatic pollutants at relatively high rates in the μg/l concentration range. The biodegradation rates of the following compounds were investigated in biofilm systems: aromatic hydrocarbons, phenol, methylphenols......, chlorophenols, nitrophenol, chlorobenzenes and aromatic nitrogen-, sulphur- or oxygen-containing heterocyclic compounds (NSO-compounds). Furthermore, a comparison with degradation rates observed for easily degradable organics is also presented. At concentrations below 20-100 μg/l the degradation of the aromatic...

  1. Critical analysis of the local aromaticity concept in polyaromatic hydrocarbons.

    Science.gov (United States)

    Bultinck, Patrick

    2007-01-01

    A large number of local aromaticity indices for the benzenoid rings in polyaromatic hydrocarbons is computed. The results are interpreted, supporting Clar's hypothesis, and mutual correlations are investigated. It is shown that there are good correlations between all indices that strictly allow comparing benzenoid character. Poor correlations are found with NICS. A rationale is offered, yielding the conclusion that NICS and ring current maps follow a fundamentally different path to local aromaticity. In this sense the lack of correlation is not due to a real multidimensional character of aromaticity but rather to confusion and vagueness of the aromaticity concept. PMID:17328438

  2. Aromatic compounds from three Brazilian Lauraceae species

    Directory of Open Access Journals (Sweden)

    Andrea Nastri de Luca Batista

    2010-01-01

    Full Text Available Phytochemical investigations on three Brazilian Lauraceae species from the Cerrado region of São Paulo State, Ocotea corymbosa (Meins Mez., O. elegans Mez. and Persea pyrifolia Nees & Mart. ex Nees resulted in the isolation of flavonoids, an ester of the 4-O-E-caffeoylquinic acid, an aromatic sesquiterpene besides furofuran lignans. This is the first chemical study on the leaves of Ocotea elegans and O. corymbosa as well as the first report of non-volatile compounds from Persea pyrifolia.

  3. Carcinogenic potential of hydrotreated petroleum aromatic extracts.

    Science.gov (United States)

    Doak, S M; Hend, R W; van der Wiel, A; Hunt, P F

    1985-06-01

    Five experimental petroleum extracts were produced from luboil distillates derived from Middle East paraffinic crude by solvent extraction and severe hydrotreatment. The polycyclic aromatic content (PCA) of the extracts was determined by dimethyl sulphoxide extraction and ranged from 3.7-9.2% w/w. The five extracts were evaluated for their potential to induce cutaneous and systemic neoplasia in female mice derived from Carworth Farm No 1 strain (CF1). The test substances were applied undiluted (0.2 ml per application) to the shorn dorsal skin twice weekly for up to 78 weeks, with 48 mice in each treatment group and 96 in the untreated control group; two further groups, each of 48 mice, were similarly treated either with a non-hydrotreated commercial aromatic extract (PCA content, 19.7% w/v) or with a low dose of benzo(a)pyrene (12.5 micrograms/ml acetone). The mice were housed individually in polypropylene cages in specified pathogen free conditions. The incidence of cutaneous and systemic tumours was determined from histological analysis of haematoxylin and eosin stained tissue sections. The results were correlated with the PCA content of the extracts and compared with those from female mice exposed to a non-hydrotreated commercial aromatic extract. Four of the hydrotreated extracts were carcinogenic for murine skin; the two products with the lower PCA contents were less carcinogenic than the products with the higher PCA contents and all were less carcinogenic than the commercial extract. One extract with the lowest PCA content was non-carcinogenic. Thus refining by severe hydrotreatment was an effective method of reducing the carcinogenic potential of petroleum aromatic extracts. Although other physicochemical properties may influence the biological activity of oil products, the PCA content determined by dimethyl sulphoxide extraction may be a useful indicator of the potential of oil products to induce cutaneous tumours in experimental animals. There was no

  4. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  5. Photoinduced dynamics in protonated aromatic amino acid

    CERN Document Server

    Grégoire, Gilles; Barat, Michel; Fayeton, Jacqueline; Dedonder-Lardeux, Claude; Jouvet, Christophe

    2008-01-01

    UV photoinduced fragmentation of protonated aromatics amino acids have emerged the last few years, coming from a situation where nothing was known to what we think a good understanding of the optical properties. We will mainly focus this review on the tryptophan case. Three groups have mostly done spectroscopic studies and one has mainly been involved in dynamics studies of the excited states in the femtosecond/picosecond range and also in the fragmentation kinetics from nanosecond to millisecond. All these data, along with high level ab initio calculations, have shed light on the role of the different electronic states of the protonated molecules upon the fragmentation mechanisms.

  6. 1H NMR structural and thermodynamical analysis of the hetero-association of daunomycin and novatrone in aqueous solution

    Science.gov (United States)

    Veselkov, A. N.; Evstigneev, M. P.; Rozvadovskaya, A. O.; Hernandez Santiago, A.; Zubchenok, O. V.; Djimant, L. N.; Davies, D. B.

    2004-09-01

    The complexation of antitumour antibiotics novatrone (NOV) and daunomycin (DAU) in aqueous solution has been studied by one- and two-dimensional 1H-NMR spectroscopy (500 MHz) in order to elucidate the probable molecular mechanism of the action of aromatic antitumour drugs in combination chemotherapy. The equilibrium reaction constants, thermodynamical parameters (Δ H, Δ S) of hetero-association of NOV with DAU and the limiting values of proton chemical shifts of the molecules in the hetero-complexes have been determined from the experimental concentration and temperature dependences of proton chemical shifts of the aromatic molecules. The most favourable structure of the 1:1 NOV-DAU hetero-association complex has been determined using both the molecular mechanics methods (X-PLOR software) and the limiting values of proton chemical shifts of the molecules. The obtained results have shown that intermolecular complexes between NOV and DAU molecules are mainly stabilized by stacking interactions of the aromatic chromophores. It is likely that there is an additional stabilization of the NOV-DAU hetero-complexes by intermolecular hydrogen bonds. It is concluded that aromatic molecules of antibiotics may form energetically stable hetero-association complexes in aqueous solution and hence effect their medical-biological (and probably toxic) activity.

  7. RHIC Polarized proton operation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D' Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  8. RHIC Polarized proton operation

    International Nuclear Information System (INIS)

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP4. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above injection

  9. Lambda polarization at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Belostotski, S. [Petersburg Nuclear Physics Institute RAS Gatchina, Leningrad district 188300 (Russian Federation); Naryshkin, Yu., E-mail: naryshk@mail.desy.d [Petersburg Nuclear Physics Institute RAS Gatchina, Leningrad district 188300 (Russian Federation); Veretennikov, D. [Petersburg Nuclear Physics Institute RAS Gatchina, Leningrad district 188300 (Russian Federation)

    2011-01-15

    Transverse polarization of {Lambda} and {Lambda}-bar hyperons produced inclusively in quasi-real photon-nucleon scattering has been studied for several nuclear targets in a wide range of atomic-mass numbers A. A strong A-dependence of the {Lambda} polarization is observed.

  10. Polarization modulators for CMBPol

    International Nuclear Information System (INIS)

    We review a number of technologies that are candidates for active polarization modulators for CMBPol. The technologies are appropriate for instruments that use bolometric detectors and include birefringent crystal-based and metal-mesh-based half-wave plates, variable phase polarization modulator, Faraday rotator, and photolithographed modulators. We also give a current account of the status of millimeter-wave orthomode transducers.

  11. Polarization modulators for CMBPol

    Energy Technology Data Exchange (ETDEWEB)

    Ade, P A R; Savini, G [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Chuss, D T [NASA Goddard Space Flight Center, Code 665, Greenbelt, MD, 20771 (United States); Hanany, S [School of Physics and Astronomy, University of Minnesota/Twin Cities, Minneapolis, MN, 55455 (United States); Haynes, V; Pisano, G [University of Manchester, School of Physics and Astronomy - Alan Turing Building, Upper Brooke street, Manchester, M13 4PL (United Kingdom); Keating, B G [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0424 (United States); Kogut, A [Code 665 Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ruhl, J E [Physics Department, Case Western Reserve University, Cleveland, OH, 44106 (United States); Wollack, E J [Observational Cosmology Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States)

    2009-03-01

    We review a number of technologies that are candidates for active polarization modulators for CMBPol. The technologies are appropriate for instruments that use bolometric detectors and include birefringent crystal-based and metal-mesh-based half-wave plates, variable phase polarization modulator, Faraday rotator, and photolithographed modulators. We also give a current account of the status of millimeter-wave orthomode transducers.

  12. Aqueous medium induced optical transitions in cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Inerbaev, Talgat M.; Karakoti, Ajay S.; Kuchibhatla, S. V. N. T.; Kumar, Amit; Masunov, Artem E.; Seal, Sudipta

    2015-03-07

    Experimental and theoretical investigations were performed to investigate the effect of water on optical properties of nanoceria as a function of Ce3+ concentration. Theoretical studies based on density functional plane-wave calculations reveal that the indirect optical transitions in bare ceria nanoparticles are red-shifted with an increase in the concentration of Ce3+. However, ceria nanoparticles model with adsorbed water molecules show a blue shift in the indirect optical spectra under identical conditions. Direct optical transitions are almost independent of Ce3+ concentration but show a pronounced blue shift in the aqueous environment relative to the bare nanoparticles. The theoretical study is consistent with our experimental observation in difference of shift behaviour in bare and aqueous suspended ceria nanoparticles. This change from red- to blue-shift in indirect optical transitions is associated with the polarization effect of water molecules on f-electron states.

  13. Polarization and polarization fatigue in ferroelectrics

    Science.gov (United States)

    Du, Xiaofeng

    This thesis addresses some fundamental issues in ferroelectricity and its applications through a computational and experimental effort. It focuses on a variety of perovskite-type ferroelectric oxides and investigates the physical basis for spontaneous polarization, domain wall dynamics, and texture development in thin film applications. The dipole-dipole interactions between ionic species in perovskite-type materials have been calculated to determine the local field and the lattice instability. Different ferroelectric and anti-ferroelectric polarization transitions can be realized by taking into account the structure distortion of the parent perovskites. We find the local field is enhanced by short range disorder and its nature varies from disorder to disorder, causing polarization transitions in non-(100) directions. The molecular field theory has also been extended to layered perovskites, which favors in-plane polarization over c-polarization. These theoretical predictions are in agreement with the experimental observations of various perovskites and layered perovskites in both single crystal and thin film forms. Domain switching in PZT has been studied by probing the frequency dependency of polarization hysteresis. A picture of thermally activated domain wall movement is established from the frequency spectra of coercive field. The field dependence of domain wall bulging and the nature of the binding between pinning obstacles and the walls are inferred from such a study. Consistent with this picture, polarization fatigue can be defined as a process of increasing the resistance from pinning defects to domain wall motion. The chemical species that act as pinning defects have been identified through model experiments that control carrier injection, electrode interfaces, and film compositions. Based on these observations, a methodology is proposed to evaluate and predict the fatigue damage of both PZT and layered perovskite thin films. Processing of layered

  14. Polarization Mode Dispersion

    CERN Document Server

    Galtarossa, Andrea

    2005-01-01

    This book contains a series of tutorial essays on polarization mode dispersion (PMD) by the leading experts in the field. It starts with an introductory review of the basic concepts and continues with more advanced topics, including a thorough review of PMD mitigation techniques. Topics covered include mathematical representation of PMD, how to properly model PMD in numerical simulations, how to accurately measure PMD and other related polarization effects, and how to infer fiber properties from polarization measurements. It includes discussions of other polarization effects such as polarization-dependent loss and the interaction of PMD with fiber nonlinearity. It additionally covers systems issues like the impact of PMD on wavelength division multiplexed systems. This book is intended for research scientists or engineers who wish to become familiar with PMD and its system impacts.

  15. Polarization Optics in Telecommunications

    CERN Document Server

    Damask, Jay N

    2005-01-01

    The strong investments into optical telecommunications in the late 1990s resulted in a wealth of new research, techniques, component designs, and understanding of polarization effects in fiber. Polarization Optics in Telecommunications brings together recent advances in the field to create a standard, practical reference for component designers and optical fiber communication engineers. Beginning with a sound foundation in electromagnetism, the author offers a dissertation of the spin-vector formalism of polarization and the interaction of light with media. Applications discussed include optical isolators, optical circulators, fiber collimators, and a variety of applied waveplate and prism combinations. Also included in an extended discussion of polarization-mode dispersion (PMD) and polarization-dependent loss (PDL), their representation, behavior, statistical properties, and measurement. This book draws extensively from the technical and patent literature and is an up-to-date reference for researchers and c...

  16. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-01-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security. PMID:27184813

  17. Parallel Polarization State Generation

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  18. Parallel Polarization State Generation

    CERN Document Server

    She, Alan

    2016-01-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristi...

  19. Trapping of polycyclic aromatic hydrocarbons by amphiphilic cyclodextrin functionalized polypropylene nonwovens

    DEFF Research Database (Denmark)

    Lumholdt, Ludmilla; Nielsen, Ronnie Bo Højstrup; Larsen, Kim Lambertsen

    Recently, there has been an augmented focus on the increasing amount of pesticides, drug residues and endocrine disruptors present in waste and drinking water1. These pollutants represent a challenge in water purification since they may be hazardous to human health even in low doses2. Cyclodextrins...... textile fibers. In this study we present the ability of amphiphilic CD coated polypropylene nonwovens to trap 8 different polycyclic aromatic hydrocarbons/endocrine disruptors from aqueous solutions thus demonstrating the potential of using the amphiphilic cyclodextrins for water purification....... (CDs) are known to be able to form inclusion complexes with a large range of the unwanted pollutantse.g. 3 but in order to utilise this ability to purify water, the CDs must be immobilised on a surface, for instance, a membrane filter. We have developed a simple and fast method for the...

  20. An easy approach for constructing vesicles by using aromatic molecules with β-cyclodextrin.

    Science.gov (United States)

    Li, Shangyang; Zhang, Lin; Wang, Bo; Ma, Mingfang; Xing, Pengyao; Chu, Xiaoxiao; Zhang, Yimeng; Hao, Aiyou

    2015-03-01

    Vesicles were formed in aqueous solution using β-cyclodextrin (β-CD) complexes with a series of ultra-small aromatic molecules. The vesicles are easy to prepare without a complicated synthesis procedure and their structure was identified and characterized using various techniques, including transmission electron microscopy, atomic force microscopy and dynamic laser light scattering. Using the β-CD/l-phenylalanine system as a representative example, the structural factors that caused the self-assembly were revealed using proton nuclear magnetic resonance, Fourier transform infrared spectroscopy and X-ray diffraction. In addition, the vesicular architecture could be endowed with a diverse range of stimuli-responses, as a consequence of the selective addition of various guest molecules. It is anticipated that this novel assembly strategy could be further extended, and that it presents new opportunities for the development of nanocarriers and soft materials. PMID:25608115

  1. New Lipophilic Piceatannol Derivatives Exhibiting Antioxidant Activity Prepared by Aromatic Hydroxylation with 2-Iodoxybenzoic Acid (IBX

    Directory of Open Access Journals (Sweden)

    Roberta Bernini

    2009-11-01

    Full Text Available Piceatannol (E-3,5,3’,4’-tetrahydroxystilbene is a phytoalexin synthesized in grapes in response to stress conditions. It exhibits strong antioxidant and antileukaemic activities due to the presence of the catechol moiety. To modify some physical properties like solubility, and miscibility in non-aqueous media some new previously unreported piceatannol derivatives having lipophilic chains on the A-ring were prepared in good yields by a simple and efficient procedure. The key step was a chemo- and regioselective aromatic hydroxylation with 2-iodoxybenzoic acid (IBX. The new compounds showed antioxidant activity and seemed promising for possible applications as multifunctional emulsifiers in food, cosmetic and pharmaceutical fields.

  2. Polarizing agents and mechanisms for high-field dynamic nuclear polarization of frozen dielectric solids.

    Science.gov (United States)

    Hu, Kan-Nian

    2011-09-01

    This article provides an overview of polarizing mechanisms involved in high-frequency dynamic nuclear polarization (DNP) of frozen biological samples at temperatures maintained using liquid nitrogen, compatible with contemporary magic-angle spinning (MAS) nuclear magnetic resonance (NMR). Typical DNP experiments require unpaired electrons that are usually exogenous in samples via paramagnetic doping with polarizing agents. Thus, the resulting nuclear polarization mechanism depends on the electron and nuclear spin interactions induced by the paramagnetic species. The Overhauser Effect (OE) DNP, which relies on time-dependent spin-spin interactions, is excluded from our discussion due the lack of conducting electrons in frozen aqueous solutions containing biological entities. DNP of particular interest to us relies primarily on time-independent, spin-spin interactions for significant electron-nucleus polarization transfer through mechanisms such as the Solid Effect (SE), the Cross Effect (CE) or Thermal Mixing (TM), involving one, two or multiple electron spins, respectively. Derived from monomeric radicals initially used in high-field DNP experiments, bi- or multiple-radical polarizing agents facilitate CE/TM to generate significant NMR signal enhancements in dielectric solids at low temperatures (submicron domains or embedded in larger biomolecular complexes. The scope of this review is focused on recently developed DNP polarizing agents for high-field applications and leads up to future developments per the CE DNP mechanism. Because DNP experiments are feasible with a solid-state microwave source when performed at alignment. In addition, the combination of an excited triplet and a stable radical might provide alternative DNP mechanisms without the microwave requirement. PMID:21855299

  3. Phenolic carbonyls undergo rapid aqueous photodegradation to form low-volatility, light-absorbing products

    Science.gov (United States)

    Smith, Jeremy D.; Kinney, Haley; Anastasio, Cort

    2016-02-01

    We investigated the aqueous photochemistry of six phenolic carbonyls - vanillin, acetovanillone, guaiacyl acetone, syringaldehyde, acetosyringone, and coniferyl aldehyde - that are emitted from wood combustion. The phenolic carbonyls absorb significant amounts of solar radiation and decay rapidly via direct photodegradation, with lifetimes (τ) of 13-140 min under Davis, CA winter solstice sunlight at midday (solar zenith angle = 62°). The one exception is guaiacyl acetone, where the carbonyl group is not directly connected to the aromatic ring: This species absorbs very little sunlight and undergoes direct photodegradation very slowly (τ > 103 min). We also found that the triplet excited states (3C*) of the phenolic carbonyls rapidly oxidize syringol (a methoxyphenol without a carbonyl group), on timescales of 1-5 h for solutions containing 5 μM phenolic carbonyl. The direct photodegradation of the phenolic carbonyls, and the oxidation of syringol by 3C*, both efficiently produce low volatility products, with SOA mass yields ranging from 80 to 140%. Contrary to most aliphatic carbonyls, under typical fog conditions we find that the primary sink for the aromatic phenolic carbonyls is direct photodegradation in the aqueous phase. In areas of significant wood combustion, phenolic carbonyls appear to be small but significant sources of aqueous SOA: over the course of a few hours, nearly all of the phenolic carbonyls will be converted to SOA via direct photodegradation, enhancing the POA mass from wood combustion by approximately 3-5%.

  4. An Aromatic Inventory of the Local Volume

    CERN Document Server

    Marble, A R; van Zee, L; Dale, D A; Smith, J D T; Gordon, K D; Wu, Y; Lee, J C; Kennicutt, R C; Skillman, E D; Johnson, L C; Block, M; Calzetti, D; Cohen, S A; Lee, H; Schuster, M D

    2010-01-01

    Using infrared photometry from the Spitzer Space Telescope, we perform the first inventory of aromatic feature emission (AFE, but also commonly referred to as PAH emission) for a statistically complete sample of star-forming galaxies in the local volume. The photometric methodology involved is calibrated and demonstrated to recover the aromatic fraction of the IRAC 8 micron flux with a standard deviation of 6% for a training set of 40 SINGS galaxies (ranging from stellar to dust dominated) with both suitable mid-infrared Spitzer IRS spectra and equivalent photometry. A potential factor of two improvement could be realized with suitable 5.5 and 10 micron photometry, such as what may be provided in the future by JWST. The resulting technique is then applied to mid-infrared photometry for the 258 galaxies from the Local Volume Legacy (LVL) survey, a large sample dominated in number by low-luminosity dwarf galaxies for which obtaining comparable mid-infrared spectroscopy is not feasible. We find the total LVL lum...

  5. Molecular dynamics studies of aromatic hydrocarbon liquids

    International Nuclear Information System (INIS)

    This project mainly involves a molecular dynamics and Monte Carlo study of the effect of molecular shape on thermophysical properties of bulk fluids with an emphasis on the aromatic hydrocarbon liquids. In this regard we have studied the modeling, simulation methodologies, and predictive and correlating methods for thermodynamic properties of fluids of nonspherical molecules. In connection with modeling we have studied the use of anisotropic site-site potentials, through a modification of the Gay-Berne Gaussian overlap potential, to successfully model the aromatic rings after adding the necessary electrostatic moments. We have also shown these interaction sites should be located at the geometric centers of the chemical groups. In connection with predictive methods, we have shown two perturbation type theories to work well for fluids modeled using one-center anisotropic potentials and the possibility exists for extending these to anisotropic site-site models. In connection with correlation methods, we have studied, through simulations, the effect of molecular shape on the attraction term in the generalized van der Waals equation of state for fluids of nonspherical molecules and proposed a possible form which is to be studied further. We have successfully studied the vector and parallel processing aspects of molecular simulations for fluids of nonspherical molecules

  6. Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Trujillo-Rodríguez, María J; Nacham, Omprakash; Clark, Kevin D; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M

    2016-08-31

    This work describes the applicability of magnetic ionic liquids (MILs) in the analytical determination of a group of heavy polycyclic aromatic hydrocarbons. Three different MILs, namely, benzyltrioctylammonium bromotrichloroferrate (III) (MIL A), methoxybenzyltrioctylammonium bromotrichloroferrate (III) (MIL B), and 1,12-di(3-benzylbenzimidazolium) dodecane bis[(trifluoromethyl)sulfonyl)]imide bromotrichloroferrate (III) (MIL C), were designed to exhibit hydrophobic properties, and their performance examined in a microextraction method for hydrophobic analytes. The magnet-assisted approach with these MILs was performed in combination with high performance liquid chromatography and fluorescence detection. The study of the extraction performance showed that MIL A was the most suitable solvent for the extraction of polycyclic aromatic hydrocarbons and under optimum conditions the fast extraction step required ∼20 μL of MIL A for 10 mL of aqueous sample, 24 mmol L(-1) NaOH, high ionic strength content of NaCl (25% (w/v)), 500 μL of acetone as dispersive solvent, and 5 min of vortex. The desorption step required the aid of an external magnetic field with a strong NdFeB magnet (the separation requires few seconds), two back-extraction steps for polycyclic aromatic hydrocarbons retained in the MIL droplet with n-hexane, evaporation and reconstitution with acetonitrile. The overall method presented limits of detection down to 5 ng L(-1), relative recoveries ranging from 91.5 to 119%, and inter-day reproducibility values (expressed as relative standard derivation) lower than 16.4% for a spiked level of 0.4 μg L(-1) (n = 9). The method was also applied for the analysis of real samples, including tap water, wastewater, and tea infusion. PMID:27506350

  7. Oxidation of polycyclic aromatic hydrocarbons using partially purified laccase from residual compost of agaricus bisporus

    Energy Technology Data Exchange (ETDEWEB)

    Mayolo-Deloisa, K. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Center for Biotechnology-FEMSA, Monterrey Institute of Technology, Campus Monterrey, Monterrey (Mexico); Machin-Ramirez, C. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Faculty of Chemical Sciences and Engineering, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Rito-Palomares, M. [Center for Biotechnology-FEMSA, Monterrey Institute of Technology, Campus Monterrey, Monterrey (Mexico); Trejo-Hernandez, M.R. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico)

    2011-08-15

    Laccase partially purified from residual compost of Agaricus bisporus by an aqueous two-phase system (Lac ATPS) was used in degrading polycyclic aromatic hydrocarbons: fluorene (Flu), phenanthrene (Phe), anthracene (Ant), benzo[a]pyrene (BaP), and benzo[a]anthracene (BaA). The capacity of the enzyme to oxidize polyaromatic compounds was compared to that of the crude laccase extract (CE). After treatment of 72 h, Lac ATPS and CE were not capable of oxidizing Flu and Phe, while Ant, BaP, and BaA were oxidized, resulting in percentages of oxidation of 11.2 {+-} 1, 26 {+-} 2, and 11.7 {+-} 4 % with CE, respectively. When Lac ATPS was used, the following percentages of oxidation were obtained: 11.4 {+-} 3 % for Ant, 34 {+-} 0.1 % for BaP, and 13.6 {+-} 2 % for BaA. The results reported here demonstrate the potential application of Lac ATPS for the oxidation of polycyclic aromatic hydrocarbons. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Non-aqueous electrolytes for lithium ion batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  9. Polar Compounds Isolated from the Leaves of Albertisia delagoensis (Menispermaceae

    Directory of Open Access Journals (Sweden)

    Jia Li

    2011-11-01

    Full Text Available Aqueous infusions of the leaves of the shrub Albertisia delagoensis (Menispermaceae are used in South Africa in traditional Zulu medicine to alleviate a variety of symptoms, including fever, and intestinal problems. We report the analysis of such an aqueous extract using the HPLC-NMR technique. A number of polar compounds were identified, including proto-quercitol, nicotinic acid, allantoic acid, 3,4-dihydroxy-benzoic acid, phthalic acid and the aporphine alkaloid derivative roemrefidine. Allantoic acid and roemrefidine have been fully characterised by 1H- and 13C-NMR and mass spectrometry. Earlier reports of antiplasmodial activity of roemrefidine and of A. delagoensis extracts are correlated with this study and with the antipyretic properties of neutral aqueous extracts.

  10. Solute-Free Interfacial Zones in Polar Liquids

    OpenAIRE

    Chai, Binghua; Pollack, Gerald H.

    2010-01-01

    Large, solute-free interfacial zones have recently been described in aqueous solutions. Found next to hydrophilic surfaces, these “exclusion zones” are commonly several hundred micrometers wide and represent regions of water that appear to be more ordered than bulk water. We report here that other polar solvents including methanol, ethanol, isopropanol, acetic acid, D2O and dimethyl sulfoxide (DMSO) show similar near-surface exclusion zones, albeit of smaller magnitude. Microelectrode measure...

  11. Review of Polarized Ion Sources

    Science.gov (United States)

    Zelenski, A.

    2016-02-01

    Recent progress in polarized ion sources development is reviewed. New techniques for production of polarized H‑ ion (proton), D‑ (D+) and 3He++ ion beams will be discussed. A novel polarization technique was successfully implemented for the upgrade of the RHIC polarized H‑ ion source to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from an external source) in the He-gas ionizer cell. Polarized electron capture from the optically-pumped Rb vapor further produces proton polarization (Optically Pumped Polarized Ion Source technique). The upgraded source reliably delivered beam for the 2013 polarized run in RHIC at S = 510 GeV. This was a major factor contributing to RHIC polarization increase to over 60 % for colliding beams. Feasibility studies of a new polarization technique for polarized 3He++ source based on BNL Electron Beam Ion Source is also discussed.

  12. Biodegradation Rates of Aromatic Contaminants in Biofilm Reactors

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1995-01-01

    , chlorophenols, nitrophenol, chlorobenzenes and aromatic nitrogen-, sulphur- or oxygen-containing heterocyclic compounds (NSO-compounds). Furthermore, a comparison with degradation rates observed for easily degradable organics is also presented. At concentrations below 20-100 μg/l the degradation of the aromatic...

  13. Products Distribution of Meta-Oriented Aromatic Polyamide Needs Improvement

    Institute of Scientific and Technical Information of China (English)

    Sun Maojian

    2007-01-01

    @@ Capacity holding the second place in the world Metaoriented aromatic polya-mide fiber was first developed by DuPont of the United States. Commercial production began in the late 1960s.Today the world's capacity to produce meta-oriented aromatic polyamide fiber is 28 150t/a, and DuPont holds a 78% market share.

  14. High atmosphere-ocean exchange of semivolatile aromatic hydrocarbons

    Science.gov (United States)

    González-Gaya, Belén; Fernández-Pinos, María-Carmen; Morales, Laura; Méjanelle, Laurence; Abad, Esteban; Piña, Benjamin; Duarte, Carlos M.; Jiménez, Begoña; Dachs, Jordi

    2016-06-01

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 102-103 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr-1, around 15% of the oceanic CO2 uptake.

  15. Laboratory Investigation of Organic Aerosol Formation from Aromatic Hydrocarbons

    Science.gov (United States)

    Molina, Luisa T.; Molina, Mario J.; Zhang, Renyi

    2006-08-23

    Our work for this DOE funded project includes: (1) measurements of the kinetics and mechanism of the gas-phase oxidation reactions of the aromatic hydrocarbons initiated by OH; (2) measurements of aerosol formation from the aromatic hydrocarbons; and (3) theoretical studies to elucidate the OH-toluene reaction mechanism using quantum-chemical and rate theories.

  16. Bis-perfluoroalkylation of aromatic compounds with sodium perfluoroalkanesulfinates

    Institute of Scientific and Technical Information of China (English)

    LIU, Jin-Tao(刘金涛); LU, He-Jun(吕贺军)

    2000-01-01

    Bis-perfluoroalkylation of aromatic compounds such as dimethoxybenzenes (2,4,6), anisole (8), pyridine (10) and quinoline (13) was accomplished by reaction with excess sodium perfluoroalkanesulfinates, RFSO2Na (1), in the presence of Mn(OAc)3·2H2O under mild conditions. The reaction provides a facile method for the synthesis of bis-perfluoroalkylated aromatic compounds.

  17. 40 CFR 721.757 - Polyoxyalkylene substituted aromatic azo colorant.

    Science.gov (United States)

    2010-07-01

    ... azo colorant. 721.757 Section 721.757 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.757 Polyoxyalkylene substituted aromatic azo colorant. (a) Chemical... as polyoxyalkylene substituted aromatic azo colorant (PMN P-92-1131) is subject to reporting...

  18. GUIDE FOR POLARIZED NEUTRONS

    Science.gov (United States)

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  19. Sweet aqueous solution for electrochemical synthesis of polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Bazzaoui, M. [Faculdade de Engenharia, Departamento de Engenharia Quimica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal) and Faculdade de Engenharia, Departamento de Electrotecnica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal)]. E-mail: bazzaoui@fe.up.pt; Martins, J.I. [Faculdade de Engenharia, Departamento de Engenharia Quimica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal) and Faculdade de Engenharia, Departamento de Electrotecnica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal)]. E-mail: jipm@fe.up.pt; Costa, S.C. [Faculdade de Engenharia, Departamento de Engenharia Quimica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal); Bazzaoui, E.A. [Faculte des Sciences, Departement de Chimie, Universite Mohammed Ier, 60 000 Oujda (Morocco); Reis, T.C. [Faculdade de Engenharia, Departamento de Engenharia Quimica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal); Martins, L. [Faculdade de Engenharia, Departamento de Electrotecnica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal)

    2006-02-25

    The electrosynthesis of polypyrrole (PPy) has been achieved on aluminum electrode in aqueous medium of 0.1 M saccharin sodium salt and 0.5 M pyrrole. Scanning electron microscopy shows that the PPy coating obtained in galvanostatic and potentiostatic modes starts with small islands at weak applied potentials or current densities. Moreover, energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) reveal a good homogeneity of the film achieved in cyclic voltammetry during 10 cycles. The electrochemical impedance spectroscopy (EIS) results show that the coating decreases the polarization resistance of the aluminum electrode. The open circuit potential (OCP) and dc polarization measurements achieved in HCl and NaCl solutions displayed a large positive displacement of corrosion potential and a reduction of corrosion current in the case of PPy coating electrode in comparison with electrode bare.

  20. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  1. Polarization switching and patterning in self-assembled peptide tubular structures

    Science.gov (United States)

    Bdikin, Igor; Bystrov, Vladimir; Delgadillo, Ivonne; Gracio, José; Kopyl, Svitlana; Wojtas, Maciej; Mishina, Elena; Sigov, Alexander; Kholkin, Andrei L.

    2012-04-01

    Self-assembled peptide nanotubes are unique nanoscale objects that have great potential for a multitude of applications, including biosensors, nanotemplates, tissue engineering, biosurfactants, etc. The discovery of strong piezoactivity and polar properties in aromatic dipeptides [A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, ACS Nano 4, 610 (2010)] opened up a new perspective for their use as biocompatible nanoactuators, nanomotors, and molecular machines. Another, as yet unexplored functional property is the ability to switch polarization and create artificial polarization patterns useful in various electronic and optical applications. In this work, we demonstrate that diphenylalanine peptide nanotubes are indeed electrically switchable if annealed at a temperature of about 150 °C. The new orthorhombic antipolar structure that appears after annealing allows for the existence of a radial polarization component, which is directly probed by piezoresponse force microscopy (PFM) measurements. Observation of the relatively stable polarization patterns and hysteresis loops via PFM testifies to the local reorientation of molecular dipoles in the radial direction. The experimental results are complemented with rigorous molecular calculations and create a solid background of electric-field induced deformation of aromatic rings and corresponding polarization switching in this emergent material.

  2. Electron-Exchange Reactions of Aromatic Molecules

    International Nuclear Information System (INIS)

    A large body of information is available on the rates and mechanisms of inorganic electron-exchange processes. In contrast, purely organic systems have received only minor attention. The homogeneous electron-exchange rates (kexc) and the heterogeneous rate constants for the electrode reaction (kel) have been measured only for a few hydrocarbons. We have measured kexc for a variety of aromatic systems including hydrocarbons, quinones and nitro compounds. These measurements have been carried out via electron paramagnetic resonance (EPR) line broadening measurements on mixtures of radical ions and their parent compounds. We have been able to measure kexc with a precision that allows detection of small differences presumably due to molecular structure and environment. Hydrocarbon systems like anthracene/anthracene anion are very rapid with kexc values of ca. 108-109 litres mole-1 sec-1. Some substituted aromatics like quinones and nitriles are also quite rapid. However, when a strong electron acceptor function is present like a nitro group in nitrobenzene, the value of kexc decreases by a factor of 10. It is possible to correlate changes in kexc in the nitrobenzene series with the unpaired electron density in terms of the 14N coupling constants of the EPR spectra. Further, the nitro aromatic series show very large variations in kexc with the solvent system. These changes can be correlated with recent studies of the solvation effect on hyperfine coupling constants. Marcus has reviewed recently chemical and electrochemical electron-transfer theory and suggested correlations between kexc and kel. We have measured kel especially for the nitrobenzene system under conditions which are as nearly identical experimentally to the EPR studies as possible. The electrochemical investigations were carried out by a steady-state d.c. method to eliminate some of the uncertainties inherent in electrochemical relaxation techniques. Rotated disc electrodes at low temperatures were used

  3. Aqueous Corrosion Characteristics of Nickel Aluminides

    International Nuclear Information System (INIS)

    The aqueous corrosion characteristics of three nickel aluminides were studied by using (a) immersion corrosion test and (b) cyclic anodic polarization measurements. The immersion tests were conducted in 15 different solutions at 25 .deg. C and 95 .deg. C. The nickel aluminides were found to have good corrosion resistance in inorganic acids, organic acids and basic solutions 25 .deg. C except at a higher concentration of hydrochloric acid in ferric chloride solution at the temperature. All three nickel aluminides were suitably resistant to corrosion in the organic acids (oxalic acid, acetic acid), sodium chloride solution, and bases (sodium hydoxide, ammonium hydroxide) at 95 .deg. C. The cyclic anodic polarization curves were developed in N2-deaerated solution at 25 .deg. C and 95 .deg. C. In addition, open-circuit corrosion potentials were determined for the solutions in the aerated condition at 25 .deg. C to compare with the anodic curves. At 25 .deg. C, although all materials exhibited active-passive behavior in all solutions except the hydrofluoric acid, at Ecorr(aerated), passive corrosion was only indicated for the acetic acid, sodium hydroxide, and sodium chloride solutions. Nevertheless, in all cases, the predicted dissolution rates were consistent with immersion test results. Hysteresis loops indicating susceptibility to localized corrosion were observed in 0.6M sodium chloride(pH=7) solution. At 95 .deg. C, active-passive behavior was demonstrated in the acetic acid, sodium chloride, and to a limited extent in the nitric acid: but only active behavior was shown in the sulfuric and hydrofluoric acids. From the above results, it was noted that anodic dissolution of nickel aluminides significantly increased with increasing temperature and that the Cr-containing compositions had better corrosion resistance in several solutions than the Cr-free composition. Prior manufacturing procedures, i.e., casting and powder metallurgy processes did not appear to

  4. Solvent-free functionalization of fullerene C60 and pristine multi-walled carbon nanotubes with aromatic amines

    International Nuclear Information System (INIS)

    Highlights: • Pristine multi-walled carbon nanotubes were functionalized with aromatic amines. • The amines add onto nanotube defects, likewise they add onto fullerene C60. • The addition takes place at elevated temperature and without organic solvents. • Functionalized nanotubes were characterized by a number of instrumental techniques. - Abstract: We employed a direct one-step solvent-free covalent functionalization of solid fullerene C60 and pristine multi-walled carbon nanotubes (MWCNTs) with aromatic amines 1-aminopyrene (AP), 2-aminofluorene (AF) and 1,5-diaminonaphthalene (DAN). The reactions were carried out under moderate vacuum, in a wide temperature range of 180–250 °C, during relatively short time of about 2 h. To confirm successful amine attachment, a large number of analytical techniques were used (depending on the nanomaterial functionalized) such as Fourier transform infrared, Raman, X-ray photoelectron, 13C cross-polarization magic angle spinning NMR spectroscopy, thermogravimetric analysis, laser-desorption ionization time-of-flight mass spectrometry, temperature-programmed desorption with mass spectrometric detection, as well as scanning and transmission electron microscopy. The nucleophilic addition of the aromatic amines to C60 molecule was studied theoretically by using density functional theory (PBE GGA functional with Grimme dispersion correction in conjunction with the DNP basis set). In the case of crystalline C60, the solvent-free technique has a limited applicability due to poor diffusion of vaporous aromatic amines into the bulk. Nevertheless, the approach proposed allows for a facile preparation of aromatic amine-functionalized pristine MWCNTs without contamination with other chemical reagents, detergents and solvents, which is especially important for a vast variety of nanotube applications spanning from nanoelectronics to nanomedicine

  5. Solvent-free functionalization of fullerene C{sub 60} and pristine multi-walled carbon nanotubes with aromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Calera, Itzel J. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico); Meza-Laguna, Victor [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Gromovoy, Taras Yu. [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Chávez-Uribe, Ma. Isabel [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico)

    2015-02-15

    Highlights: • Pristine multi-walled carbon nanotubes were functionalized with aromatic amines. • The amines add onto nanotube defects, likewise they add onto fullerene C{sub 60}. • The addition takes place at elevated temperature and without organic solvents. • Functionalized nanotubes were characterized by a number of instrumental techniques. - Abstract: We employed a direct one-step solvent-free covalent functionalization of solid fullerene C{sub 60} and pristine multi-walled carbon nanotubes (MWCNTs) with aromatic amines 1-aminopyrene (AP), 2-aminofluorene (AF) and 1,5-diaminonaphthalene (DAN). The reactions were carried out under moderate vacuum, in a wide temperature range of 180–250 °C, during relatively short time of about 2 h. To confirm successful amine attachment, a large number of analytical techniques were used (depending on the nanomaterial functionalized) such as Fourier transform infrared, Raman, X-ray photoelectron, {sup 13}C cross-polarization magic angle spinning NMR spectroscopy, thermogravimetric analysis, laser-desorption ionization time-of-flight mass spectrometry, temperature-programmed desorption with mass spectrometric detection, as well as scanning and transmission electron microscopy. The nucleophilic addition of the aromatic amines to C{sub 60} molecule was studied theoretically by using density functional theory (PBE GGA functional with Grimme dispersion correction in conjunction with the DNP basis set). In the case of crystalline C{sub 60}, the solvent-free technique has a limited applicability due to poor diffusion of vaporous aromatic amines into the bulk. Nevertheless, the approach proposed allows for a facile preparation of aromatic amine-functionalized pristine MWCNTs without contamination with other chemical reagents, detergents and solvents, which is especially important for a vast variety of nanotube applications spanning from nanoelectronics to nanomedicine.

  6. USE OF RESPIRATORY-CARDIOVASCULAR RESPONSES OF RAINBOW TROUT (SALMO GAIRDNERI) IN IDENTIFYING ACUTE TOXICITY SYNDROMES IN FISH: PART 3. POLAR NARCOTICS

    Science.gov (United States)

    The physiological responses of rainbow trout to acutely lethal aqueous concentrations of the suspected polar narcotics phenol, 2,4,-dimethylphenol, aniline, 2-chloroaniline and 4-chloroaniline were examined. Visible signs of intoxication included tremors that progressed to whole-...

  7. Fabrication of semi-aromatic polyamide/spherical mesoporous silica nanocomposite reverse osmosis membrane with superior permeability

    Science.gov (United States)

    Li, Qiang; Yu, Hui; Wu, Feiyang; Song, Jie; Pan, Xianhui; Zhang, Meng

    2016-02-01

    Semi-aromatic polyamide (SAP)/spherical mesoporous silica nanocomposite reverse osmosis (RO) membrane was successfully fabricated using m-phenylene diamine aqueous solution and cyclohexane-1,3,5-tricarbonyl chloride/mesoporous-silica-sphere (MSS) organic solution as main raw materials. The experimental suggests that the microstructures and surface features are significantly different from those of the contrast samples (the full- and semi-aromatic polyamide membranes), including the surface morphology, polymer framework structure, surface charge density, hydrophilicity, and the thickness of barrier layer. It was observed that many MSSs with ca. 1.5 nm of pore size are evenly embedded on the surface of the fabricated SAP/MSS RO membrane. Furthermore, the separation performance testing results indicate that the permeabilities range from 62.53 to 72.73 L/m2 h with the increase of the introduced MSSs from 0.02 to 0.08 w/v % under 1.5 MPa operating pressure and 2000 mg/L NaCl solution, which is obviously better than the contrast samples. Simultaneously, their salt rejections can be still maintained at a comparable level (94.78-91.46%). The excellent separation performance of the nanocomposite RO membrane is closely related to the higher-freedom-degree semi-aromatic framework, the incorporation of MSSs, the improved surface hydrophilicity, the thinner barrier layer, and the enhanced surface negative charge density.

  8. Effect of heating rate and plant species on the size and uniformity of silver nanoparticles synthesized using aromatic plant extracts

    Science.gov (United States)

    Hernández-Pinero, Jorge Luis; Terrón-Rebolledo, Manuel; Foroughbakhch, Rahim; Moreno-Limón, Sergio; Melendrez, M. F.; Solís-Pomar, Francisco; Pérez-Tijerina, Eduardo

    2016-05-01

    Mixing aqueous silver solutions with aqueous leaf aromatic plant extracts from basil, mint, marjoram and peppermint resulted in the synthesis of quasi-spherical silver nanoparticles in a range of size between 2 and 80 nm in diameter as analyzed by analytical high-resolution electron microscopy. The average size could be controlled by applying heat to the initial reaction system at different rates of heating, and by the specific botanical species employed for the reaction. Increasing the rate of heating resulted in a statistically significant decrease in the size of the nanoparticles produced, regardless of the species employed. This fact was more evident in the case of marjoram, which decreased the average diameter from 27 nm at a slow rate of heating to 8 nm at a high rate of heating. With regard to the species, minimum sizes of mint yielded an average size between 10 and 25 nm. The results indicate that aromatic plant extracts can be used to achieve the controlled synthesis of metal nanoparticles.

  9. Hybrid bioreactor (HBR) of hollow fiber microfilter membrane and cross-linked laccase aggregates eliminate aromatic pharmaceuticals in wastewaters.

    Science.gov (United States)

    Ba, Sidy; Jones, J Peter; Cabana, Hubert

    2014-09-15

    Widespread detection of numerous micropollutants including aromatic pharmaceuticals in effluents of wastewater treatment plants has prompted much research aimed at efficiently eliminating these contaminants of environmental concerns. In the present work, a novel hybrid bioreactor (HBR) of cross-linked enzymes aggregates of laccase (CLEA-Lac) and polysulfone hollow fiber MF membrane was developed for the elimination of acetaminophen (ACT), mefenamic acid (MFA) and carbamazepine (CBZ) as model aromatic pharmaceuticals. The MF alone showed removals of the three drugs varying approximately from 50 to 90% over the course of 8h in the filtrate of aqueous solution. Synergistic action of the MF and CLEA-Lac during operation achieved eliminations from aqueous solution of around 99%, nearly 100% and up to 85% for ACT, MFA and CBZ, respectively. Under continuous operation, the HBR demonstrated elimination rates of the drugs from filtered wastewater up to 93% after 72h for CBZ and near complete elimination of ACT and MFA was achieved within 24h of treatment. Concomitantly to the drugs eliminations in the wastewater, the CLEA-Lac exhibited 25% residual activity while being continuously recycled with no activity in the filtrate. Meanwhile, the filtrate flowrate showed only minor decline indicating limited fouling of the membrane. PMID:25218263

  10. Amphoteric Aqueous Hafnium Cluster Chemistry.

    Science.gov (United States)

    Goberna-Ferrón, Sara; Park, Deok-Hie; Amador, Jenn M; Keszler, Douglas A; Nyman, May

    2016-05-17

    Selective dissolution of hafnium-peroxo-sulfate films in aqueous tetramethylammonium hydroxide enables extreme UV lithographic patterning of sub-10 nm HfO2 structures. Hafnium speciation under these basic conditions (pH>10), however, is unknown, as studies of hafnium aqueous chemistry have been limited to acid. Here, we report synthesis, crystal growth, and structural characterization of the first polynuclear hydroxo hafnium cluster isolated from base, [TMA]6 [Hf6 (μ-O2 )6 (μ-OH)6 (OH)12 ]⋅38 H2 O. The solution behavior of the cluster, including supramolecular assembly via hydrogen bonding is detailed via small-angle X-ray scattering (SAXS) and electrospray ionization mass spectrometry (ESI-MS). The study opens a new chapter in the aqueous chemistry of hafnium, exemplifying the concept of amphoteric clusters and informing a critical process in single-digit-nm lithography. PMID:27094575

  11. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest;

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer...... is above 100%. Furthermore, the presence of low-pass filters in time-domain-induced polarization instruments affects the early times of the acquired decays (typically up to 100 ms) and has to be modeled in the forward response to avoid significant loss of resolution. The developed forward code has...

  12. Polarization Dependence of Emissivity

    OpenAIRE

    J, David; Strozzi,, A.G.; McDonald, Kirk T.

    2000-01-01

    We deduce the emissivity of radiation from a metallic surface as a function of angle and polarization. This effect has found application in the calibration of detectors for cosmic microwave background radiation.

  13. Polar-bulge galaxies

    CERN Document Server

    Reshetnikov, V P; Mosenkov, A V; Sotnikova, N Ya; Bizyaev, D V

    2015-01-01

    Based on SDSS data, we have selected a sample of nine edge-on spiral galaxies with bulges whose major axes show a high inclination to the disk plane. Such objects are called polar-bulge galaxies. They are similar in their morphology to polar-ring galaxies, but the central objects in them have small size and low luminosity. We have performed a photometric analysis of the galaxies in the g and r bands and determined the main characteristics of their bulges and disks. We show that the disks of such galaxies are typical for the disks of spiral galaxies of late morphological types. The integrated characteristics of their bulges are similar to the parameters of normal bulges. The stellar disks of polar-bulge galaxies often show large-scale warps, which can be explained by their interaction with neighboring galaxies or external accretion from outside.

  14. Dynamic nuclear spin polarization

    International Nuclear Information System (INIS)

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs

  15. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  16. Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals

    KAUST Repository

    Zeng, Zebing

    2015-01-01

    © 2015 The Royal Society of Chemistry. Aromaticity is an important concept to understand the stability and physical properties of π-conjugated molecules. Recent studies on pro-aromatic and anti-aromatic molecules revealed their irresistible tendency to become diradicals in the ground state. Diradical character thus becomes another very important concept and it is fundamentally correlated to the physical (optical, electronic and magnetic) properties and chemical reactivity of most of the organic optoelectronic materials. Molecules with distinctive diradical character show unique properties which are very different from those of traditional closed-shell π-conjugated systems, and thus they have many potential applications in organic electronics, spintronics, non-linear optics and energy storage. This critical review first introduces the fundamental electronic structure of Kekulé diradicals within the concepts of anti-aromaticity and pro-aromaticity in the context of Hückel aromaticity and diradical character. Then recent research studies on various stable/persistent diradicaloids based on pro-aromatic and anti-aromatic compounds are summarized and discussed with regard to their synthetic chemistry, physical properties, structure-property relationships and potential material applications. A summary and personal perspective is given at the end.

  17. Neutron Scattering of Aromatic and Aliphatic Liquids

    Science.gov (United States)

    Falkowska, Marta; Bowron, Daniel T.; Manyar, Haresh G.

    2016-01-01

    Abstract Organic solvents, such as cyclohexane, cyclohexene, methylcyclohexane, benzene and toluene, are widely used as both reagents and solvents in industrial processes. Despite the ubiquity of these liquids, the local structures that govern the chemical properties have not been studied extensively. Herein, we report neutron diffraction measurements on liquid cyclohexane, cyclohexene, methylcyclohexane, benzene and toluene at 298 K to obtain a detailed description of the local structure in these compounds. The radial distribution functions of the centres of the molecules, as well as the partial distribution functions for the double bond for cyclohexene and methyl group for methylcyclohexane and toluene have been calculated. Additionally, probability density functions and angular radial distribution functions were extracted to provide a full description of the local structure within the chosen liquids. Structural motifs are discussed and compared for all liquids, referring specifically to the functional group and aromaticity present in the different liquids. PMID:26990367

  18. Photochemically induced oscillations of aromatic pentazadienes

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, T.; Hahn, C.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Aromatic pentazadienes are used to enhance the laser induced ablation of standard polymers with low absorption in the UV. Therefore the photochemistry of substituted 1,5-diaryl-3-alkyl-1,4-pentazadiene monomers was studied with a pulsed excimer laser as irradiation source. The net photochemical reaction proceeds in an overall one-step pathway A{yields}B. Quantum yields for the laser decomposition were determined to be up to 10%. An oscillating behaviour of the absorption was found during the dark period following the irradiation. The temperature dependence of this dark reaction has been studied. An attempt to model this behaviour in terms of a non-linear coupling between heat released, heat transfer, and reaction kinetics will be described. (author) 4 figs., 4 refs.

  19. Neutron Scattering of Aromatic and Aliphatic Liquids.

    Science.gov (United States)

    Falkowska, Marta; Bowron, Daniel T; Manyar, Haresh G; Hardacre, Christopher; Youngs, Tristan G A

    2016-07-01

    Organic solvents, such as cyclohexane, cyclohexene, methylcyclohexane, benzene and toluene, are widely used as both reagents and solvents in industrial processes. Despite the ubiquity of these liquids, the local structures that govern the chemical properties have not been studied extensively. Herein, we report neutron diffraction measurements on liquid cyclohexane, cyclohexene, methylcyclohexane, benzene and toluene at 298 K to obtain a detailed description of the local structure in these compounds. The radial distribution functions of the centres of the molecules, as well as the partial distribution functions for the double bond for cyclohexene and methyl group for methylcyclohexane and toluene have been calculated. Additionally, probability density functions and angular radial distribution functions were extracted to provide a full description of the local structure within the chosen liquids. Structural motifs are discussed and compared for all liquids, referring specifically to the functional group and aromaticity present in the different liquids. PMID:26990367

  20. Naturally occurring antifungal aromatic esters and amides

    International Nuclear Information System (INIS)

    During the search of antifungal natural products from terrestrial plants, a new long chained aromatic ester named grandiflorate along with spatazoate from Portulaca grandiflora and N-[2-methoxy-2-(4-methoxyphenyl) ethyl]-trans-cinnamide and aegeline from Solanum erianthum of Nigeria were isolated and tested against six fungal species. The known constituents have not been reported so far from mentioned investigated plants. Structures of the isolated compounds were elucidated with the aid of spectroscopic techniques including two dimensional NMR experiments. Among the compounds, the esters found more potent than amides against Candida albicans and Aspergillus flavus. The new compound grandiflorate gave response against all tested fungal species while aegeline was found to give lowest inhibition during this study. (author)

  1. ANTIEMETIC ACTIVITY OF SOME AROMATIC PLANTS

    Directory of Open Access Journals (Sweden)

    Hasan MuhammadMohtasheemul

    2012-02-01

    Full Text Available Current study was conducted to explore the antiemetic activity of ten aromatic medicinal plants viz., Carissa carandus L. (fruits, Chichorium intybus L (flowers, Cinnamum tamala L (leaves, Curcuma caesia Roxb (rhizomes, Lallemantia royleana Benth (leaves, Matricaria chamomila L (flowers, Piper longum L (fruits, Piper methysticum G. Forst (fruits, Piper nigrum Linn. (fruits and Syzygium aromaticum (Linn. Merr. & Perry (flowering buds was studied using chick emetic model. The ethanol extracts of these plants were administered at 150 mg/kg body weight orally. Domperidone was given at 100 mg/kg as a reference drug. All the extracts decrease in retches induced by copper sulphate pentahydrate given orally at 50 mg/kg body weight and showed comparable antiemetic activity with domperidone. Compound targeted antiemetic activity is further suggested.

  2. Polarized protons and RHIC

    International Nuclear Information System (INIS)

    RHIC, the heavy ion collider being built at Brookhaven, offers an exciting opportunity to collide highly polarized protons at high energy and luminosity. This new facility would combine the existing AGS polarized proton capability with the new Booster/Accumulator and spin rotators to achieve collisions between intense beams of polarized protons at a collision energy of 500 GeV. At this energy and the expected luminosity of 2 x 1032 cm2/second physics probes will include high PT jets, direct photons, Drell-Yan, W±, and heavy quarks. The accessible physics includes study of the spin content of the proton, particularly gluon and antiquark polarization, study of large PQCD-predicted asymmetries for parton-parton subprocesses, and parity violation studies and searches. The proton spin direction at a RHIC crossing can be longitudinal or transverse and can alternate bunch-to-bunch giving exquisite control of systematic errors. At RHIC double spin experiments can be done with pure beams and the energy and luminosity open a new domain for probing the physics of spin. An international collaboration is forming which proposes to exploit the unique physics available from a polarized RHIC. Important steps, leading to a polarized RHIC, have been taken. The AGS has already accelerated polarized protons. A new Booster/Accumulator has been commissioned. A beautiful series of machine experiments at Indian University have verified that spin rotators indeed remove spin resonance behavior, which is the key to achieving polarized proton acceleration to high energy. E880, an accelerator experiment which will build, install, and test a Siberian Snake in the AGS, was approved by the Brookhaven PAC in August 1991. The snake will be installed in the AGS in the summer of 1993. RHIC construction has started, with heavy ion experiments to begin in 1997

  3. Political Competition and Polarization

    DEFF Research Database (Denmark)

    Schultz, Christian

    This paper considers political competition and the consequences of political polarization when parties are better informed about how the economy functions than voters are. Specifically, parties know the cost producing a public good, voters do not. An incumbent's choice of policy acts like a signal...... for costs before an upcoming election. It is shown that the more polarized the political parties the more distorted the incumbent's policy choice....

  4. No More Polarization, Please!

    OpenAIRE

    Reinholt, Mia

    2006-01-01

    The organizational science literature on motivation has for long been polarized into two main positions; the organizational economic position focusing on extrinsic motivation and the organizational behavior position emphasizing intrinsic motivation. With the rise of the knowledge economy and the increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on mot...

  5. A green, inexpensive and efficient organocatalyzed procedure for aqueous aldol condensations

    Energy Technology Data Exchange (ETDEWEB)

    Abaee, M. Saeed; Mojtahedi, Mohammad M.; Forghani, Soudabeh; Sharifi, Roholah [Chemistry and Chemical Engineering Research Center of Iran, Tehran (Iran, Islamic Republic of). Faculty of Organic Chemistry and Natural Products; Ghandchi, Nafiseh M. [Islamic Azad University, Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Forouzani, Mehdi; Chaharnazm, Behnam [Payam Noor University, Sari (Iran, Islamic Republic of)

    2009-07-01

    A facile and general procedure is presented for diethylamine-catalyzed double crossed aldol condensation of cyclic ketones with various aromatic aldehydes under aqueous conditions. Excellent yields of 3,5-bisarylmethylidenes of homocyclic and heterocyclic ketones are achieved in a one-pot procedure. Furthermore, the methodology is efficiently applied to the synthesis of chalcones from their corresponding methyl ketones. In the majority of the cases studied, products precipitate from the reaction mixtures and the medium is recycled in subsequent several reactions without significant loss of activity. (author)

  6. Radiation induced modification of tryptophan and tyrosine residues in flavocytochrome b2 in dilute aqueous solution

    International Nuclear Information System (INIS)

    Steady state gamma irradiation of an aqueous solution of flavocytochrome b2 under different conditions led to modification of tryptophan and tyrosine residues. These aromatic amino acid residues were more susceptible to the attack by OH radicals than H atoms. Unchanged quantum yield values for tryptophan and tyrosine residues and unchanged tryptophan excited state lifetime in the irradiated enzyme suggests that irradiation results in breakage of some non-covalent bonds disrupting the peptide framework partially. It is justified by the circular dichroic studies for the irradiated enzyme which shows a reduced helicity but no evolution towards any other structures.

  7. Environmental Remediation: Removal of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nkansah, Marian Asantewah

    2012-11-15

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous persistent semi-volatile organic compounds. They are contaminants that are resistant to degradation and can remain in the environment for long periods due to their high degree of conjugation, and aromaticity. PAHs are present in industrial effluents as products of incomplete combustion processes of organic compounds. Petroleum, coal and shale oil contain extremely complex mixtures of these PAHs, and their transport and refining process can also result in the release of PAHs. It is therefore prudent that such effluents are treated before discharge into the environment. In this project, different approaches to the treatment of PAHs have been investigated. Hydrous pyrolysis has been explored as a potential technique for degrading PAHs in water using anthracene as a model compound. The experiments were performed under different conditions of temperature, substrate, redox systems and durations. The conditions include oxidising systems comprising pure water, hydrogen peroxide and Nafion-SiO2 solid catalyst in water; and reducing systems of formic acid and formic acid / Nafion-SiO2 / Pd-C catalysts to assess a range of reactivities. Products observed in GCMS analysis of the extract from the water phase include anthrone, anthraquinone, xanthone and multiple hydro-anthracene derivatives (Paper I). In addition a modified version of the Nafion-SiO2 solid catalyst in water oxidising system was tested; and reducing systems of formic acid and formic acid / Nafion-SiO2 / Pd-C catalysts were adopted for the conversion of a mixture of anthracene, fluorene and fluoranthene. The rate of conversion in the mixture was high as compared to that of only anthracene (Paper II). Also the use of LECA (Lightweight expanded clay aggregates) as an adsorbent (Paper III) for PAHs (phenanthrene, fluoranthene and pyrene) removal from water has been.(Author)

  8. Some aspects of synergistic extraction of actinides and lanthanides from mixed aqueous-organic media

    International Nuclear Information System (INIS)

    Various aspects of the synergistic extraction and separation of actinides and lanthanides from mixed aqueous-organic solutions (polar media) have been reviewed. Notable recent developments as well as its current status in solvent extraction systems where the aqueous acidic phase contains an organic solvent which is completely miscible with water, are presented briefly. In general, extraction increases in the presence of an organic component. The less polar the additive, the higher is the tendency to form neutral metal complexes which ultimately brings about an increase in the extraction. In a polar media, synergism has mostly been observed, though antagonism is not uncommon. An attempt has been made to classify the factors that play an important role in polar phase extractions. Also, their influence particularly on the extractability of actinides and lanthanides is discussed. The discussion is limited to the factors affecting the extraction equilibria, effect of dielectric constant of the polar medium, solvation of the extracting agent and to the composition and stability of the metal complex in the organic phase. Hydroxyl (OHsup(-)) bearing organic additives, e.g. alcohols, and solvents not containing the hydroxyl group such as acetone, dimethylsulphoxide, tetrahydrofuran, amides and acetonitrile etc. are the two major classes of organic additives considered in these studies. Generally, synergistic effect in extraction of the ion-association (TBP, TOPO, sulphoxides etc.) or anion exchange (amines etc.) type is relatively more pronounced compared to other extractions. A tabular summary concerning extraction of actinides and lanthanides from polar media is appended for ready reference. (author)

  9. Rectilinear lattices of polarization vortices with various spatial polarization distributions.

    Science.gov (United States)

    Fu, Shiyao; Zhang, Shikun; Wang, Tonglu; Gao, Chunqing

    2016-08-01

    In this paper, we propose a type of rectilinear lattices of polarization vortices, each spot in which has mutually independent, and controllable spatial polarization distributions. The lattices are generated by two holograms under special design. In the experiment, the holograms are encoded on two spatial light modulators, and the results fit very well with theory. Our scheme makes it possible to generate multiple polarization vortices with various polarization distributions simultaneously, for instance, radially and azimuthally polarized beams, and can be used in the domains as polarization-based data transmission system, optical manufacture, polarization detection and so on. PMID:27505812

  10. Biological applications of confocal fluorescence polarization microscopy

    Science.gov (United States)

    Bigelow, Chad E.

    Fluorescence polarization microscopy is a powerful modality capable of sensing changes in the physical properties and local environment of fluorophores. In this thesis we present new applications for the technique in cancer diagnosis and treatment and explore the limits of the modality in scattering media. We describe modifications to our custom-built confocal fluorescence microscope that enable dual-color imaging, optical fiber-based confocal spectroscopy and fluorescence polarization imaging. Experiments are presented that indicate the performance of the instrument for all three modalities. The limits of confocal fluorescence polarization imaging in scattering media are explored and the microscope parameters necessary for accurate polarization images in this regime are determined. A Monte Carlo routine is developed to model the effect of scattering on images. Included in it are routines to track the polarization state of light using the Mueller-Stokes formalism and a model for fluorescence generation that includes sampling the excitation light polarization ellipse, Brownian motion of excited-state fluorophores in solution, and dipole fluorophore emission. Results from this model are compared to experiments performed on a fluorophore-embedded polymer rod in a turbid medium consisting of polystyrene microspheres in aqueous suspension. We demonstrate the utility of the fluorescence polarization imaging technique for removal of contaminating autofluorescence and for imaging photodynamic therapy drugs in cell monolayers. Images of cells expressing green fluorescent protein are extracted from contaminating fluorescein emission. The distribution of meta-tetrahydroxypheny1chlorin in an EMT6 cell monolayer is also presented. A new technique for imaging enzyme activity is presented that is based on observing changes in the anisotropy of fluorescently-labeled substrates. Proof-of-principle studies are performed in a model system consisting of fluorescently labeled bovine

  11. Partitioning of aromatic and oxygenated constituents into water from regular and ethanol-blended gasolines

    International Nuclear Information System (INIS)

    Variability in gasoline-water partitioning of major aromatic constituents (benzene, toluene, ethylbenzene, and xylenes (BTEX)) and methyl tert-butyl ether (MTBE) were examined for regular and ethanol-blended gasolines. By use of a two-phase liquid-liquid equilibrium model, the distribution of nonpolar solutes between fuel phase and water was related to principles of equilibrium. The models derived using Raoult's law convention for activity coefficients and liquid solubility is presented. The observed inverse log-log linear dependence of Kfw values on aqueous solubility, could be well predicted by assuming gasoline to be an ideal solvent mixture. Oxygenated additives (i.e., ethanol and MTBE), in the low percent range (below 5%), were shown to have minimal or negligible cosolvent effects on hydrocarbon partitioning. In the case of high fuel-to-water ratio (e.g., 1:1) or near contaminant source zone, the cosolvent effect of oxygenated gasoline with high content of ethanol (e.g., E85) will be environmentally significant. - The validity of Raoult's law and log-linear cosolvency model to estimate the aqueous concentration of gasoline constitutes is verified

  12. Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction

    International Nuclear Information System (INIS)

    In this study, an aqueous-based hydroxypropyl-β-cyclodextrin (HPCD) extraction technique was assessed for its capacity to determine the microbially degradable fraction of mono- and polycyclic aromatic hydrocarbons in four dissimilar soils. A linear relationship (slope = 0.90; R 2 = 0.89), approaching 1:1 between predicted and observed phenanthrene mineralization, was demonstrated for the cyclodextrin extraction; however, the water only extraction underestimated the microbially available fraction by a factor of three (slope = 3.35; R 2 = 0.64). With respect to determining the mineralizable fraction of p-cresol in soils, the cyclodextrin extraction (slope = 0.94; R 2 = 0.84) was more appropriate than the water extraction (slope = 1.50; R 2 = 0.36). Collectively, these results suggested that the cyclodextrin extraction technique was suitable for the prediction of the mineralizable fraction of representative PAHs and phenols present in dissimilar soils following increasing soil-contaminant contact times. The assessment of the microbial availability of contaminants in soils is important for a more representative evaluation of soil contamination. - An aqueous-based HPCD extraction technique was more appropriate than the water extraction in prediction of the mineralizable fraction of phenanthrene and p-cresol present in a range of dissimilar soils

  13. Atmospheric pressure gas chromatography-time-of-flight-mass spectrometry (APGC-ToF-MS) for the determination of regulated and emerging contaminants in aqueous samples after stir bar sorptive extraction (SBSE)

    OpenAIRE

    Pintado-Herrera, Marina G.; González-Mazo, Eduardo; Lara-Martín, Pablo A.

    2014-01-01

    This work presents the development, optimization and validation of a multi-residue method for the simultaneous determination of 102 contaminants, including fragrances, UV filters, repellents, endocrine disruptors, biocides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and several types of pesticides in aqueous matrices. Water samples were processed using stir bar sorptive extraction (SBSE) after the optimization of several parameters: agitation time, ionic streng...

  14. SYNTHESIS AND CHARACTERIZATION OF MAIN CHAIN AROMATIC LIQUID CRYSTAL COPOLYESTERS WITH X-SHAPED AND ROD-SHAPED MESOGENIC UNITS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A series of main chain liquid crystal aromatic copolyesters with X-shaped and rod-shaped mesogenic units were synthesized via solution condensation polymerizations of 4, 4'-(α,ω-octanedioyloxy)-dibenzoyl dichlorides with 2,5-bis(p-octanoxy benzoyloxy)-hydroquinone and diphenol. All of the copolyesters showed thermotropic liquid crystalline behaviors through observations using DSC, polarized microscopy and X-ray diffraction. The melting point (Tm) and the isotropization temperature (Ti) change regularly with varying the content of diphenol unit in the copolymers.

  15. Implementation of polarization processes in a charge transport model applied on poly(ethylene naphthalate) films

    Science.gov (United States)

    Hoang, M.-Q.; Le Roy, S.; Boudou, L.; Teyssedre, G.

    2016-06-01

    One of the difficulties in unravelling transport processes in electrically insulating materials is the fact that the response, notably charging current transients, can have mixed contributions from orientation polarization and from space charge processes. This work aims at identifying and characterizing the polarization processes in a polar polymer in the time and frequency-domains and to implement the contribution of the polarization into a charge transport model. To do so, Alternate Polarization Current (APC) and Dielectric Spectroscopy measurements have been performed on poly(ethylene naphthalene 2,6-dicarboxylate) (PEN), an aromatic polar polymer, providing information on polarization mechanisms in the time- and frequency-domain, respectively. In the frequency-domain, PEN exhibits 3 relaxation processes termed β, β* (sub-glass transitions), and α relaxations (glass transition) in increasing order of temperature. Conduction was also detected at high temperatures. Dielectric responses were treated using a simplified version of the Havriliak-Negami model (Cole-Cole (CC) model), using 3 parameters per relaxation process, these parameters being temperature dependent. The time dependent polarization obtained from the CC model is then added to a charge transport model. Simulated currents issued from the transport model implemented with the polarization are compared with the measured APCs, showing a good consistency between experiments and simulations in a situation where the response comes essentially from dipolar processes.

  16. The future role of aromatics in refining and petrochemistry. Proceedings of the DGMK-Conference (Authors' manuscripts)

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G.; Rupp, M.; Weitkamp, J. [eds.

    1999-07-01

    Topic of this conference has been the furure role of aromatics in the refinign industry. The articles deal with the following topics: Refining; legal aspects in the aromatics market; transportation fuels; dearomatization; catalytic reforming and aromatics; separation processes for aromatics; oxidation and ammoxidation of aromatics; electrophilic substitution of aromatics; hydrogenation of benzene; zeolites. (orig./sr)

  17. Release behavior and formation mechanism of polycyclic aromatic hydrocarbons during coal pyrolysis.

    Science.gov (United States)

    Gao, Meiqi; Wang, Yulong; Dong, Jie; Li, Fan; Xie, Kechang

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants. They have attracted considerable attention due to their severe potential carcinogenic, mutagenic and genotoxic effects on human health. In this study, five different rank coals from China were pyrolyzed using pyro-probe CDS 5250 and the release behavior of 16 PAHs under different pyrolysis conditions were studied by Gas Chromatography-Mass Spectrometer (GC-MS). The structural characteristics of the five coals were determined by Cross-Polarization/Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS (13)C NMR) spectroscopy, and then the factors influencing the formation of PAHs during coal pyrolysis were discussed together with the coal structural data. It was shown that the amount of PAHs generated during coal pyrolysis was largely related to coal rank and followed the order of medium metamorphic coal > low metamorphic coal > high metamorphic coal. The amount of total PAHs varied as the temperature was increased from 400 °C to 1200 °C, which showed a trend of first increasing and then decreasing, with the maximum value at 800 °C. Moreover, the species of PAHs released varied with pyrolysis temperatures. When the temperature was lower than 800 °C, the small ring PAHs were the most abundant, while the proportion of heavy rings increased at higher temperature. The results indicate that the formation of PAHs during coal pyrolysis depends on the structure of the coal. The species and amounts of PAHs generated during coal pyrolysis are closely related to the contents of protonated aromatic carbons and bridging ring junction aromatic carbons present in the coal structure. PMID:27239965

  18. Aromatic hydrocarbon concentrations in sediments of Placentia Bay, Newfoundland

    International Nuclear Information System (INIS)

    A study was conducted to examine the potential for contamination of recent sediments with polycyclic aromatic hydrocarbons due to tanker and refinery activity in Placentia Bay, Newfoundland, an area without large local anthropogenic sources of aromatics. Sediment samples were taken from the vicinity of the Come By Chance refinery, Woody Island, Wild Cove, and Port Royal Arm, all in the north end of the bay. The samples were extracted by two methods, dichloromethane extraction of dried sediment for determination of total aromatic hydrocarbon content and hexane extraction of wet sediment for estimation of the bioavailability of hydrocarbons and determination of more volatile compounds. Class analysis of aromatic hydrocarbons was conducted on a NH2 column with detection at 255 nm. Total concentrations of di-tricyclic aromatics were highest at the Woody Island site (0.6 μg/g). The sediments from the Come By Chance site, Wild Cove, and Port Royal Arm sediments contained 0.3, 0.1, and 0.2 μg/g respectively. The hexane extracts from Come By Chance were lowest in di-tricyclic aromatics (0.007 μg/g), with the other sites being equal in concentration (0.01 μg/g). It is evident from the study that aromatic hydrocarbon concentrations in Placentia Bay are elevated in some parts of the bay in the absence of local combustion sources, and that the most likely source is petroleum. 12 refs., 5 figs., 2 tabs

  19. How non-conventional feedstocks will affect aromatics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, E. [Clariant Produkte (Deutschland) GmbH, Muenchen (Germany)

    2013-11-01

    The abundance of non-conventional feedstocks such as coal and shale gas has begun to affect the availability of traditional base chemicals such as propylene and BTX aromatics. Although this trend is primarily fueled by the fast growing shale gas economy in the US and the abundance of coal in China, it will cause the global supply and demand situation to equilibrate across the regions. Lower demand for gasoline and consequently less aromatics rich reformate from refineries will further tighten the aromatics markets that are expected to grow at healthy rates, however. Refiners can benefit from this trend by abandoning their traditional fuel-oriented business model and becoming producers of petrochemical intermediates, with special focus on paraxylene (PX). Cheap gas from coal (via gasification) or shale reserves is an advantaged feedstock that offers a great platform to make aromatics in a cost-competitive manner, especially in regions where naphtha is in short supply. Gas condensates (LPG and naphtha) are good feedstocks for paraffin aromatization, and methanol from coal or (shale) gas can be directly converted to BTX aromatics (MTA) or alkylated with benzene or toluene to make paraxylene. Most of today's technologies for the production and upgrading of BTX aromatics and their derivatives make use of the unique properties of zeolites. (orig.)

  20. Aqueous coordination complexes of neptunium

    International Nuclear Information System (INIS)

    Thecomplex formation constants, obtained by different methods, for the complexing of neptunium, in different oxidation states, in aqueous solutions, with several organic and inorganic ligands, have been critically reviewed. The values for the thermodynamic parameters associated with the complex formation, wherever available, are also presented. (author)

  1. Aqueous systems and geothermal energy

    International Nuclear Information System (INIS)

    Significant unpublished results reported include: osmotic coefficients of KCl solutions vs. molality at 109 to 2010C; cadmium ion diffusivities in CaCl2 hydrous melts; a x-ray diffraction study of the uranyl complex in water; solubility of amorphous silica in aqueous NaNO3 solutions at 100 to 3000C; and corrosion of carbon steel by geothermal brine

  2. Chemical reactions at aqueous interfaces

    Science.gov (United States)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1

  3. Temperature inversion of the thermal polarization of water

    Science.gov (United States)

    Armstrong, Jeff; Bresme, Fernando

    2015-12-01

    Temperature gradients polarize water, a nonequilibrium effect that may result in significant electrostatic fields for strong thermal gradients. Using nonequilibrium molecular dynamics simulations, we show that the thermal polarization features a significant dependence with temperature that ultimately leads to an inversion phenomenon, whereby the polarization field reverses its sign at a specific temperature. Temperature inversion effects have been reported before in the Soret coefficient of aqueous solutions, where the solution changes from thermophobic to thermophilic at specific temperatures. We show that a similar inversion behavior is observed in pure water. Microscopically, the inversion is the result of a balance of dipolar and quadrupolar contributions and the strong temperature dependence of the quadrupolar contribution, which is determined by the thermal expansion of the liquid.

  4. Theoretical study of aromaticity in inorganic tetramer clusters

    Indian Academy of Sciences (India)

    Sandeep Nigam; Chiranjib Majumder; S K Kulshreshtha

    2006-11-01

    Ground state geometry and electronic structure of M$^{2-}_{4}$ cluster (M = B, Al, Ga) have been investigated to evaluate their aromatic properties. The calculations are performed by employing the Density Functional Theory (DFT) method. It is found that all these three clusters adopt square planar configuration. Results reveal that square planar M$^{2-}_{4}$ dianion exhibits characteristics of multifold aromaticity with two delocalised -electrons. In spite of the unstable nature of these dianionic clusters in the gas phase, their interaction with the sodium atoms forms very stable dipyramidal M4Na2 complexes while maintaining their square planar structure and aromaticity.

  5. Polarization: A Must for Fusion

    Directory of Open Access Journals (Sweden)

    Guidal M.

    2012-10-01

    Full Text Available Recent realistic simulations confirm that the polarization of the fuel would improve significantly the DT fusion efficiency. We have proposed an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the neutrons and the change in the corresponding total cross section are related to the polarization persistence. The experimental polarization of DT fuel is a technological challenge. Possible paths for Magnetic Confinement Fusion (MCF and for Inertial Confinement Fusion (ICF are reviewed. For MCF, polarized gas can be used. For ICF, cryogenic targets are required. We consider both, the polarization of gas and the polarization of solid DT, emphasizing the Dynamic Nuclear polarization (DNP of HD and DT molecules.

  6. Highly selective hydrogenation of halonitroaromatics to aromatic haloamines by ligand modified Ni-based catalysts

    Institute of Scientific and Technical Information of China (English)

    Chun Shan Lu; Jing Hui Lv; Lei Ma; Qun Feng Zhang; Feng Feng; Xiao Nian Li

    2012-01-01

    Ligand modification of Ni-based catalysts by coordination of dicyandiamide to Ni metal leads to enhanced selectivity for the selective hydrogenation of halonitroaromatics.The selectivity of above 99.9% to aromatic haloamines can be achieved at the conversion of 100%.The results of H2-TPD and FT-IR experiments show that Ni-H+ species possessing the properties of Lewis acid site on the surface of Raney Ni could be responsible for the hydrodehalogenation.When Raney Ni was treated by dicyandiamide,Ni-H+ species interacted with N atom from the dicyandiamide.This interaction was stable even at reaction temperature,which reduced the possibility to form the intermediate state of Ar-Cl …H+Ni-.And then C-Cl bond could not be polarized and activated.The hydrodechlorination process was suppressed effectively.

  7. Synthesis and liquid crystalline properties of hyperbranched aromatic polyesters consisting of azoxybenzene mesogens and polymethylene spacers

    International Nuclear Information System (INIS)

    A new series of hyperbranched aromatic polyesters containing azoxybenzene mesogens and polymethylene spacers were prepared by polymerizing AB2 type monomers that have the isophthaloyl dicarboxylic acid terminal at one end and the p-oxyphenol terminal at the other end. The monomers contain a built-in azoxybenzene mesogen that is linked to the terminal groups through polymethylene spacers. The polyesters prepared were characterized by solution viscosity , differential scanning calorimetry, X-ray diffractometry and polarizing microscopy. All of the polyesters were found to be thermotropic (nematic). Their glass-transition temperatures and mesophase temperature ranges were very sensitive to the length of the two spacers existing in the repeating unit. The degree of branching of one of the polyesters was determined by the NMR spectroscopy and found to be 0.56

  8. Orientation of aromatic residues in amyloid cores: Structural insights into prion fiber diversity

    KAUST Repository

    Reymer, Anna

    2014-11-17

    Structural conversion of one given protein sequence into different amyloid states, resulting in distinct phenotypes, is one of the most intriguing phenomena of protein biology. Despite great efforts the structural origin of prion diversity remains elusive, mainly because amyloids are insoluble yet noncrystalline and therefore not easily amenable to traditional structural-biology methods. We investigate two different phenotypic prion strains, weak and strong, of yeast translation termination factor Sup35 with respect to angular orientation of tyrosines using polarized light spectroscopy. By applying a combination of alignment methods the degree of fiber orientation can be assessed, which allows a relatively accurate determination of the aromatic ring angles. Surprisingly, the strains show identical average orientations of the tyrosines, which are evenly spread through the amyloid core. Small variations between the two strains are related to the local environment of a fraction of tyrosines outside the core, potentially reflecting differences in fibril packing.

  9. Characterizing Fullerene Nanoparticles in Aqueous Suspensions

    Science.gov (United States)

    Studies have indicated that fullerenes can form stable colloidal suspensions in water when introduced to the aqueous phase through solvent exchange, sonication, or extended mixing. The colloidal suspensions created using these techniques have effective aqueous phase concentratio...

  10. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 x 1032/cm2/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined

  11. Phase behaviour of tertiary recovery sulfonates - petroleum fractions - aqueous systems

    Energy Technology Data Exchange (ETDEWEB)

    Ghoniem, S.A.; Darwish, T.A.; Salamah, A.O.

    1988-02-01

    The phase behaviour of tertiary recovery sulfonates having commercial names TRS-10, TRS-16 and TRS-40 with aqueous phase and light petroleum fractions (non polar kerosene and gasoline) was studied at 20, 40 and 60/sup 0/C. The adopted pseudo components of the ternary diagram are hydrocarbon, surfactant and aqueous phase. The aqueous phase was composed of bidistilled water in addition to different proportions of pure alcohols and sodium chloride. The tested alcohols included methanol, ethanol, iso-propanol, n-butanol and n-pentanol. Thus, the best alcohol type and concentration in addition to optimum salinity, which correspond to maximum single phase region, were established for each surfactant at the various tested temperatures. It was shown that higher the affinity of the tested surfactant for hydrocarbon phase, the greater is the solubility of the corresponding optimum co-surfactant in water. The variation of optimum alcohol concentration with temperature, the effect of salt on the single phase region and the effect of hydrocarbon phase on the observed phenomena were discussed and found to agree with the previously established theories.

  12. Physics of polarized targets

    CERN Document Server

    Niinikoski, Tapio

    2014-01-01

    For developing, building and operating solid polarized targets we need to understand several fields of physics that have seen sub stantial advances during the last 50 years. W e shall briefly review a selection of those that are important today. These are: 1) quantum statistical methods to describe saturation and relaxation in magnetic resonance; 2) equal spin temperature model for dy namic nuclear polarization; 3 ) weak saturation during NMR polarization measurement; 4 ) refrigeration using the quantum fluid properties of helium isotopes. These, combined with superconducting magnet technologies, permit today to reach nearly complete pola rization of almost any nuclear spins. Targets can be operated in frozen spin mode in rather low and inhomogeneous field of any orientation, and in DNP mode in beams of high intensity. Beyond such experiments of nuclear and particle physics, applications a re also emerging in macromolecular chemistry and in magnetic resonance imaging. This talk is a tribute to Michel Borghini...

  13. No More Polarization, Please!

    DEFF Research Database (Denmark)

    Hansen, Mia Reinholt

    The organizational science literature on motivation has for long been polarized into two main positions; the organizational economic position focusing on extrinsic motivation and the organizational behavior position emphasizing intrinsic motivation. With the rise of the knowledge economy and the...... increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on motivation, acknowledging the co-existence of intrinsic and extrinsic motivation, the possible interaction...... between the two as well as different types of motivations filling in the gap between the two polar types, is urgently needed in the organizational science literature. By drawing on the research on intrinsic and extrinsic motivation conducted in social psychology and combining this with contributions from...

  14. Polar continuum mechanics

    CERN Document Server

    Hadjesfandiari, Ali R

    2010-01-01

    The existing polar continuum theory contains unresolved indeterminacies in the spherical part of the couple-stress tensor. This severely restricts its applicability in the study of micro and nano-scale solid and fluid mechanics and, perhaps more importantly, in the investigation of fluid turbulence phenomena, which involve a broad range of scales. In this paper, we rely on the energy equation, along with some kinematical considerations, to establish a consistent couple-stress theory for polar continua that resolves all indeterminacies. After presenting the general formulation and obtaining conservation laws, we concentrate exclusively on couple stress theory for polar fluid mechanics. We specialize the theory for linear viscous flow and consider several boundary value problems in couple-stress fluid mechanics. More generally, the resulting theory presented here may provide a basis for fundamental continuum-level studies at the finest scales.

  15. Polarized atomic hydrogen beam

    Energy Technology Data Exchange (ETDEWEB)

    Chan, N.; Crowe, D.M.; Lubell, M.S.; Tang, F.C.; Vasilakis, A.; Mulligan, F.J.; Slevin, J.

    1988-12-01

    We describe the design and operating characteristics of a simple polarized atomic hydrogen beam particularly suitable for applications to crossed beams experiments. In addition to experimental measurements, we present the results of detailed computer models, using Monte-Carlo ray tracing techniques, optical analogs, and phase-space methods, that not only provide us with a confirmation of our measurement, but also allow us to characterize the density, polarization, and atomic fraction of the beam at all points along its path. As a subsidiary result, we also present measurements of the relative and absolute efficiencies of the V/G Supavac mass analyzer for masses 1 and 2.

  16. Polarization versus photon spin

    OpenAIRE

    Luis Aina, Alfredo; Rodil, Alfonso

    2014-01-01

    We examine whether the Stokes parameters of a two-mode electromagnetic field results from the superposition of the spins of the photons it contains. To this end we express any n-photon state as the result of the action on the vacuum of n creation operators generating photons which can have may different polarization states in general. We find that the macroscopic polarization holds as sum of the single-photon Stokes parameters only for the SU(2) orbits of photon-number states. The states that...

  17. Source of polarized electrons

    International Nuclear Information System (INIS)

    This paper reports on a source of polarized electrons based on photoemission of GaAsP-cathodes set up at the Mainz 300 MeV linear accelerator. It was successfully run in a measurement of parity violation in quasielastic electron beryllium scattering at 300 MeV and backwards angles. The source parameters are: Degree of polarization P=0.44, average beam current 1=28 μA, peak current 1p=140 mA, life time of cathode 200 h. A c.w. source for the Mainz race track microtron MAMI is designed using the same basic photoemission process

  18. Microwave Frequency Polarizers

    Science.gov (United States)

    Ha, Vien The; Mirel, Paul; Kogut, Alan J.

    2013-01-01

    This article describes the fabrication and analysis of microwave frequency polarizing grids. The grids are designed to measure polarization from the cosmic microwave background. It is effective in the range of 500 to 1500 micron wavelength. It is cryogenic compatible and highly robust to high load impacts. Each grid is fabricated using an array of different assembly processes which vary in the types of tension mechanisms to the shape and size of the grids. We provide a comprehensive study on the analysis of the grids' wire heights, diameters, and spacing.

  19. Polarization encoded color camera.

    Science.gov (United States)

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  20. Use of aqueous and solvent extraction to assess risk and bioavailability of contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Bordelon, N.; Huebner, H.; Washburn, K.; Donnelly, K.C.

    1995-12-31

    Contaminated media at Superfund sites typically consist of complex mixtures of organic and inorganic chemicals. These mixtures are difficult to characterize, both analytically and toxicologically, especially the complex mixtures of polycyclic aromatic hydrocarbons. The current approach to risk assessment assumes that all contaminants in the soil are available for human exposure. EPA protocol uses solvent extraction to remove chemicals from the soil as a basis for estimating risk to the human population. However, contaminants that can be recovered with a solvent extract may not represent chemicals that are available for exposure. A system using aqueous extraction provides a more realistic picture of what chemicals are bioavailable through leaching and ingestion. A study was conducted with coal tar contaminated soil spiked with benzo(a)pyrene, and trinitrotoluene. Samples were extracted with hexane:acetone and water titrated to pH 2 and pH 7. HPLC analysis demonstrated up to 35% and 29% recovery of contaminants from aqueous extracts with an estimated cancer risk one order of magnitude less than that for solvent extracts. Analysis using the Salmonella/microsome assay showed that solvent extracts were genotoxic with metabolic activation while aqueous extracts showed no genotoxicity. These results suggest that aqueous extraction may be useful in determining what contaminants are available for human exposure, as well as what compounds may pose a risk to human health.

  1. Use of aqueous and solvent extraction to assess risk and bioavailability of contaminated soil

    International Nuclear Information System (INIS)

    Contaminated media at Superfund sites typically consist of complex mixtures of organic and inorganic chemicals. These mixtures are difficult to characterize, both analytically and toxicologically, especially the complex mixtures of polycyclic aromatic hydrocarbons. The current approach to risk assessment assumes that all contaminants in the soil are available for human exposure. EPA protocol uses solvent extraction to remove chemicals from the soil as a basis for estimating risk to the human population. However, contaminants that can be recovered with a solvent extract may not represent chemicals that are available for exposure. A system using aqueous extraction provides a more realistic picture of what chemicals are bioavailable through leaching and ingestion. A study was conducted with coal tar contaminated soil spiked with benzo(a)pyrene, and trinitrotoluene. Samples were extracted with hexane:acetone and water titrated to pH 2 and pH 7. HPLC analysis demonstrated up to 35% and 29% recovery of contaminants from aqueous extracts with an estimated cancer risk one order of magnitude less than that for solvent extracts. Analysis using the Salmonella/microsome assay showed that solvent extracts were genotoxic with metabolic activation while aqueous extracts showed no genotoxicity. These results suggest that aqueous extraction may be useful in determining what contaminants are available for human exposure, as well as what compounds may pose a risk to human health

  2. Synthesis of modified potato starches for aqueous solubilization of benzo[a]pyrene.

    Science.gov (United States)

    Delsarte, Isabelle; Danjou, Pierre-Edouard; Veignie, Etienne; Rafin, Catherine

    2016-06-25

    For soil rehabilitation, the surfactant-enhanced remediation has emerged as a promising technology. For this purpose, starch derivatives were difunctionalized by 1,4-butane sultone (BS) and 2-octen-1-ylsuccinic anhydride (OSA). Eight distinct products were obtained under different synthesis conditions. The chemical structural characteristics were investigated by (1)H NMR spectroscopy. The compounds were evaluated for their apparent aqueous solubility and their ability to increase the solubility of a hydrophobic pollutant such as benzo[a]pyrene (BaP), used as a polycyclic aromatic hydrocarbon model. In comparison with native starch, the best obtained compound increased starch apparent aqueous solubility by a factor of 10 (up to 3.50g/L) and also stimulated 77-fold BaP aqueous solubilization (up to 232.97μg/L) underlining its very high surfactant property. In this study, the right balance between hydrophobic character (octenyl succinate group (OS) grafted) of starch derivatives and starch apparent aqueous solubility (BS grafted) was highlighted. PMID:27083796

  3. Application of aromatization catalyst in synthesis of carbon nanotubes

    Indian Academy of Sciences (India)

    Song Rongjun; Yang Yunpeng; Ji Qing; Li Bin

    2012-02-01

    In a typical chemical vapour deposition (CVD) process for synthesizing carbon nanotubes (CNTs), it was found that the aromatization catalysts could promote effectively the formation of CNT. The essence of this phenomenon was attributed to the fact that the aromatization catalyst can accelerate the dehydrogenation–cyclization and condensation reaction of carbon source, which belongs to a necessary step in the formation of CNTs. In this work, aromatization catalysts, H-beta zeolite, HZSM-5 zeolite and organically modified montmorillonite (OMMT) were chosen to investigate their effects on the formation of multi-walled carbon nanotubes (MWCNTs) via pyrolysis method when polypropylene and 1-hexene as carbon source and Ni2O3 as the charring catalyst. The results demonstrated that the combination of those aromatization catalysts with nickel catalyst can effectively improve the formation of MWCNTs.

  4. Affinity labelling enzymes with esters of aromatic sulfonic acids

    Science.gov (United States)

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  5. Six-Membered Aromatic Polyazides: Synthesis and Application

    Directory of Open Access Journals (Sweden)

    Sergei V. Chapyshev

    2015-10-01

    Full Text Available Aromatic polyazides are widely used as starting materials in organic synthesis and photochemical studies, as well as photoresists in microelectronics and as cross-linking agents in polymer chemistry. Some aromatic polyazides possess high antitumor activity, while many others are of considerable interest as high-energy materials and precursors of high-spin nitrenes and C3N4 carbon nitride nanomaterials. The use of aromatic polyazides in click-reactions may be a new promising direction in the design of various supramolecular systems possessing interesting chemical, physical and biological properties. This review is devoted to the synthesis, properties and applications of six-membered aromatic compounds containing three and more azido groups in the ring.

  6. THE UPTAKE OF AROMATIC AND BRANCHED CHAIN HYDROCARBONS BY YEAST

    Science.gov (United States)

    Studies of the hydrocarbon utilizing yeasts, Candida maltosa and C. lipolytica, have shown that both were capable of reducing recoverable amounts of branched chain and aromatic hydrocarbons in a mixture of naphthalene, tetradecane, hexadecane, pristane (tetra-methylpentadecane). ...

  7. Aromatic Plants as a Source of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Panagiota Florou-Paneri

    2012-09-01

    Full Text Available Aromatic plants, also known as herbs and spices, have been used since antiquity as folk medicine and as preservatives in foods. The best known aromatic plants, such as oregano, rosemary, sage, anise, basil, etc., originate from the Mediterranean area. They contain many biologically active compounds, mainly polyphenolics, which have been found to possess antimicrobial, antioxidant, antiparasitic, antiprotozoal, antifungal, and anti-inflammatory properties. Currently, the demand for these plants and their derivatives has increased because they are natural, eco-friendly and generally recognized as safe products. Therefore, aromatic plants and their extracts have the potential to become new generation substances for human and animal nutrition and health. The purpose of this review is to provide an overview of the literature surrounding the in vivo and in vitro use of aromatic plants.

  8. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Polycyclic Aromatic Hydrocarbons (PAHs) are products of incomplete combustion of organic materials; sources are, thus, widespread,including cigarette smoke, municipal waste incineration, wood stove emissions, coal conversion, energy production form fossil fuels, and automobile an...

  9. Synthesis and characterization of organosoluble aromatic copolyimids

    Institute of Scientific and Technical Information of China (English)

    YANG Jintian; HUANG Wei; ZHOU Yongfeng; YAN Deyue

    2007-01-01

    A series of aromatic copolyimides was success fully synthesized from the commercial pyromellitic dianhy dride (PMDA) with a commercial diamine p-phenyldiamine (PDA) and a diamine 4,4'-methylenebis-(2-tert-butylaniline)(MBTBA) specially designed by the authors.The copoly imides were characterized by Infra-red (IR),Nuclear Magnetic Resonance (NMR),Gel Permeation Chromato graphy (GPC),Ultraviolet Visual (UV-Vis),Thermogra vimetic Analysis (TGA) and Dynamic Mechanical Analysis (DMA).The copolyimide was precipitated in m-cresol in the polymerization process when the molar ratio of MBTBA and PDA was lower than 6/4.The number-average molecular weight of the soluble copolyimides measured by GPC was larger than 4.0 x 104,and the polydispersity index was higher than 1.5.Only one glass transition temperature of these copolyimdies was detected around 360℃ by DMA.The copolyimides did not show appreciable decomposition up to 500℃ under N2,and the thermal stability of the copolyimide increased a little with the introduction of PDA into the polyimide main chain.

  10. Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons

    KAUST Repository

    Diev, Vyacheslav V.

    2012-01-06

    A systematic study of the preparation of porphyrins with extended conjugation by meso,β-fusion with polycyclic aromatic hydrocarbons (PAHs) is reported. The meso-positions of 5,15-unsubstituted porphyrins were readily functionalized with PAHs. Ring fusion using standard Scholl reaction conditions (FeCl 3, dichloromethane) occurs for perylene-substituted porphyrins to give a porphyrin β,meso annulated with perylene rings (0.7:1 ratio of syn and anti isomers). The naphthalene, pyrene, and coronene derivatives do not react under Scholl conditions but are fused using thermal cyclodehydrogenation at high temperatures, giving mixtures of syn and anti isomers of the meso,β-fused porphyrins. For pyrenyl-substituted porphyrins, a thermal method gives synthetically acceptable yields (>30%). Absorption spectra of the fused porphyrins undergo a progressive bathochromic shift in a series of naphthyl (λ max = 730 nm), coronenyl (λ max = 780 nm), pyrenyl (λ max = 815 nm), and perylenyl (λ max = 900 nm) annulated porphyrins. Despite being conjugated with unsubstituted fused PAHs, the β,meso-fused porphyrins are more soluble and processable than the parent nonfused precursors. Pyrenyl-fused porphyrins exhibit strong fluorescence in the near-infrared (NIR) spectral region, with a progressive improvement in luminescent efficiency (up to 13% with λ max = 829 nm) with increasing degree of fusion. Fused pyrenyl-porphyrins have been used as broadband absorption donor materials in photovoltaic cells, leading to devices that show comparatively high photovoltaic efficiencies. © 2011 American Chemical Society.

  11. [Polycyclic aromatic hydrocarbons exposure and birth defects].

    Science.gov (United States)

    Lin, S S; Huang, Y; Wang, C Y; Ren, A G

    2016-06-01

    Birth defects are one of the most common adverse birth outcomes, which create a heavy economic burden to the country, society and family. And they are also one of the biggest problems facing public health today. Polycyclic aromatic hydrocarbons (PAHs) are a group of toxic pollutants existing in the environment widely, resulting from incomplete organic matter combustion, and can be taken into the body through various ways including the digestive tract, respiratory tract and so on. Recent researches suggest that the exposure of PAHs may be associated with various birth defects, while the special mechanism isn't very clear. This paper is a review of the relationship between PAHs and birth defects from the aspects of epidemiological data, experimental evidence on animals, which indicates that exposure of PAHs during pregnancy may be associated with birth defects including congenital heart defects, neural tube defects and cleft lip/plate. Furthermore, we explored the possible mechanism, including oxidative stress, oxidative damage and the changes of signal transduction pathway in order to provide some recommendations and suggestions on the future work. PMID:27256742

  12. Optimization of low ring polycylic aromatic biodegradation

    Science.gov (United States)

    Othman, N.; Abdul-Talib, S.; Tay, C. C.

    2016-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are recalcitrance and persistence that finally turn into problematic environmental contaminants. Microbial degradation is considered to be the primary mechanism of PAHs removal from the environment due to its organic criteria. This study is carried out to optimize degradation process of low ring PAHs. Bacteria used in this study was isolated from sludge collected from Kolej Mawar, Universiti Teknologi MARA, Shah Alam, Selangor. Working condition namely, substrate concentration, bacteria concentration, pH and temperature were optimized. PAHs in the liquid sample was extracted by using solid phase microextractio equipped with a 7 µm polydimethylsiloxane (PDMS) SPME fibr. Removal of PAHs were assessed by measuring PAHs concentration using GC-FID. Results from the optimization study of biodegradation indicated that maximum rate of PAHs removal occurred at 100 mgL-1 of PAHs, 10% bacteria concentration, pH 7.0 and 30°C. These working condition had proved the effectiveness of using bacteria in biodegradation process of PAHs.

  13. Polycyclic aromatic hydrocarbon molecules in astrophysics

    Science.gov (United States)

    Rastogi, Shantanu; Pathak, Amit; Maurya, Anju

    2013-06-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are responsible for the mid-infrared emission features. Their ubiquitous presence in almost all types of astrophysical environments and related variations in their spectral profilesmake them an important tool to understand the physics and chemistry of the interstellar medium. The observed spectrum is generally a composite superposition of all different types of PAHs possible in the region. In the era of space telescopes the spectral richness of the emission features has enhanced their importance as probe and also the need to understand the variations with respect to PAH size, type and ionic state. Quantum computational studies of PAHs have proved useful in elucidating the profile variations and put constraints on the possible types of PAHs in different environments. The study of PAHs has also significantly contributed to the problems of diffuse interstellar bands (DIBs), UV extinction and understanding the chemistry of the formation of complex organics in space. The review highlights the results of various computational models for the understanding of infrared emission features, the PAH-DIB relation, formation of prebiotics and possible impact in the understanding of far-infrared features.

  14. Saudi decree encourages MTBE, Chevron aromatics plant

    International Nuclear Information System (INIS)

    Chevron Chemical (Houston), encouraged by a new Saudi royal decree that establishes extremely low feedstock prices, is in final negotiations to build a novel aromatics plant in Saudi Arabia. Chevron says it plans to close the deal and announce details the first week of March. The unit will be based on Chevron's Aromax reforming process, which uses a zeolite catalyst to convert light naphtha into benzene and toluene. No existing plant is using the technology, but Chevron is building a $250-million, 150-million gal/year Aromax unit at its refinery site in Pascagoula, MS, and Idemitsu has licensed the process for a plant in Chiba, Japan. The Saudi decree, issued late last year, pegs domestic feedstocks - propane, butane, and naphthas - at 30% below the lowest price of the prior quarter in major non-domestic markets. That clarifies and guarantees the Saudi feedstock price, which has always been nebulous, and thus allows project feasibility to be more clearly assessed. The decree is designed to encourage further private petrochemical investment in the country. In particular, the Saudi government hopes guaranteed low prices for butane will encourage more methyl tert-butyl ether (MTBE) projects. Arabian American Chemical, a 50/50 joint venture between Mobile and Arabian Chemical Investments, said in October of last year that its 830,000-m.t./year MTBE project at Yanbu, Saudi Arabia, would go ahead if feedstock questions could be resolved. The decree apparently resolves those questions

  15. Aromatizing unzipping polyester for EUV photoresist

    Science.gov (United States)

    Matsuzawa, Kensuke; Mesch, Ryan; Olah, Mike; Wang, Wade; Phillips, Scott T.; Willson, C. Grant

    2015-03-01

    New "self-immolating" or "unzipping" polymers, materials that depolymerize in response to irradiation, were designed and prepared successfully. We studied several candidate polymers and ultimately chose two of them for further development. One is a polyester that aromatizes upon depolymerization. The unzipping reaction initiated by UV exposure in solution was confirmed. The polymer was then studied in thin films to assess its potential for use in formulating photoresists. The neat polymer was tested as a blend with novolac resin. The effect of unzipping polyester loading in novolac on the rate of dissolution of films in TMAH was studied. Inhibition occurs at 20-30% loading. The films were exposed with DUV light and patterning was observed. The sensitivity of the unzipping polyester formulation is low in part due to the low absorption of the polymer for UV light. However, the polymer showed higher sensitivity with EUV exposure and first contrast curves show sensitivity in the range of 20-25mJ/cm2.

  16. Coassembly of aromatic dipeptides into biomolecular necklaces.

    Science.gov (United States)

    Yuran, Sivan; Razvag, Yair; Reches, Meital

    2012-11-27

    This paper describes the formation of complex peptide-based structures by the coassembly of two simple peptides, the diphenylalanine peptide and its tert-butyl dicarbonate (Boc) protected analogue. Each of these peptides can self-assemble into a distinct architecture: the diphenylalanine peptide into tubular structures and its analogue into spheres. Integrated together, these peptides coassemble into a construction of beaded strings, where spherical assemblies are connected by elongated elements. Electron and scanning force microscopy demonstrated the morphology of these structures, which we termed "biomolecular necklaces". Additional experiments indicated the reversibility of the coassembly process and the stability of the structures. Furthermore, we suggest a possible mechanism of formation for the biomolecular necklaces. Our suggestion is based on the necklace model for polyelectrolyte chains, which proposes that a necklace structure appears as a result of counterion condensation on the backbone of a polyelectrolyte. Overall, the approach of coassembly, demonstrated using aromatic peptides, can be adapted to any peptides and may lead to the development and discovery of new self-assembled architectures formed by peptides and other biomolecules. PMID:23061818

  17. Measurement of Aromatic-hydrocarbons With the DOAS Technique

    OpenAIRE

    Axelsson, H; Eilard, A.; Emanuelsson, A.; Galle, B.; Edner, Hans; Ragnarson, P; Kloo, H

    1995-01-01

    Long-path DOAS (differential optical absorption spectroscopy) in the ultraviolet spectral region has been shown to be applicable for low-concentration measurements of light aromatic hydrocarbons. However, because of spectral interferences among different aromatics as well as with oxygen, ozone, and sulfur dioxide, the application of the DOAS technique for this group of components is not without problems. This project includes a study of the differential absorption characteristics, between 250...

  18. DNA-Catalyzed Hydrolysis of Esters and Aromatic Amides

    OpenAIRE

    Brandsen, Benjamin M.; Hesser, Anthony R.; Castner, Marissa A.; Chandra, Madhavaiah; Silverman, Scott K.

    2013-01-01

    We previously reported that DNA catalysts (deoxyribozymes) can hydrolyze DNA phosphodiester linkages, but DNA-catalyzed amide bond hydrolysis has been elusive. Here we used in vitro selection to identify DNA catalysts that hydrolyze ester linkages as well as DNA catalysts that hydrolyze aromatic amides, for which the leaving group is an aniline moiety. The aromatic amide-hydrolyzing deoxyribozymes were examined using linear free energy relationship analysis. The hydrolysis reaction is unaffec...

  19. Terahertz Spectroscopy of Biochars and Related Aromatic Compounds

    Science.gov (United States)

    Lepodise, L. M.; Horvat, J.; Lewis, R. A.

    2016-07-01

    A recent application of terahertz spectroscopy is to biochar, the agricultural charcoal produced by pyrolysis of various organic materials. Biochars simultaneously improve soil fertility and assist in carbon sequestration. Terahertz spectroscopy allows different biochars to be distinguished. However, the origin of the absorption features observed has not been clear. Given that biochar-based fertilizers are rich in aromatic compounds, we have investigated simple aromatic compounds as an approach to unravelling the complex biochar spectrum.

  20. Shifting from Agriculture to Agribusiness: The Case of Aromatic Plants

    OpenAIRE

    Mittal, Rashi; Singh, S. P.

    2007-01-01

    This study has examined the agribusiness opportunities in medicinal and aromatic plants (MAPs), based on the field level information from the state of Uttarakhand. The financial feasibility of important aromatic plants has been studied. It has been found that the returns are substantially higher from these crops than the most profitable commercial crops like sugarcane. The study has identified the constraints that affect the spread of cultivation of MAPs; these include inadequate processing c...

  1. Aromatic Plants as a Source of Bioactive Compounds

    OpenAIRE

    Panagiota Florou-Paneri; Ilias Giannenas; Eleftherios Bonos; Efterpi Christaki

    2012-01-01

    Aromatic plants, also known as herbs and spices, have been used since antiquity as folk medicine and as preservatives in foods. The best known aromatic plants, such as oregano, rosemary, sage, anise, basil, etc., originate from the Mediterranean area. They contain many biologically active compounds, mainly polyphenolics, which have been found to possess antimicrobial, antioxidant, antiparasitic, antiprotozoal, antifungal, and anti-inflammatory properties. Currently, the demand for these plant...

  2. Collection and conservation of medicinal and aromatic plants resources

    OpenAIRE

    Z. Abraham

    2011-01-01

    (Abstract selected from presentation in National Conference on Biodiversity of Medicinal and Aromatic Plants: Collection, Characterization and Utilization, held at Anand, India during November 24-25, 2010)Plant genetic resources have made substantial contributions to the domestication, utilization and improvement of all kinds of crops including medicinal and aromatic plants. Collection, characterization and  their efficient utilization are keys to efficient management of any kind of genetic r...

  3. Aromatic amine dehydrogenase, a second tryptophan tryptophylquinone enzyme.

    OpenAIRE

    Govindaraj, S; Eisenstein, E.; Jones, L. H.; Sanders-Loehr, J; Chistoserdov, A Y; Davidson, V L; Edwards, S. L.

    1994-01-01

    Aromatic amine dehydrogenase (AADH) catalyzes the oxidative deamination of aromatic amines including tyramine and dopamine. AADH is structurally similar to methylamine dehydrogenase (MADH) and possesses the same tryptophan tryptophylquinone (TTQ) prosthetic group. AADH exhibits an alpha 2 beta 2 structure with subunit molecular weights of 39,000 and 18,000 and with a quinone covalently attached to each beta subunit. Neither subunit cross-reacted immunologically with antibodies to the correspo...

  4. Aromatic VOCs global influence in the ozone production

    Science.gov (United States)

    Cabrera-Perez, David; Pozzer, Andrea

    2016-04-01

    Aromatic hydrocarbons are a subgroup of Volatile Organic Compounds (VOCs) of special interest in the atmosphere of urban and semi-urban areas. Aromatics form a high fraction of VOCs, are highly reactive and upon oxidation they are an important source of ozone. These group of VOCs are released to the atmosphere by processes related to biomass burning and fossil fuel consumption, while they are removed from the atmosphere primarily by OH reaction and by dry deposition. In addition, a branch of aromatics (ortho-nitrophenols) produce HONO upon photolysis, which is responsible of certain amount of the OH recycling. Despite their importance in the atmosphere in anthropogenic polluted areas, the influence of aromatics in the ozone production remains largely unknown. This is of particular relevance, being ozone a pollutant with severe side effects on air quality, health and climate. In this work the atmospheric impacts at global scale of the most emitted aromatic VOCs in the gas phase (benzene, toluene, xylenes, ethylbenzene, styrene, phenol, benzaldehyde and trimethylbenzenes) are analysed and assessed. Specifically, the impact on ozone due to aromatic oxidation is estimated, as this is of great interest in large urban areas and can be helpful for developing air pollution control strategies. Further targets are the quantification of the NOx loss and the OH recycling due to aromatic oxidation. In order to investigate these processes, two simulations were performed with the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The simulations compare two cases, one with ozone concentrations when aromatics are present or the second one when they are missing. Finally, model simulated ozone is compared against a global set of observations in order to better constrain the model accuracy.

  5. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  6. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    International Nuclear Information System (INIS)

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H2O, CO2 (aerobic) or CH4 (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate can be

  7. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    Energy Technology Data Exchange (ETDEWEB)

    Haritash, A.K., E-mail: akharitash@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India); Kaushik, C.P. [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India)

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H{sub 2}O, CO{sub 2} (aerobic) or CH{sub 4} (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions

  8. Design of nanostructures based on aromatic peptide amphiphiles.

    Science.gov (United States)

    Fleming, Scott; Ulijn, Rein V

    2014-12-01

    Aromatic peptide amphiphiles are gaining popularity as building blocks for the bottom-up fabrication of nanomaterials, including gels. These materials combine the simplicity of small molecules with the versatility of peptides, with a range of applications proposed in biomedicine, nanotechnology, food science, cosmetics, etc. Despite their simplicity, a wide range of self-assembly behaviours have been described. Due to varying conditions and protocols used, care should be taken when attempting to directly compare results from the literature. In this review, we rationalise the structural features which govern the self-assembly of aromatic peptide amphiphiles by focusing on four segments, (i) the N-terminal aromatic component, (ii) linker segment, (iii) peptide sequence, and (iv) C-terminus. It is clear that the molecular structure of these components significantly influences the self-assembly process and resultant supramolecular architectures. A number of modes of assembly have been proposed, including parallel, antiparallel, and interlocked antiparallel stacking conformations. In addition, the co-assembly arrangements of aromatic peptide amphiphiles are reviewed. Overall, this review elucidates the structural trends and design rules that underpin the field of aromatic peptide amphiphile assembly, paving the way to a more rational design of nanomaterials based on aromatic peptide amphiphiles. PMID:25199102

  9. Aromatization of n-octane over Pd/C catalysts

    KAUST Repository

    Yin, Mengchen

    2013-01-01

    Gas-phase aromatization of n-octane was investigated using Pd/C catalyst. The objectives were to: (1) determine the effects of temperature (400-600 °C), weight hourly space velocity (WHSV) (0.8-∞), and hydrogen to hydrocarbon molar ratio (MR) (0-6) on conversion, selectivity, and yield (2) compare the activity of Pd/C with Pt/C and Pt/KL catalysts and (3) test the suitability of Pd/C for aromatization of different alkanes including n-hexane, n-heptane, and n-octane. Pd/C exhibited the best aromatization performance, including 54.4% conversion and 31.5% aromatics yield at 500 °C, WHSV = 2 h-1, and a MR of 2. The Pd/C catalyst had higher selectivity towards the preferred aromatics including ethylbenzene and xylenes, whereas Pt/KL had higher selectivity towards benzene and toluene. The results were somewhat consistent with adsorbed n-octane cyclization proceeding mainly through the six-membered ring closure mechanism. In addition, Pd/C was also capable of catalyzing aromatization of n-hexane and n-heptane. © 2012 Elsevier Ltd. All rights reserved.

  10. Detection of azo dyes and aromatic amines in women undergarment.

    Science.gov (United States)

    Nguyen, Thao; Saleh, Mahmoud A

    2016-07-28

    Women are exposed to several chemical additives including azo dyes that exist in textile materials, which are a potential health hazard for consumers. Our objective was to analyze suspected carcinogenic azo dyes and their degradation aromatic amines in women underwear panties using a fast and simple method for quantification. Here, we evaluated 120 different samples of women underwear for their potential release of aromatic amines to the skin. Seventy-four samples yielded low level mixtures of aromatic amines; however eighteen samples were found to produce greater than 200 mg/kg (ppm) of aromatic amines. Azo dyes in these 18 samples were extracted from the fabrics and analyzed by reverse phase thin layer chromatography in tandem with atmospheric pressure chemical ionization mass spectrometry. Eleven azo dyes were identified based on their mass spectral data and the chemical structure of the aromatic amine produced from these samples. We demonstrate that planar chromatography and mass spectrometry can be really helpful in confirming the identity of the azo dyes, offering highly relevant molecular information of the responsible compounds in the fabrics. With the growing concern about the consumer goods, analysis of aromatic amines in garments has become a highly important issue. PMID:27149414

  11. Polarizer reflectivity variations

    International Nuclear Information System (INIS)

    On Shiva the beam energy along the chain is monitored using available reflections and/or transmission through beam steering, splitting, and polarizing optics without the intrusion of any additional glass for diagnostics. On the preamp table the diagnostic signal is obtained from the signal transmitted through turning mirrors. At the input of each chain the signal is obtained from the transmission through one of the mirrors used for the chain input alignment sensor (CHIP). At the chain output the transmission through the final turning mirror is used. These diagnostics have proved stable and reliable. However, one of the prime diagnostic locations is at the output of the beta rod. The energy at this location is measured by collecting small reflections from the last polarizer surface of the beta Pockels cell polarizer package. Unfortunately, calibration of this diagnostic has varied randomly, seldom remaining stable for a week or more. The cause of this fluctuation has been investigated for the past year and'it has been discovered that polarizer reflectivity varies with humidity. This report will deal with the possible causes that were investigated, the evidence that humidity is causing the variation, and the associated mechanism

  12. The Description of Polarization

    OpenAIRE

    Mweene, Habatwa V.

    2005-01-01

    In this paper, we extend to polarization the method we have recently employed to treat spin. We are led to a generalization of its treatment. Thus, we are able to connect its matrix treatment to first principles, and we obtain the most generalized probability amplitudes and operators for its description.

  13. DESY: HERA polarization

    International Nuclear Information System (INIS)

    The new HERA electron-proton collider at DESY in Hamburg achieved the first luminosity for electron-proton collisions on 19 October last year. Only one month later, on 20 November, HERA passed another important milestone with the observation of transverse electron polarization

  14. Polarization of Bremsstrahlung

    International Nuclear Information System (INIS)

    The numerical results for the polarization of Bremsstrahlung are presented. The multiple scattering of electrons in the target is taken into account. The angular-and photon energy dependences are seen on the curves for an incident 25 MeV electron energy. (Author)

  15. Pure HD polarized targets

    International Nuclear Information System (INIS)

    The HD polarized target project is now ready to use a target in a physics experiment. This must be done in early 1998 at LEGS (BNL). The IPN cryogenic group takes its part in this venture by doing the transfer and in-beam cryostats. (authors)

  16. Polarization predictions for LEAR

    International Nuclear Information System (INIS)

    Large polarization properties have recently been experimentally found in quasi-two-body reactions. From these results, the additive quark model and assumptions on the relative size of some participant matrix elements (which will be motivated elsewhere as properties of colour confinement), we present prediction for the reactions pp- to YY-. (Author)

  17. Coordenadas polares: curvas maravillosas

    Directory of Open Access Journals (Sweden)

    Norberto Jaime Chau Pérez

    2010-07-01

    Full Text Available Se presenta una actividad colaborativa en la que se trabaja el tema coordenadas polares. Se presentan los objetivos de aprendizaje, el desarrollo de la actividad, los conocimientos previos necesarios y recomendaciones para una aplicación posterior.

  18. Polarized Neutron Scattering

    OpenAIRE

    Roessli, B.; Böni, P.

    2000-01-01

    The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.

  19. Recollision with circular polarization

    Science.gov (United States)

    Mauger, Francois; Kamor, Adam; Bandrauk, Andre; Chandre, Cristel; Uzer, Turgay

    2013-05-01

    Since its identification in the 90s, the recollision scenario has revealed to be very helpful in explaining many phenomena in atomic and molecular systems subjected to strong and short laser pulses, and it is now at the core of the strong field physics and attosecond science. For linearly polarized laser fields, the recollision scenario has been able to explain nonsequential double ionization (NSDI), high harmonic generation (HHG) and laser induced diffraction (LIED), just to cite them. The same scenario also predicts the absence of recollision when the field is circularly polarized, therefore leading to the absence of NSDI, HHG or LIED. Recently, the influence of the ellipticity of the laser has drawn an increasing level of interest in the strong field community as it is seen as a way to control the electronic dynamics and, for instance, HHG. Using classical models, the common belief of the absence of recollision with circularly polarized laser fields has been proven wrong. In my talk I will present classical and quantum evidence of the presence of recollision with circular polarization. I will discuss the conditions under which such recollisions happen and what they imply.

  20. Graphics of polar figure

    International Nuclear Information System (INIS)

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  1. Studies on anodic corrosion of the electroplated CdSe in aqueous and non-aqueous media for photoelectrochemical cells and characterization of the electrode/electrolyte interface

    International Nuclear Information System (INIS)

    Polycrystalline n-CdSe thin films were prepared by electrodeposition at controlled current density on conducting substrates. The optical characteristics were determined through transmittance spectra. Scanning electron microscopy and atomic force microscopy were employed to study the morphology of the semiconductor (SC) surfaces. Chemical composition of the SC film was established by EDAX analysis. The n-CdSe/electrolyte junctions in water and non-aqueous solvents like acetonitrile (ACN), dimethyl formamide (DMF), dimethyl sulphoxide (DMSO) and propylene carbonate (PC) were characterized by Mott-Schottky analysis using frequency response analyzer. The stability of CdSe layers in water and in non-aqueous solvents was determined through anodic polarization studies. Anodic stripping voltammetry was employed to find out the dissoluted Cd2+ in solution. Photovoltage was measured under illuminated conditions using ferrocene-ferricenium couple in aqueous and non-aqueous solvents throughout the temperature range of 20-70 deg. C. The results are indicative of the potential use of the electrodeposited n-CdSe in selected non-aqueous medium for solar energy conversion by photoelectrochemical (PEC) devices

  2. Planetary polarization nephelometer

    Science.gov (United States)

    Banfield, D.; Dissly, R.; Mishchenko, M.; Muñoz, O.; Roos-Serote, M.; Stam, D.; Volten, H.

    2004-02-01

    We have proposed to develop a polarization nephelometer for use on future planetary descent probes. It will measure both the scattered intensity and polarization phase functions of the aerosols it encounters descending through an atmosphere. These measurements will be taken at two wavelengths separated by about an octave, with one light source near 500nm and another near 1μm. Adding polarization measurements to the intensity phase functions greatly increases our ability to constrain the size distribution, shape and chemical composition of the sampled particles. There remain important questions about these parameters of the aerosols on Venus, the giant planets and Titan that can only be addressed with a nephelometer like ours. The NRC Planetary Sciences Decadal Survey has identified probe missions to Venus and Jupiter as a priority. On both of these missions, our proposed instrument would be an excellent candidate for flight. We also expect that future probe missions to Saturn, Uranus, Neptune or Titan would employ our instrument. It could also find use in Earth in situ aerosol studies. We will use a technique to simultaneously measure intensity and polarization phase functions that uses polarization modulation of a light source. This technique has been implemented in laboratory settings, but not with considerations to the environment on a planetary descent probe. We have proposed to design and build a flexible breadboard nephelometer to test the components and concepts of our approach. We would then test the device against well defined aerosols, ensuring that it accurately measures their expected intensity and polarization phase functions. With the knowledge gained in this flexible design, we would then design and build a breadboard polarization nephelometer more suited to integration on a planetary descent probe. To include traceability in the technical requirements of our device, we would also conduct an Observing System Simulation Experiment. In this study, we

  3. Aromatic stacking between nucleobase and enzyme promotes phosphate ester hydrolysis in dUTPase

    OpenAIRE

    Pecsi, Ildiko; Leveles, Ibolya; Harmat, Veronika; Vertessy, Beata G.; Toth, Judit

    2010-01-01

    Aromatic interactions are well-known players in molecular recognition but their catalytic role in biological systems is less documented. Here, we report that a conserved aromatic stacking interaction between dUTPase and its nucleotide substrate largely contributes to the stabilization of the associative type transition state of the nucleotide hydrolysis reaction. The effect of the aromatic stacking on catalysis is peculiar in that uracil, the aromatic moiety influenced by the aromatic interac...

  4. Studies into the radiobromination and -iodination of aromatic compounds with n-halogen compounds without addition of carriers

    International Nuclear Information System (INIS)

    There is a special need for radiohalogenated compounds for diagnostic nuclear medicine, in particular for no-carrier-added (nca) short lived cyclotron products. In this study the applicability of chloramine-T (CAT) and dichloramine-T (DCT) has been demonstrated for nca-radiohalogenation with bromine-75, 77 and iodine-123 in aqueous and organic solvents. Radio gaschromatography and -HPLC are used for product analysis. In aqueous solution the optimum reaction conditions with respect to pH, concentration of CAT, reaction time and added bromide-carrier are determined using tyrosine as a model substrate. The suitability of the CAT method for radiobrominations under convenient and mild conditions is demonstrated for some biomolecules such as amino acids and nucleobases as well as for peptides and the proteins urokinase and HSA. Dichloramine-T is found to be a new efficient reagent for radiobromination and -iodination of aromatic compounds in various organic solvents such as acetic acid, dichloromethane or carbontetrachloride. A high para-selectivity is observed and the radiochemical yields (80%) are as high as in aqueous solution. A comparison of this reagent with different in-situ halogenation agents show that DCT is superior with respect to reaction time, concentration of the reagent and thus oxidative side reactions, and ease of handling. (orig./RB)

  5. Polarized light and optical measurement

    CERN Document Server

    Clarke, D N; Ter Haar, D

    2013-01-01

    Polarized Light and Optical Measurement is a five-chapter book that begins with a self-consistent conceptual picture of the phenomenon of polarization. Chapter 2 describes a number of interactions of light and matter used in devising optical elements in polarization studies. Specific optical elements are given in Chapter 3. The last two chapters explore the measurement of the state of polarization and the various roles played in optical instrumentation by polarization and polarization-sensitive elements. This book will provide useful information in this field of interest for research workers,

  6. Diammonium hydrogen phosphate as a versatile and efficient catalyst for the one-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives in aqueous media.

    Science.gov (United States)

    Balalaie, Saeed; Abdolmohammadi, Shahrzad; Bijanzadeh, Hamid Reza; Amani, Ali Mohammad

    2008-05-01

    Diammonium hydrogen phosphate, (NH4)2HPO4, was used as a catalyst for one-pot, three-component condensation reactions consisting of aromatic aldehydes, malononitrile and barbituric/thiobarbituric acid in aqueous ethanol at room temperature. This method has the advantages of a simple operation, mild reaction conditions, high yields, by using a less toxic and low cost chemical as a catalyst. PMID:18512127

  7. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in particulates emitted by motorcycles

    International Nuclear Information System (INIS)

    We determined eleven PAHs and four NPAHs in particulates and regulated pollutants (CO, CO2, HC, NOx, PM) exhausted from motorcycles to figure out the characteristics of motorcycle exhausts. Fluoranthene and pyrene accounted for more than 50% of the total detected PAHs. Among four detected NPAHs, 6-nitrochrysene and 7-nitrobenz[a]anthracene were the predominant NPAHs and were highly correlated relationship with their parent PAHs (R = 0.93 and 0.97, respectively). The PM and HC emissions tended to be close to the PAH emissions. NOx and NPAHs were negatively correlated. Despite their small engine size, motorcycles emitted much more PM and PAHs, showed stronger PAH-related carcinogenicity and indirect-acting mutagenicity, but weaker NPAH-related direct-acting mutagenic potency than automobiles. This is the first study to analyze both PAHs and NPAHs emitted by motorcycles, which could provide useful information to design the emission regulations and standards for motorcycles such as PM. -- Highlights: ► We characterized PAHs and NPAHs distribution in motorcycle exhausts. ► NPAHs concentrations were about three orders of magnitude lower than those of PAHs. ► We found larger amounts of PM and PAHs in exhaust of motorcycles than of automobiles. ► Motorcycles showed stronger PAH-related toxicity than automobiles. ► Motorcycles showed weaker NPAH-related direct-acting mutagenicity than automobiles. -- Control polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbon in particulates emitted by motorcycles due to their toxic potency

  8. Aromatic and hetero-aromatic compositional changes during catalytic treatment of shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Chishti, H.M.; Williams, P.T. [University of Leeds, Leeds (United Kingdom). Dept. of Fuel and Energy

    1999-12-01

    Oil shale from the Kimmeridge Clay, of Jurassic age from the UK was pyrolysed in a 5 kg fixed bed reactor at 525{degree}C in a nitrogen atmosphere. The derived shale oil was then hydrotreated at 15.0 MPa pressure and 400{degree}C in a stirred reactor with a nickel-molybdenum (Ni-Mo) catalyst and residence times from 8 to 56 h. The shale oils were analysed for polycyclic aromatic hydrocarbons (PAH) and for nitrogen PAH (PANH) and sulphur-PAH (PASH), before and after hydrotreatment. The results showed that generally the higher molecular weight three and four ring PAH decreased with increasing hydrotreatment time, however, single ring aromatic compounds and two ring PAH were increased. Nitrogen and sulphur containing PAH were significantly reduced in concentration in the oils with increasing hydrotreatment time to reach negligible concentrations after 56 h. The reduction in PANH and PASH coincided with a reduction in the overall nitrogen and sulphur contents of the oils. 37 refs.

  9. Global Geospace Science/Polar Plasma Laboratory: POLAR

    Science.gov (United States)

    1996-01-01

    The Global Geospace Science (GGS) Project is discussed as part of the International Solar-Terrestrial Physics (ISTP) Science Initiative. The objectives of Polar Plasma Laboratory (POLAR), one of the two spacecraft to be used by the Project to fill critical gaps in the scientific understanding of solar and plasma physics, are outlined. POLAR Laboratory is described, along with POLAR instrumentation, support subsystems, and orbits. Launch vehicle and injection into orbit are also addressed.

  10. Influence of Tunisian aromatic plants on the prevention of oxidation in soybean oil under heating and frying conditions.

    Science.gov (United States)

    Saoudi, Salma; Chammem, Nadia; Sifaoui, Ines; Bouassida-Beji, Maha; Jiménez, Ignacio A; Bazzocchi, Isabel L; Silva, Sandra Diniz; Hamdi, Moktar; Bronze, Maria Rosário

    2016-12-01

    The aim of this study was to improve the oxidative stability of soybean oil by using aromatic plants. Soybean oil flavored with rosemary (ROS) and soybean oil flavored with thyme (THY) were subjected to heating for 24h at 180°C. The samples were analyzed every 6h for their total polar compounds, anisidine values, oxidative stability and polyphenols content. The tocopherols content was determined and volatile compounds were also analyzed. After 24h of heating, the incorporation of these plants using a maceration process reduced the polar compounds by 69% and 71% respectively, in ROS and THY compared to the control. Until 6h of heating, the ROS kept the greatest oxidative stability. The use of the two extracts preserves approximately 50% of the total tocopherols content until 18h for the rosemary and 24h for the thyme flavored oils. Volatile compounds known for their antioxidant activity were also detected in the formulated oils. Aromatic plants added to the soybean oil improved the overall acceptability of potato crisps (p<0.05) until the fifteenth frying. PMID:27374561

  11. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal

    2011-09-21

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP\\'s indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine\\'s preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine\\'s interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  12. Side-chain dynamics of two aromatic amino acids in pancreatic phospholipase A2 as studied by deuterium nuclear magnetic resonance

    International Nuclear Information System (INIS)

    The flexibility of individual amino acid side chains of pancreatic phospholipase A2 in aqueous and micellar solutions was studied with deuterium nuclear magnetic resonance (2H NMR). Bovine pancreatic phospholipase A2 was selectively deuterated at the aromatic ring systems of Trp-3 and Phe-5 and porcine pancreatic phospholipase A2 at Trp-3 only. Solid-state 2H NMR spectra of the lyophilized enzymes exhibited quadrupole splittings on the order of 130 kHz, indicating almost complete immobilization of the aromatic ring systems. Exposure to a water-saturated atmosphere did not remove these steric constraints. However, side-chain mobility could be induced for the tryptophyl residue of the bovine enzyme by dissolving this enzyme in aqueous buffer or micellar solution whereas the phenyl ring always remained immobile and served as a probe for the protein's overall rotation. Typical correlation times for the tryptophyl and phenyl aromatic ring systems in aqueous solution were 7 ps and 13 ns (at 20 degrees C), respectively. The correlation time of the phenyl ring was longer than expected for the monomeric protein (approximately 6 ns), suggesting some aggregation of the protein at the high concentrations used for the NMR measurements. Addition of a micellar solution of oleoylphosphocholine had no influence on the motional freedom of the tryptophyl residue but approximately doubled the correlation time of the phenyl ring, indicating an increase of the effective volume of the tumbling particle due to lipid-protein interaction. A different behavior was observed for the Trp-3 residue of porcine phospholipase A2

  13. Fate of polynuclear aromatic hydrocarbons in soil

    International Nuclear Information System (INIS)

    A study was performed on the persistence of selected polynuclear aromatic hydrocarbons (PAH's) in soil. Two incubation studies were performed. In the first, a mixture of eight PAH's were added to unacclimated soil at levels of 5 and 50 mg/kg and the concentrations were monitored with time. In the second, C14-labelled benzo(a)pyrene or anthracene was added to soil incubated in biometer flasks. Microbial degradation, physical and chemical degradation, volatilization and binding were assessed as mechanisms affecting benzo(a)pyrene and anthracene in soil. The disappearance of PAH's appeared to be related to molecular weight, water solubility, volatility and adsorptivity to soil. The loss during this initial period approximated first order kinetics, in some cases following a lag period. The remaining 2-6% of the added PAH's, however, was lost at a much reduced rate. With the 50 mg/kg level of application, reduced rates of disappearance in later stages resulted in levels five to ten times the background concentration which persisted throughout the 400 days. Degradation of phenanthrene, anthracene, fluoranthene and pyrene at the 5 mg/kg application rate, however, resulted in concentrations close to background levels within 400 days. Either a model other than first order or a combination of two models was required to adequately describe the loss of 99% of the added PAH's. The mechanisms leading to a decrease in PAH concentration, identified through the use of C14 labelling, were predominantly volatilization and adsorption to soil solids for anthracene and adsorption to soil solids for benzo(a)pyrene. Microbial transformation of benzo(a)pyrene was minimal. 17 refs., 10 figs., 4 tabs

  14. Preparation,characterization and properties studies of quinine-imprinted polymer in the aqueous phase

    Institute of Scientific and Technical Information of China (English)

    He Jianfeng; Liu Lan; Yang Guilan; Deng Qinying

    2006-01-01

    The uniform-sized spherical molecularly imprinted polymers were successfully prepared through molecular imprinting technology by two-step seed swelling and mini-emulsion polymerization in the aqueous condition using quinine as template molecules and methacrylic acid (MAA)as functional monomer.The polymers were characterized by IR spectra,thermal-weight analysis,scanning electron microscope and laser particle size analysis.The properties of imprinted polymers were investigated in different organic phases and aqueous media.In the organic media,results suggested that polar interactions(hydrogen bonding,ionic interactions)between acidic monomer/polymer and template molecules are mainly responsible for the binding and recognition;whereas in the aqueous medium,a considerable recognition effect was also obtained where the ionic(electrostatic)interaction and hydrophobic interaction play an important role.The experiments of binding different substrates indicated that the MIPs possessed an excellent rebinding ability and inherent selectivity to quinine.

  15. The kinetics of dye formation by pulse radiolysis of pararosaniline cyanide in aqueous or organic solution

    International Nuclear Information System (INIS)

    The radiation-induced conversion of the leucocyanide of pararosaniline dye to the highly colored salt-isomer of the dye in acidic aqueous solution (wavelength of maximum absorption lambda sub(max)=540 nm) or polar organic solution (lambda sub(max)=550 nm), takes place in two separate processes. The first is very fast (within 3 s-1 to 106 s-1, as the acidity or concentration of an oxidizing agent increases. In oxygen-free acidic aqueous or organic solutions (argon saturated) there is an unstable transient species (lambdasub(max)=380 nm). When using O2 or N2O-saturated aqueous or organic solution, there is no intermediate absorption band at 380 nm, but the slow process of dye formation at 540 or 550 nm is still sequential to the initial fast process having somewhat faster kinetics than in Ar-saturated solution. (author)

  16. The electrochemical reduction of perrhenate ion in non–aqueous dimethylsulfoxide solutions

    OpenAIRE

    Leila Kudreeva; Zh. Kulbayeva; Andrey Kurbatov; Mikhail Nauryzbayev; M. Ainamkulova

    2012-01-01

    The electrochemical deposition of perrenate ion in non – aqueous dimethylsulphoxide solutions of electrolytes investigation. The obtained polarization curves show that several waves are observed before electrochemical deposition of renium. The results of x-ray spectral analysis and electron microscopy allowed to determine the fact that these waves correspond to formation of a passivating film, which is formed at reduction of the solvent, on the surface of a metal substrate. 

  17. POLARIZED PROTON COLLISIONS AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; ET AL.

    2005-05-16

    The Relativistic Heavy Ion Collider provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC. In 2002, polarized proton beams were first accelerated to 100 GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. Optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limited conditions are reported.

  18. Focusing the partly polarized light

    Science.gov (United States)

    Borovytsky, Volodymyr

    2015-11-01

    The paper presents the mathematical technique for calculation of three dimensional intensity distribution near a focal point of an optical system in case of partly polarized light. The proposed technique considers a high aperture optical system that focuses a partly polarized parallel beam. The principal idea is based on Huygens-Fresnel principle: a spherical wave at an exit pupil of an optical system is considered as a numerous set of secondary light point sources. Each source emits a partly polarized spherical wave. The polarization orientation of each wave can be calculated using angular pupil coordinates. Modulation of amplitude, phase or polarization can be introduced depending on these pupil coordinates. The total intensity is defined as superposition of complex wave amplitudes taking into account polarization orientation, degree of polarization and orientation of detector aperture. The paper presents the intensity distributions calculated for beams with various types and degrees of polarization.

  19. Polarization: A Must for Fusion

    OpenAIRE

    Guidal M.; Deutsch C; Didelez J.P.

    2012-01-01

    Recent realistic simulations confirm that the polarization of the fuel would improve significantly the DT fusion efficiency. We have proposed an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the neutrons and the change in the corresponding total cross section ...

  20. Selective accelerated solvent extraction for the analysis of soil polycyclic aromatic hydrocarbons and sterols

    International Nuclear Information System (INIS)

    Accelerated solvent extraction (ASE) has been successfully used in the analysis of a wide range of chemicals from many sample matrices. However, the main problem with accelerated solvent extraction is low selectivity towards the analyte because during the extraction process, many interfering components are co-extracted together with target analytes and thus requires post-extraction clean-up processes. In this study, a selective accelerated solvent extraction with clean-up step incorporated inside the extraction cell was developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) and sterols in soil. PAHs (naphthalene, acenaphthene, anthracene, pyrene) and sterols (coprostanol, cholestrol, stigmasterol, stigmastanol) were extracted separately using two elution steps. The selectivity and efficiency of this approach were evaluated using several sorbents and proper choice of solvents. Using polar sorbents, PAHs were recovered in the first extraction using n-hexane while sterols were recovered in the second extraction using a more polar solvent such as methanol, isopropanol, acetone and mixture of DCM: MeOH (40:60, v/ v). Recoveries for PAHs ranged from 76.5-99.2 % and sterols from 83.7-91.4 % using silica as the sorbent, n-hexane as the first eluent, and methanol as the second eluent. (author)

  1. In situ electro-osmotic cleanup of tar contaminated soil—Removal of polycyclic aromatic hydrocarbons

    KAUST Repository

    Lima, Ana T.

    2012-12-01

    An in situ electro-osmosis experiment was set up in a tar contaminated clay soil in Olst, the Netherlands, at the site of a former asphalt factory. The main goal of this experiment was to remove polycyclic aromatic hydrocarbons (PAHs) from the contaminated clay layer by applying an electric gradient of 12 V m-1 across the soil over an electrode distance of 1 m. With the movement of water by electro-osmosis and the addition of a non-ionic surfactant (Tween 80), the non-polar PAHs were dragged along by convection and removed from the fine soil fraction. Soil samples were taken at the start and after 159 days at the end of the experiment. Water at the electrode wells was sampled regularly during the course of the experiment. The results reflect the heterogeneity of the soil characteristics and show the PAH concentrations within the experimental set up. After first having been released into the anolyte solution due to extraction by Tween 80 and subsequent diffusion, PAH concentrations increased significantly in the electrode reservoirs at the cathode side after 90 days of experiment. Although more detailed statistical analysis is necessary to quantify the efficiency of the remediation, it can be concluded that the use of electro-osmosis together with a non-ionic surfactant is a feasible technique to mobilize non-polar organic contaminants in clayey soils. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

  2. Degradation/oxidation susceptibility of organic photovoltaic cells in aqueous solutions

    Science.gov (United States)

    Habib, K.; Husain, A.; Al-Hazza, A.

    2015-12-01

    A criterion of the degradation/oxidation susceptibility of organic photovoltaic (OPV) cells in aqueous solutions was proposed for the first time. The criterion was derived based on calculating the limit of the ratio value of the polarization resistance of an OPV cell in aqueous solution (Rps) to the polarization resistance of the OPV cell in air (Rpair). In other words, the criterion lim(Rps/Rpair) = 1 was applied to determine the degradation/oxidation of the OPV cell in the aqueous solution when Rpair became equal (increased) to Rps as a function of time of the exposure of the OPV cell to the aqueous solution. This criterion was not only used to determine the degradation/oxidation of different OPV cells in a simulated operational environment but also it was used to determine the electrochemical behavior of OPV cells in deionized water and a polluted water with fine particles of sand. The values of Rps were determined by the electrochemical impedance spectroscopy at low frequency. In addition, the criterion can be applied under diverse test conditions with a predetermined period of OPV operations.

  3. The CHEER polarization rotator

    International Nuclear Information System (INIS)

    A major part of the research program with the proposed Canadian High Energy Electron Ring (CHEER) requires that the electron beam, in the interaction region, be polarized either parallel or antiparallel to the beam direction. To accomplish this, use of magnetic solenoid polarization rotators on either end of the interaction region has been suggested. This report is a preliminary design study of a superconducting solenoid to satisfy this requirement. To achieve the required 53 T.m induction-length product a 6 T solenoid with a 10 m overall length is proposed. This would be wound with intrinsically stable NbTi superconductor and cooled with integral cooling tubes carrying supercritical helium. An assembly of three warm bore cryostats would constitute one 53 T.m solenoid. (auth)

  4. Polarized electrogowdy spacetimes censored

    Energy Technology Data Exchange (ETDEWEB)

    Nungesser, Ernesto, E-mail: ernesto.nungesser@aei.mpg.d [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)

    2010-05-01

    A sketch of the proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this it is seen that the results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  5. Polarized electrogowdy spacetimes censored

    International Nuclear Information System (INIS)

    A sketch of the proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this it is seen that the results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  6. Galactic Diffuse Polarized Emission

    Indian Academy of Sciences (India)

    Ettore Carretti

    2011-12-01

    Diffuse polarized emission by synchrotron is a key tool to investigate magnetic fields in the Milky Way, particularly the ordered component of the large scale structure. Key observables are the synchrotron emission itself and the RM is by Faraday rotation. In this paper the main properties of the radio polarized diffuse emission and its use to investigate magnetic fields will be reviewed along with our current understanding of the galactic magnetic field and the data sets available. We will then focus on the future perspective discussing RM-synthesis – the new powerful instrument devised to unlock the information encoded in such an emission – and the surveys currently in progress like S-PASS and GMIMS.

  7. Polar Warming: An Opportune Inconvenience

    NARCIS (Netherlands)

    R. Lefeber

    2012-01-01

    The inaccessibility of the Polar Regions explains the relative pristine state of these regions to date. The human presence in these regions is presently limited by the extreme climatological circumstances. This will change as a result of polar warming. The ecological boundaries of the Polar Regions

  8. Secondary Structures in a Freeze-Dried Lignite Humic Acid Fraction Caused by Hydrogen-Bonding of Acidic Protons with Aromatic Rings.

    Science.gov (United States)

    Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong

    2016-02-16

    A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding. PMID:26836017

  9. Transverse polarization in ; production

    Indian Academy of Sciences (India)

    Saurabh D Rindani

    2007-11-01

    With the use of transverse polarization (TP), a CP-odd and T-odd observable can be constructed when the final-state particles are self-conjugate. In the case of production, this observable can be used to probe a certain effective four-point + - CP-violating coupling, not accessible without TP. Effective CP-violating coupling does not contribute to this observable. A similar observable in production can be used to probe + - four-point couplings.

  10. Quark transverse polarization

    International Nuclear Information System (INIS)

    The distribution of h1(x) of quark transverse polarization can be measured by Deep Inelastic Scattering using Collins effect as quark polarimeter. We propose to calibrate this polarimeter in e+e- → 2 jets. We give an explanation of single spin asymmetries in inclusive meson production based on the Collins effect. We propose a proportionality between the electric dipole moment of the nucleon on its tensor charge. (authors)

  11. Polarization induced doped transistor

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Huili (Grace); Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  12. High-energy irradiation treatment of aqueous solutions of C.I. Reactive Black 5 azo dye: pulse radiolysis experiments

    International Nuclear Information System (INIS)

    The reactions of the C.I. Reactive Black 5 with short lived eaq-, OH radical and H atom intermediates of water radiolysis in aqueous solution were investigated by pulse radiolysis with kinetic spectroscopic detection. The transients formed with the three intermediates have absorption maxima at ∼360, ∼410 and ∼470 nm. The eaq- adds to the azo group and the adduct radical anion rapidly protonates forming hydrazil radical. Based on the similar spectra similar intermediates are produced in H atom and hydrated electron reaction. The OH radical most probably adds to the azo group, however, it attacks also the aromatic rings. The strong absorbance found is attributed to the high conjugation of the radical site with the aromatic rings

  13. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    Energy Technology Data Exchange (ETDEWEB)

    Adeyemi, Adeleke H. [Hampton Univ., Hampton, VA (United States); et al.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  14. Symmetries and polarization

    International Nuclear Information System (INIS)

    In unpolarized cross sections constraints imposed by symmetries produce only quantitative changes which, in the absence of the precise knowledge of dynamics, cannot be used to test the validity of those symmetries. In polarization observables, in sharp contrast, imposition of symmetries produces qualitative changes, such as the vanishing of some observables or linear relationships among observables, which can be used to check the validity of symmetries without a detailed knowledge of dynamics. Such polarization observables can also separate the different constraints caused by different symmetries imposed simultaneously. This is illustrated for the two cases when Lorentz invariance and parity conservation, and Lorentz invariance and time reversal invariance, respectively, hold. It is also shown that it is impossible to construct, in any reaction in atomic, nuclear, or particle physics, a null experiment that would unambiguously test the validity of time-reversal invariance independently of dynamical assumptions. Finally, for a general quantum mechanical system undergoing a process, it is shown that one can tell from measurements on this system whether or not the system is characterized by quantum numbers the existence of which is unknown to the observer, even though the detection equipment used by the observer is unable to distinguish among the various possible values of the secret quantum number and hence always averages over them. This allows us to say whether the spin of a particle in a reaction is zero or not even if they can measure nothing about that particle's polarization. 5 references

  15. Aqueous photocatalytic oxidation of sulfamethizole.

    Science.gov (United States)

    Klauson, D; Krichevskaya, M; Borissova, M; Preis, S

    2010-12-14

    Aqueous photocatalytic oxidation (PCO) of a non-biodegradable sulphonamide antibiotic sulfamethizole was studied. The impacts of photocatalyst dose, initial pH, and substrate concentration in the range from 1 to 100 mg L(-1) were examined with a number of organic and inorganic by-products determined, suggesting the initial break-up of the SMZ molecule at the sulphonamide bond. The experiments were carried out under artificial near-UV and visible light, and solar radiation using Degussa P25 and less efficient visible light-sensitive C-doped titanium dioxide as photocatalysts. PMID:21275251

  16. POLYCYCLIC AROMATIC HYDROCARBON FAR-INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    The far-IR characteristics of astrophysically relevant polycyclic aromatic hydrocarbons (PAHs) averaging in size around 100 carbon atoms have been studied using the theoretical spectra in the NASA Ames PAH IR Spectroscopic Database. These spectra were calculated using density functional theory. Selections of PAH species are made, grouped together by common characteristics or trends, such as size, shape, charge, and composition, and their far-IR spectra compared. The out-of-plane modes involving the entire molecule are explored in detail, astronomical relevance is assessed, and an observing strategy is discussed. It is shown that PAHs produce richer far-IR spectra with increasing size. PAHs also produce richer far-IR spectra with increasing number of irregularities. However, series of irregular-shaped PAHs with the same compact core have common 'Jumping-Jack' modes that 'pile up' at specific frequencies in their average spectrum. For the PAHs studied here, around 100 carbon atoms in size, this band falls near 50 μm. PAH charge and nitrogen inclusion affect band intensities but have little effect on far-IR band positions. Detailed analysis of the two-dimensional, out-of-plane bending 'drumhead' modes in the coronene and pyrene 'families' and the one-dimensional, out-of-plane bending 'bar' modes in the acene 'family' show that these molecular vibrations can be treated as classical vibrating sheets and bars of graphene, respectively. The analysis also shows that the peak position of these modes is very sensitive to the area of the emitting PAH and does not depend on the particular geometry. Thus, these longest wavelength PAH bands could provide a unique handle on the size of the largest species in the interstellar PAH family. However, these bands are weak. Observing highly excited regions showing the mid-IR bands in which the emission from classical dust peaks at short wavelengths offers the best chance of detecting PAH emission in the far-IR. For these regions

  17. Volatile profiling of aromatic traditional medicinal plant, Polygonum minus in different tissues and its biological activities.

    Science.gov (United States)

    Ahmad, Rafidah; Baharum, Syarul Nataqain; Bunawan, Hamidun; Lee, Minki; Mohd Noor, Normah; Rohani, Emelda Roseleena; Ilias, Norashikin; Zin, Noraziah Mohamad

    2014-01-01

    The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots) of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME) and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS). Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol) extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane) showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA) compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus. PMID:25420073

  18. Volatile Profiling of Aromatic Traditional Medicinal Plant, Polygonum minus in Different Tissues and Its Biological Activities

    Directory of Open Access Journals (Sweden)

    Rafidah Ahmad

    2014-11-01

    Full Text Available The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS. Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus.

  19. (Hetero)aromatics from dienynes, enediynes and enyne-allenes.

    Science.gov (United States)

    Raviola, Carlotta; Protti, Stefano; Ravelli, Davide; Fagnoni, Maurizio

    2016-08-01

    The construction of aromatic rings has become a key objective for organic chemists. While several strategies have been developed for the functionalization of pre-formed aromatic rings, the direct construction of an aromatic core starting from polyunsaturated systems is yet a less explored field. The potential of such reactions in the formation of aromatics increased at a regular pace in the last few years. Nowadays, there are reliable and well-established procedures to prepare polyenic derivatives, such as dienynes, enediynes, enyne-allenes and hetero-analogues. This has stimulated their use in the development of innovative cycloaromatizations. Different examples have recently emerged, suggesting large potential of this strategy in the preparation of (hetero)aromatics. Accordingly, this review highlights the recent advancements in this field and describes the different conditions exploited to trigger the process, including thermal and photochemical activation, as well as the use of transition metal catalysis and the addition of electrophiles/nucleophiles or radical species. PMID:27263976

  20. Degradation of aromatic compounds in plants grown under aseptic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mithaishvili, T.; Ugrekhelidze, D.; Tsereteli, B.; Sadunishvili, T.; Kvesitadze, G. [Durmishidze Inst. of Biochemistry and Biotechnology, Academy of Sciences of Georgia, Tbilisi (Georgia); Scalla, R. [Lab. des Xenobiotiques, INRA, Toulouse (France)

    2005-02-01

    The aim of the work is to investigate the ability of higher plants to absorb and detoxify environmental pollutants - aromatic compounds via aromatic ring cleavage. Transformation of {sup 14}C specifically labelled benzene derivatives, [1-6-{sup 14}C]-nitrobenzene, [1-6-{sup 14}C]-aniline, [1-{sup 14}C]- and [7-{sup 14}C]-benzoic acid, in axenic seedlings of maize (Zea mays L.), kidney bean (Phaseolus vulgaris L.), pea (Pisum sativum L.) and pumpkin (Cucurbita pepo L.) were studied. After penetration in plants, the above xenobiotics are transformed by oxidative or reductive reactions, conjugation with cell endogenous compounds, and binding to biopolymers. The initial stage of oxidative degradation consists in hydroxylation reactions. The aromatic ring can then be cleaved and degraded into organic acids of the Krebs cycle. Ring cleavage is accompanied by {sup 14}CO{sub 2} evolution. Aromatic ring cleavage in plants has thus been demonstrated for different xenobiotics carrying different substitutions on their benzene ring. Conjugation with low molecular peptides is the main pathway of aromatic xenobiotics detoxification. Peptide conjugates are formed both by the initial xenobiotics (except nitrobenzene) and by intermediate transformation products. The chemical nature of the radioactive fragment and the amino acid composition of peptides participating in conjugation were identified. (orig.)

  1. A photochemical approach to aromatic extension of the corannulene nucleus.

    Science.gov (United States)

    Rajeshkumar, Venkatachalam; Stuparu, Mihaiela C

    2016-08-01

    A high yielding, general, and mild synthetic strategy is established for aromatic annulation of the corannulene scaffold. In this approach, a corannulene-based aldehyde, ylide, or ketone compound is conjugated with an aromatic unit of choice through a Wittig reaction. The resulting stilbene-like precursor can be subjected to a photochemically induced oxidative-cyclization process to yield a corannulene structure with an extended π-framework. The generality of synthesis allows for preparation of a wide range of polycyclic aromatic arene as well as heteroarene structures. Meanwhile, the mild nature of the developed protocol permits for incorporation of reactive and functional substituents onto the fused aromatic scaffold. Furthermore, efficient and simple synthesis ensures access to significant amounts of the material in a facile manner. In essence, this work demonstrates, for the first time, that photochemical synthesis is a highly practical alternative to the known flash vacuum pyrolysis and metal catalyzed processes for the aromatic extension of the bucky-bowl structure. PMID:27440449

  2. Genetic Variability in Bangladeshi Aromatic Rice through RAPD Analysis

    Directory of Open Access Journals (Sweden)

    Mehfuz Hasan

    2014-10-01

    Full Text Available Genetic polymorphism and relationships among 30 commercial varieties of Bangladeshi aromatic rice (Oryza sativa L. were established using random amplified polymorphic DNA (RAPD primers. Out of fifty 10-mer RAPD primers screened initially, four were chosen and used in a comparative analysis of different varieties of indigenous Bangladeshi aromatic rice. Of the 33 total RAPD fragments amplified, 7 (21.21% were found to be shared by individuals of all eight varieties. The remaining 26 fragments were found to be polymorphic (78.79%. Pair-wise estimates of similarity ranged from 0.101 to 0.911. Highest genetic diversity was determined between Radhunipagol and Dubsail varieties (0.911. The amount of genetic diversity within aromatic rice germplasm was quite high as determined by the genetic similarity coefficients between varieties. Genetic similarities obtained from RAPD data were also used to create a cluster diagram. Cluster analysis using an un-weighted pair-group method with arithmetic averages (UPGMA was used to group the varieties and the 30 aromatic rice varieties were grouped into 6 clusters where cluster I includes the maximum number of varieties (9. Cluster VI includes minimum number of varieties (2. This Study offered a rapid and reliable method for the estimation of variability between different varieties which could be utilized by the breeders for further improvement of the local aromatic rice varieties.

  3. Terahertz reflection spectroscopy of Debye relaxation in polar liquids

    DEFF Research Database (Denmark)

    Møller, Uffe; Cooke, David; Tanaka, Koichiro;

    2009-01-01

    Terahertz (THz) radiation interacts strongly with the intermolecular hydrogen-bond network in aqueous liquids. The dielectric properties of liquid water and aqueous solutions in the THz spectral region are closely linked to the microscopic dynamics of the liquid solution, and hence THz spectroscopy...... offers an important insight into fundamental intermolecular interactions in polar liquids. At the same time, the strong and characteristic interaction between THz radiation and liquids offers a methodology for the classification of liquids inside containers, and hence the THz region is suitable...... for remote detection of some of the properties of bottled liquids. Here we present a review of THz spectroscopy and modeling of water-ethanol mixtures, and establish a link between the dielectric function of water-ethanol mixtures and some of their thermodynamic properties. We then review how the knowledge...

  4. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures, obtained from PAH-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Trzesicka-Mlynarz, D.; Ward, O. P.

    1995-06-01

    A mixed culture, isolated from soil contaminated with polycyclic aromatic hydrocarbons (PAHs) grew on and degraded fluoranthene in aqueous media supplemented with glucose, yeast extract and peptone. A pure culture of Pseudomona sp. strain HL7b which was known to degrade fluoranthene was incorporated into initial experiments for comparative purposes. Increased complex nitrogen levels in the aqueous media promoted bacteria growth, and fluoranthene degradation, while high glucose levels diminished fluoranthene degradation. The mixed culture containing 4 Gram-negative rods biodegraded the PAH mixture better than the pure culture. Pure cultures exhibited a good capacity for removal of more water-soluble PAHs, but a lesser capacity for low water-soluble PAHs. 4 tabs., 3 figs., 26 refs.

  5. Measuring CMB Polarization with BOOMERANG

    CERN Document Server

    Montroy, T; Balbi, A; Bock, J J; Bond, J R; Borrill, J; Boscaleri, A; Cabella, P; Contaldi, C R; Crill, B P; De Bernardis, P; De Gasperis, G; De Oliveira-Costa, A; De Troia, G; Stefano, G; Ganga, K; Hivon, E; Hristov, V V; Iacoangeli, A; Jaffe, A H; Kisner, T S; Jones, W C; Lange, A E; Masi, S; Mauskopf, P D; MacTavish, C; Melchiorri, A; Nati, F; Natoli, P; Netterfield, C B; Pascale, E; Piacentini, F; Pogosyan, D; Polenta, G; Prunet, S; Ricciardi, S; Romeo, G; Ruhl, J E; Torbet, E; Tegmark, M; Vittorio, N

    2003-01-01

    BOOMERANG is a balloon-borne telescope designed for long duration (LDB) flights around Antarctica. The second LDB Flight of BOOMERANG took place in January 2003. The primary goal of this flight was to measure the polarization of the CMB. The receiver uses polarization sensitive bolometers at 145 GHz. Polarizing grids provide polarization sensitivity at 245 and 345 GHz. We describe the BOOMERANG telescope noting changes made for 2003 LDB flight, and discuss some of the issues involved in the measurement of polarization with bolometers. Lastly, we report on the 2003 flight and provide an estimate of the expected results.

  6. Hyperon polarization and magnetic moments

    International Nuclear Information System (INIS)

    Inclusively produced hyperons with significant polarization were first observed at Fermilab about seventeen years ago. This and subsequent experiments showed that Λ degree were produced polarized while bar Λ degree had no polarization in the same kinematical region. This set the stage for many experiments which showed that most hyperons are produced polarized. Recent Fermilab experiments have showed that this phenomena is even more complex and theoretical understanding is still lacking. Nevertheless polarized hyperon beams have been an extremely useful experimental tool in measuring hyperon magnetic moments. Recently, magnetic moment precession of channeled particles in bent crystals has been observed. This opens the possibility of measuring the magnetic moments of charmed baryons

  7. Broadband perfect polarization conversion metasurfaces

    International Nuclear Information System (INIS)

    We propose a broadband perfect polarization conversion metasurface composed of copper sheet-backed asymmetric double spilt ring resonator (DSRR). The broadband perfect polarization convertibility results from metallic ground and multiple plasmon resonances of the DSRR. Physics of plasmon resonances are governed by the electric and magnetic resonances. Both the simulation and measured results show that the polarization conversion ratio (PCR) is higher than 99% for both x- and y-polarized normally incident EM waves and the fractional bandwidth is about 34.5%. The metasurface possesses the merits of high PCR and broad bandwidth, and thus has great application values in novel polarization-control devices. (paper)

  8. Environmental Behaviors and Toxicities of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Hayakawa, Kazuichi

    2016-01-01

    Airborne particulate matter (PM) has been collected at four cities in Japan starting in the late 1990s, at five or more major cities in China, Korea and Russia starting in 2001 and at the Noto Peninsula starting in 2004. Nine polycyclic aromatic hydrocarbons (PAHs) and eleven nitropolycyclic aromatic hydrocarbons (NPAHs) were determined by HPLC with fluorescence and chemiluminescence detections, respectively. Annual concentrations of PAHs and NPAHs were in the order, China>Russia≫Korea=Japan, with seasonal change (winter>summer). During the observation period, concentrations of PAHs and NPAHs in Japanese cities significantly decreased but the increases in the PAH concentration were observed in Chinese and Russian cities. Concentrations of PAHs and NPAHs were higher in the Northern China than those in the Southern China. At the Noto peninsula, which is in the main path of winter northwest winds and a year-round jet stream that blow from the Asian continent to Japan, the concentrations were high in winter and low in summer every year. A cluster analysis and back trajectory analysis indicated that PAHs and NPAHs were long-range transported from Northeastern China, where coal burning systems such as coal-heating boilers are considered to be the major contributors of PAHs and NPAHs. A dramatic change in atmospheric concentrations of PAHs and NPAHs in East Asia suggests the rapid and large change of PM2.5 pollution in East Asia. Considering the adverse health effects of PM2.5, continuous monitoring of atmospheric PAHs and NPAHs is necessary in this area. PMID:26833435

  9. Synthesis and anti-inflammatory properties of some aromatic and heterocyclic aromatic curcuminoids.

    Science.gov (United States)

    Khan, M Akram; El-Khatib, Riyad; Rainsford, K D; Whitehouse, M W

    2012-02-01

    A variety of novel aromatic and heterocyclic aromatic curcuminoids were synthesised, characterised and their anti-inflammatory activities (AIA) determined in vivo. Some of these compounds also were tested for inflammatory mediator production. The AIA of the main representatives of these compounds were assessed by oral administration to female Wistar rats using (a) acute carrageenan-induced paw oedema, (b) chronic adjuvant arthritis (therapeutic mode), and (c) anti-pyretic activity assessed in the yeast pyrexia. Gastric ulceration was determined in pre-inflamed rats. Natural curcumin showed modest aspirin-like anti-inflammatory activity which was enhanced when co-administered with the PGE(1) analogue misoprostol as a synergist. In contrast, four novel curcuminoids (RK-97, RK-103, RK-104 and RK-106) in which the bis-methoxy-phenyl group of curcumin was replaced with bis-dimethoxybutenolidyl-(ascorbate), bis-naphthyl, and bis-furanyl derivatives, respectively, had potent activity in the anti-arthritic assay with little gastric or systemic toxicity, compared with the vehicle-treated controls. Of the curcuminoids the furan RK-106 was the only compound to inhibit production of TNFα and IL-1β in a monocytic cell-line THP-1 in vitro. The inactivity of RK-106 on the production of PGE(2) may be related to its absence of gastrotoxicity. None of the curcuminoids exhibited anti-pyretic activity and this may also be related to its insensitivity to PGE(2). Thus, these novel curcuminoids, such as RK-106, may warrant the development of new low gastro-toxic anti-inflammatory agents with selective inhibitory activity of cytokine inflammatory mediators. PMID:22172598

  10. Elite Polarization and Public Opinion

    DEFF Research Database (Denmark)

    Robison, Joshua; Mullinix, Kevin

    2016-01-01

    Elite polarization has reshaped American politics and is an increasingly salient aspect of news coverage within the United States. As a consequence, a burgeoning body of research attempts to unravel the effects of elite polarization on the mass public. However, we know very little about how...... polarization is communicated to the public by news media. We report the results of one of the first content analyses to delve into the nature of news coverage of elite polarization. We show that such coverage is predominantly critical of polarization. Moreover, we show that unlike coverage of politics focused...... on individual politicians, coverage of elite polarization principally frames partisan divisions as rooted in the values of the parties rather than strategic concerns. We build on these novel findings with two survey experiments exploring the influence of these features of polarization news coverage...

  11. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jin-Gang, E-mail: yujg@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Zhao, Xiu-Hui; Yang, Hua [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Chen, Xiao-Hong [Collaborative Innovation Center of Resource-conserving and Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083 (China); Yang, Qiaoqin [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Yu, Lin-Yan [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Jiang, Jian-Hui [College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Chen, Xiao-Qing, E-mail: xqchen@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China)

    2014-06-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed.

  12. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    International Nuclear Information System (INIS)

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed

  13. Biodegradation of liquid coal tar in an aqueous bioreactor

    International Nuclear Information System (INIS)

    Coal tar is a by-product of the coal gasification process used between 1820 and 1950 to produce a gasified fuel. This material contains numerous monoaromatic and polynuclear aromatic hydrocarbons (PAH) some of which are considered to be carcinogenic. Environmentally disposed coal tar can migrate downward through the soil leaving a light fraction floating on the groundwater, referred to here as liquid coal tar. This research was carried out to determine whether liquid coal tar recovered during site clean-up operations could be cost-effectively biodegraded. Preliminary aqueous microcosm experiments demonstrated that the liquid tar was not toxic to site bacteria in concentrations up to 220,000 ppm. Liquid tar was treated in a 15 liter laboratory bioreactor operated in a batch mode with gas phase oxygen as the oxygen source. Thirty-nine major constituents were followed during treatment. In the first 63 days of operation 87% of these compounds were biodegraded or transformed. 2-, 3-, and 4-ring PAH were degraded 89%, 90%, and 70% respectively. Of the volatile compounds 89% were degraded and only 0.7% were trapped on carbon during reactor off-gassing

  14. Urban Air Pollution from Ethanol (E85) in the Presence of Aqueous Aerosols and Fog

    Science.gov (United States)

    Ginnebaugh, D. L.; Jacobson, M. Z.

    2010-12-01

    This is a study to examine the effect of ethanol (E85) versus gasoline on urban air pollution in the presence of aqueous aerosols and fog. In previous work, we analyzed the temperature-dependence of ethanol and gasoline exhaust chemistry and its impact on urban air pollution considering only gas-phase chemistry. We used the near-explicit Master Chemical Mechanism (MCM, version 3.1, LEEDS University) with the SMVGEAR II chemical ordinary differential solver to provide the speed necessary to simulate explicit chemistry. The MCM has over 13,500 organic reactions and 4,600 species. SMVGEAR II is a sparse-matrix Gear solver that reduces the computation time significantly while maintaining any specified accuracy. We found that the average ozone concentrations through the range of temperatures tested could be higher with E85 than with gasoline by up to 8 parts per billion volume (ppbv) at room temperature but much higher at cold temperatures and low sunlight (winter conditions) for a region with a high nitrogen oxide (NOx) to non-methane organic gases (NMOG) ratio. We also found that the solution to chemistry in a 3-D urban airshed model was practical. We now extend our study to include aqueous chemistry in the presence of aerosols and fog. We combine the Chemical Aqueous Phase Radical Mechanism, CAPRAM 3.0 with the MCM 3.1 and gas-particle transfer in box model calculations. CAPRAM treats aqueous phase chemistry among 390 species and 829 reactions (including 51 gas-to-aqueous phase reactions). We investigate the impact aqueous reactions have on unburned ethanol and acetaldehyde mixing ratios in the atmosphere in particular because acetaldehyde is an ozone precursor and carcinogen, and aqueous oxidation has potential to speed the conversion of unburned ethanol to acetaldehyde. Acetaldehyde also forms acetic acid in aqueous solution. Acetic acid vapor is an eye, nose, and lung irritant, so both species contribute negatively to human health. We look at the impact of aerosol

  15. Estimating release of polycyclic aromatic hydrocarbons from coal-tar contaminated soil at manufactured gas plant sites. Final report

    International Nuclear Information System (INIS)

    One of EPRI's goals regarding the environmental behavior of organic substances consists of developing information and predictive tools to estimate the release potential of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils at manufactured gas (MGP) plant sites. A proper assessment of the distribution of contaminants under equilibrium conditions and the potential for mass-transfer constraints is essential in evaluating the environmental risks of contaminants in the subsurface at MGP sites and for selecting remediation options. The results of this research provide insights into estimating maximum release concentrations of PAHs from MGP soils that have been contaminated by direct contact with the tar or through years of contact with contaminated groundwater. Attention is also given to evaluating the use of water-miscible cosolvents for estimating aqueous phase concentrations, and assessing the role of mass-transfer constraints in the release of PAHs from MGP site soils

  16. THE AQUEOUS AND NON-AQUEOUS ELECTROCHEMISTRY OF POLYACETYLENE : APPLICATION IN HIGH POWER DENSITY RECHARGEABLE BATTERIES

    OpenAIRE

    MacDiarmid, A.; Kaner, R.; Mammone, R.; Heeger, A.

    1983-01-01

    Polyacetylene can be doped either chemically or electrochemically in aqueous solution to the metallic regime. The characteristics of selected rechargeable batteries employing (CH)x, electrodes in non-aqueous electrolytes are described.

  17. Sulfide Catalysts Supported on Porous Aromatic Frameworks for Naphthalene Hydroprocessing

    Directory of Open Access Journals (Sweden)

    Eduard Karakhanov

    2016-08-01

    Full Text Available This paper describes the first example of using porous aromatic frameworks as supports for sulfide catalysts for the hydrogenation of aromatic hydrocarbons. The synthesis of bimetallic Ni-W and Ni-Mo sulfides was performed by in situ decomposition of [(n-Bu4N]2[Ni(MeS42] (Me = W, Mo complexes, supported on mesoporous aromatic framework with a diamond-like structure. It is shown that the highest naphthalene conversions were achieved in the case of additional sulfidation with sulfur. After the reaction, catalysts were characterized by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. The activity of synthesized catalysts has been studied using naphthalene as a model substrate. The materials used in this study were substantially active in hydrogenation and slightly in hydrocracking of naphthalene.

  18. Aromatic rings in chemical and biological recognition: energetics and structures.

    Science.gov (United States)

    Salonen, Laura M; Ellermann, Manuel; Diederich, François

    2011-05-16

    This review describes a multidimensional treatment of molecular recognition phenomena involving aromatic rings in chemical and biological systems. It summarizes new results reported since the appearance of an earlier review in 2003 in host-guest chemistry, biological affinity assays and biostructural analysis, data base mining in the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB), and advanced computational studies. Topics addressed are arene-arene, perfluoroarene-arene, S⋅⋅⋅aromatic, cation-π, and anion-π interactions, as well as hydrogen bonding to π systems. The generated knowledge benefits, in particular, structure-based hit-to-lead development and lead optimization both in the pharmaceutical and in the crop protection industry. It equally facilitates the development of new advanced materials and supramolecular systems, and should inspire further utilization of interactions with aromatic rings to control the stereochemical outcome of synthetic transformations. PMID:21538733

  19. Does oligomerization in fused thiophene affect reactivity and aromaticity?

    Indian Academy of Sciences (India)

    Siddhartha Kr Purkayastha; Pradip Kr Bhattacharyya

    2016-02-01

    Reactivity and aromaticity of a few fused thiophene oligomers and their conformers are discussed in the light of density functional theory (DFT) and conceptual density functional theory. Reactivity parameters, such as hardness () and electrophilicity (), chemical potential () and energy of the HOMO (highest occupied molecular orbital) have been studied. Oligomerization raises the HOMO of the species, which in turn increases the reactivity of the oligomers. The absorption spectra of the species are analysed using TDDFT (time dependent density functional theory). The absorption peaks show red shift with increasing size of the oligomers. Aromaticity of the species is gauged by nucleus independent chemical shift (NICS). The out-of-plane component, (NICSzz) values advocate higher aromatic character at longer distance whereas, NICS supports the reverse.

  20. Theoretical Estimate of Hydride Affinities of Aromatic Carbonyl Compounds

    Institute of Scientific and Technical Information of China (English)

    AI Teng; ZHU Xiao-Qing; CHENG Jin-Pei

    2003-01-01

    @@ Aromatic carbonyl compounds are one type of the most important organic compounds, and the reductions ofthem by hydride agents such as LiAlH4 or NaBH4 are widely used in organic synthesis. The reactivity of carbonyl compounds generally increases in the following order: ketone < aldehyde, and amide < acid < ester < acid halide, which could be related to their hydride affinities (HA). In the previous paper, Robert[1] calculated the absolute HAof a series of small non-aromatic carbonyl compounds. In this paper, we use DFT method at B3LYP/6-311 + + G (2d, 2p)∥B3LYP/6-31 + G* level to estimate hydride affinities of five groups of aromatic carbonyl compounds. The detailed results are listed in Table 1.

  1. New Multi-1,2,3-Selenadiazole Aromatic Derivatives

    Directory of Open Access Journals (Sweden)

    S. Ratrout

    2005-09-01

    Full Text Available The aromatic polyketones 3a-d are versatile compounds for the synthesis of the multi-1,2,3-selenadiazole aromatic derivatives 1a-d. The preparation starts with the reaction between the multi-bromomethylene benzene derivatives 2a-d and 4-hydroxy- acetophenone to give compounds 3a-d which are transformed through the reaction with semicarbazide hydrochloride or ethyl hydrazine carboxylate into the corresponding semicarbazones derivatives 4a-d or hydrazones 5a-d. The reaction with selenium dioxide leads to regiospecific ring closure of semicarbazones or hydrazones to give the multi- 1,2,3-selenadiazole aromatic derivatives in high yield.

  2. Creating pathways towards aromatic building blocks and fine chemicals.

    Science.gov (United States)

    Thompson, Brian; Machas, Michael; Nielsen, David R

    2015-12-01

    Aromatic compounds represent a broad class of chemicals with a range of industrial applications, all of which are conventionally derived from petroleum feedstocks. However, owing to a diversity of available pathway precursors along with natural and engineered enzyme 'parts', microbial cell factories can be engineered to create alternative, renewable routes to many of the same aromatic products. Drawing from the latest tools and strategies in metabolic engineering and synthetic biology, such efforts are becoming an increasingly systematic practice, while continued efforts promise to open new doors to an ever-expanding range and diversity of renewable chemical and material products. This short review will highlight recent and notable achievements related for the microbial production of aromatic chemicals. PMID:26264997

  3. Solubilization of Polycyclic Aromatic Hydrocarbons by Single and Binary Mixed Rhamnolipid-Sophorolipid Biosurfactants.

    Science.gov (United States)

    Song, Dandan; Liang, Shengkang; Yan, Lele; Shang, Yujun; Wang, Xiuli

    2016-07-01

    Biosurfactants are promising additives for surfactant enhanced remediation (SER) technologies due to their low toxicity and high biodegradability. To develop green and efficient additives for SER, the aqueous solubility enhancements of polycyclic aromatic hydrocarbons (PAHs; naphthalene, phenanthrene, and pyrene) by rhamnolipid (RL) and sophorolipid (SL) biosurfactants were investigated in single and binary mixed systems. The solubilization capacities were quantified in terms of the solubility enhancement factor, molar solubilization ratio (MSR), and micelle-water partition coefficient (). Rughbin's model was applied to evaluate the interaction parameters (β) in the mixed RL-SL micelles. The solubility of the PAHs increased linearly with the glycolipid concentration above the critical micelle concentration (CMC) in both single and mixed systems. Binary RL-SL mixtures exhibited greater solubilization than individual glycolipids. At a SL molar fraction of 0.7 to 0.8, the solubilization capacity was the greatest, and the MSR and reached their maximum values, and β values became positive. These results suggest that the two biosurfactants act synergistically to increase the solubility of the PAHs. The solubilization capacity of the RL-SL mixtures increased with increasing temperature and decreased with increasing salinity. The aqueous solubility of phenanthrene reached a maximum value at pH of 5.5. Moreover, the mixed RL-SL systems exhibited a strong ability to solubilize PAHs, even in the presence of heavy metal ions. These mixed biosurfactant systems have the potential to improve the performance of SER technologies using biosurfactants to solubilize hydrophobic organic contaminants by decreasing the applied biosurfactant concentration, which reduces the costs of remediation. PMID:27380091

  4. Experimental study on thermophoresis of colloids in aqueous surfactant solutions

    Science.gov (United States)

    Dong, Ruo-Yu; Zhou, Yi; Yang, Chun; Cao, Bing-Yang

    2015-12-01

    Thermophoresis refers to the motion of particles under a temperature gradient and it is one of the particle manipulation techniques. Regarding the thermophoresis of particles in liquid media, however, many open questions still remain, especially the role of the interfacial effect. This work reports on a systematic experimental investigation of surfactant effects, especially the induced interfacial effect, on the thermophoresis of colloids in aqueous solutions via a microfluidic approach. Two kinds of commonly used surfactants, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), are selected and the results show that from relatively large concentrations, the two surfactants can greatly enhance the thermophilic mobilities. Specifically, it is found that the colloid-water interfaces modified with more polar end groups can potentially lead to a stronger thermophilic tendency. Due to the complex effects of surfactants, further theoretical model development is needed to quantitatively describe the dependence of thermophoresis on the interface characteristics.

  5. Corrosion behavior of bulk metallic glasses in different aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The corrosion behavior of as-cast fully amorphous, structural relaxed amorphous and crystallized Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glasses (BMGs) in NaCl, HCl and NaOH solutions was investigated by electrochemical polarization and immersion methods. X-ray photoelectron spectroscopy measurements was used to analyze the changes of the elements on the alloy surface before and after immersion in various solutions. The corrosion resistance of the Fe65.5Cr4Mo4Ga4P12C5B5.5 BMG was better than its structural relaxation/crystallization counterparts and common alloys (such as stainless steel, carbonized steel, and steel) in the selected aqueous solutions. The high corrosion resistance of this alloy in corrosive solutions leads to the formation of Fe-, Cr- and Mo-enriched protective thin surface films.

  6. Specific Na+ and K+ Cation Effects on the Interfacial Water Molecules at the Air/Aqueous Salt Solution Interfaces Probed with Non-resonant Second Harmonic Generation (SHG)

    OpenAIRE

    Bian, Hong-tao; Feng, Ran-Ran; Guo, Yuan; Wang, Hong-fei

    2008-01-01

    Here we report the polarization dependent non-resonant second harmonic generation (SHG) measurement of the interfacial water molecules at the aqueous solution of the following salts: NaF, NaCl, NaBr, KF, KCl, and KBr. Through quantitative polarization analysis of the SHG data,the orientational parameter D value and the relative surface density of the interfacial water molecules at these aqueous solution surfaces were determined. From these results we found that addition of each of the six sal...

  7. Classification of Malaysia aromatic rice using multivariate statistical analysis

    International Nuclear Information System (INIS)

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC–MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties

  8. Classification of Malaysia aromatic rice using multivariate statistical analysis

    Science.gov (United States)

    Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.

    2015-05-01

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC-MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.

  9. Classification of Malaysia aromatic rice using multivariate statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A. [School of Mechatronic Engineering, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis (Malaysia); Omar, O. [Malaysian Agriculture Research and Development Institute (MARDI), Persiaran MARDI-UPM, 43400 Serdang, Selangor (Malaysia)

    2015-05-15

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC–MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.

  10. Organization of Astaxanthin within Oil Bodies of Haematococcus pluvialis Studied with Polarization-Dependent Harmonic Generation Microscopy

    OpenAIRE

    Tokarz, Danielle; Cisek, Richard; El-Ansari, Omar; Espie, George S.; Fekl, Ulrich; Barzda, Virginijus

    2014-01-01

    Nonlinear optical microscopy was used to image the localization of astaxanthin accumulation in the green alga, Haematococcus pluvialis. Polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and third harmonic generation (THG) microscopy was applied to study the crystalline organization of astaxanthin molecules in light-stressed H. pluvialis in vivo. Since astaxanthin readily forms H- and J-aggregates in aqueous solutions, PIPO THG studies of astaxanthin aggregates containe...

  11. Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge.

    Science.gov (United States)

    Devi, Parmila; Saroha, Anil K

    2015-09-01

    The polycyclic aromatic hydrocarbons (PAHs) toxicity and sorption behaviour of biochars prepared from pyrolysis of paper mill effluent treatment plant (ETP) sludge in temperature range 200-700 °C was studied. The sorption behaviour was found to depend on the degree of carbonization where the fractions of carbonized and uncarbonized organic content in the biochar act as an adsorption media and partition media, respectively. The sorption and partition fractions were quantified by isotherm separation method and isotherm parameters were correlated with biochar properties (aromaticity, polarity, surface area, pore volume and ash content). The risk assessment for the 16 priority EPA PAHs present in the biochar matrix was performed and it was found that the concentrations of the PAHs in the biochar were within the permissible limits prescribed by US EPA (except BC400 and BC500 for high molecular weight PAHs). PMID:26048085

  12. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid

    Science.gov (United States)

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-01

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (Ep, 1.10 ≤ Ep ≤ 1.50 V), polarization time (tp, 100 ≤ tp ≤ 104 s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (dox). Because X1 > dox for the entire range of Ep, tp, and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Ptδ+-Oδ- surface dipole (μPtO), and the potential drop (Vox) and electric field (Eox) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide.

  13. Nickel-Catalyzed Aromatic C-H Functionalization.

    Science.gov (United States)

    Yamaguchi, Junichiro; Muto, Kei; Itami, Kenichiro

    2016-08-01

    Catalytic C-H functionalization using transition metals has received significant interest from organic chemists because it provides a new strategy to construct carbon-carbon bonds and carbon-heteroatom bonds in highly functionalized, complex molecules without pre-functionalization. Recently, inexpensive catalysts based on transition metals such as copper, iron, cobalt, and nickel have seen more use in the laboratory. This review describes recent progress in nickel-catalyzed aromatic C-H functionalization reactions classified by reaction types and reaction partners. Furthermore, some reaction mechanisms are described and cutting-edge syntheses of natural products and pharmaceuticals using nickel-catalyzed aromatic C-H functionalization are presented. PMID:27573407

  14. STUDY OF AROMATIC CONTENT OF DIFFERENT BRANDIES MADE IN ARMENIA

    OpenAIRE

    Sukoyan M. R.; Kazumyan K. N.; Gharibyan H. A.; Guguchkina T. I.; Troshin L. P.

    2014-01-01

    Brandy alcohols from the grades of Muscat Berkatu, Kakhet and mixes of white grades of grapes became objects of researches. The content of some aromatic components of wine alcohols was investigated using the device of a gas-liquid chromatography Clarus-400 (with the ardent and ionization detector, a capillary column, 60 m x 0,32 mm, Elite-WAX ETR, gas-carrier-helium). Muscat alcohol according to the general content of aromatic substances (919,35 mg / 100 ml a.a.) was different from the other ...

  15. Database of the Amazon aromatic plants and their essential oils

    OpenAIRE

    José Guilherme S. Maia; Eloísa Helena A. Andrade

    2009-01-01

    The aromatic flora of the Amazon has been inventoried for 30 years. In this sense, were made over 500 field trips to collect over 2500 plants and to obtain more than 2000 essential oils and aroma concentrates, all of them submitted to GC and GC-MS. This work led to the creation of a database for the aromatic plants of the Amazon, which catalogs general information about 1250 specimens. The database has allowed the publication of the chemical composition of the oils and aromas of more than 350...

  16. Low toxicity aromatic diamine curing agents for adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Dorsey, G.F.

    1993-08-24

    Increasing severity of regulations for handling of hazardous materials has led to formulation of adhesives with considerably lowered toxicities for use at the Oak Ridge Y-12 Plant. Fundamental was the development of Asilamine aromatic diamines, a family of liquid aromatic diamines useful as substitutes for methylenedianiline (MDA), a widely used adhesives curing agent. The use of Asilamine has allowed us to continue operations without dealing with expensive measures for regulation of MDA as a carcinogen promulgated by the Occupational Safety and Health Administration (OSHA).

  17. Aroma transition from rosemary leaves during aromatization of olive oil

    Directory of Open Access Journals (Sweden)

    Mustafa Yılmazer

    2016-04-01

    Full Text Available The aroma profile of aromatized olive oil was determined in this study. The primary objective was to investigate the transition of major aroma compounds from rosemary and olive fruit during the kneading step of olive oil production by response surface methodology. For this purpose, temperature, time, and amount of rosemary leaves were determined as independent variables. The results indicated that temperature and time did not affect the transition of target compounds, but rosemary leaves addition had a strong influence on transition, especially for characteristic aroma compounds of this herb. Adequacies of developed models were found to be high enough to predict each aromatic component of interest.

  18. Synthesis and Characterization of Aliphatic-Aromatic Hyperbranched Polyesters

    Institute of Scientific and Technical Information of China (English)

    唐黎明; 张晓龙; 邱藤; 刘德山

    2002-01-01

    Hyperbranched polymers possess special architectures and have potential applications in various areas. In this study, two AB2 monomers, dipropyl 5-(hydroxyethoxy) isophthalate (I) and 5-hydroxyethoxyisophthaic acid (II), were prepared. By bulk polycondensation of each monomer, two aliphatic-aromatic hyperbranched polyesters were prepared and characterized by 1H-nuclear magnetic resonance (1H-NMR), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), and scanning electron microscopy (SEM). Compared with all-aromatic hyperbranched polyesters, the prepared polymers showed lower glass transition temperatures in connection with the moderate decrease in their decomposition temperatures.

  19. Development and Application of Heat-integrated Aromatics Fractionation Process

    Institute of Scientific and Technical Information of China (English)

    Yang Weisheng; Kong Dejin; Tan Yongzhong

    2009-01-01

    The PRO/Ⅱ process simulation software was applied to carry out simulated calculation of the aromatics frac-tionation unit and the heat integrated rectification process was proposed for the aromatics fractionation section of the 1.0 Mt/a toluene disproportionation unit at the Zhenhai Refining and Chemical Company. The optimized operating parameters were obtained through the energy utilization analysis, process simulation, heat exchanger calculations and comparisons of utility consumption. The operation of commercialized unit has revealed that the design parameters of each rectification column were consistent with the operation results, and the utility consumption was about 47% lower than the waditional heat integrated process.

  20. DAR Assisted Layer-by-Layer Assembly of Aromatic Compounds

    Institute of Scientific and Technical Information of China (English)

    姜思光; 陈晓东; 张莉; 刘鸣华

    2003-01-01

    A facile DAR (diphenylamine-4-diazonium-formaldehyde resin)assisted layer-by-layer (LbL) assembly of uitrathin organic film of aromatic compounds has been investigated. The muitilayer of pyrene or anthracene was fabricated through simple dipping of the glass slide into the mixed solution of DAR with the target compounds. In this method, DAR acted as an assistant compound to help the assembling of the aromatic compounds. Such a convenient deposition method not only reserves the advantages of the traditional LbL technique but also simplifies the technique and extends the effectiveness of LbL technique to small molecules without any charge.