WorldWideScience

Sample records for aqueous effluent decontamination

  1. The potentialities of the complexation ultrafiltration technique for the decontamination of fission product contaminated aqueous effluents

    International Nuclear Information System (INIS)

    Many nuclear researchers and industrial operators lay emphasis on improving the back end of the fuel cycle. A major problem concerns the liquid wastes generated by the reprocessing plant at La Hague, discharged into the sea after treatment in the Effluent Treatment Station (STE) 3), and which have become crucial matter. The activity of these wastes is well below the current legal limits, and is constantly decreasing these last years. To bring it close to zero, and ambitious goal, entails innovative new reprocessing techniques. We accordingly investigated the possibilities of complexation-ultrafiltration, a technique that uses water-soluble macromolecules to complex the target elements to be separated. We first achieved the strontium (II) separation with poly-acrylic and poly-sulfonic acids. The effects of pH and NaNO3 concentration influence on Sr (II) complexation were studied. The Sr (II) complexation and concentration phases, followed by cation de-complexation to recover the polymer, were also taken into account. This research, combined with a potentiometric study of the polymers, offered a close understanding of the chemical systems involved, and of the operating conditions and limits of complexation-ultrafiltration. The laboratory results were also validated on a tangential ultrafiltration pilot plant. We then used complexation-ultrafiltration to treat a real effluent generated bu La Hague's STE 3 plant. This experiment demonstrated minimum 90 % decontamination of Sr (II) (with polyacrylate complexing agent), and also for 134-137Cs (with simple ultrafiltration). The use of two polyamides allowed partial decontamination of the effluent for 60Co and 106Ru. This work therefore offers a global approach to complexation-ultrafiltration, from laboratory to pilot scale, on real and simulated effluents. The future of this technique relies chiefly on the ability to solve the problem of polymer recovery. In other respect, complexation-ultrafiltration clearly offers a

  2. Introduction of a cation in aqueous solution by electrolytic dissolution of metal. Applications to the decontamination of radioactive effluents

    International Nuclear Information System (INIS)

    This research thesis aims at comparing results obtained in chemical decontamination of radioactive effluents with a metallic cation introduced by metal electro-dissolution or by dose addition. After an overview of methods used for the purification of radioactive effluents and a more precise presentation of chemical co-precipitation, the author reports preliminary tests of the application of chemical co-precipitation to the decontamination of radioactive effluents, reports the analysis of iron, zinc and copper behaviour in aqueous environment by means of thermodynamic diagrams and current-voltage curves. He reports the design and use of two electro-dissolution sets, and the application of copper electrolytic dissolution to the elimination of ruthenium in radioactive effluents. He finally addresses the purification treatment of effluents of nuclear reactors

  3. Recent studies on advanced methods for the decontamination of aqueous effluents

    International Nuclear Information System (INIS)

    The Harwell Laboratory has for many years been engaged in the design and development of processes to reduce the level of radioactivity present in low and intermediate level aqueous radioactive wastes to a very low level. A number of the radionuclides included in this work are those of toxic metals such as chromium, zinc, manganese, cobalt and nickel and therefore the processes that have been developed are also applicable to some of the wastes being generated in the non-nuclear industries. Work in Chemistry Division at Harwell has shown that precipitation processes and the use of inorganic ion-exchange materials in combination with ultrafiltration can achieve very effective decontamination. This paper presents some recent results from studies on decontamination processes and describes how the computer program is being amended to take account of sorption processes

  4. Coir pith of the green coconut in the decontamination of radioactive aqueous effluent

    International Nuclear Information System (INIS)

    Industrial segments as plant of mining, hospitals and university generate considerable volumes of radioactive wastewater containing uranium. The increasing development of the use of the nuclear energy to lead away to an expansion of the sectors of the nuclear fuel cycle, but it leads to security problems and it appears the necessity of control of the removing of uranium and radioactive effluent treatments. Researches evaluate if the technique of the biosorption would promote an alternative process with attractive characteristics of cost-benefit. The residual biomass from agricultural activities has been studied and used as adsorbent of metals and organic composts by low cost, abundance and for being biodegradable. In this work, it is presented the efficiency of the coir pith for the adsorption of ions UO22+. The coir pith is a by-product of the harvest of the coconut, a renewable natural source. The study was accomplished using the batch techniques. The influence from pH 2 to 5, the dose of the coir pith, equilibrium time and the models of kinetic reaction were investigated. It was verified that the adsorption increased with the increase of pH and of the dose. The equilibrium time was of 30 min and the best correspondence with the model of pseudo second-order was observed. The results obtained has been promising, so use as adsorbent of metallic ions represents an economic alternative in relation to the conventional treatment of effluent. (author)

  5. The potentialities of the complexation ultrafiltration technique for the decontamination of fission product contaminated aqueous effluents; Potentialites de la complexation - ultrafiltration a la decontamination d`effluents radioactifs en produits de fission

    Energy Technology Data Exchange (ETDEWEB)

    Thibert, V.

    1995-07-01

    Many nuclear researchers and industrial operators lay emphasis on improving the back end of the fuel cycle. A major problem concerns the liquid wastes generated by the reprocessing plant at La Hague, discharged into the sea after treatment in the Effluent Treatment Station (STE) (3), and which have become crucial matter. The activity of these wastes is well below the current legal limits, and is constantly decreasing these last years. To bring it close to zero, and ambitious goal, entails innovative new reprocessing techniques. We accordingly investigated the possibilities of complexation-ultrafiltration, a technique that uses water-soluble macromolecules to complex the target elements to be separated. We first achieved the strontium (II) separation with poly-acrylic and poly-sulfonic acids. The effects of pH and NaNO{sub 3} concentration influence on Sr (II) complexation were studied. The Sr (II) complexation and concentration phases, followed by cation de-complexation to recover the polymer, were also taken into account. This research, combined with a potentiometric study of the polymers, offered a close understanding of the chemical systems involved, and of the operating conditions and limits of complexation-ultrafiltration. The laboratory results were also validated on a tangential ultrafiltration pilot plant. We then used complexation-ultrafiltration to treat a real effluent generated bu La Hague`s STE 3 plant. This experiment demonstrated minimum 90 % decontamination of Sr (II) (with polyacrylate complexing agent), and also for {sup 134-137}Cs (with simple ultrafiltration). The use of two polyamides allowed partial decontamination of the effluent for {sup 60}Co and {sup 106}Ru. This work therefore offers a global approach to complexation-ultrafiltration, from laboratory to pilot scale, on real and simulated effluents. The future of this technique relies chiefly on the ability to solve the problem of polymer recovery. (Abstract Truncated)

  6. Biosafety and containment plan & design for direct sampling of operating effluent decontamination tanks

    Science.gov (United States)

    Currently, Southeast Poultry Research Laboratory (SEPRL) uses an effluent decontamination system (EDS) that serves as an enhancement, or extra barrier for biocontainment. Wastewater effluent from (A)BSL-3E and (A)BSL-2E laboratories is collected in tanks for thermal inactivation (180°F for 30 minut...

  7. The use of magnetite for decontaminating alpha containing effluents

    International Nuclear Information System (INIS)

    The feasibility of retention of precipitated magnetite by magnetic filtration followed by direct cementation offered an attractive alternative to conventional ferric hydroxide treatment of radioactive liquid effluents. The magnetically-assisted dewatering of laboratory-prepared magnetite was examined in a number of ways, none of which achieved the desired optimum solids content for cementation. Attempts to prepare magnetite in situ from typical effluents containing iron were unsuccessful owing to the presence of interfering ions. Preformed magnetite was reasonably effective at absorbing actinides from solution but did not appear to offer any significant advantage over ferric hydroxide. (author)

  8. Efficient removal of mercury from aqueous solutions and industrial effluent.

    Science.gov (United States)

    Dos Santos, Maria B P; Leal, Katia Z; Oliveira, Fernando J S; Sella, Silvia M; Vieira, Méri D; Marques, Elisa M D; Gomes, Vanessa A C

    2015-01-01

    The objective of this study was to examine the ability of a solid waste produced during beneficiation of ornamental rocks to remove mercury (Hg) from an industrial effluent and aqueous solutions under various conditions. Batch studies have been carried out by observing the effects of pH, concentration of the adsorbate, contact time, and so on. Various sorption isotherm models such as Langmuir, Freundlich, and Tóth have been applied for the adsorbent. Film and intraparticle diffusion were both found to be rate-limiting steps. Adsorption was properly described by the Freundlich model (capacity constant of 0.3090 (mg g(-1))(mg L(-1))(-1/n) and adsorption intensity indicator of 2.2939), which indicated a favorable sorption and encouraged subsequent studies for treatment of Hg-containing industrial effluent. Industrial effluent treatment efficiency reached Hg removals greater than 90% by using ornamental rock solid waste (ORSW). Besides, desorption studies indicated that the maximum recovery of mercury was 100 ± 2% for 1 mol L(-1) HNO3 and 74 ± 8% for 0.1 mol L(-1) HNO3. The ORSW could be reused thrice without significant difference on the Hg removal rate from industrial effluent. These findings place ORSW as a promising efficient and low-cost adsorbent for the removal of Hg from aqueous solutions and industrial effluent. PMID:26301849

  9. Separation of tritium from aqueous effluents

    International Nuclear Information System (INIS)

    This report describes the further development of the so-called ELEX process, carried out from 1 July 1980 until 31 December 1982. The ELEX process is the combination of electrolysis with the catalytic tritium exchange between hydrogen and water in order to accumulate the tritium in the liquid phase. The experimental study of the catalytic tritium exchange between hydrogen and liquid water was continued and the overall exchange rate could be substantially increased. An alternative process based on bithermal exchange of tritium has been evaluated. In the 10 mol h-1 mini-pilot bench scale detritiation unit the ELEX process was successfully demonstrated by detritiating up to now more than 1m3 of water containing up to 100 mCi tritium per dm3, which is the feed concentration to be expected for application of the process in a reprocessing plant. A 280 mol h-1 pilot detritiation installation now being constructed is described. This installation will realize a volume reduction factor of 100 and a process decontamination factor of 100. The maximum total tritium inventory will be about 1000 Ci. The plant consists mainly of a 80 kW electrolyser and a 10 cm diameter exchange column and can be considered as the ultimate step before industrial application of the ELEX process

  10. Continuous environmental monitoring for aqueous effluents

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, Jr., W. W.; Jones, G. Jr.

    1980-05-01

    An aquatic environmental monitor has been developed that will continuously monitor aqueous waste streams from coal processing plants. The monitor contains three different instruments: a continuous chemical oxygen demand monitor and two continuous-flow fluorometers with different excitation-emission characteristics. A prototype instrument was fabricated and evaluated for several different applications. The details of the instrument design and results of its evaluation are presented in this report.

  11. Adsorption behavior of rice husk for the decontamination of chromium from industrial effluents

    International Nuclear Information System (INIS)

    Rice husk, an agricultural waste product, was studied as a potential decontaminant for chromium in the effluents of leather tanning industries. Physico-chemical parameters such as selection of appropriate electrolyte, shaking time, concentration of absorbent and absorbate were studied to optimize the best conditions in which this material can be utilized on commercial scale for the decontamination of effluents. The radiotracer technique was used to determine the distribution of chromium. In certain cases atomic absorption spectrophotometry was also employed. Maximum adsorption was observed at 0.01 mol x dm-3 acid solutions (HNO3, HCl, H2SO4 and HClO4) using 3.0 g of absorbent for 2.73 x 10-3 mol x dm-3 chromium concentration in five minutes equilibration time. Studies show that the adsorption decreases with the increase in the concentrations of all acids. The adsorption data follows the Freundlich isotherm over the range of 2.73 x 10-3 to 2.73 x 10-2 mol x dm-3 chromium concentration. The characteristic Freundlich constants, i.e., 1/n = 0.86 ± 0.06 and A = 2.35 ± 0.06 mmol x g-1 have been computed for the sorption system. Thermodynamic parameters, i.e., ΔG deg, ΔS deg and ΔH deg have also been calculated for the system. Application of the method to a test case of a medium size industry showed that 21 kg of rice husk was sufficient to maintain the NEQS limits of chromium for industrial effluents. (author)

  12. Application of inorganic ion exchangers for low and medium activity radioactive effluent decontamination

    International Nuclear Information System (INIS)

    This study proposes an alternative pretreatment or treatment for low and medium activity liquid wastes, allowing to improve the quality of containment and decrease the cost of storage. Inorganic ion exchangers are used to remove alpha emitters and long lived fission products and concentrate them in a small volume; these exchangers can be converted into a stable matrix by thermal treatment. This treatment, at least for some liquid wastes, don't exclude a complementary decontamination by chemical precipitation. Sludges, arising from precipitation, exempt from alpha emitters and long lived fission products can be stored in a shallow land burial. This study includes two parts: - Measurements of distribution coefficients for the main nuclides in order to choose, for each liquid wastes, the most suitable ion exchanger. - Estimation of performances of selected inorganic ion exchangers, from tests of percolation of genuine effluents

  13. Bioassay analysis of efficacy of phytoremediation in decontamination of coal mine effluent.

    Science.gov (United States)

    Bharti, Sandhya; Banerjee, Tarun Kumar

    2013-06-01

    Phytoremediation efficacy of Lemna minor and Azolla pinnata in decontaminating metals from coal mine effluent (CME) was analyzed using bioassays. Catfish Heteropneustes fossilis were exposed to both the phytoremediated CMEs for the metal bioaccumulation analysis and biochemical alteration in seven vital tissues. Gross concentration of metals accumulated in liver, kidneys, air breathing organs (ABO), skin and muscle were greater in fish exposed to A. pinnata remediated CME (AP-CME) than those exposed to L. minor remediated CME (LP-CME). Total protein concentrations of all the tissues were greater in fish exposed to LP-CME than to AP-CME. Glycogen concentrations were greater in muscle, brain, ABO and skin of LP-CME exposed fish. In remaining tissues (liver, kidneys and gills) concentrations of glycogen were more in AP-CME exposed ones. Total lipid and total DNA concentrations were greater in most of the tissues of fish exposed to LP-CME than to AP-CME. The total RNA concentrations were elevated only in muscle, liver, kidneys and brain of LP-CME exposed fish; in rest of the tissues (gills, ABO and skin) it was greater in AP-CME exposed fish. The values of condition factor (K) and organosomatic index (OSI) of fish exposed to LP-CME and AP-CME were insignificant to those of wild fish. However, the improvements in the biomolecules concentration of tissues of fish exposed to either of the phytoremediated effluent were not equivalent to their concentration in the wild fish. Thus, decontamination of CME by either of these macrophytes was not complete and prolonged exposure of even phytoremediated CMEs exerts deleterious effects on the fish. PMID:23566881

  14. Management of high level radioactive aqueous effluents in advanced partitioning processes

    Energy Technology Data Exchange (ETDEWEB)

    Pochon, Patrick; Sans, Daniele; Lartigaud, Cathy; Bisel, Isabelle [Commissariat a l' Energie Atomique, Centre de Marcoule, BP 17171, Bagnols sur Ceze, 30207 (France)

    2009-06-15

    The context of this study is the development of management strategies for the high level radioactive aqueous effluents generated by advanced minor actinides partitioning processes. In the present nuclear reprocessing plants, high level liquid wastes are concentrated via successive evaporations, with or without de-nitration, to reach the inlet specifications of the downstream processing steps. In contrast to the PUREX process, effluents from advanced actinides partitioning processes contain large amounts of organic compounds (complexing agents, buffers or reducing reagents), which could disrupt concentration operations. Thus, in parallel with new partitioning process development, the compatibility of usual concentration operations with the high level liquid waste issued from them are investigated, and, if necessary, additional treatments to eliminate remaining organic compounds are reviewed. The behaviour of each reagent and related identified by-products is studied in laboratory-scale devices representative of industrial operating conditions. Final concentrated solutions (actinide or fission solutions) and the resulting distillates (i.e. decontaminated effluents) are checked in terms of compatibility with the downstream specifications. Process implementation and safety aspects are also evaluated. Kinetic and thermodynamic constants are measured. After the collection of these data, the effectiveness of the overall continuous process of the effluent treatment (combination of elementary operations) is evaluated through semi-empirical models which are also able to optimize the conditions for implementation. First results indicate that nitric acid streams containing complexing agents (oxalic acid, HEDTA, DTPA) will be managed by usual concentration processes, while buffered solutions ( containing glycolic, citric or malonic acid) will require additional treatments to lower organic carbon concentration. Oxidation process by hydrogen peroxide at boiling temperature has

  15. Aqueous media treatment and decontamination of hazardous chemical and biological substances by contact plasma

    International Nuclear Information System (INIS)

    Usage of non-equilibrium contact plasma for processes of decontamination and neutralization in conditions of manifestation of chemical, biological and radiation terrorism takes on special significance due to portability of equipment and its mobility in places where toxic liquid media hazardous for people's health are located. Processes of decontamination of aqueous media, seminated with pathogenic microorganisms and viruses, treatment of water containing toxic heavy metals, cyanides, surface-active substances, and heavy radioactive elements, are investigated. Examples of activation processes in infected water and toxic aqueous solutions present convincing evidence of the way, how new quality technological approach for achievement of high enough degree of the said media treatment is used in each specific case. Among new properties of water activated as a result of action of non-equilibrium contact plasma, it is necessary to mention presence of cluster structure, confirmed by well-known spectral and physical-chemical methods, presence of peroxide compounds, active particles and radicals. Anti-microbial activity which is displayed under action of plasma in aqueous media (chemically pure water, drinking water, aqueous solutions of sodium chloride, potassium iodide, as well as other inorganic compounds) towards wide range of pathogenic and conventionally pathogenic microorganisms allows use them as reliable, accessible and low-cost preparations for increasing the degree of safety of food products. Combination of such processes with known methods of filtration and ultra-filtration gives an efficient and available complex capable of withstanding any threats, which may arise for population and living organisms. Present-day level of machine-building, electrical engineering, and electronics allows predict creation of industrial plasma installations, adapted to conditions of various terrorist threats, with minimized power consumption and optimized technological parameters

  16. Facility effluent monitoring plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  17. The application of inorganic ion exchangers to the decontamination of radioactive liquid effluents

    International Nuclear Information System (INIS)

    A generic programme of work at Harwell has been investigating the potential application of inorganic exchangers in effluent treatment. Hydrous titanium oxide, manganese dioxide titanium and zirconium phosphates, polyantimonic acid and copper hexacyanoferrate were selected for experimental investigation. An extensive experimental programme has examined the performance of these six materials for the removal of a variety of radionuclides from a wide range of different simulated waste effluents. (author)

  18. Radiation induced decontamination of Cr(Ⅵ), Cu(Ⅱ) and phenol in some tannery effluents

    Institute of Scientific and Technical Information of China (English)

    Hasan M.KHAN; Abdul MAHMOOD

    2007-01-01

    Industrialization has led to a number of environmental problems, such as release of toxic metals and other toxic organic and inorganic compounds to the environment. Among all, the rapid expansion of leather related industries in Pakistan have resulted in considerable environmental problems and effluents from processing of both domestic and imported hides and skins have increased pollution to alarming levels. Some tannery effluents of Peshawar area investigated in the present study showed high concentrations of Cr(Ⅵ) (2.7-12.6 mg/L), Cu(Ⅱ) (2.6-11.4 mg/L) and phenol (0.1-4.2 mg/L). These contaminants are very toxic and must be removed from effluents before releasing into water bodies. A new technique of gamma irradiation has been investigated to decrease the load of COD and concentrations of Cr(Ⅵ), Cu(Ⅱ) and phenol associated with tannery effluents to the permitted values. It was observed that concentration of Cr(Ⅵ) in the effluents can be brought to the permitted level by applying radiation dose of 3 kGy. A radiation dose of 2.5 kGy was required to remove more than 95% of Cu(Ⅱ) and 100 % degradation of phenol in tannery effluents could be achieved by only one kGy of radiation dose.

  19. REMOVAL OF REMAZOL ROSSO RB DYE FROM AQUEOUS EFFLUENTS BY HOMOGENOUS FENTON OXIDATION PROCESSES

    OpenAIRE

    Carmen Zaharia; Victoria Fedorcea; Adrian Beda; Victor Amarandei; Augustin Muresan

    2014-01-01

    The paper presents some data from our laboratory-setup experiments of homogenous oxidative processes with hydrogen peroxide (i.e. advanced Fenton oxidation processes) applied for Remazol Rosso RB dye-containing aqueous systems, especially textile effluents. Therefore, some different operating parameters (including pH, concentration of dye, H2O2 and ferrous ions, oxidation time, temperature, stirring regime, among its) were tested for determination of the best performance in effluent decolorat...

  20. Screening of natural adsorbents for removal of radio-contaminants from aqueous effluents

    International Nuclear Information System (INIS)

    The present paper is a summary of studies carried out to examine the uptake potential of some of the bio/natural adsorbents for removal of radiocontaminants from aqueous effluents. Three different bio/natural materials namely coconut coir pith, sugarcane bagasse and saw dust were selected as adsorbents. Preliminary characterisations of the above adsorbents were carried out and percentage of removal of 239Pu and 241Am from aqueous solutions were checked using batch equilibration method. (author)

  1. Decontamination of cesium, strontium, and cobalt from aqueous solutions by bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M.A. [Univ. of the Punjab, Lahore (Pakistan); Khan, S.A. [Government F.C. College, Lahore (Pakistan)

    1996-12-31

    Sorption studies of cesium, strontium, and cobalt (Cs, Sr, and Co) on bentonite under various experimental conditions, such as contact time, pH, sorbent and sorbate concentration, and temperature, have been performed. The sorption data for all these metals have been interpreted in terms of Freundlich, Langmuir, and Dubinin-Radushkevich equations. Thermodynamics parameters, such as heat of sorption {Delta}H{degrees}, free energy change {Delta}G{degrees}, and entropy change {Delta}S{degrees}, for the sorption of these metals on bentonite have been calculated. The value of {Delta}H{degrees} shows that the sorption of Cs was exothermic, while the sorption of Sr and Co on bentonite were endothermic in nature. The value of {Delta}G{degrees} for their sorption was negative, showing the spontaneity of the process. The maximum loading capacity of Cs, Sr, and Co were 75.5, 22, and 27.5 meq, respectively, for 100 g of bentonite. The mean free energy E of Cs, Sr, and Co sorption on bentonite was 14.5, 9, and 7.7 kJ/mol, respectively. The value of E indicates that ion exchange may be the predominant mode of sorption for these radionuclides. The desorption studies with 0.01 M CaCl{sub 2} and groundwater at low-metal loading on bentonite showed that about 95% of Cs, 85-90% of Sr, and 97% of Co were irreversibly sorbed. Bentonite could be effectively used for the decontamination of wastewater effluent containing low concentrations of radioactive nuclides of Cs, Sr, and Co. 16 refs., 7 figs., 3 tabs.

  2. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT ampersand E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A OE D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT ampersand E projects. This report details the activities to be performed under the A OE D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris

  3. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Backus, P.M.; Benson, C.E.; Gilbert, V.P.

    1994-08-01

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

  4. An approach for arsenic in a contaminated soil: Speciation, fractionation, extraction and effluent decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Giacomino, A.; Malandrino, M. [Department of Analytical Chemistry, University of Torino, Via Pietro Giuria 5, 10125 Torino (Italy); Abollino, O., E-mail: ornella.abollino@unito.i [Department of Analytical Chemistry, University of Torino, Via Pietro Giuria 5, 10125 Torino (Italy); Velayutham, M.; Chinnathangavel, T. [Anna University, Chennai 600 025 (India); Mentasti, E. [Department of Analytical Chemistry, University of Torino, Via Pietro Giuria 5, 10125 Torino (Italy)

    2010-02-15

    The fractionation and speciation of As in a contaminated soil were investigated, and a remediation strategy was tested. Regarding speciation, we found that As(V) prevails over As(III) whereas more than 40% of total arsenic is in organic form. The fractionation of As was investigated with two sequential extraction methods: a low mobility was found. Then we tested the possibility of using phosphoric acid to extract As from the soil and cleaning the washing effluents by sorption onto montmorillonite. The efficiency of the extraction and of the adsorption onto the clay were also investigated for Cr, Cu, Fe, Mn, Ni, Pb and Zn, whose total concentrations and fractionation in the soil are reported here. The extraction percentages for As and metals ranged from 30 to 65%; the residual proportions in the soil are presumably in very unreactive forms. Montmorillonite showed a good uptake capacity towards the investigated pollutants. - Arsenic in a contaminated soil was present in different forms and it was extracted by soil washing followed by effluent treatment by sorption onto a natural clay.

  5. The decontamination of bleaching effluent by pilot-scale solar Fenton process.

    Science.gov (United States)

    Wang, Zhaojiang; Chen, Kefu; Li, Jun; Mo, Lihuan

    2011-01-01

    A solar Fenton process was applied as post-treatment to selectively eliminate organic pollutants and toxicants in bleaching effluents of kraft pulp mills. Experiments were conducted to study the effect of system parameters (pH, initial concentration of H2O2, molar ratio of Fe2+/H2O2 and solar-UV irradiance) on the removals of chemical oxygen demand and colour. The results showed 92.8% of COD and 99.6% of colour were removed at pH 3.5, H2O2 30 mM/ L, Fe2+/H2O2 1:100, solar-UV irradiance 11070 mW/m2, reaction time 120 min. The first-order kinetic model was used to study the dependence of the reaction rate on solar-UV irradiance: a linear relationship was shown to exist between reaction rate constants and solar-UV irradiance. The results of gas chromatography mass spectrometry analysis showed that the toxicity of the bleaching effluents was mainly derived from the presence of mononuclear aromatics, polycyclic aromatic hydrocarbons and organochlorides, which were all degraded into harmless organic acids under the attack of hydroxyl radicals generated from the solar Fenton reaction. PMID:21879547

  6. Results of Hg speciation testing on MCU strip effluent hold tank (SEHT) and decontaminated salt solution hold tank (DSSHT) materials

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-17

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The tenth shipment of samples was designated to include Modular Caustic Side Solvent Extraction Unit (MCU) Strip Effluent Hold Tank (SEHT) and MCU Decontaminated Salt Solution Hold Tank (DSSHT) materials from processing Salt Batch 7b. The MCU SEHT (MCU-15-722) and DSSHT (MCU-15-709) samples were pulled on June 15, 2015. All MCU samples were received at SRNL on June 16, 2015. The DSSHT sample was moved the same day to refrigeration, while the SEHT sample was placed in the Shielded Cells. On July 9, 2015 it was opened and an aliquot diluted 1:100 with Eurofins deionized water and a portion of the diluted sample transferred to a Teflon® bottle prior to moving it to refrigeration that same day. All samples were kept in the dark and refrigerated until final dilutions were prepared for shipment to Eurofins.

  7. REMOVAL OF REMAZOL ROSSO RB DYE FROM AQUEOUS EFFLUENTS BY HOMOGENOUS FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Carmen Zaharia

    2014-06-01

    Full Text Available The paper presents some data from our laboratory-setup experiments of homogenous oxidative processes with hydrogen peroxide (i.e. advanced Fenton oxidation processes applied for Remazol Rosso RB dye-containing aqueous systems, especially textile effluents. Therefore, some different operating parameters (including pH, concentration of dye, H2O2 and ferrous ions, oxidation time, temperature, stirring regime, among its were tested for determination of the best performance in effluent decoloration and dye removal, meaning the optimal values of each studied parameters for highest decoloration or dye removal.

  8. Pilot scale study of a chemical treatment process for decontamination of aqueous radioactive waste of pakistan research reactor-1

    International Nuclear Information System (INIS)

    Chemical treatment process for the low level liquid radioactive waste generated at PINSTECH was previously optimized on lab-scale making use of coprecipitation of hydrous oxides of iron in basic medium. Ferrous sulfate was used as coagulant. Batch wise application of this procedure on pilot scale has been tested on a 1200 L batch volume of typical PINSTECH liquid waste. Different parameters and unit operations have been evaluated. The required data for the construction of a small size treatment plant envisioned can be used for demonstration/teaching purpose as well as for the decontamination of the waste effluents of the Institute. The lab-scale process parameters were verified valid on pilot scale. It was observed that reagent doses can further be economized with out any deterioration of the Decontamination Factors (DF) achieved or of any other aspect of the process. This simple, cost- effective, DF-efficient and time-smart batch wise process could be coupled with an assortment of other treatment operations thus affording universal application. Observations recorded during this study are presented. (author)

  9. Poster 25. Inorganic seed materials for the decontamination of PWR aqueous wastes

    International Nuclear Information System (INIS)

    The use of several inorganic sorbents, used in combination with crossflow membrane filtration, has been studied for the reduction of Cr-51 and Sb-125 levels in a pressurised water reactor waste stream. A mixture of titanium oxide, zirconium phosphate and sodium nickel hexacyanoferrate (II) gave an overall decontamination factor of 20 at a solution pH of 4.5. (author)

  10. Electrolytic treatment of liquid effluents: decontamination by electro coagulation of release water of a petroleum platform; Traitement electrolytique des effluents liquides: decontamination par electrocoagulation des eaux de rejet d'une plate forme petroliere

    Energy Technology Data Exchange (ETDEWEB)

    Nanseu-Njiki, Ch.P.; Ngameni, E.; Poumiba, S. [Yaounde Univ., Laboratoire de Chimie Analytique, Dept. de Chimie Inorganique, Faculte des Sciences (Cameroon); Darchen, A. [Ecole Nationale Superieure de Chimie de Rennes, Laboratoire d' Electrochimie, 35 - Rennes (France)

    2005-07-01

    The water releases of petroleum platforms present lots of pollutants; Usually, these waters are reinjected in ground water when it is possible. In the other cases they are released at the surface and need then a treatment. The electro-coagulation is a suitable method often used. The authors propose to study the optimum conditions of decontamination by this method, by a parametric evaluation (water flow, charge density, ph). Experiments used iron and aluminium electrodes. (A.L.B.)

  11. Advanced biological treatment of aqueous effluent from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Many of the processing steps in the nuclear fuel cycle generate aqueous effluent streams bearing contaminants that can, because of their chemical or radiological properties, pose an environmental hazard. Concentration of such contaminants must be reduced to acceptable levels before the streams can be discharged to the environment. Two classes of contaminants, nitrates and heavy metals, are addressed in this study. Specific techniques aimed at the removal of nitrates and radioactive heavy metals by biological processes are being developed, tested, and demonstrated. Although cost comparisons between biological processes and current treatment methods will be presented, these comparisons may be misleading because biological processes yield environmentally better end results which are difficult to price. The fluidized-bed biological denitrification process is an environmentally acceptable and economically sound method for the disposal of nonreusable sources of nitrate effluents. A very high denitrification rate can be obtained in a FBR as the result of a high concentration of denitrification bacteria in the bioreactor and the stagewise operation resulting from plug flow in the reactor. The overall denitrification rate in an FBR ranges from 20- to 100-fold greater than that observed for an STR bioreactor. It has been shown that the system can be operated using Ca2+, Na+, or NH4+ cations at nitrate concentrations up to 1 g/liter without inhibition. Biological sorption of uranium and other radionuclides (particularly the actinides) from dilute aqueous waste streams shows considerable promise as a means of recovering these valuable resources and reducing the environmental impact, however, further development efforts are required

  12. Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution.

    Science.gov (United States)

    Li, Bing; Zhu, Xiangyang; Hu, Kaili; Li, Yongsheng; Feng, Jianfang; Shi, Jianlin; Gu, Jinlou

    2016-01-25

    Given the great harm to the human health of organic arsenic compounds (OACs), developing highly efficient adsorbents with both rapid adsorption rate and high saturation capacity is paramount important. Herein, Zr-based metal-organic frameworks (MOFs) of UiO-66 have been successfully exploited for the efficient decontamination of a typical organic arsenic compound of roxarsone (ROX) from aqueous solution. The influences of the most significant parameters such as contact time, adsorbate concentration, pH as well as ionic strength on the adsorption of ROX were investigated. The amount of missing-linker defects in UiO-66 was systematically tuned by changing the concentration of modulator in the reactants. The presence of the defects not only resulted in the dramatically enhanced porosity, but also induced the creation of ZrOH groups which served as the main active adsorption sites for efficient ROX sequestration. As a result, adsorptive capacity of ROX over UiO-66 could be improved to 730 mg/g, which was much higher than those of many reported adsorbents. Meanwhile, the adsorption equilibrium time could be reduced to as short as 30 min. These merits, combined with their excellent stability, prefigure the great potentials of these defect-tunable UiO-66 MOFs as adsorbents for the efficient removal of various OACs from the polluted water.

  13. Evaluation of thin-film evaporation for decontamination and immobilization of aqueous nuclear waste

    International Nuclear Information System (INIS)

    In the early 1980's, AECL, at the Chalk River Laboratory (CRL) site, built a Waste Treatment Centre (WTC) for managing low level solid and aqueous liquid wastes. The objective was to demonstrate processes for converting Canadian Deuterium Uranium (CANDU) waste to a form suitable for disposal while meeting or exceeding current environmental regulations. At present, two liquid waste streams are being treated at the Waste Treatment Centre. The liquid waste streams are volume reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO), and tubular reverse osmosis (TRO) membrane technologies [1]. The solutions are evaporated while simultaneously adding bitumen in a thin-film evaporator. A water-free product of chemical and radiochemical salts and bitumen is removed in 200 L galvanized steel drums for storage and eventual disposal in the CRL Waste Management Area. The feed stream to the thin-film evaporator typically has a β/γ activity of about 1 - 3 μCi/mL. This intermediate-level radioactive stream is concentrated by a factor of about 10, while simultaneously being immobilized. The radiation field of product drums on contact typically has a value of 0.5 to 3 R/h depending upon the feed concentration of radioactivity to the evaporator. The total solids content in the 200 L drum ranges from 25% to 35%. Encapsulated in the bitumen matrix are a variety of non-radiochemical salts (including sodium phosphate, sodium sulphate, and sodium carbonate) which comprise the bulk of the total solids in the product drum. The drum contains less than 1% of free water. The paper will discuss the volume reduction capability of the plant, with an emphasis on the immobilization of the aqueous waste with bitumen in a thin-film evaporator. Operations experience gained from over 200 campaigns is documented in the paper. (author)

  14. Radioactive decontamination

    International Nuclear Information System (INIS)

    This Code of Practice covers: (a) the decontamination of plant items, buildings and associated equipment; (b) decontamination of protective clothing; (c) simple personal decontamination; and (d) the basic mechanisms of contamination and their influence on decontaminability. (author)

  15. Heterocoagulated clay-derived adsorbents for phosphate decontamination from aqueous solution.

    Science.gov (United States)

    Gan, Fangqun; Luo, Yufeng; Hang, Xiaoshuai; Zhao, Hongting

    2016-01-15

    A series of nanocomposite adsorbents were prepared by heterocoagulation of negatively charged delaminated montmorillonite (Mt) and positively charged synthetic layered double hydroxide (LDH) colloids with different LDH loading amounts. The mineralogy and physicochemical properties of the resulting nanocomposites were characterized. Their potential applications for phosphate (P) removal from aqueous solution, as a function of P concentration (2.5-200 mg/L), contact time (1 min-48 h) and pH (3-10), were evaluated by using batch adsorption modes. It was found that the adsorption data could be well described by both Freundlich and Langmuir isotherm models. The maximum adsorption capacity of three different LDH heterocoagulated montmorillonites (LDH-Mts) for P removal was found to increase with LDH loadings, reaching 12.6, 16.2 and 23.3 mg/g respectively; Adsorption kinetic data revealed that 90% of adsorption onto LDH-Mts was completed within 1 h (h) and the adsorption process could be well described by the pseudo-second-order model. These results demonstrated that heterocoagulation of Mt and LDH could preserve the adsorption capacity of LDH for P and enhance the stability of both clay minerals, and LDH-Mts could be effectively used as a potential promising filtration medium for P removal.

  16. Trends in oil discharged with aqueous effluents from oil refineries in Europe. 2010 survey data

    Energy Technology Data Exchange (ETDEWEB)

    Baldoni-Andrey, P.; Girling, A.; Bakker, A.; Muller, A.; Struijk, K.; Fotiadou, I.; Andres Huertas, A.; Negroni, J.; Neal, G.; Den Haan, K.

    2012-10-15

    This report summarises data gathered by CONCAWE in a 2010 survey of effluent water quantity, oil content and treatment processes for refinery installations situated in the EU-27 countries and those in Croatia Norway and Switzerland. Data obtained in previous surveys are included for comparison. Operators of 100 installations completed questionnaires, of which two of these only reported data for water intake and discharge. The number of 100 reporting locations is lower than the 125 locations that reported in 2008. There are several reasons for this. Since the last data gathering exercise several refinery installations have been closed or moth-balled, turning these into fuels depots without any production. Another four sites that are still operating today informed CONCAWE that these would not be in a position to complete the questionnaire for 2010. Finally, the ownership of some installations changed since 2008, leading to CONCAWE being unable to identify an appropriate contact person for timely completion of the questionnaire. The data provided through the completion of the questionnaire have been extracted into an MS-ACCESS Database. This enabled sorting, extraction, analyses and presentation of the information in a range of formats. The information presented in this report relates to a selected range of parameters that have been covered by previous surveys carried out since 1969. Two further reports will cover the results of the complete survey in more detail; one concerning final discharge quality parameters and the other focussing on water use and consumption. The results reported herein show that the volume of process water that was being discharged from EU-27+3 (Norway, Croatia and Switzerland) - located refineries decreased between 2008 and 2010 while the overall volume of aqueous discharges remained about the same or slightly increased over the same period. When expressed relative to refinery capacities and throughputs there is a slight increase in 2010 in

  17. Removal of toxic metals from aqueous effluents by electrodeposition in a spouted bed electrochemical reactor.

    Science.gov (United States)

    Martins, Rosimeire; Britto-Costa, Pedro H; Ruotolo, Luís Augusto M

    2012-06-01

    This work investigates the removal of metal ions from synthetic aqueous effluents using a spouted bed electrochemical reactor whose cathode was composed of 1.0 mm copper particles. Using a Box-Behnken factorial design, the effects of current (I), electrode thickness (L), draught distance (d) and support electrolyte concentration (C(s)) on current efficiency (CE), space-time yield (Y) and energy consumption (EC) were analysed. The results were statistically analysed and the effect of each variable was evaluated using the surface response methodology. The results showed that C(s) is the most important variable to consider in the process optimization. A current of 8.0 A can be applied in order to obtain high Y and CE with an acceptable EC. Electrode thicknesses greater than 1.3 cm are not recommended because the irregular potential distribution leads to a Y drop owing to the low CE observed for this condition. The draught distance does not have statistical significance; therefore, the particle circulation rate is not important in this kind of electrochemical reactor. PMID:22856281

  18. Desempenho de biomassas na adsorção de hidrocarbonetos leves em efluentes aquosos Performance of biomasses in the adsorption of simple hydrocarbons in aqueous effluents

    Directory of Open Access Journals (Sweden)

    Elba Gomes dos Santos

    2007-04-01

    Full Text Available Removal of hydrocarbons from aqueous effluents using biosorbents was investigated. The effluent was simulated by a dispersion of gasoline (simple hydrocarbons in water. Corn-cob, wood powder, coconut mesocarp and sugar-cane bagasse were used as adsorbents and their performance verified by means of batch experiments performed in an agitated vessel. The influence of input variables such as hydrocarbon concentration, mass of biomass and agitation level on the adsorbents' capacity was studied by means of factorial design. The results indicated that, among the materials studied, coconut mesocarp and sugar-cane bagasse can be considered promising biomasses for treating aqueous effluents contaminated by hydrocarbons.

  19. Environmental decontamination

    International Nuclear Information System (INIS)

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination

  20. Environmental decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, G.A.; Jernigan, H.C. (eds.)

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)

  1. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.; Anderson, A.D.

    1977-12-01

    This is the first annual report issued under a project to evaluate the effects of aqueous effluents from in-situ fossil fuel processing technologies on aquatic biota. Briefly, the goals of the project are to: evaluate the toxicity of process water effluents on aquatic biota; recommend maximum exposure concentrations for process water constituents; and assist DOE in using project data and recommendations to design control technologies and to assess environmental impacts. The project objectives for Year 1 were pursued through the following five tasks: a literature review on process water constituents; toxicity studies on the effect of process waters and six process water constituents on aquatic biota; degradation rate studies on four to six process water constituents; bioaccumulation studies on four to six process water constituents; and recommendations on maximum exposure concentrations for process water constituents based on data from the project and from the literature. Progress toward completion of these goals is presented.

  2. Desempenho de biomassas na adsorção de hidrocarbonetos leves em efluentes aquosos Performance of biomasses in the adsorption of simple hydrocarbons in aqueous effluents

    OpenAIRE

    Elba Gomes dos Santos; Odelsia Leonor Sanchez de Alsina; Flávio Luiz Honorato da Silva

    2007-01-01

    Removal of hydrocarbons from aqueous effluents using biosorbents was investigated. The effluent was simulated by a dispersion of gasoline (simple hydrocarbons) in water. Corn-cob, wood powder, coconut mesocarp and sugar-cane bagasse were used as adsorbents and their performance verified by means of batch experiments performed in an agitated vessel. The influence of input variables such as hydrocarbon concentration, mass of biomass and agitation level on the adsorbents' capacity was studied by...

  3. Trends in oil discharged with aqueous effluents from oil refineries in Western Europe, 1993 survey

    Energy Technology Data Exchange (ETDEWEB)

    Dando, D.A.J.; Martin, D.E.

    1994-09-01

    This report summarizes the information gathered by CONCAWE in a survey of Western European oil refineries` effluent water quantity, oil content and treatment processes in 1993. It compares the 1993 data with the results of previous surveys and shows that the trend in the reduction of oil discharges continued, even though the reported refinery throughputs increased by more than 30% since the low point of 1984. The ratio of oil discharged to the amount of oil processed has continued to fall. Furthermore, when allowance is made for changes in the refineries which reported, it is apparent that there was a modest reduction of total effluent discharged in 1993, reinforcing the long-term trend. These two results indicate that overall management of water use in refineries and the efficiency of effluent purification continue to improve. The report indicates that around 85% of the refineries surveyed now include biological treatment in their waste water treatment facilities.

  4. Photocatalytic degradation of dye effluent by titanium dioxide pillar pellets in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    LI Yun-cang; ZOU Lin-da; Eric Hu

    2004-01-01

    Photocatalytic oxidation(PCO) process is an effective way to deal with organic pollutants in wastewater which could be difficult to be degraded by conventional biological treatment methods. Normally the TiO2 powder in nanometre size range was directly used as photocatalyst for dye degradation in wastewater. However the titanium dioxide powder was arduous to be recovered from the solution after treatment. In this application, a new form of TiO2(i. e. pillar pellets ranging from 2.5 to 5.3 mm long and with a diameter of 3.7 mm) was used and investigated for photocatalytic degradation of textile dye effluent. A test system was built with a flat plate reactor(FPR) and UV light source(blacklight and solar simulator as light source respectively) for investigating the effectiveness of the new form of TiO2. It was found that the photocatalytic process under this configuration could efficiently remove colours from textile dyeing effluent. Comparing with the TiO2 powder, the pellet was very easy to recovered from the treated solution and can be reused in multiple times without the significant change on the photocatalytic property. The results also showed that to achieve the same photocatalytic performance, the FPR area by pellets was about 91% smaller than required by TiO2 powder. At least TiO2 pellet could be used as an alternative form of photocatalyst in applications for textile effluent treatment process, also other wastewater treatment processes.

  5. Development and use of thin film composite based positively charged nanofiltration membranes in separation of aqueous streams and nuclear effluents

    International Nuclear Information System (INIS)

    A new, positively charged, thin film composite (TFC) type nanofiltration membrane has been developed and studied for its use in various aqueous stream separations. The membrane, containing fixed quaternary ammonium moieties, was developed by insitu interfacial polymerization of a functionalized amine (polyethyleneimine) and terephthaloyl chloride on a suitable base membrane. The nature of the charge on the membrane was established by ATR FT IR spectroscopy and was estimated by determination of its ion exchange capacity. The membrane was tested for its performance in single solute feed systems containing salts of various combinations of univalent and bivalent ions (NaCl, Na2SO4, CaCl2 and MgSO4) in test cell as well as in 2512 spiral modules. The membrane gave differential separation profile for these solutes with high rejection for CaCl2 and low rejection for Na2SO4 due to positive charge on the membrane and the type of charge constituting the salts. The membrane was also used for separation of simulated effluent solution containing uranyl nitrate in combination with ammonium nitrate which is a common effluent generated in nuclear industry. Here also the membrane gave differential separation profile for uranyl nitrate and ammonium nitrate in their mixture by concentrating the former salt and passing the later. This helped separation of these two solutes in the mixture into two different streams. (author)

  6. Study of the synthesis of TiO2 layers on macroporous ceramic supports in supercritical (SC) CO2 for processing radioactive aqueous effluents in dynamic mode

    International Nuclear Information System (INIS)

    Public and military nuclear industry generates a significant amount of radioactive liquid waste which must be treated before being released into the environment. Decontamination methods alternative to the industrial techniques (evaporation, chemical treatment) are being developed, such as column treatments or coupled filtration/sorption processes. Current researches mainly focus on the development and shaping of specific sorbents. In this context, the objectives of this thesis were first to study the synthesis of TiO2 layers on macroporous ceramic supports in supercritical (SC) CO2 and then to evaluate their potential for radionuclide extraction in these alternative processes. A robust synthesis method has been developed, based on the thermal decomposition of titanium isopropoxide in SC CO2 in the temperature range between 150 C and 350 C. Nano-structured TiO2 films were formed on the macroporous supports (ceramic foams, tubular α-alumina supports) with good adhesion, already at 150 C. The effect of the synthesis temperature on sorbents physico-chemical characteristics and sorption properties has been studied with TiO2 powders prepared under the same conditions as the supported films. The best sorption performance were observed for the powder prepared at 150 C, owing to its higher density of surface sites in comparison with powders prepared at either 250 C or 350 C. Consequently, this synthesis temperature (150 C) was selected for a detailed study of the composite sorbents (TiO2/support), in order to assess their sorption performance in continuous treatment processes. The sorption experiments have shown that a column of alumina macroporous foam (Φpore = 400μm) coated with TiO2 was suitable for processing effluents in dynamic mode with high throughputs. Both macro-pore sizes and column height were revealed as important parameters to be controlled. For the coupled filtration/sorption treatment, TiO2 membranes exhibit good mechanical strength and are able to

  7. g-C3N4 Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants

    Science.gov (United States)

    Pi, Liu; Jiang, Rui; Zhou, Wangchi; Zhu, Hua; Xiao, Wei; Wang, Dihua; Mao, Xuhui

    2015-12-01

    Converting the waste biomasses with high-carbon content into value-added materials is an environmental-friendly way for their utilization. In this study, a leaf-derived biochar is modified with graphitic C3N4 to fulfill an affordable composite material capable of removing organic pollutants via adsorptive and photocatalytic processes simultaneously. The preparation process includes a carbonization process of chestnut leaf biomass and a followed condensation reaction of melamine at 520 °C. The characterization shows that biochar and C3N4 existed in the composites in their pristine status, and the effective connection of C3N4 and biochar was established. The adsorptive performance of the composites is governed by the biochar content in the composite, thus showing favorable performance for the removal of cationic dye methylene blue (MB). The condensation reaction of the melamine precursor has a coalescing effect on the dispersed biochar, resulting in the growth of particle size of composite. The composites prepared at different biochar/melamine ratios all show a photocatalytic activity on decolorization of MB. In terms of the specific photocatalytic activity of C3N4 in the composite, biochar/melamine ratio of 0.5:1 is the best. Unlike the conventional adsorptive carbon materials which have saturated adsorption capacity, the composite in this study retain a sustaining decontamination capability due to the photocatalytic degradation of adsorbed organic pollutants under irradiation.

  8. DEVELOPMENT OF PROTOTYPE TITANATE ION EXCHANGE LOADED MEMBRANES FOR STRONTIUM, CESIUM AND ACTINIDE DECONTAMINATION FROM AQUEOUS MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L; Keisha Martin, K; David Hobbs, D

    2008-05-30

    We have successfully incorporated high surface area particles of titanate ion exchange materials (monosodium titanate and crystalline silicotitanate) with acceptable particle size distribution into porous and inert support membrane fibrils consisting of polytetrafluoroethylene (Teflon{reg_sign}), polyethylene and cellulose materials. The resulting membrane sheets, under laboratory conditions, were used to evaluate the removal of surrogate radioactive materials for cesium-137 and strontium-90 from high caustic nuclear waste simulants. These membrane supports met the nominal requirement for nonchemical interaction with the embedded ion exchange materials and were porous enough to allow sufficient liquid flow. Some of this 47-mm size stamped out prototype titanium impregnated ion exchange membrane discs was found to remove more than 96% of dissolved cesium-133 and strontium-88 from a caustic nuclear waste salt simulants. Since in traditional ion exchange based column technology monosodium titanate (MST) is known to have great affinity for the sorbing of other actinides like plutonium, neptunium and even uranium, we expect that the MST-based membranes developed here, although not directly evaluated for uptake of these three actinides because of costs associated with working with actinides which do not have 'true' experimental surrogates, would also show significant affinity for these actinides in aqueous media. It was also observed that crystalline silicotitanate impregnated polytetrafluoroethylene or polyethylene membranes became less selective and sorbed both cesium and strontium from the caustic aqueous salt simulants.

  9. Rapid assessment of the latent hazard posed by dissolved mercaptans within aqueous effluent

    International Nuclear Information System (INIS)

    The presence of mercaptans (RSH) can usually be detected by their inherent noxious odour but there is a need to quantify the concentration within effluent and hence allow an assessment of the latent hazard to be made prior to disposal. The versatility of using naphthoquinone as a rapid derivatising agent through which to trap such species has been evaluated. The quinone moiety provides a label that can be quantified using colorimetric, electrochemical and chromatographic means and offers a significant advantage over conventional thiol labelling agents. The analytical characteristics of each approach have been investigated and the selectivity, sensitivity and applicability of the reaction system critically assessed for a range of model compounds. The naphthoquinone system has a detection limit in the low micromolar range with little interference from other components common to discharge water with 96% recovery of mercaptopropionate. The reaction to sulfide (HS-) has also been assessed and a disparity in response between the detection methods observed and a possible reaction pathway outlined

  10. Methods of removal of tritium from aqueous effluent: a review of international research and development

    International Nuclear Information System (INIS)

    Tritium is formed in thermal nuclear reactors both by neutron activation of elements such as deuterium and lithium and by ternary fission in the fuel. It is a weak beta-emitter with a short half-life, 12.3 years, and its radiological significance in reactor discharges is very low. In heavy-water-cooled and -moderated reactors, such as the CANDU stations, the tritium concentration in the moderator is sufficiently high to cause a potential hazard to operators, and so a major research and development programme has been carried out on processes to remove the tritium. Detritiation of light water has also been the subject of major R and D effort world-wide, because reprocessing operations can generate significant quantities of tritium in liquid waste, and high concentrations of tritium may arise in some aqueous streams in fusion reactors. This Report presents a review of the methods that have been proposed, studied and developed for removal of tritium from light and heavy water: the principles of individual methods are discussed, and the current status of their development is reviewed. (author)

  11. Specific decontamination methods: water nozzle, cavitation erosion

    International Nuclear Information System (INIS)

    The erosion and decontamination tests carried out in the framework of this study, allowed to specify the fields favourable to the use of the high pressure jet taking into account the determinant parameters that are the pressure and the target-nozzle distance. The previous spraying of gels with chemical reagents (sulfuric acid anf hydrazine) allows to get better decontamination factors. Then, the feasibility study of a decontamination method by cavitation erosion is presented. Gelled compounds for decontamination have been developed; their decontamination quality has been evaluated by comparative contamination tests in laboratory and decontamination tests of samples of materials used in nuclear industry; this last method is adapted to remote handling devices and produces a low quantity of secondary effluents, so it allows to clean high contaminated installation on the site without additional exposure of the personnel

  12. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents

    Energy Technology Data Exchange (ETDEWEB)

    Saucier, Caroline [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Adebayo, Matthew A. [Department of Chemical Sciences, Ajayi Crowther University, Oyo, Oyo State (Nigeria); Lima, Eder C., E-mail: eder.lima@ufrgs.br [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Cataluña, Renato [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Thue, Pascal S. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Department of Applied Chemistry, University of Ngaoundere, P.O. Box 455, Ngaoundere (Cameroon); Prola, Lizie D.T.; Puchana-Rosero, M.J. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Machado, Fernando M. [Technology Development Center, Federal University of Pelotas (UFPEL), Pelotas (Brazil); Pavan, Flavio A. [Institute of Chemistry, Federal University of Pampa (UNIPAMPA), Bagé, RS (Brazil); Dotto, G.L. [Chemical Engineering Department, Federal University of Santa Maria (UFSM), Santa Maria, RS (Brazil)

    2015-05-30

    Highlights: • Microwave-assisted cocoa shell activated carbon was prepared and characterized. • The anti-inflammatories, diclofenac and nimesulide, were adsorbed onto MWCS-1.0. • Adsorption maximum values are 63.47 (diclofenac) and 74.81 mg g{sup −1} (nimesulide). • General order kinetic model suitably explained the adsorption process. • MWCS-1.0 was effectively used for treatment of simulated hospital effluents. - Abstract: Microwave-induced chemical activation process was used to prepare an activated carbon from cocoa shell for efficient removal of two anti-inflammatories, sodium diclofenac (DFC) and nimesulide (NM), from aqueous solutions. A paste was obtained from a mixture of cocoa shell and inorganic components; with a ratio of inorganic: organic of 1 (CSC-1.0). The mixture was pyrolyzed in a microwave oven in less than 10 min. The CSC-1.0 was acidified with a 6 mol L{sup −1} HCl under reflux to produce MWCS-1.0. The CSC-1.0 and MWCS-1.0 were characterized using FTIR, SEM, N{sub 2} adsorption/desorption curves, X-ray diffraction, and point of zero charge (pH{sub pzc}). Experimental variables such as initial pH of the adsorbate solutions and contact time were optimized for adsorptive characteristics of MWCS-1.0. The optimum pH for removal of anti-inflammatories ranged between 7.0 and 8.0. The kinetic of adsorption was investigated using general order, pseudo first-order and pseu do-second order kinetic models. The maximum amounts of DCF and NM adsorbed onto MWCS-1.0 at 25 °C are 63.47 and 74.81 mg g{sup −1}, respectively. The adsorbent was tested on two simulated hospital effluents. MWCS-1.0 is capable of efficient removal of DCF and NM from a medium that contains high sugar and salt concentrations.

  13. Decontamination method

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Hiroshi; Ono, Shigeki; Tada, Nobuo; Tamai, Yasumasa; Okada, Masaya; Kurihara, Masayuki [Hitachi Ltd., Tokyo (Japan); Onuki, Toyomitsu; Toyota, Seiichi

    1998-10-27

    Before contamination of materials to be decontaminated, a surface of a region where a strippable paint is to be coated is smoothed by an epoxy resin previously. Then, a waterproof sheet is extended to the material to be decontaminated, and the strippable paint is applied to the periphery or the entire surface of the sheet. In order to facilitate peeling, the strippable paint is not applied to a portion of the outer circumference of the sheet. Even if the contaminating circumstance is an air atmosphere or a liquid such as reactor water, since the sheet itself has waterproofness and the strippable paint excellent in gas and water tightness is applied to the periphery, contamination is eliminated. When decontaminating the material to be decontaminated having contaminated surfaces, if the sheet for the start of peeling is picked up and the sheet is peeled, the strippable paint at the periphery thereof can be peeled off together with the sheet. (N.H.)

  14. Processing of radioactive effluents in Cadarache research centre

    International Nuclear Information System (INIS)

    French Atomic Energy Commission (Commissariat a l'Energie Atomique - CEA) is studying the design of a new plant for processing liquid aqueous radioactive effluents produced on Cadarache Research Centre. Effluents to be processed are low and medium activity effluents, with, for some of them, important concentrations of actinides, and which lead to the production of A and B category solid wastes, according to the French legislation, and suitable for final disposal. The objectives in terms of minimization of discharge's activity level and solid waste production have guided a selection of processes and their arrangement, in order to optimise decontamination and volume concentration factors. Seeded-ultrafiltration and vitrification with cold crucible melter are part of the selected processes for which developments are in progress in CEA for application to the characteristics of the project. (authors)

  15. Decontamination of nuclear facilities

    International Nuclear Information System (INIS)

    Thirty-seven papers were presented at this conference in five sessions. Topics covered include regulation, control and consequences of decontamination; decontamination of components and facilities; chemical and non-chemical methods of decontamination; and TMI decontamination experience

  16. Decontamination apparatus

    International Nuclear Information System (INIS)

    The apparatus for decontaminating radioactive components consists of an attachment mechanism for completely suspending the apparatus from the tube sheet of a nuclear steam generator, a first drive mechanism for moving the apparatus in a first direction, a second drive mechanism for pivoting the apparatus in a second direction, and a third drive mechanism for moving the apparatus in a third independent direction. The apparatus also has a dual nozzle arrangement attached to the third drive mechanism for directing a water-grit mixture toward the component to be decontaminated. The apparatus provides a mechanism for remotely decontaminating the channel head of a nuclear steam generator so as to allow working personnel to enter therein. It is likely that less than 0.001 inches of metal surface will be removed from the steam generator using alumina or magnetite grit

  17. Decontamination glass

    International Nuclear Information System (INIS)

    Glass for the decontamination of the furnace for vitrification of radioactive wastes contains 50 to 60 wt.% of waste glass, 15 to 30 wt.% of calcium oxide, 1 to 6 wt.% sodium oxide, 1 to 5 wt.% phosphorus pentoxide and 5 to 20 wt.% boron oxide. The melting furnace is flushed with the glass such that it melts in the furnace for at least 60 mins and is then poured out of the furnace. After the furnace has cooled down the settled glass spontaneously cracks and peels off the walls leaving a clean surface. The glass may be used not only for decontamination of the furnace but also for decontamination of melting crucibles and other devices contaminated with radioactive glass. (J.B.)

  18. Application of biomass in oil and fat reduction content in aqueous effluent; Aplicacao de biomassa na reducao do teor de oleos e graxas presentes em efluentes aquosos

    Energy Technology Data Exchange (ETDEWEB)

    Boni, Hevelin Tabata; Souza, Antonio Augusto Ulson de; Souza, Selene Maria de Arruda Guelli Ulson de [Universidade Federal de Santa Catarina (UFSC), SC (Brazil)

    2012-07-01

    In this work, we have studied the bagasse from sugarcane as an alternative bioadsorbent in the treatment to oils and greases contaminated waters. The synthetic effluent was simulated by a distilled water and decahydronaphthalene dispersion, with initial concentration of 8900 mg . L {sup -1}. Gas chromatography was the analytical operation chosen to quantify the oil residual after the adsorption. The biomass was characterized by moisture analysis, CHNS and SEM. The experiments were carried out in batch process with agitation of 120 rpm, evaluating the equilibrium time of adsorptive process and the influence of pH of aqueous level. Results showed that the adsorption process achieved equilibrium quickly, in just 5 minutes of contact between the dispersion and biomass. No significant influence was noticed in the removal of hydrocarbon with the change in pH. The adsorption isotherm was developed changing by the mass of bioadsorbent, at 25 deg C, pH 6 and 120 rpm of agitation. The experimental results were fitted by Langmuir and Langmuir- Freundlich models. The best fit was obtained with Langmuir-Freundlich, providing a maximum adsorption capacity of 6,65 g hydrocarbon / g biomass. The experiments showed the great potential of the sugarcane bagasse to be used as bioadsorbent in reducing the oil and grease levels in industrial effluents. This alternative presents itself as a sustainable route due to the abundance of sugar cane bagasse in the sugar and alcohol industry, avoided the impact of aqueous sources contamination coming from oil and petrochemical industry. (author)

  19. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents

    International Nuclear Information System (INIS)

    Highlights: ► Spirulina platensis (SP) and activated carbon (AC) were used to remove RR-120 dye. ► The maximum adsorption capacities were found at pH 2 and 298 K. ► The values were 482.2 and 267.2 mg g−1 for SP and AC, respectively. ► Adsorption was exothermic, spontaneous and favorable. ► SP and AC were effective to treat a simulated dye-house effluent. - Abstract: Spirulina platensis microalgae (SP) and commercial activated carbon (AC) were compared as adsorbents to remove Reactive Red 120 (RR-120) textile dye from aqueous effluents. The batch adsorption system was evaluated in relation to the initial pH, contact time, initial dye concentration and temperature. An alternative kinetic model (general order kinetic model) was compared with the traditional pseudo-first order and pseudo-second order kinetic models. The equilibrium data were fitted to the Langmuir, Freundlich and Liu isotherm models, and the thermodynamic parameters were also estimated. Finally, the adsorbents were employed to treat a simulated dye-house effluent. The general order kinetic model was more appropriate to explain RR-120 adsorption by SP and AC. The equilibrium data were best fitted to the Liu isotherm model. The maximum adsorption capacities of RR-120 dye were found at pH 2 and 298 K, and the values were 482.2 and 267.2 mg g−1 for the SP and AC adsorbents, respectively. The thermodynamic study showed that the adsorption was exothermic, spontaneous and favourable. The SP and AC adsorbents presented good performance for the treatment of simulated industrial textile effluents, removing 94.4–99.0% and 93.6–97.7%, respectively, of the dye mixtures containing high saline concentrations.

  20. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Natali F. [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Lima, Eder C., E-mail: profederlima@gmail.com [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Royer, Betina; Bach, Marta V. [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Dotto, Guilherme L.; Pinto, Luiz A.A. [Unit Operation Laboratory, School of Chemistry and Food, Federal University of Rio Grande, FURG, R. Engenheiro Alfredo Huch 475, 96201-900, Rio Grande, RS (Brazil); Calvete, Tatiana [Universitary Center La Salle (UNILASALLE), Av. Victor Barreto 2288, 92010-000, Canoas, RS (Brazil)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Spirulina platensis (SP) and activated carbon (AC) were used to remove RR-120 dye. Black-Right-Pointing-Pointer The maximum adsorption capacities were found at pH 2 and 298 K. Black-Right-Pointing-Pointer The values were 482.2 and 267.2 mg g{sup -1} for SP and AC, respectively. Black-Right-Pointing-Pointer Adsorption was exothermic, spontaneous and favorable. Black-Right-Pointing-Pointer SP and AC were effective to treat a simulated dye-house effluent. - Abstract: Spirulina platensis microalgae (SP) and commercial activated carbon (AC) were compared as adsorbents to remove Reactive Red 120 (RR-120) textile dye from aqueous effluents. The batch adsorption system was evaluated in relation to the initial pH, contact time, initial dye concentration and temperature. An alternative kinetic model (general order kinetic model) was compared with the traditional pseudo-first order and pseudo-second order kinetic models. The equilibrium data were fitted to the Langmuir, Freundlich and Liu isotherm models, and the thermodynamic parameters were also estimated. Finally, the adsorbents were employed to treat a simulated dye-house effluent. The general order kinetic model was more appropriate to explain RR-120 adsorption by SP and AC. The equilibrium data were best fitted to the Liu isotherm model. The maximum adsorption capacities of RR-120 dye were found at pH 2 and 298 K, and the values were 482.2 and 267.2 mg g{sup -1} for the SP and AC adsorbents, respectively. The thermodynamic study showed that the adsorption was exothermic, spontaneous and favourable. The SP and AC adsorbents presented good performance for the treatment of simulated industrial textile effluents, removing 94.4-99.0% and 93.6-97.7%, respectively, of the dye mixtures containing high saline concentrations.

  1. Degradation of polychlorinated biphenyls in aqueous solutions after UV-peroxide treatment: focus on toxicity of effluent to primary producers.

    Science.gov (United States)

    Yu, Dennis N; Macawile, Maria Cristina A; Abella, Leonila C; Gallardo, Susan M

    2011-09-01

    The combination of UV irradiation and hydrogen peroxide (UV-H(2)O(2)) was shown to be effective in treating water spiked with 2,2',4,4',5,5'-hexachlorobipheny (PCB 153), reducing its concentration by as much as 98%. To test the toxicity of the effluent, bioassays involving three species of primary producers were performed. Results showed the effluent exerting an adverse effect on the algae Scenedesmus bijugatus and the duckweed Lemna paucicostata. On the other hand, exposure of the mungbean Vigna radiata to the effluent revealed mostly no statistically significant adverse effect or growth stimulation. This suggested that on an exposure period of 96 h, higher forms of chlorophyll-bearing species such as plants are relatively unaffected by trace concentrations of PCBs and degradation products, while less differentiated species like algae and duckweeds are vulnerable. PMID:21531462

  2. The effect of operational parameters on electrocoagulation-flotation process followed by photocatalysis applied to the decontamination of water effluents from cellulose and paper factories

    Energy Technology Data Exchange (ETDEWEB)

    Boroski, Marcela; Rodrigues, Angela Claudia; Garcia, Juliana Carla; Passarella Gerola, Adriana; Nozaki, Jorge [Departamento de Quimica, Universidade Estadual de Maringa, Avenida Colombo, 5790, CEP 87020-900, Maringa, PR (Brazil); Hioka, Noboru [Departamento de Quimica, Universidade Estadual de Maringa, Avenida Colombo, 5790, CEP 87020-900, Maringa, PR (Brazil)], E-mail: nhioka@uem.br

    2008-12-15

    Cellulose and paper pulp factories utilize a large amount of water generating several undesirable contaminants. The present work is a preliminary investigation that associates the electrocoagulation-flotation (EC) method followed by photocatalysis to treat such wastewater. For EC, the experiment with aluminium and iron electrodes showed similar efficiency. Iron electrodes (anode and cathode) were chosen. By applying 30 min of EC/Fe{sup 0}, 153 A m{sup -2} and pH 6.0, the COD values, UV-vis absorbance and turbidity underwent an intense decrease. For the subsequent UV photocatalysis (mercury lamps) TiO{sub 2} was employed and the favourable operational conditions found were 0.25 g L{sup -1} of the catalyst and solution pH 3.0. The addition of hydrogen peroxide (50 mmol L{sup -1}) highly increased the photo-process performance. By employing the UV/TiO{sub 2}/H{sub 2}O{sub 2} system, the COD reduction was 88% compared to pre-treated effluents and complete sample photobleaching was verified. The salt concentration on EC (iron electrodes) showed that the electrolysis duration can be reduced from 30 to 10 min by the addition of 5.0 g L{sup -1} of NaCl. The biodegradability index (BOD/COD) increased from 0.15 (pre-treated) to 0.48 (after EC) and to 0.89 (after EC/photocatalysis irradiated for 6 h), showing that the employed sequence is very helpful to improve the water quality. This result was confirmed by biotoxicity tests performed with microcrustaceous Artemia salina.

  3. Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater.

    Science.gov (United States)

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z

    2016-09-01

    Pichia hampshirensis 4Aer is first ever used yeast for the bioremediation of environmental cadmium (Cd(+2)) which could maximally remove 22 mM/g and 28 mM/g Cd(+2) from aqueous medium at lab and large scales, respectively. The biosorption was found to be the function of temperature, pH of solution, initial Cd(+2) concentration and biomass dosage. Competitive biosorption was investigated in binary and multi-metal system which indicated the decrease in Cd(+2) biosorption with increasing the competitive metal ions attributed to their higher electronegativity and larger radius. FTIR analysis revealed the active participation of amide and carbonyl moieties in Cd(+2) adsorption confirmed by EDX analysis. Electron micrographs summoned further surface adsorption and increased cell size due to intracellular Cd(+2) accumulation. Cd(+2) was the causative agent of some metal binding proteins as well as prodigious increase in glutathione and other non-protein thiols levels which is the crucial for the yeast to thrive oxidative stress generated by Cd(+2). Our experimental data were consistent with Langmuir as well as Freundlich isotherm models. The yeast obeyed pseudo second order kinetic model which makes it an effective biosorbent for Cd(+2). High bioremediation potential and spontaneity and feasibility of the process make P. hampshirensis 4Aer an impending foundation for green chemistry to exterminate environmental Cd(+2). PMID:27268792

  4. Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater.

    Science.gov (United States)

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z

    2016-09-01

    Pichia hampshirensis 4Aer is first ever used yeast for the bioremediation of environmental cadmium (Cd(+2)) which could maximally remove 22 mM/g and 28 mM/g Cd(+2) from aqueous medium at lab and large scales, respectively. The biosorption was found to be the function of temperature, pH of solution, initial Cd(+2) concentration and biomass dosage. Competitive biosorption was investigated in binary and multi-metal system which indicated the decrease in Cd(+2) biosorption with increasing the competitive metal ions attributed to their higher electronegativity and larger radius. FTIR analysis revealed the active participation of amide and carbonyl moieties in Cd(+2) adsorption confirmed by EDX analysis. Electron micrographs summoned further surface adsorption and increased cell size due to intracellular Cd(+2) accumulation. Cd(+2) was the causative agent of some metal binding proteins as well as prodigious increase in glutathione and other non-protein thiols levels which is the crucial for the yeast to thrive oxidative stress generated by Cd(+2). Our experimental data were consistent with Langmuir as well as Freundlich isotherm models. The yeast obeyed pseudo second order kinetic model which makes it an effective biosorbent for Cd(+2). High bioremediation potential and spontaneity and feasibility of the process make P. hampshirensis 4Aer an impending foundation for green chemistry to exterminate environmental Cd(+2).

  5. Decontamination Data - Blister Agents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Decontamination efficacy data for blister agents on various building materials using various decontamination solutions This dataset is associated with the following...

  6. Preliminary findings of the effect of surface finish and coatings on PuO2 contamination hold-up and ease of decontamination in aqueous and non-aqueous media

    International Nuclear Information System (INIS)

    The application of temporary and permanent coatings for the reduction of α-activity hold-up and increased ease of decontamination has been reviewed and a variety of surface treatments and coatings identified as being worthy of investigation. A range of specimens have been prepared with hard coatings and smooth surfaces. A number of adhesive films, paints and lacquers have been applied to mild and stainless steel substrates. In order to compare the different surfaces, a standard contamination technique using a mechanical wiper has been developed to reproducibly contaminate the materials with PuO2. A standard decontamination test using water/Decon 75 or Arklone X is being used to compare the ease of decontamination. Preliminary experiments have shown that the smoothest surface finishes have the lowest activity hold-up and are more easily cleaned. Due to the superior level of micro-smoothness attainable on metals, these showed a significantly lower activity retention than the organic coatings examined to date. A comparison of the relative efficiency of cleaning in Decon 75 and Arklone X showed that generally speaking metal surfaces were cleaned equally well by both media, while the unaged organic surfaces were decontaminated more thoroughly in Arklone X, though the differences were somewhat marginal. (author)

  7. Acidity control of the oxidation reactions induced by non-thermal plasma treatment of aqueous effluents in pollutant abatement processes

    International Nuclear Information System (INIS)

    The acid properties of a non-thermal plasma in humid air (e.g., a gliding arc device) induced in an aqueous solution may deeply affect the efficiency of the matching oxidising properties, especially when the aqueous targets involve organic solutes. Hence, their oxidation rate may be strongly modified. A series of buffers is proposed to control the pH of aqueous target for at least one-hour treatments. The selected acid-base systems were selected for their inertia towards oxidation reaction, to cover a very large range of acidity. The reported results are essential from both fundamental and applied points of view. They first allow the acute controlling of the degradation rate of organic compounds. They also enable estimating the efficiency of the gliding arc treatments in environmental applications. Besides, they allow getting reliable data on the bactericidal effect on the plasma treatments, which are a merging application of the electric discharges. (author)

  8. Adsorption of lead and copper ions from aqueous effluents on rice husk ash in a dynamic system

    Directory of Open Access Journals (Sweden)

    M. G. A. Vieira

    2014-06-01

    Full Text Available This study evaluated the kinetic adsorption of Pb and Cu ions using rice husk ash as adsorbent in a fixed bed. The maximum adsorption capacities obtained for lead and copper ions in the fixed bed were 0.0561 and 0.0682 mmol/g (at 20 ºC, respectively. The thermodynamic studies indicated that the lead adsorption process was exothermic and spontaneous, while the copper adsorption process was endothermic and spontaneous. Characterization results indicated the presence of several functional groups, amorphous silica and a fibrous and longitudinal structure of rice husks. Rice husk ash (RHA from northern Brazil can be used as a bioadsorbent for the individual removal of Pb(II and Cu(II ions from metal-containing effluents.

  9. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves

    Science.gov (United States)

    This study compared the efficacy of chlorine (20 – 200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20 – 200 ppm chlorite ion concentration, Sanova), and aqueous chlorine dioxide (20 – 200 ppm chlorite ion concentration, TriNova) washes in reducing population...

  10. Enhanced toxic cloud knockdown spray system for decontamination applications

    Science.gov (United States)

    Betty, Rita G.; Tucker, Mark D.; Brockmann, John E.; Lucero, Daniel A.; Levin, Bruce L.; Leonard, Jonathan

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  11. Surface decontamination by photo-catalysis - 16068

    International Nuclear Information System (INIS)

    Currently in the nuclear industry, surface contamination in the form of radioactive metal or metal oxide deposits is most commonly removed by chemical decontamination, electrochemical decontamination or physical attrition. Physical attrition techniques are generally used on structural materials (concrete, plaster), with (electro)chemical methods being used to decontaminate metallic or painted surfaces. The most common types of (electro)chemical decontamination are the use of simple mineral acids such as nitric acid or cerium (IV) oxidation (MEDOC). Use of both of these reagents frequently results in the dissolution of a layer of the substrate surface increasing the percentage of secondary waste which leads to burdens on downstream effluent treatment and waste management plants. In this context, both mineral acids and MEDOC can be indiscriminate in the surfaces attacked during deployment, e.g. attacking in transit through a pipe system to the site of contamination resulting in both diminished effect of the decontaminating reagent upon arrival at its target site and an increased secondary waste management requirement. This provides two main requirements for a more ideal decontamination reagent: Improved area specificity and a dissolution power equal to or greater than the previously mentioned current decontaminants. Photochemically promoted processes may provide such a decontamination technique. Photochemical reduction of metal ion valence states to aid in heavy metal deposition has already been extensively studied [1], with reductive manipulation also being achieved with uranium and plutonium simulants (Ce) [2]. Importantly photooxidation of a variety of metals, including neptunium [3], has also been achieved. Here we report on the potential application of this technology to metal dissolution. (authors)

  12. Reaction-diffusion models of decontamination

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    A contaminant, which also contains a polymer is in the form of droplets on a solid surface. It is to be removed by the action of a decontaminant, which is applied in aqueous solution. The contaminant is only sparingly soluble in water, so the reaction mechanism is that it slowly dissolves...

  13. Visible Light Induced Enhanced Photocatalytic Degradation of Industrial Effluents (Rhodamine B in Aqueous Media Using TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    J. O. Carneiro

    2016-01-01

    Full Text Available In recent years, new textile materials have been developed through the use of nanotechnology-based tools. The development of textile surfaces with self-cleaning properties has a large combined potential to reduce the environmental impact related to pollution. In this research work, three types of textiles substrates (cotton, Entretela, and polylactic acid (PLA were functionalized with titanium dioxide nanoparticles (TiO2 using chemical and mechanical processes (padding. During the functionalization process, two different methods were used, both of which allowed a good fixation of nanoparticles of TiO2 on textile substrates. The samples were examined for morphology and for photocatalytic properties under visible light irradiation. A study aimed at evaluating the effect of pH of the aqueous solution of TiO2 nanoparticles was performed in order to promote interaction between TiO2 and the dye solution rhodamine B (Rh-B. The TiO2 nanoparticles were characterized by X-ray diffraction (XRD. The measurement of the zeta potential of the TiO2 nanoparticle solution proved to be always positive and have low colloidal stability. Chromatography (HPLC and GC-MS analyses confirm that oxalic acid is the intermediate compound formed during the photodegradation process.

  14. A study of low-cost adsorbent materials for removing Cr(VI from aqueous waste effluent

    Directory of Open Access Journals (Sweden)

    Claudia Vargas-Niño

    2011-01-01

    Full Text Available  The present paper shows very high potential for two types of solid (a commercial alumina and material obtained by composting, i.e. matured compost on Cr(VI adsorption/elimination in aqueous solution using a concentration range close to those previously detected in waste-water from Colombian industries. Both had important properties for eliminating Cr(VI, the compost being more important as it represents low-cost material. Optimal conditions for chromium adsorption on alumina and compost were established. Initial Cr(VI alumina concentration was 10 mgL-1, with 100 mL/g volume of solution per adsorbent mass, pH=2.0, 1 hour equilibrium time and 150 rpm stirring. For compost, initial Cr(VI concentration was = 3 mg L-1, 50 mL/g volume of solution per adsorbent mass, pH=2.5, 3 hour equilibrium time and 150 rpm stirring. The experiments showed that compost adsorption properties could be enhanced by adding small quantities of alumina. Compost could thus be chosen as a promising material for use in bioremediation chromium-containing waste water in a management programme for using solid waste in for minimising environmental impact.  

  15. Decontamination technologies for release from bioprocessing facilities. Part I. Introduction. Part II. Decontamination of wastewater

    International Nuclear Information System (INIS)

    Genetically engineered microorganisms are widely used in biotechnology. Wastewater from bioprocessing facilities will require treatment to ensure that effluents discharged into surface water or other waste streams are not a source of viable organisms or transmittable genetic material. The application of treatment technologies used in other industries to decontaminate the releases from biotechnology processing facilities was evaluated. Since published literature on the inactivation of recombinant-DNA organisms is very limited, information for bacteria, viruses, fungi and subcellular components was obtained. The data indicated that ozone, chlorine, chlorine dioxide, heat, ultraviolet light and ionizing radiation offer good performance potential for decontamination of rDNA processing wastewater. 180 refs., 7 figs., 26 tabs

  16. Modelling of the hydrodynamic behaviour of a decontamination foam; Modelisation du comportement hydrodynamique d'une mousse de decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Faury, M.; Fournel, B. [CEA Cadarache, Dept. d' Entreposage et de Stockage des Dechets, 13 - Saint-Paul-lez-Durance (France)

    2001-07-01

    Decontamination of large components of nuclear power plants (refrigerants, vapor generators, effluents storage tanks...) produces an important volume of secondary effluents. The use of decontamination foams is an alternative allowing a significant diminution of this volume (about of a factor ten). The aim of this work is to propose models which could be applied by an industrialist in order to anticipate the behaviour of a foam flowing out in a component of any geometry and simplifying then the pre-study steps. (O.M.)

  17. Pickering emulsions for skin decontamination.

    Science.gov (United States)

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE. PMID:27021875

  18. Gross decontamination experiment report

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  19. Gross decontamination experiment report

    International Nuclear Information System (INIS)

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment

  20. Pickering NGS decontaminations

    International Nuclear Information System (INIS)

    In early 1984, decontaminations of the Pickering NGS Units 1 and 2 heat transport systems were carried out. These decontaminations reduced radiation fields in front of the reactor face by up to a factor of 10, and resulted in radiation fields of 50 to 140 mR/h. These decontaminations were carried out using an improved version of the CAN-DECON process. This paper describes the development of the process and its successful applications at Pickering NGS

  1. Cladding hull decontamination process: preliminary development studies

    Energy Technology Data Exchange (ETDEWEB)

    Griggs, B.; Bryan, G.H.

    1979-12-01

    An investigation of the chemical and radioactive properties of fuel hulls was conducted to assist in a decontamination process development effort. The removal of zirconium oxide layers from zirconium was accomplished by a treatment in 600/sup 0/C HF followed by a dilute aqueous reagent. Similar treatment in fused alkali-zirconium fluoride salt baths was examined. A remotely operated small batch facility was developed and process parameters determined. 16 figures, 9 tables.

  2. PWR decontamination feasibility study

    International Nuclear Information System (INIS)

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations

  3. Food decontamination using nanomaterials

    Science.gov (United States)

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  4. Tritium contamination and decontamination

    International Nuclear Information System (INIS)

    Establishment of tritium safe handling technology is required with the development of fusion reactor research. Tritium is contained by multiple-barriers containment due to the difficulty in perfect containment of hydrogen isotopes. Tritium contamination of materials and subsequent desorption are one of the critical issues in tritium containment. And the development of tritium decontamination technology is also a critical issue in tritium safe handling. The status of tritium contamination study and tritium decontamination technology are reviewed. (author)

  5. Facility decontamination technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  6. Lessons Learned from Decontamination Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, JH

    2000-11-16

    This interim report describes a DOE project currently underway to establish what is known about decontamination of buildings and people and the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  7. Decontamination and decommissioning

    International Nuclear Information System (INIS)

    The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of all bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; and (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. These four phases of work were conducted in accordance with applicable regulations for D and D of research facilities and applicable regulations for packaging, transportation, and burial and storage of radioactive materials. The final result is that the Advanced Fuel Laboratories now meet requirements of ANSI 13.12 and can be released for unrestricted use. The four principal documents utilized in the D and D of the Cheswick Site were: (1) Plan for Fully Decontaminating and Decommissioning, Revision 3; (2) Environmental Assessment for Decontaminating and Decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pa.; (3) WARD-386, Quality Assurance Program Description for Decontaminating and Decommissioning Activities; and (4) Health Physics, Fire Control, and Site Emergency Manual. These documents are provided as Attachments 1, 2, 3 and 4

  8. Modification of the Decontamination Facility at the Kruemmel NPP - 13451

    Energy Technology Data Exchange (ETDEWEB)

    Klute, Stefan; Kupke, Peter [Siempelkamp Nukleartechnik GmbH Am Taubenfeld 25/1, 69123 Heidelberg (Germany)

    2013-07-01

    walls are welded gap-free and all rough edges are rounded off. All wetted parts are steel grade 1.4301 or higher. In an extension to the high pressure water decontamination box, 2 ultrasonic ponds and one washing station for small components as provide by new construction. A long pond with 3.25 m length for the decontamination of large components (e.g. turbine blades, pump rotors, driving rods) was installed. For the handling heavy components, a 2 t crane was installed. New construction of a mechanical effluent treatment facility including oil separator was connected to the existing effluent storage tank provided by the customer. One exhaust air filtration system is provided for each decontamination box, with the following requirements. The exhaust air is sent back to the room (recirculated air system). Dry blasting box including raw separator with dust collection in 200 l drum, filter for suspended particles; High pressure water decontamination box and wet area with water separator, pre-separator, filter for suspended particles. Installation of a steel platform at building height +12.85 above the decontamination boxes + 8.50 m for the erection of the high pressure water facilities, the recirculating air filter system, the air compressor and the respiratory air supply unit. The aforementioned components are placed on the steel platform and have been encased in a sound-lowering and accessible manner. New construction of the entire E and C technology for the TU system including modification of the supply lines from the switch gear. All devices are to be operated automatically. Dry blasting box, high pressure water decontamination box and wet area are designed to guarantee a unitary 'exterior view' of the decontamination facility. (authors)

  9. Modification of the Decontamination Facility at the Kruemmel NPP - 13451

    International Nuclear Information System (INIS)

    walls are welded gap-free and all rough edges are rounded off. All wetted parts are steel grade 1.4301 or higher. In an extension to the high pressure water decontamination box, 2 ultrasonic ponds and one washing station for small components as provide by new construction. A long pond with 3.25 m length for the decontamination of large components (e.g. turbine blades, pump rotors, driving rods) was installed. For the handling heavy components, a 2 t crane was installed. New construction of a mechanical effluent treatment facility including oil separator was connected to the existing effluent storage tank provided by the customer. One exhaust air filtration system is provided for each decontamination box, with the following requirements. The exhaust air is sent back to the room (recirculated air system). Dry blasting box including raw separator with dust collection in 200 l drum, filter for suspended particles; High pressure water decontamination box and wet area with water separator, pre-separator, filter for suspended particles. Installation of a steel platform at building height +12.85 above the decontamination boxes + 8.50 m for the erection of the high pressure water facilities, the recirculating air filter system, the air compressor and the respiratory air supply unit. The aforementioned components are placed on the steel platform and have been encased in a sound-lowering and accessible manner. New construction of the entire E and C technology for the TU system including modification of the supply lines from the switch gear. All devices are to be operated automatically. Dry blasting box, high pressure water decontamination box and wet area are designed to guarantee a unitary 'exterior view' of the decontamination facility. (authors)

  10. Decontamination method for radioactive waste

    International Nuclear Information System (INIS)

    Metallic radioactive wastes are immersed in a liquid nitrogen vessel above a freezing crusher and they are frozen to about -196degC. Then, impact shocks are applied to crush the radioactive wastes frozen by a rotary shearing shock crusher disposed below the freezing crusher. The thus obtained crushed materials are sent to a decontamination device and decontaminated. In this case, since the objective materials are crushed, any of a blast decontamination method, an electrolytic polishing decontamination method, a redox decontamination method and a chemical agent immersion decontamination method can be applied. Thereafter, the dose of remaining radioactivity of the decontaminated crushed materials is measured. With such procedures, the decontamination and the subsequent measurement for the radiation contamination dose can easily and certainly be conducted for metallic radioactive wastes such as pipes of a small diameter and complicated structures. (I.N.)

  11. Synthesis of novel complexing macromolecular surfactants and study of their interactions with cobalt for the development of a decontamination process of textiles in dense CO2 medium

    International Nuclear Information System (INIS)

    This study is about textile decontamination in dense CO2 (liquid CO2 or supercritical CO2). The study is carried out in the framework of decontamination of textile used in the nuclear industry. The dense CO2 offers an alternative to aqueous medium used in the current process which generates a huge quantity of contaminated aqueous effluent requiring a post-treatment. Cobalt is the targeted contamination and can be found as ionic species or particles. The cobalt extraction in dense CO2 is achieved with an additive: a complexing CO2-philic/CO2-phobic macromolecular surfactant. Several types of additives were synthesized by controlled free radical polymerization: gradient copolymers made with CO2-philic groups (silicone-based or fluorinated moieties) and CO2-phobic complexing groups (aceto acetoxy, di-ethylphosphonate or phosphonic acid moieties). The copolymer behavior in dense CO2 was determined by phase diagram measurements (cloud point method) and their self-assembly in dense CO2 was investigated by small angle neutron scattering. The fluorinated copolymers were found advantageous in terms of solubility. Nevertheless, the silicone-based copolymers showed solubilities which are compatible with the process, therefore they are a good alternative to avoid fluorinated compounds which are unwanted in the conditioning of nuclear wastes. The study of cobalt complexation by the copolymers (UV-vis spectroscopy and inductively coupled plasma-mass spectroscopy) established relations between the type of complexing group and the affinity with the cobalt. The solubility of copolymer-cobalt complexes in dense CO2 is similar to those of copolymers. Moreover, the self-assembly study of the complex revealed a low aggregation. Finally, the synthesized copolymers were used in particle or ionic decontamination processes. In the case of ionic decontamination process, a rate of 70% of decontamination was reached with the use of gradient copolymer poly(1,1,2,2-tetrahydroperfluoro

  12. Decontamination: back to basics.

    Science.gov (United States)

    Meredith, Susan J; Sjorgen, Geoff

    2008-07-01

    My invitation from this Journal's Editor, Felicia Cox, to provide a paper for this themed issue, included the sentence 'I was wondering if you or a colleague would like to contribute a back to basics article on the relevant standards and guidelines for decontamination, including what is compliance?'. The reason it is so interesting to me is that the term 'back to basics' implies reverting to a simpler time in life - when by just sticking to the rules, life became easier. However, with decontamination this is not actually true.

  13. Electrokinetic decontamination of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lomasney, H. [ISOTRON Corp., New Orleans, LA (United States)

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  14. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    Directory of Open Access Journals (Sweden)

    Marchetti Leonardo

    2006-04-01

    Full Text Available Abstract Background Olive mill wastewater (OMW is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter

  15. Decontamination formulations for disinfection and sterilization

    Science.gov (United States)

    Tucker, Mark D.; Engler, Daniel E.

    2007-09-18

    Aqueous decontamination formulations that neutralize biological pathogens for disinfection and sterilization applications. Examples of suitable applications include disinfection of food processing equipment, disinfection of areas containing livestock, mold remediation, sterilization of medical instruments and direct disinfection of food surfaces, such as beef carcasses. The formulations include at least one reactive compound, bleaching activator, inorganic base, and water. The formulations can be packaged as a two-part kit system, and can have a pH value in the range of 7-8.

  16. A survey of decontamination processes applicable to DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  17. A survey of decontamination processes applicable to DOE nuclear facilities

    International Nuclear Information System (INIS)

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs

  18. Decontamination of radioactive contaminated protective wear using dry cleaning solvent

    International Nuclear Information System (INIS)

    Liquid waste generated by conventional decontamination of radioactive contaminated cotton protective wear using detergent affects the chemical treatment of the plant. To reduce the generation of aqueous detergent waste, dry cleaning of cotton protective wear, highly soiled with oil and grease towards decontamination was tried with organic solvents. Mineral turpentine oil (MTO) among various other organic solvents was identified as a suitable organic solvent. As MTO leaves characteristic odour on the cloth, various commercial fragrances for the removal of the odour were tried. Application of the optimised dry cleaning solvent and commercial fragrance was adopted in plant scale operation. (author)

  19. Soil decontamination with Extraksol

    International Nuclear Information System (INIS)

    The Extraksol process is a mobile decontamination technology which treats unconsolidated materials by solvent extraction. Treatment with Extraksol involves material washing, drying and solvent regeneration. Contaminant removal is achieved through desorption/dissolution mechanisms. The treated material is dry and acceptable to be reinstalled in its original location. The process provides a fast, efficient and versatile alternative for decontamination of soil and sludge. The organic contaminants extracted from the matrix are transferred to the extraction fluids. These are thereafter concentrated in the residues of distillation after solvent regeneration. Removal and concentration of the contaminants ensures an important waste volume reduction. This paper presents the process is operational principles and the steps involved in Extraksol's development with results of the pilot tests and full-scale demonstrations

  20. Decontamination and protection

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, J.C.; Dhein, E.H.; Morgenthau, M.

    1954-01-01

    Test panels, four ft square, of 14 building materials were mounted on the weather surfaces of two remotely controlled liberty ships and on a stationary barge. One of the ships was protected by a washdown system. All surfaces were contaminated significantly with tenacious fallout. Vertical surfaces facing upwind became equally or more highly contaminated than horizontal or pitched surfaces, probably due to wind currents impacting the tenacious contaminant onto surfaces normal to it. A sequence of hosing and vigorous scrubbing operations resulted in contamination reductions of 40 to 70%, but with reductions on most surfaces being less than 50%. The most effective decontamination method was scrubbing. Under the conditions of this test, painting and joint sealing had little effect while the washdown countermeasure reduced the initial contamination over 90%. It is concluded that contamination from fallout encountered in these tests presents a serious decontamination problem on buildings and paved areas and further development of effective countermeasures is necessary.

  1. Results of 'decontamination model project' and application to decontamination operations

    International Nuclear Information System (INIS)

    This paper describes 'Decontamination Model Project,' which aims to collect the data related to decontamination and to arrange them for providing the results, for the purpose of judgment on how to implement radioactive decontamination in wide areas as the first experience in Japan. This was the project that Japan Atomic Energy Agency was entrusted by the government, and it was completed in June 2012. This project arranged the following items as information. (1) Various decontamination technologies and methods including applicability / effects, cost, necessary manpower, required time, and technological detail such as the treatment method of waste generated from decontamination and storage method of the waste, (2) Radiation control such as exposure control for workers and securement of general work safety, and (3) Communication with related local governments and local residents. This project is a pilot-trial work in order to measure to what extent decontamination is possible for what substances by what method, but numerical target such as the goal depletion ratio of air dose rate is not specified. However, this project comparatively arranged the results on how much extents the individual item affected surface decontamination. As the conclusion, this paper picks out the points that should be considered in the future full-scale decontamination work, from the results obtained by the experience of this project. (1) preliminary monitoring, (2) safety and operation / maintenance of temporary storage sites, and (3) radiation control involved in decontamination work. (O.A.)

  2. Chromium uptake from aqueous effluents by immobilized Baker's yeast Utilização de leveduras de panificação na remoção de cromo em meio aquoso

    Directory of Open Access Journals (Sweden)

    Lucia Beckmann C. Menezes

    1998-10-01

    Full Text Available Baker’s yeast immobilized in alginate was used to take up chromium from effluents. Chromium in aqueous solutions were used in different concentrations. To evaluate the viability and efficiency the baker’s yeast for chromium uptake from effluents three experiments done in two differents reactor systems: first in system 1 at 17.5 ml/s and with 10, 20, 25 and 30 mg/l Cr; second in system 2 at 38.7 ml/s with 20 mg/l Cr; third in system 2.1 at 6.65 ml/s and with 20, 30 and 40 mg/l Cr. The efficiency of chromium uptake varied between 86 and 100 %.Leveduras de panificação imobilizadas em alginato, foram utilizadas com o objetivo de promover a remoção de cromo presente em efluentes. Trabalhou-se com soluções de cromo de diferentes concentrações. A fim de avaliar a viabilidade e eficiência do uso de leveduras de panificação na remoção de cromo, três experimentos foram realizados em dois diferentes sistemas de reatores: o primeiro no sistema 1 com 17,5 ml/s e 10, 20, 25 e 30 mg/l Cr; o segundo no sistema 2 com 38,7 ml/s e 20 mg/l Cr; o terceiro no sistema 2.1 com 6,65 ml/s e 20, 30 e 40 mg/l Cr. A média das eficiências de retenção do cromo variaram entre 86 e 100%.

  3. Voltametric study of formic and dihydroxy malonic acids on platinum for the definition of a process for the electrolytic destruction of carboxylic acids in radioactive aqueous effluents; Etude voltamperometrique des acides formiques et dihydroxymalonique sur platine en vue de la definition d`un procede de destruction electrolytique d`acides carboxyliques d`effluents aqueux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Le Naour, C.

    1994-05-01

    To limit the amount of nuclear glasses generated by the treatment of the degraded solvent from the PUREX process for reprocessing of nuclear fuels, by solutions of sodium carbonate and caustic soda, it is planned to exploit the complexing power of certain carboxylic acids to return the metallic cations to the aqueous phase. The concept of this new treatment of the solvent by `substitution` reagents demands a process for the decomposition of these reagents, especially to CO{sub 2}. The investigation of the electrochemical behaviour, on platinum, of a substance selected as a model for understanding the interfacial mechanisms (HCOOH), and of dihydroxy malonic acid, revealed two distinct electro-poisoning processes: one is due to the adsorption of CO on the surface sites of platinum, and the second to the formation of a passivating layer of P{dagger}O. The application of 20 kHz ultrasonic flux in the neighbourhood of the platinum / aqueous formic acid solution interface also appears to cause a change in the superficial structure of the electrode used, in a direction that favours the decomposition of this compound. To overcome problems of poisoning of the platinum surface, aqueous solutions of formic, dihydroxy malonic and oxalic acids were electrolysed, in a cell without diaphragm, by applying voltage and current ranges, at levels adapted to each of the species. It is necessary to bring the working electrode to a higher potential than the oxidation potential for formic acid, and to a lower potential for dihydroxy malonic and oxalic acids. The frequent modifications of the electrode potentials helped to achieve quantitative destruction of these species, to CO{sub 2} (and to water) with an electrochemical efficiency approaching 100 %. This wet oxidation process also offers the advantage of not raising the energy potential of the effluents to be treated, because it takes place in mild conditions (ambient temperature and pressure). (author). 131 refs., 90 figs., 48 tabs.

  4. Radioactivity decontamination device and method

    International Nuclear Information System (INIS)

    The present invention provides a method of decontaminating floors and walls of large-scaled equipments and buildings (large-sized members to be decontaminated) in a radioactive material handling facility. Namely, supersonic vibrations are applied to a low pressure running water to form water vibrating at fine frequency of supersonic waves. It is jetted to the large-scaled members to be decontaminated to remove radiation-contaminated materials from the surface of the large-scaled members to be decontaminated by friction of the vibrations. Specifically, when the decontaminating water is jetted out from a nozzle at a hydraulic pressure of from 0.02 to 0.1kg/cm2G, supersonic waves at a variable oscillation frequency of from 100 to 800kHz and an output of from 5 to 15W/cm2 per a unit area of vibrator are applied to the water stream. Fine decontamination for large-scaled members can be conducted by the decontamination method of the present invention. Since decontamination of radioactivity does not occur, and unevenness and remaining of contamination are eliminated, the decontamination operation can be made efficient. (I.S.)

  5. Manual on decontamination of surfaces

    International Nuclear Information System (INIS)

    The manual is intended for those who are responsible for the organization and implementation of decontamination programmes for facilities where radioactive materials are handled mainly on a laboratory scale. It contains information and guidelines on practical methods for decontaminating working spaces, equipment, laboratory benches and protective clothing. Useful information is also provided on the removal of loose skin contamination from personnel by mild, non-medical processes. Methods of removing skin contamination needing medical supervision, or of internal decontamination, which is entirely a medical process, are not covered in this manual. Large-scale decontamination of big nuclear facilities is also considered as outside its scope

  6. Decontaminating pesticide protective clothing.

    Science.gov (United States)

    Laughlin, J

    1993-01-01

    The review of recent work on the mechanisms of soil removal from textiles assists in understanding decontamination of pesticide protective clothing. The current work provides explanatory conclusions about residue retention as a basis of making recommendations for the most effective decontamination procedures. A caution about generalizations: Some pesticides produce very idiosyncratic responses to decontamination. An example is the paraquat/salt response. Other pesticides exhibit noticeable and unique responses to a highly alkaline medium (carbaryl), or to bleach (chlorpyrifos), or are quickly volatilized (methyl parathion). Responses such as these do not apply to other pesticides undergoing decontamination. Given this caution, there are soil, substrate, and solvent responses that do maximize residue removal. Residue removal is less complete as the concentration of pesticide increases. The concentration of pesticide in fabric builds with successive exposures, and the more concentrated the pesticide, the more difficult the removal. Use a prewash product and/or presoak. The surfactant and/or solvent in a prewash product is a booster in residue removal. Residues transfer from contaminated clothing to other clothing during the washing cycle. Use a full washer of water for a limited number of garments to increase residue removal. The hotter the washing temperature, the better. Generally, this means a water temperature of at least 49 degrees C, and preferably 60 degrees C. Select the detergent shown to be more effective for the formulation: heavy-duty liquid detergents for emulsifiable concentrate formulations and powdered phosphate detergents for wettable powder formulations. If the fabric has a soil-repellent finish, use 1.25 times the amount recommended on the detergent label. For water hardness above 300 ppm, an additional amount of powdered phosphate detergent is needed to obtain the same level of residue removal as obtained with the heavy-duty liquid detergent when

  7. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    Energy Technology Data Exchange (ETDEWEB)

    Enokida, Y.; Tanada, Y.; Hirabayashi, D. [Graduate School of Engineering, 1 Furo-cho Nagoya-shi, Aichi-ken, 4648603 (Japan); Sawada, K. [EcoTopia Science Institute, Nagoya University, 1 Furo-cho Nagoya-shi, Aichi-ken, 4648603 (Japan)

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged application is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)

  8. RUTHENIUM DECONTAMINATION METHOD

    Science.gov (United States)

    Gresky, A.T.

    1960-07-19

    A liquid-liquid extraction method of separating uranium from fission products is given. A small amount of a low molecular weight ketone is added to an acidic aqueous solution containing neutron-irradiated uranium and its associated fission products. The resulting solution is digested and then contacted with an organic liquid that extracts uranium values. The purpose of the step of digesting the aqueous solution in the presence of the ketone is to suppress the extractability of ruthenium.

  9. Handling and treatment of radioactive aqueous wastes

    International Nuclear Information System (INIS)

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs

  10. Laser-based characterization and decontamination of contaminated facilities

    International Nuclear Information System (INIS)

    This study examines the application of laser ablation to the characterization and decontamination of painted and unpainted concrete and metal surfaces that are typical of many facilities within the US Department of Energy complex. The utility of this promising technology is reviewed and the essential requirements for efficient ablation extracted. Recent data obtained on the ablation of painted steel surfaces and concrete are presented. The affects of beam irradiance, ablation speed and efficiency, and characteristics of the aerosol effluent are discussed. Characterization of the ablated components of the surface offers the ability of concurrent determination of the level of contamination. This concept can be applied online where the ablation endpoint can be determined. A conceptual system for the characterization and decontamination of surfaces is proposed

  11. Decontamination & decommissioning focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  12. Decontamination and coating of lead

    International Nuclear Information System (INIS)

    Technology is being developed to decontaminate lead used in shielding applications in contaminated environments for recycle as shieldings. Technology is also being developed to coat either decontaminated lead or new lead before it is used in contaminated environments. The surface of the coating is expected to be much easier to decontaminate than the original lead surface. If contamination becomes severely embedded in the coating and cannot be removed, it can be easily cut with a knife and removed from the lead. The used coating can be disposed of as radioactive (hot hazardous) waste. The lead can then be recoated for further use as a shielding material

  13. Cladding hull decontamination and densification process. Part 1. The prototype cladding hull decontamination system

    International Nuclear Information System (INIS)

    A prototype system for decontaminating Zircaloy-4 cladding hulls has been assembled and tested at Pacific Northwest Laboratory. The decontamination process consists of treatment with a gaseous mixture of hydrogen fluoride (HF) and argon (Ar) followed by a dilute aqueous etch of ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. The continuous cleaning process described in this report successfully descaled small portions of most charges, but was unable to handle the original design capacity of 4 kg/hr because of problems in the following areas: control of HF reactor temperatures, regulation of HF and argon mixtures and flows, isolation of the HF reactor atmosphere from the aqueous washer/rinser atmosphere, regulation of undesirable side reactions, and control over hull transport through the system. Due to the limited time available to solve these problems, the system did not attain fully operational status. The work was performed with unirradiated hulls that simulated irradiated hulls. The system was not built to be remotely operable. The process chemistry and system equipment are described in this report with particular emphasis on critical operating areas. Recommendations for improved system operation are included

  14. Laryngoscope decontamination techniques: A survey

    OpenAIRE

    Rajiv Chawla; Akhilesh Gupta; Anshu Gupta; Mritunjay Kumar

    2016-01-01

    Background and Aims: India is a vast country with variable, nonuniform healthcare practices. A laryngoscope is an important tool during general anesthesia and resuscitation. The study aimed to determine the current practices of laryngoscope decontamination in India. Material and Methods: An online survey was conducted amongst 100 anesthesiologists to determine the common methods of laryngoscope decontamination adopted in their settings. The survey was done over 6 months after validating t...

  15. Presolidification treatment of decontamination wastes

    International Nuclear Information System (INIS)

    Unsatisfactory leaching performance of several solidified decontamination solutions indicated a need for presolidification treatments to reduce the water sensitivity of the active chemicals. Chemical treatments examined in this work include pH adjustment, precipitation and oxidation-reduction reactions. The reactions involved in these treatments are discussed. The most suitable presolidification treatment for each decontamination solution has been identified. Further research is needed to test the effectivenss of these treatments

  16. Large-bore pipe decontamination

    International Nuclear Information System (INIS)

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system

  17. Large-bore pipe decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  18. Cleaning of liquid LLW from decontamination processes using semipermeable membranes

    International Nuclear Information System (INIS)

    Of the three processes, which have been used extensively for liquid radioactive waste purification, evaporation and ion exchange are costly and flocculation gives a low degree of purification. By comparison to that, reverse osmosis offers intermediate purification at reasonable cost. Present research is examining the potential of using a membrane filtration system for the removal of dissolved radionuclides, but chemical treatment showed as necessary to convert soluble radionuclides, organic traces and metals to insoluble, filterable species. Liquid wastes within a CANDU station are segregated into normal and low-activity waste streams. The normal-activity waste includes wastes from the laboratories, laundries, some service-building drains, upgrade drains, and decontamination center. The drains from the reactor building, the heavy-water area, the spent-fuel pool, and the resin storage area are also directed to this normal activity wastes from showers and building drains in areas of the service building that would not normally be contaminated. The aqueous liquid wastes from the decontamination center and the other collected wastes from the chemical drain system are currently treated by the membrane plant. Generally, the liquid waste streams are effectively volume-reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO) and tubular reverse osmosis membrane technologies. Backwash chemical cleaning wastes from the membrane plant are further volume-reduced by evaporation. The concentrate from the membrane plant is ultimately immobilized with bitumen. The ability of the MF/SWRO technology to remove impurities non-selectively makes it suitable for the treatment of radioactive effluents from operating nuclear plants, with proper membrane selection, feed characterization, system configuration and system chemistry control. The choice of polysulfonate material for membrane was based on the high flow rates achievable with this

  19. Decontamination technology assessment

    International Nuclear Information System (INIS)

    This study was conducted by the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy (DOE) to identify and technically assess foreign decontamination and decommissioning (D and D) technology developments that may represent significant improvements over D and D technology currently available or under development in the United States. Technology need areas for nuclear power reactor decommissioning operations were identified and prioritized using the results of past light water rector (LWR) decommissioning studies to quantitatively evaluate the potential for reducing cost and decommissioning worker radiation dose for each major decommissioning activity. Based on these identified needs, current foreign D and D technologies of potential interest to the U.S. were identified through personal contacts and the collection and review of an extensive body of D and D literature. These technologies were then assessed qualitatively to evaluate their uniqueness, potential for a significant reduction in D and D costs and/or worker radiation dose, development status, and other factors affecting their value and applicability to U.S. needs

  20. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

    Science.gov (United States)

    Love, Adam H; Bailey, Christopher G; Hanna, M Leslie; Hok, Saphon; Vu, Alex K; Reutter, Dennis J; Raber, Ellen

    2011-11-30

    Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies.

  1. New decontamination technologies for environmental applications

    International Nuclear Information System (INIS)

    The technologies discussed represent a versatile collection of tools and approaches for environmental decontamination applications. The fixatives provide a means for gaining and maintaining control of large contaminated areas, for decontaminating large surface areas, and for protecting equipment and supplies used in decontamination operations. The other decontamination techniques together provide a method for removing loose surface contamination from almost all classes of materials and surfaces. These techniques should have wide application both as direct decontamination processes and for the cleaning of tools and equipment used in the decontamination operations

  2. 40 CFR 435.44 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... drilling fluids, drill cuttings, and dewatering effluent Free Oil No discharge. 2 Non-aqueous drilling... Free Oil No discharge. 2 Well Treatment, Workover and Completion Fluids Free Oil No discharge. 2... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY...

  3. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, Steven J.; Blair, Danielle M.

    2003-02-27

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

  4. EDF guide book for decontamination at power plant

    International Nuclear Information System (INIS)

    This paper addresses EDF quality organization in the decontamination field: policy includes: decontamination activities, how to reach quality, who is doing what, qualification of decontamination personnel, and acceptance and qualification of a decontamination process. Implementation includes: why planning a decontamination? Responsibility of the initiator, responsibility of the planner, and responsibility of the decontamination crew leader

  5. Handbook of radioactive contamination and decontamination

    International Nuclear Information System (INIS)

    In this book the fundamentals of radioactive contamination and the general principles of decontamination are set out. Topics covered include the evaluation of risk after human exposure and the decontamination of persons and their clothing and food and the decontamination of reactor components. The assessment of contamination after possible reactor accidents or nuclear explosions is discussed. The various methods of decontamination appropriate to specific incidents are discussed. (UK)

  6. Contamination and decontamination of fabrics

    International Nuclear Information System (INIS)

    An analysis is made of the problems of contamination and decontamination of clothes and underwear. Possible ways are described of contamination of fabrics (dry, wet) and in this connection the contaminant-fabric binding is underlined (in dry state, at different relative air humidity, in wet conditions in an environment of polar solvents). A survey is presented of decontamination methods and their importance. Dry methods include beatino., brushing and vacuum cleaning, wet methods include soaking and washing, dry cleaning in non-polar solvents, and the Intensol and Dual methods which combine dry cleaning and washing in one process. (B.S.)

  7. Optimization of electrochemical soil decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, M. [Czech Technical Univ., Prague (Czech Republic). Dept. of Nuclear Chemistry; John, J. [Czech Technical Univ., Prague (Czech Republic). Centre for Radiochemistry and Radiation Chemistry

    2004-07-01

    At the Czech Technical University in Prague, soil decontamination techniques have been studied for several years. The leaching procedures (batch or 'sorption' leaching) did not allow to achieve more than 30% caesium desorption. Caesium thermodesorption was demonstrated not to be very efficient either; quantitative caesium separation could be achieved only from solutions resulting from fusion of the soil with special fluxes. The most promising results were achieved by electrolytic decontamination. In preliminary experiments, more than 97% of caesium was released from soils contaminated long time ago. The aim of this study was to perform optimisation of the parameters of this method. (orig.)

  8. Public experiences of mass casualty decontamination.

    Science.gov (United States)

    Carter, Holly; Drury, John; Rubin, G James; Williams, Richard; Amlôt, Richard

    2012-09-01

    In this article, we analyze feedback from simulated casualties who took part in field exercises involving mass decontamination, to gain an understanding of how responder communication can affect people's experiences of and compliance with decontamination. We analyzed questionnaire data gathered from 402 volunteers using the framework approach, to provide an insight into the public's experiences of decontamination and how these experiences are shaped by the actions of emergency responders. Factors that affected casualties' experiences of the decontamination process included the need for greater practical information and better communication from responders, and the need for privacy. Results support previous findings from small-scale incidents that involved decontamination in showing that participants wanted better communication from responders during the process of decontamination, including more practical information, and that the failure of responders to communicate effectively with members of the public led to anxiety about the decontamination process. The similarity between the findings from the exercises described in this article and previous research into real incidents involving decontamination suggests that field exercises provide a useful way to examine the effect of responder communication strategies on the public's experiences of decontamination. Future exercises should examine in more detail the effect of various communication strategies on the public's experiences of decontamination. This will facilitate the development of evidence-based communication strategies intended to reduce anxiety about decontamination and increase compliance among members of the public during real-life incidents that involve mass decontamination.

  9. Irradiation technologies used for combustion gases and diluted sulfurous gases decontamination

    International Nuclear Information System (INIS)

    A brief description of irradiation technology used for ambient decontamination is presented here. The system is adequate fort gas and liquid effluents and solid wastes. In particular, the characteristics and applications of the irradiation done with an electron beam to gas effluent is described, mainly to clean combustion gases and other industrial gases containing sulfur and nitrogen oxides, S Ox and N Ox, respectively. This technology permits the remove of these contaminants and the acquisition of a solid byproduct, an ammonia sulfate-nitrate, apt for fertilizer applications. (author)

  10. Molten salts as stripping media for radioactive superficial decontamination

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira Lainetti, Paulo Ernesto [Centro de Quimica e Meio Ambiente - CQMA, Instituto de Pesquisas Energeticas e Nucleares IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242 C. Universitaria Sao Paulo - SP, CEP- 5508-000 (Brazil)

    2010-07-01

    The main practical difficulty associated to the task of the dismantling and decommissioning of the IPEN's old Nuclear Fuel Cycle facilities has been the big amount of radioactive waste generated in the dismantling operations. The waste is mainly in the form of contaminated carbon steel structures. In the IPEN, the presence of contamination in the equipments, structures and buildings, although restricted to low and medium activity levels, constituted an important concern due, on one hand, to the great volume of radioactive wastes generated during the operations. In the other hand, it should be outstanding that the capacity of radioactive wastes stockpiling in IPEN found been exhausted. Basically, for the facilities dismantling operations, the main radionuclides of interest, from the radioprotection point of view, are U of natural isotopic composition and thorium-232. In function of the large waste volume generated in the dismantling operations, the main concerns and focuses of research and technological development in the IPEN's Chemical and Environmental Center - CQMA - have been the effluent and waste treatment subjects, besides the development of some special decontamination techniques, since most old nuclear fuel cycle facilities are installed in the CQMA's area. It should be stood out that, in scenery of reduction of the importance of the nuclear program in the Institution, occurred in the nineties and in the first half of the present decade, there was a significant reduction of sections previously engaged in the activities as, for instance, the decontamination area. That section would be of vital importance for the execution of any D and D program. In this context, the reduction of the radioactive waste volume has a significant impact in the decommissioning costs and in the amount of material to be stored. For these reasons, in spite of the role of the CQMA has not ever been the treatments of radioactive wastes or decontamination, several new

  11. Cleanup Verification Package for the 116-K-2 Effluent Trench

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2006-04-04

    This cleanup verification package documents completion of remedial action for the 116-K-2 effluent trench, also referred to as the 116-K-2 mile-long trench and the 116-K-2 site. During its period of operation, the 116-K-2 site was used to dispose of cooling water effluent from the 105-KE and 105-KW Reactors by percolation into the soil. This site also received mixed liquid wastes from the 105-KW and 105-KE fuel storage basins, reactor floor drains, and miscellaneous decontamination activities.

  12. Decontamination in a Russian settlement

    DEFF Research Database (Denmark)

    Fogh, C.L.; Andersson, Kasper Grann; Barkovsky, A.N.;

    1999-01-01

    . This paper describes the decontamination work carried out and the results obtained, The roofs of the houses were swept and cleaned by special roof cleaning equipment. The soil around the houses was removed by hand while carefully monitoring the ground for residual contamination, By monitoring the decline...

  13. Advances in PCB decontamination technologies

    International Nuclear Information System (INIS)

    Since 1985 several million kilograms of PCB equipment and millions of litres of PCB contaminated oil have been processed in Canada for reduction of PCB concentrations below government guidelines. Advances in extraction and metal recovery from electrical equipment, chemical dechlorination and distillation of PCB-contaminated oils were the significant technological options utilized. For example, using the Decontaksolv technology owners of PCB equipment in Canada have decontaminated three million kilograms of electrical equipment, which resulted in the reintegration of 2.7 million kilograms of useful metals (steel, copper, aluminium) into the economic circuit. The equipment decontaminated included transformers, electromagnets, relays, radiators, circuit breakers, tanks, pipes, valves, and drums. The most recent advances in this technology include improvements that makes the economical processing of capacitors, possible. Chemical dechlorination has virtually eliminated PCB-contaminated oils which are normally present in large transformers, to the point where some service companies have curtailed or discontinued their oil decontamination activities in Canada. Recent advances in this technology center around techniques for the decontamination of waste hydrocarbons, and to a lesser extent, dielectric fluids. Two example projects to illustrate recent advances have been briefly described

  14. Problem of waste effluents in wood industry - the possibilities of biological treatment

    OpenAIRE

    Muck, Tadeja

    2015-01-01

    Wood industry does not pollute waters to a great extend, nevertheless we must be aware that the problem still exists. Waste effluents in wood industry contain very high portion of dangerous and toxic substance - formaldehyde. That is why it is inevitably vital to start with detailed analysis of waste effluents and with studies of possibilities of decontamination. Statistical analysis are showing that wood industry are not well aware of the fact how quickly the ecological balance can be destro...

  15. F/H effluent treatment facility. Technical data summary

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J P; Stimson, R E

    1984-12-01

    This document provides the technical basis for the design of the facility. Some of the sections are described with options to permit simplification of the process, depending on the effluent quality criteria that the facility will have to meet. Each part of the F/HETF process is reviewed with respect to decontamination and concentration efficiency, operability, additional waste generation, energy efficiency, and compatability with the rest of the process.

  16. F/H effluent treatment facility. Technical data summary

    International Nuclear Information System (INIS)

    This document provides the technical basis for the design of the facility. Some of the sections are described with options to permit simplification of the process, depending on the effluent quality criteria that the facility will have to meet. Each part of the F/HETF process is reviewed with respect to decontamination and concentration efficiency, operability, additional waste generation, energy efficiency, and compatability with the rest of the process

  17. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  18. Decontamination of graphite by chemical treatment; Descontaminacion de grafito por tratamiento quimico

    Energy Technology Data Exchange (ETDEWEB)

    Gascon, J. L.; Pina, G.

    2013-07-01

    This paper presents a study of decontamination of i-graphite by means of chemical treatment has been carried out within the project CARBOWASTE belonging to the 7th program of the EU (2007-2013). Decontamination through chemical treatment for i-graphite with aqueous solutions depends on the composition of the lixiviation, the temperature or the physical state in which is located the i-graphite, powder or block. In the first place was studied the influence of these factors using i-graphite powder and later graphite block.

  19. Verification of wet blasting decontamination technology

    International Nuclear Information System (INIS)

    Macoho Co., Ltd. participated in the projects of 'Decontamination Verification Test FY 2011 by the Ministry of the Environment' and 'Decontamination Verification Test FY 2011 by the Cabinet Office.' And we tested verification to use a wet blasting technology for decontamination of rubble and roads contaminated by the accident of Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company. As a results of the verification test, the wet blasting decontamination technology showed that a decontamination rate became 60-80% for concrete paving, interlocking, dense-grated asphalt pavement when applied to the decontamination of the road. When it was applied to rubble decontamination, a decontamination rate was 50-60% for gravel and approximately 90% for concrete and wood. It was thought that Cs-134 and Cs-137 attached to the fine sludge scraped off from a decontamination object and the sludge was found to be separated from abrasives by wet cyclene classification: the activity concentration of the abrasives is 1/30 or less than the sludge. The result shows that the abrasives can be reused without problems when the wet blasting decontamination technology is used. (author)

  20. Decontamination in a Russian settlement

    Energy Technology Data Exchange (ETDEWEB)

    Roed, J.; Lange, C.; Andersson, K.G. [and others

    1996-03-01

    Decontamination was carried out in and around three houses in Novo Bobovichi, Russia, in the autumn of 1995. It was demonstrated that significant reductions in the dose rate both indoor (DRF = 0.34) and outdoor (DRF = 0.20) can be achieved when a careful cleaning is undertaken. This report describes the decontamination work carried out and the results obtained. The roofs of the houses were swept and cleaned by special roof cleaning equipment. The soil around the houses was removed by hand while carefully monitoring the ground for residual contamination. By monitoring the decline in the dose rate during the different stages of the work the dose reducing effect of each action has been estimated. This report also describes a test of a triple digging method that reduces the dose rate without generating waste. In the appendices of the report the measurement data are available for further analysis. (au) 16 tabs., 15 ills.

  1. Micelles as Soil and Water Decontamination Agents.

    Science.gov (United States)

    Shah, Afzal; Shahzad, Suniya; Munir, Azeema; Nadagouda, Mallikarjuna N; Khan, Gul Shahzada; Shams, Dilawar Farhan; Dionysiou, Dionysios D; Rana, Usman Ali

    2016-05-25

    Contaminated soil and water pose a serious threat to human health and ecosystem. For the treatment of industrial effluents or minimizing their detrimental effects, preventive and remedial approaches must be adopted prior to the occurrence of any severe environmental, health, or safety hazard. Conventional treatment methods of wastewater are insufficient, complicated, and expensive. Therefore, a method that could use environmentally friendly surfactants for the simultaneous removal of both organic and inorganic contaminants from wastewater is deemed a smart approach. Surfactants containing potential donor ligands can coordinate with metal ions, and thus such compounds can be used for the removal of toxic metals and organometallic compounds from aqueous systems. Surfactants form host-guest complexes with the hydrophobic contaminants of water and soil by a mechanism involving the encapsulation of hydrophobes into the self-assembled aggregates (micelles) of surfactants. However, because undefined amounts of surfactants may be released into the aqueous systems, attention must be paid to their own environmental risks as well. Moreover, surfactant remediation methods must be carefully analyzed in the laboratory before field implementation. The use of biosurfactants is the best choice for the removal of water toxins as such surfactants are associated with the characteristics of biodegradability, versatility, recovery, and reuse. This Review is focused on the currently employed surfactant-based soil and wastewater treatment technologies owing to their critical role in the implementation of certain solutions for controlling pollution level, which is necessary to protect human health and ensure the quality standard of the aquatic environment. PMID:27136750

  2. persimmon tannin-formaldehyde gel decontamination of dilute aqueous solutions

    International Nuclear Information System (INIS)

    in the present work, the extracted juice of unripe astringent persimmon fruit, designated as (kakishibu) was found to have an extremely high affinity for uranium ion. to develop efficient adsorbent for uranium ion the juice was immobilized in formaldehyde. the removal of uranium ion onto the formed gel was found to be affected by several factors such as, concentration of formaldehyde in gel, equilibration time, solution ph, concentration of uranium ion, mass of adsorbent, presence of some cations and anions . the sorption isotherm was discussed in the light of Freundlich and Langmuir models. from Freundlich equation, the exponent 1/n was found in the range of 1>1/n0, δS0 and δG0 were calculated . the capacity of adsorbent was also determined by column technique and found to 20.20 mg/g

  3. Contamination with radioactive materials and decontamination

    International Nuclear Information System (INIS)

    The content of the monograph mainly designed for personnel in nuclear power plants, radiochemical laboratories and laboratories of nuclear medicine departments is basically divided into two parts. In the general part, the contamination of persons and objects with radioactive substances is discussed and the physico-chemical principles of decontamination are presented. The main part of the publication is devoted to concrete practical decontamination procedures. Special attention is devoted to the decontamination of components of nuclear power plants with WWER reactors and to the decontamination of the equipment of radiochemical and radiological laboratories (in-service, after accidents and during decommissioning). Also described is the decontamination of garments, underwear, protective aids, rooms, buildings, terrain and water. Also included is a chapter on the disposal of radioactive wastes generated during decontamination. (A.K.)

  4. Soil decontamination at Rocky Flats Plant

    International Nuclear Information System (INIS)

    A description is given of work being done at Rocky Flats Plant (RFP) to decontaminate soil contaminated with plutonium-239. How the contamination came about is described, as well as what has been done to contain it while decontamination methods are being developed. The purpose of the work is to decontaminate the soil so that it can be returned to the site instead of having to package, ship, and store it

  5. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis

    OpenAIRE

    Chad W Stratilo; Crichton, Melissa K. F.; Sawyer, Thomas W.

    2015-01-01

    Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin), compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in ...

  6. Bioremediation of 60Co from simulated spent decontamination solutions of nuclear power reactors by bacteria

    International Nuclear Information System (INIS)

    The spent decontamination solutions generated from nuclear power reactors contain radionuclides of cobalt (60Co, 56Co and 57Co) along with a large excess (105) of non-radioactive metal ions (Fe, Ni and Cr). Our previous studies demonstrated that bioremediation of 60Co from simulated effluents using fungal biomass can provide an alternative to conventional ion exchangers. In this study, we used several bacteria to further improve the process of bioremediation by decreasing biomass requirement and treatment period. Further, metabolite activation in specific bacterial species resulted in enhanced bioremediation of 60Co from simulated effluent. Optimization of conditions in simulated effluent for the eight bacterial species to accomplish maximum 60Co removal is discussed. (author)

  7. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  8. Proceedings of the concrete decontamination workshop

    International Nuclear Information System (INIS)

    Fourteen papers were presented. These papers describe concrete surface removal methods and equipment, as well as experiences in decontaminating and removing both power and experimental nuclear reactors

  9. Proceedings of the concrete decontamination workshop

    Energy Technology Data Exchange (ETDEWEB)

    Halter, J.M.; Sullivan, R.G.; Currier, A.J.

    1980-05-28

    Fourteen papers were presented. These papers describe concrete surface removal methods and equipment, as well as experiences in decontaminating and removing both power and experimental nuclear reactors.

  10. Vibratory finishing as a decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, M.W.; Arrowsmith, H.W.; Allen, R.P.

    1980-10-01

    The major objective of this research is to develop vibratory finishing into a large-scale decontamination technique that can economicaly remove transuranic and other surface contamination from large volumes of waste produced by the operation and decommissioning of retired nuclear facilities. The successful development and widespread application of this decontamination technique would substantially reduce the volume of waste requiring expensive geologic disposal. Other benefits include exposure reduction for decontamination personnel and reduced risk of environmental contamination. Laboratory-scale studies showed that vibratory finishing can rapidly reduce the contamination level of transuranic-contaminated stainless steel and Plexiglas to well below the 10-nCi/g limit. The capability of vibratory finishing as a decontamination process was demonstrated on a large scale. The first decontamination demonstration was conducted at the Hanford N-Reactor, where a vibratory finisher was installed to reduce personnel exposure during the summer outage. Items decontaminated included fuel spacers, process-tube end caps, process-tube inserts, pump parts, ball-channel inspection tools and miscellaneous hand tools. A second demonstration is currently being conducted in the decontamination facility at the Hanford 231-Z Building. During this demonstration, transuranic-contaminated material from decommissioned plutonium facilities is being decontaminated to <10 nCi/g to minimize the volume of material that will require geologic disposal. Items that are being decontaminated include entire glove boxes, process-hood structural material and panels, process tanks, process-tank shields, pumps, valves and hand tools used during the decommissioning work.

  11. Treatment of liquid wastes from decontamination of nuclear power plants by heterogeneous photocatalysis

    International Nuclear Information System (INIS)

    In nuclear power plants high radiation fields are produced, not only in the core but also in the auxiliary systems, due, mainly, to the activation of corrosion products by means of a mechanism known as 'Activity Transport'.With the purpose of reducing at minimum values the intensity of radiation fields and of avoiding the operative problems generated by the deposition of oxides in tanks and pipelines, it is necessary to remove the oxide films, carriers of activity, from the components in auxiliary systems in nuclear power plants and this is usually carried on by chemical cleaning.This process, known as decontamination, is done employing mixtures of oligocarboxilic acids such as NTA, EDTA, oxalic acid, citric acid, etc., at concentration nearly 1% and pH 3-4.The resulting liquid wastes of this process cannot be discharged directly to the environment but must be properly treated.Conventional treatments such as thermolysis, chemical oxidation and others show some problems and, in addition, some of these substances are resistant to degradation.Previous work done in the Unidad de Actividad Quimica del Centro Atomico Constituyentes (UAQ-CAC) indicated that Heterogeneous Photocatalysis, belonging to the Advanced Oxidation Technologies (AOTs), could be a useful procedure for the treatment of liquid decontamination wastes. This method consists on the irradiation of an aqueous suspension of a semiconductor, generally TiO2, containing the substrate to be degraded, employing wavelengths shorter than the semiconductor's 'band-gap'.In this way, oxidant and reducing molecules are generated.The advantages compared to other AOTs are its low cost, the ability to work at room temperature and pressure, it uses only oxygen as oxidizing agent and can be operated in 'batch' and continuum.In the present work we employed a recycling system, with a black-light tubular UV lamp (366nm) installed inside as the source of illumination, to study the degradation of oxalic and citric acid by means

  12. Decontamination by fractional distillation of a radioactive mixture of perchlorethylene, bitumen, and sludges from chemical co-precipitations; Decontamination par distillation fractionnee d'un melange radioactif constitue par du perchlorethylene, du bitume et des boues de coprecipitation chimique

    Energy Technology Data Exchange (ETDEWEB)

    Lefillatre, G.; Hullo, R. [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1969-07-01

    It is not possible to incinerate the contaminated organic waste containing chlorine, produced at the Marcoule Centre. The only valid method for these solvents of average activity is fractional distillation. This report presents a pilot fractional distillation plant designed for decontaminating the residual solvents produced by the Centre's Waste Processing Station. These contaminated solvents come from the decontamination of a screw extrusion apparatus with perchlorethylene; this equipment is used for coating the radioactive sludges with bitumen. The pilot plant operates discontinuously and is used to decontaminate the perchlorethylene, to separate the perchlorethylene from the water, and to process the distillation residue. The electrically heated boiler is fitted with a removable base in the form of a disposable container. The installations decontamination factor is 3.4 x 10{sup 6} when solvents with a specific activity of 0.23 Ci/m{sup 3} are used. The average flow-rate for a distillation run is 10 l/hr at atmospheric pressure, and 21 l/hr at a residual pressure of 40 torr. The decontamination factor for the installation is better at atmospheric pressure than in a vacuum. (authors) [French] Les effluents organiques contamines chlores du Centre de Marcoule ne peuvent etre incineres. Le seul mode de traitement qui s'impose pour ces solvants de moyenne activite s'avere etre la distillation fractionnee. Ce rapport presente une installation pilote de distillation fractionnee qui a ete concue pour decontaminer des solvants residuaires provenant de la Station de Traitement des Effluents du Centre. Ces solvants contamines resultent de la decontamination au moyen de perchlorethylene d'une extrudeuse a vis servant a l'enrobage par le bitume des boues radioactives de cette station. L'installation pilote fonctionne en discontinu et assure a la fois la decontamination du perchlorethylene, la separation du perchlorethylene et de l'eau et le

  13. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination

  14. Magnetic separation for soil decontamination

    International Nuclear Information System (INIS)

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology

  15. Managing mass casualties and decontamination.

    Science.gov (United States)

    Chilcott, Robert P

    2014-11-01

    Careful planning and regular exercising of capabilities is the key to implementing an effective response following the release of hazardous materials, although ad hoc changes may be inevitable. Critical actions which require immediate implementation at an incident are evacuation, followed by disrobing (removal of clothes) and decontamination. The latter can be achieved through bespoke response facilities or various interim methods which may utilise water or readily available (dry, absorbent) materials. Following transfer to a safe holding area, each casualty's personal details should be recorded to facilitate a health surveillance programme, should it become apparent that the original contaminant has chronic health effects.

  16. Universal Oxidation for CBW Decontamination: L-Gel System Development and Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E.; McGuire, R.; Hoffman, M.; Alcaraz, A.; Shepley, D.; Elliot, J.; Krauter, P.; Garcia, E.

    2000-12-16

    decontaminating reagent and the contaminant agent, we selected gelled reagents as the primary carrier material. Gels have the additional advantage of adhering to vertical and even the underside of horizontal surfaces such as ceilings and walls. Lawrence Livermore National Laboratory, over a period of twenty years from the late 1960's to the late 1980's, developed a series of extrudable high explosives based on the gelling of polar energetic liquids. While never going into production, this development served as an experience base for formulation, characterization and dispersal system design and fabrication. It was a logical step, therefore, to adapt this work to the gelling of aqueous oxidizers for candidate BW/CW decontaminants.

  17. Cost effectiveness of dilute chemical decontamination

    International Nuclear Information System (INIS)

    The basic principles of dilute chemical decontamination are described, as well as the method of application. Methods of computing savings in radiation dose and costs are presented, with results from actual experience and illustrative examples. It is concluded that dilute chemical decontamination is beneficial in many cases. It reduces radiation exposure of workers, saves money, and simplifies maintenance work

  18. Project gnome decontamination and decommissioning plan

    International Nuclear Information System (INIS)

    The document presents the operational plan for conducting the final decontamination and decommissioning work at the site of the first U.S. nuclear detonation designed specifically for peaceful purposes and the first underground event on the Plowshare Program to take place outside the Nevada Test Site. The plan includes decontamination and decommissioning procedures, radiological guidelines, and the NV concept of operations

  19. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    This report summarizes the activities performed during FY98 and describes the planned activities for FY99. Accomplishments for FY98 include identifying and selecting decontamination, the screening of potential characterization technologies, development of minimum performance factors for the decontamination technology, and development and identification of Applicable, Relevant and Appropriate Regulations (ARARs).

  20. Decontamination and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    The objectives of this coordinated research programme (CRP) were to promote the exchange of information on the practical experience by Member States in decontamination and decommissioning. The scope of the programme included several areas of decontamination and decommissioning rather than focusing on a single aspect of it, in line with recommendation of the experts who participated in Phase 1 of the CRP. Experts felt that this format would generate better awareness of decontamination and decommissioning and would be more effective vehicle for the exchange of information by stimulating broader discussion on all aspects of decontamination and decommissioning. Special emphasis was given to the development of principles and methodologies to facilitate decommissioning and to the new methods and techniques for optimization of decontamination and disassembly of equipment. Refs, figs, tabs

  1. Problematika formaldehida v odpadnih vodah lesne industrije: Problem of waste effluents in wood industry - the possibilities of biological treatment:

    OpenAIRE

    Muck, Tadeja

    1999-01-01

    Wood industry does not pollute waters to a great extend, nevertheless we must be aware that the problem still exists. Waste effluents in wood industry contain very high portion of dangerous and toxic substance - formaldehyde. That is why it is inevitably vital to start with detailed analysis of waste effluents and with studies of possibilities of decontamination. Statistical analysis are showing that wood industry are not well aware of the fact how quickly the ecological balance can be destro...

  2. Concrete decontamination and demolition methods

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE), Division of Environmental Control Technology, requested Nuclear Energy Services to prepare a handbook for the decontamination and decommissioning (D and D) of DOE-owned and commercially-owned radioactive facilities. the objective of the handbook is to provide the nuclear industry with guidance on the state-of-the-art methods and equipment available for decommissioning and to provide the means to estimate decommissioning costs and environmental impact. The methods available for concrete decontamination and demolition are summarized to provide an overview of some of the state-of-the-art techniques to be discussed at this workshop. The pertinent information on each method will include the selection factors such as the rate of performance in terms of concrete removal per unit time (cubic yards per day), manpower required by craft, unit cost (dollars per cubic yard) and the advantages and disadvantages. The methods included in this overview are those that have been routinely used in nuclear and nonnuclear applications or demonstrated in field tests. These methods include controlled blasting, wrecking ball or slab, backhoe mounted ram, flame torch, thermic lance, rock splitter, demolition compound, sawing, core stitch drilling, explosive cutting, paving breaker and power chisel, drill and spall, scarifying, water cannon and grinding

  3. An extremely radioresistant green eukaryote for radionuclide bio-decontamination in the nuclear industry

    International Nuclear Information System (INIS)

    Nuclear activities generate radioactive elements which require processes for their decontamination. Although biological remediation has proved to be efficient in industrial applications, no biotechnology solution is currently operational for highly radioactive media. Such a solution requires organisms that accumulate radionuclides while withstanding radioactivity. This paper describes the potentialities of an extremophile autotrophic eukaryote, Coccomyxa actinabiotis nov. sp., that we isolated from a nuclear facility and which withstands huge ionizing radiation doses, up to 20 000 Gy. Half the population survives 10 000 Gy, which is comparable to the hyper-radioresistant well-known prokaryote Deinococcus radiodurans. The cell metabolic profile investigated by nuclear magnetic resonance was hardly affected by radiation doses of up to 10 000 Gy. Cellular functioning completely recovered within a few days. This outstanding micro-alga also strongly accumulates radionuclides, including 238U, 137Cs, 110mAg, 60Co, 54Mn, 65Zn, and 14C (decontamination above 85% in 24 h, concentration factor, 1000-450 000 mL g-1 fresh weight). In 1 h, the micro-alga revealed as effective as the conventional physico-chemical ion exchangers to purify nuclear effluents. Using this organism, an efficient real-scale radionuclide bio-decontamination process was performed in a nuclear fuel storage pool with an important reduction of waste volume compared to the usual physico-chemical process. The feasibility of new decontamination solutions for the nuclear industry and for environmental clean-up operations is demonstrated. (authors)

  4. Metal separations using aqueous biphasic partitioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.

  5. Copper and nickel speciation in mine effluents by combination of two independent techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Zhao, J.; Chakrabarti, C.L.

    the speciation of nickel and copper in metal-mining aqueous effluents. Diffusive gradients in thin films (DGT) technique and competing ligand exchange (CLE) method have been applied to determine the speciation of nickel and copper. The results...

  6. Study of the {sup 60}Co speciation in the aqueous radioactive waste of the la Hague nuclear reprocessing plant; environmental behaviour after discharges in the waters of the channel; Etude de la speciation du {sup 60}Co dans les effluents de l'usine de retraitement de combustibles irradies de la Hague; devenir apres rejet dans les eaux de la Manche

    Energy Technology Data Exchange (ETDEWEB)

    Gaudaire, J.M

    1999-07-01

    {sup 60}Co is produced as an activation product and is present in the low-level aqueous radioactive waste released from the La Hague plant. At present, the concentration in the sea (non filtered at 0.45 {mu}m) at the Goury site are close to or even below, the detection limit: 0.2 mBq.l{sup -1}. The {sup 60}Co speciation depends on the type of effluent considered: in the effluent A ('active'), the cobalt is in the form of a stable trivalent complex; in the effluent V (to be checked), the cobalt is in majority (50% of the activity release) in the form of particles (>0.45 {mu}m), and then in the form of two soluble species: ionic divalent (Co{sup 2+}) and some stable complexes. The evolution of the reprocessing techniques used does not affect the speciation. So, since the nuclear reprocessing plant started at the La Hague plant in 1966, the chemical species discharged in the sea shows time variation related to the evolution of the type of effluent discharged. Thus, since 1994, the particles of cobalt are the main species discharged in the Channel (the V effluents represent more than 85% of the total {sup 60}Co activity released). The effect of instantaneous dilution into the marine conditions involving a variation of pH, oxido-reduction, ionic strength, a gradient of salinity, does not interfere with the evolution of the chemical species discharged. Nevertheless, during the discharge of the V effluent, the main constituents of the sea water (Mg{sup 2+} and Ca{sup 2+}) go through a precipitation. This comes with the coprecipitation of the ion Co{sup 2+} and with the particles of cobalt (complexes are not affected), and it can be responsible for an increase in the concentration in the particles. The chemical behaviour of the cobalt in the Channel is different from those of conservative element such as antimony. The ionic cobalt and the particles have a small dispersion in the water (cobalt has a very high particle/dissolved distribution factor, it is a non

  7. Decontamination techniques for BWR power generation plant

    International Nuclear Information System (INIS)

    The present report describes various techniques used for decontamination in BWR power generation plants. Objectives and requirements for decontamination in BWR power plants are first discussed focusing on reduction in dose, prevention of spread of contamination, cleaning of work environments, exposure of equipment parts for inspection, re-use of decontaminated resources, and standards for decontamination. Then, the report outlines major physical, chemical and electrochemical decontamination techniques generally used in BWR power generation plants. The physical techniques include suction of deposits in tanks, jet cleaning, particle blast cleaning, ultrasonic cleaning, coating with special paints, and flushing cleaning. The chemical decontamination techniques include the use of organic acids etc. for dissolution of oxidized surface layers and treatment of secondary wastes such as liquids released from primary decontamination processes. Other techniques are used for removal of penetrated contaminants, and soft and hard cladding in and on equipment and piping that are in direct contact with radioactive materials used in nuclear power generation plants. (N.K.)

  8. Disassembling and decontamination techniques for JPDR

    Energy Technology Data Exchange (ETDEWEB)

    Yasunaka, Hideo (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment)

    1990-08-01

    The report addresses the development and testing of decontamination techniques that have been carried out at JPDR by the Japan Atomic Energy Research Institute. The reactor's primary system, fuel pools and waste liquid tanks are decontaminated before disassembling. Chemical techniques are mainly used for the decontamination of the primary system while high-pressure jets, blasting and peelable coatings are used for pools and tanks. The techniques employed at JPDR for the systems decontamination prior to disassembling include the Can-Decon method, a modified NP/NS-1 method, redox method, and flow polishing. About 40,000-50,000 tons of metal waste is released from a disassembled large-size nuclear power facility, about 20 percent of which is contaminated with radioactive substances. Most of the waste can be decontaminated by appropriate techniques such as electrolytic polishing, immersion in chemical decontamination agents, and grid blasting. The ultimate goal of post-disassembling decontamination is complete removal of radioactive contaminants from the surface of metal waste to permit its reutilization. (N.K.).

  9. Decontamination of Rooibostea by radurization

    International Nuclear Information System (INIS)

    The microbiological quality of a 'raw' agricultural commodity such as Rooibos tea is determined by a set of factors during harvesting and processing. Results suggest that a fermentation process takes place during processing, with members of the Enterobacteriaceae playing a dominant role. Against this background, as well as fluctuating hygienic conditions during processing, the high microbial population (107 to 5 x 108 /g) and even the possible presence of food-borne pathogens such as salmonellae, may be explaned. No real quarantee for the microbiological status of the product can be given, unless it is subjected to a terminal decontamination process (preferably after final packaging). Radurisation appears to be an ideal process for this purpose, and treatment at 8 kGy resulted in more than a 5000-fold (>99,9%) reduction of the microbial population. This was sufficient to eliminate all pathogens without harming the organoleptic quality of the product

  10. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  11. Cytotoxicity assays to evaluate tannery effluents treated by photoelectrooxidation.

    Science.gov (United States)

    Jaeger, N; Moraes, J P; Klauck, C R; Gehlen, G; Rodrigues, M A S; Ziulkoski, A L

    2015-12-01

    The advanced oxidation process (AOP) is used to increase the treatment efficiency of effluents however, it is necessary to compare the toxicity of treated and untreated effluents to evaluate if the decontamination process does not cause any biological harm. Cultured cells have been previously used to assess the genotoxic and cytotoxic potential of various compounds. Hence, the aim of this work was to assess the applicability of cytotoxicity assays to evaluate the toxicity related to the AOP treatment. Samples of an industrial effluent were collected after their treatment by a conventional method. Cytotoxicity of standard and AOP treated effluents was assessed in CRIB and HEp-2 cell line using the MTT and neutral red assays. We observed decrease at cell viability in the both assays (50% MTT and 13% NRU) when cells were exposed to the AOP treatment in the highest concentration. Thus, cytotoxic assays in cultured cells can be explored as an useful method to evaluate toxicity as well as to optimize effluents treatment process. PMID:26628242

  12. Decontamination formulation with additive for enhanced mold remediation

    Science.gov (United States)

    Tucker, Mark D.; Irvine, Kevin; Berger, Paul; Comstock, Robert

    2010-02-16

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  13. Critical review of advanced decontamination methods and their application and selection of methods suitable for disposal decontamination

    International Nuclear Information System (INIS)

    The report is structured as follows: (i) Critical review of advanced decontamination methods (chemical methods; electrochemical methods; mechanical methods - high-pressure water jet, abrasive methods, ultrasonic methods); (ii) Effective management of the entire decontamination process; (iii) Proposal for advanced decontamination methods suitable for disposal decontamination; and (iv) Effect of decontamination on waste management. It is concluded that (i) No single universal method exists for efficient decontamination of different materials, so a combination of methods must be used; (ii) The decontamination process should be optimised so that its cost should not exceed the cost of contaminated material handling without decontamination. The following methods were selected for additional examination: dry abrasive blasting, chemical decontamination, and ultrasonic decontamination. (P.A.)

  14. Plasma Air Decontamination System (PADS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Plasma Air Decontamination System (PADS) is a trace contaminant control device based on non-thermal atmospheric pressure plasma technology that...

  15. Plasma Air Decontamination System (PADS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Plasma Air Decontamination System (PADS) is a trace contaminant control device based on non-thermal atmospheric-pressure plasma technology. Compared to...

  16. Decontamination of laryngoscopes in The Netherlands.

    Science.gov (United States)

    Bucx, M J; Dankert, J; Beenhakker, M M; Harrison, T E

    2001-01-01

    In this study the decontamination procedures of laryngoscopes in Dutch hospitals are described, based on a structured telephone questionnaire. There were substantial differences between decontamination procedures in Dutch hospitals and the standards of the APIC (Association of Professionals in Infection Control and Epidemiology), CDC (Centers of Disease Control) and ASA (American Society of Anesthesiology) were met in full in 19.4% of the hospitals. The standards of manual decontamination, used in 78% of the 139 hospitals, were particularly disappointing; manual cleaning was considered inadequate in 22.9% of these hospitals and manual disinfection did not meet the standards of the APIC, CDC or ASA in any of these hospitals. Decontamination by instrument cleaning machines as a standard procedure was used in 30 (22%) hospitals. In three of these hospitals the blades were subsequently sterilized. We suggest adherence to the infection control guidelines of the CDC, APIC and ASA, until the safety of less conservative infection control practices are demonstrated. PMID:11575419

  17. Dilute chemical decontamination program. Final report

    International Nuclear Information System (INIS)

    An evaluation of dilute chemical decontamination technology for Boiling Water Reactor (BWRs) was completed under the Dilute Chemical Decontamination Program. An integrated process was developed and demonstrated under simulated BWR decontamination chemical conditions using a 76 cm long section of 15 cm piping removed from an operating BWR. Reasonable process conditions are: 0.012 M oxalic acid and 0.005 M citric acid at pH 3.0 and 900C with a controlled dissolved oxygen concentration of 0.75 ppM. A novel reagent regeneration process using anion-exchange resin preloaded with oxalate and citrate anions was developed to remove the dissolved corrosion products, including Fe(III), from solution during the decontamination. A limited corrosion testing program was completed and no severe adverse effects were identified

  18. Urban Decontamination Experience at Pripyat Ukraine - 13526

    Energy Technology Data Exchange (ETDEWEB)

    Paskevych, Sergiy [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, 36 a Kirova str. Chornobyl, Kiev region, 07200 (Ukraine); Voropay, Dmitry [Federal State Unitary Enterprise ' Russian State Center of Inventory and Registration and Real Estate - Federal Bureau of Technical Inventory' , 37-2 Bernadsky Prospekt, Moscow Russia 119415 (Russian Federation); Schmieman, Eric [Battelle Memorial Institute, PO Box 999 MSIN K6-90, Richland, WA 99352 (United States)

    2013-07-01

    This paper describes the efficiency of radioactive decontamination activities of the urban landscape in the town of Pripyat, Ukraine. Different methods of treatment for various urban infrastructure and different radioactive contaminants are assessed. Long term changes in the radiation condition of decontaminated urban landscapes are evaluated: 1. Decontamination of the urban system requires the simultaneous application of multiple methods including mechanical, chemical, and biological. 2. If a large area has been contaminated, decontamination of local areas of a temporary nature. Over time, there is a repeated contamination of these sites due to wind transport from neighboring areas. 3. Involvement of earth-moving equipment and removal of top soil by industrial method achieves 20-fold reduction in the level of contamination by radioactive substances, but it leads to large amounts of waste (up to 1500 tons per hectare), and leads to the re-contamination of treated areas due to scatter when loading, transport pollutants on the wheels of vehicles, etc.. (authors)

  19. Metal Surface Decontamination by the PFC Solution

    International Nuclear Information System (INIS)

    PFC (per-fluorocarbon) spray decontamination equipment was fabricated and its decontamination behavior was investigated. Europium oxide powder was mixed with the isotope solution which contains Co-60 and Cs-137. The different shape of metal specimens artificially contaminated with europium oxide powder was used as the surrogate contaminants. Before and after the application of the PFC spray decontamination method, the radioactivity of the metal specimens was measured by MCA. The decontamination factors were in the range from 9.6 to 62.4. The spent PFC solution was recycled by distillation. Before and after distillation, the turbidity of PFC solution was also measured. From the test results, it was found that more than 98% of the PFC solution could be recycled by a distillation. (authors)

  20. LASL experience in decontamination of the environment

    International Nuclear Information System (INIS)

    This discussion represents one part of a major effort in soil decontamination at the Los Alamos site. A contaminated industrial waste line in the Los Alamos townsite was removed, and a plutonium incineration facility, and a filter building contaminated with actinium-227 were dismantled. The former plutonium handling facility has been decontaminated, and canyons and an old firing site contaminated with strontium-90 have been surveyed

  1. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    Science.gov (United States)

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  2. Depressurized pipes decontamination by using circulation foam

    International Nuclear Information System (INIS)

    Decontamination of pipes remains a necessity in order to reduce the radiation level during maintenance or dismantling operations but it is not so easy to do it, especially in case of a long pipe network. To achieve this operation, the use of chemistry is one of the more relevant methods; moreover, the liquid waste production still remains an issue that it can be avoided by the use of decontamination foams. (authors)

  3. Processing of waste solutions from electrochemical decontamination

    International Nuclear Information System (INIS)

    The use of electropolishing as a decontamination technique will be effective only if we can minimize the amount of secondary waste requiring disposal and economically recycle part of the decontamination electrolyte. Consequently, a solution purification method is needed to remove the dissolved contamination and metal in the electrolyte. This report describes the selection of a purification method for a phosphoric acid electrolyte from the following possible acid reclamation processes: ion exchange, solvent extraction, precipitation, distillation, electrolysis, and membrane separation

  4. Chemical Decontamination at Browns Ferry Unit 1

    International Nuclear Information System (INIS)

    In May, 2002, the Tennessee Valley Authority's (TVA) Board of Directors approved the recovery and restart of Unit 1 at Browns Ferry Nuclear Station. As an initial step in the site characterization and restart feasibility review, a majority of the primary reactor circuit was chemically decontaminated. Close cooperation between TVA and vendor personnel resulted in project completion ahead of schedule with outstanding results. The final average decontamination factors were excellent, and the final dose rates were very low, with contact readings on most points between one and three mRem/hr. In addition to allowing TVA to do a complete and thorough job of determining the feasibility of the Unit 1 restart, the decontamination effort will greatly reduce personnel exposure during plant recovery, both whole body exposure to gamma radiation and airborne exposure during pipe replacement efforts. The implementation of lessons learned from previous decontamination work performed at Browns Ferry, as well as decontamination efforts at other plants aided greatly in the success. Specific items of note are: (1) The initial leak check of the temporary decontamination system should include ancillary systems such as the spent resin system, as well as the main circulation loop. This could save time and dose exposure if leaks are discovered before the use of such systems is required. (2) Due to the quick turnaround time from the award of contract, a vendor representative was onsite early in the project to help with engineering efforts and procedures. This aided greatly in completing preparations for the decontamination. (3) The work was performed under a single maintenance activity. This resulted in great craft and plant support. (4) The constant coverage by the site's decontamination flush directors provided timely plant support and interface. (5) The FPC system isolation and back flushing to prevent residual chemicals from being left in the FPC system should have been addressed in more

  5. Collection of lectures delivered at decontamination course

    International Nuclear Information System (INIS)

    The collection contains 10 lectures read at the decontamination workshop DEK '85 held between 29-31 Oct 1985 at the Nuclear Research Institute at Rez, all of which fall under the INIS Subject Scope. The workshop, whose first course was held in 1975, is destined for personnel of various institutions who are decontamination process users but also for designers of nuclear installations, personnel of safety of work inspectorates, hygiene services, etc. (Z.M.)

  6. Geochemical and hydrologic characterization of the effluent draining from U12e, U12n, and U12t tunnels, area 12, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Russell, C.E.; Gillespie, L.; Gillespie, D.

    1993-05-01

    The objective of the Tunnel Effluent Characterization Project at the Nevada Test Site was to characterize the tunnel effluents in terms of rate of discharge, pH, temperature, specific conductivity, turbidity, and aqueous chemistry. The parameters were monitored for one year to identify hazardous constituents within the effluent and to characterize temporal variations.

  7. Evidence based decontamination protocols for the removal of external Δ9-tetrahydrocannabinol (THC) from contaminated hair.

    Science.gov (United States)

    Duvivier, Wilco F; Peeters, Ruth J P; van Beek, Teris A; Nielen, Michel W F

    2016-02-01

    External contamination can cause false positive results in forensic hair testing for drugs of abuse and is therefore a major concern when hair evidence is used in court. Current literature about decontamination strategies is mainly focused on external cocaine contamination and no consensus on the best decontamination procedure for hair samples containing cannabinoids has been reached so far. In this study, different protocols with solvents, both organic as well as aqueous, were tested on blank and drug user hair for their performance on removing external cannabis contamination originating from either smoke or indirect contact with cannabis plant material. Smoke contamination was mimicked by exposing hair samples to smoke from a cannabis cigarette and indirect contact contamination by handling hair with cannabis contaminated gloves or hands. Δ9-tetrahydrocannabinol (THC) levels in the hair samples and wash solvents were determined using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Aqueous surfactant solutions removed more THC contamination compared to water, but much less than organic solvents. Methanol, dichloromethane and chloroform were most efficient in removing THC contamination. Due to its lower environmental impact, methanol was chosen as the preferred decontamination solvent. After testing of different sequential wash steps on externally contaminated blank hair, three protocols performed equally well, removing all normal level and more than 99% of unrealistically high levels of external cannabis contamination. Thorough testing on cannabis users' hair, both as such and after deliberate contamination, showed that using these protocols all contamination could be washed from the hair while no incorporated THC was removed from truly positive samples. The present study provides detailed scientific evidence in support of the recommendations of the Society of Hair Testing: a protocol using a single methanol wash followed by a single aqueous

  8. Criteria and evaluation of three decontamination techniques

    International Nuclear Information System (INIS)

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP), which is part of the Idaho National Engineering Laboratory (INEL), have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. This waste requires a large amount of cold chemical additive to process because the low melting temperatures of sodium and potassium salts cause agglomeration in the bed of the calciner vessel. Criteria have been established for evaluating methods and technologies available for decontaminating equipment and facilities. The criteria were weighted according to their relative importance using a Kepner-Tregoe Problem Solving process. These criteria were used to rank three decontamination techniques new to the ICPP: laser ablation, liquid abrasive blasting and CO2 pellet blasting, against the standard decontamination techniques of sodium-based chemical cleaning and water/steam jets used

  9. Decontamination and rehabilitation of CELESTE I facility from IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    This paper is a continuation of the work reported during the IV-CGEN meeting. It deals with the decontamination/intervention of IPEN's Rand D reprocessing installation named CELESTE I. An evaluation of the radiological risks observed inside the hot cells are presented. The internal contamination was due to Am-241, Cs-137, Ce-144, U-238, Th-234, U-235, Ra-226 and Pu-239, in small amounts. Experiments on chemical decontamination have shown the best methodology and chemicals that must be used on stainless steel surface and other construction materials from the hot cells. It was concluded that nitric acid 1M and the complexing agent EDTA (aqueous solution 0,1M) have presented the desired effects to reduce the contamination. Due to surface contamination level in the hot cells, a first chemical remote decontamination was required in order to reduce the gross alpha, beta and gamma activities, followed by a direct cleaning and local decontamination. These actions make possible to remove and replace equipment as well as to take out the wastes. (author)

  10. Decontamination and decommissioning costing efforts

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE), Office of Environmental Management (EM) is responsible for decontamination and decommissioning (D and D) of a wide variety of facilities ranging from reactors to fuel cycle processing buildings throughout the country. The D and D effort represents a large financial investment and a considerable challenge for the DOE and contractor program and project managers. Specifically, the collection and sharing of useful cost data and development of cost estimates are difficult in an environment in which the availability of these data is limited and the technologies and project methods are evolving. Sound cost data are essential for developing project cost estimates; baselines; and project management, benchmarking, and continuous improvement purposes. This paper will focus on some initiatives that in coordination with other federal agencies and international organizations, the DOE Environmental Management Applied Cost Engineering (ACE) Team is taking to standardize cost definitions; to collect, analyze, and report D and D cost data; and to develop fast, accurate, and easy-to-use cost-estimating models for D and D work

  11. Nuclear reactor effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L.; Essig, T.H. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  12. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Chad W Stratilo

    Full Text Available Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin, compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes.

  13. Handling Technology of Low Decontaminated TRU Fuel for the Simplified Pelletizing Method Fuel Fabrication System

    International Nuclear Information System (INIS)

    In the FaCT project, the advanced aqueous reprocessing and the simplified pelletizing fuel fabrication has been developed principally because it was the most promising concept for the future commercial plant with capacity of 200 tHM a year. The advanced aqueous reprocessing consisted of simplified low decontaminated extraction process and minor actinides recovery process allows the products to remain some amount of fission products. This low decontaminated process brings benefit such as cost reduction for reprocessing, proliferation resistance etc. However, new development issues are given to the fuel fabrication system because source material is the low decontaminated TRU fuel produced from such reprocessing process. Various R and D for measures against high radio-activity and high heat generation by such fuel are going on toward to the C and R in 2010. The interim summarizing in 2008 generally shows that in-cell remote equipment is expected to be feasible and measures against heat generation is generally expected to be feasible as well. (author)

  14. Liquid Effluent Retention Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  15. Genotoxicity of swine effluents.

    Science.gov (United States)

    Techio, V H; Stolberg, J; Kunz, A; Zanin, E; Perdomo, C C

    2011-01-01

    This study aimed at the investigation of genotoxic effects of swine effluents from different stages of a treatment system for swine wastes through bioassay of stamen hairs and micronuclei in Tradescantia (clone BNL 4430). No significant differences (p≥0.05) regarding the genic mutations were found in the bioassay of stamen hairs, independently of the effluent analysed. For the genotoxicity test with micronuclei, the plants exposed to raw wastes, to sludge, and to effluent of the biodigester have presented higher rates of chromosomal damages (micronuclei), with significant differences in relation to the control group and other effluent of the waste treatment system (p≤0.05). The association between the chemical parameters and the genotoxicity data have shown that the variables COD and TKN have presented significant correlation (p≤0.05) with the number of mutagenic events in the tetrads.

  16. New quaternary ammonium salts based decontaminants

    Directory of Open Access Journals (Sweden)

    Diana M. Popescu

    2014-06-01

    Full Text Available Decontamination after terrorist attacks or industrial accidents with biological and/or chemical agents („bio-chem“ must be fast and efficient, in order to reduce the number of victims and to eliminate the consequent damages. The decontamination of living biological agents (bacteria, viruses or nonliving ones (toxins, regulators and toxic chemicals could be accomplished by reactions of hydrolysis in various experimental conditions, in particular in alkaline medium, reactions with amines or ammonia, alcohols, phenols etc. and by their transformation into less toxic degradation products. “Bio-chem” intentional or unintentional contamination is a real risk, towards which an effective management must be available to prevent and control it. Decontamination is an essential measure to protect the personnel and the environment. Synthesis and testing of new „bio-chem“ decontaminants, based on quaternary ammonium salts, complete the arsenal of protection against chemical and biological agents. The most effective selected substances could be produced and used for decontamination in accordance with legal procedures

  17. Self-Decontaminating Fibrous Materials Reactive toward Chemical Threats.

    Science.gov (United States)

    Bromberg, Lev; Su, Xiao; Martis, Vladimir; Zhang, Yunfei; Hatton, T Alan

    2016-07-13

    Polymers that possess highly nucleophilic pyrrolidinopyridine (Pyr) and primary amino (vinylamine, VAm) groups were prepared by free-radical copolymerization of N,N-diallylpyridin-4-amine (DAAP) and N-vinylformamide (NVF) followed by acidic hydrolysis of NVF into VAm. The resulting poly(DAAP-co-VAm-co-NVF) copolymers were water-soluble and reacted with water-dispersible polyurethane possessing a high content of unreacted isocyanate groups. Spray-coating of the nylon-cotton (NYCO), rayon, and poly(p-phenylene terephthalamide) (Kevlar 119) fibers pretreated with phosphoric acid resulted in covalent bonding of the polyurethane with the hydroxyl groups on the fiber surface. A second spray-coating of aqueous solutions of poly(DAAP-co-VAm-co-NVF) on the polyurethane-coated fiber enabled formation of urea linkages between unreacted isocyanate groups of the polyurethane layer and the amino groups of poly(DAAP-co-VAm-co-NVF). Fibers with poly(DAAP-co-VAm-co-NVF) attached were compared with fibers modified by adsorption of water-insoluble poly(butadiene-co-pyrrolidinopyridine) (polyBPP) in terms of the stability against polymer leaching in aqueous washing applications. While the fibers modified by attachment of poly(DAAP-co-VAm-co-NVF) exhibited negligible polymer leaching, over 65% of adsorbed polyBPP detached and leached from the fibers within 7 days. Rayon fibers modified by poly(DAAP-co-VAm-co-NVF) were tested for sorption of dimethyl methylphosphonate (DMMP) in the presence of moisture using dynamic vapor sorption technique. Capability of the fibers modified with poly(DAAP-co-VAm-co-NVF) to facilitate hydrolysis of the sorbed DMMP in the presence of moisture was uncovered. The self-decontaminating property of the modified fibers against chemical threats was tested using a CWA simulant diisopropylfluorophosphate (DFP) in aqueous media at pH 8.7. Fibers modified with poly(DAAP-co-VAm-co-NVF) facilitated hydrolysis of DFP with the half-lives up to an order of magnitude

  18. Self-Decontaminating Fibrous Materials Reactive toward Chemical Threats.

    Science.gov (United States)

    Bromberg, Lev; Su, Xiao; Martis, Vladimir; Zhang, Yunfei; Hatton, T Alan

    2016-07-13

    Polymers that possess highly nucleophilic pyrrolidinopyridine (Pyr) and primary amino (vinylamine, VAm) groups were prepared by free-radical copolymerization of N,N-diallylpyridin-4-amine (DAAP) and N-vinylformamide (NVF) followed by acidic hydrolysis of NVF into VAm. The resulting poly(DAAP-co-VAm-co-NVF) copolymers were water-soluble and reacted with water-dispersible polyurethane possessing a high content of unreacted isocyanate groups. Spray-coating of the nylon-cotton (NYCO), rayon, and poly(p-phenylene terephthalamide) (Kevlar 119) fibers pretreated with phosphoric acid resulted in covalent bonding of the polyurethane with the hydroxyl groups on the fiber surface. A second spray-coating of aqueous solutions of poly(DAAP-co-VAm-co-NVF) on the polyurethane-coated fiber enabled formation of urea linkages between unreacted isocyanate groups of the polyurethane layer and the amino groups of poly(DAAP-co-VAm-co-NVF). Fibers with poly(DAAP-co-VAm-co-NVF) attached were compared with fibers modified by adsorption of water-insoluble poly(butadiene-co-pyrrolidinopyridine) (polyBPP) in terms of the stability against polymer leaching in aqueous washing applications. While the fibers modified by attachment of poly(DAAP-co-VAm-co-NVF) exhibited negligible polymer leaching, over 65% of adsorbed polyBPP detached and leached from the fibers within 7 days. Rayon fibers modified by poly(DAAP-co-VAm-co-NVF) were tested for sorption of dimethyl methylphosphonate (DMMP) in the presence of moisture using dynamic vapor sorption technique. Capability of the fibers modified with poly(DAAP-co-VAm-co-NVF) to facilitate hydrolysis of the sorbed DMMP in the presence of moisture was uncovered. The self-decontaminating property of the modified fibers against chemical threats was tested using a CWA simulant diisopropylfluorophosphate (DFP) in aqueous media at pH 8.7. Fibers modified with poly(DAAP-co-VAm-co-NVF) facilitated hydrolysis of DFP with the half-lives up to an order of magnitude

  19. Decontamination of some liquid wastes of medium activity with a new solvent type

    International Nuclear Information System (INIS)

    The decontamination of a reference MAWsub(s) (an alkaline solution coming from the solvent washing and an acidic solution consisting of the mixture of aqueous raffinates deriving from uranium and plutonium purification cycles) by hydroxamic acid is reported. The results of the ''in batch'' decontamination tests, using extraction chromatography techniques, are given. The extraction chromatography techniques do not give the expected performances for the tests in column. Discontinuous liquid extraction tests using traced solutions show that Pu, Am, Zr, Nb are extracted but not U and Ru. The strip of Pu, Am and Zr with an oxalic acid solution is quantitative. Continuous tests using mixer settler batteries, and a simulated alkaline solution and complete extraction-reextraction runs using a simulated solution are conducted. The results of a discontinuous conclusive experiments using a true alkaline solution coming from a reprocessing plant are given

  20. Decontamination of liquid nuclear wastes by fixation of radioactive elements on nickel and zinc ferrocyanides

    International Nuclear Information System (INIS)

    Nickel and zinc ferrocyanides are very efficient products for the removal of several ions from aqueous solutions. Owing to a preparation process by slow growth on solid alkaline ferrocyanide placed in a concentrated nickel or zinc solution, these products can be used in columns. The optimal recovery conditions of radioactive cesium and silver were determined on several types of nickel and zinc ferrocyanides. The decontamination factor for cesium or silver is over 1000 for synthetic solutions. The presence of other alkaline ions does not modify these results. In the case of nuclear liquid wastes containing lithium borate, the cesium decontamination remains high. Silver is generally retained with a good efficiency. However, the fixation is sometimes impossible owing to complex forms. This effect could be avoided by acidification. The drawback of ferrocyanides is a slight release of some cations of the products. 38 refs.; 5 figs.; 5 tabs

  1. Development of laser decontamination. 5. Decontamination test of the hot samples

    International Nuclear Information System (INIS)

    Process of laser decontamination system is as follows. As the material is irradiated by laser beam, its surface is instantaneously heated and ablated. Laser decontamination system is able to decontaminate thoroughly. In this work, the characteristics of laser beam transmission by optical fibers, and decontamination effect of laser beam irradiation to test pieces which are cut down of pipe in the hot facility, are experimented for apply laser decontamination technique to radioactive wastes treatment and decommissioning of nuclear fuel facilities. The results are as follows. (1) Beam transmission: Transmission of Q switch pulse YAG laser's beam by optical fibers are examined. Transmission energy is in proportion to incident energy to fiber. Transmission energy of bundled fiber is 168mJ to 406mJ of incident energy. In the case of incident energy was 425mJ, transmission energy was decrease, because some fibers of bundled fiber were damaged by laser beam. (2) Decontamination test of the hot samples: Counting rate of pipe test piece were decreased more than 90% by first irradiation of Q switch pulse YAG laser. Counting rate of pipe test piece were decreased no more than 4% by on and after second irradiation of Q switch pulse YAG laser. To move the test piece slowly, and to raise the density of irradiation energy, and to use the helium gas for auxiliary gas are effective to increase decontamination effect. (author)

  2. Development of decontamination, decommissioning and environmental restoration technology

    International Nuclear Information System (INIS)

    Through the project of Development of decontamination, decommissioning and environmental restoration technology, the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  3. Decontamination of Chemical Warfare Agents (Review Article

    Directory of Open Access Journals (Sweden)

    Beer Singh

    2010-07-01

    Full Text Available Chemical warfare agents (CWA pose inevitable threat, both to soldiers and civilians. Risk on contact with these deadly agents can be avoided by neutralisation of their toxic effects. A suitable media with essential physico-chemical properties is required for this purpose. Considerable efforts have been made to develop several decontamination media suitable for neutralisation of highly toxic CWAs. This paper reviews history and details of recent technological advancements in the development of versatile, broad spectrum decontamination formulations against CWAs, as also nanosized metal oxides as CWA decontaminants.Defence Science Journal, 2010, 60(4, pp.428-441, DOI:http://dx.doi.org/10.14429/dsj.60.487

  4. Decontamination tests on tritium-contaminated materials

    International Nuclear Information System (INIS)

    These tests are designed to try out various processes liable to be applied to the decontamination of a material contaminated with tritium. The samples are thin stainless- steel slabs contaminated in the laboratory with elements extracted from industrial installations. The measurement of the initial and residual activities is carried out using an open-window BERTHOLD counter. The best results are obtained by passing a current of pre-heated (300 deg. C) air containing water vapour. This process makes it possible to reach a decontamination factor of 99.5 per cent in 4 hours. In a vacuum, the operation has to be prolonged to 100 hours in order to obtain a decontamination factor of 99.2 per cent. Wet-chemical or electrolytic treatments are efficient but their use is limited by the inherent corrosion risks. A study of the reappearance of the contamination has made it possible to observe that this phenomenon occurs whatever the process used. (authors)

  5. Radioactive scrap metal decontamination technology assessment report

    International Nuclear Information System (INIS)

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material's decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting

  6. Biodegradation of concrete intended for their decontamination

    International Nuclear Information System (INIS)

    The decontamination of sub-structural materials represents a stake of high importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those microorganisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  7. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Brian H.; Kuritz, Tanya

    2000-06-01

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: (1) decreased exposure hazards for workers; (2) decreased secondary waste generation; (3) increased efficiency of decontamination; (4) positive public appeal and development of novel, nature-friendly business opportunities; and (5) lower cost of cleanup to the government. We propose to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) will then be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  8. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Brian H.; Kurtiz,Tanya

    1999-06-01

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: (1) decreased exposure hazards for workers; (2) decreased secondary waste generation; (3) increased efficiency of decontamination; (4) positive public appeal and development of novel, nature-friendly business opportunities; and (5) lower cost of cleanup to the government. We propose to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) will then be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  9. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Brian H.

    2002-04-30

    The proposed research aimed to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies include the following: decreased exposure hazards for workers; decreased secondary waste generation; increased efficiency of decontamination; positive public appeal and development of novel, nature-friendly business opportunities; and lower cost of cleanup to the government. We proposed to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) was to be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  10. Decontamination of CAGR gas circulator components

    International Nuclear Information System (INIS)

    This paper describes the development and full-scale trial of two methods for removal of radioactive contamination on the surfaces of CAGR gas circulator components. The two methods described are a particle impact cleaning (PIC) decontamination technique and an electrochemical technique, 'electro-swabbing', which is based on the principle of decontamination by electro-polishing. In developing these techniques it was necessary to take account of the physical and chemical nature of the surface deposits on the gas circulator components; these were shown to consist of magnetite-type oxide and carbonaceous material. In order to follow the progress of the decontamination it was also necessary to develop a surface sampling technique which was effective and precise under these conditions; an electrochemical technique, employing similar principles to the electro-swabbing process, was developed for this purpose. The full-scale trial of the PIC decontamination technique was carried out on an inlet guide vane (IGV) assembly, this having been identified as the component from the gas circulator which contributes most to the radiation dose accumulated during routine circulator maintenance. The technique was shown to be practically viable and some 99% of the radioactive contamination was readily removed from the treated surfaces with only negligible surface damage being caused. The full-scale trial of the electro-swabbing decontamination technique was carried out on a gas circulator impeller. High decontamination factors were again achieved with ≥ 99% of the radioactive contamination being removed from the treated surfaces. The technique has practical limitations in terms of handling and treatment of waste-arisings. However, the use of specially-designed swabbing electrodes may allow the treatment of constricted geometries inaccessible to techniques such as PIC. The technique is also highly suitable for the treatment of soft-finish materials and of components fabricated from a

  11. Radiation methods for decontamination of liquid wastes and ecological problems

    International Nuclear Information System (INIS)

    The authors discuss several possible approaches to the use of radiation for the purposes of rational use of water resources and protecting them from pollution and depletion. The authors note that radiation decontamination makes it possible to solve a number of important problems in protecting fundamental elements of the biosphere by: reducing the uptake of fresh water from natural sources for industrial and household needs and sharply cutting the release of unpurified waste water by creating circulating water systems based on rapid methods of thorough purification; employing a combination of different physical and chemical methods with a final stage that uses radiation-prolonged adsorption to give the water a high degree of purity; preventing bacterial contamination of soils when liquid and semiliquid wastes from cities and livestock farms are used as fertilizers; utilizing the excess active sludges that accumulate in biological treatment factilities as feed additives and fertilizer; and eliminating the release to the atmosphere of effluents from the incineration of highly polluted waste water which often contains carcinogenic and poisonous substances

  12. Green coffee decontamination by electron beam irradiation

    International Nuclear Information System (INIS)

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties

  13. Radio decontamination experiences of pharmaceuticals products

    International Nuclear Information System (INIS)

    The possibilities for the radio decontamination radioimmunodetection of Mafenide 10% cream, Bariopac powder and Ranitidine raw material by means of the application of different dose level of gamma rays were studied. Microbiological and Physicochemical evaluations were carried out before and after the treatment . The industrial production was irradiated with 3 and 1 kGy as the adequate dose, in a continuous way. It was concluded that the application of ionising radiations with decontamination aims is an alternative to guarantee the microbiological quality of these pharmaceuticals

  14. Green coffee decontamination by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nemtanu, Monica R. [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor St., P.O. Box MG-36, RO 76 900, Bucharest-Magurele (Romania)]. E-mail: monica@infim.ro; Brasoveanu, Mirela [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor St., P.O. Box MG-36, RO 76 900, Bucharest-Magurele (Romania); Grecu, Maria Nicoleta [National Institute for Materials Physics, RO 77 125, Bucharest-Magurele (Romania); Minea, R. [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor St., P.O. Box MG-36, RO 76 900, Bucharest-Magurele (Romania)

    2005-10-15

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties.

  15. Localization of decontamination waste in the territory of Ukraine

    International Nuclear Information System (INIS)

    Various environmental conditions in decontamination waste storage areas in the Zhitomir, Kiev, Chernigov, Rovno, Cherkassy, Sumy Regions of Ukraine are analyzed. Typical designs and basic parameters of decontamination waste storage areas implemented in 17 contractor designs are described. Theoretical grounds of safe storage of decontamination waste in the areas are discussed

  16. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties.. Annual report to be submitted to DOE Program Managers for posting on web page.

    Energy Technology Data Exchange (ETDEWEB)

    Davison, BH

    2001-06-15

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: decreased exposure hazards for workers; decreased secondary waste generation; increased efficiency of decontamination; positive public appeal and development of novel, nature-friendly business opportunities; and lower cost of cleanup to the government.

  17. Detritiation of Tritiated Effluent Gas and Water

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Lee, Min Soo; Yim, Sung Paal; Chung Hong Suk

    2007-06-15

    In a demonstration scale equipment for treatment of tritium in off-gas, Pt/SDBC as oxidation catalyst and Zeolite 13X as adsorbent was charged in the beds, respectively. It was confirmed from the performance test that decontamination factor of the equipment showed more than 100 under the flow rate of off-gas of 90 l/hr and at the temperature of 65 {approx} 80 .deg. C. A small scale CECE process has been developed combining LPCE catalytic column with SPE (solid polymer electrolyte) electrolysis. The catalytic column was a trickle-bed type packed with the mixture of 1 wt% Pt/SDBC catalyst and 4 mm Dixon wire-mesh ring. The experimental results of the CECE process proved that the decontamination factor of 13 {approx} 20 under the operating conditions of the water of the 4 l/day and the effluent hydrogen gas of 16.2 mol/h. A design code of CECE process also developed which will be applied the tritium industry. An experimental method for the reduction of tritiated organic waste by using catalytic oxidation was tested in a heated catalytic reactor of 0.5 wt% Pd/Al{sub 2}O{sub 3}. The simulated organic liquid was converted to water over 99%. A gas chromatographic column material was developed for the separation of mixed hydrogen isotopes. 17 wt% Pd-Pt on alumina showed 90% separation efficiency at 77 % yield for the separation of 29.2 % D{sub 2}-H{sub 2} gas mixture.

  18. 40 CFR 170.250 - Decontamination.

    Science.gov (United States)

    2010-07-01

    ... vehicular access: (i) The soap, single-use towels, clean change of clothing, and water may be at the nearest place of vehicular access. (ii) The handler employer may permit handlers to use clean water from springs... accessible than the water located at the nearest place of vehicular access. (4) Decontamination supplies...

  19. Ultrasonic decontamination of nuclear fuel. Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Berg, A.; Libal, A.; Norbaeck, J.; Wegemar, B.

    1995-05-01

    Ultrasonic decontamination of nuclear fuel is an expeditious way to reduce radiation exposures resulting in a minimal volume of waste. The fuel assemblies are set up in the fuel preparation machine one at a time and treated without prior disassemblage. By decontaminating 20% of the BWR fuel assemblies annually, there is a potential to reduce the collective dose by approximately 40-50%. Including also improved reactivity of the fuel, this amounts to an economic benefit of about 4 MSEK per reactor and year. The costs for performing the decontamination can be economically justified if the plants do not plan for short outages each year. The decontamination method could also be used for the purpose of removing tramp Uranium following a fuel failure or minor core accident. An additional benefit is removal of loosely adherent crud. The waste produced will be handled in a closed filtering circuit. The method is suggested to be verified in a test on discharged burnt-up fuel at site. The next step will be to develop the method further in order to be able to remove also tenacious crud. 12 refs, 4 tabs.

  20. Hand decontamination: nurses' opinions and practices.

    Science.gov (United States)

    Gould, D

    Infection is spread in hospital mainly by hands, making hand decontamination the most important means of preventing dissemination. There is some evidence to suggest that when access to hand-decontaminating agents is poor or the agents available are disliked, hands are washed too seldom, increasing risks of cross-infection. However, little attention has been paid to the use of towels and factors which promote their use, although it is known that damp hands transfer bacteria more readily than dry ones and that hands which become sore through poor drying have higher bacterial counts, contributing to the risk of cross-infection. This paper reports the results of the Nursing Times Hand Drying survey designed to assess nurses' access to hand decontamination agents and towels. The results suggest that the 112 nurses who participated were aware of the need for attention to hand hygiene but that access to both hand-decontaminating agents and paper towels was variable. Forty-one per cent complained of a shortage of soap and although nearly all used paper towels, these were in many cases of poor quality. Such towels were perceived as damaging to hands, leaving them feeling damp and sore. Good-quality, soft, paper towels were much appreciated by respondents in this sample. It is concluded that the quality of paper towels contributes to good infection control practice.

  1. Decontamination and decommissioning focus area. Technology summary

    International Nuclear Information System (INIS)

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities

  2. Decontamination of operational nuclear power plants

    International Nuclear Information System (INIS)

    In order to reduce the radiation fields around nuclear power plants, and, consequently, to limit the radiation exposure of and dose commitments to the operating and maintenance personnel, the contamination build-up should be kept to a minimum. The most fruitful approach, from the point of view of economics and efficiency, is to tackle the problems of contamination and decontamination in the design and construction phases of the reactor. To do this, knowledge gained from the operation of existing power reactors should be used to make improvements in new designs. New structural materials with low corrosion rates or whose constituents are not activated by neutrons should also be used. For older reactors, in most cases it is already too late to incorporate design changes without extensive and expensive modifications. For these plants, decontamination remains the most efficient way to reduce radiation fields. The aim of this report is to deal with the different decontamination methods that may be applied to nuclear power plant circuits and equipment during operation. The factors that have to be considered in determining the type and the extent of the methods used are the engineering and the planning of the decontamination operation and the treatment of the resulting waste generated during the process are also discussed

  3. 40 CFR 170.150 - Decontamination.

    Science.gov (United States)

    2010-07-01

    ... water may be at the nearest place of vehicular access. (ii) The agricultural employer may permit workers to use clean water from springs, streams, lakes, or other sources for decontamination at the remote... equipment, soap, clean towels, and a sufficient amount of water so that the workers may wash thoroughly....

  4. Thermal decontamination of transformers: A new technology

    International Nuclear Information System (INIS)

    After evaluating a number of methods for decontaminating or disposing of transformers that contained polychlorinated biphenyls (PCB), it was concluded that no entirely satisfactory procedure or technology was yet available which was permanent, effective, safe, relatively simple, and based on proven technology or conventional practice. The most desirable compromise appears to be thermal decontamination. It is proposed to decontaminate transformers by controlled incineration in a specially designed, indirect-fired furnace which resembles the conventional bell-type, vertical elevator, metal heat treating type of furnace. The design differs in the incorporation of those essential features required to achieve oxidation of the organic components, to provide internal air circulation needed to ensure efficient heat and mass transfer, and other factors. The most appropriate decontamination facility would provide for implementation of the following procedures: draining of PCB-containing liquids from the transformer; limited disassembly of the transformer, which in most instances would imply only removal of the top cover to expose the insides; and controlled incineration with any vapors generated being conducted to a secondary combustion chamber. Experiments were conducted in a kiln to simulate the proposed transformer incinerator. Results show that exposure of the transformer segments to a temperature in the 950-1,000 degree C range for over 90 min is generally sufficient to reduce the PCB content to under 1 ppM. Based on the work conducted, a suitable bell furnace was constructed and added to the Swan Hills (Alberta) waste treatment facility. 2 figs., 3 tabs

  5. Study of Electrolyte for Electrochemical Decontamination

    International Nuclear Information System (INIS)

    Removal of metallic surface contamination by anodic dissolution in an electrochemical has pervaded in industrial use for many years. The removal of radioactive contaminations by this same technique has more recently attracted attention. Allen and Arrowsmith have reported extensive work with phosphoric acid as the electrolyte. Phosphoric acid is very efficient electrolyte for removing radioactive contaminations and does furnish an electro-polished surface that is quite smooth. But inadequate processes for the spent electrolyte caused unwanted waste. Such unwanted waste is also caused in other acidic electrolytes (for example, nitric acid or sulfuric acid). Most of the radioactivity is assumed to be localized in about ten micron thickness on the surface: therefore, a surface decontamination method should be useful as a decontamination technique. In particular, electrolytic decontamination is considered to be the most useful method because of a high volume reduction factor and easy application on metal waste of diverse shapes. In this paper, we consider that NaNO3 solution is suitable for electrochemical decontamination

  6. Building 003 decontamination and disposition. Final report

    International Nuclear Information System (INIS)

    The decontamination and disposition (D and D) of the contaminated facilities in Building 003 are complete. The Hot Cave, the building radioactive exhaust system, the radioactive liquid waste system, and the fume hoods were removed. The more significant D and D activities are summarized, special techniques are noted, and problems and their resolution are discussed. Results of the radiological monitoring are presented

  7. Laser decontamination of the radioactive lightning rods

    International Nuclear Information System (INIS)

    Between 1970 and 1980 Brazil experienced a significant market for radioactive lightning rods (RLR). The device consists of an air terminal with one or more sources of americium-241 attached to it. The sources were used to ionize the air around them and to increase the attraction of atmospheric discharges. Because of their ineffectiveness, the nuclear regulatory authority in Brazil suspended the license for manufacturing, commerce and installation of RLR in 1989, and determined that the replaced RLR were to be collected to a centralized radioactive waste management facility for treatment. The first step for RLR treatment is to remove the radioactive sources. Though they can be easily removed, some contaminations are found all over the remaining metal scrap that must decontaminated for release, otherwise it must be treated as radioactive waste. Decontamination using various chemicals has proven to be inefficient and generates large amounts of secondary wastes. This work shows the preliminary results of the decontamination of 241Am-contaminated metal scrap generated in the treatment of radioactive lightning rods applying laser ablation. A Nd:YAG nanoseconds laser was used with 300 mJ energy leaving only a small amount of secondary waste to be treated. - Highlights: • The process generates minimal additional secondary waste. • The effectiveness of this technique may allow certain materials to be recycled reducing radioactive waste volumes. • The process allows reuse of decontaminated metals

  8. Decontamination and decommissioning focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities.

  9. Remote methods for decontamination and decommissioning operations

    International Nuclear Information System (INIS)

    Three methods for the decontamination and decommissioning of nuclear facilities are described along with operational experience associated with each method. Each method described in some way reduces radiation exposure to the operating personnel involved. Electrochemical decontamination of process tanks is described using an in-situ method. Descriptions of two processes, electropolishing and cerium redox decontamination, are listed. A method of essentially smokeless cutting of process piping using a plasma-arc cutting torch is described. In one technique, piping is cut remotely from a distance using a specially modified torch holder. In another technique, cutting is done with master-slave manipulators inside a hot cell. Finally, a method for remote cutting and scarification of contaminated concrete is described. This system, which utilizes high-pressure water jets, is coupled to a cutting head or rotating scarification head. The system is suited for cutting contaminated concrete for removal or removing a thin layer in a controlled manner for decontamination. 4 refs., 6 figs

  10. Decontamination and dismantling at the CEA

    International Nuclear Information System (INIS)

    This document presents the dismantling policy at the CEA (French Research Center on the atomic energy), the financing of the decontamination and the dismantling, the regulatory framework, the knowledge and the technology developed at the CEA, the radiation protection, the environment monitoring and the installations. (A.L.B.)

  11. Ultrasonic decontamination of nuclear fuel. Feasibility study

    International Nuclear Information System (INIS)

    Ultrasonic decontamination of nuclear fuel is an expeditious way to reduce radiation exposures resulting in a minimal volume of waste. The fuel assemblies are set up in the fuel preparation machine one at a time and treated without prior disassemblage. By decontaminating 20% of the BWR fuel assemblies annually, there is a potential to reduce the collective dose by approximately 40-50%. Including also improved reactivity of the fuel, this amounts to an economic benefit of about 4 MSEK per reactor and year. The costs for performing the decontamination can be economically justified if the plants do not plan for short outages each year. The decontamination method could also be used for the purpose of removing tramp Uranium following a fuel failure or minor core accident. An additional benefit is removal of loosely adherent crud. The waste produced will be handled in a closed filtering circuit. The method is suggested to be verified in a test on discharged burnt-up fuel at site. The next step will be to develop the method further in order to be able to remove also tenacious crud. 12 refs, 4 tabs

  12. LASL experience in decontamination of the environment

    International Nuclear Information System (INIS)

    Since 1972 the Los Alamos Scientific Laboratory (LASL) has been actively involved in land area surveys for radioactive contamination and has gained considerable experience in cleanup of lands considered to have unacceptable levels of radioactive contamination. Experience and means of arriving at recommendations for decontamination at levels as low as reasonably achievable

  13. Separation of radionuclides from electrochemical decontamination waste

    International Nuclear Information System (INIS)

    This study demonstrated the efficiency and applicability of a combined process for the separation of radionuclides from organic complexonates containing waste. A combination of photo-catalytic degradation of organic complexonates followed by the sorption of the radionuclides onto a strongly acidic ion exchanger offers a promising route for the treatment of the spent electrochemical decontamination solution. (authors)

  14. Surface decontamination as a technical and technological discipline

    International Nuclear Information System (INIS)

    The chemical and physical properties are described of the surface, the contaminant and the decontamination system, i.e., the three components of the decontamination process. A survey is presented of decontamination processes for a solid contaminant and for the decontamination of a contaminant bound to the surface. Problems of decontamination are then discussed, connected with the construction and project designing of facilities which shall operate in a radiation field. The generation of contaminants is described and the principles given of project design and design of facilities with regard to radiation hygiene, economy and disposal. (J.P.)

  15. Study on the Decontamination of Radionuclides in Spent Phosphogypsum

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun; Won, H. J.; Moon, J. K.

    2010-01-15

    The objective of the study is to confirm the possibility of further R and D thru pre-study on the decontamination technology for the safe, high decontamination factor, low waste arising and cost effective removal of radionuclide in spent phosphogypsum. The following contents were studied. 1) Decontamination of Radionuclide in Phosphogypsum - Effect of decontamination chemical formulation on Ra removal - Effect of H{sub 2}O{sub 2} concentration on Ra removal - Effect of Sr concentration on Ra removal 2) Removal of Radionuclide in Liquid Waste from Decontamination of Phosphogypsum - Ra removal by chromate treatment - Ra removal by zeolite and ACF treatment

  16. Radiological measurements during decontamination of PFBR MOX fuel elements using ultrasonic decontamination technique

    International Nuclear Information System (INIS)

    In a fuel fabrication facility fabrication of MOX fuel elements involving various metallurgical processes is carried out in leak tight glove boxes because of high radio toxicity associated with plutonium,. A fuel pin consists of a thin walled tube loaded with cylindrical fuel pellets with plugs welded on both ends. The pellet loading and welding processes result in cross contamination on the tube surface near the edges. It is important that finished fuel pins should not contain any transferable contamination on the surface beyond safe limits applicable for unrestricted release before subjecting the pins to manual handling for quality control checks. Hence it is imperative that thorough decontamination of fuel pins is essential for safe handling. Conventional decontamination methods result in undue personal exposures and generation of solid waste. Though there are number of techniques available for decontamination of non-fuel elements in the nuclear industry, very few of them can be used for decontamination of fuel elements because of possible damage to fuel clad, Ultrasonic cleaning process, using dc-mineralized water as medium does not affect the properties of the clad and is simple to implement and fast to carry out. This paper brings out radiological measurements carried out to study the effectiveness of ultrasonic decontamination technique and the factors involved in achieving required degree of decontamination with reduced individual exposure

  17. Electrolytic decontamination of the 3013 inner can

    International Nuclear Information System (INIS)

    Disposition of plutonium recovered from nuclear weapons or production residues must be stored in a manner that ensures safety. The criteria that has been established to assure the safety of stored materials for a minimum of 50 years is DOE-STD-3013. Los Alamos National Laboratory (LANL) has designed a containment package in accordance with the DOE standard. The package consists of an optional convenience (food pack) can, a welded type 304L stainless steel inner (primary) can, and a welded type 304L stainless steel outer (secondary) can. With or without the food pack can, the material is placed inside the primary can and welded shut under a helium atmosphere. This activity takes place totally within the confinement of the glove box line. Following the welding process, the can is checked for leaks and then sent down the line for decontamination. Once decontaminated, the sealed primary can may be removed from the glove box line. Welding of the secondary container takes place outside the glove box line. The highly automated decontamination process that has been developed to support the packaging of Special Nuclear Materials is based on an electrolytic process similar to the wide spread industrial technique of electropolishing. The can is placed within a specially designed stainless steel fixture built within a partition of a glove box. This fixture is then filled with a flowing electrolyte solution. A low DC electric current is made to flow between the can, acting as the anode, and the fixture, acting as the cathode. Following the decontamination, the system provides a flow of rinse water through the fixture to rinse the can of remaining salt residues. The system then carried out a drying cycle. Finally, the fixture is opened from the opposite side of the partition and the can surface monitored directly and through surface smears to assure that decontamination is adequate

  18. Electrolytic decontamination of the 3013 inner can

    International Nuclear Information System (INIS)

    Disposition of plutonium recovered from nuclear weapons or production residues must be stored in a manner that ensures safety. The criteria that has been established to assure the safety of stored materials for a minimum of 50 years is DOE-STD-3013. This standard specifies both the requirements for containment and furthermore specifies that the inner container be decontaminated to a level of ≤20 dpm/100 cm2 swipable and ≤500 dpm/100 cm2 direct alpha such that a failure of the outer containment barrier will have a lower probability of resulting in a spread of contamination. The package consists of an optional convenience (food pack) can, a welded type 304L stainless steel inner (primary) can, and a welded type 304L stainless steel outer (secondary) can. Following the welding process, the can is checked for leaks and then sent down the line for decontamination. Once decontaminated, the sealed primary can may be removed from the glove box line. Welding of the secondary container takes place outside the glove box line. The highly automated decontamination process that has been developed to support the packaging of Special Nuclear Materials is based on an electrolytic process similar to the wide spread industrial technique of electropolishing. The can is placed within a specially designed stainless steel fixture built within a partition of a glove box. The passage of current through this electrolytic cell results in a uniform anodic dissolution of the surface metal layers of the can. This process results in a rapid decontamination of the can. The electrolyte is fully recyclable, and the separation of the chromium from the actinides results in a compact, non RCRA secondary waste product

  19. Integrating effluent management

    OpenAIRE

    1996-01-01

    The paper discusses a closed recycle shrimp farm in Thailand which integrates effluent management. The closed recycle system can reduce risk of heavy metals, pesticides, ammonia, and other toxic particles coming in with water from natural sources by reducing the quantity of water brought to the farm.

  20. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  1. A study of low-cost adsorbent materials for removing Cr(VI from aqueous waste effluent Estudio de materiales adsorbentes de bajo costo para remover Cr(VI de efluentes acuosos

    Directory of Open Access Journals (Sweden)

    Castillo Serna Elianna

    2011-05-01

    Full Text Available  

    The present paper shows very high potential for two types of solid (a commercial alumina and material obtained by composting, i.e. matured compost on Cr(VI adsorption/elimination in aqueous solution using a concentration range close to those previously detected in waste-water from Colombian industries. Both had important properties for eliminating Cr(VI, the compost being more important as it represents low-cost material. Optimal conditions for chromium adsorption on alumina and compost were established. Initial Cr(VI alumina concentration was 10 mgL-1, with 100 mL/g volume of solution per adsorbent mass, pH=2.0, 1 hour equilibrium time and 150 rpm stirring. For compost, initial Cr(VI concentration was = 3 mg L-1, 50 mL/g volume of solution per adsorbent mass, pH=2.5, 3 hour equilibrium time and 150 rpm stirring. The experiments showed that compost adsorption properties could be enhanced by adding small quantities of alumina. Compost could thus be chosen as a promising material for use in bioremediation chromium-containing waste water in a management programme for using solid waste in for minimising environmental impact.

     

     

    Application of gamma irradiation in ginseng for both photodegradation of pesticide pentachloronitrobenzene and microbial decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Hsiao-Wei [Department of Food Science and Biotechnology, National Chung Hsing University, 250, Kuo Kuang Road, Taichung 402, Taiwan (China); Hsieh, Ming-Fa [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Road, Chungli 320, Taiwan (China); Wang, Ya-Ting; Chung, Hsiao-Ping [Nuclear Science and Technology Development Center, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 300, Taiwan (China); Hsieh, Po-Chow; Lin, I-Hsin [Committee on Chinese Medicine and Pharmacy, Department of Health, Executive Yuan, Taipei 104, Taiwan (China); Chou, Fong-In, E-mail: fichou@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 300, Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 300, Taiwan (China)

    2010-04-15

    This study investigates the feasibility of using gamma irradiation for photodegradation of a common residual fungicide, pentachloronitrobenzene (PCNB), in ginseng, and for microbial decontamination. American ginseng, Panax quinquefolius, was subjected to gamma irradiation. PCNB residues were analyzed by gas chromatography with electron capture detection and mass spectrometry. Eighty percent of PCNB (100 ppm) in a methanol aqueous solution was degraded by 5 kGy irradiation, and the primary degradation product was pentachloroaniline. Furthermore, contaminated PCNB (3.7 ppm) in ginseng were reduced to 0.2 ppm after 20 kGy irradiation. The IC{sub 50} for treatment of Sclerotium rolfsii with 20 kGy irradiated PCNB was about 2.7 times higher than that for treatment with unirradiated PCNB. The survival rate of mouse fibroblast L929 cells treated with 20 kGy irradiated PCNB was about 12.9% higher than that of L929 cells treated with unirradiated PCNB. Additionally, after 20 kGy irradiation, less than 5% reduction of contents of ginsenoside Rb1 and Re were observed, and amounts of ginsenosides Rc, Rd, and Rg1 were not reduced significantly. The minimal gamma dose for microbial decontamination was 10 kGy. Therefore, gamma irradiation can be used for both PCNB photodegradation and microbial decontamination of ginseng without obvious loses of ginsenoside contents.

  2. Corrective Action Investigation Plan for Corrective Action Unit 252: Area 25 Engine Test Stand 1 Decontamination Pad, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office

    1999-08-20

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 252 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 252 consists of Corrective Action Site (CAS) 25-07-02, Engine Test Stand-1 (ETS-1) Decontamination Pad. Located in Area 25 at the intersection of Road H and Road K at the Nevada Test Site, ETS-1 was designed for use as a mobile radiation checkpoint and for vehicle decontamination. The CAS consists of a concrete decontamination pad with a drain, a gravel-filled sump, two concrete trailer pads, and utility boxes. Constructed in 1966, the ETS-1 facility was part of the Nuclear Rocket Development Station (NRDS) complex and used to test nuclear rockets. The ETS-1 Decontamination Pad and mobile radiation check point was built in 1968. The NRDS complex ceased primary operations in 1973. Based on site history, the focus of the field investigation activities will be to determine if any primary contaminants of potential concern (COPCs) (including radionuclides, total volatile organic compounds, total semivolatile organic compounds, total petroleum hydrocarbons as diesel-range organics, Resource Conservation and Recovery Act metals, total pesticides, and polychlorinated biphenyls) are present at this site. Vertical extent of migration of suspected vehicle decontamination effluent COPCs is expected to be less than 12 feet below ground surface. Lateral extent of migration of COPCs is expected to be limited to the sump area or near the northeast corner of the decontamination pad. Using a biased sampling approach, near-surface and subsurface sampling will be conducted at the suspected worst-case areas including the sump and soil near the northeast corner of the decontamination pad. The results of this field investigation will support a defensible e

  3. Studies on residue-free decontaminants for chemical warfare agents.

    Science.gov (United States)

    Wagner, George W

    2015-03-17

    Residue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds. As a potential residue-free decontaminant for surfaces other than concrete (or those lacking adsorbed carbonate/bicarbonate) H2O2 activation for CWA decontamination is feasible using residue-free NH3 and CO2 as demonstrated by reaction studies for VX, GD, and HD in homogeneous solution. Although H2O2/NH3/CO2 ("HPAC") decontaminants are active for CWA decontamination in solution, they require testing on actual surfaces of interest to assess their true efficacy for surface decontamination. PMID:25710477

  4. Silage effluent management: a review.

    Science.gov (United States)

    Gebrehanna, M M; Gordon, R J; Madani, A; VanderZaag, A C; Wood, J D

    2014-10-01

    Silage effluent is a potent wastewater that can be produced when ensiling crops that have a high moisture content (MC). Silage effluent can cause fish-kills and eutrophication due to its high biochemical oxygen demand (BOD) and nutrient content, respectively. It has a high acidity (pH ≈ 3.5-5) making it corrosive to steel and damaging to concrete, which makes handling, storage and disposal a challenge. Although being recognized as a concentrated wastewater, most research has focused on preventing its production. Despite noted imprecision in effluent production models-and therefore limited ability to predict when effluent will flow-there has been little research aimed at identifying effective reactive management options, such as containment and natural treatment systems. Increasing climate variability and intensifying livestock agriculture are issues that will place a greater importance on developing comprehensive, multi-layered management strategies that include both preventative and reactive measures. This paper reviews important factors governing the production of effluent, approaches to minimize effluent flows as well as treatment and disposal options. The challenges of managing silage effluent are reviewed in the context of its chemical constituents. A multi-faceted approach should be utilized to minimize environmental risks associated with silage effluent. This includes: (i) managing crop moisture content prior to ensiling to reduce effluent production, (ii) ensuring the integrity of silos and effluent storages, and (iii) establishing infrastructure for effluent treatment and disposal. A more thorough investigation of constructed wetlands and vegetated infiltration areas for treating dilute silage effluent is needed. In particular, there should be efforts to improve natural treatment system design criteria by identifying pre-treatment processes and appropriate effluent loading rates. There is also a need for research aimed at understanding the effects of

  5. Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu

    Science.gov (United States)

    Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish

    2016-03-01

    The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.

  6. Pool decontamination method in nuclear power plant

    International Nuclear Information System (INIS)

    Purpose: To enable radioactive substance decontamination in a short time by applying ultrasonic cavitation effect to the surface of a stainless cavity (pool) deposited with such radioactive substances. Method: Upon decontamination, an ultrasonic cleaner is caused to flow in water, before discharging water in a cavity after fuel exchange, and supported on supports of a driving device so that the sonic radiation surface of an ultrasonic oscillator is opposed to the side wall surface of the cavity. Then, clean water is supplied to a tubular re-cleaning device provided with a plurality of jetting ports, the ultrasonic oscillator is excited, water is discharged from the cavity and the driving device is reciprocated, whereby the ultrasonic cleaner conducts ultrasonic cleaning while moving in a zig-zag manner along the trace shown in the drawing to remove the radioactive materials deposited on the cavity surface into water. (Kawakami, Y.)

  7. Electrodialytic decontamination of spent ion exchange resins

    International Nuclear Information System (INIS)

    Development of a novel electrodialytic decontamination process for the selective removal of radioactive Cs from spent ion exchange resins containing large amounts of Li is described. The process involves passage of a dc electric current through a bed of the spent ion exchange resin in a specially designed electrodialytic cell. The radiocesium so removed from a volume of the spent resin is concentrated onto a much smaller volume of a Cs selective sorbent to achieve a significant radioactive waste volume reduction. Technical feasibility of the electrodialytic resin decontamination process has been demonstrated on a bench scale with a batch of simulated spent ion exchange resin and using potassium cobalt ferrocyanide as the Cs selective sorbent. A volume reduction factor between 10 and 17 has been estimated. The process appears to be economically attractive. Improvements in process economics can be expected from optimization of the process. Other possible applications of the EDRD process have been identified

  8. Electrochemical decontamination of Pu contaminated stainless steel

    International Nuclear Information System (INIS)

    Electrochemical decontamination has been demonstrated to be very effective in removing plutonium nitrate contamination (0.5 μg cm-2) on stainless steels. The amount of metal dissolved to achieve a DF of 102 to 103 was 2 to 7 μm depending on the electrolyte used. In unstirred electrolytes 1M HNO3, 1M HNO3/0.1M NaF, 5M HNO3 perform best. Under stirred electrolyte conditions, there is a general marginal fall in effectiveness except for 5M HNO3 where there is a slight improvement. The optimum performance is a compromise between maximizing the electrolyte throwing power and minimizing substrate surface roughening during decontamination. (author)

  9. Laser radiation - application for surface decontamination

    International Nuclear Information System (INIS)

    Possibilities of uses laser radiation for decontamination of metal surfaces was considered. The principle of the method is to evaporate a very thin layer of material from the surface via ablation using intensive and focused laser beam. The material removed should then be transferred to a filter by a carrier gas. Some of the obtained data, regarding use of pulsed Nd:YAG laser and energy transfer through an optical fiber, were presented here too. Fundamentals of light interaction with a metal surface were also considered in order to be able to predict conditions and possible ways of successful ablation. It was pointed out that the development of the method would bring several benefits: improved safety - decontamination can be performed remotely, reduced waste volume and less secondary waste, no hazardous chemicals and thus no concerns over chemical handling. (author)

  10. Impact of LWR decontamination on radwaste systems

    International Nuclear Information System (INIS)

    Increased radiation levels around certain reactors in the United States and accompanying increases in personnel exposures are causing a reexamination of options available to utilities to continue operation. One of the options is decontamination of the primary system to reduce radiation levels. The Battelle-Northwest study of decontamination and its impact on radwaste systems has been directed towards existing reactors and allied systems as they are employed during their operational lifetimes. Decommissioning and cleanup during such work are not within the scope of this project although certain processes and waste systems might be similar. Rupture debris cleanup represents a special situation that requires different design features and concepts and it is not a part of this study

  11. Room source management decontamination in Uruguay

    International Nuclear Information System (INIS)

    A surface,work materials and tools contamination it produced for Ra-226 sources management in des use in Uruguayan radioactive waste and sources management and storage room specifically in the Uruguay Republic University in Nuclear Search Center. A surface contamination direct was performed measurement with Eberline alpha particles Contamat FHT 111M with 42 496/30 sounder. It found greater and least contamination grade in all cement floor as well as in tables where was managed with Ra-226 sources. A value measured surface contamination can see in the Room scheme with more 200 Bq/cm in extension small places. A segregation between work materials and tools considerate d free contamination was realized. The contaminated objects was separated for a future treatment. A proceeding followed in the decontamination was inhale, abrasion,sweep essays in different representative zones, obtain decontamination factors and residual activity

  12. Surface decontamination by heterogeneous foams and suspensions

    International Nuclear Information System (INIS)

    A variety of methods was used to investigate the surface of stainless steel as delivered or treated (electrochemically polished, machine ground). Micro X-ray spectral analysis evidenced a uniform distribution of alloying elements. Auger spectroscopy revealed the layer-by-layer composition by elements and the thickness of the superficial oxide film. The distribution of heterogeneous uranium dioxide powders on the stainless steel surface was examined by microprobe analysis (using Comebax). In the order of increasing contamination by uranium dioxide, the surfaces can be arranged as: untreated - polished - ground. The behaviour of hydrogen peroxide in alkaline solutions was studied by spectrophotometry and laser analysis. Decontamination of stainless steel surfaces from UO2 by microgaseous emulsions in alkaline media with surfactants present was tested. The decontamination factor was determined as a function of the size and volume of gas bubbles. It was shown to rise with increasing gas content. (author)

  13. APSIC Guidelines for environmental cleaning and decontamination.

    Science.gov (United States)

    Ling, Moi Lin; Apisarnthanarak, Anucha; Thu, Le Thi Anh; Villanueva, Victoria; Pandjaitan, Costy; Yusof, Mohamad Yasim

    2015-01-01

    This document is an executive summary of APSIC Guidelines for Environmental Cleaning and Decontamination. It describes best practices in routine cleaning and decontamination in healthcare facilities as well as in specific settings e.g. management of patients with isolation precautions, food preparation areas, construction and renovation, and following a flood. It recommends the implementation of environmental hygiene program to keep the environment safe for patients, staff and visitors visiting a healthcare facility. Objective assessment of cleanliness and quality is an essential component of this program as a method for identifying quality improvement opportunities. Recommendations for safe handling of linen and bedding; as well as occupational health and safety issues are included in the guidelines. A training program is vital to ensure consistent adherence to best practices. PMID:26719796

  14. Radiation decontamination unit for the community hospital

    International Nuclear Information System (INIS)

    Freestanding radiation decontamination units including surgical capability can be developed and made operational in small/medium sized community hospitals at relatively small cost and with minimal plant reconstrution. The Radiological Assistance Program of the United States Department of Energy and the Radiation Emergency Assistance Center Training Site of Oak Rige Associated Universities are ready to support individual hospitals and physicians in this endeavor. Adequate planning rather than luck, should be used in dealing with potential radiation accident victims. The radiation emergency team is headed by a physician on duty in the hospital. The senior administrative person on duty is responsible for intramural and extramural communications. Rapid mobilization of the radiation decontamination unit is important

  15. Chemical decontamination for decommissioning purposes. (Vigorous decontamination tests of steel samples in a special test loop)

    International Nuclear Information System (INIS)

    The aim of the research activities described was to develop vigorous decontamination techniques for decommissioning purposes, taking into account the cost of treatment of the radwaste, to achieve possibly unrestricted release of the treated components, and to obtain know-how for in situ hard decontamination. The decontamination procedures for strong decontamination have been optimized in static and dynamic tests (DECO-loop). The best values have been found for: (i) hydrochloric acid: 4 to 5% vol. at low temperature, 0.7 to 1% vol. at high temperature (800C); (ii) hydrofluoric plus nitric acid: 1.5% vol. HF + 5% vol. HNO3 at low temperature; 0.3 to 0.5% vol. HF + 2.5 to 5% vol. HNO3 at high temperature. High flow rates are not necessary, but a good re-circulation of the solution is needed. The final contamination levels, after total oxide removal, are in accordance with limits indicated for unrestricted release of materials in some countries. The arising of the secondary waste is estimated. Decontamination of a 10 m2 surface would typically produce 0.5 to 3.0 kg of dry waste, corresponding to 1.6 to 10 kg of concrete conditioned waste

  16. Advanced robotics for decontamination and dismantlement

    International Nuclear Information System (INIS)

    The decontamination and dismantlement (D ampersand D) robotics technology application area of the US Department of Energy's Robotics Technology Development Program is explained and described. D ampersand D robotic systems show real promise for the reduction of human exposure to hazards, for improvement of productivity, and for the reduction of secondary waste generation. Current research and development pertaining to automated floor characterization, robotic equipment removal, and special inspection is summarized. Future research directions for these and emerging activities is given

  17. Recent advances in photocatalytic treatment of pollutants in aqueous media.

    Science.gov (United States)

    Reddy, P Anil Kumar; Reddy, P Venkata Laxma; Kwon, Eilhann; Kim, Ki-Hyun; Akter, Tahmina; Kalagara, Sudhakar

    2016-05-01

    Photocatalysis can be an excellent solution for resolving the world's energy and environmental problems. It has a wide range of applications for the decontamination of diverse hazardous pollutants in aqueous media. Technological progress in this research field has been achieved toward the improvement of the solar sensitivity to enhance the efficiency of pollutant decontamination. As a result, various strategies have been introduced to upgrade photocatalytic performance with the modification of prototypical photocatalyst such as doping, dye sensitization, semiconductor coupling, mesoporous supports, single site, and nano-based catalysts. In this review, a brief survey is presented to describe those strategies based on the evaluation made against various pollutants (such as pharmaceuticals, pesticides, heavy metals, detergents, and dyes) in aqueous media. PMID:26915711

  18. New technologies for PCB [polychlorinated biphenyl] decontamination

    International Nuclear Information System (INIS)

    Polychlorinated biphenyls (PCB) were mixed with chlorobenzenes to reduce viscosity and provide for both electrical insulation and convective heat transfers. These mixtures were known as askarels, and ca 99.8% of PCBs used in electrical applications are contained in askarel-filled transformers and capacitors. It is estimated that there are ca 180 million gal of PCB-contaminated oil distributed through over 3 million transformers in the USA. Technology used for decontaminating these transformers depends on the concentration of the PCB contamination. At low PCB concentrations of up to ca 2,000 ppM, chemical methods can be used; at higher concentrations, alternative disposal options become more attractive. For chemical treatment, a small mobile unit using quick-reacting reagents has been developed for on-site decontamination. For highly contaminated transformers, retrofilling is very attractive since the owner's liability is minimized at minimum cost. Conventional flush/drain procedures have such drawbacks as the inability to remove oil trapped in windings and the leaching of trapped PCBs back into the uncontaminated retrofill oil over time. A new process has been developed to solve the leaching problem and to decontaminate the drained askarel at room temperature using a catalyst. An alternative disposal strategy involves dismantling the transformer carcass, incinerating non-recyclable materials, and cleaning the metals and wire with solvent. 8 figs

  19. Use of laser ablation in nuclear decontamination

    International Nuclear Information System (INIS)

    The development and the use of clean decontamination process appear to be one of the main priorities for industries especially for nuclear industries. This is especially due to the fact of wastes minimization which is one of the principal commitments. One answer would be to use a photonic process such as the LASER process. The principle of this process is based on the absorption, by the contaminant, of the photon's energy. This energy then will propagate into the material and create some mechanical waves responsible of the interfaces embrittlement and de-cohesion. As we can see, this process so called LASER ablation does not use any chemicals and allows us to avoid any production of liquid waste. Since now a couple of years, the Clean-Up Business Unit of AREVA group (BE/CL) investigates this new decontamination technology. Many tests have been done in inactive conditions on various simulants such as paints, inks, resins, metallic oxides firstly in order to estimate its efficiency but also to fully qualify it. After that, we decided to move on hot tests to fully validate this new process and to show its interest for the nuclear industry. Those hot tests have been done on two kinds of contaminated material (on tank pieces covered with a thick metallic oxide layer and on metallic pieces covered with grease). Some information such as Scanning Electron Microscopy (SEM), X-Ray scattering spectroscopy and decontamination factors (DF) will be provided in this paper. (authors)

  1. Zero effluent; Efluente zero

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Silvio Rogerio; Santos, Angelo Francisco dos [Liquigas Distribuidora S.A., Sao Paulo, SP (Brazil)

    2008-07-01

    A scenery of water shortage and the search for profitability improvement obligate the companies to exercise their creativity and to adopt alternative methods to the conventional ones to preserve the environmental resources. The 'Effluent Zero' project comes from a paradigms changing that the environmental preservation is a necessary cost. It brings a new analysis approach of this problem with the purpose to adapt the investments and operational costs with the effluents treatment to the demands of the productive processes. In Liquigas, the project brought significant results; made a potential reduction of nearly 90% in the investments of the effluents treatment systems. That means nearly 13% in reduction in the total investments in modernization and upgrade of the existents companies installations and of 1,6% in the total operational costs of the Company. Further more, it has contributed for a reduction of until 43% of the water consumption in the bottling process of the Liquefied Petroleum Gas (LPG). This way, the project resulted in effective actions of environmental protection with relevant economic benefits. (author)

  2. Amélioration de la qualité microbiologique des effluents secondaires par stockage en bassins

    Directory of Open Access Journals (Sweden)

    Trad-Rais M.

    1999-01-01

    Full Text Available Microbiological quality improvement of secondary effluent by reservoir storage. Storing secondary effluents is of particular interest for water resource management. It constitutes further treatment which reduces the microbial contamination of water to a level where it can be used for the irrigation of all crops, without restriction. The storage of treated wastewater takes place during the winter, ensuring that such a resource is not lost and enabling a larger area to be irrigated during the dry season, thereby increasing agricultural production. Storage trials in reservoirs were conducted in north-eastern Tunisia. Their objective was to determine the length and conditions of secondary effluent decontamination as well as the impact of seasonal storage on water quality. The results indicate that the decontamination of effluents slows down with increased reservoir depth. For a depth of less than 150 cm, a reduction of fecal coliforms in the order of 3 log units is attained in 3 days when the average temperature of the water ranges from 22 to 25 degrees C; when this temperature is between 25.5 and 28 degrees C, the same reduction takes 8 days. Below 20 degrees C, decontamination is considerably reduced: for a mean water temperature ranging from 12.5 to 18 degrees C, the reduction of fecal coliforms reaches 3 log units only after a retention time of 17 days in the reservoir. Seasonal storage from 2 to 7 months does not affect the bacteriological quality of water: after decontamination, no proliferation of bacterial indicators occurs during storage.

  3. Biodegradation of concrete intended for their decontamination; Biodegradation de matrices cimentaires en vue de leur decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Jestin, A

    2005-05-15

    The decontamination of sub-structural materials represents a stake of high importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those microorganisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  4. Experimental study on decontamination effect of water jets spray

    International Nuclear Information System (INIS)

    Nuclear components, pipes, casks and so on are contaminated after long usage and should be decontaminated before their repair or maintenance. There are various ways of decontamination such as ultrasonic wave cleaning, mechanical brushing, electric polishing and so forth, but most common is water jet spray. Water jet dynamic pressure along the axis of the nozzle (Pm) depends upon that of nozzle exit (Po) and the distance between nozzle exit and the surface to be decontaminated. The decontamination effect greatly depends not only on the pressure (Pm) but on the nozzle scanning speed (Vs). But the relation of these effects on decontamination is not known yet. The authors studied the characteristics of water jets from various types of nozzles by measuring pressure distribution in the water jets, made simulated sample pieces of crud, and removed the deposit by water jets. As a result of these experimental studies, the authors can obtain the formulated relation between decontamination factor and the former various factors

  5. Decontamination of metal surface contaminated by uranyl solution

    International Nuclear Information System (INIS)

    Decontamination degrees was measured for the metallic equipments in the uranium conversion plant by a chemical decontamination and contamination degrees also measured. Most equipments was made of stainless steel and contacted with uranium(VI) and nitric acid solution. So, metallic surfaces was contaminated with uranium(VI) materials. And decontamination degrees can be expressed by alpha activity measurements. For the alpha activity measurements, metallic specimens were selected in the three representative processes, dissolution process, solvent extraction, and Ammonium Uranyl Carbonate(AUC) precipitation and were prepared to rectangular parallelepipeds with 18mm width and 18mm length and 5mm height. The metallic surfaces can be decontaminated under 10 Bq/cm2 alpha activity due to uranium by only water decontamination, and under 0.04 Bq/cm2 alpha activity by 10% nitric acid decontamination that is ground activity level

  6. Decontamination system study for the Tank Waste Retrieval System

    International Nuclear Information System (INIS)

    This report summarizes the findings of the Idaho National Engineering Laboratory's decontamination study in support of the Tank Waste Retrieval System (TWRS) development program. Problems associated with waste stored in existing single shell tanks are discussed as well as the justification for the TWRS program. The TWRS requires a decontamination system. The subsystems of the TWRS are discussed, and a list of assumptions pertinent to the TWRS decontamination system were developed. This information was used to develop the functional and operational requirements of the TWRS decontamination system. The requirements were combined with a comprehensive review of currently available decontamination techniques to produced a set of evaluation criteria. The cleaning technologies and techniques were evaluated, and the CO2 blasting decontamination technique was chosen as the best technology for the TWRS

  7. Decontamination of uranium-contaminated equipment and parts

    International Nuclear Information System (INIS)

    A Uranium enrichment pilot plant was decommissioned in 1985-1986. The decontamination concept and methods and results for the equipment and parts decontaminated are discussed. The kinds of metals involved in the decontamination action were copper, nickel, aluminium alloy, mild steel, and stainless steel. Decontamination results showed the surface contamination levels of most parts decontaminated achieved the required level. The uranium content in aluminium ingots after metal refining was from 33 to 232 ppm. The decontamination liquid wastes were treated with the multiprecipitation method. The contents of uranium, nickel, and fluoride in the supernatant were 0.02-0.1 mg/1, 0.02 mg/1, and 0.13 mg/1, respectively

  8. New decontamination process using foams containing particles

    International Nuclear Information System (INIS)

    One key point in the dismantling of nuclear facilities is the thorough cleaning of radiation- exposed surfaces on which radioactive deposits have formed. This cleaning step is often achieved by successive liquid rinses with specific solutions containing alkaline, acidic, or even oxidizing species depending on whether the aim is to dissolve greasy deposits (like ter-butylphosphate) or to corrode surfaces on micrometric thicknesses. An alternative process to reduce the amount of chemicals and the volume of the resulting nuclear wastes consists in using the same but foamed solutions (1). Carrying less liquid, the resulting foams still display similar kinetics of dissolution rates and their efficiency is determined by their ability to hold sufficient wetnesses during the time required for the decontamination. Classical foam decontamination process illustrated by foam pulverization or circulation in the 90 turned five years ago into a specific static process using high-lifetime viscosified foam at a steady state. One way to slow down the liquid drainage is to raise liquid viscosity by adding organic viscosifiers like xanthan gum (2). In 2005, new studies started on an innovative process proposed by S. Faure and based on triphasic foams containing particles [3]. The aim is to generate new decontamination foams containing less quantities of organics materials (surfactants and viscosifiers). Silica particles are obviously known to stabilize or destabilize foams (4). In the frame of S. Guignot Ph.D., new fundamental studies are initiated in order to clarify the role of silica solid microparticles in these foams. Our final goal is to determine whether this kind of new foam can be stable for several hours for a decontamination process. The results we will report focus on wet foams used for nuclear decontamination and incorporating fumed silica. The study is conducted on a vertical foam column in a pseudo-free drainage configuration, and aims at investigating the influence of

  9. New decontamination process using foams containing particles

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, S.; Faure, S. [CEA Marcoule, Lab. des Procedes Avances de Decontamination, 30 (France)

    2008-07-01

    One key point in the dismantling of nuclear facilities is the thorough cleaning of radiation- exposed surfaces on which radioactive deposits have formed. This cleaning step is often achieved by successive liquid rinses with specific solutions containing alkaline, acidic, or even oxidizing species depending on whether the aim is to dissolve greasy deposits (like ter-butylphosphate) or to corrode surfaces on micrometric thicknesses. An alternative process to reduce the amount of chemicals and the volume of the resulting nuclear wastes consists in using the same but foamed solutions (1). Carrying less liquid, the resulting foams still display similar kinetics of dissolution rates and their efficiency is determined by their ability to hold sufficient wetnesses during the time required for the decontamination. Classical foam decontamination process illustrated by foam pulverization or circulation in the 90 turned five years ago into a specific static process using high-lifetime viscosified foam at a steady state. One way to slow down the liquid drainage is to raise liquid viscosity by adding organic viscosifiers like xanthan gum (2). In 2005, new studies started on an innovative process proposed by S. Faure and based on triphasic foams containing particles [3]. The aim is to generate new decontamination foams containing less quantities of organics materials (surfactants and viscosifiers). Silica particles are obviously known to stabilize or destabilize foams (4). In the frame of S. Guignot Ph.D., new fundamental studies are initiated in order to clarify the role of silica solid microparticles in these foams. Our final goal is to determine whether this kind of new foam can be stable for several hours for a decontamination process. The results we will report focus on wet foams used for nuclear decontamination and incorporating fumed silica. The study is conducted on a vertical foam column in a pseudo-free drainage configuration, and aims at investigating the influence of

  10. Steam generator channel head decontamination by remote grit blast methods

    International Nuclear Information System (INIS)

    A decontamination technique using a high pressure water spray containing an abrasive grit has been developed and employed in the decontamination of steam generator channel heads. The spray, which is remotely controlled, removes the corrosion product deposits that form on primary system surfaces and reduces the area dose rates. The remote grit blast technique has proven to be a viable method for decontamination of steam generator channel head surfaces

  11. Electropulse method of decontamination of nuclear power plant equipment

    International Nuclear Information System (INIS)

    A review of existing methods of decontamination of nuclear power plant equipment; it describes the advantages and disadvantages of the existing methods. A new promising method for decontamination of removable NPP equipment with a complex surface configuration. The technology and the advantages of the proposed method. Presented physical -mathematical model that calculates non- steady field electrolyte concentration, temperature and electric field in the electrolyte during electro surface treatment. Key words: corrosion, radioactive contamination, decontamination, equipment, nuclear power plant

  12. Method of decontaminating a location containing pyrophoric P/sub 4/-contamination

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, A.K.; Trainer, W.E.; Biederman, D.L.

    1988-05-24

    A method of decontaminating a location containing pyrophoric P/sub 4/-contamination is described which comprises: (1) bringing to the location a portable vehicle which comprises at least one of the following: a scrubber, a source of an oxygen-containing gas, a pump, means to convey the oxygen-containing gas to the P/sub 4/-contaminated material, when the material is under a protective blanket of a nonflammable fluid, and means to convey the effluent resulting from the treatment of the P/sub 4/-contaminated material with the oxygen-containing gas, while it is blanketed with the nonflammable fluid, to either suitable treatment or recovery means; and (2) contacting the P/sub 4/ contamination, while it is under a protective blanket of a nonflammable fluid, with an oxygen-containing gas to thereby render it less pyrophoric.

  13. Removal of Pyrethrin from Aqueous Effluents by Adsorptive Micellar Flocculation

    Directory of Open Access Journals (Sweden)

    Pardon K. Kuipa

    2015-01-01

    Full Text Available The equilibrium adsorption of pyrethrin onto aggregates formed by the flocculation of micelles of the surfactant sodium dodecyl sulphate (SDS with aluminium sulphate is reported. The experimental results were analysed using different adsorption isotherms (Langmuir, Freundlich, Redlich-Peterson, Sips, Radke-Prausnitz, Temkin, linear equilibrium, and the Dubin-Radushkevich isotherms. The Freundlich and linear equilibrium isotherms best describe the adsorption of pyrethrin onto SDS micellar flocs, with the Freundlich adsorption constant, KF, and the mass distribution coefficient, KD, of 64.266 ((mg/g(L/mg1/n and 119.65 L/g, respectively. Applicability of the Freundlich adsorption model suggests that heterogeneous surface adsorption affects the adsorption. The mean free energy value estimated using the Dubinin-Radushkevich isotherm was 0.136 kJ/mol indicating that physisorption may be predominant in the adsorption process.

  14. Design of a decontamination section of the post-irradiation examination laboratory

    International Nuclear Information System (INIS)

    The Post-Irradiation Examination Laboratory activities include the decontamination of expensive equipment of different sizes and weight, involving the complexity and extension of the necessary decontamination. A decontamination section has been designed for that purpose. (author)

  15. Solubility studies of oxovanadium(V) formate and vanadyl formate in aqueous medium

    International Nuclear Information System (INIS)

    The solubility of oxovanadium(V) formate and vanadyl formate in aqueous medium has been determined. These compounds are important for preparation of strong reducing V(II) compounds which are used in stainless steel based nuclear power plants for decontamination

  16. Immobilisation in cement of ion exchange resins arising from the purification of reagents, used for the decontamination of reactor circuits

    International Nuclear Information System (INIS)

    Decontamination of reactors normally results in large volumes of liquid effluent. At present the most effective method of reducing the volume of waste is to remove the activity by passing the solution through an ion exchange column. The aim of the programme at present is to show that ion exchange resins used to remove activity from decontaminating agents can be successfully immobilised in cement. To achieve this, blends of Ordinary Portland Cement (OPC) and ground granulated Blast Furnace Slag (BFS) will be used initially. Initial results presented in a previous report showed that BFS blended with OPC in the ratio 9:1 produced a satisfactory product containing 40% ion exchange resin. Further work has now been undertaken to improve the product's properties and the waste loading. The use of microsilica, a finely divided form of silicon dioxide, has also been investigated as an additive to cement. This has resulted in a further improvement in the product's properties. The mechanical and rheological properties of waste forms incorporating microsilica have been investigated. The final part of the report deals with the immobilisation of ion exchange resin which has been treated with simulant decontaminating solution, together with an assessment of the effect of picolinic acid and formic acid on cement hydration. A new technique for measuring the expansion of grouts in the first 48 hours curing has been evaluated. (author)

  17. Decontamination and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Since 1973, when the IAEA first introduced the subject of decontamination and decommissioning into its programme, twelve Agency reports reflecting the needs of the Member States on these topics have been published. These reports summarize the work done by various Technical Committees, Advisory Groups, and International Symposia. While the basic technology to accomplish decontamination and decommissioning (D and D) is fairly well developed, the Agency feels that a more rapid exchange of information and co-ordination of work are required to foster technology, reduce duplication of effort, and provide useful results for Member States planning D and D activities. Although the Agency's limited financial resources do not make possible direct support of every research work in this field, the IAEA Co-ordinated Research Programme (CRP) creates a forum for outstanding workers from different Member States brought into closer contact with one another to provide for more effective interaction and, perhaps subsequently, closer collaboration. The first IAEA Co-ordinated Research Programme (CRP) on decontamination and decommissioning was initiated in 1984. Nineteen experts from 11 Member States and two international organizations (CEC, OECD/NEA) took part in the three Research Co-ordination Meetings (RCM) during 1984-87. The final RCM took place in Pittsburgh, USA, in conjunction with the 1987 International Decommissioning Symposium (sponsored by the US DOE and organized in co-operation with the IAEA and OECD/NEA). The present document summarizes the salient features and achievements of the co-ordinated research work performed during the 1984-87 programme period. The document consists of two parts: Part 1, Summary of the three research co-ordination meetings and Part 2, Final submissions by participants on the research work performed during 1984-1987. A separate abstract was prepared for each of the 7 reports presented. Refs, figs and tabs

  18. Full system decontamination experience in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, N.; Sugai, K.; Katayouse, N.; Fujimori, A.; Iida, K.; Hayashi, K. [Tokyo Electric Power Company, Tokyo (Japan); Kanasaki, T.; Inami, I. [Toshiba Corporation, Yokohama (Japan); Strohmer, F. [Framatome ANP Gmbh, Eelangen (Germany)

    2002-07-01

    At the Fukushima Daiichi Nuclear Power Station unit 3, unit 2, unit 5 and unit 1 of Tokyo Electric Power Company (TEPCO), the replacement of the core shroud and internals has been conducted since 1997 in this order. The welded core internals in operating BWR plants were replaced to improve stress corrosion cracking (SCC) resistance. At present these units are operating smoothly. The developed technology concept is to restore those internals in open air inside the reactor pressure vessel (RPV). To reduce the radiation dose rate inside the RPV, not only a shielding method was applied to cut the radiation from the irradiated structures but also a chemical decontamination method was applied to dissolve the radioactive crud deposited on the surface by using chemical agents. The calculated decontamination factor (DF) at the RPV bottom reached 35-117. As result, the dose rate decreased to approximately 0.1 mSv/h under water. Before and after the installation of the in-vessel shielding, a mechanical cleaning was extensively applied inside the RPV to remove the residual crud as well as the swarf, chips from cutting. As a result, the dose rate at the RPV bottom decreased to ranging from 0.2 to 0.4 mSv/h in air. A working environment for human access, which was better than expected, was established inside the RPV, resulting in 70, 140, 50 and 70 man-Sv (estimated) saving respectively at unit 3 (1F-3), unit 2(1F-2), unit 5(1F-5) and unit 1(1F-1). All four full system decontamination (FSDs) contributed to the successful realization of the core shroud replacement project under the dry condition in RPV.

  19. Microwave-Based Water Decontamination System

    Science.gov (United States)

    Arndt, G. Dickey (Inventor); Byerly, Diane (Inventor); Sognier, Marguerite (Inventor); Dusl, John (Inventor)

    2016-01-01

    A system for decontaminating a medium. The system can include a medium having one or more contaminants disposed therein. The contaminants can be or include bacteria, fungi, parasites, viruses, and combinations thereof. A microwave energy radiation device can be positioned proximate the medium. The microwave energy radiation device can be adapted to generate a signal having a frequency from about 10 GHz to about 100 GHz. The signal can be adapted to kill one or more of the contaminants disposed within the medium while increasing a temperature of the medium by less than about 10 C.

  20. Decontamination, decommissioning, and vendor advertorial issue, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2006-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: NPP Krsko revised decommissioning program, by Vladimir Lokner and Ivica Levanat, APO d.o.o., Croatia, and Nadja Zeleznik and Irena Mele, ARAO, Slovenia; Supporting the renaissance, by Marilyn C. Kray, Exelon Nuclear; Outage world an engineer's delight, by Tom Chrisopher, Areva, NP Inc.; Optimizing refueling outages with R and D, by Ross Marcoot, GE Energy; and, A successful project, by Jim Lash, FirstEnergy.

  1. Microbiological decontamination of some herbs by irradiation

    International Nuclear Information System (INIS)

    The research work on the microbiological decontamination of the medical herbs by electron beam was carried out. The seven samples of the herbs granules were irradiated at the doses 3, 6 and 10 kGy. It has been shown, that D10 values are varied in several samples after irradiation. Additional, research work, by gas chromatographic method, on the composition volatile oils (salvia, orange, peppermint and anise), after irradiation at the dose 4.4 and 8.8 kGy was carried out. It was not significant differences in the compositions between control and irradiated oils. (author). 12 figs, 2 tabs

  2. KEWB facilities decontamination and disposition. Final report

    International Nuclear Information System (INIS)

    The decontamination and disposition of the KEWB facilities, Buildings 073, 643, 123, and 793, are complete. All of the facility equipment, including reactor enclosure, reactor vessel, fuel handling systems, controls, radioactive waste systems, exhaust systems, electrical services, and protective systems were removed from the site. Buildings 643, 123, and 793 were completely removed, including foundations. The floor and portions of the walls of Building 073 were covered over by final grading. Results of the radiological monitoring and the final survey are presented. 9 tables, 19 figures

  3. Automated Single Cell Data Decontamination Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Tennessen, Kristin [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Pati, Amrita [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Recent technological advancements in single-cell genomics have encouraged the classification and functional assessment of microorganisms from a wide span of the biospheres phylogeny.1,2 Environmental processes of interest to the DOE, such as bioremediation and carbon cycling, can be elucidated through the genomic lens of these unculturable microbes. However, contamination can occur at various stages of the single-cell sequencing process. Contaminated data can lead to wasted time and effort on meaningless analyses, inaccurate or erroneous conclusions, and pollution of public databases. A fully automated decontamination tool is necessary to prevent these instances and increase the throughput of the single-cell sequencing process

  4. Inter-laboratory exercise on steroid estrogens in aqueous samples

    DEFF Research Database (Denmark)

    Heath, E.; Kosjek, T.; Andersen, Henrik Rasmus;

    2010-01-01

    matrices. As the main task three steroid estrogens. 17 alpha-ethinylestradiol, 17 beta-estradiol and estrone were determined in four spiked aqueous matrices' tap water, river water and wastewater treatment plant influent and effluent using GC-MS and LC-MS/MS Results were compared and discussed according...

  5. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  6. Stability of Decontamination Foam Containing Silica Nanoparticles and Viscosifier

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, In Ho; Jung, Chong Hun; Yoon, Suk Bon; Kim, Chorong; Jung, Jun Young; Park, Sang Yoon; Moon, Jei Kwon; Choi, Wang Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This formulation can significantly decrease the amounts of chemical reagents and secondary waste. The advantage of decontamination foam is its potentially wide application for metallic walls, overhead surfaces, and the elements of complex components and facilities. In addition, foam is a good material for in situ decontamination because it generates low final waste volumes owing to its volume expansion. The application of foam allows for remote decontamination processing using only an injection nozzle and the equipment to generate the decontamination foam, which reduces operator exposure to high radioactivity. The decontamination efficiency can be enhanced by improving the contact time between chemical reagents and a contaminated surface through the addition of surfactants and viscosifiers into the decontamination foam. The objective of this study is to investigate the effect of silica nanoparticles and a viscosifier on the foam stability and the dissolution behaviors of corroded specimens using a non-ionic surfactant. This study showed the effect of viscosifiers and nanoparticles on the foam stability when developing new formulations of decontamination foam. The addition of xanthan gum and the mixture of xanthan gum and silica nanoparticles (M-5) significantly increased the foam stability, compared to the surfactant solution alone. This result indicates that both the viscosifier and nanoparticles have a synergistic effect on the foam stability. As the contact time increased, the dissolution rate increased to become similar to the dissolution that contained decontamination liquid.

  7. Stability of Decontamination Foam Containing Silica Nanoparticles and Viscosifier

    International Nuclear Information System (INIS)

    This formulation can significantly decrease the amounts of chemical reagents and secondary waste. The advantage of decontamination foam is its potentially wide application for metallic walls, overhead surfaces, and the elements of complex components and facilities. In addition, foam is a good material for in situ decontamination because it generates low final waste volumes owing to its volume expansion. The application of foam allows for remote decontamination processing using only an injection nozzle and the equipment to generate the decontamination foam, which reduces operator exposure to high radioactivity. The decontamination efficiency can be enhanced by improving the contact time between chemical reagents and a contaminated surface through the addition of surfactants and viscosifiers into the decontamination foam. The objective of this study is to investigate the effect of silica nanoparticles and a viscosifier on the foam stability and the dissolution behaviors of corroded specimens using a non-ionic surfactant. This study showed the effect of viscosifiers and nanoparticles on the foam stability when developing new formulations of decontamination foam. The addition of xanthan gum and the mixture of xanthan gum and silica nanoparticles (M-5) significantly increased the foam stability, compared to the surfactant solution alone. This result indicates that both the viscosifier and nanoparticles have a synergistic effect on the foam stability. As the contact time increased, the dissolution rate increased to become similar to the dissolution that contained decontamination liquid

  8. Decontamination of Belarus research reactor installation by strippable coatings

    International Nuclear Information System (INIS)

    The goal of this study was to develop new strippable coatings using water-based solutions of polyvinyl alcohol and active additives for decontamination of research reactor equipment. The employment of strippable coatings makes it possible to minimize the quantity of liquid radioactive waste. The selection of strippable decontaminating coatings was carried out on the basis of general requirements to decontaminating solutions: successfully dissolve corrosion deposits; ensure the desorption of radionuclides from the surfaces and the absence of resorption; introduce minimal corrosion effect of construction materials; to be relatively cheap and available in reagents. The decontaminating ability and adhesion properties of these coatings depending on metal and deposit sorts were investigated. Research on the chemical stability of solid wastes was carried out. The data obtained were the base for recommendations on waste management procedure for used films and pastes. A full-scale case-study analysis was performed for comparing strippable coatings with decontaminating solutions. (author)

  9. Survey of decontamination and decommissioning techniques

    International Nuclear Information System (INIS)

    Reports and articles on decommissioning have been reviewed to determine the current technology status and also attempt to identify potential decommissioning problem areas. It is concluded that technological road blocks, which limited decommissioning facilities in the past have been removed. In general, techniques developed by maintenance in maintaining the facility have been used to decommission facilities. Some of the more promising development underway which will further simplify decommissioning activities are: electrolytic decontamination which simplifies some decontaminating operations; arc saw and vacuum furnace which reduce the volume of metallic contaminated material by a factor of 10; remotely operated plasma torch which reduces personnel exposure; and shaped charges, water cannon and rock splitters which simplify concrete removal. Areas in which published data are limited are detailed costs identifying various components included in the total cost and also the quantity of waste generated during the decommissioning activities. With the increased awareness of decommissioning requirements as specified by licensing requirements, design criteria for new facilities are taking into consideration final decommissioning of buildings. Specific building design features will evolve as designs are evaluated and implemented

  10. Project n.4: local strategies for decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Ph. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Ramzaev, V. [Branch of Institute of Radiation Hygiene, Karchovka, Bryandk (Russian Federation); Antsypov, G. [Chernobyl State Committee of the Republic of Belarus, (Belarus); Sobotovich, E. [Institute of Geochemistry, Mineralogy and Ore formation, Kiev (Ukraine); Anisimova, L. [EMERCOM, Moscow (Russian Federation)

    1995-12-31

    The efficiencies of a great number of techniques for decontamination or dose reduction in contaminated areas have been investigated by several teams of E.C. and CIS scientists (ECP4 project). Modelling, laboratory and field experiments, and a return from experience from the area contaminated by the Chernobyl accident allowed to assess radiological efficiencies and requirements for the operation of numerous practical solutions. Then those data were supplemented with data on cost and waste generation in order to elaborate all the information for the optimisation of decontamination strategies. Results are presented for about 70 techniques. However, a technique cannot be compared to another from a generic point of view. Rather it is designed for a specific target and the best technology depends on the objectives. It has been decided to implement decision analyses on case studies and the local conditions and objectives have been investigated. Individual doses ranged from 1 to 5 mSv, with the contrasted contributions of internal and external doses. The desire to restore a normal activity in a partially depopulated settlement and concerns about the recent increase in internal doses were typical incentives for action. The decision aiding analysis illustrated that actions can be usually recommended. Results are outlined. (authors). 23 refs.

  11. Separation schemes of high level nuclear effluents (HLW) by solvent extraction: HDEHP and TBP processes

    International Nuclear Information System (INIS)

    Two schemes of actinide separation from high-level effluents by solvent extraction were developed using as extractants HDEHP or TBP respectively. The separation methods were defined by experimental study of simulated and real high-level waste solutions. Decontamination factors better than 103 have been obtained. Separation factors between trivalent actinides and rare earths better than 900 for Eu and 5000 for Ce allow subsequent transmutation of americium and curium. Performances are limited by actinide retention in precipitates produced during storage and acidity lowering. Nevertheless in some cases with acetic acid and noble metals an almost quantitative solubilization of adsorbed actinides and even a plutonium depolymerization are possible. Experimental results are discussed

  12. Situations of decontamination promotion activities. Efforts by Tokyo Electric Power Company, Fukushima Revitalization Headquarters, Decontamination Promotion Office

    International Nuclear Information System (INIS)

    As for the decontamination of the soil contaminated with radioactive materials, decontamination is on the way in compliance with the 'Act on Special Measures Concerning the Handling of Environmental Pollution by Radioactive Materials by the NPS Accident Associated with the Tohoku District - Off the Pacific Ocean' (hereinafter, the Act on Special Measures). Tokyo Electric Power Company (TEPCO), as the party concerned to the accident, is cooperating with decontamination activities conducted by countries and municipalities under the Act on Special Measures. Total number of people cooperated by the Decontamination Promotion Office amounts to about 120,000 people. The cooperation to the decontamination by countries and municipalities covers the following fields: provision of knowledge of radiation, training of site management and supervisors, and proposal such as the decontamination method suitable for the site. As cooperation to various monitoring, there is a traveling monitoring that performs radiation measurement from the vehicles. As cooperation in the farming and industrial resumption toward the reconstruction, the group has implemented support for the distribution promotion of the holdup that was stuck in distribution due to contamination with radioactive substances. As decontamination related technology, the following are performed: (1) preparation of radiation understanding promotion tool, (2) development of precise individual dose measurement technology, and (3) development and utilization of decontamination effect analysis program. In the future, this group will perform the follow-up for decontamination, and measures toward the lifting of evacuation order. It will install the basis to perform various technical analyses on decontamination, and will further intensify technical cooperation. (A.O.)

  13. Flow of Aqueous Humor

    Science.gov (United States)

    ... Facebook Twitter Google Plus Email Print this page Flow of Aqueous Humor Most, but not all, forms ... aqueous humor) produced by the eye's ciliary body flows out freely (follow blue arrow). Aqueous humor flows ...

  14. Nuclear disaster. Fukushima, hundred years of decontamination; Catastrophe nucleaire: Fukushima, cent ans de decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Dupin, L.

    2011-04-15

    This article gives an overview of what will have to be done on the site of Fukushima to decontaminate and to dismantle it. Based on the experience gained in Three Mile Island and in Chernobyl, experts foresee ten years of work within the reactor cores, thirty years around the plant, sixty years of decontamination within the no man's land area around the plant; and centuries as far as scattered spots are concerned more than hundred kilometres away from the plant. Three radionuclides must be surveyed, but with different half lives: iodine 131 (8 days), caesium 137 (30 years), and plutonium 239 (24000 years). The expertise of French companies (Areva, Assystem, Bouygues and Vinci) in reactor dismantling, dismantling procedure design, and public works (protection arch like in Chernobyl) is briefly evoked, as well as the French approach for post-accident management

  15. Long-term decontamination engineering study. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Geuther, W.J.

    1995-04-03

    This report was prepared by Westinghouse Hanford Company (WHC) with technical and cost estimating support from Pacific Northwest Laboratories (PNL) and Parsons Environmental Services, Inc. (Parsons). This engineering study evaluates the requirements and alternatives for decontamination/treatment of contaminated equipment at the Hanford Site. The purpose of this study is to determine the decontamination/treatment strategy that best supports the Hanford Site environmental restoration mission. It describes the potential waste streams requiring treatment or decontamination, develops the alternatives under consideration establishes the criteria for comparison, evaluates the alternatives, and draws conclusions (i.e., the optimum strategy for decontamination). Although two primary alternatives are discussed, this study does identify other alternatives that may warrant additional study. hanford Site solid waste management program activities include storage, special processing, decontamination/treatment, and disposal facilities. This study focuses on the decontamination/treatment processes (e.g., waste decontamination, size reduction, immobilization, and packaging) that support the environmental restoration mission at the Hanford Site.

  16. Preconceptual design of the gas-phase decontamination demonstration cart

    International Nuclear Information System (INIS)

    Removal of uranium deposits from the interior surfaces of gaseous diffusion equipment will be a major portion of the overall multibillion dollar effort to decontaminate and decommission the gaseous diffusion plants. Long-term low-temperature (LTLT) gas-phase decontamination is being developed at the K-25 Site as an in situ decontamination process that is expected to significantly lower the decontamination costs, reduce worker exposure to radioactive materials, and reduce safeguard concerns. This report documents the preconceptual design of the process equipment that is necessary to conduct a full-scale demonstration of the LTLT method in accordance with the process steps listed above. The process equipment and method proposed in this report are not intended to represent a full-scale production campaign design and operation, since the gas evacuation, gas charging, and off-gas handling systems that would be cost effective in a production campaign are not cost effective for a first-time demonstration. However, the design presented here is expected to be applicable to special decontamination projects beyond the demonstration, which could include the Deposit Recovery Program. The equipment will therefore be sized to a 200 ft size 1 converter (plus a substantial conservative design margin), which is the largest item of interest for gas phase decontamination in the Deposit Recovery Program. The decontamination equipment will allow recovery of the UF6, which is generated from the reaction of ClF3 with the uranium deposits, by use of NaF traps

  17. New decontamination techniques: chemical gels, electropolishing and abrasives

    International Nuclear Information System (INIS)

    The decommissioning of nuclear installations requires decontamination techniques that are efficient, simple to apply and producing a small amount of wastes, which are easy to process. With a view to this, three decontamination methods, which appear to be particularly suited to decommissioning, have been studied. These three methods are: - spraying of gels carrying chemical decontaminating agents, - electropolishing with a swab device, - abrasives blasting. After parametric tests on non-radioactive and active samples, the industrial application of these methods in the dismantling of installations was studied. These industrial applications concern: - decontamination of pieces coming from the German BWR ISAR by immersion and gel spraying, - decontamination, mainly by gel spraying, and dismantling of the BRENNILIS bituminisation plant, - decontamination of part of the cooling circuit of the graphite gas reactor G2 by gel spraying, - decontamination of a component of the FBR SuperPhenix, using dry abrasives blasting. During the first three applications, generated secondary wastes volume and form were determined. 33 tabs., 16 figs., 12 refs

  18. Experimental studies on decontamination in first aid for contaminated wounds

    Energy Technology Data Exchange (ETDEWEB)

    Kusama, Tomoko; Ogaki, Kazushi; Yoshizawa, Yasuo (Tokyo Univ. (Japan). Faculty of Medicine)

    1982-06-01

    The present study was designed to investigate the decontamination procedures in first aid for wounds contaminated with radionuclides. Abrasion of mouse skin was contaminated with /sup 58/CoCl/sub 2/. Irrigation by decontamination fluids began at 2 min after administration of the radionuclide and continued for 14 min. Tap water, 0.5% Hyamine solution or 10% Ca-DTPA solution were used as the decontamination fluids. Radioactivities of whole body, wounded skin surface and washed solution were measured with an animal counter with 5 cm NaI(Tl) and a well-type auto-gamma-counter. Decontamination effectiveness were expressed as follows: (1) absorption rate of radionuclide through the wound and (2) residual rate of radionuclide on the wound. More than 20% of the radionuclide applied on the wounded skin was absorbed in 15 min after contamination. The absorption rate decreased to 2% by the decontamination procedures. The Ca-DTPA solution reduced the residual rate of radionuclide on the wounds. The results suggested that the decontamination for the contaminated wounds should begin as soon as possible. Irrigation with 0.5% Hyamine solution has been advocated for the decontamination in the first aid.

  19. Development of Decontamination and Decommissioning Technologies for Nuclear Facilities

    International Nuclear Information System (INIS)

    A laser ablation decontamination technology which is reportedly effective for a removal of fixed contaminants has been developed for three years as the first stage of the development. Lab scale experimental equipment was fabricated and the process variables have been assessed for determination of appropriate decontamination conditions at the laser wave lengths of 1,064 nm and 532 nm, respectively. The decontamination tests using radioactive specimens showed that the decontamination efficiency was about 100 which is quite a high value. An electrokinetic-flushing, an agglomeration leaching and a supercritical CO2 soil decontamination technology were development for a decontamination of radioactive soil wastes from the decommissioned sites of the TRIGA research reactor and the uranium conversion facilities. An electrokinetic-flushing process was found to be effective for soil wastes aged for a long time and an agglomeration leaching process was effective for soil wastes of surface contamination. On the other hand, a supercritical CO2 soil decontamination technology was found to be applicable for U or TRU bearing soil wastes. The remediation monitoring key technologies such as a representative sample taking and a measurement concept for the vertical distribution of radionuclides were developed for an assessment of the site remediation. Also an One-Dimensional Water Flow and Contaminant Transport in Unsaturated Zone (FTUNS) code was developed to interpretate the radionuclide migration in the unsaturated zone

  20. Comparative analysis of showering protocols for mass-casualty decontamination.

    Science.gov (United States)

    Amlot, Richard; Larner, Joanne; Matar, Hazem; Jones, David R; Carter, Holly; Turner, Elizabeth A; Price, Shirley C; Chilcott, Robert P

    2010-01-01

    A well-established provision for mass-casualty decontamination that incorporates the use of mobile showering units has been developed in the UK. The effectiveness of such decontamination procedures will be critical in minimizing or preventing the contamination of emergency responders and hospital infrastructure. The purpose of this study was to evaluate three empirical strategies designed to optimize existing decontamination procedures: (1) instructions in the form of a pictorial aid prior to decontamination; (2) provision of a washcloth within the showering facility; and (3) an extended showering period. The study was a three-factor, between-participants (or "independent") design with 90 volunteers. The three factors each had two levels: use of washcloths (washcloth/no washcloth), washing instructions (instructions/no instructions), and shower cycle duration (three minutes/six minutes). The effectiveness of these strategies was quantified by whole-body fluorescence imaging following application of a red fluorophore to multiple, discrete areas of the skin. All five showering procedures were relatively effective in removing the fluorophore "contaminant", but the use of a cloth (in the absence of instructions) led to a significant ( appox. 20%) improvement in the effectiveness of decontamination over the standard protocol (p mass-casualty decontamination effectiveness, especially in children, can be optimized by the provision of a washcloth. This simple but effective approach indicates the value of performing controlled volunteer trials for optimizing existing decontamination procedures.

  1. Development of Decontamination and Decommissioning Technologies for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jei Kwon; Lee, Kune Woo; Won, Hui Jun

    2010-04-15

    A laser ablation decontamination technology which is reportedly effective for a removal of fixed contaminants has been developed for three years as the first stage of the development. Lab scale experimental equipment was fabricated and the process variables have been assessed for determination of appropriate decontamination conditions at the laser wave lengths of 1,064 nm and 532 nm, respectively. The decontamination tests using radioactive specimens showed that the decontamination efficiency was about 100 which is quite a high value. An electrokinetic-flushing, an agglomeration leaching and a supercritical CO{sub 2} soil decontamination technology were development for a decontamination of radioactive soil wastes from the decommissioned sites of the TRIGA research reactor and the uranium conversion facilities. An electrokinetic-flushing process was found to be effective for soil wastes aged for a long time and an agglomeration leaching process was effective for soil wastes of surface contamination. On the other hand, a supercritical CO{sub 2} soil decontamination technology was found to be applicable for U or TRU bearing soil wastes. The remediation monitoring key technologies such as a representative sample taking and a measurement concept for the vertical distribution of radionuclides were developed for an assessment of the site remediation. Also an One-Dimensional Water Flow and Contaminant Transport in Unsaturated Zone (FTUNS) code was developed to interpretate the radionuclide migration in the unsaturated zone

  2. Long-term decontamination engineering study. Volume 1

    International Nuclear Information System (INIS)

    This report was prepared by Westinghouse Hanford Company (WHC) with technical and cost estimating support from Pacific Northwest Laboratories (PNL) and Parsons Environmental Services, Inc. (Parsons). This engineering study evaluates the requirements and alternatives for decontamination/treatment of contaminated equipment at the Hanford Site. The purpose of this study is to determine the decontamination/treatment strategy that best supports the Hanford Site environmental restoration mission. It describes the potential waste streams requiring treatment or decontamination, develops the alternatives under consideration establishes the criteria for comparison, evaluates the alternatives, and draws conclusions (i.e., the optimum strategy for decontamination). Although two primary alternatives are discussed, this study does identify other alternatives that may warrant additional study. hanford Site solid waste management program activities include storage, special processing, decontamination/treatment, and disposal facilities. This study focuses on the decontamination/treatment processes (e.g., waste decontamination, size reduction, immobilization, and packaging) that support the environmental restoration mission at the Hanford Site

  3. Analysis of decontamination methods used at nuclear power plants and in other facilities. Research report

    International Nuclear Information System (INIS)

    Methods used in the Czech Republic and in other countries are described. The following topics are treated: Introduction into decontamination; Chemical methods; Foam methods; Electrochemical methods; Mechanical methods; Other methods; Decontamination of civil engineering structures; Technologies suitable for disposal decontamination; and Effect of decontamination on waste management. (P.A.)

  4. Novel adsorbent applicability for decontamination of printing wastewater

    Science.gov (United States)

    Kiurski, Jelena; Oros, Ivana; Ranogajec, Jonjaua; Kecic, Vesna

    2013-04-01

    Adsorption capacity of clayey minerals can be enhanced by replacing the natural exchangeable cations with organic cations, which makes the clay surface more hydrophobic. Different solids such as activated carbon, clay minerals, zeolites, metal oxides and organic polymers have been tested as effective adsorbents. On a global scale, clays have a large applicability for decontamination, purification of urban and industrial residual waters, protection of waste disposal areas, and purification of industrial gases and so on. Clay derivative materials with high adsorption capacities are very attractive from an economical point of view. Due to the economic constraints, a development of cost effective and clean processes is desired. Adsorption processes has proved to be the most effective, especially for effluents with moderate and low heavy metal concentrations, as like as in printing wastewaters. Among several removal technologies, the adsorption of Zn(II) ion onto NZ, B, pure C and C with PEG 600 addition could be of great importance for the printing wastewaters purification. However, the newly designed adsorbent of the defined pore size distribution and phase structure considered as the most suitable material for Zn(II) ion removal. The values of distribution coefficient (Kd) increased with decreasing of the adsorbent amount. The Kd values depend also on the type of used adsorbent, the following increased order is obtained: NZ Langmuir > DKR. The study also showed that the fired clay modified with PEG 600 addition has great potential (up to 93.5%) to remove Zn(II) ion from printing wastewaters. The results showed that fired clay, fired clay modified with polymer addition, natural zeolite and bentonite can be used for Zn(II) ion removal from printing wastewaters by adsorption method in laboratory batch mode. Based on higher affinity to the Zn(II) ion adsorption than fired clay, bentonite and zeolite it was concluded that feasibility of newly designed clayey adsorbent

  5. Decontamination and its role in the Fort St. Vrain decommissioning

    International Nuclear Information System (INIS)

    The full scale decommissioning of a reactor requires the use of a variety of decontamination processes, techniques and equipment. In August of 1992, the decommissioning of the Fort St. Vrain High Temperature Gas-Cooled Reactor (HTGR) was initiated by Public Service Company of Colorado. The Fort St. Vrain Decommissioning Project is being performed by a team comprised of Westinghouse Electric Corporation, Scientific Ecology Group, and MK Ferguson. This project is the largest decommissioning and early dismantlement of a commercially operated reactor in the United States to date. The scope of the project includes decontamination and dismantlement of the Prestressed Concrete Reactor Vessel (PCRV) and decontamination/removal of contaminated plant systems, site cleanup, and a comprehensive final radiation survey. This paper discusses the various types of decontamination equipment, survey instrumentation and techniques used during the Fort St. Vrain Decommissioning Project. Decontamination techniques range from simple methods such as soapy water, high pressure washing, scabbling, strippable paint; to more complicated methods such as remotely operated grit blast equipment used to decontaminate embedded pipe. The parameters necessary to evaluate the cost effectiveness of various decontamination techniques are discussed. Typically this includes consideration of the type and level of contamination, the substrate and surface to be decontaminated, the type and volume of waste generated from the decontamination process, whether the decon will be performed on site or off site, equipment and labor costs, project schedule impact, and the unconditional release criteria that must be achieved. These factors and costs are then compared to the costs associated with the removal, possible volume reduction and final disposal of a particular component or system. The successes and lessons learned during the Fort St. Vrain Decommissioning Project are presented

  6. Decontaminating soil organic pollutants with manufactured nanoparticles.

    Science.gov (United States)

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed. PMID:26906002

  7. Decontamination of Cuban oysters using irradiation

    International Nuclear Information System (INIS)

    Oysters (Crassostrea virginica) collected on the Cuban coast near Havana were examined for contamination with Vibrio cholerae and other potentially pathogenic Vibrio species. The strains thus isolated were characterized and identified to species following standard methods, and their radiation resistance (D10) was determined in pure culture. The Vibrio species most often isolated were V. cholerae, V. parahaemolyticus and V. Alginolyticus. Representative cultures from each species were later used to inoculate shucked oysters to determine the optimal radiation dose that would ensure elimination of 108 colony forming units (CFU)/g. The highest proportion of isolates were identified as Vibrio parahaemolyticus and V. algynoliticus. Non-O1 strains of Vibrio cholerae were isolated from 50% of samples, but no V. cholerae O1 was identified. D10 values calculated for the various strains were low in relation to those in the literature. The radiation dose for decontaminating heavily inoculated (108 CFU/g) oysters was 1.2 kGy. (author)

  8. Thixotropic corrosive gels for nuclear decontamination

    International Nuclear Information System (INIS)

    The aim of this thesis was the development of corrosive gels for metallic surface decontamination. These gels formulation, based on a powerful oxidant (the cerium IV), the nitric acid, a mineral charge (silica) and a non ionic surface-active, has been developed according to the specific constraints of the nuclear industry. The objective was to prepare thixotropic gels becoming liquid after shacking to allow an easy pulverization and coming again solid to permit a perfect adhesion on the metallic surface. This rheological study of the gels has been completed by an evaluation of their corrosive properties. The last part of the work presents an industrial utilization during two years. (A.L.B.)

  9. Dairy shed effluent treatment and recycling: Effluent characteristics and performance.

    Science.gov (United States)

    Fyfe, Julian; Hagare, Dharma; Sivakumar, Muttucumaru

    2016-09-15

    Dairy farm milking operations produce considerable amounts of carbon- and nutrient-rich effluent that can be a vital source of nutrients for pasture and crops. The study aim was to characterise dairy shed effluent from a commercial farm and examine the changes produced by treatment, storage and recycling of the effluent through a two-stage stabilisation pond system. The data and insights from the study are broadly applicable to passive pond systems servicing intensive dairy and other livestock operations. Raw effluent contained mostly poorly biodegradable particulate organic material and organically bound nutrients, as well as a large fraction of fixed solids due to effluent recycling. The anaerobic pond provided effective sedimentation and biological treatment, but hydrolysis of organic material occurred predominantly in the sludge and continually added to effluent soluble COD, nutrients and cations. Sludge digestion also suppressed pH in the pond and increased salt levels through formation of alkalinity. High sludge levels significantly impaired pond treatment performance. In the facultative pond, BOD5 concentrations were halved; however smaller reductions in COD showed the refractory nature of incoming organic material. Reductions in soluble N and P were proportional to reductions in respective particulate forms, suggesting that respective removal mechanisms were not independent. Conditions in the ponds were unlikely to support biological nutrient removal. Recycling caused conservative inert constituents to accumulate within the pond system. Material leaving the system was mostly soluble (86% TS) and inert (65% TS), but salt concentrations remained below thresholds for safe land application. PMID:27213866

  10. ONLINE MEASUREMENT OF THE PROGRESS OF DECONTAMINATION

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    In order to determine if the sensor technology and the decontamination technology will face problems once integrated, a feasibility study (see Appendix B) was produced in which the effect of motion on the efficiency of a radiation sensor was measured. It was found that the effect is not negligible; however, it is not catastrophic, and if the sensors are properly calibrated, this obstacle can be overcome. During the first year of this project, many important tasks have been accomplished. The search for radiation sensors provided knowledge on the technologies commercially available. This, in turn, allowed for a proper assessment of the properties, limitations, different methods of measurement, and requirements of a large number of sensors. The best possible characterization and data collection instrument and decontamination technologies were chosen using the requirement information in Appendix A. There are technical problems with installing sensors within the blasting head, such as steel shot and dust interference. Therefore, the sensor array is placed so that it will measure the radioactivity after the blasting. Sensors are rather sensitive, and therefore it is not feasible to place the sensor windows in such an abrasive environment. Other factors, such as the need for radiation hardening in extreme cases, and the possible interference of gamma rays with the radio frequency modem, have been considered. These factors are expected to be negligible and can be revisited at the time of prototype production. Factors that need to be addressed are the vibrations of the blasting unit and how to isolate the sensor array from these. In addition, an electromagnetic survey must be performed to ensure there will be no interference with the electronic component that will be integrated. The integration design is shown in section 4.0.

  11. Phase 2 microwave concrete decontamination results

    International Nuclear Information System (INIS)

    The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collected by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm2/s and 4.9 cm3/S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard

  12. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    International Nuclear Information System (INIS)

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the

  13. An alternative simple method in laryngoscope blade decontamination.

    Science.gov (United States)

    Orhan, Mehmet Emin; Saygun, Onur; Güzeldemir, M Erdal

    2002-06-01

    The cleaning and disinfection of laryngoscope blades is controversial. The aim of this study is to investigate the efficacy of two different chemical disinfectant agents and tap water where the laryngoscope blades were contaminated by different microorganisms and try to create a simple, effective and easy decontamination method. The results of our study demonstrate that the decontamination of the laryngoscope blades, which are cleansed with tap water, is not a reliable approach. In conclusion, mechanical cleaning of blades with water and the immersion in 2% glutaraldehyde or 10% polyvinyl pyrrolidine iodine for 10 minutes is an effective method for decontamination of laryngoscope blades. PMID:12138517

  14. Decision Analysis System for Selection of Appropriate Decontamination Technologies

    International Nuclear Information System (INIS)

    The principal objective for designing Decision Analysis System for Decontamination (DASD) is to support DOE-EM's endeavor to employ the most efficient and effective technologies for treating radiologically contaminated surfaces while minimizing personnel and environmental risks. DASD will provide a tool for environmental decision makers to improve the quality, consistency, and efficacy of their technology selection decisions. The system will facilitate methodical comparisons between innovative and baseline decontamination technologies and aid in identifying the most suitable technologies for performing surface decontamination at DOE environmental restoration sites

  15. Decision Analysis System for Selection of Appropriate Decontamination Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.; Boudreaux, J.F.; Chinta, S.; Zanakis, S.H.

    1998-01-01

    The principal objective for designing Decision Analysis System for Decontamination (DASD) is to support DOE-EM's endeavor to employ the most efficient and effective technologies for treating radiologically contaminated surfaces while minimizing personnel and environmental risks. DASD will provide a tool for environmental decision makers to improve the quality, consistency, and efficacy of their technology selection decisions. The system will facilitate methodical comparisons between innovative and baseline decontamination technologies and aid in identifying the most suitable technologies for performing surface decontamination at DOE environmental restoration sites.

  16. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    Energy Technology Data Exchange (ETDEWEB)

    Heiser,J.; Sullivan, T.

    2009-06-30

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers

  17. Comparison and Evaluation of Various Tritium Decontamination Techniques and Processes

    International Nuclear Information System (INIS)

    In support of fusion energy development, various techniques and processes have been developed over the past two decades for the removal and decontamination of tritium from a variety of items, surfaces, and components. Tritium decontamination, by chemical, physical, mechanical, or a combination of these methods, is driven by two underlying motivational forces. The first of these motivational forces is safety. Safety is paramount to the established culture associated with fusion energy. The second of these motivational forces is cost. In all aspects, less tritium contamination equals lower operational and disposal costs. This paper will discuss and evaluate the various processes employed for tritium removal and decontamination

  18. Effect of Organic Solvents in Preparation of Silica-Based Chemical Gel Decontaminates for Decontamination of Nuclear Facilities

    International Nuclear Information System (INIS)

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment such as stainless steel components, other iron-based steel and alloys, metal surfaces, structural materials and so on. Chemical decontamination technology in particular is a highly effective method to remove the radioactive contamination through a chemical dissolution or a redox reaction. However, this method has the serious drawback due to the generation of large amounts of the radioactive liquid wastes. Recently, a few literatures have been reported for the preparation of the chemical gel decontaminants to reduce the amount of the radioactive liquid wastes and to enhance the decontamination efficiency through increasing the contact time between the gels and the radioactive contaminants. In the preparation of the chemical gels, the control of the viscosity highly depends on the amount of a coviscosifier used among the components of the chemical gels consisted of a viscosifier, a coviscosifier, and a chemical decontaminant. In this works, a new effective method for the preparation of the chemical gel was investigated by introducing the organic solvents. The mixture solution of the coviscosifier and organic solvent was more effective in the control of the viscosity compared with that of the coviscosifier only in gels. Furthermore, the decontamination efficiency of the chemical gels measured by using the multi-channel analyzer (MCA) showed the high decontamination factor for Co-60 and Cs-137 contaminated on the surface of the stainless steel 304

  19. Application of zirconia particle to abrasive blast decontamination

    International Nuclear Information System (INIS)

    In blasting decontamination, alumina or steel grit has been used as conventional blast material. The problem with such existing materials is the decreasing of blasting performance during the repeated use due to their diminishing hardness. Consequently, a lot of waste grit is generated as secondary waste. In order to solve this problem, zirconia has been selected because of its high strength and spherical shape. A repeating test in which blasting is executed 300 times and a decontamination test were performed using actual waste materials to confirm the applicability of zirconia grit. More than 90% of zirconia grit kept the initial performance after being used 300 times. Zirconia exhibited durability superior to that of alumina which was broken in the course pf several repetitions of use. Moreover, the decontamination performance of zirconia grit has been confirmed to be equivalent to that of alumina grit. From the results, zirconia grit is expected to be applied to the decontamination of metal wastes. (author)

  20. Decontamination by water jet, chemical and electrochemical methods

    International Nuclear Information System (INIS)

    The decontamination tests have been carried out on samples coming from representative specimens from primary circuit of the PWR and on samples coming from the emergency feed water piping of the German BWR (Isar). The oxide found in PWR primary loops can only be removed by a two steps process. The initial embrittling step is particularly effective in hot alkaline permanganate medium. Oxidation by ozone treatment is less effective. The second step involves chemical erosion of the metal in nitrofluoric acid in conjonction with ultrasonic agitation. Among the reagents used, only oxalic acid is suitable for electrolytic decontamination. Among the reagents possible for decontamination of the Isar specimens (ferritic steel lined with hematite) halogenous acid in mixture without or with oxygenated water, sulfuric acid, the formic acid/formaldehyde mixture are chosen. Metal erosion with high pressure jet as well as the decontamination efficiency on parts lined with hematite have made possible to determine the best conditions. 33 figs, 29 refs

  1. GARDEC, Estimation of dose-rates reduction by garden decontamination

    International Nuclear Information System (INIS)

    1 - Description of program or function: GARDEC estimates the reduction of dose rates by garden decontamination. It provides the effect of different decontamination Methods, the depth of soil to be considered, dose-rate before and after decontamination and the reduction factor. 2 - Methods: This code takes into account three Methods of decontamination : (i)digging a garden in a special way, (ii) a removal of the upper layer of soil, and (iii) covering with a shielding layer of soil. The dose-rate conversion factor is defined as the external dose-rate, in the air, at a given height above the ground from a unit concentration of a specific radionuclide in each soil layer

  2. Decontamination of outdoor school swimming pools in Fukushima

    International Nuclear Information System (INIS)

    After the Fukushima Daiichi NPP accident following the Great East Japan Earthquake, many school swimming pools in Fukushima have suspended water discharge, due to concerns that pool water which contains radioactive fallout is discharged into a river or waterway for agricultural use. The Japan Atomic Energy Agency conducted researches and examinations on the existing absorbent method and the flocculation method as ways for decontaminating pool water. By reviewing and improving these methods through decontamination demonstrations at eight pools in Fukushima, a practical decontamination method for outdoor pools has been established. This report summarizes the methods and results of the decontamination demonstrations carried out at the schools. Also, the surface density of fallout estimated at one of the pools is also presented and discussed in connection with the overall collection ratio of radiocesium at the pool. (author)

  3. Decontamination of MMH- and NTO/MON-propellant Tanks

    Science.gov (United States)

    Jokela, K.; Kaelsch, I.

    2004-10-01

    Decontamination of liquid propellant tanks, namely MMH and NTO/MON tanks, due to emergency off- loading of a spacecraft can cause damage to the propellant tank material if safety precautions are not taken into account. MMH (Mono-Methyl Hydrazine) reacts with water with an exothermic reaction that causes temperature rise and hydrous reaction product formation. NTO and MON (Nitrogen Tetroxide Oxidiser / Mixed Oxides of Nitrogen) react with water forming nitrous and nitric acid, which may cause corrosion and enhance Stress Corrosion Cracking (SCC) in the titanium tank material. To avoid these problems, a new procedure with a numerical prediction tool for decontamination of MMH tank has been developed, used and assessed to decontaminate the MMH tank of the ESA Rosetta spacecraft successfully. The ESA proposed procedure for MON oxidiser tank emergency off-loading and decontamination is also presented.

  4. Advance in radioactive decontamination; Avances en descontaminacion radiactiva

    Energy Technology Data Exchange (ETDEWEB)

    Basteris M, J. A. [Universidad Autonoma de Yucatan, Facultad de Medicina, Departamento de Diagnostico por Laboratorio y Gabinete, Av. Cupules No. 232, Col. Garcia Gineres, 97070 Merida, Yucatan (Mexico); Farrera V, R., E-mail: basteris@prodigy.net.m [Hospital de Especialidades de la UMAE, Centro Medico Nacional Ignacio Garcia Tellez, Departamento de Medicina Nuclear, Calle 34 x 41, Exterrenos el Fenix s/n, Col. Industrial, 91750 Merida, Yucatan (Mexico)

    2010-09-15

    The objective of the present work was to determine if the application of the Na hypochlorite has some utility in the radioactive decontamination, in comparison with the water, detergent and alcohol. Several methods were compared for decontaminate the iodine 131 and technetium 99, the work table and the skin it was carried out an initial count with the Geiger Muller. Later on, in a single occasion, the areas were washed with abundant water, alcohol, clothes detergent and sodium hypochlorite (used commercially as domestic bleacher) without diluting. Observing that the percentage in the decrease of the counted radioactivity by the Geiger Muller, decreased in the following way: It was demonstrated that the Na hypochlorite presents the highest index of radioactive decontamination with 100% of effectiveness. The Na hypochlorite is an excellent substance that can be used with effectiveness and efficiency like decontamination element in the accident cases of radioactive contamination in the clinical laboratories of nuclear medicine. (Author)

  5. Steam Generator Group Project. Task 6. Channel head decontamination

    International Nuclear Information System (INIS)

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described

  6. Comparative effectiveness of extraction and adsorption methods in treatment of phenolic effluents

    Energy Technology Data Exchange (ETDEWEB)

    Ehppel, C.A.; Kochetkova, R.P.

    1982-01-01

    This paper compares two methods of decontamination and refinement of industrial phenolic effluents: first, extraction by means of butyl acetate; second, adsorption on activated semicoke. The method of adsorption is valid for phenols in water, but not valid for pyroligneous effluents containing various homologs: ketones, fatty acids, pyridine bases and ammonia. The effectiveness of the two methods of purifying industrial effluents was investigated and effects of the treatment of waste water containing a mixture of phenols and homologs were studied in an industrial setting, with negative results, and under laboratory conditions. In the laboratory, effectiveness of refinement by both methods was determined according to the coefficients of distribution of summary phenols (Kr). A table presents the results of this laboratory investigation, and shows that the coefficients of distribution (Kr) are very close in number in both the extractive and adsorbent methods of refinement. However, in the extraction of phenols by butyl acetate 25 kg per ton of phenols are lost constituting 20-25% of the cost. In dephenolization by semicoke the adsorbent regenerates the solvent by means of benzol resulting in the production of marketable phenols. Activated semicoke is recommended for refining industrial effluents in the production of phenol, several plastic masses and additives for fuels and lubricants. (In Russian)

  7. Decontamination of laryngoscope blades: Is our practice adequate?

    OpenAIRE

    Telang R; Patil V; Ranganathan P; Kelkar R

    2010-01-01

    Background : The laryngoscope has been identified as a potential source of cross-infection, because of blood and bacterial contamination. In India, there are no guidelines for cleaning and disinfection of anesthesia-related equipment. Practices for decontamination of laryngoscopes vary widely and in most healthcare institutes, laryngoscope blades are re-used after cleaning with tap-water. Materials and Methods: We prospectively compared two techniques for decontamination of laryngoscope blade...

  8. Magnetite Dissolution Performance of HYBRID-II Decontamination Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seonbyeong; Lee, Woosung; Won, Huijun; Moon, Jeikwon; Choi, Wangkyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, we conducted the magnetite dissolution performance test of HYBRID-II (Hydrazine Based Reductive metal Ion Decontamination with sulfuric acid) as a part of decontamination process development. Decontamination performance of HYBRID process was successfully tested with the results of the acceptable decontamination factor (DF) in the previous study. While following-up studies such as the decomposition of the post-decontamination HYBRID solution and corrosion compatibility on the substrate metals of the target reactor coolant system have been continued, we also seek for an alternate version of HYBRID process suitable especially for decommissioning. Inspired by the relationship between the radius of reacting ion and the reactivity, we replaced the nitrate ion in HYBRID with bigger sulfate ion to accommodate the dissolution reaction and named HYBRID-II process. As a preliminary step for the decontamination performance, we tested the magnetite dissolution performance of developing HYBRID-II process and compared the results with those of HYBRID process. HYBRID process developed previously is known have the acceptable decontamination performance, but the relatively larger volume of secondary waste induced by anion exchange resin to treat nitrate ion is the one of the problems related in the development of HYBRID process to be applicable. Therefore we alternatively devised HYBRID-II process using sulfuric acid and tested its dissolution of magnetite in numerous conditions. From the results shown in this study, we can conclude that HYBRID-II process improves the decontamination performance and potentially reduces the volume of secondary waste. Rigorous tests with metal oxide coupons obtained from reactor coolant system will be followed to prove the robustness of HYBRID-II process in the future.

  9. Magnetite Dissolution Performance of HYBRID-II Decontamination Process

    International Nuclear Information System (INIS)

    In this study, we conducted the magnetite dissolution performance test of HYBRID-II (Hydrazine Based Reductive metal Ion Decontamination with sulfuric acid) as a part of decontamination process development. Decontamination performance of HYBRID process was successfully tested with the results of the acceptable decontamination factor (DF) in the previous study. While following-up studies such as the decomposition of the post-decontamination HYBRID solution and corrosion compatibility on the substrate metals of the target reactor coolant system have been continued, we also seek for an alternate version of HYBRID process suitable especially for decommissioning. Inspired by the relationship between the radius of reacting ion and the reactivity, we replaced the nitrate ion in HYBRID with bigger sulfate ion to accommodate the dissolution reaction and named HYBRID-II process. As a preliminary step for the decontamination performance, we tested the magnetite dissolution performance of developing HYBRID-II process and compared the results with those of HYBRID process. HYBRID process developed previously is known have the acceptable decontamination performance, but the relatively larger volume of secondary waste induced by anion exchange resin to treat nitrate ion is the one of the problems related in the development of HYBRID process to be applicable. Therefore we alternatively devised HYBRID-II process using sulfuric acid and tested its dissolution of magnetite in numerous conditions. From the results shown in this study, we can conclude that HYBRID-II process improves the decontamination performance and potentially reduces the volume of secondary waste. Rigorous tests with metal oxide coupons obtained from reactor coolant system will be followed to prove the robustness of HYBRID-II process in the future

  10. Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis

    OpenAIRE

    Asmar, Shady; Drancourt, Michel

    2015-01-01

    Background: Culture of Mycobacterium tuberculosis is the gold standard method for the laboratory diagnosis of pulmonary tuberculosis, after effective decontamination. Results: We evaluated squalamine and chlorhexidine to decontaminate sputum specimens for the culture of mycobacteria. Eight sputum specimens were artificially infected with 105 colony-forming units (cfu)/mL Mycobacterium tuberculosis and Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans as contaminants. In the s...

  11. Decontamination of process equipment using recyclable chelating solvent

    Energy Technology Data Exchange (ETDEWEB)

    Jevec, J.; Lenore, C.; Ulbricht, S. [Babcock & Wilcox, Co., R& DD, Alliance, OH (United States)

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  12. Hydrate-based heavy metal separation from aqueous solution

    Science.gov (United States)

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-02-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01-90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b-effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b-effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater.

  13. Evaluation of Cost and Effectiveness of Decontamination Scenarios on External Radiation Exposure in Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Yasutaka, T.; Naito, W. [National Institute of Advanced Industrial Science and Technology (Japan)

    2014-07-01

    Despite the enormous cost associated with radiation decontamination, almost no quantitative assessment has been performed on the relationship between the potential reduction in long-term radiation exposure and the costs of the various decontamination strategies considered for the decontamination areas in Fukushima. In order to establish effective and pragmatic decontamination strategies for use in the radiation contaminated areas in Fukushima, a holistic approach for assessing decontamination strategies, their costs, and long-term external radiation doses is needed. The objective of the present study is to evaluate the cost and effectiveness of decontamination scenarios in the decontamination areas in Fukushima in regard to external radiation exposure. The choice of decontamination strategies in the decontamination areas should be based on a comprehensive analysis of multiple attributes such as radiological, economic, and socio-psychological attributes. The cost and effectiveness of the different decontamination strategies is not sole determinant of the decontamination strategies of the special decontamination area but is one of the most important attributes when making the policy decision. In the current study, we focus on radiological and economic attributes in determining decontamination strategies. A geographical information system (GIS) was used to relate the predicted external dose in the affected areas to the number of potential inhabitants and the land use in the areas. A comprehensive review of the costs of various decontamination methods was conducted as part of the analysis. The results indicate that aerial decontamination in the special decontamination areas in Fukushima would be effective for reducing the air dose rate to the target level in a short period of time in some but not all of the areas. In a standard scenario, the analysis of cost suggests that decontamination costs of decontamination in Fukushima was estimated to be up to approximately 5

  14. Evaluation of Cost and Effectiveness of Decontamination Scenarios on External Radiation Exposure in Fukushima

    International Nuclear Information System (INIS)

    Despite the enormous cost associated with radiation decontamination, almost no quantitative assessment has been performed on the relationship between the potential reduction in long-term radiation exposure and the costs of the various decontamination strategies considered for the decontamination areas in Fukushima. In order to establish effective and pragmatic decontamination strategies for use in the radiation contaminated areas in Fukushima, a holistic approach for assessing decontamination strategies, their costs, and long-term external radiation doses is needed. The objective of the present study is to evaluate the cost and effectiveness of decontamination scenarios in the decontamination areas in Fukushima in regard to external radiation exposure. The choice of decontamination strategies in the decontamination areas should be based on a comprehensive analysis of multiple attributes such as radiological, economic, and socio-psychological attributes. The cost and effectiveness of the different decontamination strategies is not sole determinant of the decontamination strategies of the special decontamination area but is one of the most important attributes when making the policy decision. In the current study, we focus on radiological and economic attributes in determining decontamination strategies. A geographical information system (GIS) was used to relate the predicted external dose in the affected areas to the number of potential inhabitants and the land use in the areas. A comprehensive review of the costs of various decontamination methods was conducted as part of the analysis. The results indicate that aerial decontamination in the special decontamination areas in Fukushima would be effective for reducing the air dose rate to the target level in a short period of time in some but not all of the areas. In a standard scenario, the analysis of cost suggests that decontamination costs of decontamination in Fukushima was estimated to be up to approximately 5

  15. Decontamination and decommissioning technology development of nuclear facilities

    International Nuclear Information System (INIS)

    Removal behaviour of an oxide which is similar in structure and composition to that on internal system of steam generator were investigated in low concentration chemical decontamination process [KAERI process]. In the AP solution (oxidative dissolution step), Cr dissolved fastly from the oxide in early stage and then dissolved very slowly in later stage. Dissolution behaviours of Fe from the oxides in the reductive dissolution process were similar to those of Cr in the oxidative dissolution process. Oxide dissolution behaviour in each process were discussed. In twice cyclic application of the oxidative and the reductive dissolution process(KAERI decontamination process), about 50% of the oxide was removed by chemical dissolution, about 40% by particulate detachment. The rest 10% oxide could be completely removed by ultrasonic decontamination. Corrosion acceptance guideline was established for the decontamination of domestic PWRs' steam generator. In the KAERI decontamination process, general corrosion to an Inconel-600 and 304 stainless steel was about 2.4 and 1.0% of general corrosion limit, respectively. And localized corrosion was not observed. Those results indicated that the KAERI decontamination process assured integrity of KNUs' steam generator. To evaluate the radioactive inventory for the decommissioning of nuclear facilities, general calculation methods of radioactive inventory, calculation and measurement of contact exposure rate, and confirmation of those results were reviewed. Feasibility for application of the above methods was examined by taking examples of radioactive inventory estimation in the Shippingport nuclear reactor vessel. (Author)

  16. Creating value through radiological decontamination of plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kritsky, W.G. [American Ecology Recycle Center, Oak Ridge, TN (United States)

    1995-10-01

    Since the invention of nuclear power, the need for radiological cleaning (decontamination) of plant components has presented a challenge to the nuclear industry. Radiological cleaning provides an added value, when plant components are contaminated and require refurbishment. The cost of refurbishment has often been compared to the replacement cost of components plus the disposal cost for the existing component. The value derived from radiological decontamination during component refurbishment has increased as the circumstances surrounding the disposal of radioactive material have changed. Today, with the exclusion of the majority of nuclear power plants from the disposal sites, and requirements for producers to store their own waste, decontamination and refurbishment of otherwise discarded components has become an attractive alternative. In response to the industry`s demand for cost savings alternatives, the role for a licensed facility to perform decontamination has become more important. Accordingly, increased importance has been placed on the minimization of waste and mixed-waste generators during a DECON process. Pursuant to these requirements, new technologies have been or are now in the process of being developed which, when coupled with existing technology, will effectively provide decontamination capability while limiting the creation of process waste. These decontamination capabilities create value for the utility by providing an alternative to component replacement.

  17. Creating value through radiological decontamination of plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kritsky, W.G. [American Ecology Recycle Center, Oak Ridge, TN (United States)

    1995-11-01

    Since the invention of nuclear power, the need for radiological cleaning (decontamination) of plant components has presented a challenge to the nuclear industry. Radiological cleaning provides an added value, when plant components are contaminated and require refurbishment. The cost of refurbishment has often been compared to the replacement cost of components plus the disposal cost for the existing component. The value derived from radiological decontamination during component refurbishment has increased as the circumstances surrounding the disposal of radioactive material have changed. Specifically, prior to 1994, the majority of the producers of radioactive material had access to licensed disposal sites. Though the cost of disposal at these sites had risen dramatically, a disposal option still existed. Today, with the exclusion of the majority of nuclear power plants from the disposal sites, and requirements for producers to store their own waste, decontamination and refurbishment of otherwise discarded components has become an attractive alternative. In response to the industry`s demand for cost savings alternatives, the role for a licensed facility to perform decontamination has become more important. Accordingly, increased importance has been placed on the minimization of waste and mixed-waste generators during a DECON process. Pursuant to these requirements, new technologies have been or are now in the process of being developed which, when coupled with existing technology, will effectively provide decontamination capability while limiting the creation of process waste. These decontamination capabilities create value for the utility by providing an alternative to component replacement.

  18. Demonstration recommendations for accelerated testing of concrete decontamination methods

    International Nuclear Information System (INIS)

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are 137Cs, 238U (and its daughters), 60Co, 90Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 x 108 ft2or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling

  19. Anthrax Sampling and Decontamination: Technology Trade-Offs

    Energy Technology Data Exchange (ETDEWEB)

    Price, Phillip N.; Hamachi, Kristina; McWilliams, Jennifer; Sohn, Michael D.

    2008-09-12

    The goal of this project was to answer the following questions concerning response to a future anthrax release (or suspected release) in a building: 1. Based on past experience, what rules of thumb can be determined concerning: (a) the amount of sampling that may be needed to determine the extent of contamination within a given building; (b) what portions of a building should be sampled; (c) the cost per square foot to decontaminate a given type of building using a given method; (d) the time required to prepare for, and perform, decontamination; (e) the effectiveness of a given decontamination method in a given type of building? 2. Based on past experience, what resources will be spent on evaluating the extent of contamination, performing decontamination, and assessing the effectiveness of the decontamination in abuilding of a given type and size? 3. What are the trade-offs between cost, time, and effectiveness for the various sampling plans, sampling methods, and decontamination methods that have been used in the past?

  20. Electro-decontamination of cementitious materials

    International Nuclear Information System (INIS)

    The end of operations in nuclear facilities is followed by various decontamination and decommissioning operations. Similar to other electrochemical techniques such as re-alkalinisation and chloride extraction, an electrokinetic remediation process is being developed as a specific method for deeply contaminated concrete structures. Two cements, an ordinary Portland and a 30% slag cement, have been chosen for the conducted work.Mortars and concretes are contaminated by adding non-radioactive cesium in the batch water, cesium being a representative specie of deep encountered contaminants. The conducted experimental and numerical work have focused on three main aspects: characterizing and understanding the cesium transport mechanisms, assessing the electro-remediation process at lab-scale and evaluating the real scale constraints. Using existing knowledge of chloride transport mechanisms, experiments have been conducted to characterize the cesium interactions with cementitious phase and ionic transport in saturated materials. A numerical model have then been developed to describe the cesium transport, taking into account the ionic activity coefficients and interactions with solid phases. Indeed, lab-scale experiments have demonstrated that electro-remediation reduced to 20-50% the initially contained cesium after a three weeks treatment. Treated samples analysis confirmed that deeply diffused cesium is migrating to the surface. Moreover, conducted experiments showed the consistency between the different materials properties, applied currents and decontamination efficiency. A comparative analysis of experiments carried on samples with different shapes, formulations and contamination modes helped assessing and optimizing the process efficiency for various continuous and variable applied currents. Finally, electro-remediation experiments have also been carried on 1m2 concrete slabs. Liquid catholyte and anolyte solutions are replaced by alumina gels and cellulose pastes

  1. Study and modelling of an innovative coprecipitation reactor for radioactive liquid wastes decontamination

    International Nuclear Information System (INIS)

    In order to decontaminate radioactive liquid wastes of low and intermediate levels, the coprecipitation is the process industrially used. The aim of this PhD work is to optimize the continuous process of coprecipitation. To do so, an innovative reactor is designed and modelled: the continuous reactor/classifier. Two model systems are studied: the coprecipitation of strontium by barium sulphate and the sorption of cesium by PPFeNi. The simulated effluent contains sodium nitrate in order to consider the high ionic strength of radioactive liquid wastes. First, each model system is studied on its own, and then a simultaneous treatment is performed. The kinetic laws of nucleation and crystal growth of barium sulphate are determined and incorporated into the coprecipitation model. Kinetic studies and sorption isotherms of cesium by PPFeNi are also performed in order to acquire the necessary data for process modelling. The modelling realised enables accurate prediction of the residual strontium and cesium concentrations according to the process used: it is a valuable tool for the optimization of existing units, but also the design of future units. The continuous reactor/classifier presents many advantages compared to the classical continuous process: the decontamination efficiency of strontium and cesium is highly improved while the volume of sludge generated by the process is reduced. A better liquid/solid separation is observed in the reactor/classifier and the global installation is significantly more compact. Thus, the radioactive liquid wastes treatment processes can be intensified by the continuous reactor/classifier, which represents a very promising technology for future industrial application. (author)

  2. Elaboration of a chemical decontamination technology: preliminary results

    International Nuclear Information System (INIS)

    In the VVER-type pressurized water reactors, various versions of the so-called AP-CITROX method (AP: alkaline permanganate, CITROX: citric and oxalic acids) have been widely used for the chemical decontamination of the austenitic stainless steel piping of steam generators (SGs). During the period of 1993-2001 chemical decontaminations of 24 SGs in the blocks 1-3 of the Paks NPP were carried out by a non-regenerative version of AP-CITROX technology, even in 2 or 3 consecutive cycles. Based on the above decontamination procedures a database of characteristic parameters was compiled. The analysis of these data and the explanation of the corrosion effects of the technology reveal that fundamental issues of analytical chemistry and corrosion science were not taken into consideration during the elaboration of AP-CITROX procedure, suggested in steam generator manual, and utilized at Paks NPP. The non-regenerative version of the AP-CITROX technology is not an adequate method for the chemical decontamination of any reactor equipment having large steel surfaces (e.g. SGs). As a consequence of the lack of the appropriate decontamination method, a R and D project focused on the elaboration of the required technology has been initiated in 2005. The fundamental demands, which must be realized in the course of above R and D project, are as follows: (i) The decontamination method has to be suitable simultaneously for the effective removal of radionuclides (dose reduction) and for the conditioning of steel surfaces. (ii) The procedure has to provide optimal technological parameters for the homogeneous dissolution of oxide layers formed on the steel surfaces originating from both SGs never decontaminated (block 4) and SGs decontaminated earlier (blocks 1-3). The inner surfaces of the heat exchanger tubes of the latter SGs are covered by a special oxide layer ('hybrid' structure with a thickness of several micrometers). (iii) The method has to be able to utilize the technological

  3. Mobile workstation for decontamination and decommissioning operations

    International Nuclear Information System (INIS)

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D ampersand D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D ampersand D work by evolving the design through a series of technological developments, performance tests and evaluations. The project has three phases. In this the first phase, an existing teleoperated worksystem, the Remote Work Vehicle (developed for use in the Three Mile Island Unit 2 Reactor Building basement), was enhanced for telerobotic performance of several D ampersand D operations. Its ability to perform these operations was then assessed through a series of tests in a mockup facility that contained generic structures and equipment similar to those that D ampersand D work machines will encounter in DOE facilities. Building upon the knowledge gained through those tests and evaluations, a next generation mobile worksystem, the RWV II, and a more advanced controller will be designed, integrated and tested in the second phase, which is scheduled for completion in January 1995. The third phase of the project will involve testing of the RWV II in the real DOE facility

  4. Establishing the irradiation dose for paper decontamination

    Science.gov (United States)

    Moise, Ioan Valentin; Virgolici, Marian; Negut, Constantin Daniel; Manea, Mihaela; Alexandru, Mioara; Trandafir, Laura; Zorila, Florina Lucica; Talasman, Catalina Mihaela; Manea, Daniela; Nisipeanu, Steluta; Haiducu, Maria; Balan, Zamfir

    2012-08-01

    Museums, libraries and archives are preserving documents that are slowly degrading due to the inherent ageing of the cellulose substrate or to the technological errors of the past (acid paper, iron gall ink). Beside this, large quantities of paper are rapidly damaged by biological attacks following natural disasters and improper storage conditions. The treatment of paper documents with ionizing radiation can be used for mass decontamination of cultural heritage items but conservators and restaurators are still reserved because of the radiation induced degradation. We conducted a study for establishing the dose needed for the effective treatment of paper documents, taking into account the biological burden and the irradiation effects on paper structure. We used physical testing specific to paper industry and less destructive analytical methods (thermal analysis). Our results show that an effective treatment can be performed with doses lower than 10 kGy. Old paper appears to be less affected by gamma radiation than recent paper but the sampling is highly affected by the non-uniform degree of the initial degradation status. The extent of testing for degradation and the magnitude of acceptable degradation should take into account the biological threat and the expected life time of the paper documents.

  5. Waste Isolation Pilot Plant Salt Decontamination Testing

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  6. Decontamination and Decommissioning Equipment Tracking System (DDETS)

    International Nuclear Information System (INIS)

    At the request of the Department of Energy (DOE)(EM-50), the Scientific Computing Unit developed a prototype system to track information and data relevant to equipment and tooling removed during decontamination and decommissioning activities. The DDETS proof-of-concept tracking system utilizes a one-dimensional (1D) and two-dimensional (2D) bar coding technology to retain and track information such as identification number, manufacturer, requisition information, and various contaminant information, etc. The information is encoded in a bar code, printed on a label and can be attached to corresponding equipment. The DDETS was developed using a proven relational database management system which allows the addition, modification, printing, and deletion of data. In addition, communication interfaces with bar code printers and bar code readers were developed. Additional features of the system include: (a) Four different reports available for the user (REAPS, transaction, and two inventory), (b) Remote automated inventory tracking capabilities, (c) Remote automated inventory tracking capability (2D bar codes allow equipment to be scanned/tracked without being linked to the DDETS database), (d) Edit, update, delete, and query capabilities, (e) On-line bar code label printing utility (data from 2D bar codes can be scanned directly into the data base simplifying data entry), and (f) Automated data backup utility. Compatibility with the Reportable Excess Automated Property System (REAPS) to upload data from DDETS is planned

  7. Decontamination and decommissioning of Shippingport commercial reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, J. [Dept. of Energy, Pittsburgh, PA (United States)

    1989-11-01

    To a certain degree, the decontamination and decommissioning (D and D) of the Shippingport reactor was a joint venture with Duquesne Light Company. The structures that were to be decommissioned were to be removed to at least three feet below grade. Since the land had been leased from Duquesne Light, there was an agreement with them to return the land to them in a radiologically safe condition. The total enclosure volume for the steam and nuclear containment systems was about 1.3 million cubic feet, more than 80% of which was below ground. Engineering plans for the project were started in July of 1980 and the final environmental impact statement (EIS) was published in May of 1982. The plant itself was shut down in October of 1982 for end-of-life testing and defueling. The engineering services portion of the decommissioning plans was completed in September of 1983. DOE moved onto the site and took over from the Navy in September of 1984. Actual physical decommissioning began after about a year of preparation and was completed about 44 months later in July of 1989. This paper describes the main parts of D and D.

  8. Mycotoxins - prevention and decontamination by yeasts.

    Science.gov (United States)

    Pfliegler, Walter P; Pusztahelyi, Tünde; Pócsi, István

    2015-07-01

    The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less-toxic or even non-toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast-mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here.

  9. Mobile worksystems for decontamination and dismantlement

    International Nuclear Information System (INIS)

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes two technologies that are viable solutions for facility D ampersand D

  10. Environmental Development Plant (EDP): decontamination and decommissioning

    International Nuclear Information System (INIS)

    Radioactively contaminated facilities, equipment, materials, and land that are no longer useful or needed for a nuclear purpose are candidates for decontamination and decommissioning (D/D). Following D/D, intrinsic values can be salvaged and land returned to other desired uses. There are several hundred individual facilities which are located on ERDA Reservations or which have been assigned to ERDA for management and D/D action. Included are facilities used for the production of special nuclear materials, for nuclear energy R and D, and for the testing of nuclear devices. Many of the facilities were operated or utilized by ERDA's predecessor agencies. Also included are certain privately-owned sites and tailings of uranium mills previously operated by private enterprise. The scope of this EDP does not include D/D of commercial power reactors but the technology and issues described here may be directly applicable to such privately owned facilities. The numbers of nuclear facilities that are candidates for D/D continue to increase as they become obsolescent; consequently, a rapid expansion in the volume of D/D work is projected. R and D programs are needed to guide decisions on where and when D/D should be done, to facilitate the work, and to minimize the near and long term risks to both workers and the public

  11. Mobile worksystems for decontamination and dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, J. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bares, L.C.; Thompson, B.R. [RedZone Robotics, Inc., Pittsburgh, PA (United States)

    1995-10-01

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of. The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes a mobile workstation termed ROSIE, which provides remote work capabilities for D&D activities.

  12. De-contamination of pesticide residues in food by ionizing radiation

    International Nuclear Information System (INIS)

    The role of gamma irradiation on removal of pesticides in aqueous solutions or in vegetables and fruits was investigated. Radiation - induced decontamination of pesticides is generally greater in aqueous solutions than in selected vegetables and fruits. Residues of malathion (0.5 ppm in potatoes, 8 ppm in onions and dates), pirimiphos-methyl (1 ppm in onions and grapes) and cypermethrin (0.05 ppm in potatoes and 0.1 ppm in onions) were not reduced to below maximum residue limits (MRLs) for irradiation doses up to 1 kGy. The same trend was observed when irradiation was performed for grapes fortified with malathion (8 ppm) and cypermethrin (2 ppm) for absorbed doses up to 2 kGy. Ionizing radiation reduced the residues of pirimiphos-methyl (0.05 ppm in potatoes at1 kGy, 1 ppm in grapes at 2 kGy and 0.1 ppm in dates at1 kGy), malathion (8 ppm in grapes at 7 kGy) and cypermethrin (2 ppm in grapes at 7 kGy) to below maximum residue limits (MRLs). - Highlights: ► The role of irradiation on removal of pesticides in aqueous solutions or in food products was investigated. ► Radiation-induced removal of pesticides is generally greater in aqueous solutions than in food products. ► Radiation can reduce the pirimiphos-methyl in potatoes, grapes and dates to below MRLs. ► Radiation can reduce the malathion and cypermethrin in grapes to below MRLs. ► Radiation is used for dual objectives of reducing pesticide residues and improving food safety.

  13. Radioactive effluents in Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.

    1991-11-27

    During 1990, low-level radiometric studies of the Savannah River continued to distinguish between effluent contributions from Plant Vogtle and the Savannah River Site. Measurements of these radioactive effluents are of mutual interest to both institutions, as they can address disturbing trends before they become health and legal concerns. The Environmental Technology Section (ETS) has conducted radiometric studies of Plant Vogtle since late 1986, prior to its startup. The plant has two 1100 MWe pressurized water reactors developed by Westinghouse. Unit 1 started commercial operations in June 1987, and Unit 2 began in May 1989. During powered operations, ETS has routinely detected neutron-activated isotopes in controlled releases but all activities have been several orders of magnitude below the DOE guide values. In 1990, processing improvements for Vogtle effluents have yielded even lower activities in the river. The Vogtle release data and the ETS measurements have tracked well over the past four years.

  14. A simplified model of decontamination by BWR steam suppression pools

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A.

    1997-05-01

    Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

  15. A simplified model of decontamination by BWR steam suppression pools

    International Nuclear Information System (INIS)

    Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, dp, and the standard deviation of the emerging aerosol size distribution, σ, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs

  16. Phytoremediation of the coalmine effluent.

    Science.gov (United States)

    Bharti, Sandhya; Kumar Banerjee, Tarun

    2012-07-01

    Coal mine effluent was subjected to detoxification by phytoremediation using two macrophytes Azolla pinnata and Lemna minor. Both plants were kept separately in the effluents for 7 day. The initial concentration (mg L⁻¹) of eight metals: Fe, Mn, Cu, Zn, Ni, Pb, Cr and Cd investigated in the effluent were 22.91±0.02, 9.61±1.6, 2.04±0.23, 1.03±0.15, 0.86±0.19, 0.69±0.11, 0.18±0.007 and 0.06±0.008 respectively. The initial fresh biomass of each plant was 100g. After one week, metals removed in A. pinnata-phytoremediated effluent were in the order: Mn (98%)>Fe (95.4%)>Zn (95%)>Cu (93%)>Pb (86.9%)>Cd (85%)>Cr (77.7%)>Ni (66.2%) and metal decrease in L. minor-phytoremediated effluent were: Mn (99.5%)>Cu (98.8%)>Zn (96.7%)>Ni (94.5%)>Fe (93.1%)>Cd (86.7%)>Pb (84%)>Cr (76%). Due to metal toxicity the total chlorophyll and protein contents of L. minor decreased by 29.3% and 38.55% respectively. The decrease of these macromolecules in A. pinnata was 27% and 15.56% respectively. Also, the reduction in biomass of L. minor was greater than that for A. pinnata. Based on the finding we could suggest that both the plants are suitable for bioremediation of mine effluent at the contaminated sites. However, attention for quick disposal of these metal loaded plants is urgently required. PMID:22571948

  17. Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator.

    Science.gov (United States)

    Charles, Jérémie; Sancey, Bertrand; Morin-Crini, Nadia; Badot, Pierre-Marie; Degiorgi, François; Trunfio, Giuseppe; Crini, Grégorio

    2011-10-01

    Industrial wastewater containing heavy metals is generally decontaminated by physicochemical treatment consisting in insolublizing the contaminants and separating the two phases, water and sludge, by a physical process (filtration, settling or flotation). However, chemical precipitation does not usually remove the whole pollution load and the effluent discharged into the environment can be toxic even if it comes up to regulatory standards. To assess the impact of industrial effluent from 4 different surface treatment companies, we performed standardized bioassays using seeds of the lettuce Lactuca sativa. We measured the rate of germination, and the length and mass of the lettuce plantlet. The results were used to compare the overall toxicity of the different effluents: effluents containing copper and nickel had a much higher impact than those containing zinc or aluminum. In addition, germination tests conducted using synthetic solutions confirmed that mixtures of metals have higher toxicity than the sum of their separate constituents. These biological tests are cheap, easy to implement, reproducible and highlight the effects caused by effluent treated with the methods commonly applied in industry today. They could be routinely used to check the impact of industrial discharges, even when they meet regulatory requirements for the individual metals. PMID:21835466

  18. A review of methods for the decontamination of alpha-bearing waste streams to very low-levels of activity

    International Nuclear Information System (INIS)

    This report reviews the processes presently available for the decontamination of alpha-bearing waste effluents. Evaporation, chemical precipitation, organic and inorganic ion exchange, solvent extraction, ultrafiltration, electrical and microbiological processes are considered in turn. Each type of process and its applications in the nuclear industry are briefly described together with the results from any recent development studies. From the information available the advantages and limitations of the process for alpha removal to low-levels (10-2-10-3 Bq/msup(l)) are assessed. It is concluded that no single process is capable of removing the actinides to these very low levels but that this level of decontamination should be achieved by the use of two or more processes either sequentially or in combination; e.g. the use of ultrafiltration or precipitation processes in combination with finely divided inorganic ion exchange materials. Processes involving a good solid-liquid separation, such as ultrafiltration appear to be the most appropriate for actinides which show a tendency to hydrolyse and form colloids. However, there is very limited information available on the removal of actinides by such processes, particularly at levels < Bq/ml. Electrical and biological processes are not yet sufficiently developed for their potential to be properly assessed. (author)

  19. Passive secondary biological treatment systems reduce estrogens in dairy shed effluent.

    Science.gov (United States)

    Gadd, Jennifer B; Northcott, Grant L; Tremblay, Louis A

    2010-10-01

    Steroid estrogens are found at high concentrations in untreated dairy shed effluents. Reduction of estrogenic activity and steroid estrogen concentrations was assessed in two systems used to treat dairy shed effluents: the two-pond system and the advanced pond system. Both include anaerobic and aerobic treatment stages. Samples of effluent were collected from the systems and analyzed for free estrogens, conjugated estrogens and total estrogenic activity using E-Screen assay. Both systems showed increases of up to 8000% in aqueous free estrogens and estrogenic activity after anaerobic treatment, followed by decreases after aerobic treatment (36-83%). The complete systems decreased total steroid estrogen concentrations by 50-100% and estrogen activity by 62-100%, with little difference between systems. Removal rates were lower in winter for both systems. Final effluents from the advanced pond system contained total estrogens at <15-1400 ng/L and estrogenic activity at 3.2-43 ng/L. Final effluent from the two-pond system contained total estrogens at <15-300 ng/L and estrogenic activity at 3.3-25 ng/L. At times the final effluent EEQs exceeded guideline values for protection of freshwater fish and suggest further treatment may be required.

  20. Decontamination Systems Information and Reseach Program

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Echol E

    1998-04-01

    The following paragraphs comprise the research efforts during the first quarter of 1998 (January 1 - March 31). These tasks have been granted a continuation from the 1997 work and will all end in June 1998. This report represents the last technical quarterly report deliverable for the WVU Cooperative Agreement - Decontamination Systems Information and Research Program. Final reports for all of the 1997 projects will be submitted afterwards as one document. During this period, groundwater extraction operations were completed on Task 1.6 - Pilot Scale Demonstration of TCE Flushing Through PVDs at the DOE/RMI Extrusion Plant. The data have been evaluated and graphs are presented. The plot of TCE Concentration versus Time shows that the up-gradient groundwater monitoring well produced consistent levels of TCE contamination. A similar trend was observed for the down-gradient wells via grab samples tested. Groundwater samples from the PVD test pad Zone of Influence showed consistent reductions in TCE concentrations with respect to time. In addition, a natural pulse frequency is evident which will have a significant impact on the efficiency of the contaminant removal under natural groundwater advection/diffusion processes. The relationships between the PVD Extraction Flow Rate versus Cumulative Time shows a clear trend in flow rate. Consistent values between 20 to 30 g.p.m. at the beginning of the extraction duration, to less than 10 g.p.m. by the end of the extraction cycle are observed. As evidenced by the aquifer's diminishing recharge levels, the PVD extraction is affecting the response of the aquifer's natural attenuation capability. Progress was also marked on the Injection and Circulation of Potable Water Through PVDs task. Data reduction from this sequence of testing is ongoing. Work planned for next quarter includes completing the Injection / Extraction of potable water task and beginning the Surfactant Injection and removal task.

  1. Mass Casualty Decontamination in the United States: An Online Survey of Current Practice.

    Science.gov (United States)

    Power, Sarah; Symons, Charles; Carter, Holly; Jones, Emma; Amlôt, Richard; Larner, Joanne; Matar, Hazem; Chilcott, Robert P

    2016-01-01

    Mass casualty decontamination is a public health intervention that would be employed by emergency responders following a chemical, biological, or radiological incident. The decontamination of large numbers of casualties is currently most often performed with water to remove contaminants from the skin surface. An online survey was conducted to explore US fire departments' decontamination practices and their preparedness for responding to incidents involving mass casualty decontamination. Survey respondents were asked to provide details of various aspects of their decontamination procedures, including expected response times to reach casualties, disrobing procedures, approaches to decontamination, characteristics of the decontamination showering process, provision for special populations, and any actions taken following decontamination. The aim of the survey was to identify any differences in the way in which decontamination guidance is implemented across US states. Results revealed that, in line with current guidance, many US fire departments routinely use the "ladder-pipe system" for conducting rapid, gross decontamination of casualties. The survey revealed significant variability in ladder-pipe construction, such as the position and number of fire hoses used. There was also variability in decontamination characteristics, such as water temperature and water pressure, detergent use, and shower duration. The results presented here provide important insights into the ways in which implementation of decontamination guidance can vary between US states. These inconsistencies are thought to reflect established perceived best practices and local adaptation of response plans to address practical and logistical constraints. These outcomes highlight the need for evidence-based national guidelines for conducting mass casualty decontamination.

  2. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

  3. Development of remote electrochemical decontamination for hot cell applications

    International Nuclear Information System (INIS)

    Electrochemical dissolution into nitric acid has been developed as a decontamination process for metallic items, both for immersion and in-situ use. Not only is the spent electrolyte compatible with existing waste treatment routes, potentially yielding an immobilized product volume of 0.6 dm3/m2 area treated, but it also suppresses any hydrogen production. Both processes have been developed from laboratory to microprocessor-controlled pilot-scale units, which have been demonstrated successfully for the treatment of genuine waste, reducing activity levels to background. For stainless steel substrates, the immersion tank process uses low current densities (10-50 A/m2) in 1-5M HN03 for the treatment of extended areas. Decontamination factors > 104 can be achieved in two hours. The in-situ technique uses electropolishing in 6M HN03 at 1-2 A/cm2 in an engineered head. Decontamination factors > 103 can be achieved in only 20 seconds. This device has also shown potential for incorporation into an integrated monitoring/decontaminating system under robotic control. Both techniques may be used remotely as a way of reducing man-dose and improving productivity during decontamination. Additional cost savings can be made over currently used techniques through the decategorization of the bulk of the waste volume, and the volume reduction of waste for interim storage and geological disposal

  4. Decontamination of dismantled parts from phosphate rock fertilizer plant decommissioning

    International Nuclear Information System (INIS)

    Decommissioning of the Uranium Recovery Section at the Phosphate Rock Fertilizer Plant in Gresik, East Java, Indonesia requires decontamination activity be applied to dismantled parts. The decontamination study has categorized the dismantled parts into three types, type A, type B and type C parts. Type A parts were the equipment having very low surface activity or below the clearance level. Type B parts were the equipment having surface activity beyond the clearance level, containing radioactive scale, which is easily removed by in situ decontamination to become parts that are useable unrestrictedly. Type C parts were the equipment having surface activity beyond the clearance level whose nature is very difficult to remove. In situ decontamination of the type B parts have been studied. Mechanical surface cleaning methods and strippable coating methods can be applied for in situ decontamination. The application of strippable coating methods with a composition of 10.0% phosphoric acid, 1.0% HEDPA, 3.0% tartaric acid, 12.0% polyvinyl alcohol and 4.3% absorbent clynoptilolyte was considered to be very effective. (author)

  5. Modelling Mass Casualty Decontamination Systems Informed by Field Exercise Data

    Directory of Open Access Journals (Sweden)

    Richard Amlôt

    2012-10-01

    Full Text Available In the event of a large-scale chemical release in the UK decontamination of ambulant casualties would be undertaken by the Fire and Rescue Service (FRS. The aim of this study was to track the movement of volunteer casualties at two mass decontamination field exercises using passive Radio Frequency Identification tags and detection mats that were placed at pre-defined locations. The exercise data were then used to inform a computer model of the FRS component of the mass decontamination process. Having removed all clothing and having showered, the re-dressing (termed re-robing of casualties was found to be a bottleneck in the mass decontamination process during both exercises. Computer simulations showed that increasing the capacity of each lane of the re-robe section to accommodate 10 rather than five casualties would be optimal in general, but that a capacity of 15 might be required to accommodate vulnerable individuals. If the duration of the shower was decreased from three minutes to one minute then a per lane re-robe capacity of 20 might be necessary to maximise the throughput of casualties. In conclusion, one practical enhancement to the FRS response may be to provide at least one additional re-robe section per mass decontamination unit.

  6. Facility effluent monitoring plan for WESF

    International Nuclear Information System (INIS)

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the efferent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability

  7. Direct nanofiltration of wastewater treatment plant effluent

    OpenAIRE

    Schrader, Guillo Alexander

    2006-01-01

    Membrane technology, especially nanofiltration, is seen as a suitable technology to polish WWTP effluent to EU WFD standards and consequently produce an effluent quality suitable for agricultural or (in)direct potable usage. The objective of this study was to assess the potential of direct nanofiltration as technique for effluent reclamation.

  8. De-contamination of pesticide residues in food by ionizing radiation

    Science.gov (United States)

    Basfar, Ahmed A.; Mohamed, Khaled A.; Al-Saqer, Omar A.

    2012-04-01

    The role of gamma irradiation on removal of pesticides in aqueous solutions or in vegetables and fruits was investigated. Radiation - induced decontamination of pesticides is generally greater in aqueous solutions than in selected vegetables and fruits. Residues of malathion (0.5 ppm in potatoes, 8 ppm in onions and dates), pirimiphos-methyl (1 ppm in onions and grapes) and cypermethrin (0.05 ppm in potatoes and 0.1 ppm in onions) were not reduced to below maximum residue limits (MRLs) for irradiation doses up to 1 kGy. The same trend was observed when irradiation was performed for grapes fortified with malathion (8 ppm) and cypermethrin (2 ppm) for absorbed doses up to 2 kGy. Ionizing radiation reduced the residues of pirimiphos-methyl (0.05 ppm in potatoes at1 kGy, 1 ppm in grapes at 2 kGy and 0.1 ppm in dates at1 kGy), malathion (8 ppm in grapes at 7 kGy) and cypermethrin (2 ppm in grapes at 7 kGy) to below maximum residue limits (MRLs).

  9. Application of a chemical ion exchange model to transport cask surface decontamination

    International Nuclear Information System (INIS)

    Radionuclide contamination of stainless steel surfaces occurs during submersion in a spent fuel storage pool, Subsequent release or desorption of these contaminants from a nuclear fuel transportation cask surface under varying environmental conditions occasionally results in the phenomenon known as contamination 'weeping'. Experiments have been conducted to determine the applicability of a chemical ion exchange model to characterise the problem of cask contamination and release. Surface charge characteristics of Cr2O3 and stainless steel (304) powders have been measured to determine the potential for ion exchange at metal oxide-aqueous interfaces. The solubility of Co and Cs electrolytes at varying pH and the absorption characteristics of these ions on Cr2O3 and stainless steel powders in aqueous slurries have been studied. Experiments show that Co ions do reversibly absorb on these powder surfaces and, more specifically, that absorption occurs in the nominal pH range (pH = 4-6) of a boric acid moderated spent fuel pool. Desorption has been demonstrated to occur at pH≤3. Cs+ ions also have been shown to have an affinity for these surfaces although the reversibility of Cs+ bonding by H+ ion exchange has not been fully demonstrated. These results have significant implications for effective decontamination and coating processes used on nuclear fuel transportation casks. (author)

  10. Application of a chemical ion exchange model to transport cask surface decontamination

    International Nuclear Information System (INIS)

    Radionuclide contamination of stainless steel surfaces occur during submersion in a spent fuel storage pool. Subsequent release or desorption of these contaminants from a nuclear fuel transportation cask surface under varying environmental conditions occasionally results in the phenomenon known as contamination ''weeping.'' Experiments have been conducted to determine the applicability of a chemical ion-exchange model to characterize the problem of cask contamination and release. Surface charge characteristics of Cr2O3 and stainless steel (304) powders have been measured to determine the potential for ion exchange at metal oxide -- aqueous interfaces. The solubility of Co and Cs electrolytes at varying pH and the absorption characteristics of these ions on Cr2O3 and stainless steel powders in aqueous slurries have been studied. Experiments show that Co ions do reversibly adsorb on these powder surfaces and, more specifically, that adsorption occurs in the nominal pH range (pH = 4--6) of a boric acid-moderated spent fuel pool. Desorption has been demonstrated to occur at pH ≤ 3. Cs ions also have been shown to have an affinity for these surfaces although the reversibility of Cs+ bonding by H+ ion exchange has not been fully demonstrated. These results have significant implications for effective decontamination and coating processes used on nuclear fuel transportation casks. 8 refs., 5 figs

  11. Evaluation and demonstration of aqueous cleaning systems for DOE decontamination applications

    Energy Technology Data Exchange (ETDEWEB)

    May, C.G. [Westinghouse Savannah River Company, Aiken, SC (United States); Steiner, M.L. [Concurrent Technologies Corporation, Johnstown, PA (United States); Pirrotta, R.D. [Concurrent Technologies Corporation, Johnstown, PA (United States)

    1996-08-01

    Concurrent Technologies Corporation carried out a project to assist the Department of Defense in eliminating the use of halogenated cleaning solvents from current metal parts cleaning processes, particularly for tools and small equipment. This task identified, tested, and evaluated the most environmentally compliant, technically and economically feasible, non-halogentated metal parts cleaning systems for a wide range of DOE applications.

  12. Biophysical Evaluation of Food Decontamination Effects on Tissue and Bacteria

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan R.;

    2011-01-01

    Traditionally, the effects and efficiency of food surface decontamination processes, such as chlorine washing, radiation, or heating, have been evaluated by sensoric analysis and colony-forming unit (CFU) counts of surface swabs or carcass rinses. These methods suffice when determining probable...... in both food surface and bacteria upon surface decontamination by SonoSteam®. SonoSteam® is a recently developed method of food surface decontamination, which employs steam and ultrasound for effective heat transfer and short treatment times, resulting in significant reduction in surface bacteria. We...... employ differential scanning calorimetry, second harmonics generation imaging microscopy, two-photon fluorescence microscopy, and green fluorescence protein-expressing bacteria and compare our results with those obtained by traditional methods of food quality and safety evaluations. Our results show...

  13. Testing and evaluation of electrokinetic decontamination of concrete

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, D.W.; Harris, M.T.; Ally, M.R. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.] [and others

    1996-10-01

    The goals and objectives of the technical task plan (TTP) are to (1) describe the nature and extent of concrete contamination within the Department of Energy (DOE) complex and emerging and commercial technologies applicable to these problems; (2) to match technologies to the concrete problems and recommend up to four demonstrations; (3) to initiate recommended demonstrations; and (4) to continue investigation and evaluation of the application of electrokinetic decontamination processes to concrete. This document presents findings of experimental and theoretical studies of the electrokinetic decontamination (EK) process and their implications for field demonstrations. This effort is an extension of the work performed under TTP 142005, ``Electroosmotic Concrete Decontamination. The goals of this task were to determine the applicability of EK for treating contaminated concrete and, if warranted, to evaluate EK as a potential technology for demonstration. 62 refs.

  14. Decontaminating method for radioactive contaminant and device therefor

    International Nuclear Information System (INIS)

    An organic solvent comprising methylene chloride as a basic agent is injected in a decontamination vessel containing radioactive contaminants and brought into contact with them. The organic solvent reacts with radioactive materials and coating membranes deposited on the surface of the radioactive contaminants, to defoliate the contaminants from metal tissues. After defoliating the contaminated portions, the organic solvent and the defoliated materials are recovered, and the organic solvent is reutilized. A descaling agent is injected to the decontamination vessel to promote the reaction with the surface of the radioactive contaminants after the reaction with the organic solvent. The descaling agent and metal oxides are recovered, and the descaling agent is reutilized, while the metal oxides are isolated and stored. With such procedures, the metal surface and the coating membrane of the materials to be processed can be decontaminated at a high efficiency with no diffusion. (T.M.)

  15. Decontamination and decommissioning project for the nuclear facilities

    International Nuclear Information System (INIS)

    The decommissioning work which begin in latter half of 2001 was gone well in latter half of 2002. Now, 8 laboratories, 10 lead hot cells, and 2 concrete hot cells was dismantled. Wastes produced by decommissioning process were classified with three category. The decontaminatable wastes in the solid radioactive ones will be changed with free release ones. For this, we developed cylindrical rotating pipe decontamination units, ultrasonic ones, and steam jet ones. Test of these units was started in 2002 and they will be using decontamination work in 2003. According to regulation of atomic act 55, the Decommissioning Plan and Environmental Impact Assessment for uranium conversion plant were written out and presented. Basic research for metal wastes decontamination and research for lagoon sludge treatment was carried out.

  16. Plasma decontamination during ergodic divertor experiments in Tore Supra

    International Nuclear Information System (INIS)

    This paper analyses the decontamination effect resulting from the creation of an ergodic boundary zone. Two plasma geometrical configurations (outboard and inboard) are studied, the plasma being limited respectively either, on the low field side (lfs), by an outboard limiter (3 to 5 cm ahead of the ED modules) or, on the high field side (hfs), by the graphite innerwall. Strong decontamination effects have already been reported for the first configuration by observing line emission of the intrinsic (carbon and oxygen) and purposely injected (nitrogen) impurities. When limited by the inner wall, the plasma is several centimetres farther from the ED modules than in the lfs configuration. The magnetic perturbation is then greatly reduced, and much smaller decontamination effects should be expected. In this paper, the hfs configuration data is compared with that from the lfs configuration. Preliminary experiments combining lower hybrid current drive and ED operation in the hfs configuration are also reported

  17. Criteria for the evaluation of a dilute decontamination demonstration

    Energy Technology Data Exchange (ETDEWEB)

    FitzPatrick, V.F.; Divine, J.R.; Hoenes, G.R.; Munson, L.F.; Card, C.J.

    1981-12-01

    This document provides the prerequisite technical information required to evaluate and/or develop a project to demonstrate the dilute chemical decontamination of the primary coolant system of light water reactors. The document focuses on five key areas: the basis for establishing programmatic prerequisites and the key decision points that are required for proposal evaluation and/or RFP (Request for Proposal) issuance; a technical review of the state-of-the-art to identify the potential impacts of a reactor's primary-system decontamination on typical BWR and PWR plants; a discussion of the licensing, recertification, fuel warranty, and institutional considerations and processes; a preliminary identification and development of the selection criteria for the reactor and the decontamination process; and a preliminary identification of further research and development that might be required.

  18. Attapulgite, a decontaminating medium, research tool in the radioprotection field

    International Nuclear Information System (INIS)

    Gels based on attapulgite, obtained by mixing attapulgite, a clay, with water or chemicals have been used as decontaminating agents. The method has been optimized through extensive scale laboratory experiments carried out under standard conditions. A wide variety of materials, used in nuclear technologies, and significant radionuclides have been tested. Gels obtained with water only in some cases allow full decontamination, when acids are added to clay, complete contamination removal, is possible except for extreme pHs radionuclides solution and on non-passivated or porous surfaces. The optimized decontaminating technique has successively been set up and applied on materials contaminated by routine or accident. Laboratory scale results have been confirmed through practical use. Process data are reported. This method is simple to perform and requires no special equipment. No liquid radioactive waste arises from the process and the resulting solid waste can be conditioned with cement

  19. Criteria for the evaluation of a dilute decontamination demonstration

    International Nuclear Information System (INIS)

    This document provides the prerequisite technical information required to evaluate and/or develop a project to demonstrate the dilute chemical decontamination of the primary coolant system of light water reactors. The document focuses on five key areas: the basis for establishing programmatic prerequisites and the key decision points that are required for proposal evaluation and/or RFP (Request for Proposal) issuance; a technical review of the state-of-the-art to identify the potential impacts of a reactor's primary-system decontamination on typical BWR and PWR plants; a discussion of the licensing, recertification, fuel warranty, and institutional considerations and processes; a preliminary identification and development of the selection criteria for the reactor and the decontamination process; and a preliminary identification of further research and development that might be required

  20. Systems analysis of decontamination options for civilian vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Foltz, Greg W.; Hoette, Trisha Marie

    2010-11-01

    The objective of this project, which was supported by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Chemical and Biological Division (CBD), was to investigate options for the decontamination of the exteriors and interiors of vehicles in the civilian setting in order to restore those vehicles to normal use following the release of a highly toxic chemical. The decontamination of vehicles is especially challenging because they often contain sensitive electronic equipment, multiple materials some of which strongly adsorb chemical agents, and in the case of aircraft, have very rigid material compatibility requirements (i.e., they cannot be exposed to reagents that may cause even minor corrosion). A systems analysis approach was taken examine existing and future civilian vehicle decontamination capabilities.

  1. EFFECT OF CERTAIN INDUSTRIAL EFFLUENTS ON PLASTICITY AND SWELLING CHARACTERISTICS OF AN EXPANSIVE SOIL – A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    DR.A.V.NARASIMHA RAO

    2012-10-01

    Full Text Available The rapid growth in population and industrialization cause generation of large quantities of effluents. The bulk effluents generated from industrial activities are discharged either treated or untreated over the soil leading to changes in soil properties causing improvement or degradation of engineering behaviour of soil. If there is an improvement in engineering behaviour of soil, there is a value addition to the industrial wastes serving the three benefits of safe disposal of effluent, using as a stabilizer and return of income on it. If there is degradation of engineering behaviour of soil then solution for decontamination is to be thought of. Expansive soils are mostly found in the arid and semi -arid regions of the world. In India expansive soils are called black cotton soils because of their colour and cotton growing potential. Expansive soils undergo swelling when they come into contact with water and shrink when water is squeezed out. The typical swelling/shrinkage behaviour is due to the basic mineral composition of the montmorillonite. The swelling nature of soil causes lot of damages to the civil engineering structures constructed over them. Hence in this paper the effect of certain industrial effluents on Plasticity and Swelling behaviour of anExpansive Soil has been presented. The soil used in this investigation is classified as “SC” as per I.S. Classification system. It is highly expansive nature as the Differential Free Swell Index is about 255%.In this Investigation tests on Consistency Limits and Swelling Characteristics are conducted on the soil treated withTextile, Tannery and Battery effluents at different percentages from 20 to 100% in increment of 20%.In order to compare the results of admixed soil, tests are also conducted on untreated soil. There is decrease in Plasticity and Swelling characteristics of soil when the soil is treated with Tannery and Textile effluents whereas anincrease Plasticity and Swelling

  2. Decontamination of abandoned sites. An introduction into the problems of land decontamination

    International Nuclear Information System (INIS)

    Starting from a brief overview of the history of origin of soil and ground water pollution in Berlin and its surroundings by gas, chemical, and petroleum works, old landfills, manufactories of arms and ammunition as well as gasoline depots or sites of gasoline depots, the brochure describes the legal situation and procedure (list of 'intervention' values) and goes on to outline the situation regarding the ground under Berlin, existing pollutants, and methods for dealing with land contamination. In five abandoned sites (waste oil refinery, copper refinery, waste solvent treatment plant, asphalt factory and drugs factory), different methods for eliminating soil and ground water contamination were used. Their efficacy is assessed on the basis of their soil and pollutant-specific suitability; the decontamination achieved is indicated. (BBR)

  3. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  4. Decontamination of laryngoscope blades: Is our practice adequate?

    Directory of Open Access Journals (Sweden)

    Telang R

    2010-01-01

    Full Text Available Background : The laryngoscope has been identified as a potential source of cross-infection, because of blood and bacterial contamination. In India, there are no guidelines for cleaning and disinfection of anesthesia-related equipment. Practices for decontamination of laryngoscopes vary widely and in most healthcare institutes, laryngoscope blades are re-used after cleaning with tap-water. Materials and Methods: We prospectively compared two techniques for decontamination of laryngoscope blades - a washing with tap-water and b washing with tap-water followed by disinfection by immersing in 5% v/v (volume/volume, 1:20 dilution aldehyde-free biguanide agent for 10 min. We calculated the cost-effectiveness of using 5% v/v aldehyde-free biguanide agent for disinfection of laryngoscopes. We also conducted a survey to assess the decontamination practices in other Indian hospitals. Results : Overall bacterial growth was 58% (29 out of 50 blades after tap-water cleaning (of which 60% were pathogenic organisms versus 3.4% (one out of 29 blades after tap-water cleaning followed by immersion in disinfectant (all of which were commensals. The cost of disinfection with biguanide was Indian Rupees 1.13 (20 US cents per laryngoscope. Most hospitals in India do not have guidelines regarding laryngoscope decontamination between uses, and cleaning with tap water is a commonly used method. Conclusion : Cleaning of laryngoscope blades with tap-water is a commonly used but inadequate method for decontamination. Washing with tap-water followed by disinfection with 5% v/v aldehyde-free biguanide for at least 10 min is an effective and inexpensive alternative. National guidelines for the decontamination of anesthesia equipment are necessary.

  5. Decomposition Technology Development of Organic Component in a Decontamination Waste Solution

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun; Oh, W. Z.; Won, H. J.; Choi, W. K.; Kim, G. N.; Moon, J. K

    2007-11-15

    Through the project of 'Decomposition Technology Development of Organic Component in a Decontamination Waste Solution', the followings were studied. 1. Investigation of decontamination characteristics of chemical decontamination process 2. Analysis of COD, ferrous ion concentration, hydrogen peroxide concentration 3. Decomposition tests of hardly decomposable organic compounds 4. Improvement of organic acid decomposition process by ultrasonic wave and UV light 5. Optimization of decomposition process using a surrogate decontamination waste solution.

  6. Concrete decontamination by Electro-Hydraulic Scabbling (EHS)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    EHS is being developed for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals. EHS involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface; high impulse pressure results in stresses which crack and peel off a concrete layer of controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. Objective of Phase I was to prove the technical feasibility of EH for controlled scabbling and decontamination of concrete. Phase I is complete.

  7. Concrete decontamination by Electro-Hydraulic Scabbling (EHS)

    International Nuclear Information System (INIS)

    EHS is being developed for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals. EHS involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface; high impulse pressure results in stresses which crack and peel off a concrete layer of controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. Objective of Phase I was to prove the technical feasibility of EH for controlled scabbling and decontamination of concrete. Phase I is complete

  8. Determination of a cleaning and decontamination process using solvents

    International Nuclear Information System (INIS)

    This work has been carried out on samples of the white cotton serge material of which most of the working overalls of the Nuclear Research Centre are made. The aims are: - to determine,from the decontamination and cleaning points of view, the efficiency of various solvents (white-spirit, trichloroethylene, perchlorethylene and tri-chloro-trifluoroethane) and the role of additives likely to improve the treatment; - to control the textile from the wear and shrinkage points of view; - to try to develop a basic cleaning and decontamination process as a function of the possibilities of each solvent considered. (authors)

  9. Physicochemical characteristics of PFC surfactants for dry decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Lee, Chi Woo [Korea University, Seoul (Korea)

    2001-04-01

    Even the trace amount of the used nuclear fuels of high radioactivity are hazardous to the earth and humans. Perfluorocarbons and perfluorocarbon surfactants are emerging to be efficient chemicals in the dry decontamination process of the used fuels of high radioactivity. The theme was undertaken to increase the knowledge on perfluorocarbon surfactants to develop the perfluorocarbon system in the dry decontamination process in Korea. Several cationic and anionic pfc surfactants were synthesized. Effects of pfc surfactants on electrochemical etching of silicon were investigated to form porous silicons. Forces were measured between silicon surfaces and AFM tip in the absence and presence of pfc surfactants. 7 refs., 10 figs. (Author)

  10. Radiation decontamination of herbal row materials and medical herbs

    International Nuclear Information System (INIS)

    Several thousand tons of medical herbs are produced annually by pharmaceutical industry in Poland. This product should be of highest quality and microbial purity. Recently, chemical methods of decontamination recognized as less safe, thus irradiation technique can effectively replaced them. In the Institute of Nuclear Chemistry and Technology the National programme on the application of irradiation on the decontamination medical herbs is in progress now. The first aim of the programme is to study the effect of ionizing radiation on microbial purity herbal raw materials and medical herbs. (author)

  11. A mass casualty incident involving children and chemical decontamination.

    Science.gov (United States)

    Timm, Nathan; Reeves, Scott

    2007-01-01

    Mass casualty incidents involving contaminated children are a rare but ever-present possibility. In this article we outline one such event that resulted in 53 pediatric patients and 3 adults presenting to the emergency department of a children's hospital for decontamination and treatment. We pay special attention to the training that allowed this responses to occur. We also outline the institutional response with emphasis on incident command, communication, and resource utilization. Specific lessons learned are explored in detail. Finally, we set forth a series of recommendations to assist other institutions should they be called upon to care for and decontaminate pediatric patients.

  12. Electron beam irradiation for biological decontamination of Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Brasoveanu, Mirela [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania)]. E-mail: mirela@infim.ro; Nemtanu, Monica [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania); Minea, R. [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania); Grecu, Maria Nicoleta [National Institute for Materials Physics, Bucharest-Magurele (Romania); Mazilu, Elena [Hofigal SA (Romania); Radulescu, Nora [Hofigal SA (Romania)

    2005-10-15

    The Cyanobacterium Spirulina is commercialized for its use in health foods and for therapeutic purposes due to its valuable constituents particularly proteins and vitamins. The aim of the paper is to study the Spirulina platensis behaviour when it is electron beam irradiated for biological decontamination. Microbial load, antioxidant activity, enzymatic inhibition, electron spin resonance (ESR) and UV-Vis spectra were measured for doses up to 80 kGy. The results were correlated with doses in order to find where decontamination is efficient, keeping the Spirulina qualities.

  13. Decontamination and Decommissioned Small Nuclear AIP Hybrid Systems Submarines

    Directory of Open Access Journals (Sweden)

    Guangya Liu

    2013-11-01

    Full Text Available Being equipped with small reactor AIP is the trend of conventional submarine power in 21st century as well as a real power revolution in conventional submarine. Thus, the quantity of small reactor AIP Submarines is on the increase, and its decommissioning and decontamination will also become a significant international issue. However, decommissioning the small reactor AIP submarines is not only a problem that appears beyond the lifetime of the small reactor nuclear devices, but the problem involving the entire process of design, construction, running and closure. In the paper, the problem is explored based on the conception and the feasible decommissioning and decontamination means are supplied to choose from.

  14. Study of the physicochemical properties of the interface between titanium dioxide and various aqueous solutions

    International Nuclear Information System (INIS)

    The aim of this work is the study of ion exchange capacity of titanium dioxide in view of high temperature water purification and radioactive effluent processing because of its resistance to heat and radiations. Titanium dioxide is obtained by alkaline hydrolysis of an aqueous solution of Ti (IV) and is characterized by analytical physical chemistry methods. Interface between Ti02 and simple aqueous solutions (electrolytes) is more particularly studied by potentiometry

  15. Bitumen coating of the radio-active sludges from the effluent treatment plant at the Marcoule centre. Review of the progress reports 1, 2, 3 and 4 (1963); Enrobage par le bitume des boues radioactives de la station de traitement des effluents du centre de Marcoule. Mise au point des etats d'avancement 1, 2, 3 et 4. (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, J.; Lefillatre, G.; Scheidhauer, J. [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1963-07-01

    Besides the very high activity liquids containing fission products, the chemical treatment of irradiated fuels produces a large volume of aqueous effluents and solid waste of relatively low radioactivity. These weakly active products can be eliminated in the ground, in a hydrographic land system or in the sea. Techniques of evaporation, of resin concentration, and of coprecipitation give rise to inorganic sludges with a high water content. All these residues occupy a large volume and represent a far from negligible weight. In the case of the sludge, their relative fluidity necessitates a conditioning guaranteeing safe storage. The solution to the problem will consist in passing directly from a liquid or a suspension, to a solid whose structure is homogeneous and whose matter is inert with respect to the storage medium (soil, sea, etc. ). We have proposed to coat the radioactive products with bitumen. This article is designed to give a review of the studies undertaken on this method. It consists of a progress report rather than a final assessment. (authors) [French] En dehors des liquides de tres haute activite contenant des produits de fission, le traitement chimique des combustibles irradies produit un volume important d'effluents aqueux et de residus solides de radioactivite relativement faible. Ces produits, faiblement actifs, peuvent etre elimines dans le sol, dans un systeme hydrographique terrestre ou dans la mer. Les techniques d'evaporation, de concentration sur resine, de coprecipitation, permettent la decontamination prealable des liquides. La coprecipitation donne naissance a des boues minerales dont la teneur en eau est elevee. Tous ces residus occupent un volume important et representent un poids non negligeable. Dans le cas des boues, leur fluidite relative exige un conditionnement donnant toutes garanties de securite au stockage. La solution du probleme consistera a passer directement d'un liquide ou d'une suspension a un solide

  16. Novel physico-biological treatment for the remediation of textile dyes-containing industrial effluents.

    Science.gov (United States)

    Álvarez, M S; Moscoso, F; Rodríguez, A; Sanromán, M A; Deive, F J

    2013-10-01

    In this work, a novel remediation strategy consisting of a sequential biological and physical process is proposed to remove dyes from a textile polluted effluent. The decolorization ability of Anoxybacillus flavithermus in an aqueous effluent containing two representative textile finishing dyes (Reactive Black 5 and Acid Black 48, as di-azo and antraquinone class, respectively) was proved. The decolorization efficiency for a mixture of both dyes reached almost 60% in less than 12h, which points out the suitability of the selected microorganism. In a sequential stage, an aqueous biphasic system consisting of non-ionic surfactants and a potassium-based organic salt, acting as the salting out agent, was investigated. The phase segregation potential of the selected salts was evaluated in the light of different thermodynamic models, and remediation levels higher than 99% were reached.

  17. Final report on the decontamination of the Curium Source Fabrication Facility

    International Nuclear Information System (INIS)

    The Curium Source Fabrication Facility (CSFF) at Oak Ridge National Laboratory (ORNL) was decontaminated to acceptable contamination levels for maintenance activities, using standard decontamination techniques. Solid and liquid waste volumes were controlled to minimize discharges to the ORNL waste systems. This program required two years of decontamination effort at a total cost of approximately $700K. 5 references, 7 figures, 2 tables

  18. Definition of a concrete bio-decontamination process in nuclear substructures; Biodegradation de matrices cimentaires en vue de leur decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Jestin, A

    2005-05-15

    The decontamination of sub-structural materials represents a stake of high-importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those micro-organisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  19. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    International Nuclear Information System (INIS)

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology

  20. Heavy metal induced antioxidant defense system of green microalgae and its effective role in phycoremediation of tannery effluent.

    Science.gov (United States)

    Ajayan, K V; Selvaraju, M

    2012-11-15

    Investigation of tannery effluent toxicology in green microalgae is of great importance from ecological point of view, because heavy metal has become a major contaminant in recent years. The present study determined the effect of various concentrations (0, 10, 25, 50, 75 and 100%) of heavy metals containing tannery effluent on cell growth and antioxidant defense system of two green microalgae. Treatment with effluent induced accumulation of reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Lower tannery effluent concentrations increased algal growth, whereas higher concentration suppressed the growth and photosynthetic content. Both strains of the microalgae had proven effective in removing heavy metals from aqueous solutions with the highest removal efficiency being near 100% and it can be used for phycoremediation of wastewater in large scale. PMID:24261120

  1. Extraction of metals from liquid effluent using modified inorganic ion exchangers

    International Nuclear Information System (INIS)

    Inorganic ion exchangers such as goethite, titanium (IV) oxide; silica and zeolites have been modified to examine the extraction of ruthenium; technetium and cobalt from liquid effluent. In addition, tin (IV) hydrogenphosphate and antimony hydrogenphosphate have been also examined in the modified and unmodified forms. It has been shown that some of the above reagents are able to remove the required metal ions from aqueous solution at the trace and mg L-1 levels. (author)

  2. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sangchul, E-mail: sangchul.hwang@upr.edu [Department of Civil Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Martinez, Diana [Department of Civil Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Perez, Priscilla [Department of Biology, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Rinaldi, Carlos [Department of Chemical Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico)

    2011-12-15

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENP{sub Fe-surf}) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that {approx}8.7% of ENP{sub Fe-surf} applied were present in the effluent stream. The stable presence of ENP{sub Fe-surf} was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENP{sub Fe-surf} deteriorated the effluent water quality at a statistically significant level (p < 0.05) with respect to soluble chemical oxygen demand, turbidity, and apparent color. This implied that ENP{sub Fe-surf} would be introduced into environmental receptors through the treated effluent and could potentially impact them. - Highlights: > Surfactant-coated engineered iron oxide nanoparticles (ENP{sub Fe-surf}) were assessed. > Effluent quality was analyzed from a sequencing batch reactor with ENP{sub Fe-surf}. > {approx}8.7% of ENP{sub Fe-surf} applied was present in the effluent. > ENP{sub Fe-surf} significantly (p < 0.05) deteriorated the effluent water quality. > Stable fraction of ENP{sub Fe-surf} will be introduced into environmental receptors. - Stable presence of surfactant-coated engineered iron oxides nanoparticles deteriorated the effluent water quality at a statistically significant level (p < 0.05).

  3. Bioremediation of trace cobalt from simulated spent decontamination solutions of nuclear power reactors using E. coli expressing NiCoT genes

    Energy Technology Data Exchange (ETDEWEB)

    Raghu, G.; Maruthi Mohan, P. [Osmania Univ., Hyderabad (India). Dept. of Biochemistry; Balaji, V. [Bhabha Atomic Research Centre, Mumbai (India). Water and Steam Chemistry Div.; Venkateswaran, G. [Bhabha Atomic Research Centre, Mumbai (India). Analytical Chemistry Div.; Rodrigue, A. [CNRS, UMR 5240, INSA de Lyon, 69 - Villeurbanne (France); Lyon 1 Univ., 69 (France). Microbiologie, Adaptation et Pathogenie

    2008-12-15

    Removal of radioactive cobalt at trace levels ({approx}nM) in the presence of large excess (10{sup 6}-fold) of corrosion product ions of complexed Fe, Cr, and Ni in spent chemical decontamination formulations (simulated effluent) of nuclear reactors is currently done by using synthetic organic ion exchangers. A large volume of solid waste is generated due to the nonspecific nature of ion sorption. Our earlier work using various fungi and bacteria, with the aim of nuclear waste volume reduction, realized up to 30% of Co removal with specific capacities calculated up to 1 {mu}g/g in 6-24 h. In the present study using engineered Escherichia coli expressing NiCoT genes from Rhodopseudomonas palustris CGA009 (RP) and Novosphingobium aromaticivorans F-199 (NA), we report a significant increase in the specific capacity for Co removal (12 {mu}g/g) in 1-h exposure to simulated effluent. About 85% of Co removal was achieved in a two-cycle treatment with the cloned bacteria. Expression of NiCoT genes in the E. coli knockout mutant of NiCoT efflux gene (rcnA) was more efficient as compared to expression in wild-type E. coli MC4100, JM109 and BL21 (DE3) hosts. The viability of the E. coli strains in the formulation as well as at different doses of gamma rays exposure and the effect of gamma dose on their cobalt removal capacity are determined. The potential application scheme of the above process of bioremediation of cobalt from nuclear power reactor chemical decontamination effluents is discussed. (orig.)

  4. Continuous monitoring of gaseous effluents

    International Nuclear Information System (INIS)

    The system allows to continuously determine the radioactive materials discharge (iodine, noble gases and aerosols) to the environment. It consists in compelling, by a pump, a known and fixed fraction of the total flow and preserving the aerosols by a filter. The gas -now free from aerosols- traverses an activated carbon filter which keeps the iodine; after being free from aerosols and iodine, the effluent traverses a measurement chambers for noble gases which has a scintillator. (Author)

  5. Waste monitoring system for effluents

    International Nuclear Information System (INIS)

    The waste monitoring system in use at Los Alamos National Laboratory's Plutonium Facility, TA-55, is a computer-based system that proves real-time information on industrial effluents. Remote computers monitor discharge events and data moves from one system to another via a local area network. This report describes the history, system design, summary, instrumentation list, displays, trending screens, and layout of the waste monitoring system

  6. In vitro model for decontamination of human skin: formaldehyde.

    Science.gov (United States)

    Zhai, H; Barbadillo, S; Hui, X; Maibach, H I

    2007-04-01

    Decontamination of a chemical from skin is often an emergency measure. This study utilized an in vitro model to compare the decontamination capacity of three model decontaminant solutions (tap water, isotonic saline, and hypertonic saline). Human cadaver skin was dosed (approximately 0.25 microg on 3 cm(2) per skin) with radio-labeled [(14)C]-formaldehyde. After a defined exposure time (1, 3, and 30 min post-dosing, respectively), the surface skin was washed three times (4ml per time) with each solution. After washing, the skin was stripped with tape discs twice. Lastly, the wash solutions, strippings, receptor fluid, and remainder of skin were liquid scintillation analyzer counted to determine the amounts of formaldehyde. Additionally, an evaporation test at different exposure times (1min, 3min, 15min, 30min, and 60min, respectively) was conducted to monitor formaldehyde % evaporation. There were no statistical differences among these groups except isotonic saline, at 3min post-exposure (in wash solutions), showed a significantly difference (pisotonic saline may be effective in removing formaldehyde from skin. However, results from this model need validation in vivo. The model may provide a facile and robust method of accelerating knowledge of decontamination mechanism and lead to enhanced efficacy. PMID:17123683

  7. Review of decontamination techniques in relation to decommissioning

    International Nuclear Information System (INIS)

    A review is presented of decontamination procedures currently in use in relation to the decommissioning of nuclear plant. Contributions were invited from Canada, France, Japan, Sweden, USA and the UK and are appended. They present an overview of the techniques employed in each country and identify areas of future development. (author)

  8. Decommissioning and Decontamination Program: Battelle Plutonium Facility, Environmental assessment

    International Nuclear Information System (INIS)

    This assessment describes the decontamination of Battelle-Columbus Plutonium Facility and removal from the site of all material contamination which was associated with or produced by the Plutonium Facility. Useable uncontaminated material will be disposed of by procedures normally employed in scrap declaration and transfer. Contaminated waste will be transported to approved radioactive waste storage sites. 5 refs., 1 fig

  9. Decontamination training: with and without virtual reality simulation.

    Science.gov (United States)

    Farra, Sharon Lee; Smith, Sherrill; Gillespie, Gordon Lee; Nicely, Stephanie; Ulrich, Deborah L; Hodgson, Eric; French, DeAnne

    2015-01-01

    Nurses must be prepared to care for patients following a disaster, including patients exposed to hazardous contaminants. The purpose of this study was to examine the use of virtual reality simulation (VRS) to teach the disaster-specific skill of decontamination. A quasi-experimental design was used to assign nursing students from 2 baccalaureate nursing programs to 1 of 2 groups to learn the disaster skill of decontamination-printed written directions or VRS. Performance, knowledge, and self-efficacy were outcome measures. Although students in the treatment group had significantly lower performance scores than the control group (p = 0.004), students taking part in VRS completed the skill in a significantly shorter amount of time (p = 0.008). No significant group differences were found for self-efficacy (p = 0.172) or knowledge (p = 0.631). However, students in the VRS treatment group reported high levels of satisfaction with VRS as a training method. The disaster-specific skill of decontamination is a low-volume, high-risk skill that must be performed with accuracy to protect both exposed patients and providers performing decontamination. As frontline providers for casualties following a disaster event, emergency nurses must be prepared to perform this skill when needed. Preparation requires cost-effective, timely, and evidence-based educational opportunities that promote positive outcomes. Further investigation is needed to determine the benefits and long-term effects of VRS for disaster education. PMID:25929223

  10. Use of selective digestive tract decontamination in European intensive cares

    DEFF Research Database (Denmark)

    Reis Miranda, D; Citerio, G; Perner, A;

    2015-01-01

    BACKGROUND: Several studies have shown that the use of selective digestive tract decontamination (SDD) reduces mortality. However, fear for increasing multi drug resistance might prevent wide acceptance. A survey was performed among the units registered in the European Registry for Intensive Care...

  11. The study of honey qualitative parameters after decontamination by irradiation

    International Nuclear Information System (INIS)

    The aim of this study is to determine the physical-chemical parameters of a good quality honey. These parameters could be altered upon germ decontamination of honey be means of ionizing radiation. The study analyzed the evolution of germ contamination in honey and the physical-chemical parameters that characterizes the quality of honey. (author)

  12. Decontamination of tried-in orthodontic molar bands.

    Science.gov (United States)

    Fulford, M R; Ireland, A J; Main, B G

    2003-12-01

    Molar bands are commonly used to retain orthodontic attachments on posterior teeth and due to the variation in the size of such teeth, it is usually necessary to 'try in' several bands before the correct one is selected. A possible concern with re-using such bands is the lack of cross-infection control, even following autoclaving, due to the presence of one or more small bore lumen (the archwire and headgear tubes). The aim of this experiment was, therefore, to determine whether such bands could be successfully decontaminated so that they could be re-used without a cross-infection risk. Two hundred orthodontic molar bands that had previously been tried in patients' mouths, but not cemented into place, were tested. Each band was decontaminated using an enzymatic cleaner/disinfectant and then sterilized using either a downward displacement (n = 100) or a vacuum cycle autoclave (n = 100). Following autoclaving each band was inoculated into brain heart infusion culture broth and incubated at 37 degrees C for 5 days. None of the decontaminated bands exhibited growth after 5 days. It would appear that, using this methodology, there is little risk of a cross-infection hazard occurring with the re-use of previously tried-in and decontaminated molar bands.

  13. History of decontamination after the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    The magnitude 9.0 earthquake (the Great East Japan Earthquake) hit Japan on March 11, 2011 brought tsunami hazard as well as a nuclear accident in addition to the seismic hazard. A wide area of the eastern Japan was contaminated by radioactive materials released from the Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company. In response to the unprecedented situation of the radioactive pollution after the accident, the Act on Special Measures Concerning the Handling of Radioactive Pollution was enacted in August 2011. The Ministry of the Environment (MOE) has formulated a set of guidelines by the end of 2011 to provide information on how to store and manage contaminated waste. In addition, the MOE established 'The Policies for the Decontamination of Specific Areas (Decontamination Roadmap)' in January 2012. As a result, the radiation dose rate has decreased by approximately 46% in the residential area of Naraha town. The MOE will have been promoting decontamination and construction of interim storage facilities which are able to store and manage the removed soils and incineration ashes generated from decontamination works. (author)

  14. Biophysical Evaluation of Food Decontamination Effects on Tissue and Bacteria

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan;

    2011-01-01

    that there are no contradictions between data obtained by either approach. However, the biophysical methods draw a much more nuanced picture of the effects and efficiency of the investigated decontamination method, revealing, e.g., an exponential dose/response relationship between SonoSteam® treatment time and changes in collagen...

  15. Decontamination of a fuel transport flask using chemical foams

    International Nuclear Information System (INIS)

    Traditional methods of flask decontamination are labour-intensive and depend on operator skills. A chemical foam technique has been evaluated as an alternative method. It is simple and effective and offers savings in manpower, and advantages in control over contamination and arisings. (U.K.)

  16. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E [Los Alamos National Laboratory

    2008-01-01

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernando Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.

  17. UK fast reactor components. Sodium removal decontamination and requalification

    International Nuclear Information System (INIS)

    Extensive experience gained at the U.K.A.E.A. Dounreay Nuclear Power Development Establishment is being applied to form the basis of the plant to be provided for sodium removal, decontamination, and requalification of components in future commercial fast reactors. In the first part of a three part paper, the factors to be taken into account, showing the UK philosophy and approach to maintenance and repair operations are discussed. In the second part, PFR facilities for sodium removal and decontamination are described and some examples are given of cleaning components such as pumps, charge machine, cold trap baskets, and steam generator units. Similar facilities at DFR are briefly described. In the third part of the paper a short description is given of the Harwell mass transfer loop, currently used to study the deposition of activated stainless steel corrosion products. Decontamination method for pipework specimens cut from the loop are described and results of first screening tests of various chemical decontaminants are presented. (U.K.)

  18. Economies of capacity use in decontamination of pig carcasses

    DEFF Research Database (Denmark)

    Jensen, Jørgen Dejgård; Lawson, Lartey Godwin; Lund, Mogens

    2013-01-01

    This article analyzes the economies of capacity use regarding hot water decontamination to reduce postslaughter risk of pathogens in meat, taking interfarm heterogeneities of Salmonella risk and costs of transportation into account, using Denmark as a case study. If risk reduction goals are stated...

  19. The Ultimate Hacker: SETI Signals May Need to Be Decontaminated

    Science.gov (United States)

    Carrigan, Richard A., Jr.

    2004-06-01

    Biological contamination from space is a remote but recognized possibility. SETI signals might also contain harmful information. Some argue that a SETI signal could not contaminate a terrestrial computer because the idiosyncratic computer logic and code constitute an impenetrable firewall. Suggestions are given below on how to probe these arguments and decontaminate SETI signals.

  20. Decontamination of transuranic contaminated metals by melt refining

    International Nuclear Information System (INIS)

    Melt refining of transuranic contaminated metals is a possible decontamination process with the potential advantages of producing metal for reuse and of simplifying chemical analyses. By routinely achieving the 10 nCi/g( about0.1ppm) level by melt refining, scrap metal can be removed from the transuranic waste category. (To demonstrate the effectiveness of this melt refining process, mild steel, stainless steel, nickel, and copper were contaminated with 500 ppm (μg/g) PuO2 and melted with various fluxes. The solidified slags and metals were analyzed for their plutonium contents, and corresponding partition ratios for plutonium were calculated. Some metals were double refined in order to study the effect of secondary slag treatment. The initial weight of the slags was also varied to investigate the effect of slag weight on the degree of plutonium removal. In general, all four metals could be decontaminated below 1 ppm (μg/g) Pu ( about100 nCi/g) by a single slag treatment. Doubling the slag weight did not improve decontamination significantly; however, double slag treatment using 5 wt.% slag did decontaminate the metals to below 0.1 ppm (μg/g) Pu (10 nCi/g).)

  1. Results of chemical decontamination of DOE`s uranium-enrichment scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, R.G.

    1997-02-01

    The CORPEX{reg_sign} Nuclear Decontamination Processes were used to decontaminate representative scrap metal specimens obtained from the existing scrap metal piles located at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. In September 1995, under contract to Lockheed Martin Energy Systems, MELE Associates, Inc. performed the on-site decontamination demonstration. The decontamination demonstration proved that significant amounts of the existing DOE scrap metal can be decontaminated to levels where the scrap metal could be economically released by DOE for beneficial reuse. This simple and environmentally friendly process can be used as an alternative, or in addition to, smelting radiologically contaminated scrap metal.

  2. System decontamination in the Stade nuclear power plant prior to dismantling

    Energy Technology Data Exchange (ETDEWEB)

    Stiepani, C. [AREVA NP GmbH, Erlangen (Germany); Seidelmann, K. [Kernkraftwerk Stade (Germany)

    2006-07-01

    The Stade nuclear plant (KKS) was permanently shut down in November 2003. The primary system and the most important auxiliary systems (emergency cooling system, residual heat removal system, coolant purification system and volume control system) were chemically decontaminated. The paper describes the applied decontamination process HP/CORD {sup registered} UV and the results obtained during full system decontamination. This paper explains in detail the advantages of a full system decontamination as a central measure prior to dismantling as well as the excellent decontamination results. The potential for dose rate reduction in operational power plant is also pointed out. (orig.)

  3. Legionella on board trains: effectiveness of environmental surveillance and decontamination

    Directory of Open Access Journals (Sweden)

    Quaranta Gianluigi

    2012-08-01

    Full Text Available Abstract Background Legionella pneumophila is increasingly recognised as a significant cause of sporadic and epidemic community-acquired and nosocomial pneumonia. Many studies describe the frequency and severity of Legionella spp. contamination in spa pools, natural pools, hotels and ships, but there is no study analysing the environmental monitoring of Legionella on board trains. The aims of the present study were to conduct periodic and precise environmental surveillance of Legionella spp. in water systems and water tanks that supply the toilet systems on trains, to assess the degree of contamination of such structures and to determine the effectiveness of decontamination. Methods A comparative pre-post ecological study was conducted from September 2006 to January 2011. A total of 1,245 water samples were collected from plumbing and toilet water tanks on passenger trains. The prevalence proportion of all positive samples was calculated. The unpaired t-test was performed to evaluate statistically significant differences between the mean load values before and after the decontamination procedures; statistical significance was set at p ≤ 0.05. Results In the pre-decontamination period, 58% of the water samples were positive for Legionella. Only Legionella pneumophila was identified: 55.84% were serogroup 1, 19.03% were serogroups 2–14 and 25.13% contained both serogroups. The mean bacterial load value was 2.14 × 103 CFU/L. During the post-decontamination period, 42.75% of water samples were positive for Legionella spp.; 98.76% were positive for Legionella pneumophila: 74.06% contained serogroup 1, 16.32% contained serogroups 2–14 and 9.62% contained both. The mean bacterial load in the post-decontamination period was 1.72 × 103 CFU/L. According to the t-test, there was a statistically significant decrease in total bacterial load until approximately one and a half year after beginning the decontamination programme (p

  4. The chemical decontamination of the Callisto PWR loop

    International Nuclear Information System (INIS)

    The CALLISTO (Capability for Light water Irradiation in Steady state and Transient Operation) is a PWR experimental facility for scientific in-pile studies installed into the BR2 Material Test Reactor. Three experimental rigs, called In-Pile Sections (IPS), are installed in three reactor channels. They are connected to a common pressurized loop, which operates with representative PWR water chemistry (typically 400 ppm boron, 3,5 ppm lithium and 30 ccSTP/kg dissolved hydrogen). The IPSs can be provided with adequate instrumentation and be modified to perform valid irradiation studies in a high neutron flux and in a relevant thermos-hydraulic environment. During more than 15 years of operation, activation products have accumulated into the loop leading to a continuous increase of the dose rates at the work area. Consequently periodic maintenance and inspection operations have become more and more expensive in terms of collective dose uptake. In consultation with the internal and external safety authorities the decision has been made to proceed to the chemical closed-loop decontamination of the most important components of CALLISTO (heater, pressurizer, main and bleed flow coolers). The objective of reducing the dose rates without compromising the integrity of the operational loop has led to the combined use of known soft chemical decontamination products as KMnO4 and H2C2O4. About 10 GBq of Co-60 activity and 250 g of corrosion products were removed from the stainless steel CALLISTO loop. The systems involved had a total volume of 0,5 m3 and a surface area of 18 m2. All released activity and corrosion products were removed by ion exchange resins, leading to the generation of 2x150 liters of radioactive waste. The dose rate reduction factors in contact with the treated components varied between 2 and 12. The collective dose uptake of the entire operation (preparation - decontamination - clean-up) was about 5,5 man.mSv, and thereby in line with the ALARA estimations

  5. Contribution to the study of external contamination by radioactive products: skin contamination by radioactive cobalt in soluble form and decontamination

    International Nuclear Information System (INIS)

    The aim of this work was to characterize the behavior of the radioactive cobalt isotopes, which are present in reactor coolant systems of a pressurized water reactor (PWR), in the case of occupational skin exposure, and to study different therapies. Our experimental approach stems from standardized methods in skin pharmacology. In a first step, a physico-chemical study of a primary coolant water was carried out to characterize the soluble fraction of radio-cobalt and its skin affinity. The second step consisted in quantifying the diffusion through the skin, in vivo and in vitro in rats, and in vitro in human. Parallel experiments were carried out to study biokinetics of cobalt in rats, after intravenous, intramuscular and subcutaneous injection. Whatever the route of administration, cobalt diffuses easily in the organism. On the contrary, its skin absorption is very limited. In a fourth step, the influence of the skin injuries on absorption was estimated in vivo on rat skin. Several skin models were developed to standardize different injuries: excoriation, heat burns (convection, conduction) and chemical burns (acid or alkaline). Biokinetics study over 24 hours and histological study have shown a relation between skin absorption and stratum corneum alteration. In the latest step of this work, we compared the efficacy of various decontaminating agents administered under different galenic forms. Per (3, 6- anhydro, 2-O-carboxy-methyl)-α-cyclo-dextrin exhibited a significant efficacy for cobalt decontamination of skin. This macromolecule was tested in aqueous solution, in agarose gel and loaded on 'functionalized' fibers intended for development of new decontaminating tissues. (author)

  6. Fighting Ebola through Novel Spore Decontamination Technologies for the Military

    Directory of Open Access Journals (Sweden)

    Christopher J. Doona

    2015-08-01

    Full Text Available AbstractRecently, global public health organizations such as Doctors without Borders (MSF, the World Health Organization (WHO, Public Health Canada, National Institutes of Health (NIH, and the U.S. government developed and deployed Field Decontamination Kits (FDKs, a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned. The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2 produced from a patented invention developed by researchers at the US Army – Natick Soldier RD&E Center (NSRDEC and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established nonthermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers

  7. Development of the dry decontamination technique using plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Seo, Yong Dae; Lee, Dong Uk; Jeon, Sang Hwan; Jung, Young Suk [Hanyang University, Seoul (Korea)

    2001-04-01

    In order to develop an advanced dry decontamination method, dry decontamination technique using gaseous plasma is studied. Scopes of the research are 1) literature survey and case studies of the international R and D activities and industrial application, 2) contaminant characteristics analysis, 3) feasibility and applicability study of the unit techniques, 4) process development study on the plasma decontamination, 5) plasma diagnostics and quantitative analysis by QMS and OES, and 6) design of (microwave) plasma torch system. The major research results are as belows. The maximum etching rate of UO{sub 2} is achieved to be 0.8 {mu}m/min. under 300 deg C, 150 W CF{sub 4}/O{sub 2}/N{sub 2} r.f. plasma maintaining the optimum ratio of CF{sub 4}/O{sub 2} of four, and that of Co and Mo is 0.06 {mu}m/min. and 1.9 {mu}m/min., respectively, under 380 deg C, 220 W CF{sub 4}/O{sub 2} r.f. plasma. The optimum process for the dry decontamination of TRU, CP, and or FP nuclides, therefore, requires the optimum gas composition above 350 deg C and 220W power. It is also demonstrated that this optimum process can be extrapolated to atmospheric high power torch system. In conclusion, if plasma power and temperature increases with maintaining the optimum gas composition, this dry decontamination techniques must be definitely effective and efficient. 17 refs., 62 figs., 4 tabs. (Author)

  8. Pickering NGS heat transport system decontamination using the CAN-DECON process

    International Nuclear Information System (INIS)

    In November 1981, a decontamination of the Pickering NGS Unit 1 heat transport system using the CAN-DECON process was carried out. The primary objective of the decontamination was to establish the effectiveness of the decontamination process in order to determine optimum tooling and manpower requirements for major dose-intensive reactor maintenance work. Laboratory scale development work suggested that the CAN-DECON process could, with modifications, produce decontamination factors (DFs) of 10 or better on carbon steel. The full scale decontamination, however, did not confirm these expectations. Radiation fields on the carbon steel headers and feeders were unchanged. Radiation fields on the Monel boilers which were low to start with were reduced by a factor of 1.5. This paper discusses the decontamination, its results, and the lessons learned from the decontamination

  9. Decontamination Processes for Restorative Operations and as a Precursor to Decommissioning: A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J. L.; Divine, J. R.

    1981-05-01

    Pacific Northwest Laboratory (PNL) conducted an comprehensive literature review of actual reactor decontamination processes that are currently available. In general, any decontamination process should be based on the following criteria: effectiveness, efficiency, safety, and waste production. The information that was collected and analyzed has been divided into three major categories of decontamination: chemical, mechanical, and electrochemical. Chemical methods can be further classified as either low-concentration, singlestep processes or high-concentration, single- or multistep processes. Numerous chemical decontamination methods are detailed. Mechanical decontamination methods are usually restricted to the removal of a contaminated surface layer, whlch limits their versatility; several mechanical decontamination methods are described. Electrochemical decontamination. is both fast and easily controlled, and numerous processes that have been used in industry for many years are discussed. Information obtained from this work is tabulated in Appendix A for easy access, and a bibliography and a glossary have been provided.

  10. Aggressive chemical decontamination tests on small valves from the Garigliano BWR

    International Nuclear Information System (INIS)

    In order to check the effectiveness of direct chemical decontamination on small and complex components, usually considered for storage without decontamination because of the small amount, some tests were performed on the DECO experimental loop. Four small stainless steel valves from the primary system of the Garigliano BWR were decontaminated using mainly aggressive chemicals such as HC1, HF, HNO3 and their mixtures. On two valves, before the treatment with aggressive chemicals, a step with soft chemical (oxalic and citric acid mixture) was performed in order to see whether a softening action enhances the following aggressive decontamination. Moreover, in order to increase as much as possible the decontamination effectiveness, a decontamination process using ultrasounds jointly with aggressive chemicals was investigated. After an intensive laboratory testing programme, two smaller stainless steel valves from the primary system of the Garigliano BWR were decontaminated using ultrasounds in aggressive chemical solutions

  11. Design and characterisation of a novel in vitro skin diffusion cell system for assessing mass casualty decontamination systems.

    Science.gov (United States)

    Matar, H; Larner, J; Kansagra, S; Atkinson, K L; Skamarauskas, J T; Amlot, R; Chilcott, R P

    2014-06-01

    The efficient removal of contaminants from the outer surfaces of the body can provide an effective means of reducing adverse health effects associated with incidents involving the accidental or deliberate release of hazardous materials. Showering with water is frequently used by first responders as a rapid method of mass casualty decontamination (MCD). However, there is a paucity of data on the generic effectiveness and safety of aqueous decontamination systems. To address these issues, we have developed a new in vitro skin diffusion cell system to model the conditions of a common MCD procedure ("ladder pipe system"). The new diffusion cell design incorporates a showering nozzle, an air sampling port for measurement of vapour loss and/aerosolisation, adjustable (horizontal to vertical) skin orientation and a circulating manifold system (to maintain a specified flow rate, temperature and pressure of shower water). The dermal absorption characteristics of several simulants (Invisible Red S, curcumin and methyl salicylate) measured with the new in vitro model were in good agreement with previous in vitro and in vivo studies. Moreover, these initial studies have indicated that whilst flow rate and water temperature are important factors for MCD, the presence of clothing during showering may (under certain circumstances) cause transfer and spreading of contaminants to the skin surface.

  12. Fiber-Optic Chemiluminescent Biosensors for Monitoring Aqueous Alcohols and Other Water Quality Parameters

    Science.gov (United States)

    Verostko, Charles E. (Inventor); Atwater, James E. (Inventor); Akse, James R. (Inventor); DeHart, Jeffrey L. (Inventor); Wheeler, Richard R. (Inventor)

    1998-01-01

    A "reagentless" chemiluminescent biosensor and method for the determination of hydrogen peroxide, ethanol and D-glucose in water is disclosed. An aqueous stream is basified by passing it through a solid phase base bed. Luminol is then dissolved in the basified effluent at a controlled rate. Oxidation of the luminol is catalyzed by the target chemical to produce emitted light. The intensity of the emitted light is detected as a measure of the target chemical concentration in the aqueous stream. The emitted light can be transmitted by a fiber optic bundle to a remote location from the aqueous stream for a remote reading of the target chemical concentration.

  13. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal.

  14. Fighting Ebola with novel spore decontamination technologies for the military.

    Science.gov (United States)

    Doona, Christopher J; Feeherry, Florence E; Kustin, Kenneth; Olinger, Gene G; Setlow, Peter; Malkin, Alexander J; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC's novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  15. Decontamination of Anthrax spores in critical infrastructure and critical assets.

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David; Hankins, Matthew Granholm

    2010-05-01

    Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft) contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return them to

  16. Coordinated research project on radiation sterilization and decontamination of pharmaceuticals and pharmaceutical raw materials. CRP report

    International Nuclear Information System (INIS)

    processing to be carried out at any desired temperature, sterilizability of mixed products in kits, offering simultaneous sterilization and modification of polymer based formulations. Radiation sterilization has already demonstrated its advantages over conventional (chemical) methods, with the scale of its application rising. The results of the CRP demonstrated new fields of applications and roles of the process in the decontamination of natural medical herbs, which finds increasing usage worldwide. The process application for synthetic pharmaceuticals sterilization has also been demonstrated. The analytical and processing procedures were elaborated for selected materials. The radiation effects on drugs of different types and on traditional herbal medicine components (e.g.Traditional Chinese Medicines) were investigated, in particular the identification of the products of radiolysis was achieved and evaluation of their role in changing of biological activity of radiation sterilized pharmaceuticals was performed. Some of the methods were introduced to the manufacturer practice. New TC projects in the field were initiated. Despite all these apparent advantages, radiation sterilization of pharmaceuticals has to be addressed on a case by case basis. It has been concluded that radiation sterilization of aqueous solutions and suspensions of most organic substances is difficult if not impossible. The trends and opportunities of using radiation processing for sterilization and decontamination of pharmaceutical raw materials and herbs have been evaluated. Proteins and polysaccharides and their formulations and new biotechnology products are currently being considered for radiation sterilization

  17. Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture, Japan.

    Science.gov (United States)

    Yasutaka, Tetsuo; Naito, Wataru

    2016-01-01

    Despite the enormous cost of radiation decontamination in Fukushima Prefecture, it is not clear what levels of reduction in external radiation exposure are possible in the Special Decontamination Area, the Intensive Contamination Survey Areas and the whole of Fukushima. The objective of this study was to evaluate the cost and effectiveness of radiation decontamination in Fukushima Prefecture in its entirety. Using a geographic information system, we calculated the costs of removal, storage containers, transport, and temporary and interim storage facilities as well as the reduction in air dose rate for a cumulative external exposure for 9000 1 km × 1 km mesh units incorporating 51 municipalities. The decontamination cost for the basic scenario, for which forested areas within 20 m of habitation areas were decontaminated, was JPY2.53-5.12 trillion; the resulting reduction in annual external dose was about 2500 person-Sv. The transport, storage, and administrative costs of decontamination waste and removed soil reached JPY1.55-2.12 trillion under this scenario. Although implementing decontamination of all forested areas provides some major reductions in the external radiation dose for the average inhabitant, decontamination costs could potentially exceed JPY16 trillion. These results indicate that technologies for reducing the volume of decontamination waste and removed soil should be considered to reduce storage costs and that further discussions about forest decontamination policies are needed.

  18. Electron beam irradiation and zeolites adsorption applied to dyeing effluents

    International Nuclear Information System (INIS)

    Wastewater generated from the textile industries contain large amount of azo dyes and many of them present low biodegradability capability. Today several countries are facing with evidences that water pollution is related to toxicity, mutagenicity and carcinogenic nature. Once reactive dyes are commercial products they will be discharged to the waterways and rivers causing ecological damages and health problems. The aim of this paper was to consider the potential of two techniques for colour and toxicity removal: ionizing radiation and adsorption by zeolites synthesized from fly ash. Real effluents from chemical and textile industries (hardly coloured) were submitted to radiation and adsorption using zeolites. It was necessary to dilute some effluents prior the treatments in order to get any success. When electrons irradiation was performed radiation doses applied were from 0.5 kGy up to 20 kGy. This radiation process accounted for a partial decolouring as higher doses were implemented. Coal fly ashes were used as starting material for zeolite synthesis by means of hydrothermal treatment with alkaline medium. The adsorption was performed by batch experiments. It was obtained about 77% - 90% color removal from dye wastewater after 24h of contact time with two types of zeolite. The irradiation accounted for 72% of the initial toxicity. The ionizing radiation and adsorption by zeolites synthesized from fly ash can be used as an alternative for the treatment of aqueous waste containing dyes. (author)

  19. Electron beam irradiation and zeolites adsorption applied to dyeing effluents

    Energy Technology Data Exchange (ETDEWEB)

    Higa, Marcela C.; Fungaro, Denise A.; Somessari, Elizabeth S.R.; Magdalena, Carina P.; Grosche, Lucas C.; NNeto, Antonio C.; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2007-07-01

    Wastewater generated from the textile industries contain large amount of azo dyes and many of them present low biodegradability capability. Today several countries are facing with evidences that water pollution is related to toxicity, mutagenicity and carcinogenic nature. Once reactive dyes are commercial products they will be discharged to the waterways and rivers causing ecological damages and health problems. The aim of this paper was to consider the potential of two techniques for colour and toxicity removal: ionizing radiation and adsorption by zeolites synthesized from fly ash. Real effluents from chemical and textile industries (hardly coloured) were submitted to radiation and adsorption using zeolites. It was necessary to dilute some effluents prior the treatments in order to get any success. When electrons irradiation was performed radiation doses applied were from 0.5 kGy up to 20 kGy. This radiation process accounted for a partial decolouring as higher doses were implemented. Coal fly ashes were used as starting material for zeolite synthesis by means of hydrothermal treatment with alkaline medium. The adsorption was performed by batch experiments. It was obtained about 77% - 90% color removal from dye wastewater after 24h of contact time with two types of zeolite. The irradiation accounted for 72% of the initial toxicity. The ionizing radiation and adsorption by zeolites synthesized from fly ash can be used as an alternative for the treatment of aqueous waste containing dyes. (author)

  20. Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, M.D.

    2005-06-01

    Laser-ablation based decontamination is a new and effective approach for simultaneous removal and characterization of contaminants from surfaces (e.g., building interior and exterior walls, ground floors, etc.). The scientific objectives of this research are to: (1) characterize particulate matter generated during the laser-ablation based decontamination, (2) develop a technique for simultaneous cleaning and spectroscopic verification, and (3) develop an empirical model for predicting particle generation for the size range from 10 nm to tens of micrometers. This research project provides fundamental data obtained through a systematic study on the particle generation mechanism, and also provides a working model for prediction of particle generation such that an effective operational strategy can be devised to facilitate worker protection.

  1. Environmental Assessment for decontamination and dismantlement, Pinellas Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) (DOE/EA-1092) of the proposed decontamination and dismantlement of the Pinellas Plant in Largo, Florida. Under the Decontamination and Dismantlement EA, the DOE proposes to clean up facilities, structures, and utilities; dismantle specific structures; and mitigate or eliminate any environmental impacts associated with the cleanup, dismantlement, and related activities. Related activities include utilization of specific areas by new tenants prior to full-scale cleanup. Based on the analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969. Therefore, the preparation of an environmental impact statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  2. A Nanosecond Pulsed Plasma Brush for Surface Decontamination

    Science.gov (United States)

    Neuber, Johanna; Malik, Muhammad; Song, Shutong; Jiang, Chunqi

    2015-11-01

    This work optimizes a non-thermal, atmospheric pressure plasma brush for surface decontamination. The generated plasma plumes with a maximum length of 2 cm are arranged in a 5 cm long, brush-like array. The plasma was generated in ambient air with plasma chamber at a rate varying between 1 to 7 SLPM. Optimization of the cold plasma brush for surface decontamination was tested in a study of the plasma inactivation of two common pathogens, Staphylococcus aureus and Acinetobacter baumannii. Laminate surfaces inoculated with over-night cultured bacteria were subject to the plasma treatment for varying water concentrations in He, flow rates and discharge voltages. It was found that increasing the water content of the feed gas greatly enhanced the bactericidal effect. Emission spectroscopy was performed to identify the reactive plasma species that contribute to this variation. Additional affiliation: Frank Reidy Research Center for Bioelectrics

  3. Decontamination analysis of the NUWAX-83 accident site using DECON

    International Nuclear Information System (INIS)

    This report presents an analysis of the site restoration options for the NUWAX-83 site, at which an exercise was conducted involving a simulated nuclear weapons accident. This analysis was performed using a computer program deveoped by Pacific Northwest Laboratory. The computer program, called DECON, was designed to assist personnel engaged in the planning of decontamination activities. The many features of DECON that are used in this report demonstrate its potential usefulness as a site restoration planning tool. Strategies that are analyzed with DECON include: (1) employing a Quick-Vac option, under which selected surfaces are vacuumed before they can be rained on; (2) protecting surfaces against precipitation; (3) prohibiting specific operations on selected surfaces; (4) requiring specific methods to be used on selected surfaces; (5) evaluating the trade-off between cleanup standards and decontamination costs; and (6) varying of the cleanup standards according to expected exposure to surface

  4. Decontamination by shotblasting of radioactivity deposited on an asphalt road

    International Nuclear Information System (INIS)

    Long-lived fission products may be deposited in the environment after a serious reactor accident. From previous experiments it is known that if firehosing is to be used for decontamination it has to be done soon after the deposition. It is therefore worthwhile to study another decontamination method. An experimental study has been conducted of how well shotblasting can remove contamination from an asphalt road. In shotblasting a thin layer of the surface is loosened by the impact of small steel balls, and in the same procedure the surface dust is vacuumed up and the steel balls recovered. The contaminant was 86Rb, which behaves as caesium. As reference, the weathering of identical contamination on an asphalt road, a concrete road and a road covered with small concrete stones was studied concurrently. (author)

  5. Environmental Assessment for decontamination and dismantlement, Pinellas Plant

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) (DOE/EA-1092) of the proposed decontamination and dismantlement of the Pinellas Plant in Largo, Florida. Under the Decontamination and Dismantlement EA, the DOE proposes to clean up facilities, structures, and utilities; dismantle specific structures; and mitigate or eliminate any environmental impacts associated with the cleanup, dismantlement, and related activities. Related activities include utilization of specific areas by new tenants prior to full-scale cleanup. Based on the analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969. Therefore, the preparation of an environmental impact statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  6. Method of surface decontamination for radioactive contaminated materials

    International Nuclear Information System (INIS)

    Purpose: To attain decontamination neither causing accidents due to corrosions or cold brittleness nor environmental contaminations. Method: Ice particles containing an oxidizing agent such as H2O2, an anti-refrigerant such as alcohols and a corrosion inhibitor such as a hydrazine are respectively sent to and mixed in a mixing tank and the mixed liquid is jetted out from a nozzle to wash radioactive contaminated portions such as in a nuclear power plant. The discharge liquid is returned to a drain tank. In this way, effective decontamination can be attained in combination with mechanical elimination by ice particles without using chemicals such as acids and alkalis tending to attack the structures or chemicals such as dry ice tending to cool the structures excessively to introduce cold brittleness. (Sekiya, K.)

  7. Radioactivity build-up and decontamination (part 4)

    International Nuclear Information System (INIS)

    To establish a decontamination method of radioactive corrosion products in BWR primary coolant system, the radioactivity buildup after the decontamination was investigated for 304 stainless steel using a test loop simulating a BWR condition for 400 hours. The results show that; (1) Removal of the chromium in crud may be necessary to supress the activity re-buildup and the validity of Oxidation-reduction method with this process was proved. (2) The most significant activity re-buildup was shown when the original surface layer was exposed after complete removal of the crud. The exposure of chromium rich surface layer may account for the acceralation of activity buildup. (3) The re-buildup was supressed when a pre-filming by H2O2 (8 ppm 140 0C 24 hr) was applied after the electro-polishing up to the original surface layer. This supressing effect was also seen on new SUS304 surface. (author)

  8. Decontamination of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    An Analytical Laboratory Hot Cell Facility at Argonne National Laboratory-West (ANL-W) had been in service for nearly thirty years. In order to comply with current DOE regulations governing such facilities and meet programmatic requirements, a major refurbishment effort was mandated. Due to the high levels of radiation and contamination within the cells, a decontamination effort was necessary to provide an environment that permitted workers to enter the cells to perform refurbishment activities without receiving high doses of radiation and to minimize the potential for the spread of contamination. State-of-the-art decontamination methods, as well as time-proven methods were utilized to minimize personnel exposure as well as maximize results

  9. Biofilm mediated decontamination of pollutants from the environment

    Directory of Open Access Journals (Sweden)

    Arindam Mitra

    2016-01-01

    Full Text Available In this review, we highlight beneficial use of microbial biofilms in remediation of environmental pollutants by bioremediation. Bioremediation is an environment friendly, cost effective, sustainable technology that utilizes microbes to decontaminate and degrade a wide variety of pollutants into less harmful products. Relative to free-floating planktonic cells, microbes existing in biofilm mode are advantageous for bioremediation because of greater tolerance to pollutants, environmental stress and ability to degrade varied harsh pollutants via diverse catabolic pathways. In biofilm mode, microbes are immobilized in a self-synthesized matrix which offers protection from stress, contaminants and predatory protozoa. Contaminants ranging from heavy metals, petroleum, explosives, pesticides have been remediated using microbial consortia of biofilms. In the industry, biofilm based bioremediation is used to decontaminate polluted soil and groundwater. Here we discuss conventional and newer strategies utilizing biofilms in environmental remediation.

  10. Development of Decontamination Process for Soil Contaminated Uranium

    International Nuclear Information System (INIS)

    Various experiments with full-scaled electrokinetic equipment, soil washing equipment, and gravel washing equipment were performed to remove 238U from contaminated soils of below 0.4 Bq/g. The repetition number and the removal efficiencies of the soil and gravel washing equipment were evaluated. The decontamination periods by the soil and gravel electrokinetic equipment were evaluated. Finally, a work process of full-scaled decontamination equipment was developed. Contaminated soils were classified into soils and gravels using a 8.0 cm sieve. Soils were sent to the soil washing equipment, while gravels were sent to the gravel washing equipment. Soils sent to the soil washing equipment were sent to the soil electrokinetic equipment after soil washing. A repetition number of soil washing was two times. The washed gravels were sent to the gravel electrokinetic equipment. Gravel contaminated with a high concentration requires crushing after gravel washing

  11. Decontamination method and device for radiation contaminated product

    International Nuclear Information System (INIS)

    In the present invention, radiation contaminated products generated during shot peening are decontaminated by a chelating agent, and the chelating agent is removed from the radiation contaminated products. Then the temperature of the radiation contaminated products is elevated by hot blowing at a temperature higher than a boiling point of the solvent. Then, a solvent is added to the radiation contaminated products and the solvent is evaporated abruptly. The solution of the chelating agent remained while being deposited thereto is removed by evaporation to remove it from the radiation contaminated products together with the solvent. With such procedures, all of the decontamination steps can be completed in one device without requiring a large space or not moving the radiation contaminated products on every step. (T.M.)

  12. Malonic acid: A potential reagent in decontamination processes for Ni-rich alloy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, D.; Bruyere, V.I.E. [Gerencia Quimica, Comision Nacional de Energia Atomica, Centro Atomico Constituyentes, Av. Gral Paz 1499, 1650 San Martin, Prov. de Buenos Aires, Republica Argentina (Argentina); Instituto de Tecnologia, Prof. Jorge Sabato, Universidad Nacional de General San Martin, CNEA, CAC (Argentina); Bordoni, R.; Olmedo, A.M. [Gerencia Quimica, Comision Nacional de Energia Atomica, Centro Atomico Constituyentes, Av. Gral Paz 1499, 1650 San Martin, Prov. de Buenos Aires, Republica Argentina (Argentina); Morando, P.J., E-mail: morando@cnea.gov.ar [Gerencia Quimica, Comision Nacional de Energia Atomica, Centro Atomico Constituyentes, Av. Gral Paz 1499, 1650 San Martin, Prov. de Buenos Aires, Republica Argentina (Argentina); Instituto de Tecnologia, Prof. Jorge Sabato, Universidad Nacional de General San Martin, CNEA, CAC (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)

    2011-05-01

    The ability of malonic acid as a dissolution agent toward synthetic Ni ferrite and Alloy 600 and 800 corrosion products was explored. Its performance in the dissolution kinetics of Ni ferrite powders was compared with the one of oxalic acid. Kinetic parameters were obtained and the dependency on external Fe(II) was modelled. Oxidized samples used in descaling tests were prepared by exposure of coupons of both alloys to lithiated aqueous solutions, under hydrothermal conditions and hydrogen overpressure, simulating PHWR conditions. Oxide layer morphology, the influence of exposure time to corrosive medium and LiOH concentration on its thickness were characterized. Descaling tests consisting on a two-stage method (a first oxidizing step with alkaline permanganate followed by a reducing step with oxalic or malonic acid were carried out). Results were compared to those obtained with a well known chemical cleaning formulation (APAC: Alkaline Permanganate Ammonium Citrate) used in decontamination of several reactors and loops and the competitiveness of malonic acid was demonstrated.

  13. Preliminary trials of the decontamination of plutonium contaminated material with arklone

    International Nuclear Information System (INIS)

    The use of Arklone (1,1,2-trichloro-1,2,2-trifluoroethane) as a decontamination reagent in conjunction with an ultrasonic bath for plutonium contaminated non-combustible wastes has been investigated. For stainless and mild steel contaminated with PuO2, the surface contamination can be reduced to 5 to 10 μg Pu/cm2, while for painted steel the final level is 1 to 2 μg Pu/cm2. Aqueous reagents (e.g. H2O 1M NaOH) tend to give better results with the stainless steel, particularly if a surface active reagent is used, giving a residual level of 1 to 2 μg Pu/cm2. A wide range of additives have been tried in conjunction with the Arklone to improve its effectiveness (e.g. anionic, cationic and neutral surface active reagents) with little success. A commercial mixture, Arklone W, which is an Arklone/water/surfactant emulsion gave the best results. With the exception of Arklone W, very poor results were obtained with Arklone (and various additives) with plutonium nitrate contamination. (author)

  14. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Christopher S.; Sizgek, Erden; Sizgek, Devlet; Luca, Vittorio [Australian Nuclear Science and Technology Organisation (ANSTO), Institute of Materials Engineering, New Illawarra Road, Lucas Heights, New South Wales, 2234 (Australia)

    2008-07-01

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h{sup -1}) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  15. Biochar-based nano-composites for the decontamination of wastewater: A review.

    Science.gov (United States)

    Tan, Xiao-Fei; Liu, Yun-Guo; Gu, Yan-Ling; Xu, Yan; Zeng, Guang-Ming; Hu, Xin-Jiang; Liu, Shao-Bo; Wang, Xin; Liu, Si-Mian; Li, Jiang

    2016-07-01

    Synthesizing biochar-based nano-composites can obtain new composites and combine the advantages of biochar with nano-materials. The resulting composites usually exhibit great improvement in functional groups, pore properties, surface active sites, catalytic degradation ability and easy to separation. These composites have excellent abilities to adsorb a range of contaminants from aqueous solutions. Particularly, catalytic material-coated biochar can exert simultaneous adsorption and catalytic degradation function for organic contaminants removal. Synthesizing biochar-based nano-composites has become an important practice for expanding the environmental applications of biochar and nanotechnology. This paper aims to review and summarize the various synthesis techniques for biochar-based nano-composites and their effects on the decontamination of wastewater. The characteristic and advantages of existing synthesis methods are summarized and discussed. Application of biochar-based nano-composites for different contaminants removal and the underlying mechanisms are reviewed. Furthermore, knowledge gaps that exist in the fabrication and application of biochar-based nano-composites are also identified.

  16. Decontamination and partial dismantling of the Eurochemic plant. Part 1

    International Nuclear Information System (INIS)

    A description is given of the partial dismantling of the dissolver used for fuel elements of up to 1.6 wt % 235U enrichment, and of the total dismantling of the dissolver for highly enriched fuel elements. The corresponding head-end cells have been decontaminated, allowing prolonged interventions, either in view of refurbishing or complete dismantling. An assessment of required manpower, dose commitments, material consumption, and waste production for all operations is given. (author)

  17. Current concepts for oil decontamination of crush injuries: a review

    OpenAIRE

    Karimkhani, Chante; Amir, Mahsa; Dellavalle, Robert P.; Ipaktchi, Kyros

    2014-01-01

    This anecdotal, non-systematic review serves to explore the principles and methods of effective oil decontamination from cutaneous wounds, particularly crush injuries. The current expansion of the petroleum industry is necessary to meet increasing world demands for oil. Most stages of oil refining and applications involve significant injury risks, particularly for crush injuries that become contaminated with petroleum compounds. A literature review regarding a standard of care for effective c...

  18. Biofilm mediated decontamination of pollutants from the environment

    OpenAIRE

    Arindam Mitra; Suman Mukhopadhyay

    2016-01-01

    In this review, we highlight beneficial use of microbial biofilms in remediation of environmental pollutants by bioremediation. Bioremediation is an environment friendly, cost effective, sustainable technology that utilizes microbes to decontaminate and degrade a wide variety of pollutants into less harmful products. Relative to free-floating planktonic cells, microbes existing in biofilm mode are advantageous for bioremediation because of greater tolerance to pollutants, environmental stress...

  19. Potential of Biological Agents in Decontamination of Agricultural Soil

    OpenAIRE

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontaminatio...

  20. Electrochemical decontamination of metallic waste contaminated with uranium compounds

    International Nuclear Information System (INIS)

    A study on the electrolytic dissolution of SUS-304 and Inconel-600 specimen was carried out in neutral salt electrolyte to evaluate the applicability of electrochemical decontamination process for recycle ro self disposal with authorization of large amount of metallic wastes contamination with uranium compounds generated by dismantling a retired uranium conversion plant in Korea. Although the best electrolytic dissolution performance for the specimens was observed in a Na2SO4 electrolyte, a Na3NO3 neutral salt electrolyte, in which about 30% for SUS-304 and the same for Inconel-600 in the weight loss was shown in comparison with that in Na2 SO4 solution, was selected as an electrolyte for the electrochemical decontamination of metallic wastes with the consideration on the surface of system components contacted with nitric acid and the compatibility with lagoon wastes generated during the facility operation. The effects of current density, electrolytic dissolution time, and concentration of NaNO3 on the electrolytic dissolution of the specimens were investigated. On the basis of the results obtained through the basic inactive experiments, electrochemical decontamination tests using the specimens contaminated with uranium compounds such as UO2, AUC (ammonium uranyl carbonate) and ADU (ammonium diuranate) taken from an uranium conversion facility were performed in 1M NaNO3 solution with the current density of 100 mA/cm2. It was verified that the electrochemical decontamination of the metallic wastes contaminated uranium compounds was quite successful in a NaNO3 neutral salt electrolyte by reducing α and β radioactivities below the level of self disposal within 10 minutes regardless of the type of contaminants and the degree of contamination.

  1. Radiation survey and decontamination of cape Arza from depleted uranium

    OpenAIRE

    Vukotić Perko; Anđelić Tomislav; Zekić Ranko; Kovačević Milojko S.; Vasić Vladimir; Savić Slobodan

    2003-01-01

    In the action of NATO A-10 airplanes in 1999, the cape Arza, Serbia and Montenegro was contaminated by depleted uranium. The clean-up operations were undertaken at the site, and 242 uranium projectiles and their 49 larger fragments were removed from the cape. That is about 85% of the total number of projectiles by which Arza was contaminated. Here are described details of the applied procedures and results of the soil radioactivity measurements after decontamination.

  2. Radiation survey and decontamination of cape Arza from depleted uranium

    Directory of Open Access Journals (Sweden)

    Vukotić Perko

    2003-01-01

    Full Text Available In the action of NATO A-10 airplanes in 1999, the cape Arza, Serbia and Montenegro was contaminated by depleted uranium. The clean-up operations were undertaken at the site, and 242 uranium projectiles and their 49 larger fragments were removed from the cape. That is about 85% of the total number of projectiles by which Arza was contaminated. Here are described details of the applied procedures and results of the soil radioactivity measurements after decontamination.

  3. Advanced technologies for decontamination and conversion of scrap metal

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ''Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting

  4. DECONTAMINATION/DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Chris Jones; Javier Del Campo; Patrick Nevins; Stuart Legg

    2002-08-01

    The United States Department of Energy's Savannah River Site has approximately 5000 55-gallon drums of {sup 238}Pu contaminated waste in interim storage. These may not be shipped to WIPP in TRUPACT-II containers due to the high rate of hydrogen production resulting from the radiolysis of the organic content of the drums. In order to circumvent this problem, the {sup 238}Pu needs to be separated from the organics--either by mineralization of the latter or by decontamination by a chemical separation. We have conducted ''cold'' optimization trials and surrogate tests in which a combination of a mediated electrochemical oxidation process (SILVER II{trademark}) and ultrasonic mixing have been used to decontaminate the surrogate waste materials. The surrogate wastes were impregnated with copper oxalate for plutonium dioxide. Our process combines both mineralization of reactive components (such cellulose, rubber, and oil) and surface decontamination of less reactive materials such as polyethylene, polystyrene and polyvinylchloride. By using this combination of SILVER II and ultrasonic mixing, we have achieved 100% current efficiency for the destruction of the reactive components. We have demonstrated that: The degree of decontamination achieved would be adequate to meet both WIPP waste acceptance criteria and TRUPACT II packaging and shipping requirements; The system can maintain near absolute containment of the surrogate radionuclides; Only minimal pre-treatment (coarse shredding) and minimal waste sorting are required; The system requires minimal off gas control processes and monitoring instrumentation; The laboratory trials have developed information that can be used for scale-up purposes; The process does not produce dioxins and furans; Disposal routes for secondary process arisings have already been demonstrated in other programs. Based on the results from Phase 1, the recommendation is to proceed to Phase 2 and use the equipment at Savannah

  5. Evaluation of Levulinic Acid for Topical Decontamination of Meat Surfaces

    OpenAIRE

    Smith, Jeffrey V.

    2011-01-01

    Experiments were performed to investigate the effects of wash treatments, consisting of hot water, 2% lactic, 2% acetic, or 2% levulinic acid, for decontamination of pathogenic bacteria previously inoculated onto meat surfaces, to inhibit growth of pathogenic bacteria inoculated onto previously washed meat surfaces, and on the organoleptic quality of sliced turkey roll and beef trim. Acid washes were no more effective at reducing Escherichia coli O157:H7 on beef plate, Listeria monocytogenes ...

  6. Dental unit water lines decontamination with the aid of nanotechnology

    OpenAIRE

    Rashmi Paramashivaiah; Prabhuji, M. L. V.; Roopalakshmi Narayanan

    2016-01-01

    Aim: This article reviews the issue of dental unit waterline (DUWL) contamination which affects all the clinical and hospital settings. The contaminating microorganisms commonly isolated from these settings and the most pathogenic among them have serious consequences. Over the years several measures are inculcated for decontamination of water, their advantages and shortcomings have been addressed. Options using nanotechnology which are available in the market are described briefly. Materi...

  7. 324 and 327 Facilities Environmental Effluent Specifications

    International Nuclear Information System (INIS)

    These effluent specifications address requirements for the 324/321 Facilities, which are undergoing stabilization activities. Effluent specifications are imposed to protect personnel, the environment and the public, by ensuring adequate implementation and compliance with federal and state regulatory requirements and Hanford programs

  8. 324/327 facilities environmental effluent specifications

    International Nuclear Information System (INIS)

    These effluent technical specifications address requirements for the 324/327 facilities, which are undergoing stabilization activities. Effluent technical specifications are imposed to protect personnel, the environment and the public, by ensuring adequate implementation and compliance with federal and state regulatory requirements and Hanford programs

  9. 324 and 327 Facilities Environmental Effluent Specifications

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, D.L.

    1999-08-30

    These effluent specifications address requirements for the 324/321 Facilities, which are undergoing stabilization activities. Effluent specifications are imposed to protect personnel, the environment and the public, by ensuring adequate implementation and compliance with federal and state regulatory requirements and Hanford programs.

  10. Direct nanofiltration of wastewater treatment plant effluent

    NARCIS (Netherlands)

    Schrader, Guillo Alexander

    2006-01-01

    Membrane technology, especially nanofiltration, is seen as a suitable technology to polish WWTP effluent to EU WFD standards and consequently produce an effluent quality suitable for agricultural or (in)direct potable usage. The objective of this study was to assess the potential of direct nanofiltr

  11. 40 CFR 420.133 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY... representing the degree of effluent reduction attainable by the application of the best available technology... effluent reduction attainable by the application of the best available technology economically...

  12. Skin decontamination of glyphosate from human skin in vitro.

    Science.gov (United States)

    Zhai, H; Chan, H P; Hui, X; Maibach, H I

    2008-06-01

    This study compared three model decontaminant solutions (tap water, isotonic saline, and hypertonic saline) for their ability to remove a model herbicide (glyphosate) from an in vitro human skin model. Human cadaver skin was dosed (approximately 375microg) of [14C]-glyphosate on 3cm2 per skin. After each exposure time (1, 3, and 30min post-dosing, respectively), the surface skin was washed three times (4ml per time) with each solution. After washing, the skin was stripped twice with tape discs. Lastly, the wash solutions, strippings, receptor fluid, and remainder of skin were liquid scintillation analyzer counted to determine the amount of glyphosate. There were no statistical differences among these groups at any time points. The total mass balance recovery at three time exposure points was between 94.8% and 102.4%. The wash off rates (glyphosate in wash solutions) at three different exposure times is 79-101.2%. Thus the three tested decontaminants possess similar effectiveness in removing glyphosate from skin. This in vitro model is not only economic and rapid, but also provides quantitative data that may aid screening for optimal decontaminants. PMID:18407393

  13. Decontamination Methods Used for Dental Burs – A Comparative Study

    Science.gov (United States)

    Hugar, Deepa; Hugar, Santosh; Ranjan, Shashi; Kadani, Megha

    2014-01-01

    Aims and Objectives: Infection control and modes of sterilizations are the key factors to avoid cross transmission of infection in the field of dentistry. Transmission of disease or infection is noted with improper sterilization of reused instruments. Dental burs are the most important tool in any endodontic or conservative procedures of teeth involving tooth contouring, restorative filling procedures and endodontic procedures. Hence, the present study is undertaken to assess the efficacy of different methods of sterilization or decontamination which are routinely used in dental clinics. Materials and Methods: For the present study 96 round diamond burs were selected and divided into 6 groups. These burs were used for the access cavity preparation to get contamination and subjected for bacteriological culture. After getting base line date burs were subjected to manual scrubbing, hot air oven, glass bead sterilizer, ultrasonic cleaner and autoclave to get post decontamination data. Results: The study revealed that mean colony forming units/ml of Streptococcus mutans decreased maximum for autoclave with 80% reduction, for Lactobacilli 76% reduction and for Candida albicans maximum reduction seen for glass bead sterilizer with 74%. Conclusion: Findings of our study revealed that none of the methods used were found to be absolutely efficacious in the decontamination of dental burs. However, among the experimental groups used in the present study, autoclave was found to be the relatively best method. PMID:25121062

  14. Method of electrolyzing and decontaminating by diaphragm electrolysis

    International Nuclear Information System (INIS)

    Purpose: To continuously recover and remove radioactive metal ions reached out and accumulated in an electrolyte in the step of decontaminating the metal surface such as of equipments, parts or the likes contaminated with the deposition of radioactive materials through electropolishing. Method: The electrolytic vessel is partitioned by an electrolytic diaphragm into an anode chamber and a cathode chamber. The electrolyte in the anode chamber is recycled through a pump and a filter filtrates to collect suspended matters in the electrolyte. When a DC current is started to supply between the anode as the decontaminate and the anode as the collecting electrode, metal ions on the surface of the material to be decontaminated are leached in the anode chamber, while hydrogen gases evolve in the cathode chamber, by which the hydrogen ion concentration in the electrolyte is gradually reduced. Then, anions in the cathode chamber transfer through the diaphragm to the anode chamber and, conversely, the metal ions in the anode chamber transfer through the electrolytic diaphragm to the cathode chamber. Then, the pH of the electrolyte in the cathode chamber is settled to about 2 and metal ions starts to deposit at the chathode. (Horiuchi, T.)

  15. Cold Atmospheric Plasma Technology for Decontamination of Space Equipment

    Science.gov (United States)

    Thomas, Hubertus; Rettberg, Petra; Shimizu, Tetsuji; Thoma, Markus; Morfill, Gregor; Zimmermann, Julia; Müller, Meike; Semenov, Igor

    2016-07-01

    Cold atmospheric plasma (CAP) technology is very fast and effective in inactivation of all kinds of pathogens. It is used in hygiene and especially in medicine, since the plasma treatment can be applied to sensitive surfaces, like skin, too. In a first study to use CAP for the decontamination of space equipment we could show its potential as a quite promising alternative to the standard "dry heat" and H2O2 methods [Shimizu et al. Planetary and Space Science, 90, 60-71. (2014)]. In a follow-on study we continue the investigations to reach high application level of the technology. First, we redesign the actual setup to a plasma-gas circulation system, increasing the effectivity of inactivation and the sustainability. Additionally, we want to learn more about the plasma chemistry processes involved in the inactivation. Therefore, we perform detailed plasma and gas measurements and compare them to numerical simulations. The latter will finally be used to scale the decontamination system to sizes useful also for larger space equipment. Typical materials relevant for space equipment will be tested and investigated on surface material changes due to the plasma treatment. Additionally, it is planned to use electronic boards and compare their functionality before and after the CAP expose. We will give an overview on the status of the plasma decontamination project funded by the Bavarian Ministry of Economics.

  16. Irradiation as a decontamination processing for rice paper sheet

    International Nuclear Information System (INIS)

    Starch is one of the most important plant products to man. The major sources of this compound for man's use are the cereals, but roots and tubers are also important. The starch industry comes in recent years growing and perfecting it self, leading to the necessity products with specific characteristics that take care the requirements of the market, it makes possible through processing raw material, still seldom explored. Rice paper sheet is an edible product derived from potatoes and rice, being commonly used to cover cakes, pies, and sweets in confectioner's shop. A microbiological control is necessary to give a high quality and to guarantee the security of this food. Irradiation would be a safe alternative as a decontamination method without adverse effects on the physical properties in the final products. The aim of this study was to investigate the best dose used as a decontamination method as well as discover the most prevalent fungi found in this product and changes on physical properties. Samples of rice paper sheet were irradiated with 2.5, 5.0 and 10.0 kGy using a 60Co irradiator. Irradiation appeared as a safe alternative as a decontamination method without adverse effects on the physical properties in the final products. (author)

  17. Performance Test of the Remote Operation Light Ablation Decontamination System

    International Nuclear Information System (INIS)

    Laser induced ablation studies of various materials are the topics in the laser-matter interaction. By virtue of the attainable high energies, lasers are excellent tools to induce a photoelectric response from metallic substrates. Contamination control has been a major concern for the nuclear electric power industry in recent years, but despite the positive steps taken to address the issue, important safety concern still remains. Laser ablation was shown to be potentially superior to all other methods. It is known that when laser intensity is high enough, especially in the case of high power short pulse laser, laser energy absorption occurs rapidly and only in a very thin layer on the target surface. The thin layer is thus instantaneously evaporated and removed. However, investigations into the properties of laser ablation decontamination and its possible application to nuclear facilities are still only in their early stages. In this paper, we used the light ablation decontamination system operated remotely by computer. The system was designed and fabricated by KAERI. The objective of the study is to investigate the performance of the system. Especially, the result of the decontamination test was presented

  18. Application of a novel decontamination process using gaseous ozone

    Energy Technology Data Exchange (ETDEWEB)

    Moat, J.; Shone, J.; Upton, M. [Manchester Univ., School of Medecine, Manchester (United Kingdom). Medical Microbiology, Translation Medicine; Cargill, J. [Old Medical School, Leeds (United Kingdom). Dept. of Microbiology

    2009-08-15

    Hospital surfaces that are touched regularly by staff carry bacterial spores and pathogens. Environmental disinfection of health care facilities is an important aspect of infection control. This paper presented a recent innovation aimed at improving hospital hygiene and decontamination of laboratory equipment. The vapour- and gas-based treatment was developed to penetrate rooms or soft furnishings and reach places inaccessible by conventional approaches. Surfaces seeded with a range of vegetative cells and spores of bacteria of clinical relevance were decontaminated using the ozone-based treatment. The efficiency of the approach for room sanitization was also evaluated. A quenching agent was used to rapidly reduce ozone concentrations to safe levels allowing treatment times of less than 1 h for most of the organisms tested. Bacteria was seeded onto agar plates and solid surfaces. Reductions in bacterial load of greater than 3 log values were then recorded for a number of organisms including Escherichia coli and methicillin-resistant Staphylococcus aureus. Application of the process in a 30 m{sup 3} room showed similar reductions in viable counts for these organisms and for Clostridium difficile spores. It was concluded that ozone-based decontamination of healthcare environments could prove to be a highly cost-effective intervention. 35 refs., 1 tab., 3 figs.

  19. Decontamination of mass casualties--re-evaluating existing dogma.

    Science.gov (United States)

    Levitin, Howard W; Siegelson, Henry J; Dickinson, Stanley; Halpern, Pinchas; Haraguchi, Yoshikura; Nocera, Anthony; Turineck, David

    2003-01-01

    The events of 11 September 2001 became the catalyst for many to shift their disaster preparedness efforts towards mass-casualty incidents. Emergency responders, healthcare workers, emergency managers, and public health officials worldwide are being tasked to improve their readiness by acquiring equipment, providing training and implementing policy, especially in the area of mass-casualty decontamination. Accomplishing each of these tasks requires good information, which is lacking. Management of the incident scene and the approach to victim care varies throughout the world and is based more on dogma than scientific data. In order to plan effectively for and to manage a chemical, mass-casualty event, we must critically assess the criteria upon which we base our response. This paper reviews current standards surrounding the response to a release of hazardous materials that results in massive numbers of exposed human survivors. In addition, a significant effort is made to prepare an international perspective on this response. Preparations for the 24-hour threat of exposure of a community to hazardous material are a community responsibility for first-responders and the hospital. Preparations for a mass-casualty event related to a terrorist attack are a governmental responsibility. Reshaping response protocols and decontamination needs on the differences between vapor and liquid chemical threats can enable local responders to effectively manage a chemical attack resulting in mass casualties. Ensuring that hospitals have adequate resources and training to mount an effective decontamination response in a rapid manner is essential.

  20. Decontamination of transport casks and of spent fuel storage facilities

    International Nuclear Information System (INIS)

    The present document provides an analysis of the technical papers presented at the meeting as well as a summary of the panel discussion. Conclusions and Recommendations: The meeting agreed that the primary source of contamination of transport casks is the production of radioactive isotopes in nuclear fuel and activation products of fuel components in nuclear reactors. The type, amount of mechanism for the release of these isotopes depend on the reactor type and fuel handling process. The widespread use of pools for the storage and handling of fuel provides an easy path for the transfer of contamination. Control of pool water conditions is essential for limiting the spread of contamination. For plants where casks are immersed in pools for loading, the immersion times should be minimised. Casks should be designed for ease of decontamination. The meeting discussed the use of stainless steel and suitable paints for coating casks. Designers should consider the appropriate coating for specific applications. The use of pressurized water for decontamination is recommended whenever possible. A number of commercially available reagents exist for decontaminating cask external surfaces. More work, however, is needed to cope with Pressurized Water Reactor crud within casks. Leaking fuel should be identified and isolated before storage in pools. Basic studies of the uptake and release of contamination from cask surfaces should be initiated. Standardization of methods of contamination measurement and instrumentation should be instituted. Refs, figs and tabs

  1. Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, P.K.; Freemerman, R.L. [Bechtel National, Inc., Oak Ridge, TN (United States)

    1989-11-01

    On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as the Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.

  2. Irradiation as a decontamination processing for rice paper sheet

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Michel M.; Thomaz, Fernanda S.; Fanaro, Gustavo B.; Duarte, Renato C.; Aquino, Simone; Villavicencio, Anna Lucia C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: villavic@ipen.br; Correa, Benedito [Universidade de Sao Paulo USP, SP (Brazil). Inst. de Ciencias Biomedicas. Dept. de Micologia]. E-mail: correabe@usp.br

    2007-07-01

    Starch is one of the most important plant products to man. The major sources of this compound for man's use are the cereals, but roots and tubers are also important. The starch industry comes in recent years growing and perfecting it self, leading to the necessity products with specific characteristics that take care the requirements of the market, it makes possible through processing raw material, still seldom explored. Rice paper sheet is an edible product derived from potatoes and rice, being commonly used to cover cakes, pies, and sweets in confectioner's shop. A microbiological control is necessary to give a high quality and to guarantee the security of this food. Irradiation would be a safe alternative as a decontamination method without adverse effects on the physical properties in the final products. The aim of this study was to investigate the best dose used as a decontamination method as well as discover the most prevalent fungi found in this product and changes on physical properties. Samples of rice paper sheet were irradiated with 2.5, 5.0 and 10.0 kGy using a {sup 60}Co irradiator. Irradiation appeared as a safe alternative as a decontamination method without adverse effects on the physical properties in the final products. (author)

  3. Innovative decontamination technology by abrasion in vibratory vessels

    International Nuclear Information System (INIS)

    Available in abstract form only. Full text of publication follows: The possibility of using conventional vibratory vessel technology as a decontamination technique is the motivation for the development of this project. The objective is to explore the feasibility of applying the vibratory vessel technology for decontamination of radioactively-contaminated materials such as pipes and metal structures. The research and development of this technology was granted by the U.S. Department of Energy (DOE). Abrasion processes in vibratory vessels are widely used in the manufacture of metals, ceramics, and plastics. Samples to be treated, solid abrasive media and liquid media are set up into a vessel. Erosion results from the repeated impact of the abrasive particles on the surface of the body being treated. A liquid media, generally detergents or surfactants aid the abrasive action. The amount of material removed increases with the time of treatment. The design and construction of the machine were provided by Vibro, Argentina private company. Tests with radioactively-contaminated aluminum tubes and a stainless steel bar, were performed at laboratory level. Tests showed that it is possible to clean both the external and the internal surface of contaminated tubes. Results show a decontamination factor around 10 after the first 30 minutes of the cleaning time. (authors)

  4. Texas market profile: soil and groundwater decontamination sector

    International Nuclear Information System (INIS)

    The soil and groundwater decontamination market in Texas generated $7 billion in earnings in 1997 and should reach almost $9 billion in 2002. While Texas has introduced voluntary clean-up programs, decontamination is required at more than 200,000 sites. Pollution has arisen from such industrial sectors as chemicals, crude oil and natural gas. In Texas, government agency decontamination activities provide major business opportunities. As in the base of the environmental sector as a whole, economic factors are gradually taking over from regulation as the prime demand drivers. Cost and risk are major concerns for clients. Because the incentive to reduce costs and the trend toward contracting out and privatization are becoming stronger, companies with specialized technologies have opportunities in this market. The government is the main client for environmental restoration services, but the private sector is accounting for an increased share of the market. Aspects of market access discussed include: implications of NAFTA and 'Buy America', ATA carnets, the Environmental Technology Verification Program, centralized database, federal government contracting announcements, partnerships, and payment conditions

  5. Study of Chemical Decontamination Process for CRUD Removal

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seongsik; Kim, Won-Seok; Kim, Jungjin; Um, Wooyong [POSTECH, Pohang (Korea, Republic of)

    2015-05-15

    Chalk River Unidentified Deposit (CRUD) is a technical term in nuclear engineering which is an accumulated material on external fuel rod cladding surfaces in nuclear power plants. It is a corrosion product which is composed of either dissolved ions or solid particles such as Ni, Fe and Co. It consists mainly of NiO and NiFe{sub 2}O{sub 4}. It can affect to reduce fuel lifetime, degrade heat transfer to the coolant, and threaten human health and environment. Therefore, decontamination process is essential for reducing occupational exposures, limiting potential releases and uptakes of radioactive materials, allowing the reuse of components, and facilitating waste management process. In this paper, we have conducted the synthesis of Cobalt ferrite as power foam to use for decontamination process. In dissolution test of Co ferrite and Ni ferrite, oxalic acid shows the most effective chemical decontamination reagent to remove the contaminants. Generally, the dissolved amount of cobalt and nickel increases at low pH condition and as the temperature goes higher, dissolved amount of cobalt and iron are much higher.

  6. Assessment of strippable coatings for decontamination and decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.

    1998-01-01

    Strippable or temporary coatings were developed to assist in the decontamination of the Three Mile Island (TMI-2) reactor. These coatings have become a viable option during the decontamination and decommissioning (D and D) of both US Department of Energy (DOE) and commercial nuclear facilities to remove or fix loose contamination on both vertical and horizontal surfaces. A variety of strippable coatings are available to D and D professionals. However, these products exhibit a wide range of performance criteria and uses. The Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) was commissioned to perform a 2-year investigation into strippable coatings. This investigation was divided into four parts: (1) identification of commercially available strippable coating products; (2) survey of D and D professionals to determine current uses of these coatings and performance criteria; (3) design and implementation of a non-radiological testing program to evaluate the physical properties of these coatings; and (4) design and implementation of a radiological testing program to determine decontamination factors and effects of exposure to ionizing radiation. Activities during fiscal year 1997 are described.

  7. Performance verification test on wet-blast type decontamination for the clearance

    International Nuclear Information System (INIS)

    The decontamination test was carried out to verify its performance of the wet blast decontamination device which is placed in Fugen Decommissioning Engineering Center, Japan Atomic Energy Agency and to determine the optimal conditions for decontamination using test specimens gathered from pipes of facilities which are going to be applied for the clearance. According to the test result, the contamination on inner surface of the pipes can be removed easily by more than 100 of decontamination factor with rust and its coating and can be decontaminated in less than clearance level in relatively short period of blasting process. Besides, it was proved that the optimal condition for decontamination is 0.4 MPa in blast pressure and 100 mm in blast distance, which is the basic specification of the device. (author)

  8. 40 CFR 424.57 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Other Calcium Carbide Furnaces Subcategory § 424.57 Effluent limitations guidelines representing the degree of...

  9. 40 CFR 424.53 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Other Calcium Carbide Furnaces Subcategory § 424.53 Effluent limitations guidelines representing the degree of...

  10. 40 CFR 424.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Covered Calcium Carbide Furnaces With Wet Air Pollution Control Devices Subcategory § 424.47 Effluent...

  11. 40 CFR 424.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Covered Calcium Carbide Furnaces With Wet Air Pollution Control Devices Subcategory § 424.43 Effluent...

  12. Influence of decontamination and preconditioning on corrosion layer

    International Nuclear Information System (INIS)

    Radiation field exists in nuclear power plants is primarily due to the deposition of radioisotopes on the surfaces of pipes and other primary components. These radiation fields cause occupational radiation exposure (ORE) to personnel engaged in maintenance work during refuelling shutdowns and thus significantly influence the operation and maintenance works on nuclear power plants. Dissolved and particulate corrosion products can also deposit on fuel cladding and primary system surfaces. Primary problems caused by fuel assemblies' deposits are the increase of cladding temperature, which enhances corrosion risk and may lead to and/or contribute to fuel rod failure, For VVERs the deposition mechanism is most likely influenced by some organic substances (residues from decontamination agents), whose behaviour in the active zone and role in the deposition mechanism are not completely known. Operational experience from various NPPs (e.g. Novovoronezh, Loviisa, and Paks) revealed the large impact of decontamination processes on the quality of oxide layer and deposits, so did the loop and autoclave tests. Actual in-pile loop tests carried at the Nuclear Research Institute (NRI) Rez are focused on the study of surface preconditioning and decontamination solutions' effect on surface layer after irradiation exposition. Effects of the decontamination on depositi formation onto primary circuit surfaces are investigated under steam generator (SG) operating conditions with the model device which contains SG heat exchanger tube, VVER spacer grids and heating rods simulating fuel cladding surface. The entire experiment is performed in experimental reactor water loop (RVS 4) on the NRI research reactor LVR-15. Oxide layer was built-up on the inner surface of as received SG tubes under higher temperature primary water conditions and with irradiation. This long-term exposure should enable to create oxide surface layers corresponding to the real conditions. The whole loop

  13. Bis(β-lactosyl-[60]fullerene as novel class of glycolipids useful for the detection and the decontamination of biological toxins of the Ricinus communis family

    Directory of Open Access Journals (Sweden)

    Hirofumi Dohi

    2014-07-01

    Full Text Available Glycosyl-[60]fullerenes were first used as decontaminants against ricin, a lactose recognition proteotoxin in the Ricinus communis family. A fullerene glycoconjugate carrying two lactose units was synthesized by a [3 + 2] cycloaddition reaction between C60 and the azide group in 6-azidohexyl β-lactoside per-O-acetate. A colloidal aqueous solution with brown color was prepared from deprotected bis(lactosyl-C60 and was found stable for more than 6 months keeping its red color. Upon mixing with an aqueous solution of Ricinus communis agglutinin (RCA120, the colloidal solution soon caused precipitations, while becoming colorless and transparent. In contrast, a solution of concanavalin A (Con A caused no apparent change, indicating that the precipitation was caused specifically by carbohydrate–protein interactions. This notable phenomenon was quantified by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE, and the results were discussed in terms of detection and decontamination of the deadly biological toxin in the Ricinus communis family.

  14. Bis(β-lactosyl)-[60]fullerene as novel class of glycolipids useful for the detection and the decontamination of biological toxins of the Ricinus communis family.

    Science.gov (United States)

    Dohi, Hirofumi; Kanazawa, Takeru; Saito, Akihiro; Sato, Keita; Uzawa, Hirotaka; Seto, Yasuo; Nishida, Yoshihiro

    2014-01-01

    Glycosyl-[60]fullerenes were first used as decontaminants against ricin, a lactose recognition proteotoxin in the Ricinus communis family. A fullerene glycoconjugate carrying two lactose units was synthesized by a [3 + 2] cycloaddition reaction between C60 and the azide group in 6-azidohexyl β-lactoside per-O-acetate. A colloidal aqueous solution with brown color was prepared from deprotected bis(lactosyl)-C60 and was found stable for more than 6 months keeping its red color. Upon mixing with an aqueous solution of Ricinus communis agglutinin (RCA120), the colloidal solution soon caused precipitations, while becoming colorless and transparent. In contrast, a solution of concanavalin A (Con A) caused no apparent change, indicating that the precipitation was caused specifically by carbohydrate-protein interactions. This notable phenomenon was quantified by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the results were discussed in terms of detection and decontamination of the deadly biological toxin in the Ricinus communis family.

  15. Biochemical methane potential of kraft bleaching effluent and codigestion with other in-mill streams

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Dahl, Olli; Master, Emma;

    2016-01-01

    and in combination: total bleaching effluent, alkaline bleaching effluent, kraft evaporator condensate, and chemithermomechanical pulping effluent. The total bleaching effluent, consisting of the chlorine dioxide bleaching and alkaline bleaching effluents, exhibited the highest potential for organic matter...

  16. Impact of biodegradation on the potential bioaccumulation and toxicity of refinery effluents.

    Science.gov (United States)

    Leonards, Pim E G; Postma, Jaap F; Comber, Mike; Whale, Graham; Stalter, George

    2011-10-01

    Whole effluent assessments (WEA) are being investigated as potential tools for controlling aqueous industrial discharges and minimizing environmental impact. The present study investigated how toxicity and the presence of potentially bioaccumulative substances altered when refinery effluents were subjected to biodegradation tests. Three petrochemical effluents were assessed, two freshwater and one saline, and subjected to two different types of biodegradation tests, resembling either a ready style (dissolved organic carbon (DOC)-die away) or an inherent style (Zahn-Wellens) test and the toxicity and potential to bioaccumulate parameters were re-analysed during and after biodegradation. A high proportion of the potentially bioaccumulative substances (PBS) in these effluents was easily biodegradable. Biodegradation not only lowered the PBS concentration but also toxicity. Appropriate controls are required however, as some increases in toxicity were observed after 4 h. In the present study, six other petrochemical effluents were also assessed for their PBS content and toxicity to increase the understanding of the relationship between PBS and toxicity. The results showed that the PBS concentrations in these samples were lower than the estimated benchmarks of acute toxicity for algae, fish and crustacean, although two samples were above the critical PBS values for chronic narcotic toxicity for Daphnia magna, which support the assumption that narcotic effects are mainly responsible for the observed toxicity in refinery effluents. It can be concluded that for facilities processing petroleum products that the measurement of PBS is a suitable surrogate for toxicity tests at the screening stage. Finally, the combination of persistency, bioaccumulation, and toxicity tests was shown to have additional value compared to an approach using only toxicity tests. PMID:21796668

  17. Removal of low levels of uranium from aqueous solutions by coprecipitation and ion exchange (Preprint no. SST-02)

    International Nuclear Information System (INIS)

    Coprecipitation of uranium(VI) from aqueous solutions with ferric hydroxide has been evaluated as a means of removing uranium from aqueous effluents. Experiments with different amounts of uranium and added carbonate showed that it was possible to remove better than 95% of uranium in a single precipitation at low concentrations of uranium. Sorption on weak acid cation exchange resin has also been studied and can be used if the uranium is to be recovered. (author)

  18. In Vitro Anti-Listerial Activities of Crude n-Hexane and Aqueous Extracts of Garcinia kola (heckel) Seeds

    OpenAIRE

    Okoh, Anthony I.; Dambudzo Penduka

    2011-01-01

    We assessed the anti-Listerial activities of crude n-hexane and aqueous extracts of Garcinia kola seeds against a panel of 42 Listeria isolates previously isolated from wastewater effluents in the Eastern Cape Province of South Africa and belonging to Listeria monocytogenes, Listeria grayi and Listeria ivanovii species. The n-hexane fraction was active against 45% of the test bacteria with zones of inhibition ranging between 8–17 mm, while the aqueous fraction was active against 29% with zone...

  19. In-Vitro Antagonistic Characteristics of Crude Aqueous and Methanolic Extracts of Garcinia kola (Heckel) Seeds against Some Vibrio Bacteria

    OpenAIRE

    Okoh, Anthony I.; Dambudzo Penduka; Omobola O. Okoh

    2011-01-01

    The methanolic and aqueous extracts of Garcinia kola seeds were screened for their anti-Vibrio activities against 50 Vibrio isolates obtained from wastewater final effluents in the Eastern Cape Province, South Africa. The crude extracts at 10 mg/mL exhibited appreciable inhibitory activities against most of the test Vibrio isolates, with zones of inhibition ranging from 10–19 mm for methanol extract and 8–15 mm for the aqueous extracts. The minimum inhibitory concentrations (MIC) of the metha...

  20. EDF/CIDEN - ONECTRA: PWR decontamination; EDF/CIDEN - ONECTRA: assainissement REP

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle, P. [EDFICIDEN, 35-37, rue Louis Guerin - B.P. 21212, 69611 Villeurbanne Cedex (France); Orcel, H. [ONECTRA, ZA les Tomples BP45, 26701 Pierrelatte Cedex (France); Wertz, L. [ONECTRA, Le Britannia, Allee C, 20 Bd Eugene Deruelle, 69432 Lyon Cedex 03 (France)

    2010-07-01

    In the context of PWR circuit renewal (expected in 2011) and their decontamination, an analysis of data coming from cartography and on site decontamination measurements as well as from premise modelling by means of the PANTHERE radioprotection code, is presented. Several French PWRs have been studied. After a presentation of code principles and operation, the authors discuss the radiological context of a workstation, and give an assessment of the annual dose associated with maintenance operations with or without decontamination